support xattr syscall in qemu-arm
[external/qemu.git] / hw / etraxfs_dma.c
1 /*
2  * QEMU ETRAX DMA Controller.
3  *
4  * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include <stdio.h>
25 #include <sys/time.h>
26 #include "hw.h"
27 #include "qemu-common.h"
28 #include "sysemu.h"
29
30 #include "etraxfs_dma.h"
31
32 #define D(x)
33
34 #define RW_DATA           (0x0 / 4)
35 #define RW_SAVED_DATA     (0x58 / 4)
36 #define RW_SAVED_DATA_BUF (0x5c / 4)
37 #define RW_GROUP          (0x60 / 4)
38 #define RW_GROUP_DOWN     (0x7c / 4)
39 #define RW_CMD            (0x80 / 4)
40 #define RW_CFG            (0x84 / 4)
41 #define RW_STAT           (0x88 / 4)
42 #define RW_INTR_MASK      (0x8c / 4)
43 #define RW_ACK_INTR       (0x90 / 4)
44 #define R_INTR            (0x94 / 4)
45 #define R_MASKED_INTR     (0x98 / 4)
46 #define RW_STREAM_CMD     (0x9c / 4)
47
48 #define DMA_REG_MAX       (0x100 / 4)
49
50 /* descriptors */
51
52 // ------------------------------------------------------------ dma_descr_group
53 typedef struct dma_descr_group {
54   uint32_t                      next;
55   unsigned                      eol        : 1;
56   unsigned                      tol        : 1;
57   unsigned                      bol        : 1;
58   unsigned                                 : 1;
59   unsigned                      intr       : 1;
60   unsigned                                 : 2;
61   unsigned                      en         : 1;
62   unsigned                                 : 7;
63   unsigned                      dis        : 1;
64   unsigned                      md         : 16;
65   struct dma_descr_group       *up;
66   union {
67     struct dma_descr_context   *context;
68     struct dma_descr_group     *group;
69   }                             down;
70 } dma_descr_group;
71
72 // ---------------------------------------------------------- dma_descr_context
73 typedef struct dma_descr_context {
74   uint32_t                      next;
75   unsigned                      eol        : 1;
76   unsigned                                 : 3;
77   unsigned                      intr       : 1;
78   unsigned                                 : 1;
79   unsigned                      store_mode : 1;
80   unsigned                      en         : 1;
81   unsigned                                 : 7;
82   unsigned                      dis        : 1;
83   unsigned                      md0        : 16;
84   unsigned                      md1;
85   unsigned                      md2;
86   unsigned                      md3;
87   unsigned                      md4;
88   uint32_t                      saved_data;
89   uint32_t                      saved_data_buf;
90 } dma_descr_context;
91
92 // ------------------------------------------------------------- dma_descr_data
93 typedef struct dma_descr_data {
94   uint32_t                      next;
95   uint32_t                      buf;
96   unsigned                      eol        : 1;
97   unsigned                                 : 2;
98   unsigned                      out_eop    : 1;
99   unsigned                      intr       : 1;
100   unsigned                      wait       : 1;
101   unsigned                                 : 2;
102   unsigned                                 : 3;
103   unsigned                      in_eop     : 1;
104   unsigned                                 : 4;
105   unsigned                      md         : 16;
106   uint32_t                      after;
107 } dma_descr_data;
108
109 /* Constants */
110 enum {
111   regk_dma_ack_pkt                         = 0x00000100,
112   regk_dma_anytime                         = 0x00000001,
113   regk_dma_array                           = 0x00000008,
114   regk_dma_burst                           = 0x00000020,
115   regk_dma_client                          = 0x00000002,
116   regk_dma_copy_next                       = 0x00000010,
117   regk_dma_copy_up                         = 0x00000020,
118   regk_dma_data_at_eol                     = 0x00000001,
119   regk_dma_dis_c                           = 0x00000010,
120   regk_dma_dis_g                           = 0x00000020,
121   regk_dma_idle                            = 0x00000001,
122   regk_dma_intern                          = 0x00000004,
123   regk_dma_load_c                          = 0x00000200,
124   regk_dma_load_c_n                        = 0x00000280,
125   regk_dma_load_c_next                     = 0x00000240,
126   regk_dma_load_d                          = 0x00000140,
127   regk_dma_load_g                          = 0x00000300,
128   regk_dma_load_g_down                     = 0x000003c0,
129   regk_dma_load_g_next                     = 0x00000340,
130   regk_dma_load_g_up                       = 0x00000380,
131   regk_dma_next_en                         = 0x00000010,
132   regk_dma_next_pkt                        = 0x00000010,
