Merge branch 'maint'
[platform/upstream/isl.git] / isl_bernstein.c
1 /*
2  * Copyright 2006-2007 Universiteit Leiden
3  * Copyright 2008-2009 Katholieke Universiteit Leuven
4  * Copyright 2010      INRIA Saclay
5  *
6  * Use of this software is governed by the GNU LGPLv2.1 license
7  *
8  * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9  * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10  * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11  * B-3001 Leuven, Belgium
12  * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13  * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
14  */
15
16 #include <isl_map_private.h>
17 #include <isl/set.h>
18 #include <isl/seq.h>
19 #include <isl_morph.h>
20 #include <isl_factorization.h>
21 #include <isl_vertices_private.h>
22 #include <isl_polynomial_private.h>
23 #include <isl_bernstein.h>
24
25 struct bernstein_data {
26         enum isl_fold type;
27         isl_qpolynomial *poly;
28         int check_tight;
29
30         isl_cell *cell;
31
32         isl_qpolynomial_fold *fold;
33         isl_qpolynomial_fold *fold_tight;
34         isl_pw_qpolynomial_fold *pwf;
35         isl_pw_qpolynomial_fold *pwf_tight;
36 };
37
38 static int vertex_is_integral(__isl_keep isl_basic_set *vertex)
39 {
40         unsigned nvar;
41         unsigned nparam;
42         int i;
43
44         nvar = isl_basic_set_dim(vertex, isl_dim_set);
45         nparam = isl_basic_set_dim(vertex, isl_dim_param);
46         for (i = 0; i < nvar; ++i) {
47                 int r = nvar - 1 - i;
48                 if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) &&
49                     !isl_int_is_negone(vertex->eq[r][1 + nparam + i]))
50                         return 0;
51         }
52
53         return 1;
54 }
55
56 static __isl_give isl_qpolynomial *vertex_coordinate(
57         __isl_keep isl_basic_set *vertex, int i, __isl_take isl_dim *dim)
58 {
59         unsigned nvar;
60         unsigned nparam;
61         int r;
62         isl_int denom;
63         isl_qpolynomial *v;
64
65         nvar = isl_basic_set_dim(vertex, isl_dim_set);
66         nparam = isl_basic_set_dim(vertex, isl_dim_param);
67         r = nvar - 1 - i;
68
69         isl_int_init(denom);
70         isl_int_set(denom, vertex->eq[r][1 + nparam + i]);
71         isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error);
72
73         if (isl_int_is_pos(denom))
74                 isl_seq_neg(vertex->eq[r], vertex->eq[r],
75                                 1 + isl_basic_set_total_dim(vertex));
76         else
77                 isl_int_neg(denom, denom);
78
79         v = isl_qpolynomial_from_affine(dim, vertex->eq[r], denom);
80         isl_int_clear(denom);
81
82         return v;
83 error:
84         isl_dim_free(dim);
85         isl_int_clear(denom);
86         return NULL;
87 }
88
89 /* Check whether the bound associated to the selection "k" is tight,
90  * which is the case if we select exactly one vertex and if that vertex
91  * is integral for all values of the parameters.
92  */
93 static int is_tight(int *k, int n, int d, isl_cell *cell)
94 {
95         int i, j;
96
97         for (i = 0; i < n; ++i) {
98                 int v;
99                 if (k[i] != d) {
100                         if (k[i])
101                                 return 0;
102                         continue;
103                 }
104                 v = cell->ids[n - 1 - i];
105                 return vertex_is_integral(cell->vertices->v[v].vertex);
106         }
107
108         return 0;
109 }
110
111 static void add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom,
112         int *k, int n, int d, struct bernstein_data *data)
113 {
114         isl_qpolynomial_fold *fold;
115
116         fold = isl_qpolynomial_fold_alloc(data->type, b);
117
118         if (data->check_tight && is_tight(k, n, d, data->cell))
119                 data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom,
120                                                         data->fold_tight, fold);
121         else
122                 data->fold = isl_qpolynomial_fold_fold_on_domain(dom,
123                                                         data->fold, fold);
124 }
125
126 /* Extract the coefficients of the Bernstein base polynomials and store
127  * them in data->fold and data->fold_tight.
128  *
129  * In particular, the coefficient of each monomial
130  * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
131  * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
132  *
133  * c[i] contains the coefficient of the selected powers of the first i+1 vars.
134  * multinom[i] contains the partial multinomial coefficient.
