Imported Upstream version 1.5.3
[platform/upstream/libjpeg-turbo.git] / jidctred.c
1 /*
2  * jidctred.c
3  *
4  * This file was part of the Independent JPEG Group's software.
5  * Copyright (C) 1994-1998, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2015, D. R. Commander.
8  * For conditions of distribution and use, see the accompanying README.ijg
9  * file.
10  *
11  * This file contains inverse-DCT routines that produce reduced-size output:
12  * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
13  *
14  * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
15  * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
16  * with an 8-to-4 step that produces the four averages of two adjacent outputs
17  * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
18  * These steps were derived by computing the corresponding values at the end
19  * of the normal LL&M code, then simplifying as much as possible.
20  *
21  * 1x1 is trivial: just take the DC coefficient divided by 8.
22  *
23  * See jidctint.c for additional comments.
24  */
25
26 #define JPEG_INTERNALS
27 #include "jinclude.h"
28 #include "jpeglib.h"
29 #include "jdct.h"               /* Private declarations for DCT subsystem */
30
31 #ifdef IDCT_SCALING_SUPPORTED
32
33
34 /*
35  * This module is specialized to the case DCTSIZE = 8.
36  */
37
38 #if DCTSIZE != 8
39   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
40 #endif
41
42
43 /* Scaling is the same as in jidctint.c. */
44
45 #if BITS_IN_JSAMPLE == 8
46 #define CONST_BITS  13
47 #define PASS1_BITS  2
48 #else
49 #define CONST_BITS  13
50 #define PASS1_BITS  1           /* lose a little precision to avoid overflow */
51 #endif
52
53 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
54  * causing a lot of useless floating-point operations at run time.
55  * To get around this we use the following pre-calculated constants.
56  * If you change CONST_BITS you may want to add appropriate values.
57  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
58  */
59
60 #if CONST_BITS == 13
61 #define FIX_0_211164243  ((JLONG)  1730)        /* FIX(0.211164243) */
62 #define FIX_0_509795579  ((JLONG)  4176)        /* FIX(0.509795579) */
63 #define FIX_0_601344887  ((JLONG)  4926)        /* FIX(0.601344887) */
64 #define FIX_0_720959822  ((JLONG)  5906)        /* FIX(0.720959822) */
65 #define FIX_0_765366865  ((JLONG)  6270)        /* FIX(0.765366865) */
66 #define FIX_0_850430095  ((JLONG)  6967)        /* FIX(0.850430095) */
67 #define FIX_0_899976223  ((JLONG)  7373)        /* FIX(0.899976223) */
68 #define FIX_1_061594337  ((JLONG)  8697)        /* FIX(1.061594337) */
69 #define FIX_1_272758580  ((JLONG)  10426)       /* FIX(1.272758580) */
70 #define FIX_1_451774981  ((JLONG)  11893)       /* FIX(1.451774981) */
71 #define FIX_1_847759065  ((JLONG)  15137)       /* FIX(1.847759065) */
72 #define FIX_2_172734803  ((JLONG)  17799)       /* FIX(2.172734803) */
73 #define FIX_2_562915447  ((JLONG)  20995)       /* FIX(2.562915447) */
74 #define FIX_3_624509785  ((JLONG)  29692)       /* FIX(3.624509785) */
75 #else
76 #define FIX_0_211164243  FIX(0.211164243)
77 #define FIX_0_509795579  FIX(0.509795579)
78 #define FIX_0_601344887  FIX(0.601344887)
79 #define FIX_0_720959822  FIX(0.720959822)
80 #define FIX_0_765366865  FIX(0.765366865)
81 #define FIX_0_850430095  FIX(0.850430095)
82 #define FIX_0_899976223  FIX(0.899976223)
83 #define FIX_1_061594337  FIX(1.061594337)
84 #define FIX_1_272758580  FIX(1.272758580)
85 #define FIX_1_451774981  FIX(1.451774981)
86 #define FIX_1_847759065  FIX(1.847759065)
87 #define FIX_2_172734803  FIX(2.172734803)
88 #define FIX_2_562915447  FIX(2.562915447)
89 #define FIX_3_624509785  FIX(3.624509785)
90 #endif
91
92
93 /* Multiply a JLONG variable by a JLONG constant to yield a JLONG result.
