WS cleanup: remove SPACE(s) followed by TAB
[platform/kernel/u-boot.git] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *      Copyright (C) Nokia Corporation, 2007
11  *
12  *      Rohit Hagargundgi <h.rohit at samsung.com>,
13  *      Amul Kumar Saha <amul.saha@samsung.com>:
14  *      Flex-OneNAND support
15  *      Copyright (C) Samsung Electronics, 2009
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License version 2 as
19  * published by the Free Software Foundation.
20  */
21
22 #include <common.h>
23 #include <log.h>
24 #include <watchdog.h>
25 #include <dm/devres.h>
26 #include <linux/bitops.h>
27 #include <linux/compat.h>
28 #include <linux/mtd/mtd.h>
29 #include "linux/mtd/flashchip.h"
30 #include <linux/mtd/onenand.h>
31
32 #include <asm/io.h>
33 #include <linux/errno.h>
34 #include <malloc.h>
35
36 /* It should access 16-bit instead of 8-bit */
37 static void *memcpy_16(void *dst, const void *src, unsigned int len)
38 {
39         void *ret = dst;
40         short *d = dst;
41         const short *s = src;
42
43         len >>= 1;
44         while (len-- > 0)
45                 *d++ = *s++;
46         return ret;
47 }
48
49 /**
50  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
51  *  For now, we expose only 64 out of 80 ecc bytes
52  */
53 static struct nand_ecclayout onenand_oob_128 = {
54         .eccbytes       = 64,
55         .eccpos         = {
56                 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
57                 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
58                 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
59                 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
60                 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
61                 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
62                 102, 103, 104, 105
63                 },
64         .oobfree        = {
65                 {2, 4}, {18, 4}, {34, 4}, {50, 4},
66                 {66, 4}, {82, 4}, {98, 4}, {114, 4}
67         }
68 };
69
70 /**
71  * onenand_oob_64 - oob info for large (2KB) page
72  */
73 static struct nand_ecclayout onenand_oob_64 = {
74         .eccbytes       = 20,
75         .eccpos         = {
76                 8, 9, 10, 11, 12,
77                 24, 25, 26, 27, 28,
78                 40, 41, 42, 43, 44,
79                 56, 57, 58, 59, 60,
80                 },
81         .oobfree        = {
82                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
83                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
84         }
85 };
86
87 /**
88  * onenand_oob_32 - oob info for middle (1KB) page
89  */
90 static struct nand_ecclayout onenand_oob_32 = {
91         .eccbytes       = 10,
92         .eccpos         = {
93                 8, 9, 10, 11, 12,
94                 24, 25, 26, 27, 28,
95                 },
96         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
97 };
98
99 /*
100  * Warning! This array is used with the memcpy_16() function, thus
101  * it must be aligned to 2 bytes. GCC can make this array unaligned
102  * as the array is made of unsigned char, which memcpy16() doesn't
103  * like and will cause unaligned access.
104  */
105 static const unsigned char __aligned(2) ffchars[] = {
106         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
107         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
108         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
109         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
110         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
111         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
112         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
113         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
114         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
115         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
116         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
117         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
118         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
119         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
120         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
121         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
122 };
123
124 /**
125  * onenand_readw - [OneNAND Interface] Read OneNAND register
126  * @param addr          address to read
127  *
128  * Read OneNAND register
129  */
130 static unsigned short onenand_readw(void __iomem * addr)
131 {
132         return readw(addr);
133 }
134
135 /**
136  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
137  * @param value         value to write
138  * @param addr          address to write
139  *
140  * Write OneNAND register with value
141  */
142 static void onenand_writew(unsigned short value, void __iomem * addr)
143 {
144         writew(value, addr);
145 }
146
147 /**
148  * onenand_block_address - [DEFAULT] Get block address
149  * @param device        the device id
150  * @param block         the block
151  * @return              translated block address if DDP, otherwise same
152  *
153  * Setup Start Address 1 Register (F100h)
154  */
155 static int onenand_block_address(struct onenand_chip *this, int block)
156 {
157         /* Device Flash Core select, NAND Flash Block Address */
158         if (block & this->density_mask)
159                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
160
161         return block;
162 }
163
164 /**
165  * onenand_bufferram_address - [DEFAULT] Get bufferram address
166  * @param device        the device id
167  * @param block         the block
168  * @return              set DBS value if DDP, otherwise 0
169  *
170  * Setup Start Address 2 Register (F101h) for DDP
171  */
172 static int onenand_bufferram_address(struct onenand_chip *this, int block)
173 {
174         /* Device BufferRAM Select */
175         if (block & this->density_mask)
176                 return ONENAND_DDP_CHIP1;
177
178         return ONENAND_DDP_CHIP0;
179 }
180
181 /**
182  * onenand_page_address - [DEFAULT] Get page address
183  * @param page          the page address
184  * @param sector        the sector address
185  * @return              combined page and sector address
186  *
187  * Setup Start Address 8 Register (F107h)
188  */
189 static int onenand_page_address(int page, int sector)
190 {
191         /* Flash Page Address, Flash Sector Address */
192         int fpa, fsa;
193
194         fpa = page & ONENAND_FPA_MASK;
195         fsa = sector & ONENAND_FSA_MASK;
196
197         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
198 }
199
200 /**
201  * onenand_buffer_address - [DEFAULT] Get buffer address
202  * @param dataram1      DataRAM index
203  * @param sectors       the sector address
204  * @param count         the number of sectors
205  * @return              the start buffer value
206  *
207  * Setup Start Buffer Register (F200h)
208  */
209 static int onenand_buffer_address(int dataram1, int sectors, int count)
210 {
211         int bsa, bsc;
212
213         /* BufferRAM Sector Address */
214         bsa = sectors & ONENAND_BSA_MASK;
215
216         if (dataram1)
217                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
218         else
219                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
220
221         /* BufferRAM Sector Count */
222         bsc = count & ONENAND_BSC_MASK;
223
224         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
225 }
226
227 /**
228  * flexonenand_block - Return block number for flash address
229  * @param this          - OneNAND device structure
230  * @param addr          - Address for which block number is needed
231  */
232 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
233 {
234         unsigned int boundary, blk, die = 0;
235
236         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
237                 die = 1;
238                 addr -= this->diesize[0];
239         }
240
241         boundary = this->boundary[die];
242
243         blk = addr >> (this->erase_shift - 1);
244         if (blk > boundary)
245                 blk = (blk + boundary + 1) >> 1;
246
247         blk += die ? this->density_mask : 0;
248         return blk;
249 }
250
251 unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
252 {
253         if (!FLEXONENAND(this))
254                 return addr >> this->erase_shift;
255         return flexonenand_block(this, addr);
256 }
257
258 /**
259  * flexonenand_addr - Return address of the block
260  * @this:               OneNAND device structure
261  * @block:              Block number on Flex-OneNAND
262  *
263  * Return address of the block
264  */
265 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
266 {
267         loff_t ofs = 0;
268         int die = 0, boundary;
269
270         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
271                 block -= this->density_mask;
272                 die = 1;
273                 ofs = this->diesize[0];
274         }
275
276         boundary = this->boundary[die];
277         ofs += (loff_t) block << (this->erase_shift - 1);
278         if (block > (boundary + 1))
279                 ofs += (loff_t) (block - boundary - 1)
280                         << (this->erase_shift - 1);
281         return ofs;
282 }
283
284 loff_t onenand_addr(struct onenand_chip *this, int block)
285 {
286         if (!FLEXONENAND(this))
287                 return (loff_t) block << this->erase_shift;
288         return flexonenand_addr(this, block);
289 }
290
291 /**
292  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
293  * @param mtd           MTD device structure
294  * @param addr          address whose erase region needs to be identified
295  */
296 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
297 {
298         int i;
299
300         for (i = 0; i < mtd->numeraseregions; i++)
301                 if (addr < mtd->eraseregions[i].offset)
302                         break;
303         return i - 1;
304 }
305
306 /**
307  * onenand_get_density - [DEFAULT] Get OneNAND density
308  * @param dev_id        OneNAND device ID
309  *
310  * Get OneNAND density from device ID
311  */
312 static inline int onenand_get_density(int dev_id)
313 {
314         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
315         return (density & ONENAND_DEVICE_DENSITY_MASK);
316 }
317
318 /**
319  * onenand_command - [DEFAULT] Send command to OneNAND device
320  * @param mtd           MTD device structure
321  * @param cmd           the command to be sent
322  * @param addr          offset to read from or write to
323  * @param len           number of bytes to read or write
324  *
325  * Send command to OneNAND device. This function is used for middle/large page
326  * devices (1KB/2KB Bytes per page)
327  */
328 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
329                            size_t len)
330 {
331         struct onenand_chip *this = mtd->priv;
332         int value;
333         int block, page;
334
335         /* Now we use page size operation */
336         int sectors = 0, count = 0;
337
338         /* Address translation */
339         switch (cmd) {
340         case ONENAND_CMD_UNLOCK:
341         case ONENAND_CMD_LOCK:
342         case ONENAND_CMD_LOCK_TIGHT:
343         case ONENAND_CMD_UNLOCK_ALL:
344                 block = -1;
345                 page = -1;
346                 break;
347
348         case FLEXONENAND_CMD_PI_ACCESS:
349                 /* addr contains die index */
350                 block = addr * this->density_mask;
351                 page = -1;
352                 break;
353
354         case ONENAND_CMD_ERASE:
355         case ONENAND_CMD_BUFFERRAM:
356                 block = onenand_block(this, addr);
357                 page = -1;
358                 break;
359
360         case FLEXONENAND_CMD_READ_PI:
361                 cmd = ONENAND_CMD_READ;
362                 block = addr * this->density_mask;
363                 page = 0;
364                 break;
365
366         default:
367                 block = onenand_block(this, addr);
368                 page = (int) (addr
369                         - onenand_addr(this, block)) >> this->page_shift;
370                 page &= this->page_mask;
371                 break;
372         }
373
374         /* NOTE: The setting order of the registers is very important! */
375         if (cmd == ONENAND_CMD_BUFFERRAM) {
376                 /* Select DataRAM for DDP */
377                 value = onenand_bufferram_address(this, block);
378                 this->write_word(value,
379                                  this->base + ONENAND_REG_START_ADDRESS2);
380
381                 if (ONENAND_IS_4KB_PAGE(this))
382                         ONENAND_SET_BUFFERRAM0(this);
383                 else
384                         /* Switch to the next data buffer */
385                         ONENAND_SET_NEXT_BUFFERRAM(this);
386
387                 return 0;
388         }
389
390         if (block != -1) {
391                 /* Write 'DFS, FBA' of Flash */
392                 value = onenand_block_address(this, block);
393                 this->write_word(value,
394                                  this->base + ONENAND_REG_START_ADDRESS1);
395
396                 /* Select DataRAM for DDP */
397                 value = onenand_bufferram_address(this, block);
398                 this->write_word(value,
399                                  this->base + ONENAND_REG_START_ADDRESS2);
400         }
401
402         if (page != -1) {
403                 int dataram;
404
405                 switch (cmd) {
406                 case FLEXONENAND_CMD_RECOVER_LSB:
407                 case ONENAND_CMD_READ:
408                 case ONENAND_CMD_READOOB:
409                         if (ONENAND_IS_4KB_PAGE(this))
410                                 dataram = ONENAND_SET_BUFFERRAM0(this);
411                         else
412                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
