Merge branch 'maint'
[platform/upstream/isl.git] / isl_bernstein.c
1 /*
2  * Copyright 2006-2007 Universiteit Leiden
3  * Copyright 2008-2009 Katholieke Universiteit Leuven
4  * Copyright 2010      INRIA Saclay
5  *
6  * Use of this software is governed by the GNU LGPLv2.1 license
7  *
8  * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9  * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10  * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11  * B-3001 Leuven, Belgium
12  * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13  * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
14  */
15
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include <isl/set.h>
19 #include <isl/seq.h>
20 #include <isl_morph.h>
21 #include <isl_factorization.h>
22 #include <isl_vertices_private.h>
23 #include <isl_polynomial_private.h>
24 #include <isl_bernstein.h>
25
26 struct bernstein_data {
27         enum isl_fold type;
28         isl_qpolynomial *poly;
29         int check_tight;
30
31         isl_cell *cell;
32
33         isl_qpolynomial_fold *fold;
34         isl_qpolynomial_fold *fold_tight;
35         isl_pw_qpolynomial_fold *pwf;
36         isl_pw_qpolynomial_fold *pwf_tight;
37 };
38
39 static int vertex_is_integral(__isl_keep isl_basic_set *vertex)
40 {
41         unsigned nvar;
42         unsigned nparam;
43         int i;
44
45         nvar = isl_basic_set_dim(vertex, isl_dim_set);
46         nparam = isl_basic_set_dim(vertex, isl_dim_param);
47         for (i = 0; i < nvar; ++i) {
48                 int r = nvar - 1 - i;
49                 if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) &&
50                     !isl_int_is_negone(vertex->eq[r][1 + nparam + i]))
51                         return 0;
52         }
53
54         return 1;
55 }
56
57 static __isl_give isl_qpolynomial *vertex_coordinate(
58         __isl_keep isl_basic_set *vertex, int i, __isl_take isl_dim *dim)
59 {
60         unsigned nvar;
61         unsigned nparam;
62         int r;
63         isl_int denom;
64         isl_qpolynomial *v;
65
66         nvar = isl_basic_set_dim(vertex, isl_dim_set);
67         nparam = isl_basic_set_dim(vertex, isl_dim_param);
68         r = nvar - 1 - i;
69
70         isl_int_init(denom);
71         isl_int_set(denom, vertex->eq[r][1 + nparam + i]);
72         isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error);
73
74         if (isl_int_is_pos(denom))
75                 isl_seq_neg(vertex->eq[r], vertex->eq[r],
76                                 1 + isl_basic_set_total_dim(vertex));
77         else
78                 isl_int_neg(denom, denom);
79
80         v = isl_qpolynomial_from_affine(dim, vertex->eq[r], denom);
81         isl_int_clear(denom);
82
83         return v;
84 error:
85         isl_dim_free(dim);
86         isl_int_clear(denom);
87         return NULL;
88 }
89
90 /* Check whether the bound associated to the selection "k" is tight,
91  * which is the case if we select exactly one vertex and if that vertex
92  * is integral for all values of the parameters.
93  */
94 static int is_tight(int *k, int n, int d, isl_cell *cell)
95 {
96         int i;
97
98         for (i = 0; i < n; ++i) {
99                 int v;
100                 if (k[i] != d) {
101                         if (k[i])
102                                 return 0;
103                         continue;
104                 }
105                 v = cell->ids[n - 1 - i];
106                 return vertex_is_integral(cell->vertices->v[v].vertex);
107         }
108
109         return 0;
110 }
111
112 static void add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom,
113         int *k, int n, int d, struct bernstein_data *data)
114 {
115         isl_qpolynomial_fold *fold;
116
117         fold = isl_qpolynomial_fold_alloc(data->type, b);
118
119         if (data->check_tight && is_tight(k, n, d, data->cell))
120                 data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom,
121                                                         data->fold_tight, fold);
122         else
123                 data->fold = isl_qpolynomial_fold_fold_on_domain(dom,
124                                                         data->fold, fold);
125 }
126
127 /* Extract the coefficients of the Bernstein base polynomials and store
128  * them in data->fold and data->fold_tight.
129  *
130  * In particular, the coefficient of each monomial
131  * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
132  * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
133  *
134  * c[i] contains the coefficient of the selected powers of the first i+1 vars.
135  * multinom[i] contains the partial multinomial coefficient.
