import source from 0.14.1
[external/qemu.git] / cpu-all.h
1 /*
2  * defines common to all virtual CPUs
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
21
22 #include "qemu-common.h"
23 #include "cpu-common.h"
24
25 /* some important defines:
26  *
27  * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
28  * memory accesses.
29  *
30  * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
31  * otherwise little endian.
32  *
33  * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
34  *
35  * TARGET_WORDS_BIGENDIAN : same for target cpu
36  */
37
38 #include "softfloat.h"
39
40 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
41 #define BSWAP_NEEDED
42 #endif
43
44 #ifdef BSWAP_NEEDED
45
46 static inline uint16_t tswap16(uint16_t s)
47 {
48     return bswap16(s);
49 }
50
51 static inline uint32_t tswap32(uint32_t s)
52 {
53     return bswap32(s);
54 }
55
56 static inline uint64_t tswap64(uint64_t s)
57 {
58     return bswap64(s);
59 }
60
61 static inline void tswap16s(uint16_t *s)
62 {
63     *s = bswap16(*s);
64 }
65
66 static inline void tswap32s(uint32_t *s)
67 {
68     *s = bswap32(*s);
69 }
70
71 static inline void tswap64s(uint64_t *s)
72 {
73     *s = bswap64(*s);
74 }
75
76 #else
77
78 static inline uint16_t tswap16(uint16_t s)
79 {
80     return s;
81 }
82
83 static inline uint32_t tswap32(uint32_t s)
84 {
85     return s;
86 }
87
88 static inline uint64_t tswap64(uint64_t s)
89 {
90     return s;
91 }
92
93 static inline void tswap16s(uint16_t *s)
94 {
95 }
96
97 static inline void tswap32s(uint32_t *s)
98 {
99 }
100
101 static inline void tswap64s(uint64_t *s)
102 {
103 }
104
105 #endif
106
107 #if TARGET_LONG_SIZE == 4
108 #define tswapl(s) tswap32(s)
109 #define tswapls(s) tswap32s((uint32_t *)(s))
110 #define bswaptls(s) bswap32s(s)
111 #else
112 #define tswapl(s) tswap64(s)
113 #define tswapls(s) tswap64s((uint64_t *)(s))
114 #define bswaptls(s) bswap64s(s)
115 #endif
116
117 typedef union {
118     float32 f;
119     uint32_t l;
120 } CPU_FloatU;
121
122 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
123    endian ! */
124 typedef union {
125     float64 d;
126 #if defined(HOST_WORDS_BIGENDIAN) \
127     || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
128     struct {
129         uint32_t upper;
130         uint32_t lower;
131     } l;
132 #else
133     struct {
134         uint32_t lower;
135         uint32_t upper;
136     } l;
137 #endif
138     uint64_t ll;
139 } CPU_DoubleU;
140
141 #ifdef TARGET_SPARC
142 typedef union {
143     float128 q;
144 #if defined(HOST_WORDS_BIGENDIAN) \
145     || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
146     struct {
147         uint32_t upmost;
148         uint32_t upper;
149         uint32_t lower;
150         uint32_t lowest;
151     } l;
152     struct {
153         uint64_t upper;
154         uint64_t lower;
155     } ll;
156 #else
157     struct {
158         uint32_t lowest;
159         uint32_t lower;
160         uint32_t upper;
161         uint32_t upmost;
162     } l;
163     struct {
164         uint64_t lower;
165         uint64_t upper;
166     } ll;
167 #endif
168 } CPU_QuadU;
169 #endif
170
171 /* CPU memory access without any memory or io remapping */
172
173 /*
174  * the generic syntax for the memory accesses is:
175  *
176  * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
177  *
178  * store: st{type}{size}{endian}_{access_type}(ptr, val)
179  *
180  * type is:
181  * (empty): integer access
