Bump to 2.1.4
[platform/upstream/libjpeg-turbo.git] / jmemmgr.c
1 /*
2  * jmemmgr.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1991-1997, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2016, 2021-2022, D. R. Commander.
8  * For conditions of distribution and use, see the accompanying README.ijg
9  * file.
10  *
11  * This file contains the JPEG system-independent memory management
12  * routines.  This code is usable across a wide variety of machines; most
13  * of the system dependencies have been isolated in a separate file.
14  * The major functions provided here are:
15  *   * pool-based allocation and freeing of memory;
16  *   * policy decisions about how to divide available memory among the
17  *     virtual arrays;
18  *   * control logic for swapping virtual arrays between main memory and
19  *     backing storage.
20  * The separate system-dependent file provides the actual backing-storage
21  * access code, and it contains the policy decision about how much total
22  * main memory to use.
23  * This file is system-dependent in the sense that some of its functions
24  * are unnecessary in some systems.  For example, if there is enough virtual
25  * memory so that backing storage will never be used, much of the virtual
26  * array control logic could be removed.  (Of course, if you have that much
27  * memory then you shouldn't care about a little bit of unused code...)
28  */
29
30 #define JPEG_INTERNALS
31 #define AM_MEMORY_MANAGER       /* we define jvirt_Xarray_control structs */
32 #include "jinclude.h"
33 #include "jpeglib.h"
34 #include "jmemsys.h"            /* import the system-dependent declarations */
35 #if !defined(_MSC_VER) || _MSC_VER > 1600
36 #include <stdint.h>
37 #endif
38 #include <limits.h>
39
40
41 LOCAL(size_t)
42 round_up_pow2(size_t a, size_t b)
43 /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */
44 /* Assumes a >= 0, b > 0, and b is a power of 2 */
45 {
46   return ((a + b - 1) & (~(b - 1)));
47 }
48
49
50 /*
51  * Some important notes:
52  *   The allocation routines provided here must never return NULL.
53  *   They should exit to error_exit if unsuccessful.
54  *
55  *   It's not a good idea to try to merge the sarray and barray routines,
56  *   even though they are textually almost the same, because samples are
57  *   usually stored as bytes while coefficients are shorts or ints.  Thus,
58  *   in machines where byte pointers have a different representation from
59  *   word pointers, the resulting machine code could not be the same.
60  */
61
62
63 /*
64  * Many machines require storage alignment: longs must start on 4-byte
65  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
66  * always returns pointers that are multiples of the worst-case alignment
67  * requirement, and we had better do so too.
68  * There isn't any really portable way to determine the worst-case alignment
69  * requirement.  This module assumes that the alignment requirement is
70  * multiples of ALIGN_SIZE.
71  * By default, we define ALIGN_SIZE as the maximum of sizeof(double) and
72  * sizeof(void *).  This is necessary on some workstations (where doubles
73  * really do need 8-byte alignment) and will work fine on nearly everything.
74  * We use the maximum of sizeof(double) and sizeof(void *) since sizeof(double)
75  * may be insufficient, for example, on CHERI-enabled platforms with 16-byte
76  * pointers and a 16-byte alignment requirement.  If your machine has lesser
77  * alignment needs, you can save a few bytes by making ALIGN_SIZE smaller.
78  * The only place I know of where this will NOT work is certain Macintosh
79  * 680x0 compilers that define double as a 10-byte IEEE extended float.
80  * Doing 10-byte alignment is counterproductive because longwords won't be
81  * aligned well.  Put "#define ALIGN_SIZE 4" in jconfig.h if you have
82  * such a compiler.
83  */
84
85 #ifndef ALIGN_SIZE              /* so can override from jconfig.h */
86 #ifndef WITH_SIMD
87 #define ALIGN_SIZE  MAX(sizeof(void *), sizeof(double))
88 #else
89 #define ALIGN_SIZE  32 /* Most of the SIMD instructions we support require
90                           16-byte (128-bit) alignment, but AVX2 requires
91                           32-byte alignment. */
92 #endif
93 #endif
94
95 /*
96  * We allocate objects from "pools", where each pool is gotten with a single
97  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
98  * overhead within a pool, except for alignment padding.  Each pool has a
99  * header with a link to the next pool of the same class.
100  * Small and large pool headers are identical.
101  */
102
103 typedef struct small_pool_struct *small_pool_ptr;
104
105 typedef struct small_pool_struct {
106   small_pool_ptr next;          /* next in list of pools */
107   size_t bytes_used;            /* how many bytes already used within pool */
108   size_t bytes_left;            /* bytes still available in this pool */
109 } small_pool_hdr;
110
111 typedef struct large_pool_struct *large_pool_ptr;
112
113 typedef struct large_pool_struct {
114   large_pool_ptr next;          /* next in list of pools */
115   size_t bytes_used;            /* how many bytes already used within pool */
116   size_t bytes_left;            /* bytes still available in this pool */
117 } large_pool_hdr;
118
119 /*
120  * Here is the full definition of a memory manager object.
121  */
122
123 typedef struct {
124   struct jpeg_memory_mgr pub;   /* public fields */
125
126   /* Each pool identifier (lifetime class) names a linked list of pools. */
127   small_pool_ptr small_list[JPOOL_NUMPOOLS];
128   large_pool_ptr large_list[JPOOL_NUMPOOLS];
129
130   /* Since we only have one lifetime class of virtual arrays, only one
131    * linked list is necessary (for each datatype).  Note that the virtual
132    * array control blocks being linked together are actually stored somewhere
133    * in the small-pool list.
134    */
135   jvirt_sarray_ptr virt_sarray_list;
136   jvirt_barray_ptr virt_barray_list;
137
138   /* This counts total space obtained from jpeg_get_small/large */
139   size_t total_space_allocated;
140
141   /* alloc_sarray and alloc_barray set this value for use by virtual
142    * array routines.