413
414                         break;
415
416                 default:
417                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
418                         break;
419                 }
420
421                 /* Write 'FPA, FSA' of Flash */
422                 value = onenand_page_address(page, sectors);
423                 this->write_word(value,
424                                  this->base + ONENAND_REG_START_ADDRESS8);
425
426                 /* Write 'BSA, BSC' of DataRAM */
427                 value = onenand_buffer_address(dataram, sectors, count);
428                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
429         }
430
431         /* Interrupt clear */
432         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
433         /* Write command */
434         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
435
436         return 0;
437 }
438
439 /**
440  * onenand_read_ecc - return ecc status
441  * @param this          onenand chip structure
442  */
443 static int onenand_read_ecc(struct onenand_chip *this)
444 {
445         int ecc, i;
446
447         if (!FLEXONENAND(this))
448                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
449
450         for (i = 0; i < 4; i++) {
451                 ecc = this->read_word(this->base
452                                 + ((ONENAND_REG_ECC_STATUS + i) << 1));
453                 if (likely(!ecc))
454                         continue;
455                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
456                         return ONENAND_ECC_2BIT_ALL;
457         }
458
459         return 0;
460 }
461
462 /**
463  * onenand_wait - [DEFAULT] wait until the command is done
464  * @param mtd           MTD device structure
465  * @param state         state to select the max. timeout value
466  *
467  * Wait for command done. This applies to all OneNAND command
468  * Read can take up to 30us, erase up to 2ms and program up to 350us
469  * according to general OneNAND specs
470  */
471 static int onenand_wait(struct mtd_info *mtd, int state)
472 {
473         struct onenand_chip *this = mtd->priv;
474         unsigned int interrupt = 0;
475         unsigned int ctrl;
476
477         /* Wait at most 20ms ... */
478         u32 timeo = (CONFIG_SYS_HZ * 20) / 1000;
479         u32 time_start = get_timer(0);
480         do {
481                 WATCHDOG_RESET();
482                 if (get_timer(time_start) > timeo)
483                         return -EIO;
484                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
485         } while ((interrupt & ONENAND_INT_MASTER) == 0);
486
487         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
488
489         if (interrupt & ONENAND_INT_READ) {
490                 int ecc = onenand_read_ecc(this);
491                 if (ecc & ONENAND_ECC_2BIT_ALL) {
492                         printk("onenand_wait: ECC error = 0x%04x\n", ecc);
493                         return -EBADMSG;
494                 }
495         }
496
497         if (ctrl & ONENAND_CTRL_ERROR) {
498                 printk("onenand_wait: controller error = 0x%04x\n", ctrl);
499                 if (ctrl & ONENAND_CTRL_LOCK)
500                         printk("onenand_wait: it's locked error = 0x%04x\n",
501                                 ctrl);
502
503                 return -EIO;
504         }
505
506
507         return 0;
508 }
509
510 /**
511  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
512  * @param mtd           MTD data structure
513  * @param area          BufferRAM area
514  * @return              offset given area
515  *
516  * Return BufferRAM offset given area
517  */
518 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
519 {
520         struct onenand_chip *this = mtd->priv;
521
522         if (ONENAND_CURRENT_BUFFERRAM(this)) {
523                 if (area == ONENAND_DATARAM)
524                         return mtd->writesize;
525                 if (area == ONENAND_SPARERAM)
526                         return mtd->oobsize;
527         }
528
529         return 0;
530 }
531
532 /**
533  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
534  * @param mtd           MTD data structure
535  * @param area          BufferRAM area
536  * @param buffer        the databuffer to put/get data
537  * @param offset        offset to read from or write to
538  * @param count         number of bytes to read/write
539  *
540  * Read the BufferRAM area
541  */
542 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
543                                   unsigned char *buffer, int offset,
544                                   size_t count)
545 {
546         struct onenand_chip *this = mtd->priv;
547         void __iomem *bufferram;
548
549         bufferram = this->base + area;
550         bufferram += onenand_bufferram_offset(mtd, area);
551
552         memcpy_16(buffer, bufferram + offset, count);
553
554         return 0;
555 }
556
557 /**
558  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
559  * @param mtd           MTD data structure
560  * @param area          BufferRAM area
561  * @param buffer        the databuffer to put/get data
562  * @param offset        offset to read from or write to
563  * @param count         number of bytes to read/write
564  *
565  * Read the BufferRAM area with Sync. Burst Mode
566  */
567 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
568                                        unsigned char *buffer, int offset,
569                                        size_t count)
570 {
571         struct onenand_chip *this = mtd->priv;
572         void __iomem *bufferram;
573
574         bufferram = this->base + area;
575         bufferram += onenand_bufferram_offset(mtd, area);
576
577         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
578
579         memcpy_16(buffer, bufferram + offset, count);
580
581         this->mmcontrol(mtd, 0);
582
583         return 0;
584 }
585
586 /**
587  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
588  * @param mtd           MTD data structure
589  * @param area          BufferRAM area
590  * @param buffer        the databuffer to put/get data
591  * @param offset        offset to read from or write to
592  * @param count         number of bytes to read/write
593  *
594  * Write the BufferRAM area
595  */
596 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
597                                    const unsigned char *buffer, int offset,
598                                    size_t count)
599 {
600         struct onenand_chip *this = mtd->priv;
601         void __iomem *bufferram;
602
603         bufferram = this->base + area;
604         bufferram += onenand_bufferram_offset(mtd, area);
605
606         memcpy_16(bufferram + offset, buffer, count);
607
608         return 0;
609 }
610
611 /**
612  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
613  * @param mtd           MTD data structure
614  * @param addr          address to check
615  * @return              blockpage address
616  *
617  * Get blockpage address at 2x program mode
618  */
619 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
620 {
621         struct onenand_chip *this = mtd->priv;
622         int blockpage, block, page;
623
624         /* Calculate the even block number */
625         block = (int) (addr >> this->erase_shift) & ~1;
626         /* Is it the odd plane? */
627         if (addr & this->writesize)
628                 block++;
629         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
630         blockpage = (block << 7) | page;
631
632         return blockpage;
633 }
634
635 /**
636  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
637  * @param mtd           MTD data structure
638  * @param addr          address to check
639  * @return              1 if there are valid data, otherwise 0
640  *
641  * Check bufferram if there is data we required
642  */
643 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
644 {
645         struct onenand_chip *this = mtd->priv;
646         int blockpage, found = 0;
647         unsigned int i;
648
649         if (ONENAND_IS_2PLANE(this))
650                 blockpage = onenand_get_2x_blockpage(mtd, addr);
651         else
652                 blockpage = (int) (addr >> this->page_shift);
653
654         /* Is there valid data? */
655         i = ONENAND_CURRENT_BUFFERRAM(this);
656         if (this->bufferram[i].blockpage == blockpage)
657                 found = 1;
658         else {
659                 /* Check another BufferRAM */
660                 i = ONENAND_NEXT_BUFFERRAM(this);
661                 if (this->bufferram[i].blockpage == blockpage) {
662                         ONENAND_SET_NEXT_BUFFERRAM(this);
663                         found = 1;
664                 }
665         }
666
667         if (found && ONENAND_IS_DDP(this)) {
668                 /* Select DataRAM for DDP */
669                 int block = onenand_block(this, addr);
670                 int value = onenand_bufferram_address(this, block);
671                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
672         }
673
674         return found;
675 }
676
677 /**
678  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
679  * @param mtd           MTD data structure
680  * @param addr          address to update
681  * @param valid         valid flag
682  *
683  * Update BufferRAM information
684  */
685 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
686                                     int valid)
687 {
688         struct onenand_chip *this = mtd->priv;
689         int blockpage;
690         unsigned int i;
691
692         if (ONENAND_IS_2PLANE(this))
693                 blockpage = onenand_get_2x_blockpage(mtd, addr);
694         else
695                 blockpage = (int)(addr >> this->page_shift);
696
697         /* Invalidate another BufferRAM */
698         i = ONENAND_NEXT_BUFFERRAM(this);
699         if (this->bufferram[i].blockpage == blockpage)
700                 this->bufferram[i].blockpage = -1;
701
702         /* Update BufferRAM */
703         i = ONENAND_CURRENT_BUFFERRAM(this);
704         if (valid)
705                 this->bufferram[i].blockpage = blockpage;
706         else
707                 this->bufferram[i].blockpage = -1;
708
709         return 0;
710 }
711
712 /**
713  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
714  * @param mtd           MTD data structure
715  * @param addr          start address to invalidate
716  * @param len           length to invalidate
717  *
718  * Invalidate BufferRAM information
719  */
720 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
721                                          unsigned int len)
722 {
723         struct onenand_chip *this = mtd->priv;
724         int i;
725         loff_t end_addr = addr + len;
726
727         /* Invalidate BufferRAM */
728         for (i = 0; i < MAX_BUFFERRAM; i++) {
729                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
730
731                 if (buf_addr >= addr && buf_addr < end_addr)
732                         this->bufferram[i].blockpage = -1;
733         }
734 }
735
736 /**
737  * onenand_get_device - [GENERIC] Get chip for selected access
738  * @param mtd           MTD device structure
739  * @param new_state     the state which is requested
740  *
741  * Get the device and lock it for exclusive access
742  */
743 static void onenand_get_device(struct mtd_info *mtd, int new_state)
744 {
745         /* Do nothing */
746 }
747
748 /**
749  * onenand_release_device - [GENERIC] release chip
750  * @param mtd           MTD device structure
751  *
752  * Deselect, release chip lock and wake up anyone waiting on the device
753  */
754 static void onenand_release_device(struct mtd_info *mtd)
755 {
756         /* Do nothing */
757 }
758
759 /**
760  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
761  * @param mtd           MTD device structure
762  * @param buf           destination address
763  * @param column        oob offset to read from
764  * @param thislen       oob length to read
765  */
766 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
767                                         int column, int thislen)
768 {
769         struct onenand_chip *this = mtd->priv;
770         struct nand_oobfree *free;
771         int readcol = column;
772         int readend = column + thislen;
773         int lastgap = 0;
774         unsigned int i;
775         uint8_t *oob_buf = this->oob_buf;
776
777         free = this->ecclayout->oobfree;
778         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
779              i++, free++) {
780                 if (readcol >= lastgap)
781                         readcol += free->offset - lastgap;
782                 if (readend >= lastgap)
783                         readend += free->offset - lastgap;
784                 lastgap = free->offset + free->length;
785         }
786         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
787         free = this->ecclayout->oobfree;
788         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
789              i++, free++) {
790                 int free_end = free->offset + free->length;
791                 if (free->offset < readend && free_end > readcol) {
792                         int st = max_t(int,free->offset,readcol);
793                         int ed = min_t(int,free_end,readend);
794                         int n = ed - st;
795                         memcpy(buf, oob_buf + st, n);
796                         buf += n;
797                 } else if (column == 0)
798                         break;
799         }
800         return 0;
801 }
802
803 /**
804  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
805  * @param mtd           MTD device structure
806  * @param addr          address to recover
807  * @param status        return value from onenand_wait
808  *
809  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
810  * lower page address and MSB page has higher page address in paired pages.