135  */
136 static void extract_coefficients(isl_qpolynomial *poly,
137         __isl_keep isl_set *dom, struct bernstein_data *data)
138 {
139         int i;
140         int d;
141         int n;
142         isl_ctx *ctx;
143         isl_qpolynomial **c = NULL;
144         int *k = NULL;
145         int *left = NULL;
146         isl_vec *multinom = NULL;
147
148         if (!poly)
149                 return;
150
151         ctx = isl_qpolynomial_get_ctx(poly);
152         n = isl_qpolynomial_dim(poly, isl_dim_set);
153         d = isl_qpolynomial_degree(poly);
154         isl_assert(ctx, n >= 2, return);
155
156         c = isl_calloc_array(ctx, isl_qpolynomial *, n);
157         k = isl_alloc_array(ctx, int, n);
158         left = isl_alloc_array(ctx, int, n);
159         multinom = isl_vec_alloc(ctx, n);
160         if (!c || !k || !left || !multinom)
161                 goto error;
162
163         isl_int_set_si(multinom->el[0], 1);
164         for (k[0] = d; k[0] >= 0; --k[0]) {
165                 int i = 1;
166                 isl_qpolynomial_free(c[0]);
167                 c[0] = isl_qpolynomial_coeff(poly, isl_dim_set, n - 1, k[0]);
168                 left[0] = d - k[0];
169                 k[1] = -1;
170                 isl_int_set(multinom->el[1], multinom->el[0]);
171                 while (i > 0) {
172                         if (i == n - 1) {
173                                 int j;
174                                 isl_dim *dim;
175                                 isl_qpolynomial *b;
176                                 isl_qpolynomial *f;
177                                 for (j = 2; j <= left[i - 1]; ++j)
178                                         isl_int_divexact_ui(multinom->el[i],
179                                                 multinom->el[i], j);
180                                 b = isl_qpolynomial_coeff(c[i - 1], isl_dim_set,
181                                         n - 1 - i, left[i - 1]);
182                                 b = isl_qpolynomial_drop_dims(b, isl_dim_set,
183                                                                 0, n);
184                                 dim = isl_qpolynomial_get_dim(b);
185                                 f = isl_qpolynomial_rat_cst(dim, ctx->one,
186                                         multinom->el[i]);
187                                 b = isl_qpolynomial_mul(b, f);
188                                 k[n - 1] = left[n - 2];
189                                 add_fold(b, dom, k, n, d, data);
190                                 --i;
191                                 continue;
192                         }
193                         if (k[i] >= left[i - 1]) {
194                                 --i;
195                                 continue;
196                         }
197                         ++k[i];
198                         if (k[i])
199                                 isl_int_divexact_ui(multinom->el[i],
200                                         multinom->el[i], k[i]);
201                         isl_qpolynomial_free(c[i]);
202                         c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_set,
203                                         n - 1 - i, k[i]);
204                         left[i] = left[i - 1] - k[i];
205                         k[i + 1] = -1;
206                         isl_int_set(multinom->el[i + 1], multinom->el[i]);
207                         ++i;
208                 }
209                 isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]);
210         }
211
212         for (i = 0; i < n; ++i)
213                 isl_qpolynomial_free(c[i]);
214
215         isl_vec_free(multinom);
216         free(left);
217         free(k);
218         free(c);
219         return;
220 error:
221         isl_vec_free(multinom);
222         free(left);
223         free(k);
224         if (c)
225                 for (i = 0; i < n; ++i)
226                         isl_qpolynomial_free(c[i]);
227         free(c);
228         return;
229 }
230
231 /* Perform bernstein expansion on the parametric vertices that are active
232  * on "cell".
233  *
234  * data->poly has been homogenized in the calling function.
235  *
236  * We plug in the barycentric coordinates for the set variables
237  *
238  *              \vec x = \sum_i \alpha_i v_i(\vec p)
239  *
240  * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
241  * Next, we extract the coefficients of the Bernstein base polynomials.