182  *   f    : float access
183  *
184  * sign is:
185  * (empty): for floats or 32 bit size
186  *   u    : unsigned
187  *   s    : signed
188  *
189  * size is:
190  *   b: 8 bits
191  *   w: 16 bits
192  *   l: 32 bits
193  *   q: 64 bits
194  *
195  * endian is:
196  * (empty): target cpu endianness or 8 bit access
197  *   r    : reversed target cpu endianness (not implemented yet)
198  *   be   : big endian (not implemented yet)
199  *   le   : little endian (not implemented yet)
200  *
201  * access_type is:
202  *   raw    : host memory access
203  *   user   : user mode access using soft MMU
204  *   kernel : kernel mode access using soft MMU
205  */
206 static inline int ldub_p(const void *ptr)
207 {
208     return *(uint8_t *)ptr;
209 }
210
211 static inline int ldsb_p(const void *ptr)
212 {
213     return *(int8_t *)ptr;
214 }
215
216 static inline void stb_p(void *ptr, int v)
217 {
218     *(uint8_t *)ptr = v;
219 }
220
221 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
222    kernel handles unaligned load/stores may give better results, but
223    it is a system wide setting : bad */
224 #if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
225
226 /* conservative code for little endian unaligned accesses */
227 static inline int lduw_le_p(const void *ptr)
228 {
229 #ifdef _ARCH_PPC
230     int val;
231     __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
232     return val;
233 #else
234     const uint8_t *p = ptr;
235     return p[0] | (p[1] << 8);
236 #endif
237 }
238
239 static inline int ldsw_le_p(const void *ptr)
240 {
241 #ifdef _ARCH_PPC
242     int val;
243     __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
244     return (int16_t)val;
245 #else
246     const uint8_t *p = ptr;
247     return (int16_t)(p[0] | (p[1] << 8));
248 #endif
249 }
250
251 static inline int ldl_le_p(const void *ptr)
252 {
253 #ifdef _ARCH_PPC
254     int val;
255     __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
256     return val;
257 #else
258     const uint8_t *p = ptr;
259     return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
260 #endif
261 }
262
263 static inline uint64_t ldq_le_p(const void *ptr)
264 {
265     const uint8_t *p = ptr;
266     uint32_t v1, v2;
267     v1 = ldl_le_p(p);
268     v2 = ldl_le_p(p + 4);
269     return v1 | ((uint64_t)v2 << 32);
270 }
271
272 static inline void stw_le_p(void *ptr, int v)
273 {
274 #ifdef _ARCH_PPC
275     __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
276 #else
277     uint8_t *p = ptr;
278     p[0] = v;
279     p[1] = v >> 8;
280 #endif
281 }
282
283 static inline void stl_le_p(void *ptr, int v)
284 {
285 #ifdef _ARCH_PPC
286     __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
287 #else
288     uint8_t *p = ptr;
289     p[0] = v;
290     p[1] = v >> 8;
291     p[2] = v >> 16;
292     p[3] = v >> 24;
293 #endif
294 }
295
296 static inline void stq_le_p(void *ptr, uint64_t v)
297 {
298     uint8_t *p = ptr;
299     stl_le_p(p, (uint32_t)v);
300     stl_le_p(p + 4, v >> 32);
301 }
302
303 /* float access */
304
305 static inline float32 ldfl_le_p(const void *ptr)
306 {
307     union {
308         float32 f;
309         uint32_t i;
310     } u;
311     u.i = ldl_le_p(ptr);
312     return u.f;
313 }
314
315 static inline void stfl_le_p(void *ptr, float32 v)
316 {
317     union {
318         float32 f;
319         uint32_t i;
320     } u;
321     u.f = v;
322     stl_le_p(ptr, u.i);
323 }
324
325 static inline float64 ldfq_le_p(const void *ptr)
