Merge branch 'maint'
[platform/upstream/isl.git] / isl_schedule.c
1 /*
2  * Copyright 2011      INRIA Saclay
3  *
4  * Use of this software is governed by the GNU LGPLv2.1 license
5  *
6  * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7  * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8  * 91893 Orsay, France
9  */
10
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
13 #include <isl_space_private.h>
14 #include <isl/hash.h>
15 #include <isl/constraint.h>
16 #include <isl/schedule.h>
17 #include <isl_mat_private.h>
18 #include <isl/set.h>
19 #include <isl/seq.h>
20 #include <isl_tab.h>
21 #include <isl_dim_map.h>
22 #include <isl_hmap_map_basic_set.h>
23 #include <isl_qsort.h>
24 #include <isl_schedule_private.h>
25 #include <isl_band_private.h>
26 #include <isl_list_private.h>
27 #include <isl_options_private.h>
28
29 /*
30  * The scheduling algorithm implemented in this file was inspired by
31  * Bondhugula et al., "Automatic Transformations for Communication-Minimized
32  * Parallelization and Locality Optimization in the Polyhedral Model".
33  */
34
35
36 /* Internal information about a node that is used during the construction
37  * of a schedule.
38  * dim represents the space in which the domain lives
39  * sched is a matrix representation of the schedule being constructed
40  *      for this node
41  * sched_map is an isl_map representation of the same (partial) schedule
42  *      sched_map may be NULL
43  * rank is the number of linearly independent rows in the linear part
44  *      of sched
45  * the columns of cmap represent a change of basis for the schedule
46  *      coefficients; the first rank columns span the linear part of
47  *      the schedule rows
48  * start is the first variable in the LP problem in the sequences that
49  *      represents the schedule coefficients of this node
50  * nvar is the dimension of the domain
51  * nparam is the number of parameters or 0 if we are not constructing
52  *      a parametric schedule
53  *
54  * scc is the index of SCC (or WCC) this node belongs to
55  *
56  * band contains the band index for each of the rows of the schedule.
57  * band_id is used to differentiate between separate bands at the same
58  * level within the same parent band, i.e., bands that are separated
59  * by the parent band or bands that are independent of each other.
60  * zero contains a boolean for each of the rows of the schedule,
61  * indicating whether the corresponding scheduling dimension results
62  * in zero dependence distances within its band and with respect
63  * to the proximity edges.
64  *
65  * index, min_index and on_stack are used during the SCC detection
66  * index represents the order in which nodes are visited.
67  * min_index is the index of the root of a (sub)component.
68  * on_stack indicates whether the node is currently on the stack.
69  */
70 struct isl_sched_node {
71         isl_space *dim;
72         isl_mat *sched;
73         isl_map *sched_map;
74         int      rank;
75         isl_mat *cmap;
76         int      start;
77         int      nvar;
78         int      nparam;
79
80         int      scc;
81
82         int     *band;
83         int     *band_id;
84         int     *zero;
85
86         /* scc detection */
87         int      index;
88         int      min_index;
89         int      on_stack;
90 };
91
92 static int node_has_dim(const void *entry, const void *val)
93 {
94         struct isl_sched_node *node = (struct isl_sched_node *)entry;
95         isl_space *dim = (isl_space *)val;
96
97         return isl_space_is_equal(node->dim, dim);
98 }
99
100 /* An edge in the dependence graph.  An edge may be used to
101  * ensure validity of the generated schedule, to minimize the dependence
102  * distance or both
103  *
104  * map is the dependence relation
105  * src is the source node
106  * dst is the sink node
107  * validity is set if the edge is used to ensure correctness
108  * proximity is set if the edge is used to minimize dependence distances
109  *
110  * For validity edges, start and end mark the sequence of inequality
111  * constraints in the LP problem that encode the validity constraint
112  * corresponding to this edge.
113  */
114 struct isl_sched_edge {
115         isl_map *map;
116
117         struct isl_sched_node *src;
118         struct isl_sched_node *dst;
119
120         int validity;
121         int proximity;
122
123         int start;
124         int end;
125 };
126
127 /* Internal information about the dependence graph used during
128  * the construction of the schedule.
129  *
130  * intra_hmap is a cache, mapping dependence relations to their dual,
131  *      for dependences from a node to itself
132  * inter_hmap is a cache, mapping dependence relations to their dual,
133  *      for dependences between distinct nodes
134  *
135  * n is the number of nodes
136  * node is the list of nodes
137  * maxvar is the maximal number of variables over all nodes
138  * n_row is the current (maximal) number of linearly independent
139  *      rows in the node schedules
140  * n_total_row is the current number of rows in the node schedules
141  * n_band is the current number of completed bands
142  * band_start is the starting row in the node schedules of the current band
143  * root is set if this graph is the original dependence graph,
144  *      without any splitting
145  *
146  * sorted contains a list of node indices sorted according to the
147  *      SCC to which a node belongs
148  *
149  * n_edge is the number of edges
150  * edge is the list of edges
151  * edge_table contains pointers into the edge array, hashed on the source
152  *      and sink spaces; the table only contains edges that represent
153  *      validity constraints (and that may or may not also represent proximity
154  *      constraints)
155  *
156  * node_table contains pointers into the node array, hashed on the space
157  *
158  * region contains a list of variable sequences that should be non-trivial
159  *
160  * lp contains the (I)LP problem used to obtain new schedule rows
161  *
162  * src_scc and dst_scc are the source and sink SCCs of an edge with
163  *      conflicting constraints
164  *
165  * scc, sp, index and stack are used during the detection of SCCs
166  * scc is the number of the next SCC
167  * stack contains the nodes on the path from the root to the current node
168  * sp is the stack pointer
169  * index is the index of the last node visited
170  */
171 struct isl_sched_graph {
172         isl_hmap_map_basic_set *intra_hmap;
173         isl_hmap_map_basic_set *inter_hmap;
174
175         struct isl_sched_node *node;
176         int n;
177         int maxvar;
178         int n_row;
179
180         int *sorted;
181
182         int n_band;
183         int n_total_row;
184         int band_start;
185
186         int root;
187
188         struct isl_sched_edge *edge;
189         int n_edge;
190         struct isl_hash_table *edge_table;
191
192         struct isl_hash_table *node_table;
193         struct isl_region *region;
194
195         isl_basic_set *lp;
196
197         int src_scc;
198         int dst_scc;
199
200         /* scc detection */
201         int scc;
202         int sp;
203         int index;
204         int *stack;
205 };
206
207 /* Initialize node_table based on the list of nodes.
208  */
209 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
210 {
211         int i;
212
213         graph->node_table = isl_hash_table_alloc(ctx, graph->n);
214         if (!graph->node_table)
215                 return -1;
216
217         for (i = 0; i < graph->n; ++i) {
218                 struct isl_hash_table_entry *entry;
219                 uint32_t hash;
220
221                 hash = isl_space_get_hash(graph->node[i].dim);
222                 entry = isl_hash_table_find(ctx, graph->node_table, hash,
223                                             &node_has_dim,
224                                             graph->node[i].dim, 1);
225                 if (!entry)
226                         return -1;
227                 entry->data = &graph->node[i];
228         }
229
230         return 0;
231 }
232
233 /* Return a pointer to the node that lives within the given space,
234  * or NULL if there is no such node.
235  */
236 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
237         struct isl_sched_graph *graph, __isl_keep isl_space *dim)
238 {
239         struct isl_hash_table_entry *entry;
240         uint32_t hash;
241
242         hash = isl_space_get_hash(dim);
243         entry = isl_hash_table_find(ctx, graph->node_table, hash,
244                                     &node_has_dim, dim, 0);
245
246         return entry ? entry->data : NULL;
247 }
248
249 static int edge_has_src_and_dst(const void *entry, const void *val)
250 {
251         const struct isl_sched_edge *edge = entry;
252         const struct isl_sched_edge *temp = val;
253
254         return edge->src == temp->src && edge->dst == temp->dst;
255 }
256
257 /* Initialize edge_table based on the list of edges.
258  * Only edges with validity set are added to the table.
259  */
260 static int graph_init_edge_table(isl_ctx *ctx, struct isl_sched_graph *graph)
261 {
262         int i;
263
264         graph->edge_table = isl_hash_table_alloc(ctx, graph->n_edge);
265         if (!graph->edge_table)
266                 return -1;
267
268         for (i = 0; i < graph->n_edge; ++i) {
269                 struct isl_hash_table_entry *entry;
270                 uint32_t hash;
271
272                 if (!graph->edge[i].validity)
273                         continue;
274
275                 hash = isl_hash_init();
276                 hash = isl_hash_builtin(hash, graph->edge[i].src);
277                 hash = isl_hash_builtin(hash, graph->edge[i].dst);
278                 entry = isl_hash_table_find(ctx, graph->edge_table, hash,
279                                             &edge_has_src_and_dst,
280                                             &graph->edge[i], 1);
281                 if (!entry)
282                         return -1;
283                 entry->data = &graph->edge[i];
284         }
285
286         return 0;
287 }
288
289 /* Check whether the dependence graph has a (validity) edge
290  * between the given two nodes.
291  */
292 static int graph_has_edge(struct isl_sched_graph *graph,
293         struct isl_sched_node *src, struct isl_sched_node *dst)
294 {
295         isl_ctx *ctx = isl_space_get_ctx(src->dim);
296         struct isl_hash_table_entry *entry;
297         uint32_t hash;
298         struct isl_sched_edge temp = { .src = src, .dst = dst };
299         struct isl_sched_edge *edge;
300         int empty;
301
302         hash = isl_hash_init();
303         hash = isl_hash_builtin(hash, temp.src);
304         hash = isl_hash_builtin(hash, temp.dst);
305         entry = isl_hash_table_find(ctx, graph->edge_table, hash,
306                                     &edge_has_src_and_dst, &temp, 0);
307         if (!entry)
308                 return 0;
309
310         edge = entry->data;
311         empty = isl_map_plain_is_empty(edge->map);
312         if (empty < 0)
313                 return -1;
314
315         return !empty;
316 }
317
318 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
319         int n_node, int n_edge)
320 {
321         int i;
322
323         graph->n = n_node;
324         graph->n_edge = n_edge;
325         graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
326         graph->sorted = isl_calloc_array(ctx, int, graph->n);
327         graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
328         graph->stack = isl_alloc_array(ctx, int, graph->n);
329         graph->edge = isl_calloc_array(ctx,
330                                         struct isl_sched_edge, graph->n_edge);
331
332         graph->intra_hmap = isl_hmap_map_basic_set_alloc(ctx, 2 * n_edge);
333         graph->inter_hmap = isl_hmap_map_basic_set_alloc(ctx, 2 * n_edge);
334
335         if (!graph->node || !graph->region || !graph->stack || !graph->edge ||
336             !graph->sorted)
337                 return -1;
338
339         for(i = 0; i < graph->n; ++i)
340                 graph->sorted[i] = i;
341
342         return 0;
343 }
344
345 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
346 {
347         int i;
348
349         isl_hmap_map_basic_set_free(ctx, graph->intra_hmap);
350         isl_hmap_map_basic_set_free(ctx, graph->inter_hmap);
351
352         for (i = 0; i < graph->n; ++i) {
353                 isl_space_free(graph->node[i].dim);
354                 isl_mat_free(graph->node[i].sched);
355                 isl_map_free(graph->node[i].sched_map);
356                 isl_mat_free(graph->node[i].cmap);
357                 if (graph->root) {
358                         free(graph->node[i].band);
359                         free(graph->node[i].band_id);
360                         free(graph->node[i].zero);
361                 }
362         }
363         free(graph->node);
364         free(graph->sorted);
365         for (i = 0; i < graph->n_edge; ++i)
366                 isl_map_free(graph->edge[i].map);
367         free(graph->edge);
368         free(graph->region);
369         free(graph->stack);
370         isl_hash_table_free(ctx, graph->edge_table);
371         isl_hash_table_free(ctx, graph->node_table);
372         isl_basic_set_free(graph->lp);
373 }
374
375 /* Add a new node to the graph representing the given set.
376  */
377 static int extract_node(__isl_take isl_set *set, void *user)
378 {
379         int nvar, nparam;
380         isl_ctx *ctx;
381         isl_space *dim;
382         isl_mat *sched;
383         struct isl_sched_graph *graph = user;
384         int *band, *band_id, *zero;
385
386         ctx = isl_set_get_ctx(set);
387         dim = isl_set_get_space(set);
388         isl_set_free(set);
389         nvar = isl_space_dim(dim, isl_dim_set);
390         nparam = isl_space_dim(dim, isl_dim_param);
391         if (!ctx->opt->schedule_parametric)
392                 nparam = 0;
393         sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
394         graph->node[graph->n].dim = dim;
395         graph->node[graph->n].nvar = nvar;
396         graph->node[graph->n].nparam = nparam;
397         graph->node[graph->n].sched = sched;
398         graph->node[graph->n].sched_map = NULL;
399         band = isl_alloc_array(ctx, int, graph->n_edge + nvar);
400         graph->node[graph->n].band = band;
401         band_id = isl_calloc_array(ctx, int, graph->n_edge + nvar);
402         graph->node[graph->n].band_id = band_id;
403         zero = isl_calloc_array(ctx, int, graph->n_edge + nvar);
404         graph->node[graph->n].zero = zero;
405         graph->n++;
406
407         if (!sched || !band || !band_id || !zero)
408                 return -1;
409
410         return 0;
411 }
412
413 /* Add a new edge to the graph based on the given map.