143    */
144   JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
145 } my_memory_mgr;
146
147 typedef my_memory_mgr *my_mem_ptr;
148
149
150 /*
151  * The control blocks for virtual arrays.
152  * Note that these blocks are allocated in the "small" pool area.
153  * System-dependent info for the associated backing store (if any) is hidden
154  * inside the backing_store_info struct.
155  */
156
157 struct jvirt_sarray_control {
158   JSAMPARRAY mem_buffer;        /* => the in-memory buffer */
159   JDIMENSION rows_in_array;     /* total virtual array height */
160   JDIMENSION samplesperrow;     /* width of array (and of memory buffer) */
161   JDIMENSION maxaccess;         /* max rows accessed by access_virt_sarray */
162   JDIMENSION rows_in_mem;       /* height of memory buffer */
163   JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
164   JDIMENSION cur_start_row;     /* first logical row # in the buffer */
165   JDIMENSION first_undef_row;   /* row # of first uninitialized row */
166   boolean pre_zero;             /* pre-zero mode requested? */
167   boolean dirty;                /* do current buffer contents need written? */
168   boolean b_s_open;             /* is backing-store data valid? */
169   jvirt_sarray_ptr next;        /* link to next virtual sarray control block */
170   backing_store_info b_s_info;  /* System-dependent control info */
171 };
172
173 struct jvirt_barray_control {
174   JBLOCKARRAY mem_buffer;       /* => the in-memory buffer */
175   JDIMENSION rows_in_array;     /* total virtual array height */
176   JDIMENSION blocksperrow;      /* width of array (and of memory buffer) */
177   JDIMENSION maxaccess;         /* max rows accessed by access_virt_barray */
178   JDIMENSION rows_in_mem;       /* height of memory buffer */
179   JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
180   JDIMENSION cur_start_row;     /* first logical row # in the buffer */
181   JDIMENSION first_undef_row;   /* row # of first uninitialized row */
182   boolean pre_zero;             /* pre-zero mode requested? */
183   boolean dirty;                /* do current buffer contents need written? */
184   boolean b_s_open;             /* is backing-store data valid? */
185   jvirt_barray_ptr next;        /* link to next virtual barray control block */
186   backing_store_info b_s_info;  /* System-dependent control info */
187 };
188
189
190 #ifdef MEM_STATS                /* optional extra stuff for statistics */
191
192 LOCAL(void)
193 print_mem_stats(j_common_ptr cinfo, int pool_id)
194 {
195   my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
196   small_pool_ptr shdr_ptr;
197   large_pool_ptr lhdr_ptr;
198
199   /* Since this is only a debugging stub, we can cheat a little by using
200    * fprintf directly rather than going through the trace message code.
201    * This is helpful because message parm array can't handle longs.
202    */
203   fprintf(stderr, "Freeing pool %d, total space = %ld\n",
204           pool_id, mem->total_space_allocated);
205
206   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
207        lhdr_ptr = lhdr_ptr->next) {
208     fprintf(stderr, "  Large chunk used %ld\n", (long)lhdr_ptr->bytes_used);
209   }
210
211   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
212        shdr_ptr = shdr_ptr->next) {
213     fprintf(stderr, "  Small chunk used %ld free %ld\n",
214             (long)shdr_ptr->bytes_used, (long)shdr_ptr->bytes_left);
215   }
216 }
217
218 #endif /* MEM_STATS */
219
220
221 LOCAL(void)
222 out_of_memory(j_common_ptr cinfo, int which)
223 /* Report an out-of-memory error and stop execution */
224 /* If we compiled MEM_STATS support, report alloc requests before dying */
225 {
226 #ifdef MEM_STATS
227   cinfo->err->trace_level = 2;  /* force self_destruct to report stats */
228 #endif
229   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
230 }
231
232
233 /*
234  * Allocation of "small" objects.
235  *
236  * For these, we use pooled storage.  When a new pool must be created,
237  * we try to get enough space for the current request plus a "slop" factor,
238  * where the slop will be the amount of leftover space in the new pool.
239  * The speed vs. space tradeoff is largely determined by the slop values.
240  * A different slop value is provided for each pool class (lifetime),
241  * and we also distinguish the first pool of a class from later ones.
242  * NOTE: the values given work fairly well on both 16- and 32-bit-int
243  * machines, but may be too small if longs are 64 bits or more.
244  *
245  * Since we do not know what alignment malloc() gives us, we have to
246  * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment
247  * adjustment.
248  */
249
250 static const size_t first_pool_slop[JPOOL_NUMPOOLS] = {
251   1600,                         /* first PERMANENT pool */
252   16000                         /* first IMAGE pool */
253 };
254
255 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = {
256   0,                            /* additional PERMANENT pools */
257   5000                          /* additional IMAGE pools */
258 };
259
260 #define MIN_SLOP  50            /* greater than 0 to avoid futile looping */
261
262
263 METHODDEF(void *)
264 alloc_small(j_common_ptr cinfo, int pool_id, size_t sizeofobject)
265 /* Allocate a "small" object */
266 {
267   my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
268   small_pool_ptr hdr_ptr, prev_hdr_ptr;
269   char *data_ptr;
270   size_t min_request, slop;
271
272   /*
273    * Round up the requested size to a multiple of ALIGN_SIZE in order
274    * to assure alignment for the next object allocated in the same pool
275    * and so that algorithms can straddle outside the proper area up
276    * to the next alignment.
