Initialize
[sdk/emulator/qemu.git] / linux-user / vm86.c
1 /*
2  *  vm86 linux syscall support
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include <stdlib.h>
20 #include <stdio.h>
21 #include <stdarg.h>
22 #include <string.h>
23 #include <errno.h>
24 #include <unistd.h>
25
26 #include "qemu.h"
27
28 //#define DEBUG_VM86
29
30 #ifdef DEBUG_VM86
31 #  define LOG_VM86(...) qemu_log(__VA_ARGS__);
32 #else
33 #  define LOG_VM86(...) do { } while (0)
34 #endif
35
36
37 #define set_flags(X,new,mask) \
38 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
39
40 #define SAFE_MASK       (0xDD5)
41 #define RETURN_MASK     (0xDFF)
42
43 static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
44 {
45     return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1;
46 }
47
48 static inline void vm_putw(uint32_t segptr, unsigned int reg16, unsigned int val)
49 {
50     stw(segptr + (reg16 & 0xffff), val);
51 }
52
53 static inline void vm_putl(uint32_t segptr, unsigned int reg16, unsigned int val)
54 {
55     stl(segptr + (reg16 & 0xffff), val);
56 }
57
58 static inline unsigned int vm_getb(uint32_t segptr, unsigned int reg16)
59 {
60     return ldub(segptr + (reg16 & 0xffff));
61 }
62
63 static inline unsigned int vm_getw(uint32_t segptr, unsigned int reg16)
64 {
65     return lduw(segptr + (reg16 & 0xffff));
66 }
67
68 static inline unsigned int vm_getl(uint32_t segptr, unsigned int reg16)
69 {
70     return ldl(segptr + (reg16 & 0xffff));
71 }
72
73 void save_v86_state(CPUX86State *env)
74 {
75     TaskState *ts = env->opaque;
76     struct target_vm86plus_struct * target_v86;
77
78     if (!lock_user_struct(VERIFY_WRITE, target_v86, ts->target_v86, 0))
79         /* FIXME - should return an error */
80         return;
81     /* put the VM86 registers in the userspace register structure */
82     target_v86->regs.eax = tswap32(env->regs[R_EAX]);
83     target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
84     target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
85     target_v86->regs.edx = tswap32(env->regs[R_EDX]);
86     target_v86->regs.esi = tswap32(env->regs[R_ESI]);
87     target_v86->regs.edi = tswap32(env->regs[R_EDI]);
88     target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
89     target_v86->regs.esp = tswap32(env->regs[R_ESP]);
90     target_v86->regs.eip = tswap32(env->eip);
91     target_v86->regs.cs = tswap16(env->segs[R_CS].selector);
92     target_v86->regs.ss = tswap16(env->segs[R_SS].selector);
93     target_v86->regs.ds = tswap16(env->segs[R_DS].selector);
94     target_v86->regs.es = tswap16(env->segs[R_ES].selector);
95     target_v86->regs.fs = tswap16(env->segs[R_FS].selector);
96     target_v86->regs.gs = tswap16(env->segs[R_GS].selector);
97     set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
98     target_v86->regs.eflags = tswap32(env->eflags);
99     unlock_user_struct(target_v86, ts->target_v86, 1);
100     LOG_VM86("save_v86_state: eflags=%08x cs:ip=%04x:%04x\n",
101              env->eflags, env->segs[R_CS].selector, env->eip);
102
103     /* restore 32 bit registers */
104     env->regs[R_EAX] = ts->vm86_saved_regs.eax;
105     env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
106     env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
107     env->regs[R_EDX] = ts->vm86_saved_regs.edx;
108     env->regs[R_ESI] = ts->vm86_saved_regs.esi;
109     env->regs[R_EDI] = ts->vm86_saved_regs.edi;
110     env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
111     env->regs[R_ESP] = ts->vm86_saved_regs.esp;
112     env->eflags = ts->vm86_saved_regs.eflags;
113     env->eip = ts->vm86_saved_regs.eip;
114
115     cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
116     cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
117     cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
118     cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
119     cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
120     cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
121 }
122
123 /* return from vm86 mode to 32 bit. The vm86() syscall will return
124    'retval' */
125 static inline void return_to_32bit(CPUX86State *env, int retval)
126 {
127     LOG_VM86("return_to_32bit: ret=0x%x\n", retval);
128     save_v86_state(env);
129     env->regs[R_EAX] = retval;
130 }
131
132 static inline int set_IF(CPUX86State *env)
133 {
