packaging: install license for rpm package instead of license package
[profile/mobile/platform/kernel/linux-3.10-sc7730.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/delay.h>
53 #include <linux/init.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63
64 #include <asm/io.h>
65 #include <asm/pgalloc.h>
66 #include <asm/uaccess.h>
67 #include <asm/tlb.h>
68 #include <asm/tlbflush.h>
69 #include <asm/pgtable.h>
70
71 #include "internal.h"
72
73 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
74 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
75 #endif
76
77 #ifndef CONFIG_NEED_MULTIPLE_NODES
78 /* use the per-pgdat data instead for discontigmem - mbligh */
79 unsigned long max_mapnr;
80 struct page *mem_map;
81
82 EXPORT_SYMBOL(max_mapnr);
83 EXPORT_SYMBOL(mem_map);
84 #endif
85
86 unsigned long num_physpages;
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95
96 EXPORT_SYMBOL(num_physpages);
97 EXPORT_SYMBOL(high_memory);
98
99 /*
100  * Randomize the address space (stacks, mmaps, brk, etc.).
101  *
102  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
103  *   as ancient (libc5 based) binaries can segfault. )
104  */
105 int randomize_va_space __read_mostly =
106 #ifdef CONFIG_COMPAT_BRK
107                                         1;
108 #else
109                                         2;
110 #endif
111
112 static int __init disable_randmaps(char *s)
113 {
114         randomize_va_space = 0;
115         return 1;
116 }
117 __setup("norandmaps", disable_randmaps);
118
119 unsigned long zero_pfn __read_mostly;
120 unsigned long highest_memmap_pfn __read_mostly;
121
122 EXPORT_SYMBOL(zero_pfn);
123
124 /*
125  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126  */
127 static int __init init_zero_pfn(void)
128 {
129         zero_pfn = page_to_pfn(ZERO_PAGE(0));
130         return 0;
131 }
132 core_initcall(init_zero_pfn);
133
134
135 #if defined(SPLIT_RSS_COUNTING)
136
137 void sync_mm_rss(struct mm_struct *mm)
138 {
139         int i;
140
141         for (i = 0; i < NR_MM_COUNTERS; i++) {
142                 if (current->rss_stat.count[i]) {
143                         add_mm_counter(mm, i, current->rss_stat.count[i]);
144                         current->rss_stat.count[i] = 0;
145                 }
146         }
147         current->rss_stat.events = 0;
148 }
149
150 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
151 {
152         struct task_struct *task = current;
153
154         if (likely(task->mm == mm))
155                 task->rss_stat.count[member] += val;
156         else
157                 add_mm_counter(mm, member, val);
158 }
159 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
160 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161
162 /* sync counter once per 64 page faults */
163 #define TASK_RSS_EVENTS_THRESH  (64)
164 static void check_sync_rss_stat(struct task_struct *task)
165 {
166         if (unlikely(task != current))
167                 return;
168         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
169                 sync_mm_rss(task->mm);
170 }
171 #else /* SPLIT_RSS_COUNTING */
172
173 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
174 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175
176 static void check_sync_rss_stat(struct task_struct *task)
177 {
178 }
179
180 #endif /* SPLIT_RSS_COUNTING */
181
182 #ifdef HAVE_GENERIC_MMU_GATHER
183
184 static int tlb_next_batch(struct mmu_gather *tlb)
185 {
186         struct mmu_gather_batch *batch;
187
188         batch = tlb->active;
189         if (batch->next) {
190                 tlb->active = batch->next;
191                 return 1;
192         }
193
194         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
195                 return 0;
196
197 #ifndef CONFIG_SPRD_PAGERECORDER
198         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
199 #else
200         batch = (void *)__get_free_pages_nopagedebug(GFP_NOWAIT | __GFP_NOWARN, 0);
201 #endif
202         if (!batch)
203                 return 0;
204
205         tlb->batch_count++;
206         batch->next = NULL;
207         batch->nr   = 0;
208         batch->max  = MAX_GATHER_BATCH;
209
210         tlb->active->next = batch;
211         tlb->active = batch;
212
213         return 1;
214 }
215
216 /* tlb_gather_mmu
217  *      Called to initialize an (on-stack) mmu_gather structure for page-table
218  *      tear-down from @mm. The @fullmm argument is used when @mm is without
219  *      users and we're going to destroy the full address space (exit/execve).
220  */
221 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
222 {
223         tlb->mm = mm;
224
225         /* Is it from 0 to ~0? */
226         tlb->fullmm     = !(start | (end+1));
227         tlb->need_flush_all = 0;
228         tlb->start      = start;
229         tlb->end        = end;
230         tlb->need_flush = 0;
231         tlb->local.next = NULL;
232         tlb->local.nr   = 0;
233         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
234         tlb->active     = &tlb->local;
235         tlb->batch_count = 0;
236
237 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
238         tlb->batch = NULL;
239 #endif
240 }
241
242 void tlb_flush_mmu(struct mmu_gather *tlb)
243 {
244         struct mmu_gather_batch *batch;
245
246         if (!tlb->need_flush)
247                 return;
248         tlb->need_flush = 0;
249         tlb_flush(tlb);
250 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
251         tlb_table_flush(tlb);
252 #endif
253
254         for (batch = &tlb->local; batch; batch = batch->next) {
255                 free_pages_and_swap_cache(batch->pages, batch->nr);
256                 batch->nr = 0;
257         }
258         tlb->active = &tlb->local;
259 }
260
261 /* tlb_finish_mmu
262  *      Called at the end of the shootdown operation to free up any resources
263  *      that were required.
264  */
265 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
266 {
267         struct mmu_gather_batch *batch, *next;
268
269         tlb_flush_mmu(tlb);
270
271         /* keep the page table cache within bounds */
272         check_pgt_cache();
273
274         for (batch = tlb->local.next; batch; batch = next) {
275                 next = batch->next;
276                 free_pages((unsigned long)batch, 0);
277         }
278         tlb->local.next = NULL;
279 }
280
281 /* __tlb_remove_page
282  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
283  *      handling the additional races in SMP caused by other CPUs caching valid
284  *      mappings in their TLBs. Returns the number of free page slots left.
285  *      When out of page slots we must call tlb_flush_mmu().
286  */
287 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
288 {
289         struct mmu_gather_batch *batch;
290
291         VM_BUG_ON(!tlb->need_flush);
292
293         batch = tlb->active;
294         batch->pages[batch->nr++] = page;
295         if (batch->nr == batch->max) {
296                 if (!tlb_next_batch(tlb))
297                         return 0;
298                 batch = tlb->active;
299         }
300         VM_BUG_ON(batch->nr > batch->max);
301
302         return batch->max - batch->nr;
303 }
304
305 #endif /* HAVE_GENERIC_MMU_GATHER */
306
307 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
308
309 /*
310  * See the comment near struct mmu_table_batch.
311  */
312
313 static void tlb_remove_table_smp_sync(void *arg)
314 {
315         /* Simply deliver the interrupt */
316 }
317
318 static void tlb_remove_table_one(void *table)
319 {
320         /*
321          * This isn't an RCU grace period and hence the page-tables cannot be
322          * assumed to be actually RCU-freed.
323          *
324          * It is however sufficient for software page-table walkers that rely on
325          * IRQ disabling. See the comment near struct mmu_table_batch.
326          */
327         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
328         __tlb_remove_table(table);
329 }
330
331 static void tlb_remove_table_rcu(struct rcu_head *head)
332 {
333         struct mmu_table_batch *batch;
334         int i;
335
336         batch = container_of(head, struct mmu_table_batch, rcu);
337
338         for (i = 0; i < batch->nr; i++)
339                 __tlb_remove_table(batch->tables[i]);
340
341         free_page((unsigned long)batch);
342 }
343
344 void tlb_table_flush(struct mmu_gather *tlb)
345 {
346         struct mmu_table_batch **batch = &tlb->batch;
347
348         if (*batch) {
349                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
350                 *batch = NULL;
351         }
352 }
353
354 void tlb_remove_table(struct mmu_gather *tlb, void *table)
355 {
356         struct mmu_table_batch **batch = &tlb->batch;
357
358         tlb->need_flush = 1;
359
360         /*
361          * When there's less then two users of this mm there cannot be a
362          * concurrent page-table walk.
363          */
364         if (atomic_read(&tlb->mm->mm_users) < 2) {
365                 __tlb_remove_table(table);
366                 return;
367         }
368
369         if (*batch == NULL) {
370                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
371                 if (*batch == NULL) {
372                         tlb_remove_table_one(table);
373                         return;
374                 }
375                 (*batch)->nr = 0;
376         }
377         (*batch)->tables[(*batch)->nr++] = table;
378         if ((*batch)->nr == MAX_TABLE_BATCH)
379                 tlb_table_flush(tlb);
380 }
381
382 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
383
384 /*
385  * If a p?d_bad entry is found while walking page tables, report
386  * the error, before resetting entry to p?d_none.  Usually (but
387  * very seldom) called out from the p?d_none_or_clear_bad macros.
388  */
389
390 void pgd_clear_bad(pgd_t *pgd)
391 {
392         pgd_ERROR(*pgd);
393         pgd_clear(pgd);
394 }
395
396 void pud_clear_bad(pud_t *pud)
397 {
398         pud_ERROR(*pud);
399         pud_clear(pud);
400 }
401
402 void pmd_clear_bad(pmd_t *pmd)
403 {
404         pmd_ERROR(*pmd);
405         pmd_clear(pmd);
406 }
407
408 /*
409  * Note: this doesn't free the actual pages themselves. That
410  * has been handled earlier when unmapping all the memory regions.
411  */
412 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
413                            unsigned long addr)
414 {
415         pgtable_t token = pmd_pgtable(*pmd);
416         pmd_clear(pmd);
417         pte_free_tlb(tlb, token, addr);
418         tlb->mm->nr_ptes--;
419 }
420
421 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
422                                 unsigned long addr, unsigned long end,
423                                 unsigned long floor, unsigned long ceiling)
424 {
425         pmd_t *pmd;
426         unsigned long next;
427         unsigned long start;
428
429         start = addr;
430         pmd = pmd_offset(pud, addr);
431         do {
432                 next = pmd_addr_end(addr, end);
433                 if (pmd_none_or_clear_bad(pmd))
434                         continue;
435                 free_pte_range(tlb, pmd, addr);
436         } while (pmd++, addr = next, addr != end);
437
438         start &= PUD_MASK;
439         if (start < floor)
440                 return;
441         if (ceiling) {
442                 ceiling &= PUD_MASK;
443                 if (!ceiling)
444                         return;
445         }
446         if (end - 1 > ceiling - 1)
447                 return;
448
449         pmd = pmd_offset(pud, start);
450         pud_clear(pud);
451         pmd_free_tlb(tlb, pmd, start);
452 }
453
454 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
455                                 unsigned long addr, unsigned long end,
456                                 unsigned long floor, unsigned long ceiling)
457 {
458         pud_t *pud;
459         unsigned long next;
460         unsigned long start;
461
462         start = addr;
463         pud = pud_offset(pgd, addr);
464         do {
465                 next = pud_addr_end(addr, end);
466                 if (pud_none_or_clear_bad(pud))
467                         continue;
468                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
469         } while (pud++, addr = next, addr != end);
470
471         start &= PGDIR_MASK;
472         if (start < floor)
473                 return;
474         if (ceiling) {
475                 ceiling &= PGDIR_MASK;
476                 if (!ceiling)
477                         return;
478         }
479         if (end - 1 > ceiling - 1)
480                 return;
481
482         pud = pud_offset(pgd, start);
483         pgd_clear(pgd);
484         pud_free_tlb(tlb, pud, start);
485 }
486
487 /*
488  * This function frees user-level page tables of a process.
489  *
490  * Must be called with pagetable lock held.
491  */
492 void free_pgd_range(struct mmu_gather *tlb,
493                         unsigned long addr, unsigned long end,
494                         unsigned long floor, unsigned long ceiling)
495 {
496         pgd_t *pgd;
497         unsigned long next;
498
499         /*
500          * The next few lines have given us lots of grief...
501          *
502          * Why are we testing PMD* at this top level?  Because often
503          * there will be no work to do at all, and we'd prefer not to
504          * go all the way down to the bottom just to discover that.
505          *
506          * Why all these "- 1"s?  Because 0 represents both the bottom
507          * of the address space and the top of it (using -1 for the
508          * top wouldn't help much: the masks would do the wrong thing).
509          * The rule is that addr 0 and floor 0 refer to the bottom of
510          * the address space, but end 0 and ceiling 0 refer to the top
511          * Comparisons need to use "end - 1" and "ceiling - 1" (though
512          * that end 0 case should be mythical).
513          *
514          * Wherever addr is brought up or ceiling brought down, we must
515          * be careful to reject "the opposite 0" before it confuses the
516          * subsequent tests.  But what about where end is brought down
517          * by PMD_SIZE below? no, end can't go down to 0 there.
518          *
519          * Whereas we round start (addr) and ceiling down, by different
520          * masks at different levels, in order to test whether a table
521          * now has no other vmas using it, so can be freed, we don't
522          * bother to round floor or end up - the tests don't need that.
523          */
524
525         addr &= PMD_MASK;
526         if (addr < floor) {
527                 addr += PMD_SIZE;
528                 if (!addr)
529                         return;
530         }
531         if (ceiling) {
532                 ceiling &= PMD_MASK;
533                 if (!ceiling)
534                         return;
535         }
536         if (end - 1 > ceiling - 1)
537                 end -= PMD_SIZE;
538         if (addr > end - 1)
539                 return;
540
541         pgd = pgd_offset(tlb->mm, addr);
542         do {
543                 next = pgd_addr_end(addr, end);
544                 if (pgd_none_or_clear_bad(pgd))
545                         continue;
546                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
547         } while (pgd++, addr = next, addr != end);
548 }
549
550 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
551                 unsigned long floor, unsigned long ceiling)
552 {
553         while (vma) {
554                 struct vm_area_struct *next = vma->vm_next;
555                 unsigned long addr = vma->vm_start;
556
557                 /*
558                  * Hide vma from rmap and truncate_pagecache before freeing
559                  * pgtables
560                  */
561                 unlink_anon_vmas(vma);
562                 unlink_file_vma(vma);
563
564                 if (is_vm_hugetlb_page(vma)) {
565                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
566                                 floor, next? next->vm_start: ceiling);
567                 } else {
568                         /*
569                          * Optimization: gather nearby vmas into one call down
570                          */
571                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
572                                && !is_vm_hugetlb_page(next)) {
573                                 vma = next;
574                                 next = vma->vm_next;
575                                 unlink_anon_vmas(vma);
576                                 unlink_file_vma(vma);
577                         }
578                         free_pgd_range(tlb, addr, vma->vm_end,
579                                 floor, next? next->vm_start: ceiling);
580                 }
581                 vma = next;
582         }
583 }
584
585 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
586                 pmd_t *pmd, unsigned long address)
587 {
588         pgtable_t new = pte_alloc_one(mm, address);
589         int wait_split_huge_page;
590         if (!new)
591                 return -ENOMEM;
592
593         /*
594          * Ensure all pte setup (eg. pte page lock and page clearing) are
595          * visible before the pte is made visible to other CPUs by being
596          * put into page tables.
597          *
598          * The other side of the story is the pointer chasing in the page
599          * table walking code (when walking the page table without locking;
600          * ie. most of the time). Fortunately, these data accesses consist
601          * of a chain of data-dependent loads, meaning most CPUs (alpha
602          * being the notable exception) will already guarantee loads are
603          * seen in-order. See the alpha page table accessors for the
604          * smp_read_barrier_depends() barriers in page table walking code.
605          */
606         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
607
608         spin_lock(&mm->page_table_lock);
609         wait_split_huge_page = 0;
610         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
611                 mm->nr_ptes++;
612                 pmd_populate(mm, pmd, new);
613                 new = NULL;
614         } else if (unlikely(pmd_trans_splitting(*pmd)))
615                 wait_split_huge_page = 1;
616         spin_unlock(&mm->page_table_lock);
617         if (new)
618                 pte_free(mm, new);
619         if (wait_split_huge_page)
620                 wait_split_huge_page(vma->anon_vma, pmd);
621         return 0;
622 }
623
624 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
625 {
626         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
627         if (!new)
628                 return -ENOMEM;
629
630         smp_wmb(); /* See comment in __pte_alloc */
631
632         spin_lock(&init_mm.page_table_lock);
633         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
634                 pmd_populate_kernel(&init_mm, pmd, new);
635                 new = NULL;
636         } else
637                 VM_BUG_ON(pmd_trans_splitting(*pmd));
638         spin_unlock(&init_mm.page_table_lock);
639         if (new)
640                 pte_free_kernel(&init_mm, new);
641         return 0;
642 }
643
644 static inline void init_rss_vec(int *rss)
645 {
646         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
647 }
648
649 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
650 {
651         int i;
652
653         if (current->mm == mm)
654                 sync_mm_rss(mm);
655         for (i = 0; i < NR_MM_COUNTERS; i++)
656                 if (rss[i])
657                         add_mm_counter(mm, i, rss[i]);
658 }
659
660 /*
661  * This function is called to print an error when a bad pte
662  * is found. For example, we might have a PFN-mapped pte in
663  * a region that doesn't allow it.
664  *
665  * The calling function must still handle the error.