326 {
327     CPU_DoubleU u;
328     u.l.lower = ldl_le_p(ptr);
329     u.l.upper = ldl_le_p(ptr + 4);
330     return u.d;
331 }
332
333 static inline void stfq_le_p(void *ptr, float64 v)
334 {
335     CPU_DoubleU u;
336     u.d = v;
337     stl_le_p(ptr, u.l.lower);
338     stl_le_p(ptr + 4, u.l.upper);
339 }
340
341 #else
342
343 static inline int lduw_le_p(const void *ptr)
344 {
345     return *(uint16_t *)ptr;
346 }
347
348 static inline int ldsw_le_p(const void *ptr)
349 {
350     return *(int16_t *)ptr;
351 }
352
353 static inline int ldl_le_p(const void *ptr)
354 {
355     return *(uint32_t *)ptr;
356 }
357
358 static inline uint64_t ldq_le_p(const void *ptr)
359 {
360     return *(uint64_t *)ptr;
361 }
362
363 static inline void stw_le_p(void *ptr, int v)
364 {
365     *(uint16_t *)ptr = v;
366 }
367
368 static inline void stl_le_p(void *ptr, int v)
369 {
370     *(uint32_t *)ptr = v;
371 }
372
373 static inline void stq_le_p(void *ptr, uint64_t v)
374 {
375     *(uint64_t *)ptr = v;
376 }
377
378 /* float access */
379
380 static inline float32 ldfl_le_p(const void *ptr)
381 {
382     return *(float32 *)ptr;
383 }
384
385 static inline float64 ldfq_le_p(const void *ptr)
386 {
387     return *(float64 *)ptr;
388 }
389
390 static inline void stfl_le_p(void *ptr, float32 v)
391 {
392     *(float32 *)ptr = v;
393 }
394
395 static inline void stfq_le_p(void *ptr, float64 v)
396 {
397     *(float64 *)ptr = v;
398 }
399 #endif
400
401 #if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
402
403 static inline int lduw_be_p(const void *ptr)
404 {
405 #if defined(__i386__)
406     int val;
407     asm volatile ("movzwl %1, %0\n"
408                   "xchgb %b0, %h0\n"
409                   : "=q" (val)
410                   : "m" (*(uint16_t *)ptr));
411     return val;
412 #else
413     const uint8_t *b = ptr;
414     return ((b[0] << 8) | b[1]);
415 #endif
416 }
417
418 static inline int ldsw_be_p(const void *ptr)
419 {
420 #if defined(__i386__)
421     int val;
422     asm volatile ("movzwl %1, %0\n"
423                   "xchgb %b0, %h0\n"
424                   : "=q" (val)
425                   : "m" (*(uint16_t *)ptr));
426     return (int16_t)val;
427 #else
428     const uint8_t *b = ptr;
429     return (int16_t)((b[0] << 8) | b[1]);
430 #endif
431 }
432
433 static inline int ldl_be_p(const void *ptr)
434 {
435 #if defined(__i386__) || defined(__x86_64__)
436     int val;
437     asm volatile ("movl %1, %0\n"
438                   "bswap %0\n"
439                   : "=r" (val)
440                   : "m" (*(uint32_t *)ptr));
441     return val;
442 #else
443     const uint8_t *b = ptr;
444     return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
445 #endif
446 }
447
448 static inline uint64_t ldq_be_p(const void *ptr)
449 {
450     uint32_t a,b;
451     a = ldl_be_p(ptr);
452     b = ldl_be_p((uint8_t *)ptr + 4);
453     return (((uint64_t)a<<32)|b);
454 }
455
456 static inline void stw_be_p(void *ptr, int v)
457 {
458 #if defined(__i386__)
459     asm volatile ("xchgb %b0, %h0\n"
460                   "movw %w0, %1\n"
461                   : "=q" (v)
462                   : "m" (*(uint16_t *)ptr), "0" (v));
463 #else
464     uint8_t *d = (uint8_t *) ptr;
465     d[0] = v >> 8;
466     d[1] = v;
467 #endif
468 }
469
470 static inline void stl_be_p(void *ptr, int v)
471 {
472 #if defined(__i386__) || defined(__x86_64__)
473     asm volatile ("bswap %0\n"
474                   "movl %0, %1\n"
