Imported Upstream version 1.6.36
[platform/upstream/libpng.git] / contrib / tools / genpng.c
1 /*- genpng
2  *
3  * COPYRIGHT: Written by John Cunningham Bowler, 2015.
4  * Revised by Glenn Randers-Pehrson, 2017, to add buffer-size check.
5  * To the extent possible under law, the authors have waived all copyright and
6  * related or neighboring rights to this work.  This work is published from:
7  * United States.
8  *
9  * Generate a PNG with an alpha channel, correctly.
10  *
11  * This is a test case generator; the resultant PNG files are only of interest
12  * to those of us who care about whether the edges of circles are green, red,
13  * or yellow.
14  *
15  * The program generates an RGB+Alpha PNG of a given size containing the given
16  * shapes on a transparent background:
17  *
18  *  genpng width height { shape }
19  *    shape ::= color width shape x1 y1 x2 y2
20  *
21  * 'color' is:
22  *
23  *  black white red green yellow blue brown purple pink orange gray cyan
24  *
25  * The point is to have colors that are linguistically meaningful plus that old
26  * bugbear of the department store dress murders, Cyan, the only color we argue
27  * about.
28  *
29  * 'shape' is:
30  *
31  *  circle: an ellipse
32  *  square: a rectangle
33  *  line: a straight line
34  *
35  * Each shape is followed by four numbers, these are two points in the output
36  * coordinate space (as real numbers) which describe the circle, square, or
37  * line.  The shape is filled if it is preceded by 'filled' (not valid for
38  * 'line') or is drawn with a line, in which case the width of the line must
39  * precede the shape.
40  *
41  * The whole set of information can be repeated as many times as desired:
42  *
43  *    shape ::= color width shape x1 y1 x2 y2
44  *
45  *    color ::= black|white|red|green|yellow|blue
46  *    color ::= brown|purple|pink|orange|gray|cyan
47  *    width ::= filled
48  *    width ::= <number>
49  *    shape ::= circle|square|line
50  *    x1    ::= <number>
51  *    x2    ::= <number>
52  *    y1    ::= <number>
53  *    y2    ::= <number>
54  *
55  * The output PNG is generated by down-sampling a 4x supersampled image using
56  * a bi-cubic filter.  The bi-cubic has a 2 (output) pixel width, so an 8x8
57  * array of super-sampled points contribute to each output pixel.  The value of
58  * a super-sampled point is found using an unfiltered, aliased, infinite
59  * precision image: Each shape from the last to the first is checked to see if
60  * the point is in the drawn area and, if it is, the color of the point is the
61  * color of the shape and the alpha is 1, if not the previous shape is checked.
62  *
63  * This is an aliased algorithm because no filtering is done; a point is either
64  * inside or outside each shape and 'close' points do not contribute to the
65  * sample.  The down-sampling is relied on to correct the error of not using
66  * a filter.
67  *
68  * The line end-caps are 'flat'; they go through the points.  The square line
69  * joins are mitres; the outside of the lines are continued to the point of
70  * intersection.