666  */
667 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
668                           pte_t pte, struct page *page)
669 {
670         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
671         pud_t *pud = pud_offset(pgd, addr);
672         pmd_t *pmd = pmd_offset(pud, addr);
673         struct address_space *mapping;
674         pgoff_t index;
675         static unsigned long resume;
676         static unsigned long nr_shown;
677         static unsigned long nr_unshown;
678
679         /*
680          * Allow a burst of 60 reports, then keep quiet for that minute;
681          * or allow a steady drip of one report per second.
682          */
683         if (nr_shown == 60) {
684                 if (time_before(jiffies, resume)) {
685                         nr_unshown++;
686                         return;
687                 }
688                 if (nr_unshown) {
689                         printk(KERN_ALERT
690                                 "BUG: Bad page map: %lu messages suppressed\n",
691                                 nr_unshown);
692                         nr_unshown = 0;
693                 }
694                 nr_shown = 0;
695         }
696         if (nr_shown++ == 0)
697                 resume = jiffies + 60 * HZ;
698
699         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
700         index = linear_page_index(vma, addr);
701
702         printk(KERN_ALERT
703                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
704                 current->comm,
705                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
706         if (page)
707                 dump_page(page);
708         printk(KERN_ALERT
709                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
710                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
711         /*
712          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
713          */
714         if (vma->vm_ops)
715                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
716                        vma->vm_ops->fault);
717         if (vma->vm_file && vma->vm_file->f_op)
718                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
719                        vma->vm_file->f_op->mmap);
720         dump_stack();
721         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
722 }
723
724 static inline bool is_cow_mapping(vm_flags_t flags)
725 {
726         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
727 }
728
729 /*
730  * vm_normal_page -- This function gets the "struct page" associated with a pte.
731  *
732  * "Special" mappings do not wish to be associated with a "struct page" (either
733  * it doesn't exist, or it exists but they don't want to touch it). In this
734  * case, NULL is returned here. "Normal" mappings do have a struct page.
735  *
736  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
737  * pte bit, in which case this function is trivial. Secondly, an architecture
738  * may not have a spare pte bit, which requires a more complicated scheme,
739  * described below.
740  *
741  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
742  * special mapping (even if there are underlying and valid "struct pages").
743  * COWed pages of a VM_PFNMAP are always normal.
744  *
745  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
746  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
747  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
748  * mapping will always honor the rule
749  *
750  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
751  *
752  * And for normal mappings this is false.
753  *
754  * This restricts such mappings to be a linear translation from virtual address
755  * to pfn. To get around this restriction, we allow arbitrary mappings so long
756  * as the vma is not a COW mapping; in that case, we know that all ptes are
757  * special (because none can have been COWed).
758  *
759  *
760  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
761  *
762  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
763  * page" backing, however the difference is that _all_ pages with a struct
764  * page (that is, those where pfn_valid is true) are refcounted and considered
765  * normal pages by the VM. The disadvantage is that pages are refcounted
766  * (which can be slower and simply not an option for some PFNMAP users). The
767  * advantage is that we don't have to follow the strict linearity rule of
768  * PFNMAP mappings in order to support COWable mappings.
769  *
770  */
771 #ifdef __HAVE_ARCH_PTE_SPECIAL
772 # define HAVE_PTE_SPECIAL 1
773 #else
774 # define HAVE_PTE_SPECIAL 0
775 #endif
776 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
777                                 pte_t pte)
778 {
779         unsigned long pfn = pte_pfn(pte);
780
781         if (HAVE_PTE_SPECIAL) {
782                 if (likely(!pte_special(pte)))
783                         goto check_pfn;
784                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
785                         return NULL;
786                 if (!is_zero_pfn(pfn))
787                         print_bad_pte(vma, addr, pte, NULL);
788                 return NULL;
789         }
790
791         /* !HAVE_PTE_SPECIAL case follows: */
792
793         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
794                 if (vma->vm_flags & VM_MIXEDMAP) {
795                         if (!pfn_valid(pfn))
796                                 return NULL;
797                         goto out;
798                 } else {
799                         unsigned long off;
800                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
801                         if (pfn == vma->vm_pgoff + off)
802                                 return NULL;
803                         if (!is_cow_mapping(vma->vm_flags))
804                                 return NULL;
805                 }
806         }
807
808         if (is_zero_pfn(pfn))
809                 return NULL;
810 check_pfn:
811         if (unlikely(pfn > highest_memmap_pfn)) {
812                 print_bad_pte(vma, addr, pte, NULL);
813                 return NULL;
814         }
815
816         /*
817          * NOTE! We still have PageReserved() pages in the page tables.
818          * eg. VDSO mappings can cause them to exist.
819          */
820 out:
821         return pfn_to_page(pfn);
822 }
823
824 /*
825  * copy one vm_area from one task to the other. Assumes the page tables
826  * already present in the new task to be cleared in the whole range
827  * covered by this vma.
828  */
829
830 static inline unsigned long
831 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
832                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
833                 unsigned long addr, int *rss)
834 {
835         unsigned long vm_flags = vma->vm_flags;
836         pte_t pte = *src_pte;
837         struct page *page;
838
839         /* pte contains position in swap or file, so copy. */
840         if (unlikely(!pte_present(pte))) {
841                 if (!pte_file(pte)) {
842                         swp_entry_t entry = pte_to_swp_entry(pte);
843
844                         if (likely(!non_swap_entry(entry))) {
845                                 if (swap_duplicate(entry) < 0)
846                                         return entry.val;
847
848                                 /* make sure dst_mm is on swapoff's mmlist. */
849                                 if (unlikely(list_empty(&dst_mm->mmlist))) {
850                                         spin_lock(&mmlist_lock);
851                                         if (list_empty(&dst_mm->mmlist))
852                                                 list_add(&dst_mm->mmlist,
853                                                          &src_mm->mmlist);
854                                         spin_unlock(&mmlist_lock);
855                                 }
856                                 rss[MM_SWAPENTS]++;
857                         } else if (is_migration_entry(entry)) {
858                                 page = migration_entry_to_page(entry);
859
860                                 if (PageAnon(page))
861                                         rss[MM_ANONPAGES]++;
862                                 else
863                                         rss[MM_FILEPAGES]++;
864
865                                 if (is_write_migration_entry(entry) &&
866                                     is_cow_mapping(vm_flags)) {
867                                         /*
868                                          * COW mappings require pages in both
869                                          * parent and child to be set to read.
870                                          */
871                                         make_migration_entry_read(&entry);
872                                         pte = swp_entry_to_pte(entry);
873                                         set_pte_at(src_mm, addr, src_pte, pte);
874                                 }
875                         }
876                 }
877                 goto out_set_pte;
878         }
879
880         /*
881          * If it's a COW mapping, write protect it both
882          * in the parent and the child
883          */
884         if (is_cow_mapping(vm_flags)) {
885                 ptep_set_wrprotect(src_mm, addr, src_pte);
886                 pte = pte_wrprotect(pte);
887         }
888
889         /*
890          * If it's a shared mapping, mark it clean in
891          * the child
892          */
893         if (vm_flags & VM_SHARED)
894                 pte = pte_mkclean(pte);
895         pte = pte_mkold(pte);
896
897         page = vm_normal_page(vma, addr, pte);
898         if (page) {
899                 get_page(page);
900                 page_dup_rmap(page);
901                 if (PageAnon(page))
902                         rss[MM_ANONPAGES]++;
903                 else
904                         rss[MM_FILEPAGES]++;
905         }
906
907 out_set_pte:
908         set_pte_at(dst_mm, addr, dst_pte, pte);
909         return 0;
910 }
911
912 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
913                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
914                    unsigned long addr, unsigned long end)
915 {
916         pte_t *orig_src_pte, *orig_dst_pte;
917         pte_t *src_pte, *dst_pte;
918         spinlock_t *src_ptl, *dst_ptl;
919         int progress = 0;
920         int rss[NR_MM_COUNTERS];
921         swp_entry_t entry = (swp_entry_t){0};
922
923 again:
924         init_rss_vec(rss);
925
926         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
927         if (!dst_pte)
928                 return -ENOMEM;
929         src_pte = pte_offset_map(src_pmd, addr);
930         src_ptl = pte_lockptr(src_mm, src_pmd);
931         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
932         orig_src_pte = src_pte;
933         orig_dst_pte = dst_pte;
934         arch_enter_lazy_mmu_mode();
935
936         do {
937                 /*
938                  * We are holding two locks at this point - either of them
939                  * could generate latencies in another task on another CPU.
940                  */
941                 if (progress >= 32) {
942                         progress = 0;
943                         if (need_resched() ||
944                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
945                                 break;
946                 }
947                 if (pte_none(*src_pte)) {
948                         progress++;
949                         continue;
950                 }
951                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
952                                                         vma, addr, rss);
953                 if (entry.val)
954                         break;
955                 progress += 8;
956         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
957
958         arch_leave_lazy_mmu_mode();
959         spin_unlock(src_ptl);
960         pte_unmap(orig_src_pte);
961         add_mm_rss_vec(dst_mm, rss);
962         pte_unmap_unlock(orig_dst_pte, dst_ptl);
963         cond_resched();
964
965         if (entry.val) {
966                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
967                         return -ENOMEM;
968                 progress = 0;
969         }
970         if (addr != end)
971                 goto again;
972         return 0;
973 }
974
975 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
976                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
977                 unsigned long addr, unsigned long end)
978 {
979         pmd_t *src_pmd, *dst_pmd;
980         unsigned long next;
981
982         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
983         if (!dst_pmd)
984                 return -ENOMEM;
985         src_pmd = pmd_offset(src_pud, addr);
986         do {
987                 next = pmd_addr_end(addr, end);
988                 if (pmd_trans_huge(*src_pmd)) {
989                         int err;
990                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
991                         err = copy_huge_pmd(dst_mm, src_mm,
992                                             dst_pmd, src_pmd, addr, vma);
993                         if (err == -ENOMEM)
994                                 return -ENOMEM;
995                         if (!err)
996                                 continue;
997                         /* fall through */
998                 }
999                 if (pmd_none_or_clear_bad(src_pmd))
1000                         continue;
1001                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1002                                                 vma, addr, next))
1003                         return -ENOMEM;
1004         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1005         return 0;
1006 }
1007
1008 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1009                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1010                 unsigned long addr, unsigned long end)
1011 {
1012         pud_t *src_pud, *dst_pud;
1013         unsigned long next;
1014
1015         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1016         if (!dst_pud)
1017                 return -ENOMEM;
1018         src_pud = pud_offset(src_pgd, addr);
1019         do {
1020                 next = pud_addr_end(addr, end);
1021                 if (pud_none_or_clear_bad(src_pud))
1022                         continue;
1023                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1024                                                 vma, addr, next))
1025                         return -ENOMEM;
1026         } while (dst_pud++, src_pud++, addr = next, addr != end);
1027         return 0;
1028 }
1029
1030 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1031                 struct vm_area_struct *vma)
1032 {
1033         pgd_t *src_pgd, *dst_pgd;
1034         unsigned long next;
1035         unsigned long addr = vma->vm_start;
1036         unsigned long end = vma->vm_end;
1037         unsigned long mmun_start;       /* For mmu_notifiers */
1038         unsigned long mmun_end;         /* For mmu_notifiers */
1039         bool is_cow;
1040         int ret;
1041
1042         /*
1043          * Don't copy ptes where a page fault will fill them correctly.
1044          * Fork becomes much lighter when there are big shared or private
1045          * readonly mappings. The tradeoff is that copy_page_range is more
1046          * efficient than faulting.
1047          */
1048         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1049                                VM_PFNMAP | VM_MIXEDMAP))) {
1050                 if (!vma->anon_vma)
1051                         return 0;
1052         }
1053
1054         if (is_vm_hugetlb_page(vma))
1055                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1056
1057         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1058                 /*
1059                  * We do not free on error cases below as remove_vma
1060                  * gets called on error from higher level routine
1061                  */
1062                 ret = track_pfn_copy(vma);
1063                 if (ret)
1064                         return ret;
1065         }
1066
1067         /*
1068          * We need to invalidate the secondary MMU mappings only when
1069          * there could be a permission downgrade on the ptes of the
1070          * parent mm. And a permission downgrade will only happen if
1071          * is_cow_mapping() returns true.
1072          */
1073         is_cow = is_cow_mapping(vma->vm_flags);
1074         mmun_start = addr;
1075         mmun_end   = end;
1076         if (is_cow)
1077                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1078                                                     mmun_end);
1079
1080         ret = 0;
1081         dst_pgd = pgd_offset(dst_mm, addr);
1082         src_pgd = pgd_offset(src_mm, addr);
1083         do {
1084                 next = pgd_addr_end(addr, end);
1085                 if (pgd_none_or_clear_bad(src_pgd))
1086                         continue;
1087                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1088                                             vma, addr, next))) {
1089                         ret = -ENOMEM;
1090                         break;
1091                 }
1092         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1093
1094         if (is_cow)
1095                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1096         return ret;
1097 }
1098
1099 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1100                                 struct vm_area_struct *vma, pmd_t *pmd,
1101                                 unsigned long addr, unsigned long end,
1102                                 struct zap_details *details)
1103 {
1104         struct mm_struct *mm = tlb->mm;
1105         int force_flush = 0;
1106         int rss[NR_MM_COUNTERS];
1107         spinlock_t *ptl;
1108         pte_t *start_pte;
1109         pte_t *pte;
1110
1111 again:
1112         init_rss_vec(rss);
1113         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1114         pte = start_pte;
1115         arch_enter_lazy_mmu_mode();
1116         do {
1117                 pte_t ptent = *pte;
1118                 if (pte_none(ptent)) {
1119                         continue;
1120                 }
1121
1122                 if (pte_present(ptent)) {
1123                         struct page *page;
1124
1125                         page = vm_normal_page(vma, addr, ptent);
1126                         if (unlikely(details) && page) {
1127                                 /*
1128                                  * unmap_shared_mapping_pages() wants to
1129                                  * invalidate cache without truncating:
1130                                  * unmap shared but keep private pages.
1131                                  */
1132                                 if (details->check_mapping &&
1133                                     details->check_mapping != page->mapping)
1134                                         continue;
1135                                 /*
1136                                  * Each page->index must be checked when
1137                                  * invalidating or truncating nonlinear.
1138                                  */
1139                                 if (details->nonlinear_vma &&
1140                                     (page->index < details->first_index ||
1141                                      page->index > details->last_index))
1142                                         continue;
1143                         }
1144                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1145                                                         tlb->fullmm);
1146                         tlb_remove_tlb_entry(tlb, pte, addr);
1147                         if (unlikely(!page))
1148                                 continue;
1149                         if (unlikely(details) && details->nonlinear_vma
1150                             && linear_page_index(details->nonlinear_vma,
1151                                                 addr) != page->index)
1152                                 set_pte_at(mm, addr, pte,
1153                                            pgoff_to_pte(page->index));
1154                         if (PageAnon(page))
1155                                 rss[MM_ANONPAGES]--;
1156                         else {
1157                                 if (pte_dirty(ptent))
1158                                         set_page_dirty(page);
1159                                 if (pte_young(ptent) &&
1160                                     likely(!VM_SequentialReadHint(vma)))
1161                                         mark_page_accessed(page);
1162                                 rss[MM_FILEPAGES]--;
1163                         }
1164                         page_remove_rmap(page);
1165                         if (unlikely(page_mapcount(page) < 0))
1166                                 print_bad_pte(vma, addr, ptent, page);
1167                         force_flush = !__tlb_remove_page(tlb, page);
1168                         if (force_flush)
1169                                 break;
1170                         continue;
1171                 }
1172                 /*
1173                  * If details->check_mapping, we leave swap entries;
1174                  * if details->nonlinear_vma, we leave file entries.
1175                  */
1176                 if (unlikely(details))
1177                         continue;
1178                 if (pte_file(ptent)) {
1179                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1180                                 print_bad_pte(vma, addr, ptent, NULL);
1181                 } else {
1182                         swp_entry_t entry = pte_to_swp_entry(ptent);
1183
1184                         if (!non_swap_entry(entry))
1185                                 rss[MM_SWAPENTS]--;
1186                         else if (is_migration_entry(entry)) {
1187                                 struct page *page;
1188
1189                                 page = migration_entry_to_page(entry);
1190
1191                                 if (PageAnon(page))
1192                                         rss[MM_ANONPAGES]--;
1193                                 else
1194                                         rss[MM_FILEPAGES]--;
1195                         }
1196                         if (unlikely(!free_swap_and_cache(entry)))
1197                                 print_bad_pte(vma, addr, ptent, NULL);
1198                 }
1199                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1200         } while (pte++, addr += PAGE_SIZE, addr != end);
1201
1202         add_mm_rss_vec(mm, rss);
1203         arch_leave_lazy_mmu_mode();
1204         pte_unmap_unlock(start_pte, ptl);
1205
1206         /*
1207          * mmu_gather ran out of room to batch pages, we break out of
1208          * the PTE lock to avoid doing the potential expensive TLB invalidate
1209          * and page-free while holding it.
1210          */
1211         if (force_flush) {
1212                 unsigned long old_end;
1213
1214                 force_flush = 0;
1215
1216                 /*
1217                  * Flush the TLB just for the previous segment,
1218                  * then update the range to be the remaining
1219                  * TLB range.