414  * Edges are first extracted from the validity dependences,
415  * from which the edge_table is constructed.
416  * Afterwards, the proximity dependences are added.  If a proximity
417  * dependence relation happens to be identical to one of the
418  * validity dependence relations added before, then we don't create
419  * a new edge, but instead mark the original edge as also representing
420  * a proximity dependence.
421  */
422 static int extract_edge(__isl_take isl_map *map, void *user)
423 {
424         isl_ctx *ctx = isl_map_get_ctx(map);
425         struct isl_sched_graph *graph = user;
426         struct isl_sched_node *src, *dst;
427         isl_space *dim;
428
429         dim = isl_space_domain(isl_map_get_space(map));
430         src = graph_find_node(ctx, graph, dim);
431         isl_space_free(dim);
432         dim = isl_space_range(isl_map_get_space(map));
433         dst = graph_find_node(ctx, graph, dim);
434         isl_space_free(dim);
435
436         if (!src || !dst) {
437                 isl_map_free(map);
438                 return 0;
439         }
440
441         graph->edge[graph->n_edge].src = src;
442         graph->edge[graph->n_edge].dst = dst;
443         graph->edge[graph->n_edge].map = map;
444         graph->edge[graph->n_edge].validity = !graph->edge_table;
445         graph->edge[graph->n_edge].proximity = !!graph->edge_table;
446         graph->n_edge++;
447
448         if (graph->edge_table) {
449                 uint32_t hash;
450                 struct isl_hash_table_entry *entry;
451                 struct isl_sched_edge *edge;
452                 int is_equal;
453
454                 hash = isl_hash_init();
455                 hash = isl_hash_builtin(hash, src);
456                 hash = isl_hash_builtin(hash, dst);
457                 entry = isl_hash_table_find(ctx, graph->edge_table, hash,
458                                             &edge_has_src_and_dst,
459                                             &graph->edge[graph->n_edge - 1], 0);
460                 if (!entry)
461                         return 0;
462                 edge = entry->data;
463                 is_equal = isl_map_plain_is_equal(map, edge->map);
464                 if (is_equal < 0)
465                         return -1;
466                 if (!is_equal)
467                         return 0;
468
469                 graph->n_edge--;
470                 edge->proximity = 1;
471                 isl_map_free(map);
472         }
473
474         return 0;
475 }
476
477 /* Check whether there is a validity dependence from src to dst,
478  * forcing dst to follow src.
479  */
480 static int node_follows(struct isl_sched_graph *graph, 
481         struct isl_sched_node *dst, struct isl_sched_node *src)
482 {
483         return graph_has_edge(graph, src, dst);
484 }
485
486 /* Perform Tarjan's algorithm for computing the strongly connected components
487  * in the dependence graph (only validity edges).
488  * If directed is not set, we consider the graph to be undirected and
489  * we effectively compute the (weakly) connected components.
490  */
491 static int detect_sccs_tarjan(struct isl_sched_graph *g, int i, int directed)
492 {
493         int j;
494
495         g->node[i].index = g->index;
496         g->node[i].min_index = g->index;
497         g->node[i].on_stack = 1;
498         g->index++;
499         g->stack[g->sp++] = i;
500
501         for (j = g->n - 1; j >= 0; --j) {
502                 int f;
503
504                 if (j == i)
505                         continue;
506                 if (g->node[j].index >= 0 &&
507                         (!g->node[j].on_stack ||
508                          g->node[j].index > g->node[i].min_index))
509                         continue;
510                 
511                 f = node_follows(g, &g->node[i], &g->node[j]);
512                 if (f < 0)
513                         return -1;
514                 if (!f && !directed) {
515                         f = node_follows(g, &g->node[j], &g->node[i]);
516                         if (f < 0)
517                                 return -1;
518                 }
519                 if (!f)
520                         continue;
521                 if (g->node[j].index < 0) {
522                         detect_sccs_tarjan(g, j, directed);
523                         if (g->node[j].min_index < g->node[i].min_index)
524                                 g->node[i].min_index = g->node[j].min_index;
525                 } else if (g->node[j].index < g->node[i].min_index)
526                         g->node[i].min_index = g->node[j].index;
527         }
528
529         if (g->node[i].index != g->node[i].min_index)
530                 return 0;
531
532         do {
533                 j = g->stack[--g->sp];
534                 g->node[j].on_stack = 0;
535                 g->node[j].scc = g->scc;
536         } while (j != i);
537         g->scc++;
538
539         return 0;
540 }
541
542 static int detect_ccs(struct isl_sched_graph *graph, int directed)
543 {
544         int i;
545
546         graph->index = 0;
547         graph->sp = 0;
548         graph->scc = 0;
549         for (i = graph->n - 1; i >= 0; --i)
550                 graph->node[i].index = -1;
551
552         for (i = graph->n - 1; i >= 0; --i) {
553                 if (graph->node[i].index >= 0)
554                         continue;
555                 if (detect_sccs_tarjan(graph, i, directed) < 0)
556                         return -1;
557         }
558
559         return 0;
560 }
561
562 /* Apply Tarjan's algorithm to detect the strongly connected components
563  * in the dependence graph.
564  */
565 static int detect_sccs(struct isl_sched_graph *graph)
566 {
567         return detect_ccs(graph, 1);
568 }
569
570 /* Apply Tarjan's algorithm to detect the (weakly) connected components
571  * in the dependence graph.
572  */
573 static int detect_wccs(struct isl_sched_graph *graph)
574 {
575         return detect_ccs(graph, 0);
576 }
577
578 static int cmp_scc(const void *a, const void *b, void *data)
579 {
580         struct isl_sched_graph *graph = data;
581         const int *i1 = a;
582         const int *i2 = b;
583
584         return graph->node[*i1].scc - graph->node[*i2].scc;
585 }
586
587 /* Sort the elements of graph->sorted according to the corresponding SCCs.
588  */
589 static void sort_sccs(struct isl_sched_graph *graph)
590 {
591         isl_quicksort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
592 }
593
594 /* Given a dependence relation R from a node to itself,
595  * construct the set of coefficients of valid constraints for elements
596  * in that dependence relation.
597  * In particular, the result contains tuples of coefficients
598  * c_0, c_n, c_x such that
599  *
600  *      c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
601  *
602  * or, equivalently,
603  *
604  *      c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
605  *
606  * We choose here to compute the dual of delta R.
607  * Alternatively, we could have computed the dual of R, resulting
608  * in a set of tuples c_0, c_n, c_x, c_y, and then
609  * plugged in (c_0, c_n, c_x, -c_x).
610  */
611 static __isl_give isl_basic_set *intra_coefficients(
612         struct isl_sched_graph *graph, __isl_take isl_map *map)
613 {
614         isl_ctx *ctx = isl_map_get_ctx(map);
615         isl_set *delta;
616         isl_basic_set *coef;
617
618         if (isl_hmap_map_basic_set_has(ctx, graph->intra_hmap, map))
619                 return isl_hmap_map_basic_set_get(ctx, graph->intra_hmap, map);
620
621         delta = isl_set_remove_divs(isl_map_deltas(isl_map_copy(map)));
622         coef = isl_set_coefficients(delta);
623         isl_hmap_map_basic_set_set(ctx, graph->intra_hmap, map,
624                                         isl_basic_set_copy(coef));
625
626         return coef;
627 }
628
629 /* Given a dependence relation R, * construct the set of coefficients
630  * of valid constraints for elements in that dependence relation.
631  * In particular, the result contains tuples of coefficients
632  * c_0, c_n, c_x, c_y such that
633  *
634  *      c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
635  *
636  */
637 static __isl_give isl_basic_set *inter_coefficients(
638         struct isl_sched_graph *graph, __isl_take isl_map *map)
639 {
640         isl_ctx *ctx = isl_map_get_ctx(map);
641         isl_set *set;
642         isl_basic_set *coef;
643
644         if (isl_hmap_map_basic_set_has(ctx, graph->inter_hmap, map))
645                 return isl_hmap_map_basic_set_get(ctx, graph->inter_hmap, map);
646
647         set = isl_map_wrap(isl_map_remove_divs(isl_map_copy(map)));
648         coef = isl_set_coefficients(set);
649         isl_hmap_map_basic_set_set(ctx, graph->inter_hmap, map,
650                                         isl_basic_set_copy(coef));
651
652         return coef;
653 }
654
655 /* Add constraints to graph->lp that force validity for the given
656  * dependence from a node i to itself.
657  * That is, add constraints that enforce
658  *
659  *      (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
660  *      = c_i_x (y - x) >= 0
661  *
662  * for each (x,y) in R.
663  * We obtain general constraints on coefficients (c_0, c_n, c_x)
664  * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
665  * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
666  * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
667  *
668  * Actually, we do not construct constraints for the c_i_x themselves,
669  * but for the coefficients of c_i_x written as a linear combination
670  * of the columns in node->cmap.
671  */
672 static int add_intra_validity_constraints(struct isl_sched_graph *graph,
673         struct isl_sched_edge *edge)
674 {
675         unsigned total;
676         isl_map *map = isl_map_copy(edge->map);
677         isl_ctx *ctx = isl_map_get_ctx(map);
678         isl_space *dim;
679         isl_dim_map *dim_map;
680         isl_basic_set *coef;
681         struct isl_sched_node *node = edge->src;
682
683         coef = intra_coefficients(graph, map);
684
685         dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
686
687         coef = isl_basic_set_transform_dims(coef, isl_dim_set,
688                     isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
689
690         total = isl_basic_set_total_dim(graph->lp);
691         dim_map = isl_dim_map_alloc(ctx, total);
692         isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
693                           isl_space_dim(dim, isl_dim_set), 1,
694                           node->nvar, -1);
695         isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
696                           isl_space_dim(dim, isl_dim_set), 1,
697                           node->nvar, 1);
698         graph->lp = isl_basic_set_extend_constraints(graph->lp,
699                         coef->n_eq, coef->n_ineq);
700         graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
701                                                            coef, dim_map);
702         isl_space_free(dim);
703
704         return 0;
705 }
706
707 /* Add constraints to graph->lp that force validity for the given
708  * dependence from node i to node j.
709  * That is, add constraints that enforce
710  *
711  *      (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
712  *
713  * for each (x,y) in R.
714  * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
715  * of valid constraints for R and then plug in
716  * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
717  *  c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
718  * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
719  * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
720  *
721  * Actually, we do not construct constraints for the c_*_x themselves,
722  * but for the coefficients of c_*_x written as a linear combination
723  * of the columns in node->cmap.
724  */
725 static int add_inter_validity_constraints(struct isl_sched_graph *graph,
726         struct isl_sched_edge *edge)
727 {
728         unsigned total;
729         isl_map *map = isl_map_copy(edge->map);
730         isl_ctx *ctx = isl_map_get_ctx(map);
731         isl_space *dim;
732         isl_dim_map *dim_map;
733         isl_basic_set *coef;
734         struct isl_sched_node *src = edge->src;
735         struct isl_sched_node *dst = edge->dst;
736
737         coef = inter_coefficients(graph, map);
738
739         dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
740
741         coef = isl_basic_set_transform_dims(coef, isl_dim_set,
742                     isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
743         coef = isl_basic_set_transform_dims(coef, isl_dim_set,
744                     isl_space_dim(dim, isl_dim_set) + src->nvar,
745                     isl_mat_copy(dst->cmap));
746
747         total = isl_basic_set_total_dim(graph->lp);
748         dim_map = isl_dim_map_alloc(ctx, total);
749
750         isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
751         isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
752         isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
753         isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
754                           isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
755                           dst->nvar, -1);
756         isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
757                           isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
758                           dst->nvar, 1);
759
760         isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
761         isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
762         isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
763         isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
764                           isl_space_dim(dim, isl_dim_set), 1,
765                           src->nvar, 1);
766         isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
767                           isl_space_dim(dim, isl_dim_set), 1,
768                           src->nvar, -1);
769
770         edge->start = graph->lp->n_ineq;
771         graph->lp = isl_basic_set_extend_constraints(graph->lp,
772                         coef->n_eq, coef->n_ineq);
773         graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
774                                                            coef, dim_map);
775         isl_space_free(dim);
776         edge->end = graph->lp->n_ineq;
777
778         return 0;
779 }
780
781 /* Add constraints to graph->lp that bound the dependence distance for the given
782  * dependence from a node i to itself.
783  * If s = 1, we add the constraint
784  *
785  *      c_i_x (y - x) <= m_0 + m_n n
786  *
787  * or
788  *
789  *      -c_i_x (y - x) + m_0 + m_n n >= 0
790  *
791  * for each (x,y) in R.
792  * If s = -1, we add the constraint
793  *
794  *      -c_i_x (y - x) <= m_0 + m_n n
795  *
796  * or
797  *
798  *      c_i_x (y - x) + m_0 + m_n n >= 0
799  *
800  * for each (x,y) in R.
