Tizen 2.1 base
[sdk/emulator/qemu.git] / gl / mesa / src / glsl / lower_jumps.cpp
1 /*
2  * Copyright © 2010 Luca Barbieri
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23
24 /**
25  * \file lower_jumps.cpp
26  *
27  * This pass lowers jumps (break, continue, and return) to if/else structures.
28  *
29  * It can be asked to:
30  * 1. Pull jumps out of ifs where possible
31  * 2. Remove all "continue"s, replacing them with an "execute flag"
32  * 3. Replace all "break" with a single conditional one at the end of the loop
33  * 4. Replace all "return"s with a single return at the end of the function,
34  *    for the main function and/or other functions
35  *
36  * Applying this pass gives several benefits:
37  * 1. All functions can be inlined.
38  * 2. nv40 and other pre-DX10 chips without "continue" can be supported
39  * 3. nv30 and other pre-DX10 chips with no control flow at all are better
40  *    supported
41  *
42  * Continues are lowered by adding a per-loop "execute flag", initialized to
43  * true, that when cleared inhibits all execution until the end of the loop.
44  *
45  * Breaks are lowered to continues, plus setting a "break flag" that is checked
46  * at the end of the loop, and trigger the unique "break".
47  *
48  * Returns are lowered to breaks/continues, plus adding a "return flag" that
49  * causes loops to break again out of their enclosing loops until all the
50  * loops are exited: then the "execute flag" logic will ignore everything
51  * until the end of the function.
52  *
53  * Note that "continue" and "return" can also be implemented by adding
54  * a dummy loop and using break.
55  * However, this is bad for hardware with limited nesting depth, and
56  * prevents further optimization, and thus is not currently performed.
57  */
58
59 #include "glsl_types.h"
60 #include <string.h>
61 #include "ir.h"
62
63 /**
64  * Enum recording the result of analyzing how control flow might exit
65  * an IR node.
66  *
67  * Each possible value of jump_strength indicates a strictly stronger
68  * guarantee on control flow than the previous value.
69  *
70  * The ordering of strengths roughly reflects the way jumps are
71  * lowered: jumps with higher strength tend to be lowered to jumps of
72  * lower strength.  Accordingly, strength is used as a heuristic to
73  * determine which lowering to perform first.
74  *
75  * This enum is also used by get_jump_strength() to categorize
76  * instructions as either break, continue, return, or other.  When
77  * used in this fashion, strength_always_clears_execute_flag is not
78  * used.
79  *
80  * The control flow analysis made by this optimization pass makes two
81  * simplifying assumptions:
82  *
83  * - It ignores discard instructions, since they are lowered by a
84  *   separate pass (lower_discard.cpp).
85  *
86  * - It assumes it is always possible for control to flow from a loop
87  *   to the instruction immediately following it.  Technically, this
88  *   is not true (since all execution paths through the loop might
89  *   jump back to the top, or return from the function).
90  *
91  * Both of these simplifying assumtions are safe, since they can never
92  * cause reachable code to be incorrectly classified as unreachable;
93  * they can only do the opposite.
94  */
95 enum jump_strength
96 {
97    /**
98     * Analysis has produced no guarantee on how control flow might
99     * exit this IR node.  It might fall out the bottom (with or
100     * without clearing the execute flag, if present), or it might
101     * continue to the top of the innermost enclosing loop, break out
102     * of it, or return from the function.
103     */
104    strength_none,
105
106    /**
107     * The only way control can fall out the bottom of this node is
108     * through a code path that clears the execute flag.  It might also
109     * continue to the top of the innermost enclosing loop, break out
110     * of it, or return from the function.
111     */
112    strength_always_clears_execute_flag,
113
114    /**
115     * Control cannot fall out the bottom of this node.  It might
116     * continue to the top of the innermost enclosing loop, break out
117     * of it, or return from the function.
118     */
119    strength_continue,
120
121    /**
122     * Control cannot fall out the bottom of this node, or continue the
123     * top of the innermost enclosing loop.  It can only break out of
124     * it or return from the function.
125     */
126    strength_break,
127
128    /**
129     * Control cannot fall out the bottom of this node, continue to the
130     * top of the innermost enclosing loop, or break out of it.  It can
131     * only return from the function.
132     */
133    strength_return
134 };
135
136 struct block_record
137 {
138    /* minimum jump strength (of lowered IR, not pre-lowering IR)
139     *
140     * If the block ends with a jump, must be the strength of the jump.