1220                  */
1221                 old_end = tlb->end;
1222                 tlb->end = addr;
1223
1224                 tlb_flush_mmu(tlb);
1225
1226                 tlb->start = addr;
1227                 tlb->end = old_end;
1228
1229                 if (addr != end)
1230                         goto again;
1231         }
1232
1233         return addr;
1234 }
1235
1236 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1237                                 struct vm_area_struct *vma, pud_t *pud,
1238                                 unsigned long addr, unsigned long end,
1239                                 struct zap_details *details)
1240 {
1241         pmd_t *pmd;
1242         unsigned long next;
1243
1244         pmd = pmd_offset(pud, addr);
1245         do {
1246                 next = pmd_addr_end(addr, end);
1247                 if (pmd_trans_huge(*pmd)) {
1248                         if (next - addr != HPAGE_PMD_SIZE) {
1249 #ifdef CONFIG_DEBUG_VM
1250                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1251                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1252                                                 __func__, addr, end,
1253                                                 vma->vm_start,
1254                                                 vma->vm_end);
1255                                         BUG();
1256                                 }
1257 #endif
1258                                 split_huge_page_pmd(vma, addr, pmd);
1259                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1260                                 goto next;
1261                         /* fall through */
1262                 }
1263                 /*
1264                  * Here there can be other concurrent MADV_DONTNEED or
1265                  * trans huge page faults running, and if the pmd is
1266                  * none or trans huge it can change under us. This is
1267                  * because MADV_DONTNEED holds the mmap_sem in read
1268                  * mode.
1269                  */
1270                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1271                         goto next;
1272                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1273 next:
1274                 cond_resched();
1275         } while (pmd++, addr = next, addr != end);
1276
1277         return addr;
1278 }
1279
1280 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1281                                 struct vm_area_struct *vma, pgd_t *pgd,
1282                                 unsigned long addr, unsigned long end,
1283                                 struct zap_details *details)
1284 {
1285         pud_t *pud;
1286         unsigned long next;
1287
1288         pud = pud_offset(pgd, addr);
1289         do {
1290                 next = pud_addr_end(addr, end);
1291                 if (pud_none_or_clear_bad(pud))
1292                         continue;
1293                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1294         } while (pud++, addr = next, addr != end);
1295
1296         return addr;
1297 }
1298
1299 static void unmap_page_range(struct mmu_gather *tlb,
1300                              struct vm_area_struct *vma,
1301                              unsigned long addr, unsigned long end,
1302                              struct zap_details *details)
1303 {
1304         pgd_t *pgd;
1305         unsigned long next;
1306
1307         if (details && !details->check_mapping && !details->nonlinear_vma)
1308                 details = NULL;
1309
1310         BUG_ON(addr >= end);
1311         mem_cgroup_uncharge_start();
1312         tlb_start_vma(tlb, vma);
1313         pgd = pgd_offset(vma->vm_mm, addr);
1314         do {
1315                 next = pgd_addr_end(addr, end);
1316                 if (pgd_none_or_clear_bad(pgd))
1317                         continue;
1318                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1319         } while (pgd++, addr = next, addr != end);
1320         tlb_end_vma(tlb, vma);
1321         mem_cgroup_uncharge_end();
1322 }
1323
1324
1325 static void unmap_single_vma(struct mmu_gather *tlb,
1326                 struct vm_area_struct *vma, unsigned long start_addr,
1327                 unsigned long end_addr,
1328                 struct zap_details *details)
1329 {
1330         unsigned long start = max(vma->vm_start, start_addr);
1331         unsigned long end;
1332
1333         if (start >= vma->vm_end)
1334                 return;
1335         end = min(vma->vm_end, end_addr);
1336         if (end <= vma->vm_start)
1337                 return;
1338
1339         if (vma->vm_file)
1340                 uprobe_munmap(vma, start, end);
1341
1342         if (unlikely(vma->vm_flags & VM_PFNMAP))
1343                 untrack_pfn(vma, 0, 0);
1344
1345         if (start != end) {
1346                 if (unlikely(is_vm_hugetlb_page(vma))) {
1347                         /*
1348                          * It is undesirable to test vma->vm_file as it
1349                          * should be non-null for valid hugetlb area.
1350                          * However, vm_file will be NULL in the error
1351                          * cleanup path of do_mmap_pgoff. When
1352                          * hugetlbfs ->mmap method fails,
1353                          * do_mmap_pgoff() nullifies vma->vm_file
1354                          * before calling this function to clean up.
1355                          * Since no pte has actually been setup, it is
1356                          * safe to do nothing in this case.
1357                          */
1358                         if (vma->vm_file) {
1359                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1360                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1361                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1362                         }
1363                 } else
1364                         unmap_page_range(tlb, vma, start, end, details);
1365         }
1366 }
1367
1368 /**
1369  * unmap_vmas - unmap a range of memory covered by a list of vma's
1370  * @tlb: address of the caller's struct mmu_gather
1371  * @vma: the starting vma
1372  * @start_addr: virtual address at which to start unmapping
1373  * @end_addr: virtual address at which to end unmapping
1374  *
1375  * Unmap all pages in the vma list.
1376  *
1377  * Only addresses between `start' and `end' will be unmapped.
1378  *
1379  * The VMA list must be sorted in ascending virtual address order.
1380  *
1381  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1382  * range after unmap_vmas() returns.  So the only responsibility here is to
1383  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1384  * drops the lock and schedules.
1385  */
1386 void unmap_vmas(struct mmu_gather *tlb,
1387                 struct vm_area_struct *vma, unsigned long start_addr,
1388                 unsigned long end_addr)
1389 {
1390         struct mm_struct *mm = vma->vm_mm;
1391
1392         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1393         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1394                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1395         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1396 }
1397
1398 /**
1399  * zap_page_range - remove user pages in a given range
1400  * @vma: vm_area_struct holding the applicable pages
1401  * @start: starting address of pages to zap
1402  * @size: number of bytes to zap
1403  * @details: details of nonlinear truncation or shared cache invalidation
1404  *
1405  * Caller must protect the VMA list
1406  */
1407 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1408                 unsigned long size, struct zap_details *details)
1409 {
1410         struct mm_struct *mm = vma->vm_mm;
1411         struct mmu_gather tlb;
1412         unsigned long end = start + size;
1413
1414         lru_add_drain();
1415         tlb_gather_mmu(&tlb, mm, start, end);
1416         update_hiwater_rss(mm);
1417         mmu_notifier_invalidate_range_start(mm, start, end);
1418         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1419                 unmap_single_vma(&tlb, vma, start, end, details);
1420         mmu_notifier_invalidate_range_end(mm, start, end);
1421         tlb_finish_mmu(&tlb, start, end);
1422 }
1423
1424 /**
1425  * zap_page_range_single - remove user pages in a given range
1426  * @vma: vm_area_struct holding the applicable pages
1427  * @address: starting address of pages to zap
1428  * @size: number of bytes to zap
1429  * @details: details of nonlinear truncation or shared cache invalidation
1430  *
1431  * The range must fit into one VMA.
1432  */
1433 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1434                 unsigned long size, struct zap_details *details)
1435 {
1436         struct mm_struct *mm = vma->vm_mm;
1437         struct mmu_gather tlb;
1438         unsigned long end = address + size;
1439
1440         lru_add_drain();
1441         tlb_gather_mmu(&tlb, mm, address, end);
1442         update_hiwater_rss(mm);
1443         mmu_notifier_invalidate_range_start(mm, address, end);
1444         unmap_single_vma(&tlb, vma, address, end, details);
1445         mmu_notifier_invalidate_range_end(mm, address, end);
1446         tlb_finish_mmu(&tlb, address, end);
1447 }
1448
1449 /**
1450  * zap_vma_ptes - remove ptes mapping the vma
1451  * @vma: vm_area_struct holding ptes to be zapped
1452  * @address: starting address of pages to zap
1453  * @size: number of bytes to zap
1454  *
1455  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1456  *
1457  * The entire address range must be fully contained within the vma.
1458  *
1459  * Returns 0 if successful.
1460  */
1461 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1462                 unsigned long size)
1463 {
1464         if (address < vma->vm_start || address + size > vma->vm_end ||
1465                         !(vma->vm_flags & VM_PFNMAP))
1466                 return -1;
1467         zap_page_range_single(vma, address, size, NULL);
1468         return 0;
1469 }
1470 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1471
1472 /*
1473  * FOLL_FORCE can write to even unwritable pte's, but only
1474  * after we've gone through a COW cycle and they are dirty.
1475  */
1476 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
1477 {
1478         return pte_write(pte) ||
1479                 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
1480 }
1481
1482 /**
1483  * follow_page_mask - look up a page descriptor from a user-virtual address
1484  * @vma: vm_area_struct mapping @address
1485  * @address: virtual address to look up
1486  * @flags: flags modifying lookup behaviour
1487  * @page_mask: on output, *page_mask is set according to the size of the page
1488  *
1489  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1490  *
1491  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1492  * an error pointer if there is a mapping to something not represented
1493  * by a page descriptor (see also vm_normal_page()).
1494  */
1495 struct page *follow_page_mask(struct vm_area_struct *vma,
1496                               unsigned long address, unsigned int flags,
1497                               unsigned int *page_mask)
1498 {
1499         pgd_t *pgd;
1500         pud_t *pud;
1501         pmd_t *pmd;
1502         pte_t *ptep, pte;
1503         spinlock_t *ptl;
1504         struct page *page;
1505         struct mm_struct *mm = vma->vm_mm;
1506
1507         *page_mask = 0;
1508
1509         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1510         if (!IS_ERR(page)) {
1511                 BUG_ON(flags & FOLL_GET);
1512                 goto out;
1513         }
1514
1515         page = NULL;
1516         pgd = pgd_offset(mm, address);
1517         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1518                 goto no_page_table;
1519
1520         pud = pud_offset(pgd, address);
1521         if (pud_none(*pud))
1522                 goto no_page_table;
1523         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1524                 BUG_ON(flags & FOLL_GET);
1525                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1526                 goto out;
1527         }
1528         if (unlikely(pud_bad(*pud)))
1529                 goto no_page_table;
1530
1531         pmd = pmd_offset(pud, address);
1532         if (pmd_none(*pmd))
1533                 goto no_page_table;
1534         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1535                 BUG_ON(flags & FOLL_GET);
1536                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1537                 goto out;
1538         }
1539         if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1540                 goto no_page_table;
1541         if (pmd_trans_huge(*pmd)) {
1542                 if (flags & FOLL_SPLIT) {
1543                         split_huge_page_pmd(vma, address, pmd);
1544                         goto split_fallthrough;
1545                 }
1546                 spin_lock(&mm->page_table_lock);
1547                 if (likely(pmd_trans_huge(*pmd))) {
1548                         if (unlikely(pmd_trans_splitting(*pmd))) {
1549                                 spin_unlock(&mm->page_table_lock);
1550                                 wait_split_huge_page(vma->anon_vma, pmd);
1551                         } else {
1552                                 page = follow_trans_huge_pmd(vma, address,
1553                                                              pmd, flags);
1554                                 spin_unlock(&mm->page_table_lock);
1555                                 *page_mask = HPAGE_PMD_NR - 1;
1556                                 goto out;
1557                         }
1558                 } else
1559                         spin_unlock(&mm->page_table_lock);
1560                 /* fall through */
1561         }
1562 split_fallthrough:
1563         if (unlikely(pmd_bad(*pmd)))
1564                 goto no_page_table;
1565
1566         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1567
1568         pte = *ptep;
1569         if (!pte_present(pte)) {
1570                 swp_entry_t entry;
1571                 /*
1572                  * KSM's break_ksm() relies upon recognizing a ksm page
1573                  * even while it is being migrated, so for that case we
1574                  * need migration_entry_wait().
1575                  */
1576                 if (likely(!(flags & FOLL_MIGRATION)))
1577                         goto no_page;
1578                 if (pte_none(pte) || pte_file(pte))
1579                         goto no_page;
1580                 entry = pte_to_swp_entry(pte);
1581                 if (!is_migration_entry(entry))
1582                         goto no_page;
1583                 pte_unmap_unlock(ptep, ptl);
1584                 migration_entry_wait(mm, pmd, address);
1585                 goto split_fallthrough;
1586         }
1587         if ((flags & FOLL_NUMA) && pte_numa(pte))
1588                 goto no_page;
1589         if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags))
1590                 goto unlock;
1591
1592         page = vm_normal_page(vma, address, pte);
1593         if (unlikely(!page)) {
1594                 if ((flags & FOLL_DUMP) ||
1595                     !is_zero_pfn(pte_pfn(pte)))
1596                         goto bad_page;
1597                 page = pte_page(pte);
1598         }
1599
1600         if (flags & FOLL_GET)
1601                 get_page_foll(page);
1602         if (flags & FOLL_TOUCH) {
1603                 if ((flags & FOLL_WRITE) &&
1604                     !pte_dirty(pte) && !PageDirty(page))
1605                         set_page_dirty(page);
1606                 /*
1607                  * pte_mkyoung() would be more correct here, but atomic care
1608                  * is needed to avoid losing the dirty bit: it is easier to use
1609                  * mark_page_accessed().
1610                  */
1611                 mark_page_accessed(page);
1612         }
1613         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1614                 /*
1615                  * The preliminary mapping check is mainly to avoid the
1616                  * pointless overhead of lock_page on the ZERO_PAGE
1617                  * which might bounce very badly if there is contention.
1618                  *
1619                  * If the page is already locked, we don't need to
1620                  * handle it now - vmscan will handle it later if and
1621                  * when it attempts to reclaim the page.
1622                  */
1623                 if (page->mapping && trylock_page(page)) {
1624                         lru_add_drain();  /* push cached pages to LRU */
1625                         /*
1626                          * Because we lock page here, and migration is
1627                          * blocked by the pte's page reference, and we
1628                          * know the page is still mapped, we don't even
1629                          * need to check for file-cache page truncation.
1630                          */
1631                         mlock_vma_page(page);
1632                         unlock_page(page);
1633                 }
1634         }
1635 unlock:
1636         pte_unmap_unlock(ptep, ptl);
1637 out:
1638         return page;
1639
1640 bad_page:
1641         pte_unmap_unlock(ptep, ptl);
1642         return ERR_PTR(-EFAULT);
1643
1644 no_page:
1645         pte_unmap_unlock(ptep, ptl);
1646         if (!pte_none(pte))
1647                 return page;
1648
1649 no_page_table:
1650         /*
1651          * When core dumping an enormous anonymous area that nobody
1652          * has touched so far, we don't want to allocate unnecessary pages or
1653          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1654          * then get_dump_page() will return NULL to leave a hole in the dump.
1655          * But we can only make this optimization where a hole would surely
1656          * be zero-filled if handle_mm_fault() actually did handle it.
1657          */
1658         if ((flags & FOLL_DUMP) &&
1659             (!vma->vm_ops || !vma->vm_ops->fault))
1660                 return ERR_PTR(-EFAULT);
1661         return page;
1662 }
1663
1664 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1665 {
1666         return stack_guard_page_start(vma, addr) ||
1667                stack_guard_page_end(vma, addr+PAGE_SIZE);
1668 }
1669
1670 /**
1671  * __get_user_pages() - pin user pages in memory
1672  * @tsk:        task_struct of target task
1673  * @mm:         mm_struct of target mm
1674  * @start:      starting user address
1675  * @nr_pages:   number of pages from start to pin
1676  * @gup_flags:  flags modifying pin behaviour
1677  * @pages:      array that receives pointers to the pages pinned.
1678  *              Should be at least nr_pages long. Or NULL, if caller
1679  *              only intends to ensure the pages are faulted in.
1680  * @vmas:       array of pointers to vmas corresponding to each page.
1681  *              Or NULL if the caller does not require them.
1682  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1683  *
1684  * Returns number of pages pinned. This may be fewer than the number
1685  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1686  * were pinned, returns -errno. Each page returned must be released
1687  * with a put_page() call when it is finished with. vmas will only
1688  * remain valid while mmap_sem is held.
1689  *
1690  * Must be called with mmap_sem held for read or write.
1691  *
1692  * __get_user_pages walks a process's page tables and takes a reference to
1693  * each struct page that each user address corresponds to at a given
1694  * instant. That is, it takes the page that would be accessed if a user
1695  * thread accesses the given user virtual address at that instant.
1696  *
1697  * This does not guarantee that the page exists in the user mappings when
1698  * __get_user_pages returns, and there may even be a completely different
1699  * page there in some cases (eg. if mmapped pagecache has been invalidated
1700  * and subsequently re faulted). However it does guarantee that the page
1701  * won't be freed completely. And mostly callers simply care that the page
1702  * contains data that was valid *at some point in time*. Typically, an IO
1703  * or similar operation cannot guarantee anything stronger anyway because
1704  * locks can't be held over the syscall boundary.
1705  *
1706  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1707  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1708  * appropriate) must be called after the page is finished with, and
1709  * before put_page is called.
1710  *
1711  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1712  * or mmap_sem contention, and if waiting is needed to pin all pages,
1713  * *@nonblocking will be set to 0.
1714  *
1715  * In most cases, get_user_pages or get_user_pages_fast should be used
1716  * instead of __get_user_pages. __get_user_pages should be used only if
1717  * you need some special @gup_flags.