71  */
72 #include <stddef.h>
73 #include <stdlib.h>
74 #include <string.h>
75 #include <stdio.h>
76 #include <math.h>
77
78 /* Normally use <png.h> here to get the installed libpng, but this is done to
79  * ensure the code picks up the local libpng implementation:
80  */
81 #include "../../png.h"
82
83 #if defined(PNG_SIMPLIFIED_WRITE_SUPPORTED) && defined(PNG_STDIO_SUPPORTED)
84
85 static const struct color
86 {
87    const char *name;
88    double      red;
89    double      green;
90    double      blue;
91 } colors[] =
92 /* color ::= black|white|red|green|yellow|blue
93  * color ::= brown|purple|pink|orange|gray|cyan
94  */
95 {
96    { "black",   0,    0,  0 },
97    { "white",   1,    1,  1 },
98    { "red",     1,    0,  0 },
99    { "green",   0,    1,  0 },
100    { "yellow",  1,    1,  0 },
101    { "blue",    0,    0,  1 },
102    { "brown",  .5, .125,  0 },
103    { "purple",  1,    0,  1 },
104    { "pink",    1,   .5, .5 },
105    { "orange",  1,   .5,  0 },
106    { "gray",    0,   .5, .5 },
107    { "cyan",    0,    1,  1 }
108 };
109 #define color_count ((sizeof colors)/(sizeof colors[0]))
110
111 static const struct color *
112 color_of(const char *arg)
113 {
114    int icolor = color_count;
115
116    while (--icolor >= 0)
117    {
118       if (strcmp(colors[icolor].name, arg) == 0)
119          return colors+icolor;
120    }
121
122    fprintf(stderr, "genpng: invalid color %s\n", arg);
123    exit(1);
124 }
125
126 static double
127 width_of(const char *arg)
128 {
129    if (strcmp(arg, "filled") == 0)
130       return 0;
131
132    else
133    {
134       char *ep = NULL;
135       double w = strtod(arg, &ep);
136
137       if (ep != NULL && *ep == 0 && w > 0)
138          return w;
139    }
140
141    fprintf(stderr, "genpng: invalid line width %s\n", arg);
142    exit(1);
143 }
144
145 static double
146 coordinate_of(const char *arg)
147 {
148    char *ep = NULL;
149    double w = strtod(arg, &ep);
150
151    if (ep != NULL && *ep == 0)
152       return w;
153
154    fprintf(stderr, "genpng: invalid coordinate value %s\n", arg);
155    exit(1);
156 }
157
158 struct arg; /* forward declaration */
159
160 typedef int (*shape_fn_ptr)(const struct arg *arg, double x, double y);
161    /* A function to determine if (x,y) is inside the shape.
162     *
163     * There are two implementations:
164     *
165     *    inside_fn: returns true if the point is inside
166     *    check_fn:  returns;
167     *       -1: the point is outside the shape by more than the filter width (2)
168     *        0: the point may be inside the shape
169     *       +1: the point is inside the shape by more than the filter width
170     */
171 #define OUTSIDE (-1)
172 #define INSIDE  (1)
173
174 struct arg
175 {
176    const struct color *color;
177    shape_fn_ptr        inside_fn;
178    shape_fn_ptr        check_fn;
179    double              width; /* line width, 0 for 'filled' */
180    double              x1, y1, x2, y2;
181 };
182
183 /* IMPLEMENTATION NOTE:
184  *
185  * We want the contribution of each shape to the sample corresponding to each
186  * pixel.  This could be obtained by super sampling the image to infinite
187  * dimensions, finding each point within the shape and assigning that a value
188  * '1' while leaving every point outside the shape with value '0' then
189  * downsampling to the image size with sinc; computationally very expensive.
190  *
191  * Approximations are as follows:
192  *
193  * 1) If the pixel coordinate is within the shape assume the sample has the
194  *    shape color and is opaque, else assume there is no contribution from
195  *    the shape.
196  *
197  *    This is the equivalent of aliased rendering or resampling an image with
198  *    a block filter.  The maximum error in the calculated alpha (which will
199  *    always be 0 or 1) is 0.5.
200  *
201  * 2) If the shape is within a square of size 1x1 centered on the pixel assume
202  *    that the shape obscures an amount of the pixel equal to its area within
203  *    that square.
204  *
205  *    This is the equivalent of 'pixel coverage' alpha calculation or resampling
206  *    an image with a bi-linear filter.  The maximum error is over 0.2, but the
207  *    results are often acceptable.
208  *
209  *    This can be approximated by applying (1) to a super-sampled image then
210  *    downsampling with a bi-linear filter.  The error in the super-sampled
211  *    image is 0.5 per sample, but the resampling reduces this.
212  *
213  * 3) Use a better filter with a super-sampled image; in the limit this is the
214  *    sinc() approach.