801  * We obtain general constraints on coefficients (c_0, c_n, c_x)
802  * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
803  * with each coefficient (except m_0) represented as a pair of non-negative
804  * coefficients.
805  *
806  * Actually, we do not construct constraints for the c_i_x themselves,
807  * but for the coefficients of c_i_x written as a linear combination
808  * of the columns in node->cmap.
809  */
810 static int add_intra_proximity_constraints(struct isl_sched_graph *graph,
811         struct isl_sched_edge *edge, int s)
812 {
813         unsigned total;
814         unsigned nparam;
815         isl_map *map = isl_map_copy(edge->map);
816         isl_ctx *ctx = isl_map_get_ctx(map);
817         isl_space *dim;
818         isl_dim_map *dim_map;
819         isl_basic_set *coef;
820         struct isl_sched_node *node = edge->src;
821
822         coef = intra_coefficients(graph, map);
823
824         dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
825
826         coef = isl_basic_set_transform_dims(coef, isl_dim_set,
827                     isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
828
829         nparam = isl_space_dim(node->dim, isl_dim_param);
830         total = isl_basic_set_total_dim(graph->lp);
831         dim_map = isl_dim_map_alloc(ctx, total);
832         isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
833         isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
834         isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
835         isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
836                           isl_space_dim(dim, isl_dim_set), 1,
837                           node->nvar, s);
838         isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
839                           isl_space_dim(dim, isl_dim_set), 1,
840                           node->nvar, -s);
841         graph->lp = isl_basic_set_extend_constraints(graph->lp,
842                         coef->n_eq, coef->n_ineq);
843         graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
844                                                            coef, dim_map);
845         isl_space_free(dim);
846
847         return 0;
848 }
849
850 /* Add constraints to graph->lp that bound the dependence distance for the given
851  * dependence from node i to node j.
852  * If s = 1, we add the constraint
853  *
854  *      (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
855  *              <= m_0 + m_n n
856  *
857  * or
858  *
859  *      -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
860  *              m_0 + m_n n >= 0
861  *
862  * for each (x,y) in R.
863  * If s = -1, we add the constraint
864  *
865  *      -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
866  *              <= m_0 + m_n n
867  *
868  * or
869  *
870  *      (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
871  *              m_0 + m_n n >= 0
872  *
873  * for each (x,y) in R.
874  * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
875  * of valid constraints for R and then plug in
876  * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
877  *  -s*c_j_x+s*c_i_x)
878  * with each coefficient (except m_0, c_j_0 and c_i_0)
879  * represented as a pair of non-negative coefficients.
880  *
881  * Actually, we do not construct constraints for the c_*_x themselves,
882  * but for the coefficients of c_*_x written as a linear combination
883  * of the columns in node->cmap.
884  */
885 static int add_inter_proximity_constraints(struct isl_sched_graph *graph,
886         struct isl_sched_edge *edge, int s)
887 {
888         unsigned total;
889         unsigned nparam;
890         isl_map *map = isl_map_copy(edge->map);
891         isl_ctx *ctx = isl_map_get_ctx(map);
892         isl_space *dim;
893         isl_dim_map *dim_map;
894         isl_basic_set *coef;
895         struct isl_sched_node *src = edge->src;
896         struct isl_sched_node *dst = edge->dst;
897
898         coef = inter_coefficients(graph, map);
899
900         dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
901
902         coef = isl_basic_set_transform_dims(coef, isl_dim_set,
903                     isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
904         coef = isl_basic_set_transform_dims(coef, isl_dim_set,
905                     isl_space_dim(dim, isl_dim_set) + src->nvar,
906                     isl_mat_copy(dst->cmap));
907
908         nparam = isl_space_dim(src->dim, isl_dim_param);
909         total = isl_basic_set_total_dim(graph->lp);
910         dim_map = isl_dim_map_alloc(ctx, total);
911
912         isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
913         isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
914         isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
915
916         isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s);
917         isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s);
918         isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s);
919         isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
920                           isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
921                           dst->nvar, s);
922         isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
923                           isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
924                           dst->nvar, -s);
925
926         isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s);
927         isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s);
928         isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s);
929         isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
930                           isl_space_dim(dim, isl_dim_set), 1,
931                           src->nvar, -s);
932         isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
933                           isl_space_dim(dim, isl_dim_set), 1,
934                           src->nvar, s);
935
936         graph->lp = isl_basic_set_extend_constraints(graph->lp,
937                         coef->n_eq, coef->n_ineq);
938         graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
939                                                            coef, dim_map);
940         isl_space_free(dim);
941
942         return 0;
943 }
944
945 static int add_all_validity_constraints(struct isl_sched_graph *graph)
946 {
947         int i;
948
949         for (i = 0; i < graph->n_edge; ++i) {
950                 struct isl_sched_edge *edge= &graph->edge[i];
951                 if (!edge->validity)
952                         continue;
953                 if (edge->src != edge->dst)
954                         continue;
955                 if (add_intra_validity_constraints(graph, edge) < 0)
956                         return -1;
957         }
958
959         for (i = 0; i < graph->n_edge; ++i) {
960                 struct isl_sched_edge *edge = &graph->edge[i];
961                 if (!edge->validity)
962                         continue;
963                 if (edge->src == edge->dst)
964                         continue;
965                 if (add_inter_validity_constraints(graph, edge) < 0)
966                         return -1;
967         }
968
969         return 0;
970 }
971
972 /* Add constraints to graph->lp that bound the dependence distance
973  * for all dependence relations.
974  * If a given proximity dependence is identical to a validity
975  * dependence, then the dependence distance is already bounded
976  * from below (by zero), so we only need to bound the distance
977  * from above.
978  * Otherwise, we need to bound the distance both from above and from below.
979  */
980 static int add_all_proximity_constraints(struct isl_sched_graph *graph)
981 {
982         int i;
983
984         for (i = 0; i < graph->n_edge; ++i) {
985                 struct isl_sched_edge *edge= &graph->edge[i];
986                 if (!edge->proximity)
987                         continue;
988                 if (edge->src == edge->dst &&
989                     add_intra_proximity_constraints(graph, edge, 1) < 0)
990                         return -1;
991                 if (edge->src != edge->dst &&
992                     add_inter_proximity_constraints(graph, edge, 1) < 0)
993                         return -1;
994                 if (edge->validity)
995                         continue;
996                 if (edge->src == edge->dst &&
997                     add_intra_proximity_constraints(graph, edge, -1) < 0)
998                         return -1;
999                 if (edge->src != edge->dst &&
1000                     add_inter_proximity_constraints(graph, edge, -1) < 0)
1001                         return -1;
1002         }
1003
1004         return 0;
1005 }
1006
1007 /* Compute a basis for the rows in the linear part of the schedule
1008  * and extend this basis to a full basis.  The remaining rows
1009  * can then be used to force linear independence from the rows
1010  * in the schedule.
1011  *
1012  * In particular, given the schedule rows S, we compute
1013  *
1014  *      S = H Q
1015  *
1016  * with H the Hermite normal form of S.  That is, all but the
1017  * first rank columns of Q are zero and so each row in S is
1018  * a linear combination of the first rank rows of Q.
1019  * The matrix Q is then transposed because we will write the
1020  * coefficients of the next schedule row as a column vector s
1021  * and express this s as a linear combination s = Q c of the
1022  * computed basis.
1023  */
1024 static int node_update_cmap(struct isl_sched_node *node)
1025 {
1026         isl_mat *H, *Q;
1027         int n_row = isl_mat_rows(node->sched);
1028
1029         H = isl_mat_sub_alloc(node->sched, 0, n_row,
1030                               1 + node->nparam, node->nvar);
1031
1032         H = isl_mat_left_hermite(H, 0, NULL, &Q);
1033         isl_mat_free(node->cmap);
1034         node->cmap = isl_mat_transpose(Q);
1035         node->rank = isl_mat_initial_non_zero_cols(H);
1036         isl_mat_free(H);
1037
1038         if (!node->cmap || node->rank < 0)
1039                 return -1;
1040         return 0;
1041 }
1042
1043 /* Count the number of equality and inequality constraints
1044  * that will be added for the given map.
1045  * If once is set, then we count
1046  * each edge exactly once.  Otherwise, we count as follows
1047  * validity             -> 1 (>= 0)
1048  * validity+proximity   -> 2 (>= 0 and upper bound)
1049  * proximity            -> 2 (lower and upper bound)
1050  */
1051 static int count_map_constraints(struct isl_sched_graph *graph,
1052         struct isl_sched_edge *edge, __isl_take isl_map *map,
1053         int *n_eq, int *n_ineq, int once)
1054 {
1055         isl_basic_set *coef;
1056         int f = once ? 1 : edge->proximity ? 2 : 1;
1057
1058         if (edge->src == edge->dst)
1059                 coef = intra_coefficients(graph, map);
1060         else
1061                 coef = inter_coefficients(graph, map);
1062         if (!coef)
1063                 return -1;
1064         *n_eq += f * coef->n_eq;
1065         *n_ineq += f * coef->n_ineq;
1066         isl_basic_set_free(coef);
1067
1068         return 0;
1069 }
1070
1071 /* Count the number of equality and inequality constraints
1072  * that will be added to the main lp problem.
1073  * If once is set, then we count
1074  * each edge exactly once.  Otherwise, we count as follows
1075  * validity             -> 1 (>= 0)
1076  * validity+proximity   -> 2 (>= 0 and upper bound)
1077  * proximity            -> 2 (lower and upper bound)
1078  */
1079 static int count_constraints(struct isl_sched_graph *graph,
1080         int *n_eq, int *n_ineq, int once)
1081 {
1082         int i;
1083
1084         *n_eq = *n_ineq = 0;
1085         for (i = 0; i < graph->n_edge; ++i) {
1086                 struct isl_sched_edge *edge= &graph->edge[i];
1087                 isl_map *map = isl_map_copy(edge->map);
1088
1089                 if (count_map_constraints(graph, edge, map,
1090                                           n_eq, n_ineq, once) < 0)
1091                         return -1;
1092         }
1093
1094         return 0;
1095 }
1096
1097 /* Add constraints that bound the values of the variable and parameter
1098  * coefficients of the schedule.
1099  *
1100  * The maximal value of the coefficients is defined by the option
1101  * 'schedule_max_coefficient'.
1102  */
1103 static int add_bound_coefficient_constraints(isl_ctx *ctx,
1104         struct isl_sched_graph *graph)
1105 {
1106         int i, j, k;
1107         int max_coefficient;
1108         int total;
1109
1110         max_coefficient = ctx->opt->schedule_max_coefficient;
1111
1112         if (max_coefficient == -1)
1113                 return 0;
1114
1115         total = isl_basic_set_total_dim(graph->lp);
1116
1117         for (i = 0; i < graph->n; ++i) {
1118                 struct isl_sched_node *node = &graph->node[i];
1119                 for (j = 0; j < 2 * node->nparam + 2 * node->nvar; ++j) {
1120                         int dim;
1121                         k = isl_basic_set_alloc_inequality(graph->lp);
1122                         if (k < 0)
1123                                 return -1;
1124                         dim = 1 + node->start + 1 + j;
1125                         isl_seq_clr(graph->lp->ineq[k], 1 +  total);
1126                         isl_int_set_si(graph->lp->ineq[k][dim], -1);
1127                         isl_int_set_si(graph->lp->ineq[k][0], max_coefficient);
1128                 }
1129         }
1130
1131         return 0;
1132 }
1133
1134 /* Construct an ILP problem for finding schedule coefficients
1135  * that result in non-negative, but small dependence distances
1136  * over all dependences.
1137  * In particular, the dependence distances over proximity edges
1138  * are bounded by m_0 + m_n n and we compute schedule coefficients
1139  * with small values (preferably zero) of m_n and m_0.
1140  *
1141  * All variables of the ILP are non-negative.  The actual coefficients
1142  * may be negative, so each coefficient is represented as the difference
1143  * of two non-negative variables.  The negative part always appears
1144  * immediately before the positive part.
1145  * Other than that, the variables have the following order
1146  *
1147  *      - sum of positive and negative parts of m_n coefficients
1148  *      - m_0
1149  *      - sum of positive and negative parts of all c_n coefficients
1150  *              (unconstrained when computing non-parametric schedules)
1151  *      - sum of positive and negative parts of all c_x coefficients
1152  *      - positive and negative parts of m_n coefficients
1153  *      - for each node
1154  *              - c_i_0
1155  *              - positive and negative parts of c_i_n (if parametric)
1156  *              - positive and negative parts of c_i_x
1157  *
1158  * The c_i_x are not represented directly, but through the columns of
1159  * node->cmap.  That is, the computed values are for variable t_i_x
1160  * such that c_i_x = Q t_i_x with Q equal to node->cmap.
1161  *
1162  * The constraints are those from the edges plus two or three equalities
1163  * to express the sums.
1164  *
1165  * If force_zero is set, then we add equalities to ensure that
1166  * the sum of the m_n coefficients and m_0 are both zero.