1718  */
1719 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1720                 unsigned long start, unsigned long nr_pages,
1721                 unsigned int gup_flags, struct page **pages,
1722                 struct vm_area_struct **vmas, int *nonblocking)
1723 {
1724         long i;
1725         unsigned long vm_flags;
1726         unsigned int page_mask;
1727
1728         if (!nr_pages)
1729                 return 0;
1730
1731         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1732
1733         /* 
1734          * Require read or write permissions.
1735          * If FOLL_FORCE is set, we only require the "MAY" flags.
1736          */
1737         vm_flags  = (gup_flags & FOLL_WRITE) ?
1738                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1739         vm_flags &= (gup_flags & FOLL_FORCE) ?
1740                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1741
1742         /*
1743          * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1744          * would be called on PROT_NONE ranges. We must never invoke
1745          * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1746          * page faults would unprotect the PROT_NONE ranges if
1747          * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1748          * bitflag. So to avoid that, don't set FOLL_NUMA if
1749          * FOLL_FORCE is set.
1750          */
1751         if (!(gup_flags & FOLL_FORCE))
1752                 gup_flags |= FOLL_NUMA;
1753
1754         i = 0;
1755
1756         do {
1757                 struct vm_area_struct *vma;
1758
1759                 vma = find_extend_vma(mm, start);
1760                 if (!vma && in_gate_area(mm, start)) {
1761                         unsigned long pg = start & PAGE_MASK;
1762                         pgd_t *pgd;
1763                         pud_t *pud;
1764                         pmd_t *pmd;
1765                         pte_t *pte;
1766
1767                         /* user gate pages are read-only */
1768                         if (gup_flags & FOLL_WRITE)
1769                                 return i ? : -EFAULT;
1770                         if (pg > TASK_SIZE)
1771                                 pgd = pgd_offset_k(pg);
1772                         else
1773                                 pgd = pgd_offset_gate(mm, pg);
1774                         BUG_ON(pgd_none(*pgd));
1775                         pud = pud_offset(pgd, pg);
1776                         BUG_ON(pud_none(*pud));
1777                         pmd = pmd_offset(pud, pg);
1778                         if (pmd_none(*pmd))
1779                                 return i ? : -EFAULT;
1780                         VM_BUG_ON(pmd_trans_huge(*pmd));
1781                         pte = pte_offset_map(pmd, pg);
1782                         if (pte_none(*pte)) {
1783                                 pte_unmap(pte);
1784                                 return i ? : -EFAULT;
1785                         }
1786                         vma = get_gate_vma(mm);
1787                         if (pages) {
1788                                 struct page *page;
1789
1790                                 page = vm_normal_page(vma, start, *pte);
1791                                 if (!page) {
1792                                         if (!(gup_flags & FOLL_DUMP) &&
1793                                              is_zero_pfn(pte_pfn(*pte)))
1794                                                 page = pte_page(*pte);
1795                                         else {
1796                                                 pte_unmap(pte);
1797                                                 return i ? : -EFAULT;
1798                                         }
1799                                 }
1800                                 pages[i] = page;
1801                                 get_page(page);
1802                         }
1803                         pte_unmap(pte);
1804                         page_mask = 0;
1805                         goto next_page;
1806                 }
1807
1808                 if (!vma ||
1809                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1810                     !(vm_flags & vma->vm_flags))
1811                         return i ? : -EFAULT;
1812
1813                 if (is_vm_hugetlb_page(vma)) {
1814                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1815                                         &start, &nr_pages, i, gup_flags);
1816                         continue;
1817                 }
1818
1819                 do {
1820                         struct page *page;
1821                         unsigned int foll_flags = gup_flags;
1822                         unsigned int page_increm;
1823
1824                         /*
1825                          * If we have a pending SIGKILL, don't keep faulting
1826                          * pages and potentially allocating memory.
1827                          */
1828                         if (unlikely(fatal_signal_pending(current)))
1829                                 return i ? i : -ERESTARTSYS;
1830
1831                         cond_resched();
1832                         while (!(page = follow_page_mask(vma, start,
1833                                                 foll_flags, &page_mask))) {
1834                                 int ret;
1835                                 unsigned int fault_flags = 0;
1836
1837                                 /* For mlock, just skip the stack guard page. */
1838                                 if (foll_flags & FOLL_MLOCK) {
1839                                         if (stack_guard_page(vma, start))
1840                                                 goto next_page;
1841                                 }
1842                                 if (foll_flags & FOLL_WRITE)
1843                                         fault_flags |= FAULT_FLAG_WRITE;
1844                                 if (nonblocking)
1845                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1846                                 if (foll_flags & FOLL_NOWAIT)
1847                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1848
1849                                 ret = handle_mm_fault(mm, vma, start,
1850                                                         fault_flags);
1851
1852                                 if (ret & VM_FAULT_ERROR) {
1853                                         if (ret & VM_FAULT_OOM)
1854                                                 return i ? i : -ENOMEM;
1855                                         if (ret & (VM_FAULT_HWPOISON |
1856                                                    VM_FAULT_HWPOISON_LARGE)) {
1857                                                 if (i)
1858                                                         return i;
1859                                                 else if (gup_flags & FOLL_HWPOISON)
1860                                                         return -EHWPOISON;
1861                                                 else
1862                                                         return -EFAULT;
1863                                         }
1864                                         if (ret & VM_FAULT_SIGBUS)
1865                                                 return i ? i : -EFAULT;
1866                                         BUG();
1867                                 }
1868
1869                                 if (tsk) {
1870                                         if (ret & VM_FAULT_MAJOR)
1871                                                 tsk->maj_flt++;
1872                                         else
1873                                                 tsk->min_flt++;
1874                                 }
1875
1876                                 if (ret & VM_FAULT_RETRY) {
1877                                         if (nonblocking)
1878                                                 *nonblocking = 0;
1879                                         return i;
1880                                 }
1881
1882                                 /*
1883                                  * The VM_FAULT_WRITE bit tells us that
1884                                  * do_wp_page has broken COW when necessary,
1885                                  * even if maybe_mkwrite decided not to set
1886                                  * pte_write. We can thus safely do subsequent
1887                                  * page lookups as if they were reads. But only
1888                                  * do so when looping for pte_write is futile:
1889                                  * in some cases userspace may also be wanting
1890                                  * to write to the gotten user page, which a
1891                                  * read fault here might prevent (a readonly
1892                                  * page might get reCOWed by userspace write).
1893                                  */
1894                                 if ((ret & VM_FAULT_WRITE) &&
1895                                     !(vma->vm_flags & VM_WRITE))
1896                                         foll_flags |= FOLL_COW;
1897
1898                                 cond_resched();
1899                         }
1900                         if (IS_ERR(page))
1901                                 return i ? i : PTR_ERR(page);
1902                         if (pages) {
1903                                 pages[i] = page;
1904
1905                                 flush_anon_page(vma, page, start);
1906                                 flush_dcache_page(page);
1907                                 page_mask = 0;
1908                         }
1909 next_page:
1910                         if (vmas) {
1911                                 vmas[i] = vma;
1912                                 page_mask = 0;
1913                         }
1914                         page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1915                         if (page_increm > nr_pages)
1916                                 page_increm = nr_pages;
1917                         i += page_increm;
1918                         start += page_increm * PAGE_SIZE;
1919                         nr_pages -= page_increm;
1920                 } while (nr_pages && start < vma->vm_end);
1921         } while (nr_pages);
1922         return i;
1923 }
1924 EXPORT_SYMBOL(__get_user_pages);
1925
1926 /*
1927  * fixup_user_fault() - manually resolve a user page fault
1928  * @tsk:        the task_struct to use for page fault accounting, or
1929  *              NULL if faults are not to be recorded.
1930  * @mm:         mm_struct of target mm
1931  * @address:    user address
1932  * @fault_flags:flags to pass down to handle_mm_fault()
1933  *
1934  * This is meant to be called in the specific scenario where for locking reasons
1935  * we try to access user memory in atomic context (within a pagefault_disable()
1936  * section), this returns -EFAULT, and we want to resolve the user fault before
1937  * trying again.
1938  *
1939  * Typically this is meant to be used by the futex code.
1940  *
1941  * The main difference with get_user_pages() is that this function will
1942  * unconditionally call handle_mm_fault() which will in turn perform all the
1943  * necessary SW fixup of the dirty and young bits in the PTE, while
1944  * handle_mm_fault() only guarantees to update these in the struct page.
1945  *
1946  * This is important for some architectures where those bits also gate the
1947  * access permission to the page because they are maintained in software.  On
1948  * such architectures, gup() will not be enough to make a subsequent access
1949  * succeed.
1950  *
1951  * This should be called with the mm_sem held for read.
1952  */
1953 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1954                      unsigned long address, unsigned int fault_flags)
1955 {
1956         struct vm_area_struct *vma;
1957         vm_flags_t vm_flags;
1958         int ret;
1959
1960         vma = find_extend_vma(mm, address);
1961         if (!vma || address < vma->vm_start)
1962                 return -EFAULT;
1963
1964         vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1965         if (!(vm_flags & vma->vm_flags))
1966                 return -EFAULT;
1967
1968         ret = handle_mm_fault(mm, vma, address, fault_flags);
1969         if (ret & VM_FAULT_ERROR) {
1970                 if (ret & VM_FAULT_OOM)
1971                         return -ENOMEM;
1972                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1973                         return -EHWPOISON;
1974                 if (ret & VM_FAULT_SIGBUS)
1975                         return -EFAULT;
1976                 BUG();
1977         }
1978         if (tsk) {
1979                 if (ret & VM_FAULT_MAJOR)
1980                         tsk->maj_flt++;
1981                 else
1982                         tsk->min_flt++;
1983         }
1984         return 0;
1985 }
1986
1987 /*
1988  * get_user_pages() - pin user pages in memory
1989  * @tsk:        the task_struct to use for page fault accounting, or
1990  *              NULL if faults are not to be recorded.
1991  * @mm:         mm_struct of target mm
1992  * @start:      starting user address
1993  * @nr_pages:   number of pages from start to pin
1994  * @write:      whether pages will be written to by the caller
1995  * @force:      whether to force write access even if user mapping is
1996  *              readonly. This will result in the page being COWed even
1997  *              in MAP_SHARED mappings. You do not want this.
1998  * @pages:      array that receives pointers to the pages pinned.
1999  *              Should be at least nr_pages long. Or NULL, if caller
2000  *              only intends to ensure the pages are faulted in.
2001  * @vmas:       array of pointers to vmas corresponding to each page.
2002  *              Or NULL if the caller does not require them.
2003  *
2004  * Returns number of pages pinned. This may be fewer than the number
2005  * requested. If nr_pages is 0 or negative, returns 0. If no pages
2006  * were pinned, returns -errno. Each page returned must be released
2007  * with a put_page() call when it is finished with. vmas will only
2008  * remain valid while mmap_sem is held.
2009  *
2010  * Must be called with mmap_sem held for read or write.
2011  *
2012  * get_user_pages walks a process's page tables and takes a reference to
2013  * each struct page that each user address corresponds to at a given
2014  * instant. That is, it takes the page that would be accessed if a user
2015  * thread accesses the given user virtual address at that instant.
2016  *
2017  * This does not guarantee that the page exists in the user mappings when
2018  * get_user_pages returns, and there may even be a completely different
2019  * page there in some cases (eg. if mmapped pagecache has been invalidated
2020  * and subsequently re faulted). However it does guarantee that the page
2021  * won't be freed completely. And mostly callers simply care that the page
2022  * contains data that was valid *at some point in time*. Typically, an IO
2023  * or similar operation cannot guarantee anything stronger anyway because
2024  * locks can't be held over the syscall boundary.
2025  *
2026  * If write=0, the page must not be written to. If the page is written to,
2027  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2028  * after the page is finished with, and before put_page is called.
2029  *
2030  * get_user_pages is typically used for fewer-copy IO operations, to get a
2031  * handle on the memory by some means other than accesses via the user virtual
2032  * addresses. The pages may be submitted for DMA to devices or accessed via
2033  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2034  * use the correct cache flushing APIs.
2035  *
2036  * See also get_user_pages_fast, for performance critical applications.
2037  */
2038 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2039                 unsigned long start, unsigned long nr_pages, int write,
2040                 int force, struct page **pages, struct vm_area_struct **vmas)
2041 {
2042         int flags = FOLL_TOUCH;
2043
2044         if (pages)
2045                 flags |= FOLL_GET;
2046         if (write)
2047                 flags |= FOLL_WRITE;
2048         if (force)
2049                 flags |= FOLL_FORCE;
2050
2051         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2052                                 NULL);
2053 }
2054 EXPORT_SYMBOL(get_user_pages);
2055
2056 /**
2057  * get_dump_page() - pin user page in memory while writing it to core dump
2058  * @addr: user address
2059  *
2060  * Returns struct page pointer of user page pinned for dump,
2061  * to be freed afterwards by page_cache_release() or put_page().
2062  *
2063  * Returns NULL on any kind of failure - a hole must then be inserted into
2064  * the corefile, to preserve alignment with its headers; and also returns
2065  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2066  * allowing a hole to be left in the corefile to save diskspace.
2067  *
2068  * Called without mmap_sem, but after all other threads have been killed.
2069  */
2070 #ifdef CONFIG_ELF_CORE
2071 struct page *get_dump_page(unsigned long addr)
2072 {
2073         struct vm_area_struct *vma;
2074         struct page *page;
2075
2076         if (__get_user_pages(current, current->mm, addr, 1,
2077                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2078                              NULL) < 1)
2079                 return NULL;
2080         flush_cache_page(vma, addr, page_to_pfn(page));
2081         return page;
2082 }
2083 #endif /* CONFIG_ELF_CORE */
2084
2085 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2086                         spinlock_t **ptl)
2087 {
2088         pgd_t * pgd = pgd_offset(mm, addr);
2089         pud_t * pud = pud_alloc(mm, pgd, addr);
2090         if (pud) {
2091                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2092                 if (pmd) {
2093                         VM_BUG_ON(pmd_trans_huge(*pmd));
2094                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2095                 }
2096         }
2097         return NULL;
2098 }
2099
2100 /*
2101  * This is the old fallback for page remapping.
2102  *
2103  * For historical reasons, it only allows reserved pages. Only
2104  * old drivers should use this, and they needed to mark their
2105  * pages reserved for the old functions anyway.
2106  */
2107 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2108                         struct page *page, pgprot_t prot)
2109 {
2110         struct mm_struct *mm = vma->vm_mm;
2111         int retval;
2112         pte_t *pte;
2113         spinlock_t *ptl;
2114
2115         retval = -EINVAL;
2116         if (PageAnon(page))
2117                 goto out;
2118         retval = -ENOMEM;
2119         flush_dcache_page(page);
2120         pte = get_locked_pte(mm, addr, &ptl);
2121         if (!pte)
2122                 goto out;
2123         retval = -EBUSY;
2124         if (!pte_none(*pte))
2125                 goto out_unlock;
2126
2127         /* Ok, finally just insert the thing.. */
2128         get_page(page);
2129         inc_mm_counter_fast(mm, MM_FILEPAGES);
2130         page_add_file_rmap(page);
2131         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2132
2133         retval = 0;
2134         pte_unmap_unlock(pte, ptl);
2135         return retval;
2136 out_unlock:
2137         pte_unmap_unlock(pte, ptl);
2138 out:
2139         return retval;
2140 }
2141
2142 /**
2143  * vm_insert_page - insert single page into user vma
2144  * @vma: user vma to map to
2145  * @addr: target user address of this page
2146  * @page: source kernel page
2147  *
2148  * This allows drivers to insert individual pages they've allocated
2149  * into a user vma.
2150  *
2151  * The page has to be a nice clean _individual_ kernel allocation.
2152  * If you allocate a compound page, you need to have marked it as
2153  * such (__GFP_COMP), or manually just split the page up yourself
2154  * (see split_page()).
2155  *
2156  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2157  * took an arbitrary page protection parameter. This doesn't allow
2158  * that. Your vma protection will have to be set up correctly, which
2159  * means that if you want a shared writable mapping, you'd better
2160  * ask for a shared writable mapping!
2161  *
2162  * The page does not need to be reserved.
2163  *
2164  * Usually this function is called from f_op->mmap() handler
2165  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2166  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2167  * function from other places, for example from page-fault handler.
2168  */
2169 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2170                         struct page *page)
2171 {
2172         if (addr < vma->vm_start || addr >= vma->vm_end)
2173                 return -EFAULT;
2174         if (!page_count(page))
2175                 return -EINVAL;
2176         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2177                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2178                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2179                 vma->vm_flags |= VM_MIXEDMAP;
2180         }
2181         return insert_page(vma, addr, page, vma->vm_page_prot);
2182 }
2183 EXPORT_SYMBOL(vm_insert_page);
2184
2185 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2186                         unsigned long pfn, pgprot_t prot)
2187 {
2188         struct mm_struct *mm = vma->vm_mm;
2189         int retval;
2190         pte_t *pte, entry;
2191         spinlock_t *ptl;
2192
2193         retval = -ENOMEM;
2194         pte = get_locked_pte(mm, addr, &ptl);
2195         if (!pte)
2196                 goto out;
2197         retval = -EBUSY;
2198         if (!pte_none(*pte))
2199                 goto out_unlock;
2200
2201         /* Ok, finally just insert the thing.. */
2202         entry = pte_mkspecial(pfn_pte(pfn, prot));
2203         set_pte_at(mm, addr, pte, entry);
2204         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2205
2206         retval = 0;
2207 out_unlock:
2208         pte_unmap_unlock(pte, ptl);
2209 out:
2210         return retval;
2211 }
2212
2213 /**
2214  * vm_insert_pfn - insert single pfn into user vma
2215  * @vma: user vma to map to
2216  * @addr: target user address of this page
2217  * @pfn: source kernel pfn
2218  *
2219  * Similar to vm_insert_page, this allows drivers to insert individual pages
2220  * they've allocated into a user vma. Same comments apply.