215  *
216  * 4) Do the geometric calculation; a bivariate definite integral across the
217  *    shape, unfortunately this means evaluating Si(x), the integral of sinc(x),
218  *    which is still a lot of math.
219  *
220  * This code uses approach (3) with a bi-cubic filter and 8x super-sampling
221  * and method (1) for the super-samples.  This means that the sample is either
222  * 0 or 1, depending on whether the sub-pixel is within or outside the shape.
223  * The bi-cubic weights are also fixed and the 16 required weights are
224  * pre-computed here (note that the 'scale' setting will need to be changed if
225  * 'super' is increased).
226  *
227  * The code also calculates a sum to the edge of the filter. This is not
228  * currently used by could be used to optimize the calculation.
229  */
230 #if 0 /* bc code */
231 scale=10
232 super=8
233 define bicubic(x) {
234    if (x <= 1) return (1.5*x - 2.5)*x*x + 1;
235    if (x <  2) return (((2.5 - 0.5*x)*x - 4)*x + 2);
236    return 0;
237 }
238 define sum(x) {
239    auto s;
240    s = 0;
241    while (x < 2*super) {
242       s = s + bicubic(x/super);
243       x = x + 1;
244    }
245    return s;
246 }
247 define results(x) {
248    auto b, s;
249    b = bicubic(x/super);
250    s = sum(x);
251
252    print "   /*", x, "*/ { ", b, ", ", s, " }";
253    return 1;
254 }
255 x=0
256 while (x<2*super) {
257    x = x + results(x)
258    if (x < 2*super) print ","
259    print "\n"
260 }
261 quit
262 #endif
263
264 #define BICUBIC1(x) /*     |x| <= 1 */ ((1.5*(x)* - 2.5)*(x)*(x) + 1)
265 #define BICUBIC2(x) /* 1 < |x| <  2 */ (((2.5 - 0.5*(x))*(x) - 4)*(x) + 2)
266 #define FILTER_WEIGHT 9 /* Twice the first sum below */
267 #define FILTER_WIDTH  2 /* Actually half the width; -2..+2 */
268 #define FILTER_STEPS  8 /* steps per filter unit */
269 static const double
270 bicubic[16][2] =
271 {
272    /* These numbers are exact; the weight for the filter is 1/9, but this
273     * would make the numbers inexact, so it is not included here.
274     */
275    /*          bicubic      sum        */
276    /* 0*/ { 1.0000000000, 4.5000000000 },
277    /* 1*/ {  .9638671875, 3.5000000000 },
278    /* 2*/ {  .8671875000, 2.5361328125 },
279    /* 3*/ {  .7275390625, 1.6689453125 },
280    /* 4*/ {  .5625000000,  .9414062500 },
281    /* 5*/ {  .3896484375,  .3789062500 },
282    /* 6*/ {  .2265625000, -.0107421875 },
283    /* 7*/ {  .0908203125, -.2373046875 },
284    /* 8*/ {            0, -.3281250000 },
285    /* 9*/ { -.0478515625, -.3281250000 },
286    /*10*/ { -.0703125000, -.2802734375 },
287    /*11*/ { -.0732421875, -.2099609375 },
288    /*12*/ { -.0625000000, -.1367187500 },
289    /*13*/ { -.0439453125, -.0742187500 },
290    /*14*/ { -.0234375000, -.0302734375 },
291    /*15*/ { -.0068359375, -.0068359375 }
292 };
293
294 static double
295 alpha_calc(const struct arg *arg, double x, double y)
296 {
297    /* For [x-2..x+2],[y-2,y+2] calculate the weighted bicubic given a function
298     * which tells us whether a point is inside or outside the shape.  First
299     * check if we need to do this at all:
300     */
301    switch (arg->check_fn(arg, x, y))
302    {
303       case OUTSIDE:
304          return 0; /* all samples outside the shape */
305
306       case INSIDE:
307          return 1; /* all samples inside the shape */
308
309       default:
310       {
311          int dy;
312          double alpha = 0;
313
314 #        define FILTER_D (FILTER_WIDTH*FILTER_STEPS-1)
315          for (dy=-FILTER_D; dy<=FILTER_D; ++dy)
316          {
317             double wy = bicubic[abs(dy)][0];
318
319             if (wy != 0)
320             {
321                double alphay = 0;
322                int dx;