136  */
137 static void extract_coefficients(isl_qpolynomial *poly,
138         __isl_keep isl_set *dom, struct bernstein_data *data)
139 {
140         int i;
141         int d;
142         int n;
143         isl_ctx *ctx;
144         isl_qpolynomial **c = NULL;
145         int *k = NULL;
146         int *left = NULL;
147         isl_vec *multinom = NULL;
148
149         if (!poly)
150                 return;
151
152         ctx = isl_qpolynomial_get_ctx(poly);
153         n = isl_qpolynomial_dim(poly, isl_dim_set);
154         d = isl_qpolynomial_degree(poly);
155         isl_assert(ctx, n >= 2, return);
156
157         c = isl_calloc_array(ctx, isl_qpolynomial *, n);
158         k = isl_alloc_array(ctx, int, n);
159         left = isl_alloc_array(ctx, int, n);
160         multinom = isl_vec_alloc(ctx, n);
161         if (!c || !k || !left || !multinom)
162                 goto error;
163
164         isl_int_set_si(multinom->el[0], 1);
165         for (k[0] = d; k[0] >= 0; --k[0]) {
166                 int i = 1;
167                 isl_qpolynomial_free(c[0]);
168                 c[0] = isl_qpolynomial_coeff(poly, isl_dim_set, n - 1, k[0]);
169                 left[0] = d - k[0];
170                 k[1] = -1;
171                 isl_int_set(multinom->el[1], multinom->el[0]);
172                 while (i > 0) {
173                         if (i == n - 1) {
174                                 int j;
175                                 isl_dim *dim;
176                                 isl_qpolynomial *b;
177                                 isl_qpolynomial *f;
178                                 for (j = 2; j <= left[i - 1]; ++j)
179                                         isl_int_divexact_ui(multinom->el[i],
180                                                 multinom->el[i], j);
181                                 b = isl_qpolynomial_coeff(c[i - 1], isl_dim_set,
182                                         n - 1 - i, left[i - 1]);
183                                 b = isl_qpolynomial_drop_dims(b, isl_dim_set,
184                                                                 0, n);
185                                 dim = isl_qpolynomial_get_dim(b);
186                                 f = isl_qpolynomial_rat_cst(dim, ctx->one,
187                                         multinom->el[i]);
188                                 b = isl_qpolynomial_mul(b, f);
189                                 k[n - 1] = left[n - 2];
190                                 add_fold(b, dom, k, n, d, data);
191                                 --i;
192                                 continue;
193                         }
194                         if (k[i] >= left[i - 1]) {
195                                 --i;
196                                 continue;
197                         }
198                         ++k[i];
199                         if (k[i])
200                                 isl_int_divexact_ui(multinom->el[i],
201                                         multinom->el[i], k[i]);
202                         isl_qpolynomial_free(c[i]);
203                         c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_set,
204                                         n - 1 - i, k[i]);
205                         left[i] = left[i - 1] - k[i];
206                         k[i + 1] = -1;
207                         isl_int_set(multinom->el[i + 1], multinom->el[i]);
208                         ++i;
209                 }
210                 isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]);
211         }
212
213         for (i = 0; i < n; ++i)
214                 isl_qpolynomial_free(c[i]);
215
216         isl_vec_free(multinom);
217         free(left);
218         free(k);
219         free(c);
220         return;
221 error:
222         isl_vec_free(multinom);
223         free(left);
224         free(k);
225         if (c)
226                 for (i = 0; i < n; ++i)
227                         isl_qpolynomial_free(c[i]);
228         free(c);
229         return;
230 }
231
232 /* Perform bernstein expansion on the parametric vertices that are active
233  * on "cell".
234  *
235  * data->poly has been homogenized in the calling function.
236  *
237  * We plug in the barycentric coordinates for the set variables
238  *
239  *              \vec x = \sum_i \alpha_i v_i(\vec p)
240  *
241  * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
242  * Next, we extract the coefficients of the Bernstein base polynomials.