2221  *
2222  * This function should only be called from a vm_ops->fault handler, and
2223  * in that case the handler should return NULL.
2224  *
2225  * vma cannot be a COW mapping.
2226  *
2227  * As this is called only for pages that do not currently exist, we
2228  * do not need to flush old virtual caches or the TLB.
2229  */
2230 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2231                         unsigned long pfn)
2232 {
2233         int ret;
2234         pgprot_t pgprot = vma->vm_page_prot;
2235         /*
2236          * Technically, architectures with pte_special can avoid all these
2237          * restrictions (same for remap_pfn_range).  However we would like
2238          * consistency in testing and feature parity among all, so we should
2239          * try to keep these invariants in place for everybody.
2240          */
2241         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2242         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2243                                                 (VM_PFNMAP|VM_MIXEDMAP));
2244         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2245         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2246
2247         if (addr < vma->vm_start || addr >= vma->vm_end)
2248                 return -EFAULT;
2249         if (track_pfn_insert(vma, &pgprot, pfn))
2250                 return -EINVAL;
2251
2252         ret = insert_pfn(vma, addr, pfn, pgprot);
2253
2254         return ret;
2255 }
2256 EXPORT_SYMBOL(vm_insert_pfn);
2257
2258 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2259                         unsigned long pfn)
2260 {
2261         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2262
2263         if (addr < vma->vm_start || addr >= vma->vm_end)
2264                 return -EFAULT;
2265
2266         /*
2267          * If we don't have pte special, then we have to use the pfn_valid()
2268          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2269          * refcount the page if pfn_valid is true (hence insert_page rather
2270          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2271          * without pte special, it would there be refcounted as a normal page.
2272          */
2273         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2274                 struct page *page;
2275
2276                 page = pfn_to_page(pfn);
2277                 return insert_page(vma, addr, page, vma->vm_page_prot);
2278         }
2279         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2280 }
2281 EXPORT_SYMBOL(vm_insert_mixed);
2282
2283 /*
2284  * maps a range of physical memory into the requested pages. the old
2285  * mappings are removed. any references to nonexistent pages results
2286  * in null mappings (currently treated as "copy-on-access")
2287  */
2288 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2289                         unsigned long addr, unsigned long end,
2290                         unsigned long pfn, pgprot_t prot)
2291 {
2292         pte_t *pte;
2293         spinlock_t *ptl;
2294
2295         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2296         if (!pte)
2297                 return -ENOMEM;
2298         arch_enter_lazy_mmu_mode();
2299         do {
2300                 BUG_ON(!pte_none(*pte));
2301                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2302                 pfn++;
2303         } while (pte++, addr += PAGE_SIZE, addr != end);
2304         arch_leave_lazy_mmu_mode();
2305         pte_unmap_unlock(pte - 1, ptl);
2306         return 0;
2307 }
2308
2309 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2310                         unsigned long addr, unsigned long end,
2311                         unsigned long pfn, pgprot_t prot)
2312 {
2313         pmd_t *pmd;
2314         unsigned long next;
2315
2316         pfn -= addr >> PAGE_SHIFT;
2317         pmd = pmd_alloc(mm, pud, addr);
2318         if (!pmd)
2319                 return -ENOMEM;
2320         VM_BUG_ON(pmd_trans_huge(*pmd));
2321         do {
2322                 next = pmd_addr_end(addr, end);
2323                 if (remap_pte_range(mm, pmd, addr, next,
2324                                 pfn + (addr >> PAGE_SHIFT), prot))
2325                         return -ENOMEM;
2326         } while (pmd++, addr = next, addr != end);
2327         return 0;
2328 }
2329
2330 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2331                         unsigned long addr, unsigned long end,
2332                         unsigned long pfn, pgprot_t prot)
2333 {
2334         pud_t *pud;
2335         unsigned long next;
2336
2337         pfn -= addr >> PAGE_SHIFT;
2338         pud = pud_alloc(mm, pgd, addr);
2339         if (!pud)
2340                 return -ENOMEM;
2341         do {
2342                 next = pud_addr_end(addr, end);
2343                 if (remap_pmd_range(mm, pud, addr, next,
2344                                 pfn + (addr >> PAGE_SHIFT), prot))
2345                         return -ENOMEM;
2346         } while (pud++, addr = next, addr != end);
2347         return 0;
2348 }
2349
2350 /**
2351  * remap_pfn_range - remap kernel memory to userspace
2352  * @vma: user vma to map to
2353  * @addr: target user address to start at
2354  * @pfn: physical address of kernel memory
2355  * @size: size of map area
2356  * @prot: page protection flags for this mapping
2357  *
2358  *  Note: this is only safe if the mm semaphore is held when called.
2359  */
2360 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2361                     unsigned long pfn, unsigned long size, pgprot_t prot)
2362 {
2363         pgd_t *pgd;
2364         unsigned long next;
2365         unsigned long end = addr + PAGE_ALIGN(size);
2366         struct mm_struct *mm = vma->vm_mm;
2367         int err;
2368
2369         /*
2370          * Physically remapped pages are special. Tell the
2371          * rest of the world about it:
2372          *   VM_IO tells people not to look at these pages
2373          *      (accesses can have side effects).
2374          *   VM_PFNMAP tells the core MM that the base pages are just
2375          *      raw PFN mappings, and do not have a "struct page" associated
2376          *      with them.
2377          *   VM_DONTEXPAND
2378          *      Disable vma merging and expanding with mremap().
2379          *   VM_DONTDUMP
2380          *      Omit vma from core dump, even when VM_IO turned off.
2381          *
2382          * There's a horrible special case to handle copy-on-write
2383          * behaviour that some programs depend on. We mark the "original"
2384          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2385          * See vm_normal_page() for details.
2386          */
2387         if (is_cow_mapping(vma->vm_flags)) {
2388                 if (addr != vma->vm_start || end != vma->vm_end)
2389                         return -EINVAL;
2390                 vma->vm_pgoff = pfn;
2391         }
2392
2393         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2394         if (err)
2395                 return -EINVAL;
2396
2397         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2398
2399         BUG_ON(addr >= end);
2400         pfn -= addr >> PAGE_SHIFT;
2401         pgd = pgd_offset(mm, addr);
2402         flush_cache_range(vma, addr, end);
2403         do {
2404                 next = pgd_addr_end(addr, end);
2405                 err = remap_pud_range(mm, pgd, addr, next,
2406                                 pfn + (addr >> PAGE_SHIFT), prot);
2407                 if (err)
2408                         break;
2409         } while (pgd++, addr = next, addr != end);
2410
2411         if (err)
2412                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2413
2414         return err;
2415 }
2416 EXPORT_SYMBOL(remap_pfn_range);
2417
2418 /**
2419  * vm_iomap_memory - remap memory to userspace
2420  * @vma: user vma to map to
2421  * @start: start of area
2422  * @len: size of area
2423  *
2424  * This is a simplified io_remap_pfn_range() for common driver use. The
2425  * driver just needs to give us the physical memory range to be mapped,
2426  * we'll figure out the rest from the vma information.
2427  *
2428  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2429  * whatever write-combining details or similar.
2430  */
2431 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2432 {
2433         unsigned long vm_len, pfn, pages;
2434
2435         /* Check that the physical memory area passed in looks valid */
2436         if (start + len < start)
2437                 return -EINVAL;
2438         /*
2439          * You *really* shouldn't map things that aren't page-aligned,
2440          * but we've historically allowed it because IO memory might
2441          * just have smaller alignment.
2442          */
2443         len += start & ~PAGE_MASK;
2444         pfn = start >> PAGE_SHIFT;
2445         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2446         if (pfn + pages < pfn)
2447                 return -EINVAL;
2448
2449         /* We start the mapping 'vm_pgoff' pages into the area */
2450         if (vma->vm_pgoff > pages)
2451                 return -EINVAL;
2452         pfn += vma->vm_pgoff;
2453         pages -= vma->vm_pgoff;
2454
2455         /* Can we fit all of the mapping? */
2456         vm_len = vma->vm_end - vma->vm_start;
2457         if (vm_len >> PAGE_SHIFT > pages)
2458                 return -EINVAL;
2459
2460         /* Ok, let it rip */
2461         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2462 }
2463 EXPORT_SYMBOL(vm_iomap_memory);
2464
2465 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2466                                      unsigned long addr, unsigned long end,
2467                                      pte_fn_t fn, void *data)
2468 {
2469         pte_t *pte;
2470         int err;
2471         pgtable_t token;
2472         spinlock_t *uninitialized_var(ptl);
2473
2474         pte = (mm == &init_mm) ?
2475                 pte_alloc_kernel(pmd, addr) :
2476                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2477         if (!pte)
2478                 return -ENOMEM;
2479
2480         BUG_ON(pmd_huge(*pmd));
2481
2482         arch_enter_lazy_mmu_mode();
2483
2484         token = pmd_pgtable(*pmd);
2485
2486         do {
2487                 err = fn(pte++, token, addr, data);
2488                 if (err)
2489                         break;
2490         } while (addr += PAGE_SIZE, addr != end);
2491
2492         arch_leave_lazy_mmu_mode();
2493
2494         if (mm != &init_mm)
2495                 pte_unmap_unlock(pte-1, ptl);
2496         return err;
2497 }
2498
2499 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2500                                      unsigned long addr, unsigned long end,
2501                                      pte_fn_t fn, void *data)
2502 {
2503         pmd_t *pmd;
2504         unsigned long next;
2505         int err;
2506
2507         BUG_ON(pud_huge(*pud));
2508
2509         pmd = pmd_alloc(mm, pud, addr);
2510         if (!pmd)
2511                 return -ENOMEM;
2512         do {
2513                 next = pmd_addr_end(addr, end);
2514                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2515                 if (err)
2516                         break;
2517         } while (pmd++, addr = next, addr != end);
2518         return err;
2519 }
2520
2521 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2522                                      unsigned long addr, unsigned long end,
2523                                      pte_fn_t fn, void *data)
2524 {
2525         pud_t *pud;
2526         unsigned long next;
2527         int err;
2528
2529         pud = pud_alloc(mm, pgd, addr);
2530         if (!pud)
2531                 return -ENOMEM;
2532         do {
2533                 next = pud_addr_end(addr, end);
2534                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2535                 if (err)
2536                         break;
2537         } while (pud++, addr = next, addr != end);
2538         return err;
2539 }
2540
2541 /*
2542  * Scan a region of virtual memory, filling in page tables as necessary
2543  * and calling a provided function on each leaf page table.
2544  */
2545 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2546                         unsigned long size, pte_fn_t fn, void *data)
2547 {
2548         pgd_t *pgd;
2549         unsigned long next;
2550         unsigned long end = addr + size;
2551         int err;
2552
2553         BUG_ON(addr >= end);
2554         pgd = pgd_offset(mm, addr);
2555         do {
2556                 next = pgd_addr_end(addr, end);
2557                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2558                 if (err)
2559                         break;
2560         } while (pgd++, addr = next, addr != end);
2561
2562         return err;
2563 }
2564 EXPORT_SYMBOL_GPL(apply_to_page_range);
2565
2566 /*
2567  * handle_pte_fault chooses page fault handler according to an entry
2568  * which was read non-atomically.  Before making any commitment, on
2569  * those architectures or configurations (e.g. i386 with PAE) which
2570  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2571  * must check under lock before unmapping the pte and proceeding
2572  * (but do_wp_page is only called after already making such a check;
2573  * and do_anonymous_page can safely check later on).
2574  */
2575 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2576                                 pte_t *page_table, pte_t orig_pte)
2577 {
2578         int same = 1;
2579 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2580         if (sizeof(pte_t) > sizeof(unsigned long)) {
2581                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2582                 spin_lock(ptl);
2583                 same = pte_same(*page_table, orig_pte);
2584                 spin_unlock(ptl);
2585         }
2586 #endif
2587         pte_unmap(page_table);
2588         return same;
2589 }
2590
2591 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2592 {
2593         /*
2594          * If the source page was a PFN mapping, we don't have
2595          * a "struct page" for it. We do a best-effort copy by
2596          * just copying from the original user address. If that
2597          * fails, we just zero-fill it. Live with it.
2598          */
2599         if (unlikely(!src)) {
2600                 void *kaddr = kmap_atomic(dst);
2601                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2602
2603                 /*
2604                  * This really shouldn't fail, because the page is there
2605                  * in the page tables. But it might just be unreadable,
2606                  * in which case we just give up and fill the result with
2607                  * zeroes.
2608                  */
2609                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2610                         clear_page(kaddr);
2611                 kunmap_atomic(kaddr);
2612                 flush_dcache_page(dst);
2613         } else
2614                 copy_user_highpage(dst, src, va, vma);
2615 }
2616
2617 /*
2618  * This routine handles present pages, when users try to write
2619  * to a shared page. It is done by copying the page to a new address
2620  * and decrementing the shared-page counter for the old page.
2621  *
2622  * Note that this routine assumes that the protection checks have been
2623  * done by the caller (the low-level page fault routine in most cases).
2624  * Thus we can safely just mark it writable once we've done any necessary
2625  * COW.
2626  *
2627  * We also mark the page dirty at this point even though the page will
2628  * change only once the write actually happens. This avoids a few races,
2629  * and potentially makes it more efficient.
2630  *
2631  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2632  * but allow concurrent faults), with pte both mapped and locked.
2633  * We return with mmap_sem still held, but pte unmapped and unlocked.
2634  */
2635 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2636                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2637                 spinlock_t *ptl, pte_t orig_pte)
2638         __releases(ptl)
2639 {
2640         struct page *old_page, *new_page = NULL;
2641         pte_t entry;
2642         int ret = 0;
2643         int page_mkwrite = 0;
2644         struct page *dirty_page = NULL;
2645         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2646         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2647
2648         old_page = vm_normal_page(vma, address, orig_pte);
2649         if (!old_page) {
2650                 /*
2651                  * VM_MIXEDMAP !pfn_valid() case
2652                  *
2653                  * We should not cow pages in a shared writeable mapping.
2654                  * Just mark the pages writable as we can't do any dirty
2655                  * accounting on raw pfn maps.
2656                  */
2657                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2658                                      (VM_WRITE|VM_SHARED))
2659                         goto reuse;
2660                 goto gotten;
2661         }
2662
2663         /*
2664          * Take out anonymous pages first, anonymous shared vmas are
2665          * not dirty accountable.
2666          */
2667         if (PageAnon(old_page) && !PageKsm(old_page)) {
2668                 if (!trylock_page(old_page)) {
2669                         page_cache_get(old_page);
2670                         pte_unmap_unlock(page_table, ptl);
2671                         lock_page(old_page);
2672                         page_table = pte_offset_map_lock(mm, pmd, address,
2673                                                          &ptl);
2674                         if (!pte_same(*page_table, orig_pte)) {
2675                                 unlock_page(old_page);
2676                                 goto unlock;
2677                         }
2678                         page_cache_release(old_page);
2679                 }
2680                 if (reuse_swap_page(old_page)) {
2681                         /*
2682                          * The page is all ours.  Move it to our anon_vma so
2683                          * the rmap code will not search our parent or siblings.
2684                          * Protected against the rmap code by the page lock.
2685                          */
2686                         page_move_anon_rmap(old_page, vma, address);
2687                         unlock_page(old_page);
2688                         goto reuse;
2689                 }
2690                 unlock_page(old_page);
2691         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2692                                         (VM_WRITE|VM_SHARED))) {
2693                 /*
2694                  * Only catch write-faults on shared writable pages,
2695                  * read-only shared pages can get COWed by
2696                  * get_user_pages(.write=1, .force=1).
2697                  */
2698                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2699                         struct vm_fault vmf;
2700                         int tmp;
2701
2702                         vmf.virtual_address = (void __user *)(address &
2703                                                                 PAGE_MASK);
2704                         vmf.pgoff = old_page->index;
2705                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2706                         vmf.page = old_page;
2707
2708                         /*
2709                          * Notify the address space that the page is about to
2710                          * become writable so that it can prohibit this or wait
2711                          * for the page to get into an appropriate state.
2712                          *
2713                          * We do this without the lock held, so that it can
2714                          * sleep if it needs to.
2715                          */
2716                         page_cache_get(old_page);
2717                         pte_unmap_unlock(page_table, ptl);
2718
2719                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2720                         if (unlikely(tmp &
2721                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2722                                 ret = tmp;
2723                                 goto unwritable_page;
2724                         }
2725                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2726                                 lock_page(old_page);
2727                                 if (!old_page->mapping) {
2728                                         ret = 0; /* retry the fault */
2729                                         unlock_page(old_page);
2730                                         goto unwritable_page;
2731                                 }
2732                         } else
2733                                 VM_BUG_ON(!PageLocked(old_page));
2734
2735                         /*
2736                          * Since we dropped the lock we need to revalidate
2737                          * the PTE as someone else may have changed it.  If
2738                          * they did, we just return, as we can count on the
2739                          * MMU to tell us if they didn't also make it writable.