277    */
278   if (sizeofobject > MAX_ALLOC_CHUNK) {
279     /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
280        is close to SIZE_MAX. */
281     out_of_memory(cinfo, 7);
282   }
283   sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
284
285   /* Check for unsatisfiable request (do now to ensure no overflow below) */
286   if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
287       MAX_ALLOC_CHUNK)
288     out_of_memory(cinfo, 1);    /* request exceeds malloc's ability */
289
290   /* See if space is available in any existing pool */
291   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
292     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
293   prev_hdr_ptr = NULL;
294   hdr_ptr = mem->small_list[pool_id];
295   while (hdr_ptr != NULL) {
296     if (hdr_ptr->bytes_left >= sizeofobject)
297       break;                    /* found pool with enough space */
298     prev_hdr_ptr = hdr_ptr;
299     hdr_ptr = hdr_ptr->next;
300   }
301
302   /* Time to make a new pool? */
303   if (hdr_ptr == NULL) {
304     /* min_request is what we need now, slop is what will be leftover */
305     min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1;
306     if (prev_hdr_ptr == NULL)   /* first pool in class? */
307       slop = first_pool_slop[pool_id];
308     else
309       slop = extra_pool_slop[pool_id];
310     /* Don't ask for more than MAX_ALLOC_CHUNK */
311     if (slop > (size_t)(MAX_ALLOC_CHUNK - min_request))
312       slop = (size_t)(MAX_ALLOC_CHUNK - min_request);
313     /* Try to get space, if fail reduce slop and try again */
314     for (;;) {
315       hdr_ptr = (small_pool_ptr)jpeg_get_small(cinfo, min_request + slop);
316       if (hdr_ptr != NULL)
317         break;
318       slop /= 2;
319       if (slop < MIN_SLOP)      /* give up when it gets real small */
320         out_of_memory(cinfo, 2); /* jpeg_get_small failed */
321     }
322     mem->total_space_allocated += min_request + slop;
323     /* Success, initialize the new pool header and add to end of list */
324     hdr_ptr->next = NULL;
325     hdr_ptr->bytes_used = 0;
326     hdr_ptr->bytes_left = sizeofobject + slop;
327     if (prev_hdr_ptr == NULL)   /* first pool in class? */
328       mem->small_list[pool_id] = hdr_ptr;
329     else
330       prev_hdr_ptr->next = hdr_ptr;
331   }
332
333   /* OK, allocate the object from the current pool */
334   data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */
335   data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
336   if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
337     data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
338   data_ptr += hdr_ptr->bytes_used; /* point to place for object */
339   hdr_ptr->bytes_used += sizeofobject;
340   hdr_ptr->bytes_left -= sizeofobject;
341
342   return (void *)data_ptr;
343 }
344
345
346 /*
347  * Allocation of "large" objects.
348  *
349  * The external semantics of these are the same as "small" objects.  However,
350  * the pool management heuristics are quite different.  We assume that each
351  * request is large enough that it may as well be passed directly to
352  * jpeg_get_large; the pool management just links everything together
353  * so that we can free it all on demand.
354  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
355  * structures.  The routines that create these structures (see below)
356  * deliberately bunch rows together to ensure a large request size.
357  */
358
359 METHODDEF(void *)
360 alloc_large(j_common_ptr cinfo, int pool_id, size_t sizeofobject)
361 /* Allocate a "large" object */
362 {
363   my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
364   large_pool_ptr hdr_ptr;
365   char *data_ptr;
366
367   /*
368    * Round up the requested size to a multiple of ALIGN_SIZE so that
369    * algorithms can straddle outside the proper area up to the next
370    * alignment.
371    */
372   if (sizeofobject > MAX_ALLOC_CHUNK) {
373     /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
374        is close to SIZE_MAX. */
375     out_of_memory(cinfo, 8);
376   }
377   sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
378
379   /* Check for unsatisfiable request (do now to ensure no overflow below) */
380   if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
381       MAX_ALLOC_CHUNK)
382     out_of_memory(cinfo, 3);    /* request exceeds malloc's ability */
383
384   /* Always make a new pool */
385   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
386     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
387
388   hdr_ptr = (large_pool_ptr)jpeg_get_large(cinfo, sizeofobject +
389                                            sizeof(large_pool_hdr) +
390                                            ALIGN_SIZE - 1);
391   if (hdr_ptr == NULL)
392     out_of_memory(cinfo, 4);    /* jpeg_get_large failed */
393   mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) +
394                                 ALIGN_SIZE - 1;
395
396   /* Success, initialize the new pool header and add to list */
397   hdr_ptr->next = mem->large_list[pool_id];
398   /* We maintain space counts in each pool header for statistical purposes,
399    * even though they are not needed for allocation.
400    */
401   hdr_ptr->bytes_used = sizeofobject;
402   hdr_ptr->bytes_left = 0;
403   mem->large_list[pool_id] = hdr_ptr;
404
405   data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */
406   data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
407   if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
408     data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
409
410   return (void *)data_ptr;
411 }
412
413
414 /*
415  * Creation of 2-D sample arrays.
416  *
417  * To minimize allocation overhead and to allow I/O of large contiguous
418  * blocks, we allocate the sample rows in groups of as many rows as possible
419  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
420  * NB: the virtual array control routines, later in this file, know about
421  * this chunking of rows.  The rowsperchunk value is left in the mem manager
422  * object so that it can be saved away if this sarray is the workspace for
423  * a virtual array.
424  *
425  * Since we are often upsampling with a factor 2, we align the size (not
426  * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have
427  * to be as careful about size.