323
324                for (dx=-FILTER_D; dx<=FILTER_D; ++dx)
325                {
326                   double wx = bicubic[abs(dx)][0];
327
328                   if (wx != 0 && arg->inside_fn(arg, x+dx/16, y+dy/16))
329                      alphay += wx;
330                }
331
332                alpha += wy * alphay;
333             }
334          }
335
336          /* This needs to be weighted for each dimension: */
337          return alpha / (FILTER_WEIGHT*FILTER_WEIGHT);
338       }
339    }
340 }
341
342 /* These are the shape functions. */
343 /* "square",
344  * { inside_square_filled, check_square_filled },
345  * { inside_square, check_square }
346  */
347 static int
348 square_check(double x, double y, double x1, double y1, double x2, double y2)
349    /* Is x,y inside the square (x1,y1)..(x2,y2)? */
350 {
351    /* Do a modified Cohen-Sutherland on one point, bit patterns that indicate
352     * 'outside' are:
353     *
354     *   x<x1 | x<y1 | x<x2 | x<y2
355     *    0      x      0      x     To the right
356     *    1      x      1      x     To the left
357     *    x      0      x      0     Below
358     *    x      1      x      1     Above
359     *
360     * So 'inside' is (x<x1) != (x<x2) && (y<y1) != (y<y2);
361     */
362    return ((x<x1) ^ (x<x2)) & ((y<y1) ^ (y<y2));
363 }
364
365 static int
366 inside_square_filled(const struct arg *arg, double x, double y)
367 {
368    return square_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2);
369 }
370
371 static int
372 square_check_line(const struct arg *arg, double x, double y, double w)
373    /* Check for a point being inside the boundaries implied by the given arg
374     * and assuming a width 2*w each side of the boundaries.  This returns the
375     * 'check' INSIDE/OUTSIDE/0 result but note the semantics:
376     *
377     *          +--------------+
378     *          |              |   OUTSIDE
379     *          |   INSIDE     |
380     *          |              |
381     *          +--------------+
382     *
383     * And '0' means within the line boundaries.
384     */
385 {
386    double cx = (arg->x1+arg->x2)/2;
387    double wx = fabs(arg->x1-arg->x2)/2;
388    double cy = (arg->y1+arg->y2)/2;
389    double wy = fabs(arg->y1-arg->y2)/2;
390
391    if (square_check(x, y, cx-wx-w, cy-wy-w, cx+wx+w, cy+wy+w))
392    {
393       /* Inside, but maybe too far; check for the redundant case where
394        * the lines overlap:
395        */
396       wx -= w;
397       wy -= w;
398       if (wx > 0 && wy > 0 && square_check(x, y, cx-wx, cy-wy, cx+wx, cy+wy))
399          return INSIDE; /* between (inside) the boundary lines. */
400
401       return 0; /* inside the lines themselves. */
402    }
403
404    return OUTSIDE; /* outside the boundary lines. */
405 }
406
407 static int
408 check_square_filled(const struct arg *arg, double x, double y)
409 {
410    /* The filter extends +/-FILTER_WIDTH each side of each output point, so
411     * the check has to expand and contract the square by that amount; '0'
412     * means close enough to the edge of the square that the bicubic filter has
413     * to be run, OUTSIDE means alpha==0, INSIDE means alpha==1.
414     */
415    return square_check_line(arg, x, y, FILTER_WIDTH);
416 }
417
418 static int
419 inside_square(const struct arg *arg, double x, double y)
420 {
421    /* Return true if within the drawn lines, else false, no need to distinguish
422     * INSIDE vs OUTSIDE here:
423     */
424    return square_check_line(arg, x, y, arg->width/2) == 0;
425 }
426
427 static int
428 check_square(const struct arg *arg, double x, double y)
429 {
430    /* So for this function a result of 'INSIDE' means inside the actual lines.