2740                          */
2741                         page_table = pte_offset_map_lock(mm, pmd, address,
2742                                                          &ptl);
2743                         if (!pte_same(*page_table, orig_pte)) {
2744                                 unlock_page(old_page);
2745                                 goto unlock;
2746                         }
2747
2748                         page_mkwrite = 1;
2749                 }
2750                 dirty_page = old_page;
2751                 get_page(dirty_page);
2752
2753 reuse:
2754                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2755                 entry = pte_mkyoung(orig_pte);
2756                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2757                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2758                         update_mmu_cache(vma, address, page_table);
2759                 pte_unmap_unlock(page_table, ptl);
2760                 ret |= VM_FAULT_WRITE;
2761
2762                 if (!dirty_page)
2763                         return ret;
2764
2765                 /*
2766                  * Yes, Virginia, this is actually required to prevent a race
2767                  * with clear_page_dirty_for_io() from clearing the page dirty
2768                  * bit after it clear all dirty ptes, but before a racing
2769                  * do_wp_page installs a dirty pte.
2770                  *
2771                  * __do_fault is protected similarly.
2772                  */
2773                 if (!page_mkwrite) {
2774                         wait_on_page_locked(dirty_page);
2775                         set_page_dirty_balance(dirty_page, page_mkwrite);
2776                         /* file_update_time outside page_lock */
2777                         if (vma->vm_file)
2778                                 file_update_time(vma->vm_file);
2779                 }
2780                 put_page(dirty_page);
2781                 if (page_mkwrite) {
2782                         struct address_space *mapping = dirty_page->mapping;
2783
2784                         set_page_dirty(dirty_page);
2785                         unlock_page(dirty_page);
2786                         page_cache_release(dirty_page);
2787                         if (mapping)    {
2788                                 /*
2789                                  * Some device drivers do not set page.mapping
2790                                  * but still dirty their pages
2791                                  */
2792                                 balance_dirty_pages_ratelimited(mapping);
2793                         }
2794                 }
2795
2796                 return ret;
2797         }
2798
2799         /*
2800          * Ok, we need to copy. Oh, well..
2801          */
2802         page_cache_get(old_page);
2803 gotten:
2804         pte_unmap_unlock(page_table, ptl);
2805
2806         if (unlikely(anon_vma_prepare(vma)))
2807                 goto oom;
2808
2809         if (is_zero_pfn(pte_pfn(orig_pte))) {
2810                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2811                 if (!new_page)
2812                         goto oom;
2813         } else {
2814                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2815                 if (!new_page)
2816                         goto oom;
2817                 cow_user_page(new_page, old_page, address, vma);
2818         }
2819         __SetPageUptodate(new_page);
2820
2821         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2822                 goto oom_free_new;
2823
2824         mmun_start  = address & PAGE_MASK;
2825         mmun_end    = mmun_start + PAGE_SIZE;
2826         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2827
2828         /*
2829          * Re-check the pte - we dropped the lock
2830          */
2831         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2832         if (likely(pte_same(*page_table, orig_pte))) {
2833                 if (old_page) {
2834                         if (!PageAnon(old_page)) {
2835                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2836                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2837                         }
2838                 } else
2839                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2840                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2841                 entry = mk_pte(new_page, vma->vm_page_prot);
2842                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2843                 /*
2844                  * Clear the pte entry and flush it first, before updating the
2845                  * pte with the new entry. This will avoid a race condition
2846                  * seen in the presence of one thread doing SMC and another
2847                  * thread doing COW.
2848                  */
2849                 ptep_clear_flush(vma, address, page_table);
2850                 page_add_new_anon_rmap(new_page, vma, address);
2851                 /*
2852                  * We call the notify macro here because, when using secondary
2853                  * mmu page tables (such as kvm shadow page tables), we want the
2854                  * new page to be mapped directly into the secondary page table.
2855                  */
2856                 set_pte_at_notify(mm, address, page_table, entry);
2857                 update_mmu_cache(vma, address, page_table);
2858                 if (old_page) {
2859                         /*
2860                          * Only after switching the pte to the new page may
2861                          * we remove the mapcount here. Otherwise another
2862                          * process may come and find the rmap count decremented
2863                          * before the pte is switched to the new page, and
2864                          * "reuse" the old page writing into it while our pte
2865                          * here still points into it and can be read by other
2866                          * threads.
2867                          *
2868                          * The critical issue is to order this
2869                          * page_remove_rmap with the ptp_clear_flush above.
2870                          * Those stores are ordered by (if nothing else,)
2871                          * the barrier present in the atomic_add_negative
2872                          * in page_remove_rmap.
2873                          *
2874                          * Then the TLB flush in ptep_clear_flush ensures that
2875                          * no process can access the old page before the
2876                          * decremented mapcount is visible. And the old page
2877                          * cannot be reused until after the decremented
2878                          * mapcount is visible. So transitively, TLBs to
2879                          * old page will be flushed before it can be reused.
2880                          */
2881                         page_remove_rmap(old_page);
2882                 }
2883
2884                 /* Free the old page.. */
2885                 new_page = old_page;
2886                 ret |= VM_FAULT_WRITE;
2887         } else
2888                 mem_cgroup_uncharge_page(new_page);
2889
2890         if (new_page)
2891                 page_cache_release(new_page);
2892 unlock:
2893         pte_unmap_unlock(page_table, ptl);
2894         if (mmun_end > mmun_start)
2895                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2896         if (old_page) {
2897                 /*
2898                  * Don't let another task, with possibly unlocked vma,
2899                  * keep the mlocked page.
2900                  */
2901                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2902                         lock_page(old_page);    /* LRU manipulation */
2903                         munlock_vma_page(old_page);
2904                         unlock_page(old_page);
2905                 }
2906                 page_cache_release(old_page);
2907         }
2908         return ret;
2909 oom_free_new:
2910         page_cache_release(new_page);
2911 oom:
2912         if (old_page)
2913                 page_cache_release(old_page);
2914         return VM_FAULT_OOM;
2915
2916 unwritable_page:
2917         page_cache_release(old_page);
2918         return ret;
2919 }
2920
2921 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2922                 unsigned long start_addr, unsigned long end_addr,
2923                 struct zap_details *details)
2924 {
2925         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2926 }
2927
2928 static inline void unmap_mapping_range_tree(struct rb_root *root,
2929                                             struct zap_details *details)
2930 {
2931         struct vm_area_struct *vma;
2932         pgoff_t vba, vea, zba, zea;
2933
2934         vma_interval_tree_foreach(vma, root,
2935                         details->first_index, details->last_index) {
2936
2937                 vba = vma->vm_pgoff;
2938                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2939                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2940                 zba = details->first_index;
2941                 if (zba < vba)
2942                         zba = vba;
2943                 zea = details->last_index;
2944                 if (zea > vea)
2945                         zea = vea;
2946
2947                 unmap_mapping_range_vma(vma,
2948                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2949                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2950                                 details);
2951         }
2952 }
2953
2954 static inline void unmap_mapping_range_list(struct list_head *head,
2955                                             struct zap_details *details)
2956 {
2957         struct vm_area_struct *vma;
2958
2959         /*
2960          * In nonlinear VMAs there is no correspondence between virtual address
2961          * offset and file offset.  So we must perform an exhaustive search
2962          * across *all* the pages in each nonlinear VMA, not just the pages
2963          * whose virtual address lies outside the file truncation point.
2964          */
2965         list_for_each_entry(vma, head, shared.nonlinear) {
2966                 details->nonlinear_vma = vma;
2967                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2968         }
2969 }
2970
2971 /**
2972  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2973  * @mapping: the address space containing mmaps to be unmapped.
2974  * @holebegin: byte in first page to unmap, relative to the start of
2975  * the underlying file.  This will be rounded down to a PAGE_SIZE
2976  * boundary.  Note that this is different from truncate_pagecache(), which
2977  * must keep the partial page.  In contrast, we must get rid of
2978  * partial pages.
2979  * @holelen: size of prospective hole in bytes.  This will be rounded
2980  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2981  * end of the file.
2982  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2983  * but 0 when invalidating pagecache, don't throw away private data.
2984  */
2985 void unmap_mapping_range(struct address_space *mapping,
2986                 loff_t const holebegin, loff_t const holelen, int even_cows)
2987 {
2988         struct zap_details details;
2989         pgoff_t hba = holebegin >> PAGE_SHIFT;
2990         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2991
2992         /* Check for overflow. */
2993         if (sizeof(holelen) > sizeof(hlen)) {
2994                 long long holeend =
2995                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2996                 if (holeend & ~(long long)ULONG_MAX)
2997                         hlen = ULONG_MAX - hba + 1;
2998         }
2999
3000         details.check_mapping = even_cows? NULL: mapping;
3001         details.nonlinear_vma = NULL;
3002         details.first_index = hba;
3003         details.last_index = hba + hlen - 1;
3004         if (details.last_index < details.first_index)
3005                 details.last_index = ULONG_MAX;
3006
3007
3008         mutex_lock(&mapping->i_mmap_mutex);
3009         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
3010                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3011         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
3012                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3013         mutex_unlock(&mapping->i_mmap_mutex);
3014 }
3015 EXPORT_SYMBOL(unmap_mapping_range);
3016
3017 #ifdef CONFIG_ZRAM
3018 #include <linux/module.h>
3019 // always try to free swap in zram swap case
3020 static int keep_to_free_swap = 1;
3021 module_param_named(keep_to_free_swap,keep_to_free_swap, int, S_IRUGO | S_IWUSR);
3022 #endif
3023
3024
3025 /*
3026  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3027  * but allow concurrent faults), and pte mapped but not yet locked.
3028  * We return with mmap_sem still held, but pte unmapped and unlocked.
3029  */
3030 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3031                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3032                 unsigned int flags, pte_t orig_pte)
3033 {
3034         spinlock_t *ptl;
3035         struct page *page, *swapcache;
3036         swp_entry_t entry;
3037         pte_t pte;
3038         int locked;
3039         struct mem_cgroup *ptr;
3040         int exclusive = 0;
3041         int ret = 0;
3042
3043         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3044                 goto out;
3045
3046         entry = pte_to_swp_entry(orig_pte);
3047         if (unlikely(non_swap_entry(entry))) {
3048                 if (is_migration_entry(entry)) {
3049 #ifdef CONFIG_CMA
3050                         /*
3051                          * FIXME: mszyprow: cruel, brute-force method for
3052                          * letting cma/migration to finish it's job without
3053                          * stealing the lock migration_entry_wait() and creating
3054                          * a live-lock on the faulted page
3055                          * (page->_count == 2 migration failure issue)
3056                          */
3057                         mdelay(10);
3058 #endif
3059                         migration_entry_wait(mm, pmd, address);
3060                 } else if (is_hwpoison_entry(entry)) {
3061                         ret = VM_FAULT_HWPOISON;
3062                 } else {
3063                         print_bad_pte(vma, address, orig_pte, NULL);
3064                         ret = VM_FAULT_SIGBUS;
3065                 }
3066                 goto out;
3067         }
3068         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3069         page = lookup_swap_cache(entry);
3070         if (!page) {
3071                 page = swapin_readahead(entry,
3072                                         GFP_HIGHUSER_MOVABLE, vma, address);
3073                 if (!page) {
3074                         /*
3075                          * Back out if somebody else faulted in this pte
3076                          * while we released the pte lock.
3077                          */
3078                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3079                         if (likely(pte_same(*page_table, orig_pte)))
3080                                 ret = VM_FAULT_OOM;
3081                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3082                         goto unlock;
3083                 }
3084
3085                 /* Had to read the page from swap area: Major fault */
3086                 ret = VM_FAULT_MAJOR;
3087                 count_vm_event(PGMAJFAULT);
3088                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3089         } else if (PageHWPoison(page)) {
3090                 /*
3091                  * hwpoisoned dirty swapcache pages are kept for killing
3092                  * owner processes (which may be unknown at hwpoison time)
3093                  */
3094                 ret = VM_FAULT_HWPOISON;
3095                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3096                 swapcache = page;
3097                 goto out_release;
3098         }
3099
3100         swapcache = page;
3101         locked = lock_page_or_retry(page, mm, flags);
3102
3103         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3104         if (!locked) {
3105                 ret |= VM_FAULT_RETRY;
3106                 goto out_release;
3107         }
3108
3109         /*
3110          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3111          * release the swapcache from under us.  The page pin, and pte_same
3112          * test below, are not enough to exclude that.  Even if it is still
3113          * swapcache, we need to check that the page's swap has not changed.
3114          */
3115         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3116                 goto out_page;
3117
3118         page = ksm_might_need_to_copy(page, vma, address);
3119         if (unlikely(!page)) {
3120                 ret = VM_FAULT_OOM;
3121                 page = swapcache;
3122                 goto out_page;
3123         }
3124
3125         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3126                 ret = VM_FAULT_OOM;
3127                 goto out_page;
3128         }
3129
3130         /*
3131          * Back out if somebody else already faulted in this pte.
3132          */
3133         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3134         if (unlikely(!pte_same(*page_table, orig_pte)))
3135                 goto out_nomap;
3136
3137         if (unlikely(!PageUptodate(page))) {
3138                 ret = VM_FAULT_SIGBUS;
3139                 goto out_nomap;
3140         }
3141
3142         /*
3143          * The page isn't present yet, go ahead with the fault.
3144          *
3145          * Be careful about the sequence of operations here.
3146          * To get its accounting right, reuse_swap_page() must be called
3147          * while the page is counted on swap but not yet in mapcount i.e.
3148          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3149          * must be called after the swap_free(), or it will never succeed.
3150          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3151          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3152          * in page->private. In this case, a record in swap_cgroup  is silently
3153          * discarded at swap_free().
3154          */
3155
3156         inc_mm_counter_fast(mm, MM_ANONPAGES);
3157         dec_mm_counter_fast(mm, MM_SWAPENTS);
3158         pte = mk_pte(page, vma->vm_page_prot);
3159         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3160                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3161                 flags &= ~FAULT_FLAG_WRITE;
3162                 ret |= VM_FAULT_WRITE;
3163                 exclusive = 1;
3164         }
3165         flush_icache_page(vma, page);
3166         set_pte_at(mm, address, page_table, pte);
3167         if (page == swapcache)
3168                 do_page_add_anon_rmap(page, vma, address, exclusive);
3169         else /* ksm created a completely new copy */
3170                 page_add_new_anon_rmap(page, vma, address);
3171         /* It's better to call commit-charge after rmap is established */
3172         mem_cgroup_commit_charge_swapin(page, ptr);
3173
3174         swap_free(entry);
3175
3176 #ifdef CONFIG_ZRAM
3177         if (keep_to_free_swap || vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3178 #else
3179         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3180 #endif
3181                 try_to_free_swap(page);
3182         unlock_page(page);
3183         if (page != swapcache) {
3184                 /*
3185                  * Hold the lock to avoid the swap entry to be reused
3186                  * until we take the PT lock for the pte_same() check
3187                  * (to avoid false positives from pte_same). For
3188                  * further safety release the lock after the swap_free
3189                  * so that the swap count won't change under a
3190                  * parallel locked swapcache.
3191                  */
3192                 unlock_page(swapcache);
3193                 page_cache_release(swapcache);
3194         }
3195
3196         if (flags & FAULT_FLAG_WRITE) {
3197                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3198                 if (ret & VM_FAULT_ERROR)
3199                         ret &= VM_FAULT_ERROR;
3200                 goto out;
3201         }
3202
3203         /* No need to invalidate - it was non-present before */
3204         update_mmu_cache(vma, address, page_table);
3205 unlock:
3206         pte_unmap_unlock(page_table, ptl);
3207 out:
3208         return ret;
3209 out_nomap:
3210         mem_cgroup_cancel_charge_swapin(ptr);
3211         pte_unmap_unlock(page_table, ptl);
3212 out_page:
3213         unlock_page(page);
3214 out_release:
3215         page_cache_release(page);
3216         if (page != swapcache) {
3217                 unlock_page(swapcache);
3218                 page_cache_release(swapcache);
3219         }
3220         return ret;
3221 }
3222
3223 /*
3224  * This is like a special single-page "expand_{down|up}wards()",
3225  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3226  * doesn't hit another vma.
3227  */
3228 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3229 {
3230         address &= PAGE_MASK;
3231         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3232                 struct vm_area_struct *prev = vma->vm_prev;
3233
3234                 /*
3235                  * Is there a mapping abutting this one below?
3236                  *
3237                  * That's only ok if it's the same stack mapping
3238                  * that has gotten split..
3239                  */
3240                 if (prev && prev->vm_end == address)
3241                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3242
3243                 return expand_downwards(vma, address - PAGE_SIZE);
3244         }
3245         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3246                 struct vm_area_struct *next = vma->vm_next;
3247
3248                 /* As VM_GROWSDOWN but s/below/above/ */
3249                 if (next && next->vm_start == address + PAGE_SIZE)
3250                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3251
3252                 return expand_upwards(vma, address + PAGE_SIZE);
3253         }
3254         return 0;
3255 }
3256
3257 /*
3258  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3259  * but allow concurrent faults), and pte mapped but not yet locked.
3260  * We return with mmap_sem still held, but pte unmapped and unlocked.