811  * If power off occurs during MSB page program, the paired LSB page data can
812  * become corrupt. LSB page recovery read is a way to read LSB page though page
813  * data are corrupted. When uncorrectable error occurs as a result of LSB page
814  * read after power up, issue LSB page recovery read.
815  */
816 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
817 {
818         struct onenand_chip *this = mtd->priv;
819         int i;
820
821         /* Recovery is only for Flex-OneNAND */
822         if (!FLEXONENAND(this))
823                 return status;
824
825         /* check if we failed due to uncorrectable error */
826         if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
827                 return status;
828
829         /* check if address lies in MLC region */
830         i = flexonenand_region(mtd, addr);
831         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
832                 return status;
833
834         printk("onenand_recover_lsb:"
835                 "Attempting to recover from uncorrectable read\n");
836
837         /* Issue the LSB page recovery command */
838         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
839         return this->wait(mtd, FL_READING);
840 }
841
842 /**
843  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
844  * @param mtd           MTD device structure
845  * @param from          offset to read from
846  * @param ops           oob operation description structure
847  *
848  * OneNAND read main and/or out-of-band data
849  */
850 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
851                 struct mtd_oob_ops *ops)
852 {
853         struct onenand_chip *this = mtd->priv;
854         struct mtd_ecc_stats stats;
855         size_t len = ops->len;
856         size_t ooblen = ops->ooblen;
857         u_char *buf = ops->datbuf;
858         u_char *oobbuf = ops->oobbuf;
859         int read = 0, column, thislen;
860         int oobread = 0, oobcolumn, thisooblen, oobsize;
861         int ret = 0, boundary = 0;
862         int writesize = this->writesize;
863
864         pr_debug("onenand_read_ops_nolock: from = 0x%08x, len = %i\n",
865                  (unsigned int) from, (int) len);
866
867         if (ops->mode == MTD_OPS_AUTO_OOB)
868                 oobsize = this->ecclayout->oobavail;
869         else
870                 oobsize = mtd->oobsize;
871
872         oobcolumn = from & (mtd->oobsize - 1);
873
874         /* Do not allow reads past end of device */
875         if ((from + len) > mtd->size) {
876                 printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
877                 ops->retlen = 0;
878                 ops->oobretlen = 0;
879                 return -EINVAL;
880         }
881
882         stats = mtd->ecc_stats;
883
884         /* Read-while-load method */
885         /* Note: We can't use this feature in MLC */
886
887         /* Do first load to bufferRAM */
888         if (read < len) {
889                 if (!onenand_check_bufferram(mtd, from)) {
890                         this->main_buf = buf;
891                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
892                         ret = this->wait(mtd, FL_READING);
893                         if (unlikely(ret))
894                                 ret = onenand_recover_lsb(mtd, from, ret);
895                         onenand_update_bufferram(mtd, from, !ret);
896                         if (ret == -EBADMSG)
897                                 ret = 0;
898                 }
899         }
900
901         thislen = min_t(int, writesize, len - read);
902         column = from & (writesize - 1);
903         if (column + thislen > writesize)
904                 thislen = writesize - column;
905
906         while (!ret) {
907                 /* If there is more to load then start next load */
908                 from += thislen;
909                 if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) {
910                         this->main_buf = buf + thislen;
911                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
912                         /*
913                          * Chip boundary handling in DDP
914                          * Now we issued chip 1 read and pointed chip 1
915                          * bufferam so we have to point chip 0 bufferam.
916                          */
917                         if (ONENAND_IS_DDP(this) &&
918                                         unlikely(from == (this->chipsize >> 1))) {
919                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
920                                 boundary = 1;
921                         } else
922                                 boundary = 0;
923                         ONENAND_SET_PREV_BUFFERRAM(this);
924                 }
925
926                 /* While load is going, read from last bufferRAM */
927                 this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
928
929                 /* Read oob area if needed */
930                 if (oobbuf) {
931                         thisooblen = oobsize - oobcolumn;
932                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
933
934                         if (ops->mode == MTD_OPS_AUTO_OOB)
935                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
936                         else
937                                 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
938                         oobread += thisooblen;
939                         oobbuf += thisooblen;
940                         oobcolumn = 0;
941                 }
942
943                 if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) {
944                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
945                         ret = this->wait(mtd, FL_READING);
946                         if (unlikely(ret))
947                                 ret = onenand_recover_lsb(mtd, from, ret);
948                         onenand_update_bufferram(mtd, from, !ret);
949                         if (mtd_is_eccerr(ret))
950                                 ret = 0;
951                 }
952
953                 /* See if we are done */
954                 read += thislen;
955                 if (read == len)
956                         break;
957                 /* Set up for next read from bufferRAM */
958                 if (unlikely(boundary))
959                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
960                 if (!ONENAND_IS_4KB_PAGE(this))
961                         ONENAND_SET_NEXT_BUFFERRAM(this);
962                 buf += thislen;
963                 thislen = min_t(int, writesize, len - read);
964                 column = 0;
965
966                 if (!ONENAND_IS_4KB_PAGE(this)) {
967                         /* Now wait for load */
968                         ret = this->wait(mtd, FL_READING);
969                         onenand_update_bufferram(mtd, from, !ret);
970                         if (mtd_is_eccerr(ret))
971                                 ret = 0;
972                 }
973         }
974
975         /*
976          * Return success, if no ECC failures, else -EBADMSG
977          * fs driver will take care of that, because
978          * retlen == desired len and result == -EBADMSG
979          */
980         ops->retlen = read;
981         ops->oobretlen = oobread;
982
983         if (ret)
984                 return ret;
985
986         if (mtd->ecc_stats.failed - stats.failed)
987                 return -EBADMSG;
988
989         /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
990         return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
991 }
992
993 /**
994  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
995  * @param mtd           MTD device structure
996  * @param from          offset to read from
997  * @param ops           oob operation description structure
998  *
999  * OneNAND read out-of-band data from the spare area
1000  */
1001 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1002                 struct mtd_oob_ops *ops)
1003 {
1004         struct onenand_chip *this = mtd->priv;
1005         struct mtd_ecc_stats stats;
1006         int read = 0, thislen, column, oobsize;
1007         size_t len = ops->ooblen;
1008         unsigned int mode = ops->mode;
1009         u_char *buf = ops->oobbuf;
1010         int ret = 0, readcmd;
1011
1012         from += ops->ooboffs;
1013
1014         pr_debug("onenand_read_oob_nolock: from = 0x%08x, len = %i\n",
1015                  (unsigned int) from, (int) len);
1016
1017         /* Initialize return length value */
1018         ops->oobretlen = 0;
1019
1020         if (mode == MTD_OPS_AUTO_OOB)
1021                 oobsize = this->ecclayout->oobavail;
1022         else
1023                 oobsize = mtd->oobsize;
1024
1025         column = from & (mtd->oobsize - 1);
1026
1027         if (unlikely(column >= oobsize)) {
1028                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1029                 return -EINVAL;
1030         }
1031
1032         /* Do not allow reads past end of device */
1033         if (unlikely(from >= mtd->size ||
1034                 column + len > ((mtd->size >> this->page_shift) -
1035                                 (from >> this->page_shift)) * oobsize)) {
1036                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1037                 return -EINVAL;
1038         }
1039
1040         stats = mtd->ecc_stats;
1041
1042         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1043                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1044
1045         while (read < len) {
1046                 thislen = oobsize - column;
1047                 thislen = min_t(int, thislen, len);
1048
1049                 this->spare_buf = buf;
1050                 this->command(mtd, readcmd, from, mtd->oobsize);
1051
1052                 onenand_update_bufferram(mtd, from, 0);
1053
1054                 ret = this->wait(mtd, FL_READING);
1055                 if (unlikely(ret))
1056                         ret = onenand_recover_lsb(mtd, from, ret);
1057
1058                 if (ret && ret != -EBADMSG) {
1059                         printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1060                         break;
1061                 }
1062
1063                 if (mode == MTD_OPS_AUTO_OOB)
1064                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1065                 else
1066                         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1067
1068                 read += thislen;
1069
1070                 if (read == len)
1071                         break;
1072
1073                 buf += thislen;
1074
1075                 /* Read more? */
1076                 if (read < len) {
1077                         /* Page size */
1078                         from += mtd->writesize;
1079                         column = 0;
1080                 }
1081         }
1082
1083         ops->oobretlen = read;
1084
1085         if (ret)
1086                 return ret;
1087
1088         if (mtd->ecc_stats.failed - stats.failed)
1089                 return -EBADMSG;
1090
1091         return 0;
1092 }
1093
1094 /**
1095  * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
1096  * @param mtd           MTD device structure
1097  * @param from          offset to read from
1098  * @param len           number of bytes to read
1099  * @param retlen        pointer to variable to store the number of read bytes
1100  * @param buf           the databuffer to put data
1101  *
1102  * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
1103 */
1104 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1105                  size_t * retlen, u_char * buf)
1106 {
1107         struct mtd_oob_ops ops = {
1108                 .len    = len,
1109                 .ooblen = 0,
1110                 .datbuf = buf,
1111                 .oobbuf = NULL,
1112         };
1113         int ret;
1114
1115         onenand_get_device(mtd, FL_READING);
1116         ret = onenand_read_ops_nolock(mtd, from, &ops);
1117         onenand_release_device(mtd);
1118
1119         *retlen = ops.retlen;
1120         return ret;
1121 }
1122
1123 /**
1124  * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
1125  * @param mtd           MTD device structure
1126  * @param from          offset to read from
1127  * @param ops           oob operations description structure
1128  *
1129  * OneNAND main and/or out-of-band
1130  */
1131 int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1132                         struct mtd_oob_ops *ops)
1133 {
1134         int ret;
1135
1136         switch (ops->mode) {
1137         case MTD_OPS_PLACE_OOB:
1138         case MTD_OPS_AUTO_OOB:
1139                 break;
1140         case MTD_OPS_RAW:
1141                 /* Not implemented yet */
1142         default:
1143                 return -EINVAL;
1144         }
1145
1146         onenand_get_device(mtd, FL_READING);
1147         if (ops->datbuf)
1148                 ret = onenand_read_ops_nolock(mtd, from, ops);
1149         else
1150                 ret = onenand_read_oob_nolock(mtd, from, ops);
1151         onenand_release_device(mtd);
1152
1153         return ret;
1154 }
1155
1156 /**
1157  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1158  * @param mtd           MTD device structure
1159  * @param state         state to select the max. timeout value
1160  *
1161  * Wait for command done.