1167  */
1168 static int setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
1169         int force_zero)
1170 {
1171         int i, j;
1172         int k;
1173         unsigned nparam;
1174         unsigned total;
1175         isl_space *dim;
1176         int parametric;
1177         int param_pos;
1178         int n_eq, n_ineq;
1179         int max_constant_term;
1180         int max_coefficient;
1181
1182         max_constant_term = ctx->opt->schedule_max_constant_term;
1183         max_coefficient = ctx->opt->schedule_max_coefficient;
1184
1185         parametric = ctx->opt->schedule_parametric;
1186         nparam = isl_space_dim(graph->node[0].dim, isl_dim_param);
1187         param_pos = 4;
1188         total = param_pos + 2 * nparam;
1189         for (i = 0; i < graph->n; ++i) {
1190                 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
1191                 if (node_update_cmap(node) < 0)
1192                         return -1;
1193                 node->start = total;
1194                 total += 1 + 2 * (node->nparam + node->nvar);
1195         }
1196
1197         if (count_constraints(graph, &n_eq, &n_ineq, 0) < 0)
1198                 return -1;
1199
1200         dim = isl_space_set_alloc(ctx, 0, total);
1201         isl_basic_set_free(graph->lp);
1202         n_eq += 2 + parametric + force_zero;
1203         if (max_constant_term != -1)
1204                 n_ineq += graph->n;
1205         if (max_coefficient != -1)
1206                 for (i = 0; i < graph->n; ++i)
1207                         n_ineq += 2 * graph->node[i].nparam +
1208                                   2 * graph->node[i].nvar;
1209
1210         graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
1211
1212         k = isl_basic_set_alloc_equality(graph->lp);
1213         if (k < 0)
1214                 return -1;
1215         isl_seq_clr(graph->lp->eq[k], 1 +  total);
1216         if (!force_zero)
1217                 isl_int_set_si(graph->lp->eq[k][1], -1);
1218         for (i = 0; i < 2 * nparam; ++i)
1219                 isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1);
1220
1221         if (force_zero) {
1222                 k = isl_basic_set_alloc_equality(graph->lp);
1223                 if (k < 0)
1224                         return -1;
1225                 isl_seq_clr(graph->lp->eq[k], 1 +  total);
1226                 isl_int_set_si(graph->lp->eq[k][2], -1);
1227         }
1228
1229         if (parametric) {
1230                 k = isl_basic_set_alloc_equality(graph->lp);
1231                 if (k < 0)
1232                         return -1;
1233                 isl_seq_clr(graph->lp->eq[k], 1 +  total);
1234                 isl_int_set_si(graph->lp->eq[k][3], -1);
1235                 for (i = 0; i < graph->n; ++i) {
1236                         int pos = 1 + graph->node[i].start + 1;
1237
1238                         for (j = 0; j < 2 * graph->node[i].nparam; ++j)
1239                                 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1240                 }
1241         }
1242
1243         k = isl_basic_set_alloc_equality(graph->lp);
1244         if (k < 0)
1245                 return -1;
1246         isl_seq_clr(graph->lp->eq[k], 1 +  total);
1247         isl_int_set_si(graph->lp->eq[k][4], -1);
1248         for (i = 0; i < graph->n; ++i) {
1249                 struct isl_sched_node *node = &graph->node[i];
1250                 int pos = 1 + node->start + 1 + 2 * node->nparam;
1251
1252                 for (j = 0; j < 2 * node->nvar; ++j)
1253                         isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1254         }
1255
1256         if (max_constant_term != -1)
1257                 for (i = 0; i < graph->n; ++i) {
1258                         struct isl_sched_node *node = &graph->node[i];
1259                         k = isl_basic_set_alloc_inequality(graph->lp);
1260                         if (k < 0)
1261                                 return -1;
1262                         isl_seq_clr(graph->lp->ineq[k], 1 +  total);
1263                         isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
1264                         isl_int_set_si(graph->lp->ineq[k][0], max_constant_term);
1265                 }
1266
1267         if (add_bound_coefficient_constraints(ctx, graph) < 0)
1268                 return -1;
1269         if (add_all_validity_constraints(graph) < 0)
1270                 return -1;
1271         if (add_all_proximity_constraints(graph) < 0)
1272                 return -1;
1273
1274         return 0;
1275 }
1276
1277 /* Analyze the conflicting constraint found by
1278  * isl_tab_basic_set_non_trivial_lexmin.  If it corresponds to the validity
1279  * constraint of one of the edges between distinct nodes, living, moreover
1280  * in distinct SCCs, then record the source and sink SCC as this may
1281  * be a good place to cut between SCCs.
1282  */
1283 static int check_conflict(int con, void *user)
1284 {
1285         int i;
1286         struct isl_sched_graph *graph = user;
1287
1288         if (graph->src_scc >= 0)
1289                 return 0;
1290
1291         con -= graph->lp->n_eq;
1292
1293         if (con >= graph->lp->n_ineq)
1294                 return 0;
1295
1296         for (i = 0; i < graph->n_edge; ++i) {
1297                 if (!graph->edge[i].validity)
1298                         continue;
1299                 if (graph->edge[i].src == graph->edge[i].dst)
1300                         continue;
1301                 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
1302                         continue;
1303                 if (graph->edge[i].start > con)
1304                         continue;
1305                 if (graph->edge[i].end <= con)
1306                         continue;
1307                 graph->src_scc = graph->edge[i].src->scc;
1308                 graph->dst_scc = graph->edge[i].dst->scc;
1309         }
1310
1311         return 0;
1312 }
1313
1314 /* Check whether the next schedule row of the given node needs to be
1315  * non-trivial.  Lower-dimensional domains may have some trivial rows,
1316  * but as soon as the number of remaining required non-trivial rows
1317  * is as large as the number or remaining rows to be computed,
1318  * all remaining rows need to be non-trivial.
1319  */
1320 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
1321 {
1322         return node->nvar - node->rank >= graph->maxvar - graph->n_row;
1323 }
1324
1325 /* Solve the ILP problem constructed in setup_lp.
1326  * For each node such that all the remaining rows of its schedule
1327  * need to be non-trivial, we construct a non-triviality region.
1328  * This region imposes that the next row is independent of previous rows.
1329  * In particular the coefficients c_i_x are represented by t_i_x
1330  * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
1331  * its first columns span the rows of the previously computed part
1332  * of the schedule.  The non-triviality region enforces that at least
1333  * one of the remaining components of t_i_x is non-zero, i.e.,
1334  * that the new schedule row depends on at least one of the remaining
1335  * columns of Q.
1336  */
1337 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
1338 {
1339         int i;
1340         isl_vec *sol;
1341         isl_basic_set *lp;
1342
1343         for (i = 0; i < graph->n; ++i) {
1344                 struct isl_sched_node *node = &graph->node[i];
1345                 int skip = node->rank;
1346                 graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip);
1347                 if (needs_row(graph, node))
1348                         graph->region[i].len = 2 * (node->nvar - skip);
1349                 else
1350                         graph->region[i].len = 0;
1351         }
1352         lp = isl_basic_set_copy(graph->lp);
1353         sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
1354                                        graph->region, &check_conflict, graph);
1355         return sol;
1356 }
1357
1358 /* Update the schedules of all nodes based on the given solution
1359  * of the LP problem.
1360  * The new row is added to the current band.
1361  * All possibly negative coefficients are encoded as a difference
1362  * of two non-negative variables, so we need to perform the subtraction
1363  * here.  Moreover, if use_cmap is set, then the solution does
1364  * not refer to the actual coefficients c_i_x, but instead to variables
1365  * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
1366  * In this case, we then also need to perform this multiplication
1367  * to obtain the values of c_i_x.
1368  *
1369  * If check_zero is set, then the first two coordinates of sol are
1370  * assumed to correspond to the dependence distance.  If these two
1371  * coordinates are zero, then the corresponding scheduling dimension
1372  * is marked as being zero distance.
1373  */
1374 static int update_schedule(struct isl_sched_graph *graph,
1375         __isl_take isl_vec *sol, int use_cmap, int check_zero)
1376 {
1377         int i, j;
1378         int zero = 0;
1379         isl_vec *csol = NULL;
1380
1381         if (!sol)
1382                 goto error;
1383         if (sol->size == 0)
1384                 isl_die(sol->ctx, isl_error_internal,
1385                         "no solution found", goto error);
1386
1387         if (check_zero)
1388                 zero = isl_int_is_zero(sol->el[1]) &&
1389                            isl_int_is_zero(sol->el[2]);
1390
1391         for (i = 0; i < graph->n; ++i) {
1392                 struct isl_sched_node *node = &graph->node[i];
1393                 int pos = node->start;
1394                 int row = isl_mat_rows(node->sched);
1395
1396                 isl_vec_free(csol);
1397                 csol = isl_vec_alloc(sol->ctx, node->nvar);
1398                 if (!csol)
1399                         goto error;
1400
1401                 isl_map_free(node->sched_map);
1402                 node->sched_map = NULL;
1403                 node->sched = isl_mat_add_rows(node->sched, 1);
1404                 if (!node->sched)
1405                         goto error;
1406                 node->sched = isl_mat_set_element(node->sched, row, 0,
1407                                                   sol->el[1 + pos]);
1408                 for (j = 0; j < node->nparam + node->nvar; ++j)
1409                         isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1],
1410                                     sol->el[1 + pos + 1 + 2 * j + 1],
1411                                     sol->el[1 + pos + 1 + 2 * j]);
1412                 for (j = 0; j < node->nparam; ++j)
1413                         node->sched = isl_mat_set_element(node->sched,
1414                                         row, 1 + j, sol->el[1+pos+1+2*j+1]);
1415                 for (j = 0; j < node->nvar; ++j)
1416                         isl_int_set(csol->el[j],
1417                                     sol->el[1+pos+1+2*(node->nparam+j)+1]);
1418                 if (use_cmap)
1419                         csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
1420                                                    csol);
1421                 if (!csol)
1422                         goto error;
1423                 for (j = 0; j < node->nvar; ++j)
1424                         node->sched = isl_mat_set_element(node->sched,
1425                                         row, 1 + node->nparam + j, csol->el[j]);
1426                 node->band[graph->n_total_row] = graph->n_band;
1427                 node->zero[graph->n_total_row] = zero;
1428         }
1429         isl_vec_free(sol);
1430         isl_vec_free(csol);
1431
1432         graph->n_row++;
1433         graph->n_total_row++;
1434
1435         return 0;
1436 error:
1437         isl_vec_free(sol);
1438         isl_vec_free(csol);
1439         return -1;
1440 }
1441
1442 /* Convert node->sched into a map and return this map.
1443  * We simply add equality constraints that express each output variable
1444  * as the affine combination of parameters and input variables specified
1445  * by the schedule matrix.
1446  *
1447  * The result is cached in node->sched_map, which needs to be released
1448  * whenever node->sched is updated.
1449  */
1450 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
1451 {
1452         int i, j;
1453         isl_space *dim;
1454         isl_local_space *ls;
1455         isl_basic_map *bmap;
1456         isl_constraint *c;
1457         int nrow, ncol;
1458         isl_int v;
1459
1460         if (node->sched_map)
1461                 return isl_map_copy(node->sched_map);
1462
1463         nrow = isl_mat_rows(node->sched);
1464         ncol = isl_mat_cols(node->sched) - 1;
1465         dim = isl_space_from_domain(isl_space_copy(node->dim));
1466         dim = isl_space_add_dims(dim, isl_dim_out, nrow);
1467         bmap = isl_basic_map_universe(isl_space_copy(dim));
1468         ls = isl_local_space_from_space(dim);
1469
1470         isl_int_init(v);
1471
1472         for (i = 0; i < nrow; ++i) {
1473                 c = isl_equality_alloc(isl_local_space_copy(ls));
1474                 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1475                 isl_mat_get_element(node->sched, i, 0, &v);
1476                 isl_constraint_set_constant(c, v);
1477                 for (j = 0; j < node->nparam; ++j) {
1478                         isl_mat_get_element(node->sched, i, 1 + j, &v);
1479                         isl_constraint_set_coefficient(c, isl_dim_param, j, v);
1480                 }
1481                 for (j = 0; j < node->nvar; ++j) {
1482                         isl_mat_get_element(node->sched,
1483                                             i, 1 + node->nparam + j, &v);
1484                         isl_constraint_set_coefficient(c, isl_dim_in, j, v);
1485                 }
1486                 bmap = isl_basic_map_add_constraint(bmap, c);
1487         }
1488
1489         isl_int_clear(v);
1490
1491         isl_local_space_free(ls);
1492
1493         node->sched_map = isl_map_from_basic_map(bmap);
1494         return isl_map_copy(node->sched_map);
1495 }
1496
1497 /* Update the given dependence relation based on the current schedule.
1498  * That is, intersect the dependence relation with a map expressing
1499  * that source and sink are executed within the same iteration of
1500  * the current schedule.
1501  * This is not the most efficient way, but this shouldn't be a critical
1502  * operation.
1503  */
1504 static __isl_give isl_map *specialize(__isl_take isl_map *map,
1505         struct isl_sched_node *src, struct isl_sched_node *dst)
1506 {
1507         isl_map *src_sched, *dst_sched, *id;
1508
1509         src_sched = node_extract_schedule(src);
1510         dst_sched = node_extract_schedule(dst);
1511         id = isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
1512         return isl_map_intersect(map, id);
1513 }
1514
1515 /* Update the dependence relations of all edges based on the current schedule.