141     * Otherwise, the jump would be dead and have been deleted before)
142     *
143     * If the block doesn't end with a jump, it can be different than strength_none if all paths before it lead to some jump
144     * (e.g. an if with a return in one branch, and a break in the other, while not lowering them)
145     * Note that identical jumps are usually unified though.
146     */
147    jump_strength min_strength;
148
149    /* can anything clear the execute flag? */
150    bool may_clear_execute_flag;
151
152    block_record()
153    {
154       this->min_strength = strength_none;
155       this->may_clear_execute_flag = false;
156    }
157 };
158
159 struct loop_record
160 {
161    ir_function_signature* signature;
162    ir_loop* loop;
163
164    /* used to avoid lowering the break used to represent lowered breaks */
165    unsigned nesting_depth;
166    bool in_if_at_the_end_of_the_loop;
167
168    bool may_set_return_flag;
169
170    ir_variable* break_flag;
171    ir_variable* execute_flag; /* cleared to emulate continue */
172
173    loop_record(ir_function_signature* p_signature = 0, ir_loop* p_loop = 0)
174    {
175       this->signature = p_signature;
176       this->loop = p_loop;
177       this->nesting_depth = 0;
178       this->in_if_at_the_end_of_the_loop = false;
179       this->may_set_return_flag = false;
180       this->break_flag = 0;
181       this->execute_flag = 0;
182    }
183
184    ir_variable* get_execute_flag()
185    {
186       /* also supported for the "function loop" */
187       if(!this->execute_flag) {
188          exec_list& list = this->loop ? this->loop->body_instructions : signature->body;
189          this->execute_flag = new(this->signature) ir_variable(glsl_type::bool_type, "execute_flag", ir_var_temporary);
190          list.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(execute_flag), new(this->signature) ir_constant(true), 0));
191          list.push_head(this->execute_flag);
192       }
193       return this->execute_flag;
194    }
195
196    ir_variable* get_break_flag()
197    {
198       assert(this->loop);
199       if(!this->break_flag) {
200          this->break_flag = new(this->signature) ir_variable(glsl_type::bool_type, "break_flag", ir_var_temporary);
201          this->loop->insert_before(this->break_flag);
202          this->loop->insert_before(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(break_flag), new(this->signature) ir_constant(false), 0));
203       }
204       return this->break_flag;
205    }
206 };
207
208 struct function_record
209 {
210    ir_function_signature* signature;
211    ir_variable* return_flag; /* used to break out of all loops and then jump to the return instruction */
212    ir_variable* return_value;
213    bool lower_return;
214    unsigned nesting_depth;
215
216    function_record(ir_function_signature* p_signature = 0,
217                    bool lower_return = false)
218    {
219       this->signature = p_signature;
220       this->return_flag = 0;
221       this->return_value = 0;
222       this->nesting_depth = 0;
223       this->lower_return = lower_return;
224    }
225
226    ir_variable* get_return_flag()
227    {
228       if(!this->return_flag) {
229          this->return_flag = new(this->signature) ir_variable(glsl_type::bool_type, "return_flag", ir_var_temporary);
230          this->signature->body.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(return_flag), new(this->signature) ir_constant(false), 0));
231          this->signature->body.push_head(this->return_flag);
232       }
233       return this->return_flag;
234    }
235
236    ir_variable* get_return_value()
237    {
238       if(!this->return_value) {
239          assert(!this->signature->return_type->is_void());
240          return_value = new(this->signature) ir_variable(this->signature->return_type, "return_value", ir_var_temporary);
241          this->signature->body.push_head(this->return_value);
242       }
243       return this->return_value;
244    }
245 };
246
247 struct ir_lower_jumps_visitor : public ir_control_flow_visitor {
248    /* Postconditions: on exit of any visit() function:
249     *
250     * ANALYSIS: this->block.min_strength,
251     * this->block.may_clear_execute_flag, and
252     * this->loop.may_set_return_flag are updated to reflect the
253     * characteristics of the visited statement.
254     *
255     * DEAD_CODE_ELIMINATION: If this->block.min_strength is not
256     * strength_none, the visited node is at the end of its exec_list.
257     * In other words, any unreachable statements that follow the
258     * visited statement in its exec_list have been removed.