94  * For 8-bit samples with the recommended scaling, all the variable
95  * and constant values involved are no more than 16 bits wide, so a
96  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
97  * For 12-bit samples, a full 32-bit multiplication will be needed.
98  */
99
100 #if BITS_IN_JSAMPLE == 8
101 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
102 #else
103 #define MULTIPLY(var,const)  ((var) * (const))
104 #endif
105
106
107 /* Dequantize a coefficient by multiplying it by the multiplier-table
108  * entry; produce an int result.  In this module, both inputs and result
109  * are 16 bits or less, so either int or short multiply will work.
110  */
111
112 #define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
113
114
115 /*
116  * Perform dequantization and inverse DCT on one block of coefficients,
117  * producing a reduced-size 4x4 output block.
118  */
119
120 GLOBAL(void)
121 jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info *compptr,
122                JCOEFPTR coef_block,
123                JSAMPARRAY output_buf, JDIMENSION output_col)
124 {
125   JLONG tmp0, tmp2, tmp10, tmp12;
126   JLONG z1, z2, z3, z4;
127   JCOEFPTR inptr;
128   ISLOW_MULT_TYPE *quantptr;
129   int *wsptr;
130   JSAMPROW outptr;
131   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
132   int ctr;
133   int workspace[DCTSIZE*4];     /* buffers data between passes */
134   SHIFT_TEMPS
135
136   /* Pass 1: process columns from input, store into work array. */
137
138   inptr = coef_block;
139   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
140   wsptr = workspace;
141   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
142     /* Don't bother to process column 4, because second pass won't use it */
143     if (ctr == DCTSIZE-4)
144       continue;
145     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
146         inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
147         inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
148       /* AC terms all zero; we need not examine term 4 for 4x4 output */
149       int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]),
150                              PASS1_BITS);
151
152       wsptr[DCTSIZE*0] = dcval;
153       wsptr[DCTSIZE*1] = dcval;
154       wsptr[DCTSIZE*2] = dcval;
155       wsptr[DCTSIZE*3] = dcval;
156
157       continue;
158     }
159
160     /* Even part */
161
162     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
163     tmp0 = LEFT_SHIFT(tmp0, CONST_BITS+1);
164
165     z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
166     z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
167
168     tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
169
170     tmp10 = tmp0 + tmp2;
171     tmp12 = tmp0 - tmp2;
172
173     /* Odd part */
174
175     z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
176     z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
177     z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
178     z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
179
180     tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
181          + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
182          + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
183          + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
184
185     tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
186          + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
187          + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
188          + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
189
190     /* Final output stage */
191
192     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
193     wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
194     wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
195     wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
196   }
197
198   /* Pass 2: process 4 rows from work array, store into output array. */
199
200   wsptr = workspace;
201   for (ctr = 0; ctr < 4; ctr++) {
202     outptr = output_buf[ctr] + output_col;
203     /* It's not clear whether a zero row test is worthwhile here ... */
204
205 #ifndef NO_ZERO_ROW_TEST
206     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
207         wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
208       /* AC terms all zero */
209       JSAMPLE dcval = range_limit[(int) DESCALE((JLONG) wsptr[0], PASS1_BITS+3)
210                                   & RANGE_MASK];
211
212       outptr[0] = dcval;
213       outptr[1] = dcval;
214       outptr[2] = dcval;
215       outptr[3] = dcval;
216
217       wsptr += DCTSIZE;         /* advance pointer to next row */
218       continue;
219     }
220 #endif
221
222     /* Even part */
223
224     tmp0 = LEFT_SHIFT((JLONG) wsptr[0], CONST_BITS+1);
225
226     tmp2 = MULTIPLY((JLONG) wsptr[2], FIX_1_847759065)
227          + MULTIPLY((JLONG) wsptr[6], - FIX_0_765366865);
228
229     tmp10 = tmp0 + tmp2;
230     tmp12 = tmp0 - tmp2;
231
232     /* Odd part */
233
234     z1 = (JLONG) wsptr[7];
235     z2 = (JLONG) wsptr[5];
236     z3 = (JLONG) wsptr[3];
237     z4 = (JLONG) wsptr[1];
238
239     tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
240          + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
241          + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
242          + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
243
244     tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
245          + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
246          + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
247          + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
248
249     /* Final output stage */
250
251     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
252                                           CONST_BITS+PASS1_BITS+3+1)
253                             & RANGE_MASK];
254     outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
255                                           CONST_BITS+PASS1_BITS+3+1)
256                             & RANGE_MASK];
257     outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
258                                           CONST_BITS+PASS1_BITS+3+1)
259                             & RANGE_MASK];
260     outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
261                                           CONST_BITS+PASS1_BITS+3+1)
262                             & RANGE_MASK];
263
264     wsptr += DCTSIZE;           /* advance pointer to next row */
265   }
266 }
267
268
269 /*
270  * Perform dequantization and inverse DCT on one block of coefficients,
271  * producing a reduced-size 2x2 output block.