431     */
432    double w = arg->width/2;
433
434    if (square_check_line(arg, x, y, w+FILTER_WIDTH) == 0)
435    {
436       /* Somewhere close to the boundary lines. If far enough inside one of
437        * them then we can return INSIDE:
438        */
439       w -= FILTER_WIDTH;
440
441       if (w > 0 && square_check_line(arg, x, y, w) == 0)
442          return INSIDE;
443
444       /* Point is somewhere in the filter region: */
445       return 0;
446    }
447
448    else /* Inside or outside the square by more than w+FILTER_WIDTH. */
449       return OUTSIDE;
450 }
451
452 /* "circle",
453  * { inside_circle_filled, check_circle_filled },
454  * { inside_circle, check_circle }
455  *
456  * The functions here are analoguous to the square ones; however, they check
457  * the corresponding ellipse as opposed to the rectangle.
458  */
459 static int
460 circle_check(double x, double y, double x1, double y1, double x2, double y2)
461 {
462    if (square_check(x, y, x1, y1, x2, y2))
463    {
464       /* Inside the square, so maybe inside the circle too: */
465       const double cx = (x1 + x2)/2;
466       const double cy = (y1 + y2)/2;
467       const double dx = x1 - x2;
468       const double dy = y1 - y2;
469
470       x = (x - cx)/dx;
471       y = (y - cy)/dy;
472
473       /* It is outside if the distance from the center is more than half the
474        * diameter:
475        */
476       return x*x+y*y < .25;
477    }
478
479    return 0; /* outside */
480 }
481
482 static int
483 inside_circle_filled(const struct arg *arg, double x, double y)
484 {
485    return circle_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2);
486 }
487
488 static int
489 circle_check_line(const struct arg *arg, double x, double y, double w)
490    /* Check for a point being inside the boundaries implied by the given arg
491     * and assuming a width 2*w each side of the boundaries.  This function has
492     * the same semantic as square_check_line but tests the circle.
493     */
494 {
495    double cx = (arg->x1+arg->x2)/2;
496    double wx = fabs(arg->x1-arg->x2)/2;
497    double cy = (arg->y1+arg->y2)/2;
498    double wy = fabs(arg->y1-arg->y2)/2;
499
500    if (circle_check(x, y, cx-wx-w, cy-wy-w, cx+wx+w, cy+wy+w))
501    {
502       /* Inside, but maybe too far; check for the redundant case where
503        * the lines overlap:
504        */
505       wx -= w;
506       wy -= w;
507       if (wx > 0 && wy > 0 && circle_check(x, y, cx-wx, cy-wy, cx+wx, cy+wy))
508          return INSIDE; /* between (inside) the boundary lines. */
509
510       return 0; /* inside the lines themselves. */
511    }
512
513    return OUTSIDE; /* outside the boundary lines. */
514 }
515
516 static int
517 check_circle_filled(const struct arg *arg, double x, double y)
518 {
519    return circle_check_line(arg, x, y, FILTER_WIDTH);
520 }
521
522 static int
523 inside_circle(const struct arg *arg, double x, double y)
524 {
525    return circle_check_line(arg, x, y, arg->width/2) == 0;
526 }
527
528 static int
529 check_circle(const struct arg *arg, double x, double y)
530 {
531    /* Exactly as the 'square' code.  */
532    double w = arg->width/2;
533
534    if (circle_check_line(arg, x, y, w+FILTER_WIDTH) == 0)
535    {
536       w -= FILTER_WIDTH;
537
538       if (w > 0 && circle_check_line(arg, x, y, w) == 0)
539          return INSIDE;
540
541       /* Point is somewhere in the filter region: */
542       return 0;
543    }
544
545    else /* Inside or outside the square by more than w+FILTER_WIDTH. */
546       return OUTSIDE;
547 }
548
549 /* "line",
550  * { NULL, NULL },  There is no 'filled' line.