259     *
260     * CONTAINED_JUMPS_LOWERED: If the visited statement contains other
261     * statements, then should_lower_jump() is false for all of the
262     * return, break, or continue statements it contains.
263     *
264     * Note that visiting a jump does not lower it.  That is the
265     * responsibility of the statement (or function signature) that
266     * contains the jump.
267     */
268
269    bool progress;
270
271    struct function_record function;
272    struct loop_record loop;
273    struct block_record block;
274
275    bool pull_out_jumps;
276    bool lower_continue;
277    bool lower_break;
278    bool lower_sub_return;
279    bool lower_main_return;
280
281    ir_lower_jumps_visitor()
282    {
283       this->progress = false;
284    }
285
286    void truncate_after_instruction(exec_node *ir)
287    {
288       if (!ir)
289          return;
290
291       while (!ir->get_next()->is_tail_sentinel()) {
292          ((ir_instruction *)ir->get_next())->remove();
293          this->progress = true;
294       }
295    }
296
297    void move_outer_block_inside(ir_instruction *ir, exec_list *inner_block)
298    {
299       while (!ir->get_next()->is_tail_sentinel()) {
300          ir_instruction *move_ir = (ir_instruction *)ir->get_next();
301
302          move_ir->remove();
303          inner_block->push_tail(move_ir);
304       }
305    }
306
307    /**
308     * Insert the instructions necessary to lower a return statement,
309     * before the given return instruction.
310     */
311    void insert_lowered_return(ir_return *ir)
312    {
313       ir_variable* return_flag = this->function.get_return_flag();
314       if(!this->function.signature->return_type->is_void()) {
315          ir_variable* return_value = this->function.get_return_value();
316          ir->insert_before(
317             new(ir) ir_assignment(
318                new (ir) ir_dereference_variable(return_value),
319                ir->value));
320       }
321       ir->insert_before(
322          new(ir) ir_assignment(
323             new (ir) ir_dereference_variable(return_flag),
324             new (ir) ir_constant(true)));
325       this->loop.may_set_return_flag = true;
326    }
327
328    /**
329     * If the given instruction is a return, lower it to instructions
330     * that store the return value (if there is one), set the return
331     * flag, and then break.
332     *
333     * It is safe to pass NULL to this function.
334     */
335    void lower_return_unconditionally(ir_instruction *ir)
336    {
337       if (get_jump_strength(ir) != strength_return) {
338          return;
339       }
340       insert_lowered_return((ir_return*)ir);
341       ir->replace_with(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
342    }
343
344    /**
345     * Create the necessary instruction to replace a break instruction.
346     */
347    ir_instruction *create_lowered_break()
348    {
349       void *ctx = this->function.signature;
350       return new(ctx) ir_assignment(
351           new(ctx) ir_dereference_variable(this->loop.get_break_flag()),
352           new(ctx) ir_constant(true),
353           0);
354    }
355
356    /**
357     * If the given instruction is a break, lower it to an instruction
358     * that sets the break flag, without consulting
359     * should_lower_jump().
360     *
361     * It is safe to pass NULL to this function.
362     */
363    void lower_break_unconditionally(ir_instruction *ir)
364    {
365       if (get_jump_strength(ir) != strength_break) {
366          return;
367       }
368       ir->replace_with(create_lowered_break());
369    }
370
371    /**
372     * If the block ends in a conditional or unconditional break, lower
373     * it, even though should_lower_jump() says it needn't be lowered.
374     */
375    void lower_final_breaks(exec_list *block)
376    {
377       ir_instruction *ir = (ir_instruction *) block->get_tail();
378       lower_break_unconditionally(ir);
379       ir_if *ir_if = ir->as_if();
380       if (ir_if) {
381           lower_break_unconditionally(
382               (ir_instruction *) ir_if->then_instructions.get_tail());
383           lower_break_unconditionally(
384               (ir_instruction *) ir_if->else_instructions.get_tail());
385       }
386    }
387
388    virtual void visit(class ir_loop_jump * ir)
389    {
390       /* Eliminate all instructions after each one, since they are
391        * unreachable.  This satisfies the DEAD_CODE_ELIMINATION
392        * postcondition.
393        */
394       truncate_after_instruction(ir);
395
396       /* Set this->block.min_strength based on this instruction.  This
397        * satisfies the ANALYSIS postcondition.  It is not necessary to
398        * update this->block.may_clear_execute_flag or
399        * this->loop.may_set_return_flag, because an unlowered jump
400        * instruction can't change any flags.