3261  */
3262 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3263                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3264                 unsigned int flags)
3265 {
3266         struct page *page;
3267         spinlock_t *ptl;
3268         pte_t entry;
3269
3270         pte_unmap(page_table);
3271
3272         /* Check if we need to add a guard page to the stack */
3273         if (check_stack_guard_page(vma, address) < 0)
3274                 return VM_FAULT_SIGBUS;
3275
3276         /* Use the zero-page for reads */
3277         if (!(flags & FAULT_FLAG_WRITE)) {
3278                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3279                                                 vma->vm_page_prot));
3280                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3281                 if (!pte_none(*page_table))
3282                         goto unlock;
3283                 goto setpte;
3284         }
3285
3286         /* Allocate our own private page. */
3287         if (unlikely(anon_vma_prepare(vma)))
3288                 goto oom;
3289         page = alloc_zeroed_user_highpage_movable(vma, address);
3290         if (!page)
3291                 goto oom;
3292         /*
3293          * The memory barrier inside __SetPageUptodate makes sure that
3294          * preceeding stores to the page contents become visible before
3295          * the set_pte_at() write.
3296          */
3297         __SetPageUptodate(page);
3298
3299         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3300                 goto oom_free_page;
3301
3302         entry = mk_pte(page, vma->vm_page_prot);
3303         if (vma->vm_flags & VM_WRITE)
3304                 entry = pte_mkwrite(pte_mkdirty(entry));
3305
3306         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3307         if (!pte_none(*page_table))
3308                 goto release;
3309
3310         inc_mm_counter_fast(mm, MM_ANONPAGES);
3311         page_add_new_anon_rmap(page, vma, address);
3312 setpte:
3313         set_pte_at(mm, address, page_table, entry);
3314
3315         /* No need to invalidate - it was non-present before */
3316         update_mmu_cache(vma, address, page_table);
3317 unlock:
3318         pte_unmap_unlock(page_table, ptl);
3319         return 0;
3320 release:
3321         mem_cgroup_uncharge_page(page);
3322         page_cache_release(page);
3323         goto unlock;
3324 oom_free_page:
3325         page_cache_release(page);
3326 oom:
3327         return VM_FAULT_OOM;
3328 }
3329
3330 /*
3331  * __do_fault() tries to create a new page mapping. It aggressively
3332  * tries to share with existing pages, but makes a separate copy if
3333  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3334  * the next page fault.
3335  *
3336  * As this is called only for pages that do not currently exist, we
3337  * do not need to flush old virtual caches or the TLB.
3338  *
3339  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3340  * but allow concurrent faults), and pte neither mapped nor locked.
3341  * We return with mmap_sem still held, but pte unmapped and unlocked.
3342  */
3343 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3344                 unsigned long address, pmd_t *pmd,
3345                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3346 {
3347         pte_t *page_table;
3348         spinlock_t *ptl;
3349         struct page *page;
3350         struct page *cow_page;
3351         pte_t entry;
3352         int anon = 0;
3353         struct page *dirty_page = NULL;
3354         struct vm_fault vmf;
3355         int ret;
3356         int page_mkwrite = 0;
3357
3358         /*
3359          * If we do COW later, allocate page befor taking lock_page()
3360          * on the file cache page. This will reduce lock holding time.
3361          */
3362         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3363
3364                 if (unlikely(anon_vma_prepare(vma)))
3365                         return VM_FAULT_OOM;
3366
3367                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3368                 if (!cow_page)
3369                         return VM_FAULT_OOM;
3370
3371                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3372                         page_cache_release(cow_page);
3373                         return VM_FAULT_OOM;
3374                 }
3375         } else
3376                 cow_page = NULL;
3377
3378         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3379         vmf.pgoff = pgoff;
3380         vmf.flags = flags;
3381         vmf.page = NULL;
3382
3383         ret = vma->vm_ops->fault(vma, &vmf);
3384         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3385                             VM_FAULT_RETRY)))
3386                 goto uncharge_out;
3387
3388         if (unlikely(PageHWPoison(vmf.page))) {
3389                 if (ret & VM_FAULT_LOCKED)
3390                         unlock_page(vmf.page);
3391                 ret = VM_FAULT_HWPOISON;
3392                 goto uncharge_out;
3393         }
3394
3395         /*
3396          * For consistency in subsequent calls, make the faulted page always
3397          * locked.
3398          */
3399         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3400                 lock_page(vmf.page);
3401         else
3402                 VM_BUG_ON(!PageLocked(vmf.page));
3403
3404         /*
3405          * Should we do an early C-O-W break?
3406          */
3407         page = vmf.page;
3408         if (flags & FAULT_FLAG_WRITE) {
3409                 if (!(vma->vm_flags & VM_SHARED)) {
3410                         page = cow_page;
3411                         anon = 1;
3412                         copy_user_highpage(page, vmf.page, address, vma);
3413                         __SetPageUptodate(page);
3414                 } else {
3415                         /*
3416                          * If the page will be shareable, see if the backing
3417                          * address space wants to know that the page is about
3418                          * to become writable
3419                          */
3420                         if (vma->vm_ops->page_mkwrite) {
3421                                 int tmp;
3422
3423                                 unlock_page(page);
3424                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3425                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3426                                 if (unlikely(tmp &
3427                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3428                                         ret = tmp;
3429                                         goto unwritable_page;
3430                                 }
3431                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3432                                         lock_page(page);
3433                                         if (!page->mapping) {
3434                                                 ret = 0; /* retry the fault */
3435                                                 unlock_page(page);
3436                                                 goto unwritable_page;
3437                                         }
3438                                 } else
3439                                         VM_BUG_ON(!PageLocked(page));
3440                                 page_mkwrite = 1;
3441                         }
3442                 }
3443
3444         }
3445
3446         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3447
3448         /*
3449          * This silly early PAGE_DIRTY setting removes a race
3450          * due to the bad i386 page protection. But it's valid
3451          * for other architectures too.
3452          *
3453          * Note that if FAULT_FLAG_WRITE is set, we either now have
3454          * an exclusive copy of the page, or this is a shared mapping,
3455          * so we can make it writable and dirty to avoid having to
3456          * handle that later.
3457          */
3458         /* Only go through if we didn't race with anybody else... */
3459         if (likely(pte_same(*page_table, orig_pte))) {
3460                 flush_icache_page(vma, page);
3461                 entry = mk_pte(page, vma->vm_page_prot);
3462                 if (flags & FAULT_FLAG_WRITE)
3463                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3464                 if (anon) {
3465                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3466                         page_add_new_anon_rmap(page, vma, address);
3467                 } else {
3468                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3469                         page_add_file_rmap(page);
3470                         if (flags & FAULT_FLAG_WRITE) {
3471                                 dirty_page = page;
3472                                 get_page(dirty_page);
3473                         }
3474                 }
3475                 set_pte_at(mm, address, page_table, entry);
3476
3477                 /* no need to invalidate: a not-present page won't be cached */
3478                 update_mmu_cache(vma, address, page_table);
3479         } else {
3480                 if (cow_page)
3481                         mem_cgroup_uncharge_page(cow_page);
3482                 if (anon)
3483                         page_cache_release(page);
3484                 else
3485                         anon = 1; /* no anon but release faulted_page */
3486         }
3487
3488         pte_unmap_unlock(page_table, ptl);
3489
3490         if (dirty_page) {
3491                 struct address_space *mapping = page->mapping;
3492                 int dirtied = 0;
3493
3494                 if (set_page_dirty(dirty_page))
3495                         dirtied = 1;
3496                 unlock_page(dirty_page);
3497                 put_page(dirty_page);
3498                 if ((dirtied || page_mkwrite) && mapping) {
3499                         /*
3500                          * Some device drivers do not set page.mapping but still
3501                          * dirty their pages
3502                          */
3503                         balance_dirty_pages_ratelimited(mapping);
3504                 }
3505
3506                 /* file_update_time outside page_lock */
3507                 if (vma->vm_file && !page_mkwrite)
3508                         file_update_time(vma->vm_file);
3509         } else {
3510                 unlock_page(vmf.page);
3511                 if (anon)
3512                         page_cache_release(vmf.page);
3513         }
3514
3515         return ret;
3516
3517 unwritable_page:
3518         page_cache_release(page);
3519         return ret;
3520 uncharge_out:
3521         /* fs's fault handler get error */
3522         if (cow_page) {
3523                 mem_cgroup_uncharge_page(cow_page);
3524                 page_cache_release(cow_page);
3525         }
3526         return ret;
3527 }
3528
3529 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3530                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3531                 unsigned int flags, pte_t orig_pte)
3532 {
3533         pgoff_t pgoff = (((address & PAGE_MASK)
3534                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3535
3536         pte_unmap(page_table);
3537         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3538 }
3539
3540 /*
3541  * Fault of a previously existing named mapping. Repopulate the pte
3542  * from the encoded file_pte if possible. This enables swappable
3543  * nonlinear vmas.
3544  *
3545  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3546  * but allow concurrent faults), and pte mapped but not yet locked.
3547  * We return with mmap_sem still held, but pte unmapped and unlocked.
3548  */
3549 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3550                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3551                 unsigned int flags, pte_t orig_pte)
3552 {
3553         pgoff_t pgoff;
3554
3555         flags |= FAULT_FLAG_NONLINEAR;
3556
3557         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3558                 return 0;
3559
3560         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3561                 /*
3562                  * Page table corrupted: show pte and kill process.
3563                  */
3564                 print_bad_pte(vma, address, orig_pte, NULL);
3565                 return VM_FAULT_SIGBUS;
3566         }
3567
3568         pgoff = pte_to_pgoff(orig_pte);
3569         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3570 }
3571
3572 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3573                                 unsigned long addr, int page_nid)
3574 {
3575         get_page(page);
3576
3577         count_vm_numa_event(NUMA_HINT_FAULTS);
3578         if (page_nid == numa_node_id())
3579                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3580
3581         return mpol_misplaced(page, vma, addr);
3582 }
3583
3584 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3585                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3586 {
3587         struct page *page = NULL;
3588         spinlock_t *ptl;
3589         int page_nid = -1;
3590         int target_nid;
3591         bool migrated = false;
3592
3593         /*
3594         * The "pte" at this point cannot be used safely without
3595         * validation through pte_unmap_same(). It's of NUMA type but
3596         * the pfn may be screwed if the read is non atomic.
3597         *
3598         * ptep_modify_prot_start is not called as this is clearing
3599         * the _PAGE_NUMA bit and it is not really expected that there
3600         * would be concurrent hardware modifications to the PTE.
3601         */
3602         ptl = pte_lockptr(mm, pmd);
3603         spin_lock(ptl);
3604         if (unlikely(!pte_same(*ptep, pte))) {
3605                 pte_unmap_unlock(ptep, ptl);
3606                 goto out;
3607         }
3608
3609         pte = pte_mknonnuma(pte);
3610         set_pte_at(mm, addr, ptep, pte);
3611         update_mmu_cache(vma, addr, ptep);
3612
3613         page = vm_normal_page(vma, addr, pte);
3614         if (!page) {
3615                 pte_unmap_unlock(ptep, ptl);
3616                 return 0;
3617         }
3618
3619         page_nid = page_to_nid(page);
3620         target_nid = numa_migrate_prep(page, vma, addr, page_nid);
3621         pte_unmap_unlock(ptep, ptl);
3622         if (target_nid == -1) {
3623                 put_page(page);
3624                 goto out;
3625         }
3626
3627         /* Migrate to the requested node */
3628         migrated = migrate_misplaced_page(page, target_nid);
3629         if (migrated)
3630                 page_nid = target_nid;
3631
3632 out:
3633         if (page_nid != -1)
3634                 task_numa_fault(page_nid, 1, migrated);
3635         return 0;
3636 }
3637
3638 /* NUMA hinting page fault entry point for regular pmds */
3639 #ifdef CONFIG_NUMA_BALANCING
3640 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3641                      unsigned long addr, pmd_t *pmdp)
3642 {
3643         pmd_t pmd;
3644         pte_t *pte, *orig_pte;
3645         unsigned long _addr = addr & PMD_MASK;
3646         unsigned long offset;
3647         spinlock_t *ptl;
3648         bool numa = false;
3649
3650         spin_lock(&mm->page_table_lock);
3651         pmd = *pmdp;
3652         if (pmd_numa(pmd)) {
3653                 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3654                 numa = true;
3655         }
3656         spin_unlock(&mm->page_table_lock);
3657
3658         if (!numa)
3659                 return 0;
3660
3661         /* we're in a page fault so some vma must be in the range */
3662         BUG_ON(!vma);
3663         BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3664         offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3665         VM_BUG_ON(offset >= PMD_SIZE);
3666         orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3667         pte += offset >> PAGE_SHIFT;
3668         for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3669                 pte_t pteval = *pte;
3670                 struct page *page;
3671                 int page_nid = -1;
3672                 int target_nid;
3673                 bool migrated = false;
3674
3675                 if (!pte_present(pteval))
3676                         continue;
3677                 if (!pte_numa(pteval))
3678                         continue;
3679                 if (addr >= vma->vm_end) {
3680                         vma = find_vma(mm, addr);
3681                         /* there's a pte present so there must be a vma */
3682                         BUG_ON(!vma);
3683                         BUG_ON(addr < vma->vm_start);
3684                 }
3685                 if (pte_numa(pteval)) {
3686                         pteval = pte_mknonnuma(pteval);
3687                         set_pte_at(mm, addr, pte, pteval);
3688                 }
3689                 page = vm_normal_page(vma, addr, pteval);
3690                 if (unlikely(!page))
3691                         continue;
3692                 /* only check non-shared pages */
3693                 if (unlikely(page_mapcount(page) != 1))
3694                         continue;
3695
3696                 page_nid = page_to_nid(page);
3697                 target_nid = numa_migrate_prep(page, vma, addr, page_nid);
3698                 pte_unmap_unlock(pte, ptl);
3699                 if (target_nid != -1) {
3700                         migrated = migrate_misplaced_page(page, target_nid);
3701                         if (migrated)
3702                                 page_nid = target_nid;
3703                 } else {
3704                         put_page(page);
3705                 }
3706
3707                 if (page_nid != -1)
3708                         task_numa_fault(page_nid, 1, migrated);
3709
3710                 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3711         }
3712         pte_unmap_unlock(orig_pte, ptl);
3713
3714         return 0;
3715 }
3716 #else
3717 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3718                      unsigned long addr, pmd_t *pmdp)
3719 {
3720         BUG();
3721         return 0;
3722 }
3723 #endif /* CONFIG_NUMA_BALANCING */
3724
3725 /*
3726  * These routines also need to handle stuff like marking pages dirty
3727  * and/or accessed for architectures that don't do it in hardware (most
3728  * RISC architectures).  The early dirtying is also good on the i386.
3729  *
3730  * There is also a hook called "update_mmu_cache()" that architectures
3731  * with external mmu caches can use to update those (ie the Sparc or
3732  * PowerPC hashed page tables that act as extended TLBs).
3733  *
3734  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3735  * but allow concurrent faults), and pte mapped but not yet locked.
3736  * We return with mmap_sem still held, but pte unmapped and unlocked.
3737  */
3738 int handle_pte_fault(struct mm_struct *mm,
3739                      struct vm_area_struct *vma, unsigned long address,
3740                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3741 {
3742         pte_t entry;
3743         spinlock_t *ptl;
3744
3745         entry = *pte;
3746         if (!pte_present(entry)) {
3747                 if (pte_none(entry)) {
3748                         if (vma->vm_ops) {
3749                                 if (likely(vma->vm_ops->fault))
3750                                         return do_linear_fault(mm, vma, address,
3751                                                 pte, pmd, flags, entry);
3752                         }
3753                         return do_anonymous_page(mm, vma, address,
3754                                                  pte, pmd, flags);
3755                 }
3756                 if (pte_file(entry))
3757                         return do_nonlinear_fault(mm, vma, address,
3758                                         pte, pmd, flags, entry);
3759                 return do_swap_page(mm, vma, address,
3760                                         pte, pmd, flags, entry);
3761         }
3762
3763         if (pte_numa(entry))
3764                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3765
3766         ptl = pte_lockptr(mm, pmd);
3767         spin_lock(ptl);
3768         if (unlikely(!pte_same(*pte, entry)))
3769                 goto unlock;
3770         if (flags & FAULT_FLAG_WRITE) {
3771                 if (!pte_write(entry))
3772                         return do_wp_page(mm, vma, address,
3773                                         pte, pmd, ptl, entry);
3774                 entry = pte_mkdirty(entry);
3775         }
3776         entry = pte_mkyoung(entry);
3777         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3778                 update_mmu_cache(vma, address, pte);
3779         } else {
3780                 /*
3781                  * This is needed only for protection faults but the arch code
3782                  * is not yet telling us if this is a protection fault or not.
3783                  * This still avoids useless tlb flushes for .text page faults
3784                  * with threads.