551  * { inside_line, check_line }
552  */
553 static int
554 line_check(double x, double y, double x1, double y1, double x2, double y2,
555    double w, double expand)
556 {
557    /* Shift all the points to (arg->x1, arg->y1) */
558    double lx = x2 - x1;
559    double ly = y2 - y1;
560    double len2 = lx*lx + ly*ly;
561    double cross, dot;
562
563    x -= x1;
564    y -= y1;
565
566    /* The dot product is the distance down the line, the cross product is
567     * the distance away from the line:
568     *
569     *    distance = |cross| / sqrt(len2)
570     */
571    cross = x * ly - y * lx;
572
573    /* If 'distance' is more than w the point is definitely outside the line:
574     *
575     *     distance >= w
576     *     |cross|  >= w * sqrt(len2)
577     *     cross^2  >= w^2 * len2:
578     */
579    if (cross*cross >= (w+expand)*(w+expand)*len2)
580       return 0; /* outside */
581
582    /* Now find the distance *along* the line; this comes from the dot product
583     * lx.x+ly.y. The actual distance (in pixels) is:
584     *
585     *   distance = dot / sqrt(len2)
586     */
587    dot = lx * x + ly * y;
588
589    /* The test for 'outside' is:
590     *
591     *    distance < 0 || distance > sqrt(len2)
592     *                 -> dot / sqrt(len2) > sqrt(len2)
593     *                 -> dot > len2
594     *
595     * But 'expand' is used for the filter width and needs to be handled too:
596     */
597    return dot > -expand && dot < len2+expand;
598 }
599
600 static int
601 inside_line(const struct arg *arg, double x, double y)
602 {
603    return line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2, 0);
604 }
605
606 static int
607 check_line(const struct arg *arg, double x, double y)
608 {
609    /* The end caps of the line must be checked too; it's not enough just to
610     * widen the line by FILTER_WIDTH; 'expand' exists for this purpose:
611     */
612    if (line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2,
613        FILTER_WIDTH))
614    {
615       /* Inside the line+filter; far enough inside that the filter isn't
616        * required?
617        */
618       if (arg->width > 2*FILTER_WIDTH &&
619           line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2,
620              -FILTER_WIDTH))
621          return INSIDE;
622
623       return 0;
624    }
625
626    return OUTSIDE;
627 }
628
629 static const struct
630 {
631    const char    *name;
632    shape_fn_ptr   function[2/*fill,line*/][2];
633 #  define         FN_INSIDE 0
634 #  define         FN_CHECK 1
635 } shape_defs[] =
636 {
637    {  "square",
638       {  { inside_square_filled, check_square_filled },
639          { inside_square, check_square } }
640    },
641    {  "circle",
642       {  { inside_circle_filled, check_circle_filled },
643          { inside_circle, check_circle } }
644    },
645    {  "line",
646       {  { NULL, NULL },
647          { inside_line, check_line } }
648    }
649 };
650
651 #define shape_count ((sizeof shape_defs)/(sizeof shape_defs[0]))
652
653 static shape_fn_ptr
654 shape_of(const char *arg, double width, int f)
655 {
656    unsigned int i;
657
658    for (i=0; i<shape_count; ++i) if (strcmp(shape_defs[i].name, arg) == 0)
659    {
660       shape_fn_ptr fn = shape_defs[i].function[width != 0][f];
661
662       if (fn != NULL)
663          return fn;
664
665       fprintf(stderr, "genpng: %s %s not supported\n",
666          width == 0 ? "filled" : "unfilled", arg);
667       exit(1);
668    }
669
670    fprintf(stderr, "genpng: %s: not a valid shape name\n", arg);
671    exit(1);
672 }
673
674 static void