401        */
402       this->block.min_strength = ir->is_break() ? strength_break : strength_continue;
403
404       /* The CONTAINED_JUMPS_LOWERED postcondition is already
405        * satisfied, because jump statements can't contain other
406        * statements.
407        */
408    }
409
410    virtual void visit(class ir_return * ir)
411    {
412       /* Eliminate all instructions after each one, since they are
413        * unreachable.  This satisfies the DEAD_CODE_ELIMINATION
414        * postcondition.
415        */
416       truncate_after_instruction(ir);
417
418       /* Set this->block.min_strength based on this instruction.  This
419        * satisfies the ANALYSIS postcondition.  It is not necessary to
420        * update this->block.may_clear_execute_flag or
421        * this->loop.may_set_return_flag, because an unlowered return
422        * instruction can't change any flags.
423        */
424       this->block.min_strength = strength_return;
425
426       /* The CONTAINED_JUMPS_LOWERED postcondition is already
427        * satisfied, because jump statements can't contain other
428        * statements.
429        */
430    }
431
432    virtual void visit(class ir_discard * ir)
433    {
434       /* Nothing needs to be done.  The ANALYSIS and
435        * DEAD_CODE_ELIMINATION postconditions are already satisfied,
436        * because discard statements are ignored by this optimization
437        * pass.  The CONTAINED_JUMPS_LOWERED postcondition is already
438        * satisfied, because discard statements can't contain other
439        * statements.
440        */
441       (void) ir;
442    }
443
444    enum jump_strength get_jump_strength(ir_instruction* ir)
445    {
446       if(!ir)
447          return strength_none;
448       else if(ir->ir_type == ir_type_loop_jump) {
449          if(((ir_loop_jump*)ir)->is_break())
450             return strength_break;
451          else
452             return strength_continue;
453       } else if(ir->ir_type == ir_type_return)
454          return strength_return;
455       else
456          return strength_none;
457    }
458
459    bool should_lower_jump(ir_jump* ir)
460    {
461       unsigned strength = get_jump_strength(ir);
462       bool lower;
463       switch(strength)
464       {
465       case strength_none:
466          lower = false; /* don't change this, code relies on it */
467          break;
468       case strength_continue:
469          lower = lower_continue;
470          break;
471       case strength_break:
472          assert(this->loop.loop);
473          /* never lower "canonical break" */
474          if(ir->get_next()->is_tail_sentinel() && (this->loop.nesting_depth == 0
475                || (this->loop.nesting_depth == 1 && this->loop.in_if_at_the_end_of_the_loop)))
476             lower = false;
477          else
478             lower = lower_break;
479          break;
480       case strength_return:
481          /* never lower return at the end of a this->function */
482          if(this->function.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
483             lower = false;
484          else
485             lower = this->function.lower_return;
486          break;
487       }
488       return lower;
489    }
490
491    block_record visit_block(exec_list* list)
492    {
493       /* Note: since visiting a node may change that node's next
494        * pointer, we can't use visit_exec_list(), because
495        * visit_exec_list() caches the node's next pointer before
496        * visiting it.  So we use foreach_list() instead.
497        *
498        * foreach_list() isn't safe if the node being visited gets
499        * removed, but fortunately this visitor doesn't do that.
500        */
501
502       block_record saved_block = this->block;
503       this->block = block_record();
504       foreach_list(node, list) {
505          ((ir_instruction *) node)->accept(this);
506       }
507       block_record ret = this->block;
508       this->block = saved_block;
509       return ret;
510    }
511
512    virtual void visit(ir_if *ir)
513    {
514       if(this->loop.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
515          this->loop.in_if_at_the_end_of_the_loop = true;
516
517       ++this->function.nesting_depth;
518       ++this->loop.nesting_depth;
519
520       block_record block_records[2];
521       ir_jump* jumps[2];
522
523       /* Recursively lower nested jumps.  This satisfies the
524        * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
525        * unconditional jumps at the end of ir->then_instructions and
526        * ir->else_instructions, which are handled below.
527        */
528       block_records[0] = visit_block(&ir->then_instructions);
529       block_records[1] = visit_block(&ir->else_instructions);
530
531 retry: /* we get here if we put code after the if inside a branch */
532
533       /* Determine which of ir->then_instructions and
534        * ir->else_instructions end with an unconditional jump.