475                   : "=r" (v)
476                   : "m" (*(uint32_t *)ptr), "0" (v));
477 #else
478     uint8_t *d = (uint8_t *) ptr;
479     d[0] = v >> 24;
480     d[1] = v >> 16;
481     d[2] = v >> 8;
482     d[3] = v;
483 #endif
484 }
485
486 static inline void stq_be_p(void *ptr, uint64_t v)
487 {
488     stl_be_p(ptr, v >> 32);
489     stl_be_p((uint8_t *)ptr + 4, v);
490 }
491
492 /* float access */
493
494 static inline float32 ldfl_be_p(const void *ptr)
495 {
496     union {
497         float32 f;
498         uint32_t i;
499     } u;
500     u.i = ldl_be_p(ptr);
501     return u.f;
502 }
503
504 static inline void stfl_be_p(void *ptr, float32 v)
505 {
506     union {
507         float32 f;
508         uint32_t i;
509     } u;
510     u.f = v;
511     stl_be_p(ptr, u.i);
512 }
513
514 static inline float64 ldfq_be_p(const void *ptr)
515 {
516     CPU_DoubleU u;
517     u.l.upper = ldl_be_p(ptr);
518     u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
519     return u.d;
520 }
521
522 static inline void stfq_be_p(void *ptr, float64 v)
523 {
524     CPU_DoubleU u;
525     u.d = v;
526     stl_be_p(ptr, u.l.upper);
527     stl_be_p((uint8_t *)ptr + 4, u.l.lower);
528 }
529
530 #else
531
532 static inline int lduw_be_p(const void *ptr)
533 {
534     return *(uint16_t *)ptr;
535 }
536
537 static inline int ldsw_be_p(const void *ptr)
538 {
539     return *(int16_t *)ptr;
540 }
541
542 static inline int ldl_be_p(const void *ptr)
543 {
544     return *(uint32_t *)ptr;
545 }
546
547 static inline uint64_t ldq_be_p(const void *ptr)
548 {
549     return *(uint64_t *)ptr;
550 }
551
552 static inline void stw_be_p(void *ptr, int v)
553 {
554     *(uint16_t *)ptr = v;
555 }
556
557 static inline void stl_be_p(void *ptr, int v)
558 {
559     *(uint32_t *)ptr = v;
560 }
561
562 static inline void stq_be_p(void *ptr, uint64_t v)
563 {
564     *(uint64_t *)ptr = v;
565 }
566
567 /* float access */
568
569 static inline float32 ldfl_be_p(const void *ptr)
570 {
571     return *(float32 *)ptr;
572 }
573
574 static inline float64 ldfq_be_p(const void *ptr)
575 {
576     return *(float64 *)ptr;
577 }
578
579 static inline void stfl_be_p(void *ptr, float32 v)
580 {
581     *(float32 *)ptr = v;
582 }
583
584 static inline void stfq_be_p(void *ptr, float64 v)
585 {
586     *(float64 *)ptr = v;
587 }
588
589 #endif
590
591 /* target CPU memory access functions */
592 #if defined(TARGET_WORDS_BIGENDIAN)
593 #define lduw_p(p) lduw_be_p(p)
594 #define ldsw_p(p) ldsw_be_p(p)
595 #define ldl_p(p) ldl_be_p(p)
596 #define ldq_p(p) ldq_be_p(p)
597 #define ldfl_p(p) ldfl_be_p(p)
598 #define ldfq_p(p) ldfq_be_p(p)
599 #define stw_p(p, v) stw_be_p(p, v)
600 #define stl_p(p, v) stl_be_p(p, v)
601 #define stq_p(p, v) stq_be_p(p, v)
602 #define stfl_p(p, v) stfl_be_p(p, v)
603 #define stfq_p(p, v) stfq_be_p(p, v)
604 #else
605 #define lduw_p(p) lduw_le_p(p)
606 #define ldsw_p(p) ldsw_le_p(p)
607 #define ldl_p(p) ldl_le_p(p)
608 #define ldq_p(p) ldq_le_p(p)
609 #define ldfl_p(p) ldfl_le_p(p)
610 #define ldfq_p(p) ldfq_le_p(p)
611 #define stw_p(p, v) stw_le_p(p, v)
612 #define stl_p(p, v) stl_le_p(p, v)
613 #define stq_p(p, v) stq_le_p(p, v)
614 #define stfl_p(p, v) stfl_le_p(p, v)
615 #define stfq_p(p, v) stfq_le_p(p, v)
616 #endif
617
618 /* MMU memory access macros */
619
620 #if defined(CONFIG_USER_ONLY)
621 #include <assert.h>
622 #include "qemu-types.h"
623
624 /* On some host systems the guest address space is reserved on the host.