428  */
429
430 METHODDEF(JSAMPARRAY)
431 alloc_sarray(j_common_ptr cinfo, int pool_id, JDIMENSION samplesperrow,
432              JDIMENSION numrows)
433 /* Allocate a 2-D sample array */
434 {
435   my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
436   JSAMPARRAY result;
437   JSAMPROW workspace;
438   JDIMENSION rowsperchunk, currow, i;
439   long ltemp;
440
441   /* Make sure each row is properly aligned */
442   if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0)
443     out_of_memory(cinfo, 5);    /* safety check */
444
445   if (samplesperrow > MAX_ALLOC_CHUNK) {
446     /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
447        is close to SIZE_MAX. */
448     out_of_memory(cinfo, 9);
449   }
450   samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) /
451                                                            sizeof(JSAMPLE));
452
453   /* Calculate max # of rows allowed in one allocation chunk */
454   ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) /
455           ((long)samplesperrow * sizeof(JSAMPLE));
456   if (ltemp <= 0)
457     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
458   if (ltemp < (long)numrows)
459     rowsperchunk = (JDIMENSION)ltemp;
460   else
461     rowsperchunk = numrows;
462   mem->last_rowsperchunk = rowsperchunk;
463
464   /* Get space for row pointers (small object) */
465   result = (JSAMPARRAY)alloc_small(cinfo, pool_id,
466                                    (size_t)(numrows * sizeof(JSAMPROW)));
467
468   /* Get the rows themselves (large objects) */
469   currow = 0;
470   while (currow < numrows) {
471     rowsperchunk = MIN(rowsperchunk, numrows - currow);
472     workspace = (JSAMPROW)alloc_large(cinfo, pool_id,
473       (size_t)((size_t)rowsperchunk * (size_t)samplesperrow *
474                sizeof(JSAMPLE)));
475     for (i = rowsperchunk; i > 0; i--) {
476       result[currow++] = workspace;
477       workspace += samplesperrow;
478     }
479   }
480
481   return result;
482 }
483
484
485 /*
486  * Creation of 2-D coefficient-block arrays.
487  * This is essentially the same as the code for sample arrays, above.
488  */
489
490 METHODDEF(JBLOCKARRAY)
491 alloc_barray(j_common_ptr cinfo, int pool_id, JDIMENSION blocksperrow,
492              JDIMENSION numrows)
493 /* Allocate a 2-D coefficient-block array */
494 {
495   my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
496   JBLOCKARRAY result;
497   JBLOCKROW workspace;
498   JDIMENSION rowsperchunk, currow, i;
499   long ltemp;
500
501   /* Make sure each row is properly aligned */
502   if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0)
503     out_of_memory(cinfo, 6);    /* safety check */
504
505   /* Calculate max # of rows allowed in one allocation chunk */
506   ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) /
507           ((long)blocksperrow * sizeof(JBLOCK));
508   if (ltemp <= 0)
509     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
510   if (ltemp < (long)numrows)
511     rowsperchunk = (JDIMENSION)ltemp;
512   else
513     rowsperchunk = numrows;
514   mem->last_rowsperchunk = rowsperchunk;
515
516   /* Get space for row pointers (small object) */
517   result = (JBLOCKARRAY)alloc_small(cinfo, pool_id,
518                                     (size_t)(numrows * sizeof(JBLOCKROW)));
519
520   /* Get the rows themselves (large objects) */
521   currow = 0;
522   while (currow < numrows) {
523     rowsperchunk = MIN(rowsperchunk, numrows - currow);
524     workspace = (JBLOCKROW)alloc_large(cinfo, pool_id,
525         (size_t)((size_t)rowsperchunk * (size_t)blocksperrow *
526                   sizeof(JBLOCK)));
527     for (i = rowsperchunk; i > 0; i--) {
528       result[currow++] = workspace;
529       workspace += blocksperrow;
530     }
531   }
532
533   return result;
534 }
535
536
537 /*
538  * About virtual array management:
539  *
540  * The above "normal" array routines are only used to allocate strip buffers
541  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
542  * are handled as "virtual" arrays.  The array is still accessed a strip at a
543  * time, but the memory manager must save the whole array for repeated
544  * accesses.  The intended implementation is that there is a strip buffer in
545  * memory (as high as is possible given the desired memory limit), plus a
546  * backing file that holds the rest of the array.
547  *
548  * The request_virt_array routines are told the total size of the image and
549  * the maximum number of rows that will be accessed at once.  The in-memory
550  * buffer must be at least as large as the maxaccess value.
551  *
552  * The request routines create control blocks but not the in-memory buffers.
553  * That is postponed until realize_virt_arrays is called.  At that time the
554  * total amount of space needed is known (approximately, anyway), so free
555  * memory can be divided up fairly.
556  *
557  * The access_virt_array routines are responsible for making a specific strip
558  * area accessible (after reading or writing the backing file, if necessary).
559  * Note that the access routines are told whether the caller intends to modify
560  * the accessed strip; during a read-only pass this saves having to rewrite
561  * data to disk.  The access routines are also responsible for pre-zeroing
562  * any newly accessed rows, if pre-zeroing was requested.
563  *
564  * In current usage, the access requests are usually for nonoverlapping
565  * strips; that is, successive access start_row numbers differ by exactly
566  * num_rows = maxaccess.  This means we can get good performance with simple
567  * buffer dump/reload logic, by making the in-memory buffer be a multiple
568  * of the access height; then there will never be accesses across bufferload
569  * boundaries.  The code will still work with overlapping access requests,
570  * but it doesn't handle bufferload overlaps very efficiently.