535        */
536       for(unsigned i = 0; i < 2; ++i) {
537          exec_list& list = i ? ir->else_instructions : ir->then_instructions;
538          jumps[i] = 0;
539          if(!list.is_empty() && get_jump_strength((ir_instruction*)list.get_tail()))
540             jumps[i] = (ir_jump*)list.get_tail();
541       }
542
543       /* Loop until we have satisfied the CONTAINED_JUMPS_LOWERED
544        * postcondition by lowering jumps in both then_instructions and
545        * else_instructions.
546        */
547       for(;;) {
548          /* Determine the types of the jumps that terminate
549           * ir->then_instructions and ir->else_instructions.
550           */
551          jump_strength jump_strengths[2];
552
553          for(unsigned i = 0; i < 2; ++i) {
554             if(jumps[i]) {
555                jump_strengths[i] = block_records[i].min_strength;
556                assert(jump_strengths[i] == get_jump_strength(jumps[i]));
557             } else
558                jump_strengths[i] = strength_none;
559          }
560
561          /* If both code paths end in a jump, and the jumps are the
562           * same, and we are pulling out jumps, replace them with a
563           * single jump that comes after the if instruction.  The new
564           * jump will be visited next, and it will be lowered if
565           * necessary by the loop or conditional that encloses it.
566           */
567          if(pull_out_jumps && jump_strengths[0] == jump_strengths[1]) {
568             bool unify = true;
569             if(jump_strengths[0] == strength_continue)
570                ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_continue));
571             else if(jump_strengths[0] == strength_break)
572                ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
573             /* FINISHME: unify returns with identical expressions */
574             else if(jump_strengths[0] == strength_return && this->function.signature->return_type->is_void())
575                ir->insert_after(new(ir) ir_return(NULL));
576             else
577                unify = false;
578
579             if(unify) {
580                jumps[0]->remove();
581                jumps[1]->remove();
582                this->progress = true;
583
584                /* Update jumps[] to reflect the fact that the jumps
585                 * are gone, and update block_records[] to reflect the
586                 * fact that control can now flow to the next
587                 * instruction.
588                 */
589                jumps[0] = 0;
590                jumps[1] = 0;
591                block_records[0].min_strength = strength_none;
592                block_records[1].min_strength = strength_none;
593
594                /* The CONTAINED_JUMPS_LOWERED postcondition is now
595                 * satisfied, so we can break out of the loop.
596                 */
597                break;
598             }
599          }
600
601          /* lower a jump: if both need to lowered, start with the strongest one, so that
602           * we might later unify the lowered version with the other one
603           */
604          bool should_lower[2];
605          for(unsigned i = 0; i < 2; ++i)
606             should_lower[i] = should_lower_jump(jumps[i]);
607
608          int lower;
609          if(should_lower[1] && should_lower[0])
610             lower = jump_strengths[1] > jump_strengths[0];
611          else if(should_lower[0])
612             lower = 0;
613          else if(should_lower[1])
614             lower = 1;
615          else
616             /* Neither code path ends in a jump that needs to be
617              * lowered, so the CONTAINED_JUMPS_LOWERED postcondition
618              * is satisfied and we can break out of the loop.
619              */
620             break;
621
622          if(jump_strengths[lower] == strength_return) {
623             /* To lower a return, we create a return flag (if the
624              * function doesn't have one already) and add instructions
625              * that: 1. store the return value (if this function has a
626              * non-void return) and 2. set the return flag
627              */
628             insert_lowered_return((ir_return*)jumps[lower]);
629             if(this->loop.loop) {
630                /* If we are in a loop, replace the return instruction
631                 * with a break instruction, and then loop so that the
632                 * break instruction can be lowered if necessary.
633                 */
634                ir_loop_jump* lowered = 0;
635                lowered = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
636                /* Note: we must update block_records and jumps to
637                 * reflect the fact that the control path has been
638                 * altered from a return to a break.
639                 */
640                block_records[lower].min_strength = strength_break;
641                jumps[lower]->replace_with(lowered);
642                jumps[lower] = lowered;
643             } else {
644                /* If we are not in a loop, we then proceed as we would
645                 * for a continue statement (set the execute flag to
646                 * false to prevent the rest of the function from
647                 * executing).
648                 */
649                goto lower_continue;
650             }
651             this->progress = true;
652          } else if(jump_strengths[lower] == strength_break) {
653             /* To lower a break, we create a break flag (if the loop
654              * doesn't have one already) and add an instruction that
655              * sets it.