134     TaskState *ts = env->opaque;
135
136     ts->v86flags |= VIF_MASK;
137     if (ts->v86flags & VIP_MASK) {
138         return_to_32bit(env, TARGET_VM86_STI);
139         return 1;
140     }
141     return 0;
142 }
143
144 static inline void clear_IF(CPUX86State *env)
145 {
146     TaskState *ts = env->opaque;
147
148     ts->v86flags &= ~VIF_MASK;
149 }
150
151 static inline void clear_TF(CPUX86State *env)
152 {
153     env->eflags &= ~TF_MASK;
154 }
155
156 static inline void clear_AC(CPUX86State *env)
157 {
158     env->eflags &= ~AC_MASK;
159 }
160
161 static inline int set_vflags_long(unsigned long eflags, CPUX86State *env)
162 {
163     TaskState *ts = env->opaque;
164
165     set_flags(ts->v86flags, eflags, ts->v86mask);
166     set_flags(env->eflags, eflags, SAFE_MASK);
167     if (eflags & IF_MASK)
168         return set_IF(env);
169     else
170         clear_IF(env);
171     return 0;
172 }
173
174 static inline int set_vflags_short(unsigned short flags, CPUX86State *env)
175 {
176     TaskState *ts = env->opaque;
177
178     set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
179     set_flags(env->eflags, flags, SAFE_MASK);
180     if (flags & IF_MASK)
181         return set_IF(env);
182     else
183         clear_IF(env);
184     return 0;
185 }
186
187 static inline unsigned int get_vflags(CPUX86State *env)
188 {
189     TaskState *ts = env->opaque;
190     unsigned int flags;
191
192     flags = env->eflags & RETURN_MASK;
193     if (ts->v86flags & VIF_MASK)
194         flags |= IF_MASK;
195     flags |= IOPL_MASK;
196     return flags | (ts->v86flags & ts->v86mask);
197 }
198
199 #define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
200
201 /* handle VM86 interrupt (NOTE: the CPU core currently does not
202    support TSS interrupt revectoring, so this code is always executed) */
203 static void do_int(CPUX86State *env, int intno)
204 {
205     TaskState *ts = env->opaque;
206     uint32_t int_addr, segoffs, ssp;
207     unsigned int sp;
208
209     if (env->segs[R_CS].selector == TARGET_BIOSSEG)
210         goto cannot_handle;
211     if (is_revectored(intno, &ts->vm86plus.int_revectored))
212         goto cannot_handle;
213     if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff,
214                                        &ts->vm86plus.int21_revectored))
215         goto cannot_handle;
216     int_addr = (intno << 2);
217     segoffs = ldl(int_addr);
218     if ((segoffs >> 16) == TARGET_BIOSSEG)
219         goto cannot_handle;
220     LOG_VM86("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n",
221              intno, segoffs >> 16, segoffs & 0xffff);
222     /* save old state */
223     ssp = env->segs[R_SS].selector << 4;
224     sp = env->regs[R_ESP] & 0xffff;
225     vm_putw(ssp, sp - 2, get_vflags(env));
226     vm_putw(ssp, sp - 4, env->segs[R_CS].selector);
227     vm_putw(ssp, sp - 6, env->eip);
228     ADD16(env->regs[R_ESP], -6);
229     /* goto interrupt handler */
230     env->eip = segoffs & 0xffff;
231     cpu_x86_load_seg(env, R_CS, segoffs >> 16);
232     clear_TF(env);
233     clear_IF(env);
234     clear_AC(env);
235     return;
236  cannot_handle:
237     LOG_VM86("VM86: return to 32 bits int 0x%x\n", intno);
238     return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
239 }
240
241 void handle_vm86_trap(CPUX86State *env, int trapno)
242 {
243     if (trapno == 1 || trapno == 3) {
244         return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
245     } else {
246         do_int(env, trapno);
247     }
248 }
249
250 #define CHECK_IF_IN_TRAP() \
251       if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \
252           (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \
253                 newflags |= TF_MASK
254
255 #define VM86_FAULT_RETURN \
256         if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \
257             (ts->v86flags & (IF_MASK | VIF_MASK))) \
258             return_to_32bit(env, TARGET_VM86_PICRETURN); \
259         return
260
261 void handle_vm86_fault(CPUX86State *env)
262 {
263     TaskState *ts = env->opaque;
264     uint32_t csp, ssp;
265     unsigned int ip, sp, newflags, newip, newcs, opcode, intno;
266     int data32, pref_done;
267
268     csp = env->segs[R_CS].selector << 4;
269     ip = env->eip & 0xffff;
270
271     ssp = env->segs[R_SS].selector << 4;
272     sp = env->regs[R_ESP] & 0xffff;
273
274     LOG_VM86("VM86 exception %04x:%08x\n",
275              env->segs[R_CS].selector, env->eip);
276
277     data32 = 0;
278     pref_done = 0;
279     do {
280         opcode = vm_getb(csp, ip);
281         ADD16(ip, 1);
282         switch (opcode) {
283         case 0x66:      /* 32-bit data */     data32=1; break;
284         case 0x67:      /* 32-bit address */  break;
285         case 0x2e:      /* CS */              break;
286         case 0x3e:      /* DS */              break;
287         case 0x26:      /* ES */              break;
288         case 0x36:      /* SS */              break;
289         case 0x65:      /* GS */              break;
290         case 0x64:      /* FS */              break;
291         case 0xf2:      /* repnz */           break;
292         case 0xf3:      /* rep */             break;
293         default: pref_done = 1;
294         }
295     } while (!pref_done);
296
297     /* VM86 mode */
298     switch(opcode) {
299     case 0x9c: /* pushf */
300         if (data32) {
301             vm_putl(ssp, sp - 4, get_vflags(env));
302             ADD16(env->regs[R_ESP], -4);
303         } else {
304             vm_putw(ssp, sp - 2, get_vflags(env));
305             ADD16(env->regs[R_ESP], -2);
306         }
307         env->eip = ip;
308         VM86_FAULT_RETURN;
309
310     case 0x9d: /* popf */
311         if (data32) {
312             newflags = vm_getl(ssp, sp);
313             ADD16(env->regs[R_ESP], 4);
314         } else {
315             newflags = vm_getw(ssp, sp);
316             ADD16(env->regs[R_ESP], 2);
317         }
318         env->eip = ip;
319         CHECK_IF_IN_TRAP();
320         if (data32) {
321             if (set_vflags_long(newflags, env))
322                 return;
323         } else {
324             if (set_vflags_short(newflags, env))
325                 return;
326         }
327         VM86_FAULT_RETURN;
328
329     case 0xcd: /* int */
330         intno = vm_getb(csp, ip);
331         ADD16(ip, 1);
332         env->eip = ip;
333         if (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) {
334             if ( (ts->vm86plus.vm86plus.vm86dbg_intxxtab[intno >> 3] >>
335                   (intno &7)) & 1) {
336                 return_to_32bit(env, TARGET_VM86_INTx + (intno << 8));
337                 return;
338             }
339         }
340         do_int(env, intno);
341         break;
342
343     case 0xcf: /* iret */
344         if (data32) {
345             newip = vm_getl(ssp, sp) & 0xffff;
346             newcs = vm_getl(ssp, sp + 4) & 0xffff;
347             newflags = vm_getl(ssp, sp + 8);
348             ADD16(env->regs[R_ESP], 12);
349         } else {
350             newip = vm_getw(ssp, sp);
351             newcs = vm_getw(ssp, sp + 2);
352             newflags = vm_getw(ssp, sp + 4);
353             ADD16(env->regs[R_ESP], 6);
354         }
355         env->eip = newip;
356         cpu_x86_load_seg(env, R_CS, newcs);
357         CHECK_IF_IN_TRAP();
358         if (data32) {
359             if (set_vflags_long(newflags, env))
360                 return;
361         } else {
362             if (set_vflags_short(newflags, env))
363                 return;
364         }
365         VM86_FAULT_RETURN;
366
367     case 0xfa: /* cli */
368         env->eip = ip;
369         clear_IF(env);
370         VM86_FAULT_RETURN;
371
372     case 0xfb: /* sti */
373         env->eip = ip;
374         if (set_IF(env))
375             return;
376         VM86_FAULT_RETURN;
377
378     default:
379         /* real VM86 GPF exception */
380         return_to_32bit(env, TARGET_VM86_UNKNOWN);
381         break;
382     }
383 }
384
385 int do_vm86(CPUX86State *env, long subfunction, abi_ulong vm86_addr)
386 {
387     TaskState *ts = env->opaque;
388     struct target_vm86plus_struct * target_v86;
389     int ret;
390
391     switch (subfunction) {
392     case TARGET_VM86_REQUEST_IRQ:
393     case TARGET_VM86_FREE_IRQ:
394     case TARGET_VM86_GET_IRQ_BITS:
395     case TARGET_VM86_GET_AND_RESET_IRQ:
396         gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction);
397         ret = -TARGET_EINVAL;
398         goto out;
399     case TARGET_VM86_PLUS_INSTALL_CHECK:
400         /* NOTE: on old vm86 stuff this will return the error
401            from verify_area(), because the subfunction is
402            interpreted as (invalid) address to vm86_struct.
403            So the installation check works.
404             */
405         ret = 0;
406         goto out;
407     }
408
409     /* save current CPU regs */
410     ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
411     ts->vm86_saved_regs.ebx = env->regs[R_EBX];
412     ts->vm86_saved_regs.ecx = env->regs[R_ECX];
413     ts->vm86_saved_regs.edx = env->regs[R_EDX];
414     ts->vm86_saved_regs.esi = env->regs[R_ESI];
415     ts->vm86_saved_regs.edi = env->regs[R_EDI];
416     ts->vm86_saved_regs.ebp = env->regs[R_EBP];
417     ts->vm86_saved_regs.esp = env->regs[R_ESP];
418     ts->vm86_saved_regs.eflags = env->eflags;
419     ts->vm86_saved_regs.eip  = env->eip;
420     ts->vm86_saved_regs.cs = env->segs[R_CS].selector;
421     ts->vm86_saved_regs.ss = env->segs[R_SS].selector;
422     ts->vm86_saved_regs.ds = env->segs[R_DS].selector;
423     ts->vm86_saved_regs.es = env->segs[R_ES].selector;
424     ts->vm86_saved_regs.fs = env->segs[R_FS].selector;
425     ts->vm86_saved_regs.gs = env->segs[R_GS].selector;
426
427     ts->target_v86 = vm86_addr;
428     if (!lock_user_struct(VERIFY_READ, target_v86, vm86_addr, 1))
429         return -TARGET_EFAULT;
430     /* build vm86 CPU state */
431     ts->v86flags = tswap32(target_v86->regs.eflags);
432     env->eflags = (env->eflags & ~SAFE_MASK) |
433         (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
434
435     ts->vm86plus.cpu_type = tswapl(target_v86->cpu_type);
436     switch (ts->vm86plus.cpu_type) {
437     case TARGET_CPU_286:
438         ts->v86mask = 0;
439         break;
440     case TARGET_CPU_386:
441         ts->v86mask = NT_MASK | IOPL_MASK;
442         break;
443     case TARGET_CPU_486:
444         ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK;
445         break;
446     default:
447         ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
448         break;
449     }
450
451     env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
452     env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
453     env->regs[R_EDX] = tswap32(target_v86->regs.edx);
454     env->regs[R_ESI] = tswap32(target_v86->regs.esi);
455     env->regs[R_EDI] = tswap32(target_v86->regs.edi);
456     env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
457     env->regs[R_ESP] = tswap32(target_v86->regs.esp);
458     env->eip = tswap32(target_v86->regs.eip);
459     cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
460     cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
461     cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
462     cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
463     cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
464     cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
465     ret = tswap32(target_v86->regs.eax); /* eax will be restored at
466                                             the end of the syscall */
467     memcpy(&ts->vm86plus.int_revectored,
468            &target_v86->int_revectored, 32);
469     memcpy(&ts->vm86plus.int21_revectored,
470            &target_v86->int21_revectored, 32);
471     ts->vm86plus.vm86plus.flags = tswapl(target_v86->vm86plus.flags);
472     memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab,
473            target_v86->vm86plus.vm86dbg_intxxtab, 32);
474     unlock_user_struct(target_v86, vm86_addr, 0);
475
476     LOG_VM86("do_vm86: cs:ip=%04x:%04x\n",
477              env->segs[R_CS].selector, env->eip);
478     /* now the virtual CPU is ready for vm86 execution ! */
479  out:
480     return ret;
481 }