1516  * If a dependence is carried completely by the current schedule, then
1517  * it is removed and edge_table is updated accordingly.
1518  */
1519 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
1520 {
1521         int i;
1522         int reset_table = 0;
1523
1524         for (i = graph->n_edge - 1; i >= 0; --i) {
1525                 struct isl_sched_edge *edge = &graph->edge[i];
1526                 edge->map = specialize(edge->map, edge->src, edge->dst);
1527                 if (!edge->map)
1528                         return -1;
1529
1530                 if (isl_map_plain_is_empty(edge->map)) {
1531                         reset_table = 1;
1532                         isl_map_free(edge->map);
1533                         if (i != graph->n_edge - 1)
1534                                 graph->edge[i] = graph->edge[graph->n_edge - 1];
1535                         graph->n_edge--;
1536                 }
1537         }
1538
1539         if (reset_table) {
1540                 isl_hash_table_free(ctx, graph->edge_table);
1541                 graph->edge_table = NULL;
1542                 return graph_init_edge_table(ctx, graph);
1543         }
1544
1545         return 0;
1546 }
1547
1548 static void next_band(struct isl_sched_graph *graph)
1549 {
1550         graph->band_start = graph->n_total_row;
1551         graph->n_band++;
1552 }
1553
1554 /* Topologically sort statements mapped to same schedule iteration
1555  * and add a row to the schedule corresponding to this order.
1556  */
1557 static int sort_statements(isl_ctx *ctx, struct isl_sched_graph *graph)
1558 {
1559         int i, j;
1560
1561         if (graph->n <= 1)
1562                 return 0;
1563
1564         if (update_edges(ctx, graph) < 0)
1565                 return -1;
1566
1567         if (graph->n_edge == 0)
1568                 return 0;
1569
1570         if (detect_sccs(graph) < 0)
1571                 return -1;
1572
1573         for (i = 0; i < graph->n; ++i) {
1574                 struct isl_sched_node *node = &graph->node[i];
1575                 int row = isl_mat_rows(node->sched);
1576                 int cols = isl_mat_cols(node->sched);
1577
1578                 isl_map_free(node->sched_map);
1579                 node->sched_map = NULL;
1580                 node->sched = isl_mat_add_rows(node->sched, 1);
1581                 if (!node->sched)
1582                         return -1;
1583                 node->sched = isl_mat_set_element_si(node->sched, row, 0,
1584                                                      node->scc);
1585                 for (j = 1; j < cols; ++j)
1586                         node->sched = isl_mat_set_element_si(node->sched,
1587                                                              row, j, 0);
1588                 node->band[graph->n_total_row] = graph->n_band;
1589         }
1590
1591         graph->n_total_row++;
1592         next_band(graph);
1593
1594         return 0;
1595 }
1596
1597 /* Construct an isl_schedule based on the computed schedule stored
1598  * in graph and with parameters specified by dim.
1599  */
1600 static __isl_give isl_schedule *extract_schedule(struct isl_sched_graph *graph,
1601         __isl_take isl_space *dim)
1602 {
1603         int i;
1604         isl_ctx *ctx;
1605         isl_schedule *sched = NULL;
1606                 
1607         if (!dim)
1608                 return NULL;
1609
1610         ctx = isl_space_get_ctx(dim);
1611         sched = isl_calloc(ctx, struct isl_schedule,
1612                            sizeof(struct isl_schedule) +
1613                            (graph->n - 1) * sizeof(struct isl_schedule_node));
1614         if (!sched)
1615                 goto error;
1616
1617         sched->ref = 1;
1618         sched->n = graph->n;
1619         sched->n_band = graph->n_band;
1620         sched->n_total_row = graph->n_total_row;
1621
1622         for (i = 0; i < sched->n; ++i) {
1623                 int r, b;
1624                 int *band_end, *band_id, *zero;
1625
1626                 band_end = isl_alloc_array(ctx, int, graph->n_band);
1627                 band_id = isl_alloc_array(ctx, int, graph->n_band);
1628                 zero = isl_alloc_array(ctx, int, graph->n_total_row);
1629                 sched->node[i].sched = node_extract_schedule(&graph->node[i]);
1630                 sched->node[i].band_end = band_end;
1631                 sched->node[i].band_id = band_id;
1632                 sched->node[i].zero = zero;
1633                 if (!band_end || !band_id || !zero)
1634                         goto error;
1635
1636                 for (r = 0; r < graph->n_total_row; ++r)
1637                         zero[r] = graph->node[i].zero[r];
1638                 for (r = b = 0; r < graph->n_total_row; ++r) {
1639                         if (graph->node[i].band[r] == b)
1640                                 continue;
1641                         band_end[b++] = r;
1642                         if (graph->node[i].band[r] == -1)
1643                                 break;
1644                 }
1645                 if (r == graph->n_total_row)
1646                         band_end[b++] = r;
1647                 sched->node[i].n_band = b;
1648                 for (--b; b >= 0; --b)
1649                         band_id[b] = graph->node[i].band_id[b];
1650         }
1651
1652         sched->dim = dim;
1653
1654         return sched;
1655 error:
1656         isl_space_free(dim);
1657         isl_schedule_free(sched);
1658         return NULL;
1659 }
1660
1661 /* Copy nodes that satisfy node_pred from the src dependence graph
1662  * to the dst dependence graph.
1663  */
1664 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
1665         int (*node_pred)(struct isl_sched_node *node, int data), int data)
1666 {
1667         int i;
1668
1669         dst->n = 0;
1670         for (i = 0; i < src->n; ++i) {
1671                 if (!node_pred(&src->node[i], data))
1672                         continue;
1673                 dst->node[dst->n].dim = isl_space_copy(src->node[i].dim);
1674                 dst->node[dst->n].nvar = src->node[i].nvar;
1675                 dst->node[dst->n].nparam = src->node[i].nparam;
1676                 dst->node[dst->n].sched = isl_mat_copy(src->node[i].sched);
1677                 dst->node[dst->n].sched_map =
1678                         isl_map_copy(src->node[i].sched_map);
1679                 dst->node[dst->n].band = src->node[i].band;
1680                 dst->node[dst->n].band_id = src->node[i].band_id;
1681                 dst->node[dst->n].zero = src->node[i].zero;
1682                 dst->n++;
1683         }
1684
1685         return 0;
1686 }
1687
1688 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
1689  * to the dst dependence graph.
1690  */
1691 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
1692         struct isl_sched_graph *src,
1693         int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
1694 {
1695         int i;
1696
1697         dst->n_edge = 0;
1698         for (i = 0; i < src->n_edge; ++i) {
1699                 struct isl_sched_edge *edge = &src->edge[i];
1700                 isl_map *map;
1701
1702                 if (!edge_pred(edge, data))
1703                         continue;
1704
1705                 if (isl_map_plain_is_empty(edge->map))
1706                         continue;
1707
1708                 map = isl_map_copy(edge->map);
1709
1710                 dst->edge[dst->n_edge].src =
1711                         graph_find_node(ctx, dst, edge->src->dim);
1712                 dst->edge[dst->n_edge].dst =
1713                         graph_find_node(ctx, dst, edge->dst->dim);
1714                 dst->edge[dst->n_edge].map = map;
1715                 dst->edge[dst->n_edge].validity = edge->validity;
1716                 dst->edge[dst->n_edge].proximity = edge->proximity;
1717                 dst->n_edge++;
1718         }
1719
1720         return 0;
1721 }
1722
1723 /* Given a "src" dependence graph that contains the nodes from "dst"
1724  * that satisfy node_pred, copy the schedule computed in "src"
1725  * for those nodes back to "dst".
1726  */
1727 static int copy_schedule(struct isl_sched_graph *dst,
1728         struct isl_sched_graph *src,
1729         int (*node_pred)(struct isl_sched_node *node, int data), int data)
1730 {
1731         int i;
1732
1733         src->n = 0;
1734         for (i = 0; i < dst->n; ++i) {
1735                 if (!node_pred(&dst->node[i], data))
1736                         continue;
1737                 isl_mat_free(dst->node[i].sched);
1738                 isl_map_free(dst->node[i].sched_map);
1739                 dst->node[i].sched = isl_mat_copy(src->node[src->n].sched);
1740                 dst->node[i].sched_map =
1741                         isl_map_copy(src->node[src->n].sched_map);
1742                 src->n++;
1743         }
1744
1745         dst->n_total_row = src->n_total_row;
1746         dst->n_band = src->n_band;
1747
1748         return 0;
1749 }
1750
1751 /* Compute the maximal number of variables over all nodes.
1752  * This is the maximal number of linearly independent schedule
1753  * rows that we need to compute.
1754  * Just in case we end up in a part of the dependence graph
1755  * with only lower-dimensional domains, we make sure we will
1756  * compute the required amount of extra linearly independent rows.
1757  */
1758 static int compute_maxvar(struct isl_sched_graph *graph)
1759 {
1760         int i;
1761
1762         graph->maxvar = 0;
1763         for (i = 0; i < graph->n; ++i) {
1764                 struct isl_sched_node *node = &graph->node[i];
1765                 int nvar;
1766
1767                 if (node_update_cmap(node) < 0)
1768                         return -1;
1769                 nvar = node->nvar + graph->n_row - node->rank;
1770                 if (nvar > graph->maxvar)
1771                         graph->maxvar = nvar;
1772         }
1773
1774         return 0;
1775 }
1776
1777 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph);
1778 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph);
1779
1780 /* Compute a schedule for a subgraph of "graph".  In particular, for
1781  * the graph composed of nodes that satisfy node_pred and edges that
1782  * that satisfy edge_pred.  The caller should precompute the number
1783  * of nodes and edges that satisfy these predicates and pass them along
1784  * as "n" and "n_edge".
1785  * If the subgraph is known to consist of a single component, then wcc should
1786  * be set and then we call compute_schedule_wcc on the constructed subgraph.
1787  * Otherwise, we call compute_schedule, which will check whether the subgraph
1788  * is connected.
1789  */
1790 static int compute_sub_schedule(isl_ctx *ctx,
1791         struct isl_sched_graph *graph, int n, int n_edge,
1792         int (*node_pred)(struct isl_sched_node *node, int data),
1793         int (*edge_pred)(struct isl_sched_edge *edge, int data),
1794         int data, int wcc)
1795 {
1796         struct isl_sched_graph split = { 0 };
1797
1798         if (graph_alloc(ctx, &split, n, n_edge) < 0)
1799                 goto error;
1800         if (copy_nodes(&split, graph, node_pred, data) < 0)
1801                 goto error;
1802         if (graph_init_table(ctx, &split) < 0)
1803                 goto error;
1804         if (copy_edges(ctx, &split, graph, edge_pred, data) < 0)
1805                 goto error;
1806         if (graph_init_edge_table(ctx, &split) < 0)
1807                 goto error;
1808         split.n_row = graph->n_row;
1809         split.n_total_row = graph->n_total_row;
1810         split.n_band = graph->n_band;
1811         split.band_start = graph->band_start;
1812
1813         if (wcc && compute_schedule_wcc(ctx, &split) < 0)
1814                 goto error;
1815         if (!wcc && compute_schedule(ctx, &split) < 0)
1816                 goto error;
1817
1818         copy_schedule(graph, &split, node_pred, data);
1819
1820         graph_free(ctx, &split);
1821         return 0;
1822 error:
1823         graph_free(ctx, &split);
1824         return -1;
1825 }
1826
1827 static int node_scc_exactly(struct isl_sched_node *node, int scc)
1828 {
1829         return node->scc == scc;
1830 }
1831
1832 static int node_scc_at_most(struct isl_sched_node *node, int scc)
1833 {
1834         return node->scc <= scc;
1835 }
1836
1837 static int node_scc_at_least(struct isl_sched_node *node, int scc)
1838 {
1839         return node->scc >= scc;
1840 }
1841
1842 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
1843 {
1844         return edge->src->scc == scc && edge->dst->scc == scc;
1845 }
1846
1847 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
1848 {
1849         return edge->dst->scc <= scc;
1850 }
1851
1852 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
1853 {
1854         return edge->src->scc >= scc;
1855 }
1856
1857 /* Pad the schedules of all nodes with zero rows such that in the end
1858  * they all have graph->n_total_row rows.
1859  * The extra rows don't belong to any band, so they get assigned band number -1.
1860  */
1861 static int pad_schedule(struct isl_sched_graph *graph)
1862 {
1863         int i, j;
1864
1865         for (i = 0; i < graph->n; ++i) {
1866                 struct isl_sched_node *node = &graph->node[i];
1867                 int row = isl_mat_rows(node->sched);
1868                 if (graph->n_total_row > row) {
1869                         isl_map_free(node->sched_map);
1870                         node->sched_map = NULL;
1871                 }
1872                 node->sched = isl_mat_add_zero_rows(node->sched,
1873                                                     graph->n_total_row - row);
1874                 if (!node->sched)
1875                         return -1;
1876                 for (j = row; j < graph->n_total_row; ++j)
1877                         node->band[j] = -1;
1878         }
1879
1880         return 0;
1881 }
1882
1883 /* Split the current graph into two parts and compute a schedule for each
1884  * part individually.  In particular, one part consists of all SCCs up
1885  * to and including graph->src_scc, while the other part contains the other
1886  * SCCS.