656              *
657              * Then we proceed as we would for a continue statement
658              * (set the execute flag to false to prevent the rest of
659              * the loop body from executing).
660              *
661              * The visit() function for the loop will ensure that the
662              * break flag is checked after executing the loop body.
663              */
664             jumps[lower]->insert_before(create_lowered_break());
665             goto lower_continue;
666          } else if(jump_strengths[lower] == strength_continue) {
667 lower_continue:
668             /* To lower a continue, we create an execute flag (if the
669              * loop doesn't have one already) and replace the continue
670              * with an instruction that clears it.
671              *
672              * Note that this code path gets exercised when lowering
673              * return statements that are not inside a loop, so
674              * this->loop must be initialized even outside of loops.
675              */
676             ir_variable* execute_flag = this->loop.get_execute_flag();
677             jumps[lower]->replace_with(new(ir) ir_assignment(new (ir) ir_dereference_variable(execute_flag), new (ir) ir_constant(false), 0));
678             /* Note: we must update block_records and jumps to reflect
679              * the fact that the control path has been altered to an
680              * instruction that clears the execute flag.
681              */
682             jumps[lower] = 0;
683             block_records[lower].min_strength = strength_always_clears_execute_flag;
684             block_records[lower].may_clear_execute_flag = true;
685             this->progress = true;
686
687             /* Let the loop run again, in case the other branch of the
688              * if needs to be lowered too.
689              */
690          }
691       }
692
693       /* move out a jump out if possible */
694       if(pull_out_jumps) {
695          /* If one of the branches ends in a jump, and control cannot
696           * fall out the bottom of the other branch, then we can move
697           * the jump after the if.
698           *
699           * Set move_out to the branch we are moving a jump out of.
700           */
701          int move_out = -1;
702          if(jumps[0] && block_records[1].min_strength >= strength_continue)
703             move_out = 0;
704          else if(jumps[1] && block_records[0].min_strength >= strength_continue)
705             move_out = 1;
706
707          if(move_out >= 0)
708          {
709             jumps[move_out]->remove();
710             ir->insert_after(jumps[move_out]);
711             /* Note: we must update block_records and jumps to reflect
712              * the fact that the jump has been moved out of the if.
713              */
714             jumps[move_out] = 0;
715             block_records[move_out].min_strength = strength_none;
716             this->progress = true;
717          }
718       }
719
720       /* Now satisfy the ANALYSIS postcondition by setting
721        * this->block.min_strength and
722        * this->block.may_clear_execute_flag based on the
723        * characteristics of the two branches.
724        */
725       if(block_records[0].min_strength < block_records[1].min_strength)
726          this->block.min_strength = block_records[0].min_strength;
727       else
728          this->block.min_strength = block_records[1].min_strength;
729       this->block.may_clear_execute_flag = this->block.may_clear_execute_flag || block_records[0].may_clear_execute_flag || block_records[1].may_clear_execute_flag;
730
731       /* Now we need to clean up the instructions that follow the
732        * if.
733        *
734        * If those instructions are unreachable, then satisfy the
735        * DEAD_CODE_ELIMINATION postcondition by eliminating them.
736        * Otherwise that postcondition is already satisfied.
737        */
738       if(this->block.min_strength)
739          truncate_after_instruction(ir);
740       else if(this->block.may_clear_execute_flag)
741       {
742          /* If the "if" instruction might clear the execute flag, then
743           * we need to guard any instructions that follow so that they
744           * are only executed if the execute flag is set.
745           *
746           * If one of the branches of the "if" always clears the
747           * execute flag, and the other branch never clears it, then
748           * this is easy: just move all the instructions following the
749           * "if" into the branch that never clears it.
750           */
751          int move_into = -1;
752          if(block_records[0].min_strength && !block_records[1].may_clear_execute_flag)
753             move_into = 1;
754          else if(block_records[1].min_strength && !block_records[0].may_clear_execute_flag)
755             move_into = 0;
756
757          if(move_into >= 0) {
758             assert(!block_records[move_into].min_strength && !block_records[move_into].may_clear_execute_flag); /* otherwise, we just truncated */
759
760             exec_list* list = move_into ? &ir->else_instructions : &ir->then_instructions;
761             exec_node* next = ir->get_next();
762             if(!next->is_tail_sentinel()) {
763                move_outer_block_inside(ir, list);
764
765                /* If any instructions moved, then we need to visit
766                 * them (since they are now inside the "if").  Since
767                 * block_records[move_into] is in its default state
768                 * (see assertion above), we can safely replace
769                 * block_records[move_into] with the result of this
770                 * analysis.