1162  */
1163 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1164 {
1165         struct onenand_chip *this = mtd->priv;
1166         unsigned int interrupt;
1167         unsigned int ctrl;
1168
1169         /* Wait at most 20ms ... */
1170         u32 timeo = (CONFIG_SYS_HZ * 20) / 1000;
1171         u32 time_start = get_timer(0);
1172         do {
1173                 WATCHDOG_RESET();
1174                 if (get_timer(time_start) > timeo)
1175                         return ONENAND_BBT_READ_FATAL_ERROR;
1176                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1177         } while ((interrupt & ONENAND_INT_MASTER) == 0);
1178
1179         /* To get correct interrupt status in timeout case */
1180         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1181         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1182
1183         if (interrupt & ONENAND_INT_READ) {
1184                 int ecc = onenand_read_ecc(this);
1185                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1186                         printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1187                                 ", controller = 0x%04x\n", ecc, ctrl);
1188                         return ONENAND_BBT_READ_ERROR;
1189                 }
1190         } else {
1191                 printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1192                                 "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1193                 return ONENAND_BBT_READ_FATAL_ERROR;
1194         }
1195
1196         /* Initial bad block case: 0x2400 or 0x0400 */
1197         if (ctrl & ONENAND_CTRL_ERROR) {
1198                 printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1199                 return ONENAND_BBT_READ_ERROR;
1200         }
1201
1202         return 0;
1203 }
1204
1205 /**
1206  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1207  * @param mtd           MTD device structure
1208  * @param from          offset to read from
1209  * @param ops           oob operation description structure
1210  *
1211  * OneNAND read out-of-band data from the spare area for bbt scan
1212  */
1213 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1214                 struct mtd_oob_ops *ops)
1215 {
1216         struct onenand_chip *this = mtd->priv;
1217         int read = 0, thislen, column;
1218         int ret = 0, readcmd;
1219         size_t len = ops->ooblen;
1220         u_char *buf = ops->oobbuf;
1221
1222         pr_debug("onenand_bbt_read_oob: from = 0x%08x, len = %zi\n",
1223                  (unsigned int) from, len);
1224
1225         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1226                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1227
1228         /* Initialize return value */
1229         ops->oobretlen = 0;
1230
1231         /* Do not allow reads past end of device */
1232         if (unlikely((from + len) > mtd->size)) {
1233                 printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1234                 return ONENAND_BBT_READ_FATAL_ERROR;
1235         }
1236
1237         /* Grab the lock and see if the device is available */
1238         onenand_get_device(mtd, FL_READING);
1239
1240         column = from & (mtd->oobsize - 1);
1241
1242         while (read < len) {
1243
1244                 thislen = mtd->oobsize - column;
1245                 thislen = min_t(int, thislen, len);
1246
1247                 this->spare_buf = buf;
1248                 this->command(mtd, readcmd, from, mtd->oobsize);
1249
1250                 onenand_update_bufferram(mtd, from, 0);
1251
1252                 ret = this->bbt_wait(mtd, FL_READING);
1253                 if (unlikely(ret))
1254                         ret = onenand_recover_lsb(mtd, from, ret);
1255
1256                 if (ret)
1257                         break;
1258
1259                 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1260                 read += thislen;
1261                 if (read == len)
1262                         break;
1263
1264                 buf += thislen;
1265
1266                 /* Read more? */
1267                 if (read < len) {
1268                         /* Update Page size */
1269                         from += this->writesize;
1270                         column = 0;
1271                 }
1272         }
1273
1274         /* Deselect and wake up anyone waiting on the device */
1275         onenand_release_device(mtd);
1276
1277         ops->oobretlen = read;
1278         return ret;
1279 }
1280
1281
1282 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1283 /**
1284  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1285  * @param mtd           MTD device structure
1286  * @param buf           the databuffer to verify
1287  * @param to            offset to read from
1288  */
1289 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1290 {
1291         struct onenand_chip *this = mtd->priv;
1292         u_char *oob_buf = this->oob_buf;
1293         int status, i, readcmd;
1294
1295         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1296                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1297
1298         this->command(mtd, readcmd, to, mtd->oobsize);
1299         onenand_update_bufferram(mtd, to, 0);
1300         status = this->wait(mtd, FL_READING);
1301         if (status)
1302                 return status;
1303
1304         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1305         for (i = 0; i < mtd->oobsize; i++)
1306                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1307                         return -EBADMSG;
1308
1309         return 0;
1310 }
1311
1312 /**
1313  * onenand_verify - [GENERIC] verify the chip contents after a write
1314  * @param mtd          MTD device structure
1315  * @param buf          the databuffer to verify
1316  * @param addr         offset to read from
1317  * @param len          number of bytes to read and compare
1318  */
1319 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1320 {
1321         struct onenand_chip *this = mtd->priv;
1322         void __iomem *dataram;
1323         int ret = 0;
1324         int thislen, column;
1325
1326         while (len != 0) {
1327                 thislen = min_t(int, this->writesize, len);
1328                 column = addr & (this->writesize - 1);
1329                 if (column + thislen > this->writesize)
1330                         thislen = this->writesize - column;
1331
1332                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1333
1334                 onenand_update_bufferram(mtd, addr, 0);
1335
1336                 ret = this->wait(mtd, FL_READING);
1337                 if (ret)
1338                         return ret;
1339
1340                 onenand_update_bufferram(mtd, addr, 1);
1341
1342                 dataram = this->base + ONENAND_DATARAM;
1343                 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1344
1345                 if (memcmp(buf, dataram + column, thislen))
1346                         return -EBADMSG;
1347
1348                 len -= thislen;
1349                 buf += thislen;
1350                 addr += thislen;
1351         }
1352
1353         return 0;
1354 }
1355 #else
1356 #define onenand_verify(...)             (0)
1357 #define onenand_verify_oob(...)         (0)
1358 #endif
1359
1360 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1361
1362 /**
1363  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1364  * @param mtd           MTD device structure
1365  * @param oob_buf       oob buffer
1366  * @param buf           source address
1367  * @param column        oob offset to write to
1368  * @param thislen       oob length to write
1369  */
1370 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1371                 const u_char *buf, int column, int thislen)
1372 {
1373         struct onenand_chip *this = mtd->priv;
1374         struct nand_oobfree *free;
1375         int writecol = column;
1376         int writeend = column + thislen;
1377         int lastgap = 0;
1378         unsigned int i;
1379
1380         free = this->ecclayout->oobfree;
1381         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
1382              i++, free++) {
1383                 if (writecol >= lastgap)
1384                         writecol += free->offset - lastgap;
1385                 if (writeend >= lastgap)
1386                         writeend += free->offset - lastgap;
1387                 lastgap = free->offset + free->length;
1388         }
1389         free = this->ecclayout->oobfree;
1390         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
1391              i++, free++) {
1392                 int free_end = free->offset + free->length;
1393                 if (free->offset < writeend && free_end > writecol) {
1394                         int st = max_t(int,free->offset,writecol);
1395                         int ed = min_t(int,free_end,writeend);
1396                         int n = ed - st;
1397                         memcpy(oob_buf + st, buf, n);
1398                         buf += n;
1399                 } else if (column == 0)
1400                         break;
1401         }
1402         return 0;
1403 }
1404
1405 /**
1406  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1407  * @param mtd           MTD device structure
1408  * @param to            offset to write to
1409  * @param ops           oob operation description structure
1410  *
1411  * Write main and/or oob with ECC
1412  */
1413 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1414                 struct mtd_oob_ops *ops)
1415 {
1416         struct onenand_chip *this = mtd->priv;
1417         int written = 0, column, thislen, subpage;
1418         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1419         size_t len = ops->len;
1420         size_t ooblen = ops->ooblen;
1421         const u_char *buf = ops->datbuf;
1422         const u_char *oob = ops->oobbuf;
1423         u_char *oobbuf;
1424         int ret = 0;
1425
1426         pr_debug("onenand_write_ops_nolock: to = 0x%08x, len = %i\n",
1427                  (unsigned int) to, (int) len);
1428
1429         /* Initialize retlen, in case of early exit */
1430         ops->retlen = 0;
1431         ops->oobretlen = 0;
1432
1433         /* Reject writes, which are not page aligned */
1434         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1435                 printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1436                 return -EINVAL;
1437         }
1438
1439         if (ops->mode == MTD_OPS_AUTO_OOB)
1440                 oobsize = this->ecclayout->oobavail;
1441         else
1442                 oobsize = mtd->oobsize;
1443
1444         oobcolumn = to & (mtd->oobsize - 1);
1445
1446         column = to & (mtd->writesize - 1);
1447
1448         /* Loop until all data write */
1449         while (written < len) {
1450                 u_char *wbuf = (u_char *) buf;
1451
1452                 thislen = min_t(int, mtd->writesize - column, len - written);
1453                 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1454
1455                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1456
1457                 /* Partial page write */