571  */
572
573
574 METHODDEF(jvirt_sarray_ptr)
575 request_virt_sarray(j_common_ptr cinfo, int pool_id, boolean pre_zero,
576                     JDIMENSION samplesperrow, JDIMENSION numrows,
577                     JDIMENSION maxaccess)
578 /* Request a virtual 2-D sample array */
579 {
580   my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
581   jvirt_sarray_ptr result;
582
583   /* Only IMAGE-lifetime virtual arrays are currently supported */
584   if (pool_id != JPOOL_IMAGE)
585     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
586
587   /* get control block */
588   result = (jvirt_sarray_ptr)alloc_small(cinfo, pool_id,
589                                          sizeof(struct jvirt_sarray_control));
590
591   result->mem_buffer = NULL;    /* marks array not yet realized */
592   result->rows_in_array = numrows;
593   result->samplesperrow = samplesperrow;
594   result->maxaccess = maxaccess;
595   result->pre_zero = pre_zero;
596   result->b_s_open = FALSE;     /* no associated backing-store object */
597   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
598   mem->virt_sarray_list = result;
599
600   return result;
601 }
602
603
604 METHODDEF(jvirt_barray_ptr)
605 request_virt_barray(j_common_ptr cinfo, int pool_id, boolean pre_zero,
606                     JDIMENSION blocksperrow, JDIMENSION numrows,
607                     JDIMENSION maxaccess)
608 /* Request a virtual 2-D coefficient-block array */
609 {
610   my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
611   jvirt_barray_ptr result;
612
613   /* Only IMAGE-lifetime virtual arrays are currently supported */
614   if (pool_id != JPOOL_IMAGE)
615     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
616
617   /* get control block */
618   result = (jvirt_barray_ptr)alloc_small(cinfo, pool_id,
619                                          sizeof(struct jvirt_barray_control));
620
621   result->mem_buffer = NULL;    /* marks array not yet realized */
622   result->rows_in_array = numrows;
623   result->blocksperrow = blocksperrow;
624   result->maxaccess = maxaccess;
625   result->pre_zero = pre_zero;
626   result->b_s_open = FALSE;     /* no associated backing-store object */
627   result->next = mem->virt_barray_list; /* add to list of virtual arrays */
628   mem->virt_barray_list = result;
629
630   return result;
631 }
632
633
634 METHODDEF(void)
635 realize_virt_arrays(j_common_ptr cinfo)
636 /* Allocate the in-memory buffers for any unrealized virtual arrays */
637 {
638   my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
639   size_t space_per_minheight, maximum_space, avail_mem;
640   size_t minheights, max_minheights;
641   jvirt_sarray_ptr sptr;
642   jvirt_barray_ptr bptr;
643
644   /* Compute the minimum space needed (maxaccess rows in each buffer)
645    * and the maximum space needed (full image height in each buffer).
646    * These may be of use to the system-dependent jpeg_mem_available routine.
647    */
648   space_per_minheight = 0;
649   maximum_space = 0;
650   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
651     if (sptr->mem_buffer == NULL) { /* if not realized yet */
652       size_t new_space = (long)sptr->rows_in_array *
653                          (long)sptr->samplesperrow * sizeof(JSAMPLE);
654
655       space_per_minheight += (long)sptr->maxaccess *
656                              (long)sptr->samplesperrow * sizeof(JSAMPLE);
657       if (SIZE_MAX - maximum_space < new_space)
658         out_of_memory(cinfo, 10);
659       maximum_space += new_space;
660     }
661   }
662   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
663     if (bptr->mem_buffer == NULL) { /* if not realized yet */
664       size_t new_space = (long)bptr->rows_in_array *
665                          (long)bptr->blocksperrow * sizeof(JBLOCK);
666
667       space_per_minheight += (long)bptr->maxaccess *
668                              (long)bptr->blocksperrow * sizeof(JBLOCK);
669       if (SIZE_MAX - maximum_space < new_space)
670         out_of_memory(cinfo, 11);
671       maximum_space += new_space;
672     }
673   }
674
675   if (space_per_minheight <= 0)
676     return;                     /* no unrealized arrays, no work */
677
678   /* Determine amount of memory to actually use; this is system-dependent. */
679   avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
680                                  mem->total_space_allocated);
681
682   /* If the maximum space needed is available, make all the buffers full
683    * height; otherwise parcel it out with the same number of minheights
684    * in each buffer.
685    */
686   if (avail_mem >= maximum_space)
687     max_minheights = 1000000000L;
688   else {
689     max_minheights = avail_mem / space_per_minheight;
690     /* If there doesn't seem to be enough space, try to get the minimum
691      * anyway.  This allows a "stub" implementation of jpeg_mem_available().