771                 */
772                exec_list list;
773                list.head = next;
774                block_records[move_into] = visit_block(&list);
775
776                /*
777                 * Then we need to re-start our jump lowering, since one
778                 * of the instructions we moved might be a jump that
779                 * needs to be lowered.
780                 */
781                this->progress = true;
782                goto retry;
783             }
784          } else {
785             /* If we get here, then the simple case didn't apply; we
786              * need to actually guard the instructions that follow.
787              *
788              * To avoid creating unnecessarily-deep nesting, first
789              * look through the instructions that follow and unwrap
790              * any instructions that that are already wrapped in the
791              * appropriate guard.
792              */
793             ir_instruction* ir_after;
794             for(ir_after = (ir_instruction*)ir->get_next(); !ir_after->is_tail_sentinel();)
795             {
796                ir_if* ir_if = ir_after->as_if();
797                if(ir_if && ir_if->else_instructions.is_empty()) {
798                   ir_dereference_variable* ir_if_cond_deref = ir_if->condition->as_dereference_variable();
799                   if(ir_if_cond_deref && ir_if_cond_deref->var == this->loop.execute_flag) {
800                      ir_instruction* ir_next = (ir_instruction*)ir_after->get_next();
801                      ir_after->insert_before(&ir_if->then_instructions);
802                      ir_after->remove();
803                      ir_after = ir_next;
804                      continue;
805                   }
806                }
807                ir_after = (ir_instruction*)ir_after->get_next();
808
809                /* only set this if we find any unprotected instruction */
810                this->progress = true;
811             }
812
813             /* Then, wrap all the instructions that follow in a single
814              * guard.
815              */
816             if(!ir->get_next()->is_tail_sentinel()) {
817                assert(this->loop.execute_flag);
818                ir_if* if_execute = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.execute_flag));
819                move_outer_block_inside(ir, &if_execute->then_instructions);
820                ir->insert_after(if_execute);
821             }
822          }
823       }
824       --this->loop.nesting_depth;
825       --this->function.nesting_depth;
826    }
827
828    virtual void visit(ir_loop *ir)
829    {
830       /* Visit the body of the loop, with a fresh data structure in
831        * this->loop so that the analysis we do here won't bleed into
832        * enclosing loops.
833        *
834        * We assume that all code after a loop is reachable from the
835        * loop (see comments on enum jump_strength), so the
836        * DEAD_CODE_ELIMINATION postcondition is automatically
837        * satisfied, as is the block.min_strength portion of the
838        * ANALYSIS postcondition.
839        *
840        * The block.may_clear_execute_flag portion of the ANALYSIS
841        * postcondition is automatically satisfied because execute
842        * flags do not propagate outside of loops.
843        *
844        * The loop.may_set_return_flag portion of the ANALYSIS
845        * postcondition is handled below.
846        */
847       ++this->function.nesting_depth;
848       loop_record saved_loop = this->loop;
849       this->loop = loop_record(this->function.signature, ir);
850
851       /* Recursively lower nested jumps.  This satisfies the
852        * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
853        * an unconditional continue or return at the bottom of the
854        * loop, which are handled below.
855        */
856       block_record body = visit_block(&ir->body_instructions);
857
858       /* If the loop ends in an unconditional continue, eliminate it
859        * because it is redundant.
860        */
861       ir_instruction *ir_last
862          = (ir_instruction *) ir->body_instructions.get_tail();
863       if (get_jump_strength(ir_last) == strength_continue) {
864          ir_last->remove();
865       }
866
867       /* If the loop ends in an unconditional return, and we are
868        * lowering returns, lower it.
869        */
870       if (this->function.lower_return)
871          lower_return_unconditionally(ir_last);
872
873       if(body.min_strength >= strength_break) {
874          /* FINISHME: If the min_strength of the loop body is
875           * strength_break or strength_return, that means that it
876           * isn't a loop at all, since control flow always leaves the
877           * body of the loop via break or return.  In principle the
878           * loop could be eliminated in this case.  This optimization
879           * is not implemented yet.