1887  *
1888  * The split is enforced in the schedule by constant rows with two different
1889  * values (0 and 1).  These constant rows replace the previously computed rows
1890  * in the current band.
1891  * It would be possible to reuse them as the first rows in the next
1892  * band, but recomputing them may result in better rows as we are looking
1893  * at a smaller part of the dependence graph.
1894  * compute_split_schedule is only called when no zero-distance schedule row
1895  * could be found on the entire graph, so we wark the splitting row as
1896  * non zero-distance.
1897  *
1898  * The band_id of the second group is set to n, where n is the number
1899  * of nodes in the first group.  This ensures that the band_ids over
1900  * the two groups remain disjoint, even if either or both of the two
1901  * groups contain independent components.
1902  */
1903 static int compute_split_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
1904 {
1905         int i, j, n, e1, e2;
1906         int n_total_row, orig_total_row;
1907         int n_band, orig_band;
1908         int drop;
1909
1910         drop = graph->n_total_row - graph->band_start;
1911         graph->n_total_row -= drop;
1912         graph->n_row -= drop;
1913
1914         n = 0;
1915         for (i = 0; i < graph->n; ++i) {
1916                 struct isl_sched_node *node = &graph->node[i];
1917                 int row = isl_mat_rows(node->sched) - drop;
1918                 int cols = isl_mat_cols(node->sched);
1919                 int before = node->scc <= graph->src_scc;
1920
1921                 if (before)
1922                         n++;
1923
1924                 isl_map_free(node->sched_map);
1925                 node->sched_map = NULL;
1926                 node->sched = isl_mat_drop_rows(node->sched,
1927                                                 graph->band_start, drop);
1928                 node->sched = isl_mat_add_rows(node->sched, 1);
1929                 if (!node->sched)
1930                         return -1;
1931                 node->sched = isl_mat_set_element_si(node->sched, row, 0,
1932                                                      !before);
1933                 for (j = 1; j < cols; ++j)
1934                         node->sched = isl_mat_set_element_si(node->sched,
1935                                                              row, j, 0);
1936                 node->band[graph->n_total_row] = graph->n_band;
1937                 node->zero[graph->n_total_row] = 0;
1938         }
1939
1940         e1 = e2 = 0;
1941         for (i = 0; i < graph->n_edge; ++i) {
1942                 if (graph->edge[i].dst->scc <= graph->src_scc)
1943                         e1++;
1944                 if (graph->edge[i].src->scc > graph->src_scc)
1945                         e2++;
1946         }
1947
1948         graph->n_total_row++;
1949         next_band(graph);
1950
1951         for (i = 0; i < graph->n; ++i) {
1952                 struct isl_sched_node *node = &graph->node[i];
1953                 if (node->scc > graph->src_scc)
1954                         node->band_id[graph->n_band] = n;
1955         }
1956
1957         orig_total_row = graph->n_total_row;
1958         orig_band = graph->n_band;
1959         if (compute_sub_schedule(ctx, graph, n, e1,
1960                                 &node_scc_at_most, &edge_dst_scc_at_most,
1961                                 graph->src_scc, 0) < 0)
1962                 return -1;
1963         n_total_row = graph->n_total_row;
1964         graph->n_total_row = orig_total_row;
1965         n_band = graph->n_band;
1966         graph->n_band = orig_band;
1967         if (compute_sub_schedule(ctx, graph, graph->n - n, e2,
1968                                 &node_scc_at_least, &edge_src_scc_at_least,
1969                                 graph->src_scc + 1, 0) < 0)
1970                 return -1;
1971         if (n_total_row > graph->n_total_row)
1972                 graph->n_total_row = n_total_row;
1973         if (n_band > graph->n_band)
1974                 graph->n_band = n_band;
1975
1976         return pad_schedule(graph);
1977 }
1978
1979 /* Compute the next band of the schedule after updating the dependence
1980  * relations based on the the current schedule.
1981  */
1982 static int compute_next_band(isl_ctx *ctx, struct isl_sched_graph *graph)
1983 {
1984         if (update_edges(ctx, graph) < 0)
1985                 return -1;
1986         next_band(graph);
1987                 
1988         return compute_schedule(ctx, graph);
1989 }
1990
1991 /* Add constraints to graph->lp that force the dependence "map" (which
1992  * is part of the dependence relation of "edge")
1993  * to be respected and attempt to carry it, where the edge is one from
1994  * a node j to itself.  "pos" is the sequence number of the given map.
1995  * That is, add constraints that enforce
1996  *
1997  *      (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
1998  *      = c_j_x (y - x) >= e_i
1999  *
2000  * for each (x,y) in R.
2001  * We obtain general constraints on coefficients (c_0, c_n, c_x)
2002  * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
2003  * with each coefficient in c_j_x represented as a pair of non-negative
2004  * coefficients.
2005  */
2006 static int add_intra_constraints(struct isl_sched_graph *graph,
2007         struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2008 {
2009         unsigned total;
2010         isl_ctx *ctx = isl_map_get_ctx(map);
2011         isl_space *dim;
2012         isl_dim_map *dim_map;
2013         isl_basic_set *coef;
2014         struct isl_sched_node *node = edge->src;
2015
2016         coef = intra_coefficients(graph, map);
2017
2018         dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2019
2020         total = isl_basic_set_total_dim(graph->lp);
2021         dim_map = isl_dim_map_alloc(ctx, total);
2022         isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
2023         isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
2024                           isl_space_dim(dim, isl_dim_set), 1,
2025                           node->nvar, -1);
2026         isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
2027                           isl_space_dim(dim, isl_dim_set), 1,
2028                           node->nvar, 1);
2029         graph->lp = isl_basic_set_extend_constraints(graph->lp,
2030                         coef->n_eq, coef->n_ineq);
2031         graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2032                                                            coef, dim_map);
2033         isl_space_free(dim);
2034
2035         return 0;
2036 }
2037
2038 /* Add constraints to graph->lp that force the dependence "map" (which
2039  * is part of the dependence relation of "edge")
2040  * to be respected and attempt to carry it, where the edge is one from
2041  * node j to node k.  "pos" is the sequence number of the given map.
2042  * That is, add constraints that enforce
2043  *
2044  *      (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
2045  *
2046  * for each (x,y) in R.
2047  * We obtain general constraints on coefficients (c_0, c_n, c_x)
2048  * of valid constraints for R and then plug in
2049  * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
2050  * with each coefficient (except e_i, c_k_0 and c_j_0)
2051  * represented as a pair of non-negative coefficients.
2052  */
2053 static int add_inter_constraints(struct isl_sched_graph *graph,
2054         struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2055 {
2056         unsigned total;
2057         isl_ctx *ctx = isl_map_get_ctx(map);
2058         isl_space *dim;
2059         isl_dim_map *dim_map;
2060         isl_basic_set *coef;
2061         struct isl_sched_node *src = edge->src;
2062         struct isl_sched_node *dst = edge->dst;
2063
2064         coef = inter_coefficients(graph, map);
2065
2066         dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2067
2068         total = isl_basic_set_total_dim(graph->lp);
2069         dim_map = isl_dim_map_alloc(ctx, total);
2070
2071         isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
2072
2073         isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
2074         isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
2075         isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
2076         isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
2077                           isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2078                           dst->nvar, -1);
2079         isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
2080                           isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2081                           dst->nvar, 1);
2082
2083         isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
2084         isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
2085         isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
2086         isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
2087                           isl_space_dim(dim, isl_dim_set), 1,
2088                           src->nvar, 1);
2089         isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
2090                           isl_space_dim(dim, isl_dim_set), 1,
2091                           src->nvar, -1);
2092
2093         graph->lp = isl_basic_set_extend_constraints(graph->lp,
2094                         coef->n_eq, coef->n_ineq);
2095         graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2096                                                            coef, dim_map);
2097         isl_space_free(dim);
2098
2099         return 0;
2100 }
2101
2102 /* Add constraints to graph->lp that force all dependence
2103  * to be respected and attempt to carry it.
2104  */
2105 static int add_all_constraints(struct isl_sched_graph *graph)
2106 {
2107         int i, j;
2108         int pos;
2109
2110         pos = 0;
2111         for (i = 0; i < graph->n_edge; ++i) {
2112                 struct isl_sched_edge *edge= &graph->edge[i];
2113                 for (j = 0; j < edge->map->n; ++j) {
2114                         isl_basic_map *bmap;
2115                         isl_map *map;
2116
2117                         bmap = isl_basic_map_copy(edge->map->p[j]);
2118                         map = isl_map_from_basic_map(bmap);
2119
2120                         if (edge->src == edge->dst &&
2121                             add_intra_constraints(graph, edge, map, pos) < 0)
2122                                 return -1;
2123                         if (edge->src != edge->dst &&
2124                             add_inter_constraints(graph, edge, map, pos) < 0)
2125                                 return -1;
2126                         ++pos;
2127                 }
2128         }
2129
2130         return 0;
2131 }
2132
2133 /* Count the number of equality and inequality constraints
2134  * that will be added to the carry_lp problem.
2135  * If once is set, then we count
2136  * each edge exactly once.  Otherwise, we count as follows
2137  * validity             -> 1 (>= 0)
2138  * validity+proximity   -> 2 (>= 0 and upper bound)
2139  * proximity            -> 2 (lower and upper bound)
2140  */
2141 static int count_all_constraints(struct isl_sched_graph *graph,
2142         int *n_eq, int *n_ineq, int once)
2143 {
2144         int i, j;
2145
2146         *n_eq = *n_ineq = 0;
2147         for (i = 0; i < graph->n_edge; ++i) {
2148                 struct isl_sched_edge *edge= &graph->edge[i];
2149                 for (j = 0; j < edge->map->n; ++j) {
2150                         isl_basic_map *bmap;
2151                         isl_map *map;
2152
2153                         bmap = isl_basic_map_copy(edge->map->p[j]);
2154                         map = isl_map_from_basic_map(bmap);
2155
2156                         if (count_map_constraints(graph, edge, map,
2157                                                   n_eq, n_ineq, once) < 0)
2158                                     return -1;
2159                 }
2160         }
2161
2162         return 0;
2163 }
2164
2165 /* Construct an LP problem for finding schedule coefficients
2166  * such that the schedule carries as many dependences as possible.
2167  * In particular, for each dependence i, we bound the dependence distance
2168  * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
2169  * of all e_i's.  Dependence with e_i = 0 in the solution are simply
2170  * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
2171  * Note that if the dependence relation is a union of basic maps,
2172  * then we have to consider each basic map individually as it may only
2173  * be possible to carry the dependences expressed by some of those
2174  * basic maps and not all off them.
2175  * Below, we consider each of those basic maps as a separate "edge".
2176  *
2177  * All variables of the LP are non-negative.  The actual coefficients
2178  * may be negative, so each coefficient is represented as the difference
2179  * of two non-negative variables.  The negative part always appears
2180  * immediately before the positive part.
2181  * Other than that, the variables have the following order
2182  *
2183  *      - sum of (1 - e_i) over all edges
2184  *      - sum of positive and negative parts of all c_n coefficients
2185  *              (unconstrained when computing non-parametric schedules)
2186  *      - sum of positive and negative parts of all c_x coefficients
2187  *      - for each edge
2188  *              - e_i
2189  *      - for each node
2190  *              - c_i_0
2191  *              - positive and negative parts of c_i_n (if parametric)
2192  *              - positive and negative parts of c_i_x
2193  *
2194  * The constraints are those from the edges plus three equalities
2195  * to express the sums and n_edge inequalities to express e_i <= 1.
2196  */
2197 static int setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2198 {
2199         int i, j;
2200         int k;
2201         isl_space *dim;
2202         unsigned total;
2203         int n_eq, n_ineq;
2204         int n_edge;
2205
2206         n_edge = 0;
2207         for (i = 0; i < graph->n_edge; ++i)
2208                 n_edge += graph->edge[i].map->n;
2209
2210         total = 3 + n_edge;
2211         for (i = 0; i < graph->n; ++i) {
2212                 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2213                 node->start = total;
2214                 total += 1 + 2 * (node->nparam + node->nvar);
2215         }
2216
2217         if (count_all_constraints(graph, &n_eq, &n_ineq, 1) < 0)
2218                 return -1;
2219
2220         dim = isl_space_set_alloc(ctx, 0, total);
2221         isl_basic_set_free(graph->lp);
2222         n_eq += 3;
2223         n_ineq += n_edge;
2224         graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
2225         graph->lp = isl_basic_set_set_rational(graph->lp);
2226
2227         k = isl_basic_set_alloc_equality(graph->lp);
2228         if (k < 0)
2229                 return -1;
2230         isl_seq_clr(graph->lp->eq[k], 1 +  total);
2231         isl_int_set_si(graph->lp->eq[k][0], -n_edge);
2232         isl_int_set_si(graph->lp->eq[k][1], 1);
2233         for (i = 0; i < n_edge; ++i)
2234                 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
2235
2236         k = isl_basic_set_alloc_equality(graph->lp);
2237         if (k < 0)
2238                 return -1;
2239         isl_seq_clr(graph->lp->eq[k], 1 +  total);
2240         isl_int_set_si(graph->lp->eq[k][2], -1);
2241         for (i = 0; i < graph->n; ++i) {
2242                 int pos = 1 + graph->node[i].start + 1;
2243
2244                 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
2245                         isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2246         }
2247
2248         k = isl_basic_set_alloc_equality(graph->lp);
2249         if (k < 0)
2250                 return -1;
2251         isl_seq_clr(graph->lp->eq[k], 1 +  total);
2252         isl_int_set_si(graph->lp->eq[k][3], -1);
2253         for (i = 0; i < graph->n; ++i) {
2254                 struct isl_sched_node *node = &graph->node[i];
2255                 int pos = 1 + node->start + 1 + 2 * node->nparam;
2256
2257                 for (j = 0; j < 2 * node->nvar; ++j)
2258                         isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2259         }
2260
2261         for (i = 0; i < n_edge; ++i) {
2262                 k = isl_basic_set_alloc_inequality(graph->lp);
2263                 if (k < 0)
2264                         return -1;
2265                 isl_seq_clr(graph->lp->ineq[k], 1 +  total);
2266                 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
2267                 isl_int_set_si(graph->lp->ineq[k][0], 1);
2268         }
2269
2270         if (add_all_constraints(graph) < 0)
2271                 return -1;
2272
2273         return 0;
2274 }
2275
2276 /* If the schedule_split_scaled option is set and if the linear
2277  * parts of the scheduling rows for all nodes in the graphs have
2278  * non-trivial common divisor, then split off the constant term
2279  * from the linear part.
2280  * The constant term is then placed in a separate band and
2281  * the linear part is reduced.
2282  */
2283 static int split_scaled(isl_ctx *ctx, struct isl_sched_graph *graph)
2284 {
2285         int i;
2286         int row;
2287         isl_int gcd, gcd_i;
2288
2289         if (!ctx->opt->schedule_split_scaled)
2290                 return 0;
2291         if (graph->n <= 1)
2292                 return 0;
2293
2294         isl_int_init(gcd);
2295         isl_int_init(gcd_i);
2296
2297         isl_int_set_si(gcd, 0);
2298
2299         row = isl_mat_rows(graph->node[0].sched) - 1;
2300
2301         for (i = 0; i < graph->n; ++i) {
2302                 struct isl_sched_node *node = &graph->node[i];
2303                 int cols = isl_mat_cols(node->sched);
2304
2305                 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
2306                 isl_int_gcd(gcd, gcd, gcd_i);
2307         }
2308
2309         isl_int_clear(gcd_i);
2310
2311         if (isl_int_cmp_si(gcd, 1) <= 0) {
2312                 isl_int_clear(gcd);
2313                 return 0;
2314         }
2315
2316         next_band(graph);
2317
2318         for (i = 0; i < graph->n; ++i) {
2319                 struct isl_sched_node *node = &graph->node[i];
2320
2321                 isl_map_free(node->sched_map);
2322                 node->sched_map = NULL;
2323                 node->sched = isl_mat_add_zero_rows(node->sched, 1);
2324                 if (!node->sched)
2325                         goto error;
2326                 isl_int_fdiv_r(node->sched->row[row + 1][0],
2327                                node->sched->row[row][0], gcd);
2328                 isl_int_fdiv_q(node->sched->row[row][0],
2329                                node->sched->row[row][0], gcd);
2330                 isl_int_mul(node->sched->row[row][0],
2331                             node->sched->row[row][0], gcd);
2332                 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
2333                 if (!node->sched)
2334                         goto error;
2335                 node->band[graph->n_total_row] = graph->n_band;
2336         }
2337
2338         graph->n_total_row++;
2339
2340         isl_int_clear(gcd);
2341         return 0;
2342 error:
2343         isl_int_clear(gcd);
2344         return -1;
2345 }
2346
2347 /* Construct a schedule row for each node such that as many dependences
2348  * as possible are carried and then continue with the next band.
2349  */
2350 static int carry_dependences(isl_ctx *ctx, struct isl_sched_graph *graph)
2351 {
2352         int i;
2353         int n_edge;
2354         isl_vec *sol;
2355         isl_basic_set *lp;
2356
2357         n_edge = 0;
2358         for (i = 0; i < graph->n_edge; ++i)
2359                 n_edge += graph->edge[i].map->n;
2360
2361         if (setup_carry_lp(ctx, graph) < 0)
2362                 return -1;
2363
2364         lp = isl_basic_set_copy(graph->lp);
2365         sol = isl_tab_basic_set_non_neg_lexmin(lp);
2366         if (!sol)
2367                 return -1;
2368
2369         if (sol->size == 0) {
2370                 isl_vec_free(sol);
2371                 isl_die(ctx, isl_error_internal,
2372                         "error in schedule construction", return -1);
2373         }
2374
2375         if (isl_int_cmp_si(sol->el[1], n_edge) >= 0) {
2376                 isl_vec_free(sol);
2377                 isl_die(ctx, isl_error_unknown,
2378                         "unable to carry dependences", return -1);
2379         }
2380
2381         if (update_schedule(graph, sol, 0, 0) < 0)
2382                 return -1;
2383
2384         if (split_scaled(ctx, graph) < 0)
2385                 return -1;
2386
2387         return compute_next_band(ctx, graph);
2388 }
2389
2390 /* Are there any validity edges in the graph?
2391  */
2392 static int has_validity_edges(struct isl_sched_graph *graph)
2393 {
2394         int i;
2395
2396         for (i = 0; i < graph->n_edge; ++i)
2397                 if (graph->edge[i].validity)
2398                         return 1;
2399
2400         return 0;
2401 }
2402
2403 /* Should we apply a Feautrier step?
2404  * That is, did the user request the Feautrier algorithm and are
2405  * there any validity dependences (left)?
2406  */
2407 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
2408 {
2409         if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
2410                 return 0;
2411
2412         return has_validity_edges(graph);
2413 }
2414
2415 /* Compute a schedule for a connected dependence graph using Feautrier's
2416  * multi-dimensional scheduling algorithm.
2417  * The original algorithm is described in [1].
2418  * The main idea is to minimize the number of scheduling dimensions, by
2419  * trying to satisfy as many dependences as possible per scheduling dimension.
2420  *
2421  * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
2422  *     Problem, Part II: Multi-Dimensional Time.
2423  *     In Intl. Journal of Parallel Programming, 1992.
2424  */
2425 static int compute_schedule_wcc_feautrier(isl_ctx *ctx,
2426         struct isl_sched_graph *graph)
2427 {
2428         return carry_dependences(ctx, graph);
2429 }
2430
2431 /* Compute a schedule for a connected dependence graph.
2432  * We try to find a sequence of as many schedule rows as possible that result
2433  * in non-negative dependence distances (independent of the previous rows
2434  * in the sequence, i.e., such that the sequence is tilable).
2435  * If we can't find any more rows we either
2436  * - split between SCCs and start over (assuming we found an interesting
2437  *      pair of SCCs between which to split)
2438  * - continue with the next band (assuming the current band has at least
2439  *      one row)
2440  * - try to carry as many dependences as possible and continue with the next
2441  *      band
2442  *
2443  * If Feautrier's algorithm is selected, we first recursively try to satisfy
2444  * as many validity dependences as possible. When all validity dependences
2445  * are satisfied we extend the schedule to a full-dimensional schedule.
2446  *
2447  * If we manage to complete the schedule, we finish off by topologically
2448  * sorting the statements based on the remaining dependences.
2449  *
2450  * If ctx->opt->schedule_outer_zero_distance is set, then we force the
2451  * outermost dimension in the current band to be zero distance.  If this
2452  * turns out to be impossible, we fall back on the general scheme above
2453  * and try to carry as many dependences as possible.
2454  */
2455 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph)
2456 {
2457         int force_zero = 0;
2458
2459         if (detect_sccs(graph) < 0)
2460                 return -1;
2461         sort_sccs(graph);
2462
2463         if (compute_maxvar(graph) < 0)
2464                 return -1;
2465
2466         if (need_feautrier_step(ctx, graph))
2467                 return compute_schedule_wcc_feautrier(ctx, graph);
2468
2469         if (ctx->opt->schedule_outer_zero_distance)
2470                 force_zero = 1;
2471
2472         while (graph->n_row < graph->maxvar) {
2473                 isl_vec *sol;
2474
2475                 graph->src_scc = -1;
2476                 graph->dst_scc = -1;
2477
2478                 if (setup_lp(ctx, graph, force_zero) < 0)
2479                         return -1;
2480                 sol = solve_lp(graph);
2481                 if (!sol)
2482                         return -1;
2483                 if (sol->size == 0) {
2484                         isl_vec_free(sol);
2485                         if (!ctx->opt->schedule_maximize_band_depth &&
2486                             graph->n_total_row > graph->band_start)
2487                                 return compute_next_band(ctx, graph);
2488                         if (graph->src_scc >= 0)
2489                                 return compute_split_schedule(ctx, graph);
2490                         if (graph->n_total_row > graph->band_start)
2491                                 return compute_next_band(ctx, graph);
2492                         return carry_dependences(ctx, graph);
2493                 }
2494                 if (update_schedule(graph, sol, 1, 1) < 0)
2495                         return -1;
2496                 force_zero = 0;
2497         }
2498
2499         if (graph->n_total_row > graph->band_start)
2500                 next_band(graph);
2501         return sort_statements(ctx, graph);
2502 }
2503
2504 /* Add a row to the schedules that separates the SCCs and move
2505  * to the next band.
2506  */
2507 static int split_on_scc(struct isl_sched_graph *graph)
2508 {
2509         int i;
2510
2511         for (i = 0; i < graph->n; ++i) {
2512                 struct isl_sched_node *node = &graph->node[i];
2513                 int row = isl_mat_rows(node->sched);
2514
2515                 isl_map_free(node->sched_map);
2516                 node->sched_map = NULL;
2517                 node->sched = isl_mat_add_zero_rows(node->sched, 1);
2518                 node->sched = isl_mat_set_element_si(node->sched, row, 0,
2519                                                      node->scc);
2520                 if (!node->sched)
2521                         return -1;
2522                 node->band[graph->n_total_row] = graph->n_band;
2523         }
2524
2525         graph->n_total_row++;
2526         next_band(graph);
2527
2528         return 0;
2529 }
2530
2531 /* Compute a schedule for each component (identified by node->scc)
2532  * of the dependence graph separately and then combine the results.
2533  * Depending on the setting of schedule_fuse, a component may be
2534  * either weakly or strongly connected.
2535  *
2536  * The band_id is adjusted such that each component has a separate id.
2537  * Note that the band_id may have already been set to a value different
2538  * from zero by compute_split_schedule.
2539  */
2540 static int compute_component_schedule(isl_ctx *ctx,
2541         struct isl_sched_graph *graph)
2542 {
2543         int wcc, i;
2544         int n, n_edge;
2545         int n_total_row, orig_total_row;
2546         int n_band, orig_band;
2547
2548         if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN)
2549                 split_on_scc(graph);
2550
2551         n_total_row = 0;
2552         orig_total_row = graph->n_total_row;
2553         n_band = 0;
2554         orig_band = graph->n_band;
2555         for (i = 0; i < graph->n; ++i)
2556                 graph->node[i].band_id[graph->n_band] += graph->node[i].scc;
2557         for (wcc = 0; wcc < graph->scc; ++wcc) {
2558                 n = 0;
2559                 for (i = 0; i < graph->n; ++i)
2560                         if (graph->node[i].scc == wcc)
2561                                 n++;
2562                 n_edge = 0;
2563                 for (i = 0; i < graph->n_edge; ++i)
2564                         if (graph->edge[i].src->scc == wcc &&
2565                             graph->edge[i].dst->scc == wcc)
2566                                 n_edge++;
2567
2568                 if (compute_sub_schedule(ctx, graph, n, n_edge,
2569                                     &node_scc_exactly,
2570                                     &edge_scc_exactly, wcc, 1) < 0)
2571                         return -1;
2572                 if (graph->n_total_row > n_total_row)
2573                         n_total_row = graph->n_total_row;
2574                 graph->n_total_row = orig_total_row;
2575                 if (graph->n_band > n_band)
2576                         n_band = graph->n_band;
2577                 graph->n_band = orig_band;
2578         }
2579
2580         graph->n_total_row = n_total_row;
2581         graph->n_band = n_band;
2582
2583         return pad_schedule(graph);
2584 }
2585
2586 /* Compute a schedule for the given dependence graph.
2587  * We first check if the graph is connected (through validity dependences)
2588  * and, if not, compute a schedule for each component separately.
2589  * If schedule_fuse is set to minimal fusion, then we check for strongly
2590  * connected components instead and compute a separate schedule for
2591  * each such strongly connected component.
2592  */
2593 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
2594 {
2595         if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN) {
2596                 if (detect_sccs(graph) < 0)
2597                         return -1;
2598         } else {
2599                 if (detect_wccs(graph) < 0)
2600                         return -1;
2601         }
2602
2603         if (graph->scc > 1)
2604                 return compute_component_schedule(ctx, graph);
2605
2606         return compute_schedule_wcc(ctx, graph);
2607 }
2608
2609 /* Compute a schedule for the given union of domains that respects
2610  * all the validity dependences.