692      */
693     if (max_minheights <= 0)
694       max_minheights = 1;
695   }
696
697   /* Allocate the in-memory buffers and initialize backing store as needed. */
698
699   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
700     if (sptr->mem_buffer == NULL) { /* if not realized yet */
701       minheights = ((long)sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
702       if (minheights <= max_minheights) {
703         /* This buffer fits in memory */
704         sptr->rows_in_mem = sptr->rows_in_array;
705       } else {
706         /* It doesn't fit in memory, create backing store. */
707         sptr->rows_in_mem = (JDIMENSION)(max_minheights * sptr->maxaccess);
708         jpeg_open_backing_store(cinfo, &sptr->b_s_info,
709                                 (long)sptr->rows_in_array *
710                                 (long)sptr->samplesperrow *
711                                 (long)sizeof(JSAMPLE));
712         sptr->b_s_open = TRUE;
713       }
714       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
715                                       sptr->samplesperrow, sptr->rows_in_mem);
716       sptr->rowsperchunk = mem->last_rowsperchunk;
717       sptr->cur_start_row = 0;
718       sptr->first_undef_row = 0;
719       sptr->dirty = FALSE;
720     }
721   }
722
723   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
724     if (bptr->mem_buffer == NULL) { /* if not realized yet */
725       minheights = ((long)bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
726       if (minheights <= max_minheights) {
727         /* This buffer fits in memory */
728         bptr->rows_in_mem = bptr->rows_in_array;
729       } else {
730         /* It doesn't fit in memory, create backing store. */
731         bptr->rows_in_mem = (JDIMENSION)(max_minheights * bptr->maxaccess);
732         jpeg_open_backing_store(cinfo, &bptr->b_s_info,
733                                 (long)bptr->rows_in_array *
734                                 (long)bptr->blocksperrow *
735                                 (long)sizeof(JBLOCK));
736         bptr->b_s_open = TRUE;
737       }
738       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
739                                       bptr->blocksperrow, bptr->rows_in_mem);
740       bptr->rowsperchunk = mem->last_rowsperchunk;
741       bptr->cur_start_row = 0;
742       bptr->first_undef_row = 0;
743       bptr->dirty = FALSE;
744     }
745   }
746 }
747
748
749 LOCAL(void)
750 do_sarray_io(j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
751 /* Do backing store read or write of a virtual sample array */
752 {
753   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
754
755   bytesperrow = (long)ptr->samplesperrow * sizeof(JSAMPLE);
756   file_offset = ptr->cur_start_row * bytesperrow;
757   /* Loop to read or write each allocation chunk in mem_buffer */
758   for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) {
759     /* One chunk, but check for short chunk at end of buffer */
760     rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i);
761     /* Transfer no more than is currently defined */
762     thisrow = (long)ptr->cur_start_row + i;
763     rows = MIN(rows, (long)ptr->first_undef_row - thisrow);
764     /* Transfer no more than fits in file */
765     rows = MIN(rows, (long)ptr->rows_in_array - thisrow);
766     if (rows <= 0)              /* this chunk might be past end of file! */
767       break;
768     byte_count = rows * bytesperrow;
769     if (writing)
770       (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info,
771                                             (void *)ptr->mem_buffer[i],
772                                             file_offset, byte_count);
773     else
774       (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info,
775                                            (void *)ptr->mem_buffer[i],
776                                            file_offset, byte_count);
777     file_offset += byte_count;
778   }
779 }
780
781
782 LOCAL(void)
783 do_barray_io(j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
784 /* Do backing store read or write of a virtual coefficient-block array */
785 {
786   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
787
788   bytesperrow = (long)ptr->blocksperrow * sizeof(JBLOCK);
789   file_offset = ptr->cur_start_row * bytesperrow;
790   /* Loop to read or write each allocation chunk in mem_buffer */
791   for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) {
792     /* One chunk, but check for short chunk at end of buffer */
793     rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i);
794     /* Transfer no more than is currently defined */
795     thisrow = (long)ptr->cur_start_row + i;
796     rows = MIN(rows, (long)ptr->first_undef_row - thisrow);
797     /* Transfer no more than fits in file */
798     rows = MIN(rows, (long)ptr->rows_in_array - thisrow);
799     if (rows <= 0)              /* this chunk might be past end of file! */
800       break;
801     byte_count = rows * bytesperrow;
802     if (writing)
803       (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info,
804                                             (void *)ptr->mem_buffer[i],
805                                             file_offset, byte_count);
806     else
807       (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info,
808                                            (void *)ptr->mem_buffer[i],
809                                            file_offset, byte_count);
810     file_offset += byte_count;
811   }
812 }
813
814
815 METHODDEF(JSAMPARRAY)
816 access_virt_sarray(j_common_ptr cinfo, jvirt_sarray_ptr ptr,
817                    JDIMENSION start_row, JDIMENSION num_rows, boolean writable)
818 /* Access the part of a virtual sample array starting at start_row */
819 /* and extending for num_rows rows.  writable is true if  */
820 /* caller intends to modify the accessed area. */
821 {
822   JDIMENSION end_row = start_row + num_rows;
823   JDIMENSION undef_row;
824
825   /* debugging check */
826   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
827       ptr->mem_buffer == NULL)
828     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
829
830   /* Make the desired part of the virtual array accessible */
831   if (start_row < ptr->cur_start_row ||
832       end_row > ptr->cur_start_row + ptr->rows_in_mem) {
833     if (!ptr->b_s_open)
834       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
835     /* Flush old buffer contents if necessary */
836     if (ptr->dirty) {
837       do_sarray_io(cinfo, ptr, TRUE);
838       ptr->dirty = FALSE;
839     }
840     /* Decide what part of virtual array to access.
841      * Algorithm: if target address > current window, assume forward scan,
842      * load starting at target address.  If target address < current window,
843      * assume backward scan, load so that target area is top of window.
844      * Note that when switching from forward write to forward read, will have
845      * start_row = 0, so the limiting case applies and we load from 0 anyway.
846      */
847     if (start_row > ptr->cur_start_row) {
848       ptr->cur_start_row = start_row;
849     } else {
850       /* use long arithmetic here to avoid overflow & unsigned problems */
851       long ltemp;
852
853       ltemp = (long)end_row - (long)ptr->rows_in_mem;
854       if (ltemp < 0)
855         ltemp = 0;              /* don't fall off front end of file */
856       ptr->cur_start_row = (JDIMENSION)ltemp;
857     }
858     /* Read in the selected part of the array.
859      * During the initial write pass, we will do no actual read
860      * because the selected part is all undefined.
861      */
862     do_sarray_io(cinfo, ptr, FALSE);
863   }
864   /* Ensure the accessed part of the array is defined; prezero if needed.
865    * To improve locality of access, we only prezero the part of the array
866    * that the caller is about to access, not the entire in-memory array.
867    */
868   if (ptr->first_undef_row < end_row) {
869     if (ptr->first_undef_row < start_row) {
870       if (writable)             /* writer skipped over a section of array */
871         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
872       undef_row = start_row;    /* but reader is allowed to read ahead */
873     } else {
874       undef_row = ptr->first_undef_row;
875     }
876     if (writable)
877       ptr->first_undef_row = end_row;
878     if (ptr->pre_zero) {
879       size_t bytesperrow = (size_t)ptr->samplesperrow * sizeof(JSAMPLE);
880       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
881       end_row -= ptr->cur_start_row;
882       while (undef_row < end_row) {
883         jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow);
884         undef_row++;
885       }
886     } else {
887       if (!writable)            /* reader looking at undefined data */
888         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
889     }
890   }
891   /* Flag the buffer dirty if caller will write in it */
892   if (writable)
893     ptr->dirty = TRUE;
894   /* Return address of proper part of the buffer */
895   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
896 }
897
898
899 METHODDEF(JBLOCKARRAY)
900 access_virt_barray(j_common_ptr cinfo, jvirt_barray_ptr ptr,
901                    JDIMENSION start_row, JDIMENSION num_rows, boolean writable)
902 /* Access the part of a virtual block array starting at start_row */
903 /* and extending for num_rows rows.  writable is true if  */
904 /* caller intends to modify the accessed area. */
905 {
906   JDIMENSION end_row = start_row + num_rows;
907   JDIMENSION undef_row;
908
909   /* debugging check */
910   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
911       ptr->mem_buffer == NULL)
912     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
913
914   /* Make the desired part of the virtual array accessible */
915   if (start_row < ptr->cur_start_row ||
916       end_row > ptr->cur_start_row + ptr->rows_in_mem) {
917     if (!ptr->b_s_open)
918       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
919     /* Flush old buffer contents if necessary */
920     if (ptr->dirty) {
921       do_barray_io(cinfo, ptr, TRUE);
922       ptr->dirty = FALSE;
923     }
924     /* Decide what part of virtual array to access.
925      * Algorithm: if target address > current window, assume forward scan,
926      * load starting at target address.  If target address < current window,
927      * assume backward scan, load so that target area is top of window.
928      * Note that when switching from forward write to forward read, will have
929      * start_row = 0, so the limiting case applies and we load from 0 anyway.
930      */
931     if (start_row > ptr->cur_start_row) {
932       ptr->cur_start_row = start_row;
933     } else {
934       /* use long arithmetic here to avoid overflow & unsigned problems */
935       long ltemp;
936
937       ltemp = (long)end_row - (long)ptr->rows_in_mem;
938       if (ltemp < 0)
939         ltemp = 0;              /* don't fall off front end of file */
940       ptr->cur_start_row = (JDIMENSION)ltemp;
941     }
942     /* Read in the selected part of the array.
943      * During the initial write pass, we will do no actual read
944      * because the selected part is all undefined.
945      */
946     do_barray_io(cinfo, ptr, FALSE);
947   }
948   /* Ensure the accessed part of the array is defined; prezero if needed.
949    * To improve locality of access, we only prezero the part of the array
950    * that the caller is about to access, not the entire in-memory array.
951    */
952   if (ptr->first_undef_row < end_row) {
953     if (ptr->first_undef_row < start_row) {
954       if (writable)             /* writer skipped over a section of array */
955         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
956       undef_row = start_row;    /* but reader is allowed to read ahead */
957     } else {
958       undef_row = ptr->first_undef_row;
959     }
960     if (writable)
961       ptr->first_undef_row = end_row;
962     if (ptr->pre_zero) {
963       size_t bytesperrow = (size_t)ptr->blocksperrow * sizeof(JBLOCK);
964       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
965       end_row -= ptr->cur_start_row;
966       while (undef_row < end_row) {
967         jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow);
968         undef_row++;
969       }
970     } else {
971       if (!writable)            /* reader looking at undefined data */
972         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
973     }
974   }
975   /* Flag the buffer dirty if caller will write in it */
976   if (writable)
977     ptr->dirty = TRUE;
978   /* Return address of proper part of the buffer */
979   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
980 }
981
982
983 /*
984  * Release all objects belonging to a specified pool.
985  */
986
987 METHODDEF(void)
988 free_pool(j_common_ptr cinfo, int pool_id)
989 {
990   my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
991   small_pool_ptr shdr_ptr;
992   large_pool_ptr lhdr_ptr;
993   size_t space_freed;
994
995   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
996     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
997
998 #ifdef MEM_STATS
999   if (cinfo->err->trace_level > 1)
1000     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
1001 #endif
1002
1003   /* If freeing IMAGE pool, close any virtual arrays first */
1004   if (pool_id == JPOOL_IMAGE) {
1005     jvirt_sarray_ptr sptr;
1006     jvirt_barray_ptr bptr;
1007
1008     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
1009       if (sptr->b_s_open) {     /* there may be no backing store */
1010         sptr->b_s_open = FALSE; /* prevent recursive close if error */
1011         (*sptr->b_s_info.close_backing_store) (cinfo, &sptr->b_s_info);
1012       }
1013     }
1014     mem->virt_sarray_list = NULL;
1015     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
1016       if (bptr->b_s_open) {     /* there may be no backing store */
1017         bptr->b_s_open = FALSE; /* prevent recursive close if error */
1018         (*bptr->b_s_info.close_backing_store) (cinfo, &bptr->b_s_info);
1019       }
1020     }
1021     mem->virt_barray_list = NULL;
1022   }
1023
1024   /* Release large objects */
1025   lhdr_ptr = mem->large_list[pool_id];
1026   mem->large_list[pool_id] = NULL;
1027
1028   while (lhdr_ptr != NULL) {
1029     large_pool_ptr next_lhdr_ptr = lhdr_ptr->next;
1030     space_freed = lhdr_ptr->bytes_used +
1031                   lhdr_ptr->bytes_left +
1032                   sizeof(large_pool_hdr) + ALIGN_SIZE - 1;
1033     jpeg_free_large(cinfo, (void *)lhdr_ptr, space_freed);
1034     mem->total_space_allocated -= space_freed;
1035     lhdr_ptr = next_lhdr_ptr;
1036   }
1037
1038   /* Release small objects */
1039   shdr_ptr = mem->small_list[pool_id];
1040   mem->small_list[pool_id] = NULL;
1041
1042   while (shdr_ptr != NULL) {
1043     small_pool_ptr next_shdr_ptr = shdr_ptr->next;
1044     space_freed = shdr_ptr->bytes_used + shdr_ptr->bytes_left +
1045                   sizeof(small_pool_hdr) + ALIGN_SIZE - 1;
1046     jpeg_free_small(cinfo, (void *)shdr_ptr, space_freed);
1047     mem->total_space_allocated -= space_freed;
1048     shdr_ptr = next_shdr_ptr;
1049   }
1050 }
1051
1052
1053 /*
1054  * Close up shop entirely.