3785                  */
3786                 if (flags & FAULT_FLAG_WRITE)
3787                         flush_tlb_fix_spurious_fault(vma, address);
3788         }
3789 unlock:
3790         pte_unmap_unlock(pte, ptl);
3791         return 0;
3792 }
3793
3794 /*
3795  * By the time we get here, we already hold the mm semaphore
3796  */
3797 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3798                              unsigned long address, unsigned int flags)
3799 {
3800         pgd_t *pgd;
3801         pud_t *pud;
3802         pmd_t *pmd;
3803         pte_t *pte;
3804
3805         if (unlikely(is_vm_hugetlb_page(vma)))
3806                 return hugetlb_fault(mm, vma, address, flags);
3807
3808 retry:
3809         pgd = pgd_offset(mm, address);
3810         pud = pud_alloc(mm, pgd, address);
3811         if (!pud)
3812                 return VM_FAULT_OOM;
3813         pmd = pmd_alloc(mm, pud, address);
3814         if (!pmd)
3815                 return VM_FAULT_OOM;
3816         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3817                 if (!vma->vm_ops)
3818                         return do_huge_pmd_anonymous_page(mm, vma, address,
3819                                                           pmd, flags);
3820         } else {
3821                 pmd_t orig_pmd = *pmd;
3822                 int ret;
3823
3824                 barrier();
3825                 if (pmd_trans_huge(orig_pmd)) {
3826                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3827
3828                         /*
3829                          * If the pmd is splitting, return and retry the
3830                          * the fault.  Alternative: wait until the split
3831                          * is done, and goto retry.
3832                          */
3833                         if (pmd_trans_splitting(orig_pmd))
3834                                 return 0;
3835
3836                         if (pmd_numa(orig_pmd))
3837                                 return do_huge_pmd_numa_page(mm, vma, address,
3838                                                              orig_pmd, pmd);
3839
3840                         if (dirty && !pmd_write(orig_pmd)) {
3841                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3842                                                           orig_pmd);
3843                                 /*
3844                                  * If COW results in an oom, the huge pmd will
3845                                  * have been split, so retry the fault on the
3846                                  * pte for a smaller charge.
3847                                  */
3848                                 if (unlikely(ret & VM_FAULT_OOM))
3849                                         goto retry;
3850                                 return ret;
3851                         } else {
3852                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3853                                                       orig_pmd, dirty);
3854                         }
3855
3856                         return 0;
3857                 }
3858         }
3859
3860         if (pmd_numa(*pmd))
3861                 return do_pmd_numa_page(mm, vma, address, pmd);
3862
3863         /*
3864          * Use __pte_alloc instead of pte_alloc_map, because we can't
3865          * run pte_offset_map on the pmd, if an huge pmd could
3866          * materialize from under us from a different thread.
3867          */
3868         if (unlikely(pmd_none(*pmd)) &&
3869             unlikely(__pte_alloc(mm, vma, pmd, address)))
3870                 return VM_FAULT_OOM;
3871         /* if an huge pmd materialized from under us just retry later */
3872         if (unlikely(pmd_trans_huge(*pmd)))
3873                 return 0;
3874         /*
3875          * A regular pmd is established and it can't morph into a huge pmd
3876          * from under us anymore at this point because we hold the mmap_sem
3877          * read mode and khugepaged takes it in write mode. So now it's
3878          * safe to run pte_offset_map().
3879          */
3880         pte = pte_offset_map(pmd, address);
3881
3882         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3883 }
3884
3885 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3886                     unsigned long address, unsigned int flags)
3887 {
3888         int ret;
3889
3890         __set_current_state(TASK_RUNNING);
3891
3892         count_vm_event(PGFAULT);
3893         mem_cgroup_count_vm_event(mm, PGFAULT);
3894
3895         /* do counter updates before entering really critical section. */
3896         check_sync_rss_stat(current);
3897
3898         /*
3899          * Enable the memcg OOM handling for faults triggered in user
3900          * space.  Kernel faults are handled more gracefully.
3901          */
3902         if (flags & FAULT_FLAG_USER)
3903                 mem_cgroup_oom_enable();
3904
3905         ret = __handle_mm_fault(mm, vma, address, flags);
3906
3907         if (flags & FAULT_FLAG_USER) {
3908                 mem_cgroup_oom_disable();
3909                 /*
3910                  * The task may have entered a memcg OOM situation but
3911                  * if the allocation error was handled gracefully (no
3912                  * VM_FAULT_OOM), there is no need to kill anything.
3913                  * Just clean up the OOM state peacefully.
3914                  */
3915                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3916                         mem_cgroup_oom_synchronize(false);
3917         }
3918
3919         return ret;
3920 }
3921
3922 #ifndef __PAGETABLE_PUD_FOLDED
3923 /*
3924  * Allocate page upper directory.
3925  * We've already handled the fast-path in-line.
3926  */
3927 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3928 {
3929         pud_t *new = pud_alloc_one(mm, address);
3930         if (!new)
3931                 return -ENOMEM;
3932
3933         smp_wmb(); /* See comment in __pte_alloc */
3934
3935         spin_lock(&mm->page_table_lock);
3936         if (pgd_present(*pgd))          /* Another has populated it */
3937                 pud_free(mm, new);
3938         else
3939                 pgd_populate(mm, pgd, new);
3940         spin_unlock(&mm->page_table_lock);
3941         return 0;
3942 }
3943 #endif /* __PAGETABLE_PUD_FOLDED */
3944
3945 #ifndef __PAGETABLE_PMD_FOLDED
3946 /*
3947  * Allocate page middle directory.
3948  * We've already handled the fast-path in-line.
3949  */
3950 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3951 {
3952         pmd_t *new = pmd_alloc_one(mm, address);
3953         if (!new)
3954                 return -ENOMEM;
3955
3956         smp_wmb(); /* See comment in __pte_alloc */
3957
3958         spin_lock(&mm->page_table_lock);
3959 #ifndef __ARCH_HAS_4LEVEL_HACK
3960         if (pud_present(*pud))          /* Another has populated it */
3961                 pmd_free(mm, new);
3962         else
3963                 pud_populate(mm, pud, new);
3964 #else
3965         if (pgd_present(*pud))          /* Another has populated it */
3966                 pmd_free(mm, new);
3967         else
3968                 pgd_populate(mm, pud, new);
3969 #endif /* __ARCH_HAS_4LEVEL_HACK */
3970         spin_unlock(&mm->page_table_lock);
3971         return 0;
3972 }
3973 #endif /* __PAGETABLE_PMD_FOLDED */
3974
3975 #if !defined(__HAVE_ARCH_GATE_AREA)
3976
3977 #if defined(AT_SYSINFO_EHDR)
3978 static struct vm_area_struct gate_vma;
3979
3980 static int __init gate_vma_init(void)
3981 {
3982         gate_vma.vm_mm = NULL;
3983         gate_vma.vm_start = FIXADDR_USER_START;
3984         gate_vma.vm_end = FIXADDR_USER_END;
3985         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3986         gate_vma.vm_page_prot = __P101;
3987
3988         return 0;
3989 }
3990 __initcall(gate_vma_init);
3991 #endif
3992
3993 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3994 {
3995 #ifdef AT_SYSINFO_EHDR
3996         return &gate_vma;
3997 #else
3998         return NULL;
3999 #endif
4000 }
4001
4002 int in_gate_area_no_mm(unsigned long addr)
4003 {
4004 #ifdef AT_SYSINFO_EHDR
4005         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
4006                 return 1;
4007 #endif
4008         return 0;
4009 }
4010
4011 #endif  /* __HAVE_ARCH_GATE_AREA */
4012
4013 static int __follow_pte(struct mm_struct *mm, unsigned long address,
4014                 pte_t **ptepp, spinlock_t **ptlp)
4015 {
4016         pgd_t *pgd;
4017         pud_t *pud;
4018         pmd_t *pmd;
4019         pte_t *ptep;
4020
4021         pgd = pgd_offset(mm, address);
4022         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4023                 goto out;
4024
4025         pud = pud_offset(pgd, address);
4026         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4027                 goto out;
4028
4029         pmd = pmd_offset(pud, address);
4030         VM_BUG_ON(pmd_trans_huge(*pmd));
4031         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4032                 goto out;
4033
4034         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
4035         if (pmd_huge(*pmd))
4036                 goto out;
4037
4038         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4039         if (!ptep)
4040                 goto out;
4041         if (!pte_present(*ptep))
4042                 goto unlock;
4043         *ptepp = ptep;
4044         return 0;
4045 unlock:
4046         pte_unmap_unlock(ptep, *ptlp);
4047 out:
4048         return -EINVAL;
4049 }
4050
4051 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4052                              pte_t **ptepp, spinlock_t **ptlp)
4053 {
4054         int res;
4055
4056         /* (void) is needed to make gcc happy */
4057         (void) __cond_lock(*ptlp,
4058                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
4059         return res;
4060 }
4061
4062 /**
4063  * follow_pfn - look up PFN at a user virtual address
4064  * @vma: memory mapping
4065  * @address: user virtual address
4066  * @pfn: location to store found PFN
4067  *
4068  * Only IO mappings and raw PFN mappings are allowed.
4069  *
4070  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4071  */
4072 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4073         unsigned long *pfn)
4074 {
4075         int ret = -EINVAL;
4076         spinlock_t *ptl;
4077         pte_t *ptep;
4078
4079         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4080                 return ret;
4081
4082         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4083         if (ret)
4084                 return ret;
4085         *pfn = pte_pfn(*ptep);
4086         pte_unmap_unlock(ptep, ptl);
4087         return 0;
4088 }
4089 EXPORT_SYMBOL(follow_pfn);
4090
4091 #ifdef CONFIG_HAVE_IOREMAP_PROT
4092 int follow_phys(struct vm_area_struct *vma,
4093                 unsigned long address, unsigned int flags,
4094                 unsigned long *prot, resource_size_t *phys)
4095 {
4096         int ret = -EINVAL;
4097         pte_t *ptep, pte;
4098         spinlock_t *ptl;
4099
4100         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4101                 goto out;
4102
4103         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4104                 goto out;
4105         pte = *ptep;
4106
4107         if ((flags & FOLL_WRITE) && !pte_write(pte))
4108                 goto unlock;
4109
4110         *prot = pgprot_val(pte_pgprot(pte));
4111         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4112
4113         ret = 0;
4114 unlock:
4115         pte_unmap_unlock(ptep, ptl);
4116 out:
4117         return ret;
4118 }
4119
4120 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4121                         void *buf, int len, int write)
4122 {
4123         resource_size_t phys_addr;
4124         unsigned long prot = 0;
4125         void __iomem *maddr;
4126         int offset = addr & (PAGE_SIZE-1);
4127
4128         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4129                 return -EINVAL;
4130
4131         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4132         if (write)
4133                 memcpy_toio(maddr + offset, buf, len);
4134         else
4135                 memcpy_fromio(buf, maddr + offset, len);
4136         iounmap(maddr);
4137
4138         return len;
4139 }
4140 EXPORT_SYMBOL_GPL(generic_access_phys);
4141 #endif
4142
4143 /*
4144  * Access another process' address space as given in mm.  If non-NULL, use the
4145  * given task for page fault accounting.
4146  */
4147 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4148                 unsigned long addr, void *buf, int len, int write)
4149 {
4150         struct vm_area_struct *vma;
4151         void *old_buf = buf;
4152
4153         down_read(&mm->mmap_sem);
4154         /* ignore errors, just check how much was successfully transferred */
4155         while (len) {
4156                 int bytes, ret, offset;
4157                 void *maddr;
4158                 struct page *page = NULL;
4159
4160                 ret = get_user_pages(tsk, mm, addr, 1,
4161                                 write, 1, &page, &vma);
4162                 if (ret <= 0) {
4163                         /*
4164                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4165                          * we can access using slightly different code.
4166                          */
4167 #ifdef CONFIG_HAVE_IOREMAP_PROT
4168                         vma = find_vma(mm, addr);
4169                         if (!vma || vma->vm_start > addr)
4170                                 break;
4171                         if (vma->vm_ops && vma->vm_ops->access)
4172                                 ret = vma->vm_ops->access(vma, addr, buf,
4173                                                           len, write);
4174                         if (ret <= 0)
4175 #endif
4176                                 break;
4177                         bytes = ret;
4178                 } else {
4179                         bytes = len;
4180                         offset = addr & (PAGE_SIZE-1);
4181                         if (bytes > PAGE_SIZE-offset)
4182                                 bytes = PAGE_SIZE-offset;
4183
4184                         maddr = kmap(page);
4185                         if (write) {
4186                                 copy_to_user_page(vma, page, addr,
4187                                                   maddr + offset, buf, bytes);
4188                                 set_page_dirty_lock(page);
4189                         } else {
4190                                 copy_from_user_page(vma, page, addr,
4191                                                     buf, maddr + offset, bytes);
4192                         }
4193                         kunmap(page);
4194                         page_cache_release(page);
4195                 }
4196                 len -= bytes;
4197                 buf += bytes;
4198                 addr += bytes;
4199         }
4200         up_read(&mm->mmap_sem);
4201
4202         return buf - old_buf;
4203 }
4204
4205 /**
4206  * access_remote_vm - access another process' address space
4207  * @mm:         the mm_struct of the target address space
4208  * @addr:       start address to access
4209  * @buf:        source or destination buffer
4210  * @len:        number of bytes to transfer
4211  * @write:      whether the access is a write
4212  *
4213  * The caller must hold a reference on @mm.
4214  */
4215 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4216                 void *buf, int len, int write)
4217 {
4218         return __access_remote_vm(NULL, mm, addr, buf, len, write);
4219 }
4220
4221 /*
4222  * Access another process' address space.
4223  * Source/target buffer must be kernel space,
4224  * Do not walk the page table directly, use get_user_pages
4225  */
4226 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4227                 void *buf, int len, int write)
4228 {
4229         struct mm_struct *mm;
4230         int ret;
4231
4232         mm = get_task_mm(tsk);
4233         if (!mm)
4234                 return 0;
4235
4236         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4237         mmput(mm);
4238
4239         return ret;
4240 }
4241
4242 /*
4243  * Print the name of a VMA.
4244  */
4245 void print_vma_addr(char *prefix, unsigned long ip)
4246 {
4247         struct mm_struct *mm = current->mm;
4248         struct vm_area_struct *vma;
4249
4250         /*
4251          * Do not print if we are in atomic
4252          * contexts (in exception stacks, etc.):
4253          */
4254         if (preempt_count())
4255                 return;
4256
4257         down_read(&mm->mmap_sem);
4258         vma = find_vma(mm, ip);
4259         if (vma && vma->vm_file) {
4260                 struct file *f = vma->vm_file;
4261                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4262                 if (buf) {
4263                         char *p;
4264
4265                         p = d_path(&f->f_path, buf, PAGE_SIZE);
4266                         if (IS_ERR(p))
4267                                 p = "?";
4268                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4269                                         vma->vm_start,
4270                                         vma->vm_end - vma->vm_start);
4271                         free_page((unsigned long)buf);
4272                 }
4273         }
4274         up_read(&mm->mmap_sem);
4275 }
4276
4277 #ifdef CONFIG_PROVE_LOCKING
4278 void might_fault(void)
4279 {
4280         /*
4281          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4282          * holding the mmap_sem, this is safe because kernel memory doesn't
4283          * get paged out, therefore we'll never actually fault, and the
4284          * below annotations will generate false positives.
4285          */
4286         if (segment_eq(get_fs(), KERNEL_DS))
4287                 return;
4288
4289         might_sleep();
4290         /*
4291          * it would be nicer only to annotate paths which are not under
4292          * pagefault_disable, however that requires a larger audit and
4293          * providing helpers like get_user_atomic.
4294          */
4295         if (!in_atomic() && current->mm)
4296                 might_lock_read(&current->mm->mmap_sem);
4297 }
4298 EXPORT_SYMBOL(might_fault);
4299 #endif
4300
4301 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4302 static void clear_gigantic_page(struct page *page,
4303                                 unsigned long addr,
4304                                 unsigned int pages_per_huge_page)
4305 {
4306         int i;
4307         struct page *p = page;
4308
4309         might_sleep();
4310         for (i = 0; i < pages_per_huge_page;
4311              i++, p = mem_map_next(p, page, i)) {
4312                 cond_resched();
4313                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4314         }
4315 }
4316 void clear_huge_page(struct page *page,
4317                      unsigned long addr, unsigned int pages_per_huge_page)
4318 {
4319         int i;
4320
4321         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4322                 clear_gigantic_page(page, addr, pages_per_huge_page);
4323                 return;
4324         }
4325
4326         might_sleep();
4327         for (i = 0; i < pages_per_huge_page; i++) {
4328                 cond_resched();
4329                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4330         }
4331 }
4332
4333 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4334                                     unsigned long addr,
4335                                     struct vm_area_struct *vma,
4336                                     unsigned int pages_per_huge_page)
4337 {
4338         int i;
4339         struct page *dst_base = dst;
4340         struct page *src_base = src;
4341
4342         for (i = 0; i < pages_per_huge_page; ) {
4343                 cond_resched();
4344                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4345
4346                 i++;
4347                 dst = mem_map_next(dst, dst_base, i);
4348                 src = mem_map_next(src, src_base, i);
4349         }
4350 }
4351
4352 void copy_user_huge_page(struct page *dst, struct page *src,
4353                          unsigned long addr, struct vm_area_struct *vma,
4354                          unsigned int pages_per_huge_page)
4355 {
4356         int i;
4357
4358         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4359                 copy_user_gigantic_page(dst, src, addr, vma,
4360                                         pages_per_huge_page);
4361                 return;
4362         }
4363
4364         might_sleep();
4365         for (i = 0; i < pages_per_huge_page; i++) {
4366                 cond_resched();
4367                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4368         }
4369 }
4370 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */