Merge branch 'upstream' into tizen_base
[platform/upstream/libjpeg-turbo.git] / jidctred.c
1 /*
2  * jidctred.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1994-1998, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2015, 2022, D. R. Commander.
8  * For conditions of distribution and use, see the accompanying README.ijg
9  * file.
10  *
11  * This file contains inverse-DCT routines that produce reduced-size output:
12  * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
13  *
14  * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
15  * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
16  * with an 8-to-4 step that produces the four averages of two adjacent outputs
17  * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
18  * These steps were derived by computing the corresponding values at the end
19  * of the normal LL&M code, then simplifying as much as possible.
20  *
21  * 1x1 is trivial: just take the DC coefficient divided by 8.
22  *
23  * See jidctint.c for additional comments.
24  */
25
26 #define JPEG_INTERNALS
27 #include "jinclude.h"
28 #include "jpeglib.h"
29 #include "jdct.h"               /* Private declarations for DCT subsystem */
30
31 #ifdef IDCT_SCALING_SUPPORTED
32
33
34 /*
35  * This module is specialized to the case DCTSIZE = 8.
36  */
37
38 #if DCTSIZE != 8
39   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
40 #endif
41
42
43 /* Scaling is the same as in jidctint.c. */
44
45 #if BITS_IN_JSAMPLE == 8
46 #define CONST_BITS  13
47 #define PASS1_BITS  2
48 #else
49 #define CONST_BITS  13
50 #define PASS1_BITS  1           /* lose a little precision to avoid overflow */
51 #endif
52
53 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
54  * causing a lot of useless floating-point operations at run time.
55  * To get around this we use the following pre-calculated constants.
56  * If you change CONST_BITS you may want to add appropriate values.
57  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
58  */
59
60 #if CONST_BITS == 13
61 #define FIX_0_211164243  ((JLONG)1730)          /* FIX(0.211164243) */
62 #define FIX_0_509795579  ((JLONG)4176)          /* FIX(0.509795579) */
63 #define FIX_0_601344887  ((JLONG)4926)          /* FIX(0.601344887) */
64 #define FIX_0_720959822  ((JLONG)5906)          /* FIX(0.720959822) */
65 #define FIX_0_765366865  ((JLONG)6270)          /* FIX(0.765366865) */
66 #define FIX_0_850430095  ((JLONG)6967)          /* FIX(0.850430095) */
67 #define FIX_0_899976223  ((JLONG)7373)          /* FIX(0.899976223) */
68 #define FIX_1_061594337  ((JLONG)8697)          /* FIX(1.061594337) */
69 #define FIX_1_272758580  ((JLONG)10426)         /* FIX(1.272758580) */
70 #define FIX_1_451774981  ((JLONG)11893)         /* FIX(1.451774981) */
71 #define FIX_1_847759065  ((JLONG)15137)         /* FIX(1.847759065) */
72 #define FIX_2_172734803  ((JLONG)17799)         /* FIX(2.172734803) */
73 #define FIX_2_562915447  ((JLONG)20995)         /* FIX(2.562915447) */
74 #define FIX_3_624509785  ((JLONG)29692)         /* FIX(3.624509785) */
75 #else
76 #define FIX_0_211164243  FIX(0.211164243)
77 #define FIX_0_509795579  FIX(0.509795579)
78 #define FIX_0_601344887  FIX(0.601344887)
79 #define FIX_0_720959822  FIX(0.720959822)
80 #define FIX_0_765366865  FIX(0.765366865)
81 #define FIX_0_850430095  FIX(0.850430095)
82 #define FIX_0_899976223  FIX(0.899976223)
83 #define FIX_1_061594337  FIX(1.061594337)
84 #define FIX_1_272758580  FIX(1.272758580)
85 #define FIX_1_451774981  FIX(1.451774981)
86 #define FIX_1_847759065  FIX(1.847759065)
87 #define FIX_2_172734803  FIX(2.172734803)
88 #define FIX_2_562915447  FIX(2.562915447)
89 #define FIX_3_624509785  FIX(3.624509785)
90 #endif
91
92
93 /* Multiply a JLONG variable by a JLONG constant to yield a JLONG result.
94  * For 8-bit samples with the recommended scaling, all the variable
95  * and constant values involved are no more than 16 bits wide, so a
96  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
97  * For 12-bit samples, a full 32-bit multiplication will be needed.
98  */
99
100 #if BITS_IN_JSAMPLE == 8
101 #define MULTIPLY(var, const)  MULTIPLY16C16(var, const)
102 #else
103 #define MULTIPLY(var, const)  ((var) * (const))
104 #endif
105
106
107 /* Dequantize a coefficient by multiplying it by the multiplier-table
108  * entry; produce an int result.  In this module, both inputs and result
109  * are 16 bits or less, so either int or short multiply will work.
110  */
111
112 #define DEQUANTIZE(coef, quantval)  (((ISLOW_MULT_TYPE)(coef)) * (quantval))
113
114
115 /*
116  * Perform dequantization and inverse DCT on one block of coefficients,
117  * producing a reduced-size 4x4 output block.
118  */
119
120 GLOBAL(void)
121 _jpeg_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr,
122                JCOEFPTR coef_block, _JSAMPARRAY output_buf,
123                JDIMENSION output_col)
124 {
125   JLONG tmp0, tmp2, tmp10, tmp12;
126   JLONG z1, z2, z3, z4;
127   JCOEFPTR inptr;
128   ISLOW_MULT_TYPE *quantptr;
129   int *wsptr;
130   _JSAMPROW outptr;
131   _JSAMPLE *range_limit = IDCT_range_limit(cinfo);
132   int ctr;
133   int workspace[DCTSIZE * 4];   /* buffers data between passes */
134   SHIFT_TEMPS
135
136   /* Pass 1: process columns from input, store into work array. */
137
138   inptr = coef_block;
139   quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
140   wsptr = workspace;
141   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
142     /* Don't bother to process column 4, because second pass won't use it */
143     if (ctr == DCTSIZE - 4)
144       continue;
145     if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 &&
146         inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 5] == 0 &&
147         inptr[DCTSIZE * 6] == 0 && inptr[DCTSIZE * 7] == 0) {
148       /* AC terms all zero; we need not examine term 4 for 4x4 output */
149       int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0],
150                                         quantptr[DCTSIZE * 0]), PASS1_BITS);
151
152       wsptr[DCTSIZE * 0] = dcval;
153       wsptr[DCTSIZE * 1] = dcval;
154       wsptr[DCTSIZE * 2] = dcval;
155       wsptr[DCTSIZE * 3] = dcval;
156
157       continue;
158     }
159
160     /* Even part */
161
162     tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
163     tmp0 = LEFT_SHIFT(tmp0, CONST_BITS + 1);
164
165     z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
166     z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
167
168     tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, -FIX_0_765366865);
169
170     tmp10 = tmp0 + tmp2;
171     tmp12 = tmp0 - tmp2;
172
173     /* Odd part */
174
175     z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
176     z2 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
177     z3 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
178     z4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
179
180     tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */
181            MULTIPLY(z2,  FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */
182            MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */
183            MULTIPLY(z4,  FIX_1_061594337);  /* sqrt(2) * ( c5+c7) */
184
185     tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */
186            MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */
187            MULTIPLY(z3,  FIX_0_899976223) + /* sqrt(2) * (c3-c7) */
188            MULTIPLY(z4,  FIX_2_562915447);  /* sqrt(2) * (c1+c3) */
189
190     /* Final output stage */
191
192     wsptr[DCTSIZE * 0] =
193       (int)DESCALE(tmp10 + tmp2, CONST_BITS - PASS1_BITS + 1);
194     wsptr[DCTSIZE * 3] =
195       (int)DESCALE(tmp10 - tmp2, CONST_BITS - PASS1_BITS + 1);
196     wsptr[DCTSIZE * 1] =
197       (int)DESCALE(tmp12 + tmp0, CONST_BITS - PASS1_BITS + 1);
198     wsptr[DCTSIZE * 2] =
199       (int)DESCALE(tmp12 - tmp0, CONST_BITS - PASS1_BITS + 1);
200   }
201
202   /* Pass 2: process 4 rows from work array, store into output array. */
203
204   wsptr = workspace;
205   for (ctr = 0; ctr < 4; ctr++) {
206     outptr = output_buf[ctr] + output_col;
207     /* It's not clear whether a zero row test is worthwhile here ... */
208
209 #ifndef NO_ZERO_ROW_TEST
210     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
211         wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
212       /* AC terms all zero */
213       _JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0],
214                                                 PASS1_BITS + 3) & RANGE_MASK];
215
216       outptr[0] = dcval;
217       outptr[1] = dcval;
218       outptr[2] = dcval;
219       outptr[3] = dcval;
220
221       wsptr += DCTSIZE;         /* advance pointer to next row */
222       continue;
223     }
224 #endif
225
226     /* Even part */
227
228     tmp0 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 1);
229
230     tmp2 = MULTIPLY((JLONG)wsptr[2],  FIX_1_847759065) +
231            MULTIPLY((JLONG)wsptr[6], -FIX_0_765366865);
232
233     tmp10 = tmp0 + tmp2;
234     tmp12 = tmp0 - tmp2;
235
236     /* Odd part */
237
238     z1 = (JLONG)wsptr[7];
239     z2 = (JLONG)wsptr[5];
240     z3 = (JLONG)wsptr[3];
241     z4 = (JLONG)wsptr[1];
242
243     tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */
244            MULTIPLY(z2,  FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */
245            MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */
246            MULTIPLY(z4,  FIX_1_061594337);  /* sqrt(2) * ( c5+c7) */
247
248     tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */
249            MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */
250            MULTIPLY(z3, FIX_0_899976223) +  /* sqrt(2) * (c3-c7) */
251            MULTIPLY(z4, FIX_2_562915447);   /* sqrt(2) * (c1+c3) */
252
253     /* Final output stage */
254
255     outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp2,
256                                          CONST_BITS + PASS1_BITS + 3 + 1) &
257                             RANGE_MASK];
258     outptr[3] = range_limit[(int)DESCALE(tmp10 - tmp2,
259                                          CONST_BITS + PASS1_BITS + 3 + 1) &
260                             RANGE_MASK];
261     outptr[1] = range_limit[(int)DESCALE(tmp12 + tmp0,
262                                          CONST_BITS + PASS1_BITS + 3 + 1) &
263                             RANGE_MASK];
264     outptr[2] = range_limit[(int)DESCALE(tmp12 - tmp0,
265                                          CONST_BITS + PASS1_BITS + 3 + 1) &
266                             RANGE_MASK];
267
268     wsptr += DCTSIZE;           /* advance pointer to next row */
269   }
270 }
271
272
273 /*
274  * Perform dequantization and inverse DCT on one block of coefficients,
275  * producing a reduced-size 2x2 output block.
276  */
277
278 GLOBAL(void)
279 _jpeg_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr,
280                JCOEFPTR coef_block, _JSAMPARRAY output_buf,
281                JDIMENSION output_col)
282 {
283   JLONG tmp0, tmp10, z1;
284   JCOEFPTR inptr;
285   ISLOW_MULT_TYPE *quantptr;
286   int *wsptr;
287   _JSAMPROW outptr;
288   _JSAMPLE *range_limit = IDCT_range_limit(cinfo);
289   int ctr;
290   int workspace[DCTSIZE * 2];   /* buffers data between passes */
291   SHIFT_TEMPS
292
293   /* Pass 1: process columns from input, store into work array. */
294
295   inptr = coef_block;
296   quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
297   wsptr = workspace;
298   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
299     /* Don't bother to process columns 2,4,6 */
300     if (ctr == DCTSIZE - 2 || ctr == DCTSIZE - 4 || ctr == DCTSIZE - 6)
301       continue;
302     if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 3] == 0 &&
303         inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 7] == 0) {
304       /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
305       int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0],
306                              quantptr[DCTSIZE * 0]), PASS1_BITS);
307
308       wsptr[DCTSIZE * 0] = dcval;
309       wsptr[DCTSIZE * 1] = dcval;
310
311       continue;
312     }
313
314     /* Even part */
315
316     z1 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
317     tmp10 = LEFT_SHIFT(z1, CONST_BITS + 2);
318
319     /* Odd part */
320
321     z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
322     tmp0 = MULTIPLY(z1, -FIX_0_720959822);  /* sqrt(2) * ( c7-c5+c3-c1) */
323     z1 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
324     tmp0 += MULTIPLY(z1, FIX_0_850430095);  /* sqrt(2) * (-c1+c3+c5+c7) */
325     z1 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
326     tmp0 += MULTIPLY(z1, -FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
327     z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
328     tmp0 += MULTIPLY(z1, FIX_3_624509785);  /* sqrt(2) * ( c1+c3+c5+c7) */
329
330     /* Final output stage */
331
332     wsptr[DCTSIZE * 0] =
333       (int)DESCALE(tmp10 + tmp0, CONST_BITS - PASS1_BITS + 2);
334     wsptr[DCTSIZE * 1] =
335       (int)DESCALE(tmp10 - tmp0, CONST_BITS - PASS1_BITS + 2);
336   }
337
338   /* Pass 2: process 2 rows from work array, store into output array. */
339
340   wsptr = workspace;
341   for (ctr = 0; ctr < 2; ctr++) {
342     outptr = output_buf[ctr] + output_col;
343     /* It's not clear whether a zero row test is worthwhile here ... */
344
345 #ifndef NO_ZERO_ROW_TEST
346     if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
347       /* AC terms all zero */
348       _JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0],
349                                                 PASS1_BITS + 3) & RANGE_MASK];
350
351       outptr[0] = dcval;
352       outptr[1] = dcval;
353
354       wsptr += DCTSIZE;         /* advance pointer to next row */
355       continue;
356     }
357 #endif
358
359     /* Even part */
360
361     tmp10 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 2);
362
363     /* Odd part */
364
365     tmp0 = MULTIPLY((JLONG)wsptr[7], -FIX_0_720959822) + /* sqrt(2) * ( c7-c5+c3-c1) */
366            MULTIPLY((JLONG)wsptr[5],  FIX_0_850430095) + /* sqrt(2) * (-c1+c3+c5+c7) */
367            MULTIPLY((JLONG)wsptr[3], -FIX_1_272758580) + /* sqrt(2) * (-c1+c3-c5-c7) */
368            MULTIPLY((JLONG)wsptr[1],  FIX_3_624509785);  /* sqrt(2) * ( c1+c3+c5+c7) */
369
370     /* Final output stage */
371
372     outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp0,
373                                          CONST_BITS + PASS1_BITS + 3 + 2) &
374                             RANGE_MASK];
375     outptr[1] = range_limit[(int)DESCALE(tmp10 - tmp0,
376                                          CONST_BITS + PASS1_BITS + 3 + 2) &
377                             RANGE_MASK];
378
379     wsptr += DCTSIZE;           /* advance pointer to next row */
380   }
381 }
382
383
384 /*
385  * Perform dequantization and inverse DCT on one block of coefficients,
386  * producing a reduced-size 1x1 output block.
387  */
388
389 GLOBAL(void)
390 _jpeg_idct_1x1(j_decompress_ptr cinfo, jpeg_component_info *compptr,
391                JCOEFPTR coef_block, _JSAMPARRAY output_buf,
392                JDIMENSION output_col)
393 {
394   int dcval;
395   ISLOW_MULT_TYPE *quantptr;
396   _JSAMPLE *range_limit = IDCT_range_limit(cinfo);
397   SHIFT_TEMPS
398
399   /* We hardly need an inverse DCT routine for this: just take the
400    * average pixel value, which is one-eighth of the DC coefficient.
401    */
402   quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
403   dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
404   dcval = (int)DESCALE((JLONG)dcval, 3);
405
406   output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
407 }
408
409 #endif /* IDCT_SCALING_SUPPORTED */