1055  * Note that this cannot be called unless cinfo->mem is non-NULL.
1056  */
1057
1058 METHODDEF(void)
1059 self_destruct(j_common_ptr cinfo)
1060 {
1061   int pool;
1062
1063   /* Close all backing store, release all memory.
1064    * Releasing pools in reverse order might help avoid fragmentation
1065    * with some (brain-damaged) malloc libraries.
1066    */
1067   for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) {
1068     free_pool(cinfo, pool);
1069   }
1070
1071   /* Release the memory manager control block too. */
1072   jpeg_free_small(cinfo, (void *)cinfo->mem, sizeof(my_memory_mgr));
1073   cinfo->mem = NULL;            /* ensures I will be called only once */
1074
1075   jpeg_mem_term(cinfo);         /* system-dependent cleanup */
1076 }
1077
1078
1079 /*
1080  * Memory manager initialization.
1081  * When this is called, only the error manager pointer is valid in cinfo!
1082  */
1083
1084 GLOBAL(void)
1085 jinit_memory_mgr(j_common_ptr cinfo)
1086 {
1087   my_mem_ptr mem;
1088   long max_to_use;
1089   int pool;
1090   size_t test_mac;
1091
1092   cinfo->mem = NULL;            /* for safety if init fails */
1093
1094   /* Check for configuration errors.
1095    * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1096    * doesn't reflect any real hardware alignment requirement.
1097    * The test is a little tricky: for X>0, X and X-1 have no one-bits
1098    * in common if and only if X is a power of 2, ie has only one one-bit.
1099    * Some compilers may give an "unreachable code" warning here; ignore it.
1100    */
1101   if ((ALIGN_SIZE & (ALIGN_SIZE - 1)) != 0)
1102     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1103   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1104    * a multiple of ALIGN_SIZE.
1105    * Again, an "unreachable code" warning may be ignored here.
1106    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1107    */
1108   test_mac = (size_t)MAX_ALLOC_CHUNK;
1109   if ((long)test_mac != MAX_ALLOC_CHUNK ||
1110       (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0)
1111     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1112
1113   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1114
1115   /* Attempt to allocate memory manager's control block */
1116   mem = (my_mem_ptr)jpeg_get_small(cinfo, sizeof(my_memory_mgr));
1117
1118   if (mem == NULL) {
1119     jpeg_mem_term(cinfo);       /* system-dependent cleanup */
1120     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1121   }
1122
1123   /* OK, fill in the method pointers */
1124   mem->pub.alloc_small = alloc_small;
1125   mem->pub.alloc_large = alloc_large;
1126   mem->pub.alloc_sarray = alloc_sarray;
1127   mem->pub.alloc_barray = alloc_barray;
1128   mem->pub.request_virt_sarray = request_virt_sarray;
1129   mem->pub.request_virt_barray = request_virt_barray;
1130   mem->pub.realize_virt_arrays = realize_virt_arrays;
1131   mem->pub.access_virt_sarray = access_virt_sarray;
1132   mem->pub.access_virt_barray = access_virt_barray;
1133   mem->pub.free_pool = free_pool;
1134   mem->pub.self_destruct = self_destruct;
1135
1136   /* Make MAX_ALLOC_CHUNK accessible to other modules */
1137   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1138
1139   /* Initialize working state */
1140   mem->pub.max_memory_to_use = max_to_use;
1141
1142   for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) {
1143     mem->small_list[pool] = NULL;
1144     mem->large_list[pool] = NULL;
1145   }
1146   mem->virt_sarray_list = NULL;
1147   mem->virt_barray_list = NULL;
1148
1149   mem->total_space_allocated = sizeof(my_memory_mgr);
1150
1151   /* Declare ourselves open for business */
1152   cinfo->mem = &mem->pub;
1153
1154   /* Check for an environment variable JPEGMEM; if found, override the
1155    * default max_memory setting from jpeg_mem_init.  Note that the
1156    * surrounding application may again override this value.
1157    * If your system doesn't support getenv(), define NO_GETENV to disable
1158    * this feature.
1159    */
1160 #ifndef NO_GETENV
1161   {
1162     char memenv[30] = { 0 };
1163
1164     if (!GETENV_S(memenv, 30, "JPEGMEM") && strlen(memenv) > 0) {
1165       char ch = 'x';
1166
1167 #ifdef _MSC_VER
1168       if (sscanf_s(memenv, "%ld%c", &max_to_use, &ch, 1) > 0) {
1169 #else
1170       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1171 #endif
1172         if (ch == 'm' || ch == 'M')
1173           max_to_use *= 1000L;
1174         mem->pub.max_memory_to_use = max_to_use * 1000L;
1175       }
1176     }
1177   }
1178 #endif
1179
1180 }