625  * This allows the guest address space to be offset to a convenient location.
626  */
627 #if defined(CONFIG_USE_GUEST_BASE)
628 extern unsigned long guest_base;
629 extern int have_guest_base;
630 extern unsigned long reserved_va;
631 #define GUEST_BASE guest_base
632 #define RESERVED_VA reserved_va
633 #else
634 #define GUEST_BASE 0ul
635 #define RESERVED_VA 0ul
636 #endif
637
638 /* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
639 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
640
641 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
642 #define h2g_valid(x) 1
643 #else
644 #define h2g_valid(x) ({ \
645     unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
646     __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
647 })
648 #endif
649
650 #define h2g(x) ({ \
651     unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
652     /* Check if given address fits target address space */ \
653     assert(h2g_valid(x)); \
654     (abi_ulong)__ret; \
655 })
656
657 #define saddr(x) g2h(x)
658 #define laddr(x) g2h(x)
659
660 #else /* !CONFIG_USER_ONLY */
661 /* NOTE: we use double casts if pointers and target_ulong have
662    different sizes */
663 #define saddr(x) (uint8_t *)(long)(x)
664 #define laddr(x) (uint8_t *)(long)(x)
665 #endif
666
667 #define ldub_raw(p) ldub_p(laddr((p)))
668 #define ldsb_raw(p) ldsb_p(laddr((p)))
669 #define lduw_raw(p) lduw_p(laddr((p)))
670 #define ldsw_raw(p) ldsw_p(laddr((p)))
671 #define ldl_raw(p) ldl_p(laddr((p)))
672 #define ldq_raw(p) ldq_p(laddr((p)))
673 #define ldfl_raw(p) ldfl_p(laddr((p)))
674 #define ldfq_raw(p) ldfq_p(laddr((p)))
675 #define stb_raw(p, v) stb_p(saddr((p)), v)
676 #define stw_raw(p, v) stw_p(saddr((p)), v)
677 #define stl_raw(p, v) stl_p(saddr((p)), v)
678 #define stq_raw(p, v) stq_p(saddr((p)), v)
679 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
680 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
681
682
683 #if defined(CONFIG_USER_ONLY)
684
685 /* if user mode, no other memory access functions */
686 #define ldub(p) ldub_raw(p)
687 #define ldsb(p) ldsb_raw(p)
688 #define lduw(p) lduw_raw(p)
689 #define ldsw(p) ldsw_raw(p)
690 #define ldl(p) ldl_raw(p)
691 #define ldq(p) ldq_raw(p)
692 #define ldfl(p) ldfl_raw(p)
693 #define ldfq(p) ldfq_raw(p)
694 #define stb(p, v) stb_raw(p, v)
695 #define stw(p, v) stw_raw(p, v)
696 #define stl(p, v) stl_raw(p, v)
697 #define stq(p, v) stq_raw(p, v)
698 #define stfl(p, v) stfl_raw(p, v)
699 #define stfq(p, v) stfq_raw(p, v)
700
701 #define ldub_code(p) ldub_raw(p)
702 #define ldsb_code(p) ldsb_raw(p)
703 #define lduw_code(p) lduw_raw(p)
704 #define ldsw_code(p) ldsw_raw(p)
705 #define ldl_code(p) ldl_raw(p)
706 #define ldq_code(p) ldq_raw(p)
707
708 #define ldub_kernel(p) ldub_raw(p)
709 #define ldsb_kernel(p) ldsb_raw(p)
710 #define lduw_kernel(p) lduw_raw(p)
711 #define ldsw_kernel(p) ldsw_raw(p)
712 #define ldl_kernel(p) ldl_raw(p)
713 #define ldq_kernel(p) ldq_raw(p)
714 #define ldfl_kernel(p) ldfl_raw(p)
715 #define ldfq_kernel(p) ldfq_raw(p)
716 #define stb_kernel(p, v) stb_raw(p, v)
717 #define stw_kernel(p, v) stw_raw(p, v)
718 #define stl_kernel(p, v) stl_raw(p, v)
719 #define stq_kernel(p, v) stq_raw(p, v)
720 #define stfl_kernel(p, v) stfl_raw(p, v)
721 #define stfq_kernel(p, vt) stfq_raw(p, v)
722
723 #endif /* defined(CONFIG_USER_ONLY) */
724
725 /* page related stuff */
726
727 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
728 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
729 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
730
731 /* ??? These should be the larger of unsigned long and target_ulong.  */
732 extern unsigned long qemu_real_host_page_size;
733 extern unsigned long qemu_host_page_bits;
734 extern unsigned long qemu_host_page_size;
735 extern unsigned long qemu_host_page_mask;
736
737 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
738
739 /* same as PROT_xxx */
740 #define PAGE_READ      0x0001
741 #define PAGE_WRITE     0x0002
742 #define PAGE_EXEC      0x0004
743 #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
744 #define PAGE_VALID     0x0008