243  */
244 static int bernstein_coefficients_cell(__isl_take isl_cell *cell, void *user)
245 {
246         int i, j;
247         struct bernstein_data *data = (struct bernstein_data *)user;
248         isl_dim *dim_param;
249         isl_dim *dim_dst;
250         isl_qpolynomial *poly = data->poly;
251         unsigned nvar;
252         int n_vertices;
253         isl_qpolynomial **subs;
254         isl_pw_qpolynomial_fold *pwf;
255         isl_set *dom;
256         isl_ctx *ctx;
257
258         nvar = isl_qpolynomial_dim(poly, isl_dim_set) - 1;
259         n_vertices = cell->n_vertices;
260
261         ctx = isl_qpolynomial_get_ctx(poly);
262         if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate)
263                 return isl_cell_foreach_simplex(cell,
264                                             &bernstein_coefficients_cell, user);
265
266         subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar);
267         if (!subs)
268                 goto error;
269
270         dim_param = isl_basic_set_get_dim(cell->dom);
271         dim_dst = isl_qpolynomial_get_dim(poly);
272         dim_dst = isl_dim_add(dim_dst, isl_dim_set, n_vertices);
273
274         for (i = 0; i < 1 + nvar; ++i)
275                 subs[i] = isl_qpolynomial_zero(isl_dim_copy(dim_dst));
276
277         for (i = 0; i < n_vertices; ++i) {
278                 isl_qpolynomial *c;
279                 c = isl_qpolynomial_var(isl_dim_copy(dim_dst), isl_dim_set,
280                                         1 + nvar + i);
281                 for (j = 0; j < nvar; ++j) {
282                         int k = cell->ids[i];
283                         isl_qpolynomial *v;
284                         v = vertex_coordinate(cell->vertices->v[k].vertex, j,
285                                                 isl_dim_copy(dim_param));
286                         v = isl_qpolynomial_add_dims(v, isl_dim_set,
287                                                         1 + nvar + n_vertices);
288                         v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c));
289                         subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v);
290                 }
291                 subs[0] = isl_qpolynomial_add(subs[0], c);
292         }
293         isl_dim_free(dim_dst);
294
295         poly = isl_qpolynomial_copy(poly);
296
297         poly = isl_qpolynomial_add_dims(poly, isl_dim_set, n_vertices);
298         poly = isl_qpolynomial_substitute(poly, isl_dim_set, 0, 1 + nvar, subs);
299         poly = isl_qpolynomial_drop_dims(poly, isl_dim_set, 0, 1 + nvar);
300
301         data->cell = cell;
302         dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom));
303         data->fold = isl_qpolynomial_fold_empty(data->type, isl_dim_copy(dim_param));
304         data->fold_tight = isl_qpolynomial_fold_empty(data->type, dim_param);
305         extract_coefficients(poly, dom, data);
306
307         pwf = isl_pw_qpolynomial_fold_alloc(data->type, isl_set_copy(dom),
308                                             data->fold);
309         data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
310         pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, data->fold_tight);
311         data->pwf_tight = isl_pw_qpolynomial_fold_fold(data->pwf_tight, pwf);
312
313         isl_qpolynomial_free(poly);
314         isl_cell_free(cell);
315         for (i = 0; i < 1 + nvar; ++i)
316                 isl_qpolynomial_free(subs[i]);
317         free(subs);
318         return 0;
319 error:
320         isl_cell_free(cell);
321         return -1;
322 }
323
324 /* Base case of applying bernstein expansion.
325  *
326  * We compute the chamber decomposition of the parametric polytope "bset"
327  * and then perform bernstein expansion on the parametric vertices
328  * that are active on each chamber.
329  */
330 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base(
331         __isl_take isl_basic_set *bset,
332         __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
333 {
334         unsigned nvar;
335         isl_dim *dim;
336         isl_pw_qpolynomial_fold *pwf;
337         isl_vertices *vertices;
338         int covers;
339
340         nvar = isl_basic_set_dim(bset, isl_dim_set);
341         if (nvar == 0) {
342                 isl_set *dom;
343                 isl_qpolynomial_fold *fold;
344                 fold = isl_qpolynomial_fold_alloc(data->type, poly);
345                 dom = isl_set_from_basic_set(bset);
346                 if (tight)
347                         *tight = 1;
348                 return isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
349         }
350
351         if (isl_qpolynomial_is_zero(poly)) {
352                 isl_set *dom;
353                 isl_qpolynomial_fold *fold;
354                 fold = isl_qpolynomial_fold_alloc(data->type, poly);
355                 dom = isl_set_from_basic_set(bset);
356                 pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
357                 if (tight)
358                         *tight = 1;
359                 return isl_pw_qpolynomial_fold_drop_dims(pwf,
360                                                             isl_dim_set, 0, nvar);
361         }
362
363         dim = isl_basic_set_get_dim(bset);
364         dim = isl_dim_drop(dim, isl_dim_set, 0, nvar);
365         data->pwf = isl_pw_qpolynomial_fold_zero(isl_dim_copy(dim), data->type);
366         data->pwf_tight = isl_pw_qpolynomial_fold_zero(dim, data->type);
367         data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly));
368         vertices = isl_basic_set_compute_vertices(bset);
369         isl_vertices_foreach_disjoint_cell(vertices,
370                 &bernstein_coefficients_cell, data);
371         isl_vertices_free(vertices);
372         isl_qpolynomial_free(data->poly);
373
374         isl_basic_set_free(bset);
375         isl_qpolynomial_free(poly);
376
377         covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf);
378         if (covers < 0)
379                 goto error;
380
381         if (tight)
382                 *tight = covers;
383
384         if (covers) {
385                 isl_pw_qpolynomial_fold_free(data->pwf);
386                 return data->pwf_tight;
387         }
388
389         data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, data->pwf_tight);
390
391         return data->pwf;
392 error:
393         isl_pw_qpolynomial_fold_free(data->pwf_tight);
394         isl_pw_qpolynomial_fold_free(data->pwf);
395         return NULL;
396 }
397
398 /* Apply bernstein expansion recursively by working in on len[i]
399  * set variables at a time, with i ranging from n_group - 1 to 0.