675 parse_arg(struct arg *arg, const char **argv/*7 arguments*/)
676 {
677    /* shape ::= color width shape x1 y1 x2 y2 */
678    arg->color = color_of(argv[0]);
679    arg->width = width_of(argv[1]);
680    arg->inside_fn = shape_of(argv[2], arg->width, FN_INSIDE);
681    arg->check_fn = shape_of(argv[2], arg->width, FN_CHECK);
682    arg->x1 = coordinate_of(argv[3]);
683    arg->y1 = coordinate_of(argv[4]);
684    arg->x2 = coordinate_of(argv[5]);
685    arg->y2 = coordinate_of(argv[6]);
686 }
687
688 static png_uint_32
689 read_wh(const char *name, const char *str)
690    /* read a PNG width or height */
691 {
692    char *ep = NULL;
693    unsigned long ul = strtoul(str, &ep, 10);
694
695    if (ep != NULL && *ep == 0 && ul > 0 && ul <= 0x7fffffff)
696       return (png_uint_32)/*SAFE*/ul;
697
698    fprintf(stderr, "genpng: %s: invalid number %s\n", name, str);
699    exit(1);
700 }
701
702 static void
703 pixel(png_uint_16p p, struct arg *args, int nargs, double x, double y)
704 {
705    /* Fill in the pixel by checking each shape (args[nargs]) for effects on
706     * the corresponding sample:
707     */
708    double r=0, g=0, b=0, a=0;
709
710    while (--nargs >= 0 && a != 1)
711    {
712       /* NOTE: alpha_calc can return a value outside the range 0..1 with the
713        * bicubic filter.
714        */
715       const double alpha = alpha_calc(args+nargs, x, y) * (1-a);
716
717       r += alpha * args[nargs].color->red;
718       g += alpha * args[nargs].color->green;
719       b += alpha * args[nargs].color->blue;
720       a += alpha;
721    }
722
723    /* 'a' may be negative or greater than 1; if it is, negative clamp the
724     * pixel to 0 if >1 clamp r/g/b:
725     */
726    if (a > 0)
727    {
728       if (a > 1)
729       {
730          if (r > 1) r = 1;
731          if (g > 1) g = 1;
732          if (b > 1) b = 1;
733          a = 1;
734       }
735
736       /* And fill in the pixel: */
737       p[0] = (png_uint_16)/*SAFE*/round(r * 65535);
738       p[1] = (png_uint_16)/*SAFE*/round(g * 65535);
739       p[2] = (png_uint_16)/*SAFE*/round(b * 65535);
740       p[3] = (png_uint_16)/*SAFE*/round(a * 65535);
741    }
742
743    else
744       p[3] = p[2] = p[1] = p[0] = 0;
745 }
746
747 int
748 main(int argc, const char **argv)
749 {
750    int convert_to_8bit = 0;
751
752    /* There is one option: --8bit: */
753    if (argc > 1 && strcmp(argv[1], "--8bit") == 0)
754       --argc, ++argv, convert_to_8bit = 1;
755
756    if (argc >= 3)
757    {
758       png_uint_16p buffer;
759       int nshapes;
760       png_image image;
761 #     define max_shapes 256
762       struct arg arg_list[max_shapes];
763
764       /* The libpng Simplified API write code requires a fully initialized
765        * structure.
766        */
767       memset(&image, 0, sizeof image);
768       image.version = PNG_IMAGE_VERSION;
769       image.opaque = NULL;
770       image.width = read_wh("width", argv[1]);
771       image.height = read_wh("height", argv[2]);
772       image.format = PNG_FORMAT_LINEAR_RGB_ALPHA;
773       image.flags = 0;
774       image.colormap_entries = 0;
775
776       /* Check the remainder of the arguments */
777       for (nshapes=0; 3+7*(nshapes+1) <= argc && nshapes < max_shapes;
778            ++nshapes)
779          parse_arg(arg_list+nshapes, argv+3+7*nshapes);
780
781       if (3+7*nshapes != argc)
782       {
783          fprintf(stderr, "genpng: %s: too many arguments\n", argv[3+7*nshapes]);
784          return 1;
785       }
786
787 #if 1
788      /* TO do: determine whether this guard against overflow is necessary.