880           */
881       }
882
883       if(this->loop.break_flag) {
884          /* We only get here if we are lowering breaks */
885          assert (lower_break);
886
887          /* If a break flag was generated while visiting the body of
888           * the loop, then at least one break was lowered, so we need
889           * to generate an if statement at the end of the loop that
890           * does a "break" if the break flag is set.  The break we
891           * generate won't violate the CONTAINED_JUMPS_LOWERED
892           * postcondition, because should_lower_jump() always returns
893           * false for a break that happens at the end of a loop.
894           *
895           * However, if the loop already ends in a conditional or
896           * unconditional break, then we need to lower that break,
897           * because it won't be at the end of the loop anymore.
898           */
899          lower_final_breaks(&ir->body_instructions);
900
901          ir_if* break_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.break_flag));
902          break_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
903          ir->body_instructions.push_tail(break_if);
904       }
905
906       /* If the body of the loop may set the return flag, then at
907        * least one return was lowered to a break, so we need to ensure
908        * that the return flag is checked after the body of the loop is
909        * executed.
910        */
911       if(this->loop.may_set_return_flag) {
912          assert(this->function.return_flag);
913          /* Generate the if statement to check the return flag */
914          ir_if* return_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->function.return_flag));
915          /* Note: we also need to propagate the knowledge that the
916           * return flag may get set to the outer context.  This
917           * satisfies the loop.may_set_return_flag part of the
918           * ANALYSIS postcondition.
919           */
920          saved_loop.may_set_return_flag = true;
921          if(saved_loop.loop)
922             /* If this loop is nested inside another one, then the if
923              * statement that we generated should break out of that
924              * loop if the return flag is set.  Caller will lower that
925              * break statement if necessary.
926              */
927             return_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
928          else
929             /* Otherwise, all we need to do is ensure that the
930              * instructions that follow are only executed if the
931              * return flag is clear.  We can do that by moving those
932              * instructions into the else clause of the generated if
933              * statement.
934              */
935             move_outer_block_inside(ir, &return_if->else_instructions);
936          ir->insert_after(return_if);
937       }
938
939       this->loop = saved_loop;
940       --this->function.nesting_depth;
941    }
942
943    virtual void visit(ir_function_signature *ir)
944    {
945       /* these are not strictly necessary */
946       assert(!this->function.signature);
947       assert(!this->loop.loop);
948
949       bool lower_return;
950       if (strcmp(ir->function_name(), "main") == 0)
951          lower_return = lower_main_return;
952       else
953          lower_return = lower_sub_return;
954
955       function_record saved_function = this->function;
956       loop_record saved_loop = this->loop;
957       this->function = function_record(ir, lower_return);
958       this->loop = loop_record(ir);
959
960       assert(!this->loop.loop);
961
962       /* Visit the body of the function to lower any jumps that occur
963        * in it, except possibly an unconditional return statement at
964        * the end of it.
965        */
966       visit_block(&ir->body);
967
968       /* If the body ended in an unconditional return of non-void,
969        * then we don't need to lower it because it's the one canonical
970        * return.
971        *
972        * If the body ended in a return of void, eliminate it because
973        * it is redundant.
974        */
975       if (ir->return_type->is_void() &&
976           get_jump_strength((ir_instruction *) ir->body.get_tail())) {
977          ir_jump *jump = (ir_jump *) ir->body.get_tail();
978          assert (jump->ir_type == ir_type_return);
979          jump->remove();
980       }
981
982       if(this->function.return_value)
983          ir->body.push_tail(new(ir) ir_return(new (ir) ir_dereference_variable(this->function.return_value)));
984
985       this->loop = saved_loop;
986       this->function = saved_function;
987    }
988
989    virtual void visit(class ir_function * ir)
990    {
991       visit_block(&ir->signatures);
992    }
993 };
994
995 bool
996 do_lower_jumps(exec_list *instructions, bool pull_out_jumps, bool lower_sub_return, bool lower_main_return, bool lower_continue, bool lower_break)
997 {
998    ir_lower_jumps_visitor v;
999    v.pull_out_jumps = pull_out_jumps;
1000    v.lower_continue = lower_continue;
1001    v.lower_break = lower_break;
1002    v.lower_sub_return = lower_sub_return;
1003    v.lower_main_return = lower_main_return;
1004
1005    do {
1006       v.progress = false;
1007       visit_exec_list(instructions, &v);
1008    } while (v.progress);
1009
1010    return v.progress;
1011 }