400  */
401 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive(
402         __isl_take isl_pw_qpolynomial *pwqp,
403         int n_group, int *len, struct bernstein_data *data, int *tight)
404 {
405         int i;
406         unsigned nparam;
407         unsigned nvar;
408         isl_pw_qpolynomial_fold *pwf;
409
410         if (!pwqp)
411                 return NULL;
412
413         nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param);
414         nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_set);
415
416         pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam,
417                                         isl_dim_set, 0, nvar - len[n_group - 1]);
418         pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight);
419
420         for (i = n_group - 2; i >= 0; --i) {
421                 nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param);
422                 pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_set, 0,
423                                 isl_dim_param, nparam - len[i], len[i]);
424                 if (tight && !*tight)
425                         tight = NULL;
426                 pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
427         }
428
429         return pwf;
430 }
431
432 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors(
433         __isl_take isl_basic_set *bset,
434         __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
435 {
436         isl_factorizer *f;
437         isl_set *set;
438         isl_pw_qpolynomial *pwqp;
439         isl_pw_qpolynomial_fold *pwf;
440
441         f = isl_basic_set_factorizer(bset);
442         if (!f)
443                 goto error;
444         if (f->n_group == 0) {
445                 isl_factorizer_free(f);
446                 return  bernstein_coefficients_base(bset, poly, data, tight);
447         }
448
449         set = isl_set_from_basic_set(bset);
450         pwqp = isl_pw_qpolynomial_alloc(set, poly);
451         pwqp = isl_pw_qpolynomial_morph(pwqp, isl_morph_copy(f->morph));
452
453         pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data,
454                                                 tight);
455
456         isl_factorizer_free(f);
457
458         return pwf;
459 error:
460         isl_basic_set_free(bset);
461         isl_qpolynomial_free(poly);
462         return NULL;
463 }
464
465 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive(
466         __isl_take isl_basic_set *bset,
467         __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
468 {
469         int i;
470         int *len;
471         unsigned nvar;
472         isl_pw_qpolynomial_fold *pwf;
473         isl_set *set;
474         isl_pw_qpolynomial *pwqp;
475
476         if (!bset || !poly)
477                 goto error;
478
479         nvar = isl_basic_set_dim(bset, isl_dim_set);
480         
481         len = isl_alloc_array(bset->ctx, int, nvar);
482         if (!len)
483                 goto error;
484
485         for (i = 0; i < nvar; ++i)
486                 len[i] = 1;
487
488         set = isl_set_from_basic_set(bset);
489         pwqp = isl_pw_qpolynomial_alloc(set, poly);
490
491         pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight);
492
493         free(len);
494
495         return pwf;
496 error:
497         isl_basic_set_free(bset);
498         isl_qpolynomial_free(poly);
499         return NULL;
500 }
501
502 /* Compute a bound on the polynomial defined over the parametric polytope
503  * using bernstein expansion and store the result
504  * in bound->pwf and bound->pwf_tight.
505  *
506  * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
507  * the polytope can be factorized and apply bernstein expansion recursively
508  * on the factors.
509  * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
510  * bernstein expansion recursively on each dimension.
511  * Otherwise, we apply bernstein expansion on the entire polytope.
512  */
513 int isl_qpolynomial_bound_on_domain_bernstein(__isl_take isl_basic_set *bset,
514         __isl_take isl_qpolynomial *poly, struct isl_bound *bound)
515 {
516         struct bernstein_data data;
517         isl_pw_qpolynomial_fold *pwf;
518         unsigned nvar;
519         int tight = 0;
520         int *tp = bound->check_tight ? &tight : NULL;
521
522         if (!bset || !poly)
523                 goto error;
524
525         data.type = bound->type;
526         data.check_tight = bound->check_tight;
527
528         nvar = isl_basic_set_dim(bset, isl_dim_set);
529
530         if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS)
531                 pwf = bernstein_coefficients_factors(bset, poly, &data, tp);
532         else if (nvar > 1 &&
533             (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS))
534                 pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp);
535         else
536                 pwf = bernstein_coefficients_base(bset, poly, &data, tp);
537
538         if (tight)
539                 bound->pwf_tight = isl_pw_qpolynomial_fold_fold(bound->pwf_tight, pwf);
540         else
541                 bound->pwf = isl_pw_qpolynomial_fold_fold(bound->pwf, pwf);
542
543         return 0;
544 error:
545         isl_basic_set_free(bset);
546         isl_qpolynomial_free(poly);
547         return -1;
548 }