133   regk_dma_no                              = 0x00000000,
134   regk_dma_only_at_wait                    = 0x00000000,
135   regk_dma_restore                         = 0x00000020,
136   regk_dma_rst                             = 0x00000001,
137   regk_dma_running                         = 0x00000004,
138   regk_dma_rw_cfg_default                  = 0x00000000,
139   regk_dma_rw_cmd_default                  = 0x00000000,
140   regk_dma_rw_intr_mask_default            = 0x00000000,
141   regk_dma_rw_stat_default                 = 0x00000101,
142   regk_dma_rw_stream_cmd_default           = 0x00000000,
143   regk_dma_save_down                       = 0x00000020,
144   regk_dma_save_up                         = 0x00000020,
145   regk_dma_set_reg                         = 0x00000050,
146   regk_dma_set_w_size1                     = 0x00000190,
147   regk_dma_set_w_size2                     = 0x000001a0,
148   regk_dma_set_w_size4                     = 0x000001c0,
149   regk_dma_stopped                         = 0x00000002,
150   regk_dma_store_c                         = 0x00000002,
151   regk_dma_store_descr                     = 0x00000000,
152   regk_dma_store_g                         = 0x00000004,
153   regk_dma_store_md                        = 0x00000001,
154   regk_dma_sw                              = 0x00000008,
155   regk_dma_update_down                     = 0x00000020,
156   regk_dma_yes                             = 0x00000001
157 };
158
159 enum dma_ch_state
160 {
161         RST = 1,
162         STOPPED = 2,
163         RUNNING = 4
164 };
165
166 struct fs_dma_channel
167 {
168         qemu_irq irq;
169         struct etraxfs_dma_client *client;
170
171         /* Internal status.  */
172         int stream_cmd_src;
173         enum dma_ch_state state;
174
175         unsigned int input : 1;
176         unsigned int eol : 1;
177
178         struct dma_descr_group current_g;
179         struct dma_descr_context current_c;
180         struct dma_descr_data current_d;
181
182         /* Controll registers.  */
183         uint32_t regs[DMA_REG_MAX];
184 };
185
186 struct fs_dma_ctrl
187 {
188         int map;
189         int nr_channels;
190         struct fs_dma_channel *channels;
191
192         QEMUBH *bh;
193 };
194
195 static void DMA_run(void *opaque);
196 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c);
197
198 static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
199 {
200         return ctrl->channels[c].regs[reg];
201 }
202
203 static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
204 {
205         return channel_reg(ctrl, c, RW_CFG) & 2;
206 }
207
208 static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
209 {
210         return (channel_reg(ctrl, c, RW_CFG) & 1)
211                 && ctrl->channels[c].client;
212 }
213
214 static inline int fs_channel(target_phys_addr_t addr)
215 {
216         /* Every channel has a 0x2000 ctrl register map.  */
217         return addr >> 13;
218 }
219
220 #ifdef USE_THIS_DEAD_CODE
221 static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
222 {
223         target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP);
224
225         /* Load and decode. FIXME: handle endianness.  */
226         cpu_physical_memory_read (addr, 
227                                   (void *) &ctrl->channels[c].current_g, 
228                                   sizeof ctrl->channels[c].current_g);
229 }
230
231 static void dump_c(int ch, struct dma_descr_context *c)
232 {
233         printf("%s ch=%d\n", __func__, ch);
234         printf("next=%x\n", c->next);
235         printf("saved_data=%x\n", c->saved_data);
236         printf("saved_data_buf=%x\n", c->saved_data_buf);
237         printf("eol=%x\n", (uint32_t) c->eol);
238 }
239
240 static void dump_d(int ch, struct dma_descr_data *d)
241 {
242         printf("%s ch=%d\n", __func__, ch);
243         printf("next=%x\n", d->next);
244         printf("buf=%x\n", d->buf);
245         printf("after=%x\n", d->after);
246         printf("intr=%x\n", (uint32_t) d->intr);
247         printf("out_eop=%x\n", (uint32_t) d->out_eop);
248         printf("in_eop=%x\n", (uint32_t) d->in_eop);
249         printf("eol=%x\n", (uint32_t) d->eol);
250 }
251 #endif
252
253 static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
254 {
255         target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
256
257         /* Load and decode. FIXME: handle endianness.  */
258         cpu_physical_memory_read (addr, 
259                                   (void *) &ctrl->channels[c].current_c, 
260                                   sizeof ctrl->channels[c].current_c);
261
262         D(dump_c(c, &ctrl->channels[c].current_c));
263         /* I guess this should update the current pos.  */
264         ctrl->channels[c].regs[RW_SAVED_DATA] =