745 /* original state of the write flag (used when tracking self-modifying
746    code */
747 #define PAGE_WRITE_ORG 0x0010
748 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
749 /* FIXME: Code that sets/uses this is broken and needs to go away.  */
750 #define PAGE_RESERVED  0x0020
751 #endif
752
753 #if defined(CONFIG_USER_ONLY)
754 void page_dump(FILE *f);
755
756 typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
757                                       abi_ulong, unsigned long);
758 int walk_memory_regions(void *, walk_memory_regions_fn);
759
760 int page_get_flags(target_ulong address);
761 void page_set_flags(target_ulong start, target_ulong end, int flags);
762 int page_check_range(target_ulong start, target_ulong len, int flags);
763 #endif
764
765 CPUState *cpu_copy(CPUState *env);
766 CPUState *qemu_get_cpu(int cpu);
767
768 #define CPU_DUMP_CODE 0x00010000
769
770 void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
771                     int flags);
772 void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
773                          int flags);
774
775 void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
776     GCC_FMT_ATTR(2, 3);
777 extern CPUState *first_cpu;
778 extern CPUState *cpu_single_env;
779
780 #define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
781 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
782 #define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
783 #define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
784 #define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
785 #define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
786 #define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
787 #define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
788 #define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
789 #define CPU_INTERRUPT_INIT   0x400 /* INIT pending. */
790 #define CPU_INTERRUPT_SIPI   0x800 /* SIPI pending. */
791 #define CPU_INTERRUPT_MCE    0x1000 /* (x86 only) MCE pending. */
792
793 void cpu_interrupt(CPUState *s, int mask);
794 void cpu_reset_interrupt(CPUState *env, int mask);
795
796 void cpu_exit(CPUState *s);
797
798 int qemu_cpu_has_work(CPUState *env);
799
800 /* Breakpoint/watchpoint flags */
801 #define BP_MEM_READ           0x01
802 #define BP_MEM_WRITE          0x02
803 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
804 #define BP_STOP_BEFORE_ACCESS 0x04
805 #define BP_WATCHPOINT_HIT     0x08
806 #define BP_GDB                0x10
807 #define BP_CPU                0x20
808
809 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
810                           CPUBreakpoint **breakpoint);
811 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
812 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
813 void cpu_breakpoint_remove_all(CPUState *env, int mask);
814 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
815                           int flags, CPUWatchpoint **watchpoint);
816 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
817                           target_ulong len, int flags);
818 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
819 void cpu_watchpoint_remove_all(CPUState *env, int mask);
820
821 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
822 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
823 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
824
825 void cpu_single_step(CPUState *env, int enabled);
826 void cpu_reset(CPUState *s);
827 int cpu_is_stopped(CPUState *env);
828 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
829
830 #define CPU_LOG_TB_OUT_ASM (1 << 0)
831 #define CPU_LOG_TB_IN_ASM  (1 << 1)
832 #define CPU_LOG_TB_OP      (1 << 2)
833 #define CPU_LOG_TB_OP_OPT  (1 << 3)
834 #define CPU_LOG_INT        (1 << 4)
835 #define CPU_LOG_EXEC       (1 << 5)
836 #define CPU_LOG_PCALL      (1 << 6)
837 #define CPU_LOG_IOPORT     (1 << 7)
838 #define CPU_LOG_TB_CPU     (1 << 8)
839 #define CPU_LOG_RESET      (1 << 9)
840
841 /* define log items */
842 typedef struct CPULogItem {
843     int mask;
844     const char *name;
845     const char *help;
846 } CPULogItem;
847
848 extern const CPULogItem cpu_log_items[];