1458                 subpage = thislen < mtd->writesize;
1459                 if (subpage) {
1460                         memset(this->page_buf, 0xff, mtd->writesize);
1461                         memcpy(this->page_buf + column, buf, thislen);
1462                         wbuf = this->page_buf;
1463                 }
1464
1465                 this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1466
1467                 if (oob) {
1468                         oobbuf = this->oob_buf;
1469
1470                         /* We send data to spare ram with oobsize
1471                          *                          * to prevent byte access */
1472                         memset(oobbuf, 0xff, mtd->oobsize);
1473                         if (ops->mode == MTD_OPS_AUTO_OOB)
1474                                 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1475                         else
1476                                 memcpy(oobbuf + oobcolumn, oob, thisooblen);
1477
1478                         oobwritten += thisooblen;
1479                         oob += thisooblen;
1480                         oobcolumn = 0;
1481                 } else
1482                         oobbuf = (u_char *) ffchars;
1483
1484                 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1485
1486                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1487
1488                 ret = this->wait(mtd, FL_WRITING);
1489
1490                 /* In partial page write we don't update bufferram */
1491                 onenand_update_bufferram(mtd, to, !ret && !subpage);
1492                 if (ONENAND_IS_2PLANE(this)) {
1493                         ONENAND_SET_BUFFERRAM1(this);
1494                         onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1495                 }
1496
1497                 if (ret) {
1498                         printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1499                         break;
1500                 }
1501
1502                 /* Only check verify write turn on */
1503                 ret = onenand_verify(mtd, buf, to, thislen);
1504                 if (ret) {
1505                         printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1506                         break;
1507                 }
1508
1509                 written += thislen;
1510
1511                 if (written == len)
1512                         break;
1513
1514                 column = 0;
1515                 to += thislen;
1516                 buf += thislen;
1517         }
1518
1519         ops->retlen = written;
1520
1521         return ret;
1522 }
1523
1524 /**
1525  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1526  * @param mtd           MTD device structure
1527  * @param to            offset to write to
1528  * @param len           number of bytes to write
1529  * @param retlen        pointer to variable to store the number of written bytes
1530  * @param buf           the data to write
1531  * @param mode          operation mode
1532  *
1533  * OneNAND write out-of-band
1534  */
1535 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1536                 struct mtd_oob_ops *ops)
1537 {
1538         struct onenand_chip *this = mtd->priv;
1539         int column, ret = 0, oobsize;
1540         int written = 0, oobcmd;
1541         u_char *oobbuf;
1542         size_t len = ops->ooblen;
1543         const u_char *buf = ops->oobbuf;
1544         unsigned int mode = ops->mode;
1545
1546         to += ops->ooboffs;
1547
1548         pr_debug("onenand_write_oob_nolock: to = 0x%08x, len = %i\n",
1549                  (unsigned int) to, (int) len);
1550
1551         /* Initialize retlen, in case of early exit */
1552         ops->oobretlen = 0;
1553
1554         if (mode == MTD_OPS_AUTO_OOB)
1555                 oobsize = this->ecclayout->oobavail;
1556         else
1557                 oobsize = mtd->oobsize;
1558
1559         column = to & (mtd->oobsize - 1);
1560
1561         if (unlikely(column >= oobsize)) {
1562                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1563                 return -EINVAL;
1564         }
1565
1566         /* For compatibility with NAND: Do not allow write past end of page */
1567         if (unlikely(column + len > oobsize)) {
1568                 printk(KERN_ERR "onenand_write_oob_nolock: "
1569                                 "Attempt to write past end of page\n");
1570                 return -EINVAL;
1571         }
1572
1573         /* Do not allow reads past end of device */
1574         if (unlikely(to >= mtd->size ||
1575                                 column + len > ((mtd->size >> this->page_shift) -
1576                                         (to >> this->page_shift)) * oobsize)) {
1577                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1578                 return -EINVAL;
1579         }
1580
1581         oobbuf = this->oob_buf;
1582
1583         oobcmd = ONENAND_IS_4KB_PAGE(this) ?
1584                 ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1585
1586         /* Loop until all data write */
1587         while (written < len) {
1588                 int thislen = min_t(int, oobsize, len - written);
1589
1590                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1591
1592                 /* We send data to spare ram with oobsize
1593                  * to prevent byte access */
1594                 memset(oobbuf, 0xff, mtd->oobsize);
1595                 if (mode == MTD_OPS_AUTO_OOB)
1596                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1597                 else
1598                         memcpy(oobbuf + column, buf, thislen);
1599                 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1600
1601                 if (ONENAND_IS_4KB_PAGE(this)) {
1602                         /* Set main area of DataRAM to 0xff*/
1603                         memset(this->page_buf, 0xff, mtd->writesize);
1604                         this->write_bufferram(mtd, 0, ONENAND_DATARAM,
1605                                 this->page_buf, 0, mtd->writesize);
1606                 }
1607
1608                 this->command(mtd, oobcmd, to, mtd->oobsize);
1609
1610                 onenand_update_bufferram(mtd, to, 0);
1611                 if (ONENAND_IS_2PLANE(this)) {
1612                         ONENAND_SET_BUFFERRAM1(this);
1613                         onenand_update_bufferram(mtd, to + this->writesize, 0);
1614                 }
1615
1616                 ret = this->wait(mtd, FL_WRITING);
1617                 if (ret) {
1618                         printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1619                         break;
1620                 }
1621
1622                 ret = onenand_verify_oob(mtd, oobbuf, to);
1623                 if (ret) {
1624                         printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1625                         break;
1626                 }
1627
1628                 written += thislen;
1629                 if (written == len)
1630                         break;
1631
1632                 to += mtd->writesize;
1633                 buf += thislen;
1634                 column = 0;
1635         }
1636
1637         ops->oobretlen = written;
1638
1639         return ret;
1640 }
1641
1642 /**
1643  * onenand_write - [MTD Interface] compability function for onenand_write_ecc
1644  * @param mtd           MTD device structure
1645  * @param to            offset to write to
1646  * @param len           number of bytes to write
1647  * @param retlen        pointer to variable to store the number of written bytes
1648  * @param buf           the data to write
1649  *
1650  * Write with ECC
1651  */
1652 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1653                   size_t * retlen, const u_char * buf)
1654 {
1655         struct mtd_oob_ops ops = {
1656                 .len    = len,
1657                 .ooblen = 0,
1658                 .datbuf = (u_char *) buf,
1659                 .oobbuf = NULL,
1660         };
1661         int ret;
1662
1663         onenand_get_device(mtd, FL_WRITING);
1664         ret = onenand_write_ops_nolock(mtd, to, &ops);
1665         onenand_release_device(mtd);
1666
1667         *retlen = ops.retlen;
1668         return ret;
1669 }
1670
1671 /**
1672  * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
1673  * @param mtd           MTD device structure
1674  * @param to            offset to write to
1675  * @param ops           oob operation description structure
1676  *
1677  * OneNAND write main and/or out-of-band
1678  */
1679 int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1680                         struct mtd_oob_ops *ops)
1681 {
1682         int ret;
1683
1684         switch (ops->mode) {
1685         case MTD_OPS_PLACE_OOB:
1686         case MTD_OPS_AUTO_OOB:
1687                 break;
1688         case MTD_OPS_RAW:
1689                 /* Not implemented yet */
1690         default:
1691                 return -EINVAL;
1692         }
1693
1694         onenand_get_device(mtd, FL_WRITING);
1695         if (ops->datbuf)
1696                 ret = onenand_write_ops_nolock(mtd, to, ops);
1697         else
1698                 ret = onenand_write_oob_nolock(mtd, to, ops);
1699         onenand_release_device(mtd);
1700
1701         return ret;
1702
1703 }
1704
1705 /**
1706  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1707  * @param mtd           MTD device structure
1708  * @param ofs           offset from device start
1709  * @param allowbbt      1, if its allowed to access the bbt area
1710  *
1711  * Check, if the block is bad, Either by reading the bad block table or
1712  * calling of the scan function.
1713  */
1714 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1715 {
1716         struct onenand_chip *this = mtd->priv;
1717         struct bbm_info *bbm = this->bbm;
1718
1719         /* Return info from the table */
1720         return bbm->isbad_bbt(mtd, ofs, allowbbt);
1721 }
1722
1723
1724 /**
1725  * onenand_erase - [MTD Interface] erase block(s)
1726  * @param mtd           MTD device structure
1727  * @param instr         erase instruction
1728  *
1729  * Erase one ore more blocks
1730  */
1731 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1732 {
1733         struct onenand_chip *this = mtd->priv;
1734         unsigned int block_size;
1735         loff_t addr = instr->addr;
1736         unsigned int len = instr->len;
1737         int ret = 0, i;
1738         struct mtd_erase_region_info *region = NULL;
1739         unsigned int region_end = 0;
1740
1741         pr_debug("onenand_erase: start = 0x%08x, len = %i\n",
1742                         (unsigned int) addr, len);
1743
1744         if (FLEXONENAND(this)) {
1745                 /* Find the eraseregion of this address */
1746                 i = flexonenand_region(mtd, addr);
1747                 region = &mtd->eraseregions[i];
1748
1749                 block_size = region->erasesize;
1750                 region_end = region->offset
1751                         + region->erasesize * region->numblocks;
1752
1753                 /* Start address within region must align on block boundary.
1754                  * Erase region's start offset is always block start address.