272  */
273
274 GLOBAL(void)
275 jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info *compptr,
276                JCOEFPTR coef_block,
277                JSAMPARRAY output_buf, JDIMENSION output_col)
278 {
279   JLONG tmp0, tmp10, z1;
280   JCOEFPTR inptr;
281   ISLOW_MULT_TYPE *quantptr;
282   int *wsptr;
283   JSAMPROW outptr;
284   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
285   int ctr;
286   int workspace[DCTSIZE*2];     /* buffers data between passes */
287   SHIFT_TEMPS
288
289   /* Pass 1: process columns from input, store into work array. */
290
291   inptr = coef_block;
292   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
293   wsptr = workspace;
294   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
295     /* Don't bother to process columns 2,4,6 */
296     if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
297       continue;
298     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
299         inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
300       /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
301       int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]),
302                              PASS1_BITS);
303
304       wsptr[DCTSIZE*0] = dcval;
305       wsptr[DCTSIZE*1] = dcval;
306
307       continue;
308     }
309
310     /* Even part */
311
312     z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
313     tmp10 = LEFT_SHIFT(z1, CONST_BITS+2);
314
315     /* Odd part */
316
317     z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
318     tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
319     z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
320     tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
321     z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
322     tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
323     z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
324     tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
325
326     /* Final output stage */
327
328     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
329     wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
330   }
331
332   /* Pass 2: process 2 rows from work array, store into output array. */
333
334   wsptr = workspace;
335   for (ctr = 0; ctr < 2; ctr++) {
336     outptr = output_buf[ctr] + output_col;
337     /* It's not clear whether a zero row test is worthwhile here ... */
338
339 #ifndef NO_ZERO_ROW_TEST
340     if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
341       /* AC terms all zero */
342       JSAMPLE dcval = range_limit[(int) DESCALE((JLONG) wsptr[0], PASS1_BITS+3)
343                                   & RANGE_MASK];
344
345       outptr[0] = dcval;
346       outptr[1] = dcval;
347
348       wsptr += DCTSIZE;         /* advance pointer to next row */
349       continue;
350     }
351 #endif
352
353     /* Even part */
354
355     tmp10 = LEFT_SHIFT((JLONG) wsptr[0], CONST_BITS+2);
356
357     /* Odd part */
358
359     tmp0 = MULTIPLY((JLONG) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
360          + MULTIPLY((JLONG) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
361          + MULTIPLY((JLONG) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
362          + MULTIPLY((JLONG) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
363
364     /* Final output stage */
365
366     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
367                                           CONST_BITS+PASS1_BITS+3+2)
368                             & RANGE_MASK];
369     outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
370                                           CONST_BITS+PASS1_BITS+3+2)
371                             & RANGE_MASK];
372
373     wsptr += DCTSIZE;           /* advance pointer to next row */
374   }
375 }
376
377
378 /*
379  * Perform dequantization and inverse DCT on one block of coefficients,
380  * producing a reduced-size 1x1 output block.
381  */
382
383 GLOBAL(void)
384 jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info *compptr,
385                JCOEFPTR coef_block,
386                JSAMPARRAY output_buf, JDIMENSION output_col)
387 {
388   int dcval;
389   ISLOW_MULT_TYPE *quantptr;
390   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
391   SHIFT_TEMPS
392
393   /* We hardly need an inverse DCT routine for this: just take the
394    * average pixel value, which is one-eighth of the DC coefficient.
395    */
396   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
397   dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
398   dcval = (int) DESCALE((JLONG) dcval, 3);
399
400   output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
401 }
402
403 #endif /* IDCT_SCALING_SUPPORTED */