849
850 void cpu_set_log(int log_flags);
851 void cpu_set_log_filename(const char *filename);
852 int cpu_str_to_log_mask(const char *str);
853
854 #if !defined(CONFIG_USER_ONLY)
855
856 /* Return the physical page corresponding to a virtual one. Use it
857    only for debugging because no protection checks are done. Return -1
858    if no page found. */
859 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
860
861 /* memory API */
862
863 extern int phys_ram_fd;
864 extern ram_addr_t ram_size;
865
866 typedef struct RAMBlock {
867     uint8_t *host;
868     ram_addr_t offset;
869     ram_addr_t length;
870     char idstr[256];
871     QLIST_ENTRY(RAMBlock) next;
872 #if defined(__linux__) && !defined(TARGET_S390X)
873     int fd;
874 #endif
875 } RAMBlock;
876
877 typedef struct RAMList {
878     uint8_t *phys_dirty;
879     QLIST_HEAD(ram, RAMBlock) blocks;
880 } RAMList;
881 extern RAMList ram_list;
882
883 extern const char *mem_path;
884 extern int mem_prealloc;
885
886 /* physical memory access */
887
888 /* MMIO pages are identified by a combination of an IO device index and
889    3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
890    so only a limited number of ids are avaiable.  */
891
892 #define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
893
894 /* Flags stored in the low bits of the TLB virtual address.  These are
895    defined so that fast path ram access is all zeros.  */
896 /* Zero if TLB entry is valid.  */
897 #define TLB_INVALID_MASK   (1 << 3)
898 /* Set if TLB entry references a clean RAM page.  The iotlb entry will
899    contain the page physical address.  */
900 #define TLB_NOTDIRTY    (1 << 4)
901 /* Set if TLB entry is an IO callback.  */
902 #define TLB_MMIO        (1 << 5)
903
904 #define VGA_DIRTY_FLAG       0x01
905 #define CODE_DIRTY_FLAG      0x02
906 #define MIGRATION_DIRTY_FLAG 0x08
907
908 /* read dirty bit (return 0 or 1) */
909 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
910 {
911     return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
912 }
913
914 static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
915 {
916     return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
917 }
918
919 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
920                                                 int dirty_flags)
921 {
922     return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
923 }
924
925 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
926 {
927     ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
928 }
929
930 static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
931                                                       int dirty_flags)
932 {
933     return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
934 }
935
936 static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
937                                                         int length,
938                                                         int dirty_flags)
939 {
940     int i, mask, len;
941     uint8_t *p;
942
943     len = length >> TARGET_PAGE_BITS;
944     mask = ~dirty_flags;
945     p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
946     for (i = 0; i < len; i++) {
947         p[i] &= mask;
948     }
949 }
950
951 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
952                                      int dirty_flags);
953 void cpu_tlb_update_dirty(CPUState *env);
954
955 int cpu_physical_memory_set_dirty_tracking(int enable);
956
957 int cpu_physical_memory_get_dirty_tracking(void);
958
959 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
960                                    target_phys_addr_t end_addr);
961
962 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
963 #endif /* !CONFIG_USER_ONLY */
964
965 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
966                         uint8_t *buf, int len, int is_write);
967
968 void cpu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
969                         uint64_t mcg_status, uint64_t addr, uint64_t misc,
970                         int broadcast);
971
972 #endif /* CPU_ALL_H */