1755                  */
1756                 if (unlikely((addr - region->offset) & (block_size - 1))) {
1757                         pr_debug("onenand_erase:" " Unaligned address\n");
1758                         return -EINVAL;
1759                 }
1760         } else {
1761                 block_size = 1 << this->erase_shift;
1762
1763                 /* Start address must align on block boundary */
1764                 if (unlikely(addr & (block_size - 1))) {
1765                         pr_debug("onenand_erase:" "Unaligned address\n");
1766                         return -EINVAL;
1767                 }
1768         }
1769
1770         /* Length must align on block boundary */
1771         if (unlikely(len & (block_size - 1))) {
1772                 pr_debug("onenand_erase: Length not block aligned\n");
1773                 return -EINVAL;
1774         }
1775
1776         /* Grab the lock and see if the device is available */
1777         onenand_get_device(mtd, FL_ERASING);
1778
1779         /* Loop throught the pages */
1780         instr->state = MTD_ERASING;
1781
1782         while (len) {
1783
1784                 /* Check if we have a bad block, we do not erase bad blocks */
1785                 if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
1786                         printk(KERN_WARNING "onenand_erase: attempt to erase"
1787                                 " a bad block at addr 0x%08x\n",
1788                                 (unsigned int) addr);
1789                         instr->state = MTD_ERASE_FAILED;
1790                         goto erase_exit;
1791                 }
1792
1793                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1794
1795                 onenand_invalidate_bufferram(mtd, addr, block_size);
1796
1797                 ret = this->wait(mtd, FL_ERASING);
1798                 /* Check, if it is write protected */
1799                 if (ret) {
1800                         if (ret == -EPERM)
1801                                 pr_debug("onenand_erase: "
1802                                          "Device is write protected!!!\n");
1803                         else
1804                                 pr_debug("onenand_erase: "
1805                                          "Failed erase, block %d\n",
1806                                          onenand_block(this, addr));
1807                         instr->state = MTD_ERASE_FAILED;
1808                         instr->fail_addr = addr;
1809
1810                         goto erase_exit;
1811                 }
1812
1813                 len -= block_size;
1814                 addr += block_size;
1815
1816                 if (addr == region_end) {
1817                         if (!len)
1818                                 break;
1819                         region++;
1820
1821                         block_size = region->erasesize;
1822                         region_end = region->offset
1823                                 + region->erasesize * region->numblocks;
1824
1825                         if (len & (block_size - 1)) {
1826                                 /* This has been checked at MTD
1827                                  * partitioning level. */
1828                                 printk("onenand_erase: Unaligned address\n");
1829                                 goto erase_exit;
1830                         }
1831                 }
1832         }
1833
1834         instr->state = MTD_ERASE_DONE;
1835
1836 erase_exit:
1837
1838         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1839         /* Do call back function */
1840         if (!ret)
1841                 mtd_erase_callback(instr);
1842
1843         /* Deselect and wake up anyone waiting on the device */
1844         onenand_release_device(mtd);
1845
1846         return ret;
1847 }
1848
1849 /**
1850  * onenand_sync - [MTD Interface] sync
1851  * @param mtd           MTD device structure
1852  *
1853  * Sync is actually a wait for chip ready function
1854  */
1855 void onenand_sync(struct mtd_info *mtd)
1856 {
1857         pr_debug("onenand_sync: called\n");
1858
1859         /* Grab the lock and see if the device is available */
1860         onenand_get_device(mtd, FL_SYNCING);
1861
1862         /* Release it and go back */
1863         onenand_release_device(mtd);
1864 }
1865
1866 /**
1867  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1868  * @param mtd           MTD device structure
1869  * @param ofs           offset relative to mtd start
1870  *
1871  * Check whether the block is bad
1872  */
1873 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1874 {
1875         int ret;
1876
1877         /* Check for invalid offset */
1878         if (ofs > mtd->size)
1879                 return -EINVAL;
1880
1881         onenand_get_device(mtd, FL_READING);
1882         ret = onenand_block_isbad_nolock(mtd,ofs, 0);
1883         onenand_release_device(mtd);
1884         return ret;
1885 }
1886
1887 /**
1888  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1889  * @param mtd           MTD device structure
1890  * @param ofs           offset from device start
1891  *
1892  * This is the default implementation, which can be overridden by
1893  * a hardware specific driver.
1894  */
1895 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1896 {
1897         struct onenand_chip *this = mtd->priv;
1898         struct bbm_info *bbm = this->bbm;
1899         u_char buf[2] = {0, 0};
1900         struct mtd_oob_ops ops = {
1901                 .mode = MTD_OPS_PLACE_OOB,
1902                 .ooblen = 2,
1903                 .oobbuf = buf,
1904                 .ooboffs = 0,
1905         };
1906         int block;
1907
1908         /* Get block number */
1909         block = onenand_block(this, ofs);
1910         if (bbm->bbt)
1911                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1912
1913         /* We write two bytes, so we dont have to mess with 16 bit access */
1914         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1915         return onenand_write_oob_nolock(mtd, ofs, &ops);
1916 }
1917
1918 /**
1919  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1920  * @param mtd           MTD device structure
1921  * @param ofs           offset relative to mtd start
1922  *
1923  * Mark the block as bad
1924  */
1925 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1926 {
1927         struct onenand_chip *this = mtd->priv;
1928         int ret;
1929
1930         ret = onenand_block_isbad(mtd, ofs);
1931         if (ret) {
1932                 /* If it was bad already, return success and do nothing */
1933                 if (ret > 0)
1934                         return 0;
1935                 return ret;
1936         }
1937
1938         onenand_get_device(mtd, FL_WRITING);
1939         ret = this->block_markbad(mtd, ofs);
1940         onenand_release_device(mtd);
1941
1942         return ret;
1943 }
1944
1945 /**
1946  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1947  * @param mtd           MTD device structure
1948  * @param ofs           offset relative to mtd start
1949  * @param len           number of bytes to lock or unlock
1950  * @param cmd           lock or unlock command
1951  *
1952  * Lock or unlock one or more blocks
1953  */
1954 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1955 {
1956         struct onenand_chip *this = mtd->priv;
1957         int start, end, block, value, status;
1958
1959         start = onenand_block(this, ofs);
1960         end = onenand_block(this, ofs + len);
1961
1962         /* Continuous lock scheme */
1963         if (this->options & ONENAND_HAS_CONT_LOCK) {
1964                 /* Set start block address */
1965                 this->write_word(start,
1966                                  this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1967                 /* Set end block address */
1968                 this->write_word(end - 1,
1969                                  this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1970                 /* Write unlock command */
1971                 this->command(mtd, cmd, 0, 0);
1972
1973                 /* There's no return value */
1974                 this->wait(mtd, FL_UNLOCKING);
1975
1976                 /* Sanity check */
1977                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1978                        & ONENAND_CTRL_ONGO)
1979                         continue;
1980
1981                 /* Check lock status */
1982                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1983                 if (!(status & ONENAND_WP_US))
1984                         printk(KERN_ERR "wp status = 0x%x\n", status);
1985
1986                 return 0;
1987         }
1988
1989         /* Block lock scheme */
1990         for (block = start; block < end; block++) {
1991                 /* Set block address */
1992                 value = onenand_block_address(this, block);
1993                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1994                 /* Select DataRAM for DDP */
1995                 value = onenand_bufferram_address(this, block);
1996                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1997
1998                 /* Set start block address */
1999                 this->write_word(block,
2000                                  this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2001                 /* Write unlock command */
2002                 this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
2003
2004                 /* There's no return value */
2005                 this->wait(mtd, FL_UNLOCKING);
2006
2007                 /* Sanity check */
2008                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2009                        & ONENAND_CTRL_ONGO)
2010                         continue;
2011
2012                 /* Check lock status */
2013                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2014                 if (!(status & ONENAND_WP_US))
2015                         printk(KERN_ERR "block = %d, wp status = 0x%x\n",
2016                                block, status);
2017         }
2018
2019         return 0;
2020 }
2021
2022 #ifdef ONENAND_LINUX
2023 /**
2024  * onenand_lock - [MTD Interface] Lock block(s)
2025  * @param mtd           MTD device structure
2026  * @param ofs           offset relative to mtd start
2027  * @param len           number of bytes to unlock
2028  *
2029  * Lock one or more blocks
2030  */
2031 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2032 {
2033         int ret;
2034
2035         onenand_get_device(mtd, FL_LOCKING);
2036         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2037         onenand_release_device(mtd);
2038         return ret;
2039 }
2040
2041 /**
2042  * onenand_unlock - [MTD Interface] Unlock block(s)
2043  * @param mtd           MTD device structure
2044  * @param ofs           offset relative to mtd start
2045  * @param len           number of bytes to unlock
2046  *
2047  * Unlock one or more blocks
2048  */
2049 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2050 {
2051         int ret;
2052
2053         onenand_get_device(mtd, FL_LOCKING);
2054         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2055         onenand_release_device(mtd);
2056         return ret;
2057 }
2058 #endif
2059
2060 /**
2061  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2062  * @param this          onenand chip data structure
2063  *
2064  * Check lock status
2065  */
2066 static int onenand_check_lock_status(struct onenand_chip *this)
2067 {
2068         unsigned int value, block, status;
2069         unsigned int end;
2070
2071         end = this->chipsize >> this->erase_shift;
2072         for (block = 0; block < end; block++) {
2073                 /* Set block address */
2074                 value = onenand_block_address(this, block);
2075                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2076                 /* Select DataRAM for DDP */
2077                 value = onenand_bufferram_address(this, block);
2078                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2079                 /* Set start block address */
2080                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2081
2082                 /* Check lock status */
2083                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2084                 if (!(status & ONENAND_WP_US)) {
2085                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2086                         return 0;
2087                 }
2088         }
2089
2090         return 1;
2091 }
2092
2093 /**
2094  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2095  * @param mtd           MTD device structure