789       * This comment in png.h indicates that it should be safe: "libpng will
790       * refuse to process an image where such an overflow would occur", but
791       * I don't see where the image gets rejected when the buffer is too
792       * large before the malloc is attempted.
793       */
794       if (image.height > ((size_t)(-1))/(8*image.width)) {
795          fprintf(stderr, "genpng: image buffer would be too big");
796          return 1;
797       }
798 #endif
799
800       /* Create the buffer: */
801       buffer = malloc(PNG_IMAGE_SIZE(image));
802
803       if (buffer != NULL)
804       {
805          png_uint_32 y;
806
807          /* Write each row... */
808          for (y=0; y<image.height; ++y)
809          {
810             png_uint_32 x;
811
812             /* Each pixel in each row: */
813             for (x=0; x<image.width; ++x)
814                pixel(buffer + 4*(x + y*image.width), arg_list, nshapes, x, y);
815          }
816
817          /* Write the result (to stdout) */
818          if (png_image_write_to_stdio(&image, stdout, convert_to_8bit,
819              buffer, 0/*row_stride*/, NULL/*colormap*/))
820          {
821             free(buffer);
822             return 0; /* success */
823          }
824
825          else
826             fprintf(stderr, "genpng: write stdout: %s\n", image.message);
827
828          free(buffer);
829       }
830
831       else
832          fprintf(stderr, "genpng: out of memory: %lu bytes\n",
833                (unsigned long)PNG_IMAGE_SIZE(image));
834    }
835
836    else
837    {
838       /* Wrong number of arguments */
839       fprintf(stderr, "genpng: usage: genpng [--8bit] width height {shape}\n"
840          " Generate a transparent PNG in RGBA (truecolor+alpha) format\n"
841          " containing the given shape or shapes.  Shapes are defined:\n"
842          "\n"
843          "  shape ::= color width shape x1 y1 x2 y2\n"
844          "  color ::= black|white|red|green|yellow|blue\n"
845          "  color ::= brown|purple|pink|orange|gray|cyan\n"
846          "  width ::= filled|<number>\n"
847          "  shape ::= circle|square|line\n"
848          "  x1,x2 ::= <number>\n"
849          "  y1,y2 ::= <number>\n"
850          "\n"
851          " Numbers are floating point numbers describing points relative to\n"
852          " the top left of the output PNG as pixel coordinates.  The 'width'\n"
853          " parameter is either the width of the line (in output pixels) used\n"
854          " to draw the shape or 'filled' to indicate that the shape should\n"
855          " be filled with the color.\n"
856          "\n"
857          " Colors are interpreted loosely to give access to the eight full\n"
858          " intensity RGB values:\n"
859          "\n"
860          "  black, red, green, blue, yellow, cyan, purple, white,\n"
861          "\n"
862          " Cyan is full intensity blue+green; RGB(0,1,1), plus the following\n"
863          " lower intensity values:\n"
864          "\n"
865          "  brown:  red+orange:  RGB(0.5, 0.125, 0) (dark red+orange)\n"
866          "  pink:   red+white:   RGB(1.0, 0.5,   0.5)\n"
867          "  orange: red+yellow:  RGB(1.0, 0.5,   0)\n"
868          "  gray:   black+white: RGB(0.5, 0.5,   0.5)\n"
869          "\n"
870          " The RGB values are selected to make detection of aliasing errors\n"
871          " easy. The names are selected to make the description of errors\n"
872          " easy.\n"
873          "\n"
874          " The PNG is written to stdout, if --8bit is given a 32bpp RGBA sRGB\n"
875          " file is produced, otherwise a 64bpp RGBA linear encoded file is\n"
876          " written.\n");
877    }
878
879    return 1;
880 }
881 #endif /* SIMPLIFIED_WRITE && STDIO */