265                 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data;
266         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
267                 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf;
268 }
269
270 static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
271 {
272         target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
273
274         /* Load and decode. FIXME: handle endianness.  */
275         D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
276         cpu_physical_memory_read (addr,
277                                   (void *) &ctrl->channels[c].current_d, 
278                                   sizeof ctrl->channels[c].current_d);
279
280         D(dump_d(c, &ctrl->channels[c].current_d));
281         ctrl->channels[c].regs[RW_DATA] = addr;
282 }
283
284 static void channel_store_c(struct fs_dma_ctrl *ctrl, int c)
285 {
286         target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
287
288         /* Encode and store. FIXME: handle endianness.  */
289         D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
290         D(dump_d(c, &ctrl->channels[c].current_d));
291         cpu_physical_memory_write (addr,
292                                   (void *) &ctrl->channels[c].current_c,
293                                   sizeof ctrl->channels[c].current_c);
294 }
295
296 static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
297 {
298         target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
299
300         /* Encode and store. FIXME: handle endianness.  */
301         D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
302         cpu_physical_memory_write (addr,
303                                   (void *) &ctrl->channels[c].current_d, 
304                                   sizeof ctrl->channels[c].current_d);
305 }
306
307 static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
308 {
309         /* FIXME:  */
310 }
311
312 static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
313 {
314         if (ctrl->channels[c].client)
315         {
316                 ctrl->channels[c].eol = 0;
317                 ctrl->channels[c].state = RUNNING;
318                 if (!ctrl->channels[c].input)
319                         channel_out_run(ctrl, c);
320         } else
321                 printf("WARNING: starting DMA ch %d with no client\n", c);
322
323         qemu_bh_schedule_idle(ctrl->bh);
324 }
325
326 static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
327 {
328         if (!channel_en(ctrl, c) 
329             || channel_stopped(ctrl, c)
330             || ctrl->channels[c].state != RUNNING
331             /* Only reload the current data descriptor if it has eol set.  */
332             || !ctrl->channels[c].current_d.eol) {
333                 D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n", 
334                          c, ctrl->channels[c].state,
335                          channel_stopped(ctrl, c),
336                          channel_en(ctrl,c),
337                          ctrl->channels[c].eol));
338                 D(dump_d(c, &ctrl->channels[c].current_d));
339                 return;
340         }
341
342         /* Reload the current descriptor.  */
343         channel_load_d(ctrl, c);
344
345         /* If the current descriptor cleared the eol flag and we had already
346            reached eol state, do the continue.  */
347         if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
348                 D(printf("continue %d ok %x\n", c,
349                          ctrl->channels[c].current_d.next));
350                 ctrl->channels[c].regs[RW_SAVED_DATA] =
351                         (uint32_t)(unsigned long)ctrl->channels[c].current_d.next;
352                 channel_load_d(ctrl, c);
353                 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
354                         (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
355
356                 channel_start(ctrl, c);
357         }
358         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
359                 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
360 }
361
362 static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
363 {
364         unsigned int cmd = v & ((1 << 10) - 1);
365
366         D(printf("%s ch=%d cmd=%x\n",
367                  __func__, c, cmd));
368         if (cmd & regk_dma_load_d) {
369                 channel_load_d(ctrl, c);
370                 if (cmd & regk_dma_burst)
371                         channel_start(ctrl, c);
372         }
373
374         if (cmd & regk_dma_load_c) {
375                 channel_load_c(ctrl, c);
376         }
377 }
378
379 static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
380 {
381         D(printf("%s %d\n", __func__, c));
382         ctrl->channels[c].regs[R_INTR] &=
383                 ~(ctrl->channels[c].regs[RW_ACK_INTR]);
384
385         ctrl->channels[c].regs[R_MASKED_INTR] =
386                 ctrl->channels[c].regs[R_INTR]
387                 & ctrl->channels[c].regs[RW_INTR_MASK];
388
389         D(printf("%s: chan=%d masked_intr=%x\n", __func__, 
390                  c,
391                  ctrl->channels[c].regs[R_MASKED_INTR]));
392
393         qemu_set_irq(ctrl->channels[c].irq,
394                      !!ctrl->channels[c].regs[R_MASKED_INTR]);
395 }
396
397 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c)
398 {
399         uint32_t len;
400         uint32_t saved_data_buf;
401         unsigned char buf[2 * 1024];
402
403         if (ctrl->channels[c].eol)
404                 return 0;
405
406         do {
407                 D(printf("ch=%d buf=%x after=%x\n",
408                          c,
409                          (uint32_t)ctrl->channels[c].current_d.buf,
410                          (uint32_t)ctrl->channels[c].current_d.after));
411
412                 channel_load_d(ctrl, c);
413                 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
414                 len = (uint32_t)(unsigned long)
415                         ctrl->channels[c].current_d.after;
416                 len -= saved_data_buf;
417
418                 if (len > sizeof buf)
419                         len = sizeof buf;
420                 cpu_physical_memory_read (saved_data_buf, buf, len);
421
422                 D(printf("channel %d pushes %x %u bytes\n", c, 
423                          saved_data_buf, len));
424
425                 if (ctrl->channels[c].client->client.push)
426                         ctrl->channels[c].client->client.push(
427                                 ctrl->channels[c].client->client.opaque,
428                                 buf, len);
429                 else
430                         printf("WARNING: DMA ch%d dataloss,"
431                                " no attached client.\n", c);
432
433                 saved_data_buf += len;
434
435                 if (saved_data_buf == (uint32_t)(unsigned long)
436                                 ctrl->channels[c].current_d.after) {
437                         /* Done. Step to next.  */
438                         if (ctrl->channels[c].current_d.out_eop) {
439                                 /* TODO: signal eop to the client.  */
440                                 D(printf("signal eop\n"));
441                         }
442                         if (ctrl->channels[c].current_d.intr) {
443                                 /* TODO: signal eop to the client.  */
444                                 /* data intr.  */
445                                 D(printf("signal intr %d eol=%d\n",
446                                         len, ctrl->channels[c].current_d.eol));
447                                 ctrl->channels[c].regs[R_INTR] |= (1 << 2);
448                                 channel_update_irq(ctrl, c);
449                         }
450                         channel_store_d(ctrl, c);
451                         if (ctrl->channels[c].current_d.eol) {
452                                 D(printf("channel %d EOL\n", c));
453                                 ctrl->channels[c].eol = 1;
454
455                                 /* Mark the context as disabled.  */
456                                 ctrl->channels[c].current_c.dis = 1;
457                                 channel_store_c(ctrl, c);
458
459                                 channel_stop(ctrl, c);
460                         } else {
461                                 ctrl->channels[c].regs[RW_SAVED_DATA] =
462                                         (uint32_t)(unsigned long)ctrl->
463                                                 channels[c].current_d.next;
464                                 /* Load new descriptor.  */
465                                 channel_load_d(ctrl, c);
466                                 saved_data_buf = (uint32_t)(unsigned long)
467                                         ctrl->channels[c].current_d.buf;
468                         }
469
470                         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
471                                                         saved_data_buf;
472                         D(dump_d(c, &ctrl->channels[c].current_d));
473                 }
474                 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
475         } while (!ctrl->channels[c].eol);
476         return 1;
477 }
478
479 static int channel_in_process(struct fs_dma_ctrl *ctrl, int c, 
480                               unsigned char *buf, int buflen, int eop)
481 {
482         uint32_t len;
483         uint32_t saved_data_buf;
484
485         if (ctrl->channels[c].eol == 1)
486                 return 0;
487
488         channel_load_d(ctrl, c);
489         saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
490         len = (uint32_t)(unsigned long)ctrl->channels[c].current_d.after;
491         len -= saved_data_buf;
492         
493         if (len > buflen)
494                 len = buflen;
495
496         cpu_physical_memory_write (saved_data_buf, buf, len);
497         saved_data_buf += len;
498
499         if (saved_data_buf ==
500             (uint32_t)(unsigned long)ctrl->channels[c].current_d.after
501             || eop) {
502                 uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
503
504                 D(printf("in dscr end len=%d\n", 
505                          ctrl->channels[c].current_d.after
506                          - ctrl->channels[c].current_d.buf));
507                 ctrl->channels[c].current_d.after = saved_data_buf;
508
509                 /* Done. Step to next.  */
510                 if (ctrl->channels[c].current_d.intr) {
511                         /* TODO: signal eop to the client.  */
512                         /* data intr.  */
513                         ctrl->channels[c].regs[R_INTR] |= 3;
514                 }
515                 if (eop) {
516                         ctrl->channels[c].current_d.in_eop = 1;
517                         ctrl->channels[c].regs[R_INTR] |= 8;
518                 }
519                 if (r_intr != ctrl->channels[c].regs[R_INTR])
520                         channel_update_irq(ctrl, c);
521
522                 channel_store_d(ctrl, c);
523                 D(dump_d(c, &ctrl->channels[c].current_d));
524
525                 if (ctrl->channels[c].current_d.eol) {
526                         D(printf("channel %d EOL\n", c));
527                         ctrl->channels[c].eol = 1;
528
529                         /* Mark the context as disabled.  */
530                         ctrl->channels[c].current_c.dis = 1;
531                         channel_store_c(ctrl, c);
532
533                         channel_stop(ctrl, c);
534                 } else {
535                         ctrl->channels[c].regs[RW_SAVED_DATA] =
536                                 (uint32_t)(unsigned long)ctrl->
537                                         channels[c].current_d.next;
538                         /* Load new descriptor.  */
539                         channel_load_d(ctrl, c);
540                         saved_data_buf = (uint32_t)(unsigned long)
541                                 ctrl->channels[c].current_d.buf;
542                 }
543         }
544
545         ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
546         return len;
547 }
548
549 static inline int channel_in_run(struct fs_dma_ctrl *ctrl, int c)
550 {
551         if (ctrl->channels[c].client->client.pull) {
552                 ctrl->channels[c].client->client.pull(
553                         ctrl->channels[c].client->client.opaque);
554                 return 1;
555         } else
556                 return 0;
557 }
558
559 static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
560 {
561         hw_error("Unsupported short raccess. reg=" TARGET_FMT_plx "\n", addr);
562         return 0;
563 }
564
565 static uint32_t
566 dma_readl (void *opaque, target_phys_addr_t addr)
567 {
568         struct fs_dma_ctrl *ctrl = opaque;
569         int c;
570         uint32_t r = 0;
571
572         /* Make addr relative to this channel and bounded to nr regs.  */
573         c = fs_channel(addr);
574         addr &= 0xff;
575         addr >>= 2;
576         switch (addr)
577         {
578                 case RW_STAT:
579                         r = ctrl->channels[c].state & 7;
580                         r |= ctrl->channels[c].eol << 5;
581                         r |= ctrl->channels[c].stream_cmd_src << 8;
582                         break;
583
584                 default:
585                         r = ctrl->channels[c].regs[addr];
586                         D(printf ("%s c=%d addr=" TARGET_FMT_plx "\n",
587                                   __func__, c, addr));
588                         break;
589         }
590         return r;
591 }
592
593 static void
594 dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
595 {
596         hw_error("Unsupported short waccess. reg=" TARGET_FMT_plx "\n", addr);
597 }
598
599 static void
600 dma_update_state(struct fs_dma_ctrl *ctrl, int c)
601 {
602         if ((ctrl->channels[c].regs[RW_CFG] & 1) != 3) {
603                 if (ctrl->channels[c].regs[RW_CFG] & 2)
604                         ctrl->channels[c].state = STOPPED;
605                 if (!(ctrl->channels[c].regs[RW_CFG] & 1))
606                         ctrl->channels[c].state = RST;
607         }
608 }
609
610 static void
611 dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
612 {
613         struct fs_dma_ctrl *ctrl = opaque;
614         int c;
615
616         /* Make addr relative to this channel and bounded to nr regs.  */
617         c = fs_channel(addr);
618         addr &= 0xff;
619         addr >>= 2;
620         switch (addr)
621         {
622                 case RW_DATA:
623                         ctrl->channels[c].regs[addr] = value;
624                         break;
625
626                 case RW_CFG:
627                         ctrl->channels[c].regs[addr] = value;
628                         dma_update_state(ctrl, c);
629                         break;
630                 case RW_CMD:
631                         /* continue.  */
632                         if (value & ~1)
633                                 printf("Invalid store to ch=%d RW_CMD %x\n",
634                                        c, value);
635                         ctrl->channels[c].regs[addr] = value;
636                         channel_continue(ctrl, c);
637                         break;
638
639                 case RW_SAVED_DATA:
640                 case RW_SAVED_DATA_BUF:
641                 case RW_GROUP:
642                 case RW_GROUP_DOWN:
643                         ctrl->channels[c].regs[addr] = value;
644                         break;
645
646                 case RW_ACK_INTR:
647                 case RW_INTR_MASK:
648                         ctrl->channels[c].regs[addr] = value;
649                         channel_update_irq(ctrl, c);
650                         if (addr == RW_ACK_INTR)
651                                 ctrl->channels[c].regs[RW_ACK_INTR] = 0;
652                         break;
653
654                 case RW_STREAM_CMD:
655                         if (value & ~1023)
656                                 printf("Invalid store to ch=%d "
657                                        "RW_STREAMCMD %x\n",
658                                        c, value);
659                         ctrl->channels[c].regs[addr] = value;
660                         D(printf("stream_cmd ch=%d\n", c));
661                         channel_stream_cmd(ctrl, c, value);
662                         break;
663
664                 default:
665                         D(printf ("%s c=%d " TARGET_FMT_plx "\n",
666                                 __func__, c, addr));
667                         break;
668         }
669 }
670
671 static CPUReadMemoryFunc * const dma_read[] = {
672         &dma_rinvalid,
673         &dma_rinvalid,
674         &dma_readl,
675 };
676
677 static CPUWriteMemoryFunc * const dma_write[] = {
678         &dma_winvalid,
679         &dma_winvalid,
680         &dma_writel,
681 };
682
683 static int etraxfs_dmac_run(void *opaque)
684 {
685         struct fs_dma_ctrl *ctrl = opaque;
686         int i;
687         int p = 0;
688
689         for (i = 0; 
690              i < ctrl->nr_channels;
691              i++)
692         {
693                 if (ctrl->channels[i].state == RUNNING)
694                 {
695                         if (ctrl->channels[i].input) {
696                                 p += channel_in_run(ctrl, i);
697                         } else {
698                                 p += channel_out_run(ctrl, i);
699                         }
700                 }
701         }
702         return p;
703 }
704
705 int etraxfs_dmac_input(struct etraxfs_dma_client *client, 
706                        void *buf, int len, int eop)
707 {
708         return channel_in_process(client->ctrl, client->channel, 
709                                   buf, len, eop);
710 }
711
712 /* Connect an IRQ line with a channel.  */
713 void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
714 {
715         struct fs_dma_ctrl *ctrl = opaque;
716         ctrl->channels[c].irq = *line;
717         ctrl->channels[c].input = input;
718 }
719
720 void etraxfs_dmac_connect_client(void *opaque, int c, 
721                                  struct etraxfs_dma_client *cl)
722 {
723         struct fs_dma_ctrl *ctrl = opaque;
724         cl->ctrl = ctrl;
725         cl->channel = c;
726         ctrl->channels[c].client = cl;
727 }
728
729
730 static void DMA_run(void *opaque)
731 {
732     struct fs_dma_ctrl *etraxfs_dmac = opaque;
733     int p = 1;
734
735     if (vm_running)
736         p = etraxfs_dmac_run(etraxfs_dmac);
737
738     if (p)
739         qemu_bh_schedule_idle(etraxfs_dmac->bh);
740 }
741
742 void *etraxfs_dmac_init(target_phys_addr_t base, int nr_channels)
743 {
744         struct fs_dma_ctrl *ctrl = NULL;
745
746         ctrl = qemu_mallocz(sizeof *ctrl);
747
748         ctrl->bh = qemu_bh_new(DMA_run, ctrl);
749
750         ctrl->nr_channels = nr_channels;
751         ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);
752
753         ctrl->map = cpu_register_io_memory(dma_read, dma_write, ctrl, DEVICE_NATIVE_ENDIAN);
754         cpu_register_physical_memory(base, nr_channels * 0x2000, ctrl->map);
755         return ctrl;
756 }