2096  *
2097  * Unlock all blocks
2098  */
2099 static void onenand_unlock_all(struct mtd_info *mtd)
2100 {
2101         struct onenand_chip *this = mtd->priv;
2102         loff_t ofs = 0;
2103         size_t len = mtd->size;
2104
2105         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2106                 /* Set start block address */
2107                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2108                 /* Write unlock command */
2109                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2110
2111                 /* There's no return value */
2112                 this->wait(mtd, FL_LOCKING);
2113
2114                 /* Sanity check */
2115                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2116                                 & ONENAND_CTRL_ONGO)
2117                         continue;
2118
2119                 /* Check lock status */
2120                 if (onenand_check_lock_status(this))
2121                         return;
2122
2123                 /* Workaround for all block unlock in DDP */
2124                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2125                         /* All blocks on another chip */
2126                         ofs = this->chipsize >> 1;
2127                         len = this->chipsize >> 1;
2128                 }
2129         }
2130
2131         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2132 }
2133
2134
2135 /**
2136  * onenand_check_features - Check and set OneNAND features
2137  * @param mtd           MTD data structure
2138  *
2139  * Check and set OneNAND features
2140  * - lock scheme
2141  * - two plane
2142  */
2143 static void onenand_check_features(struct mtd_info *mtd)
2144 {
2145         struct onenand_chip *this = mtd->priv;
2146         unsigned int density, process;
2147
2148         /* Lock scheme depends on density and process */
2149         density = onenand_get_density(this->device_id);
2150         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2151
2152         /* Lock scheme */
2153         switch (density) {
2154         case ONENAND_DEVICE_DENSITY_4Gb:
2155                 if (ONENAND_IS_DDP(this))
2156                         this->options |= ONENAND_HAS_2PLANE;
2157                 else
2158                         this->options |= ONENAND_HAS_4KB_PAGE;
2159
2160         case ONENAND_DEVICE_DENSITY_2Gb:
2161                 /* 2Gb DDP don't have 2 plane */
2162                 if (!ONENAND_IS_DDP(this))
2163                         this->options |= ONENAND_HAS_2PLANE;
2164                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2165
2166         case ONENAND_DEVICE_DENSITY_1Gb:
2167                 /* A-Die has all block unlock */
2168                 if (process)
2169                         this->options |= ONENAND_HAS_UNLOCK_ALL;
2170                 break;
2171
2172         default:
2173                 /* Some OneNAND has continuous lock scheme */
2174                 if (!process)
2175                         this->options |= ONENAND_HAS_CONT_LOCK;
2176                 break;
2177         }
2178
2179         if (ONENAND_IS_MLC(this))
2180                 this->options |= ONENAND_HAS_4KB_PAGE;
2181
2182         if (ONENAND_IS_4KB_PAGE(this))
2183                 this->options &= ~ONENAND_HAS_2PLANE;
2184
2185         if (FLEXONENAND(this)) {
2186                 this->options &= ~ONENAND_HAS_CONT_LOCK;
2187                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2188         }
2189
2190         if (this->options & ONENAND_HAS_CONT_LOCK)
2191                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2192         if (this->options & ONENAND_HAS_UNLOCK_ALL)
2193                 printk(KERN_DEBUG "Chip support all block unlock\n");
2194         if (this->options & ONENAND_HAS_2PLANE)
2195                 printk(KERN_DEBUG "Chip has 2 plane\n");
2196         if (this->options & ONENAND_HAS_4KB_PAGE)
2197                 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
2198
2199 }
2200
2201 /**
2202  * onenand_print_device_info - Print device ID
2203  * @param device        device ID
2204  *
2205  * Print device ID
2206  */
2207 char *onenand_print_device_info(int device, int version)
2208 {
2209         int vcc, demuxed, ddp, density, flexonenand;
2210         char *dev_info = malloc(80);
2211         char *p = dev_info;
2212
2213         vcc = device & ONENAND_DEVICE_VCC_MASK;
2214         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2215         ddp = device & ONENAND_DEVICE_IS_DDP;
2216         density = onenand_get_density(device);
2217         flexonenand = device & DEVICE_IS_FLEXONENAND;
2218         p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
2219                demuxed ? "" : "Muxed ",
2220                flexonenand ? "Flex-" : "",
2221                ddp ? "(DDP)" : "",
2222                (16 << density), vcc ? "2.65/3.3" : "1.8", device);
2223
2224         sprintf(p, "\nOneNAND version = 0x%04x", version);
2225         printk("%s\n", dev_info);
2226
2227         return dev_info;
2228 }
2229
2230 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2231         {ONENAND_MFR_NUMONYX, "Numonyx"},
2232         {ONENAND_MFR_SAMSUNG, "Samsung"},
2233 };
2234
2235 /**
2236  * onenand_check_maf - Check manufacturer ID
2237  * @param manuf         manufacturer ID
2238  *
2239  * Check manufacturer ID
2240  */
2241 static int onenand_check_maf(int manuf)
2242 {
2243         int size = ARRAY_SIZE(onenand_manuf_ids);
2244         int i;
2245 #ifdef ONENAND_DEBUG
2246         char *name;
2247 #endif
2248
2249         for (i = 0; i < size; i++)
2250                 if (manuf == onenand_manuf_ids[i].id)
2251                         break;
2252
2253 #ifdef ONENAND_DEBUG
2254         if (i < size)
2255                 name = onenand_manuf_ids[i].name;
2256         else
2257                 name = "Unknown";
2258
2259         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2260 #endif
2261
2262         return i == size;
2263 }
2264
2265 /**
2266 * flexonenand_get_boundary      - Reads the SLC boundary
2267 * @param onenand_info           - onenand info structure
2268 *
2269 * Fill up boundary[] field in onenand_chip
2270 **/
2271 static int flexonenand_get_boundary(struct mtd_info *mtd)
2272 {
2273         struct onenand_chip *this = mtd->priv;
2274         unsigned int die, bdry;
2275         int syscfg, locked;
2276
2277         /* Disable ECC */
2278         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2279         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
2280
2281         for (die = 0; die < this->dies; die++) {
2282                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2283                 this->wait(mtd, FL_SYNCING);
2284
2285                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2286                 this->wait(mtd, FL_READING);
2287
2288                 bdry = this->read_word(this->base + ONENAND_DATARAM);
2289                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
2290                         locked = 0;
2291                 else
2292                         locked = 1;
2293                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
2294
2295                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2296                 this->wait(mtd, FL_RESETING);
2297
2298                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
2299                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
2300         }
2301
2302         /* Enable ECC */
2303         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2304         return 0;
2305 }
2306
2307 /**
2308  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
2309  *                        boundary[], diesize[], mtd->size, mtd->erasesize,
2310  *                        mtd->eraseregions
2311  * @param mtd           - MTD device structure
2312  */
2313 static void flexonenand_get_size(struct mtd_info *mtd)
2314 {
2315         struct onenand_chip *this = mtd->priv;
2316         int die, i, eraseshift, density;
2317         int blksperdie, maxbdry;
2318         loff_t ofs;
2319
2320         density = onenand_get_density(this->device_id);
2321         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
2322         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2323         maxbdry = blksperdie - 1;
2324         eraseshift = this->erase_shift - 1;
2325
2326         mtd->numeraseregions = this->dies << 1;
2327
2328         /* This fills up the device boundary */
2329         flexonenand_get_boundary(mtd);
2330         die = 0;
2331         ofs = 0;
2332         i = -1;
2333         for (; die < this->dies; die++) {
2334                 if (!die || this->boundary[die-1] != maxbdry) {
2335                         i++;
2336                         mtd->eraseregions[i].offset = ofs;
2337                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
2338                         mtd->eraseregions[i].numblocks =
2339                                                         this->boundary[die] + 1;
2340                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
2341                         eraseshift++;
2342                 } else {
2343                         mtd->numeraseregions -= 1;
2344                         mtd->eraseregions[i].numblocks +=
2345                                                         this->boundary[die] + 1;
2346                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
2347                 }
2348                 if (this->boundary[die] != maxbdry) {
2349                         i++;
2350                         mtd->eraseregions[i].offset = ofs;
2351                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
2352                         mtd->eraseregions[i].numblocks = maxbdry ^
2353                                                          this->boundary[die];
2354                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
2355                         eraseshift--;
2356                 } else
2357                         mtd->numeraseregions -= 1;
2358         }
2359
2360         /* Expose MLC erase size except when all blocks are SLC */
2361         mtd->erasesize = 1 << this->erase_shift;
2362         if (mtd->numeraseregions == 1)
2363                 mtd->erasesize >>= 1;
2364
2365         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
2366         for (i = 0; i < mtd->numeraseregions; i++)
2367                 printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
2368                         " numblocks: %04u]\n", mtd->eraseregions[i].offset,
2369                         mtd->eraseregions[i].erasesize,
2370                         mtd->eraseregions[i].numblocks);
2371
2372         for (die = 0, mtd->size = 0; die < this->dies; die++) {
2373                 this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
2374                 this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
2375                                                  << (this->erase_shift - 1);
2376                 mtd->size += this->diesize[die];
2377         }
2378 }
2379
2380 /**
2381  * flexonenand_check_blocks_erased - Check if blocks are erased
2382  * @param mtd_info      - mtd info structure
2383  * @param start         - first erase block to check
2384  * @param end           - last erase block to check
2385  *
2386  * Converting an unerased block from MLC to SLC
2387  * causes byte values to change. Since both data and its ECC
2388  * have changed, reads on the block give uncorrectable error.
2389  * This might lead to the block being detected as bad.
2390  *
2391  * Avoid this by ensuring that the block to be converted is
2392  * erased.
2393  */
2394 static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
2395                                         int start, int end)
2396 {
2397         struct onenand_chip *this = mtd->priv;
2398         int i, ret;
2399         int block;
2400         struct mtd_oob_ops ops = {
2401                 .mode = MTD_OPS_PLACE_OOB,
2402                 .ooboffs = 0,
2403                 .ooblen = mtd->oobsize,
2404                 .datbuf = NULL,
2405                 .oobbuf = this->oob_buf,
2406         };
2407         loff_t addr;
2408
2409         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
2410
2411         for (block = start; block <= end; block++) {
2412                 addr = flexonenand_addr(this, block);
2413                 if (onenand_block_isbad_nolock(mtd, addr, 0))
2414                         continue;
2415
2416                 /*
2417                  * Since main area write results in ECC write to spare,
2418                  * it is sufficient to check only ECC bytes for change.