2611  * If the default isl scheduling algorithm is used, it tries to minimize
2612  * the dependence distances over the proximity dependences.
2613  * If Feautrier's scheduling algorithm is used, the proximity dependence
2614  * distances are only minimized during the extension to a full-dimensional
2615  * schedule.
2616  */
2617 __isl_give isl_schedule *isl_union_set_compute_schedule(
2618         __isl_take isl_union_set *domain,
2619         __isl_take isl_union_map *validity,
2620         __isl_take isl_union_map *proximity)
2621 {
2622         isl_ctx *ctx = isl_union_set_get_ctx(domain);
2623         isl_space *dim;
2624         struct isl_sched_graph graph = { 0 };
2625         isl_schedule *sched;
2626
2627         domain = isl_union_set_align_params(domain,
2628                                             isl_union_map_get_space(validity));
2629         domain = isl_union_set_align_params(domain,
2630                                             isl_union_map_get_space(proximity));
2631         dim = isl_union_set_get_space(domain);
2632         validity = isl_union_map_align_params(validity, isl_space_copy(dim));
2633         proximity = isl_union_map_align_params(proximity, dim);
2634
2635         if (!domain)
2636                 goto error;
2637
2638         graph.n = isl_union_set_n_set(domain);
2639         if (graph.n == 0)
2640                 goto empty;
2641         if (graph_alloc(ctx, &graph, graph.n,
2642             isl_union_map_n_map(validity) + isl_union_map_n_map(proximity)) < 0)
2643                 goto error;
2644         graph.root = 1;
2645         graph.n = 0;
2646         if (isl_union_set_foreach_set(domain, &extract_node, &graph) < 0)
2647                 goto error;
2648         if (graph_init_table(ctx, &graph) < 0)
2649                 goto error;
2650         graph.n_edge = 0;
2651         if (isl_union_map_foreach_map(validity, &extract_edge, &graph) < 0)
2652                 goto error;
2653         if (graph_init_edge_table(ctx, &graph) < 0)
2654                 goto error;
2655         if (isl_union_map_foreach_map(proximity, &extract_edge, &graph) < 0)
2656                 goto error;
2657
2658         if (compute_schedule(ctx, &graph) < 0)
2659                 goto error;
2660
2661 empty:
2662         sched = extract_schedule(&graph, isl_union_set_get_space(domain));
2663
2664         graph_free(ctx, &graph);
2665         isl_union_set_free(domain);
2666         isl_union_map_free(validity);
2667         isl_union_map_free(proximity);
2668
2669         return sched;
2670 error:
2671         graph_free(ctx, &graph);
2672         isl_union_set_free(domain);
2673         isl_union_map_free(validity);
2674         isl_union_map_free(proximity);
2675         return NULL;
2676 }
2677
2678 void *isl_schedule_free(__isl_take isl_schedule *sched)
2679 {
2680         int i;
2681         if (!sched)
2682                 return NULL;
2683
2684         if (--sched->ref > 0)
2685                 return NULL;
2686
2687         for (i = 0; i < sched->n; ++i) {
2688                 isl_map_free(sched->node[i].sched);
2689                 free(sched->node[i].band_end);
2690                 free(sched->node[i].band_id);
2691                 free(sched->node[i].zero);
2692         }
2693         isl_space_free(sched->dim);
2694         isl_band_list_free(sched->band_forest);
2695         free(sched);
2696         return NULL;
2697 }
2698
2699 isl_ctx *isl_schedule_get_ctx(__isl_keep isl_schedule *schedule)
2700 {
2701         return schedule ? isl_space_get_ctx(schedule->dim) : NULL;
2702 }
2703
2704 __isl_give isl_union_map *isl_schedule_get_map(__isl_keep isl_schedule *sched)
2705 {
2706         int i;
2707         isl_union_map *umap;
2708
2709         if (!sched)
2710                 return NULL;
2711
2712         umap = isl_union_map_empty(isl_space_copy(sched->dim));
2713         for (i = 0; i < sched->n; ++i)
2714                 umap = isl_union_map_add_map(umap,
2715                                             isl_map_copy(sched->node[i].sched));
2716
2717         return umap;
2718 }
2719
2720 static __isl_give isl_band_list *construct_band_list(
2721         __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
2722         int band_nr, int *parent_active, int n_active);
2723
2724 /* Construct an isl_band structure for the band in the given schedule
2725  * with sequence number band_nr for the n_active nodes marked by active.
2726  * If the nodes don't have a band with the given sequence number,
2727  * then a band without members is created.
2728  *
2729  * Because of the way the schedule is constructed, we know that
2730  * the position of the band inside the schedule of a node is the same
2731  * for all active nodes.
2732  */
2733 static __isl_give isl_band *construct_band(__isl_keep isl_schedule *schedule,
2734         __isl_keep isl_band *parent,
2735         int band_nr, int *active, int n_active)
2736 {
2737         int i, j;
2738         isl_ctx *ctx = isl_schedule_get_ctx(schedule);
2739         isl_band *band;
2740         unsigned start, end;
2741
2742         band = isl_calloc_type(ctx, isl_band);
2743         if (!band)
2744                 return NULL;
2745
2746         band->ref = 1;
2747         band->schedule = schedule;
2748         band->parent = parent;
2749
2750         for (i = 0; i < schedule->n; ++i)
2751                 if (active[i] && schedule->node[i].n_band > band_nr + 1)
2752                         break;
2753
2754         if (i < schedule->n) {
2755                 band->children = construct_band_list(schedule, band,
2756                                                 band_nr + 1, active, n_active);
2757                 if (!band->children)
2758                         goto error;
2759         }
2760
2761         for (i = 0; i < schedule->n; ++i)
2762                 if (active[i])
2763                         break;
2764
2765         if (i >= schedule->n)
2766                 isl_die(ctx, isl_error_internal,
2767                         "band without active statements", goto error);
2768
2769         start = band_nr ? schedule->node[i].band_end[band_nr - 1] : 0;
2770         end = band_nr < schedule->node[i].n_band ?
2771                 schedule->node[i].band_end[band_nr] : start;
2772         band->n = end - start;
2773
2774         band->zero = isl_alloc_array(ctx, int, band->n);
2775         if (!band->zero)
2776                 goto error;
2777
2778         for (j = 0; j < band->n; ++j)
2779                 band->zero[j] = schedule->node[i].zero[start + j];
2780
2781         band->map = isl_union_map_empty(isl_space_copy(schedule->dim));
2782         for (i = 0; i < schedule->n; ++i) {
2783                 isl_map *map;
2784                 unsigned n_out;
2785
2786                 if (!active[i])
2787                         continue;
2788
2789                 map = isl_map_copy(schedule->node[i].sched);
2790                 n_out = isl_map_dim(map, isl_dim_out);
2791                 map = isl_map_project_out(map, isl_dim_out, end, n_out - end);
2792                 map = isl_map_project_out(map, isl_dim_out, 0, start);
2793                 band->map = isl_union_map_union(band->map,
2794                                                 isl_union_map_from_map(map));
2795         }
2796         if (!band->map)
2797                 goto error;
2798
2799         return band;
2800 error:
2801         isl_band_free(band);
2802         return NULL;
2803 }
2804
2805 /* Construct a list of bands that start at the same position (with
2806  * sequence number band_nr) in the schedules of the nodes that
2807  * were active in the parent band.
2808  *
2809  * A separate isl_band structure is created for each band_id
2810  * and for each node that does not have a band with sequence
2811  * number band_nr.  In the latter case, a band without members
2812  * is created.
2813  * This ensures that if a band has any children, then each node
2814  * that was active in the band is active in exactly one of the children.
2815  */
2816 static __isl_give isl_band_list *construct_band_list(
2817         __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
2818         int band_nr, int *parent_active, int n_active)
2819 {
2820         int i, j;
2821         isl_ctx *ctx = isl_schedule_get_ctx(schedule);
2822         int *active;
2823         int n_band;
2824         isl_band_list *list;
2825
2826         n_band = 0;
2827         for (i = 0; i < n_active; ++i) {
2828                 for (j = 0; j < schedule->n; ++j) {
2829                         if (!parent_active[j])
2830                                 continue;
2831                         if (schedule->node[j].n_band <= band_nr)
2832                                 continue;
2833                         if (schedule->node[j].band_id[band_nr] == i) {
2834                                 n_band++;
2835                                 break;
2836                         }
2837                 }
2838         }
2839         for (j = 0; j < schedule->n; ++j)
2840                 if (schedule->node[j].n_band <= band_nr)
2841                         n_band++;
2842
2843         if (n_band == 1) {
2844                 isl_band *band;
2845                 list = isl_band_list_alloc(ctx, n_band);
2846                 band = construct_band(schedule, parent, band_nr,
2847                                         parent_active, n_active);
2848                 return isl_band_list_add(list, band);
2849         }
2850
2851         active = isl_alloc_array(ctx, int, schedule->n);
2852         if (!active)
2853                 return NULL;
2854
2855         list = isl_band_list_alloc(ctx, n_band);
2856
2857         for (i = 0; i < n_active; ++i) {
2858                 int n = 0;
2859                 isl_band *band;
2860
2861                 for (j = 0; j < schedule->n; ++j) {
2862                         active[j] = parent_active[j] &&
2863                                         schedule->node[j].n_band > band_nr &&
2864                                         schedule->node[j].band_id[band_nr] == i;
2865                         if (active[j])
2866                                 n++;
2867                 }
2868                 if (n == 0)
2869                         continue;
2870
2871                 band = construct_band(schedule, parent, band_nr, active, n);
2872
2873                 list = isl_band_list_add(list, band);
2874         }
2875         for (i = 0; i < schedule->n; ++i) {
2876                 isl_band *band;
2877                 if (!parent_active[i])
2878                         continue;
2879                 if (schedule->node[i].n_band > band_nr)
2880                         continue;
2881                 for (j = 0; j < schedule->n; ++j)
2882                         active[j] = j == i;
2883                 band = construct_band(schedule, parent, band_nr, active, 1);
2884                 list = isl_band_list_add(list, band);
2885         }
2886
2887         free(active);
2888
2889         return list;
2890 }
2891
2892 /* Construct a band forest representation of the schedule and
2893  * return the list of roots.
2894  */
2895 static __isl_give isl_band_list *construct_forest(
2896         __isl_keep isl_schedule *schedule)
2897 {
2898         int i;
2899         isl_ctx *ctx = isl_schedule_get_ctx(schedule);
2900         isl_band_list *forest;
2901         int *active;
2902
2903         active = isl_alloc_array(ctx, int, schedule->n);
2904         if (!active)
2905                 return NULL;
2906
2907         for (i = 0; i < schedule->n; ++i)
2908                 active[i] = 1;
2909
2910         forest = construct_band_list(schedule, NULL, 0, active, schedule->n);
2911
2912         free(active);
2913
2914         return forest;
2915 }
2916
2917 /* Return the roots of a band forest representation of the schedule.
2918  */
2919 __isl_give isl_band_list *isl_schedule_get_band_forest(
2920         __isl_keep isl_schedule *schedule)
2921 {
2922         if (!schedule)
2923                 return NULL;
2924         if (!schedule->band_forest)
2925                 schedule->band_forest = construct_forest(schedule);
2926         return isl_band_list_dup(schedule->band_forest);
2927 }
2928
2929 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
2930         __isl_keep isl_band_list *list);
2931
2932 static __isl_give isl_printer *print_band(__isl_take isl_printer *p,
2933         __isl_keep isl_band *band)
2934 {
2935         isl_band_list *children;
2936
2937         p = isl_printer_start_line(p);
2938         p = isl_printer_print_union_map(p, band->map);
2939         p = isl_printer_end_line(p);
2940
2941         if (!isl_band_has_children(band))
2942                 return p;
2943
2944         children = isl_band_get_children(band);
2945
2946         p = isl_printer_indent(p, 4);
2947         p = print_band_list(p, children);
2948         p = isl_printer_indent(p, -4);
2949
2950         isl_band_list_free(children);
2951
2952         return p;
2953 }
2954
2955 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
2956         __isl_keep isl_band_list *list)
2957 {
2958         int i, n;
2959
2960         n = isl_band_list_n_band(list);
2961         for (i = 0; i < n; ++i) {
2962                 isl_band *band;
2963                 band = isl_band_list_get_band(list, i);
2964                 p = print_band(p, band);
2965                 isl_band_free(band);
2966         }
2967
2968         return p;
2969 }
2970
2971 __isl_give isl_printer *isl_printer_print_schedule(__isl_take isl_printer *p,
2972         __isl_keep isl_schedule *schedule)
2973 {
2974         isl_band_list *forest;
2975
2976         forest = isl_schedule_get_band_forest(schedule);
2977
2978         p = print_band_list(p, forest);
2979
2980         isl_band_list_free(forest);
2981
2982         return p;
2983 }
2984
2985 void isl_schedule_dump(__isl_keep isl_schedule *schedule)
2986 {
2987         isl_printer *printer;
2988
2989         if (!schedule)
2990                 return;
2991
2992         printer = isl_printer_to_file(isl_schedule_get_ctx(schedule), stderr);
2993         printer = isl_printer_print_schedule(printer, schedule);
2994
2995         isl_printer_free(printer);
2996 }