2419                  */
2420                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
2421                 if (ret)
2422                         return ret;
2423
2424                 for (i = 0; i < mtd->oobsize; i++)
2425                         if (this->oob_buf[i] != 0xff)
2426                                 break;
2427
2428                 if (i != mtd->oobsize) {
2429                         printk(KERN_WARNING "Block %d not erased.\n", block);
2430                         return 1;
2431                 }
2432         }
2433
2434         return 0;
2435 }
2436
2437 /**
2438  * flexonenand_set_boundary     - Writes the SLC boundary
2439  * @param mtd                   - mtd info structure
2440  */
2441 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
2442                                     int boundary, int lock)
2443 {
2444         struct onenand_chip *this = mtd->priv;
2445         int ret, density, blksperdie, old, new, thisboundary;
2446         loff_t addr;
2447
2448         if (die >= this->dies)
2449                 return -EINVAL;
2450
2451         if (boundary == this->boundary[die])
2452                 return 0;
2453
2454         density = onenand_get_density(this->device_id);
2455         blksperdie = ((16 << density) << 20) >> this->erase_shift;
2456         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2457
2458         if (boundary >= blksperdie) {
2459                 printk("flexonenand_set_boundary:"
2460                         "Invalid boundary value. "
2461                         "Boundary not changed.\n");
2462                 return -EINVAL;
2463         }
2464
2465         /* Check if converting blocks are erased */
2466         old = this->boundary[die] + (die * this->density_mask);
2467         new = boundary + (die * this->density_mask);
2468         ret = flexonenand_check_blocks_erased(mtd, min(old, new)
2469                                                 + 1, max(old, new));
2470         if (ret) {
2471                 printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
2472                 return ret;
2473         }
2474
2475         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2476         this->wait(mtd, FL_SYNCING);
2477
2478         /* Check is boundary is locked */
2479         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2480         ret = this->wait(mtd, FL_READING);
2481
2482         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
2483         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
2484                 printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
2485                 goto out;
2486         }
2487
2488         printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
2489                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
2490
2491         boundary &= FLEXONENAND_PI_MASK;
2492         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
2493
2494         addr = die ? this->diesize[0] : 0;
2495         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
2496         ret = this->wait(mtd, FL_ERASING);
2497         if (ret) {
2498                 printk("flexonenand_set_boundary:"
2499                         "Failed PI erase for Die %d\n", die);
2500                 goto out;
2501         }
2502
2503         this->write_word(boundary, this->base + ONENAND_DATARAM);
2504         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
2505         ret = this->wait(mtd, FL_WRITING);
2506         if (ret) {
2507                 printk("flexonenand_set_boundary:"
2508                         "Failed PI write for Die %d\n", die);
2509                 goto out;
2510         }
2511
2512         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
2513         ret = this->wait(mtd, FL_WRITING);
2514 out:
2515         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
2516         this->wait(mtd, FL_RESETING);
2517         if (!ret)
2518                 /* Recalculate device size on boundary change*/
2519                 flexonenand_get_size(mtd);
2520
2521         return ret;
2522 }
2523
2524 /**
2525  * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip
2526  * @param mtd           MTD device structure
2527  *
2528  * OneNAND detection method:
2529  *   Compare the the values from command with ones from register
2530  */
2531 static int onenand_chip_probe(struct mtd_info *mtd)
2532 {
2533         struct onenand_chip *this = mtd->priv;
2534         int bram_maf_id, bram_dev_id, maf_id, dev_id;
2535         int syscfg;
2536
2537         /* Save system configuration 1 */
2538         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2539
2540         /* Clear Sync. Burst Read mode to read BootRAM */
2541         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ),
2542                          this->base + ONENAND_REG_SYS_CFG1);
2543
2544         /* Send the command for reading device ID from BootRAM */
2545         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2546
2547         /* Read manufacturer and device IDs from BootRAM */
2548         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2549         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2550
2551         /* Reset OneNAND to read default register values */
2552         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2553
2554         /* Wait reset */
2555         if (this->wait(mtd, FL_RESETING))
2556                 return -ENXIO;
2557
2558         /* Restore system configuration 1 */
2559         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2560
2561         /* Check manufacturer ID */
2562         if (onenand_check_maf(bram_maf_id))
2563                 return -ENXIO;
2564
2565         /* Read manufacturer and device IDs from Register */
2566         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2567         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2568
2569         /* Check OneNAND device */
2570         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2571                 return -ENXIO;
2572
2573         return 0;
2574 }
2575
2576 /**
2577  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2578  * @param mtd           MTD device structure
2579  *
2580  * OneNAND detection method:
2581  *   Compare the the values from command with ones from register
2582  */
2583 int onenand_probe(struct mtd_info *mtd)
2584 {
2585         struct onenand_chip *this = mtd->priv;
2586         int dev_id, ver_id;
2587         int density;
2588         int ret;
2589
2590         ret = this->chip_probe(mtd);
2591         if (ret)
2592                 return ret;
2593
2594         /* Read device IDs from Register */
2595         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2596         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2597         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2598
2599         /* Flash device information */
2600         mtd->name = onenand_print_device_info(dev_id, ver_id);
2601         this->device_id = dev_id;
2602         this->version_id = ver_id;
2603
2604         /* Check OneNAND features */
2605         onenand_check_features(mtd);
2606
2607         density = onenand_get_density(dev_id);
2608         if (FLEXONENAND(this)) {
2609                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
2610                 /* Maximum possible erase regions */
2611                 mtd->numeraseregions = this->dies << 1;
2612                 mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
2613                                         * (this->dies << 1));
2614                 if (!mtd->eraseregions)
2615                         return -ENOMEM;
2616         }
2617
2618         /*
2619          * For Flex-OneNAND, chipsize represents maximum possible device size.
2620          * mtd->size represents the actual device size.
2621          */
2622         this->chipsize = (16 << density) << 20;
2623
2624         /* OneNAND page size & block size */
2625         /* The data buffer size is equal to page size */
2626         mtd->writesize =
2627             this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2628         /* We use the full BufferRAM */
2629         if (ONENAND_IS_4KB_PAGE(this))
2630                 mtd->writesize <<= 1;
2631
2632         mtd->oobsize = mtd->writesize >> 5;
2633         /* Pagers per block is always 64 in OneNAND */
2634         mtd->erasesize = mtd->writesize << 6;
2635         /*
2636          * Flex-OneNAND SLC area has 64 pages per block.
2637          * Flex-OneNAND MLC area has 128 pages per block.
2638          * Expose MLC erase size to find erase_shift and page_mask.
2639          */
2640         if (FLEXONENAND(this))
2641                 mtd->erasesize <<= 1;
2642
2643         this->erase_shift = ffs(mtd->erasesize) - 1;
2644         this->page_shift = ffs(mtd->writesize) - 1;
2645         this->ppb_shift = (this->erase_shift - this->page_shift);
2646         this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
2647         /* Set density mask. it is used for DDP */
2648         if (ONENAND_IS_DDP(this))
2649                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
2650         /* It's real page size */
2651         this->writesize = mtd->writesize;
2652
2653         /* REVIST: Multichip handling */
2654
2655         if (FLEXONENAND(this))
2656                 flexonenand_get_size(mtd);
2657         else
2658                 mtd->size = this->chipsize;
2659
2660         mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
2661         mtd->flags = MTD_CAP_NANDFLASH;
2662         mtd->_erase = onenand_erase;
2663         mtd->_read_oob = onenand_read_oob;
2664         mtd->_write_oob = onenand_write_oob;
2665         mtd->_sync = onenand_sync;
2666         mtd->_block_isbad = onenand_block_isbad;
2667         mtd->_block_markbad = onenand_block_markbad;
2668         mtd->writebufsize = mtd->writesize;
2669
2670         return 0;
2671 }
2672
2673 /**
2674  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2675  * @param mtd           MTD device structure
2676  * @param maxchips      Number of chips to scan for
2677  *
2678  * This fills out all the not initialized function pointers
2679  * with the defaults.
2680  * The flash ID is read and the mtd/chip structures are
2681  * filled with the appropriate values.
2682  */
2683 int onenand_scan(struct mtd_info *mtd, int maxchips)
2684 {
2685         int i;
2686         struct onenand_chip *this = mtd->priv;
2687
2688         if (!this->read_word)
2689                 this->read_word = onenand_readw;
2690         if (!this->write_word)
2691                 this->write_word = onenand_writew;
2692
2693         if (!this->command)
2694                 this->command = onenand_command;
2695         if (!this->wait)
2696                 this->wait = onenand_wait;
2697         if (!this->bbt_wait)
2698                 this->bbt_wait = onenand_bbt_wait;
2699
2700         if (!this->read_bufferram)
2701                 this->read_bufferram = onenand_read_bufferram;
2702         if (!this->write_bufferram)
2703                 this->write_bufferram = onenand_write_bufferram;
2704
2705         if (!this->chip_probe)
2706                 this->chip_probe = onenand_chip_probe;
2707
2708         if (!this->block_markbad)
2709                 this->block_markbad = onenand_default_block_markbad;
2710         if (!this->scan_bbt)
2711                 this->scan_bbt = onenand_default_bbt;
2712
2713         if (onenand_probe(mtd))
2714                 return -ENXIO;
2715
2716         /* Set Sync. Burst Read after probing */
2717         if (this->mmcontrol) {
2718                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2719                 this->read_bufferram = onenand_sync_read_bufferram;
2720         }
2721
2722         /* Allocate buffers, if necessary */
2723         if (!this->page_buf) {
2724                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2725                 if (!this->page_buf) {
2726                         printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2727                         return -ENOMEM;
2728                 }
2729                 this->options |= ONENAND_PAGEBUF_ALLOC;
2730         }
2731         if (!this->oob_buf) {
2732                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2733                 if (!this->oob_buf) {
2734                         printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
2735                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
2736                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
2737                                 kfree(this->page_buf);
2738                         }
2739                         return -ENOMEM;
2740                 }
2741                 this->options |= ONENAND_OOBBUF_ALLOC;
2742         }
2743
2744         this->state = FL_READY;
2745
2746         /*
2747          * Allow subpage writes up to oobsize.
2748          */
2749         switch (mtd->oobsize) {
2750         case 128:
2751                 this->ecclayout = &onenand_oob_128;
2752                 mtd->subpage_sft = 0;
2753                 break;
2754
2755         case 64:
2756                 this->ecclayout = &onenand_oob_64;
2757                 mtd->subpage_sft = 2;
2758                 break;
2759
2760         case 32:
2761                 this->ecclayout = &onenand_oob_32;
2762                 mtd->subpage_sft = 1;
2763                 break;
2764
2765         default:
2766                 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2767                         mtd->oobsize);
2768                 mtd->subpage_sft = 0;
2769                 /* To prevent kernel oops */
2770                 this->ecclayout = &onenand_oob_32;
2771                 break;
2772         }
2773
2774         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2775
2776         /*
2777          * The number of bytes available for a client to place data into
2778          * the out of band area
2779          */
2780         this->ecclayout->oobavail = 0;
2781
2782         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE &&
2783             this->ecclayout->oobfree[i].length; i++)
2784                 this->ecclayout->oobavail +=
2785                         this->ecclayout->oobfree[i].length;
2786         mtd->oobavail = this->ecclayout->oobavail;
2787
2788         mtd->ecclayout = this->ecclayout;
2789
2790         /* Unlock whole block */
2791         onenand_unlock_all(mtd);
2792
2793         return this->scan_bbt(mtd);
2794 }
2795
2796 /**
2797  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2798  * @param mtd           MTD device structure
2799  */
2800 void onenand_release(struct mtd_info *mtd)
2801 {
2802 }