242  */
243 static int bernstein_coefficients_cell(__isl_take isl_cell *cell, void *user)
244 {
245         int i, j;
246         struct bernstein_data *data = (struct bernstein_data *)user;
247         isl_dim *dim_param;
248         isl_dim *dim_dst;
249         isl_qpolynomial *poly = data->poly;
250         unsigned nvar;
251         int n_vertices;
252         isl_qpolynomial **subs;
253         isl_pw_qpolynomial_fold *pwf;
254         isl_set *dom;
255         isl_ctx *ctx;
256
257         nvar = isl_qpolynomial_dim(poly, isl_dim_set) - 1;
258         n_vertices = cell->n_vertices;
259
260         ctx = isl_qpolynomial_get_ctx(poly);
261         if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate)
262                 return isl_cell_foreach_simplex(cell,
263                                             &bernstein_coefficients_cell, user);
264
265         subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar);
266         if (!subs)
267                 goto error;
268
269         dim_param = isl_basic_set_get_dim(cell->dom);
270         dim_dst = isl_qpolynomial_get_dim(poly);
271         dim_dst = isl_dim_add(dim_dst, isl_dim_set, n_vertices);
272
273         for (i = 0; i < 1 + nvar; ++i)
274                 subs[i] = isl_qpolynomial_zero(isl_dim_copy(dim_dst));
275
276         for (i = 0; i < n_vertices; ++i) {
277                 isl_qpolynomial *c;
278                 c = isl_qpolynomial_var(isl_dim_copy(dim_dst), isl_dim_set,
279                                         1 + nvar + i);
280                 for (j = 0; j < nvar; ++j) {
281                         int k = cell->ids[i];
282                         isl_qpolynomial *v;
283                         v = vertex_coordinate(cell->vertices->v[k].vertex, j,
284                                                 isl_dim_copy(dim_param));
285                         v = isl_qpolynomial_add_dims(v, isl_dim_set,
286                                                         1 + nvar + n_vertices);
287                         v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c));
288                         subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v);
289                 }
290                 subs[0] = isl_qpolynomial_add(subs[0], c);
291         }
292         isl_dim_free(dim_dst);
293
294         poly = isl_qpolynomial_copy(poly);
295
296         poly = isl_qpolynomial_add_dims(poly, isl_dim_set, n_vertices);
297         poly = isl_qpolynomial_substitute(poly, isl_dim_set, 0, 1 + nvar, subs);
298         poly = isl_qpolynomial_drop_dims(poly, isl_dim_set, 0, 1 + nvar);
299
300         data->cell = cell;
301         dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom));
302         data->fold = isl_qpolynomial_fold_empty(data->type, isl_dim_copy(dim_param));
303         data->fold_tight = isl_qpolynomial_fold_empty(data->type, dim_param);
304         extract_coefficients(poly, dom, data);
305
306         pwf = isl_pw_qpolynomial_fold_alloc(data->type, isl_set_copy(dom),
307                                             data->fold);
308         data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
309         pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, data->fold_tight);
310         data->pwf_tight = isl_pw_qpolynomial_fold_fold(data->pwf_tight, pwf);
311
312         isl_qpolynomial_free(poly);
313         isl_cell_free(cell);
314         for (i = 0; i < 1 + nvar; ++i)
315                 isl_qpolynomial_free(subs[i]);
316         free(subs);
317         return 0;
318 error:
319         isl_cell_free(cell);
320         return -1;
321 }
322
323 /* Base case of applying bernstein expansion.
324  *
325  * We compute the chamber decomposition of the parametric polytope "bset"
326  * and then perform bernstein expansion on the parametric vertices
327  * that are active on each chamber.
328  */
329 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base(
330         __isl_take isl_basic_set *bset,
331         __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
332 {
333         unsigned nvar;
334         isl_dim *dim;
335         isl_pw_qpolynomial_fold *pwf;
336         isl_vertices *vertices;
337         int covers;
338
339         nvar = isl_basic_set_dim(bset, isl_dim_set);
340         if (nvar == 0) {
341                 isl_set *dom;
342                 isl_qpolynomial_fold *fold;
343                 fold = isl_qpolynomial_fold_alloc(data->type, poly);
344                 dom = isl_set_from_basic_set(bset);
345                 if (tight)
346                         *tight = 1;
347                 return isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
348         }
349
350         if (isl_qpolynomial_is_zero(poly)) {
351                 isl_set *dom;
352                 isl_qpolynomial_fold *fold;
353                 fold = isl_qpolynomial_fold_alloc(data->type, poly);
354                 dom = isl_set_from_basic_set(bset);
355                 pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
356                 if (tight)
357                         *tight = 1;
358                 return isl_pw_qpolynomial_fold_drop_dims(pwf,
359                                                             isl_dim_set, 0, nvar);
360         }
361
362         dim = isl_basic_set_get_dim(bset);
363         dim = isl_dim_drop(dim, isl_dim_set, 0, nvar);
364         data->pwf = isl_pw_qpolynomial_fold_zero(isl_dim_copy(dim), data->type);
365         data->pwf_tight = isl_pw_qpolynomial_fold_zero(dim, data->type);
366         data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly));
367         vertices = isl_basic_set_compute_vertices(bset);
368         isl_vertices_foreach_disjoint_cell(vertices,
369                 &bernstein_coefficients_cell, data);
370         isl_vertices_free(vertices);
371         isl_qpolynomial_free(data->poly);
372
373         isl_basic_set_free(bset);
374         isl_qpolynomial_free(poly);
375
376         covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf);
377         if (covers < 0)
378                 goto error;
379
380         if (tight)
381                 *tight = covers;
382
383         if (covers) {
384                 isl_pw_qpolynomial_fold_free(data->pwf);
385                 return data->pwf_tight;
386         }
387
388         data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, data->pwf_tight);
389
390         return data->pwf;
391 error:
392         isl_pw_qpolynomial_fold_free(data->pwf_tight);
393         isl_pw_qpolynomial_fold_free(data->pwf);
394         return NULL;
395 }
396
397 /* Apply bernstein expansion recursively by working in on len[i]
398  * set variables at a time, with i ranging from n_group - 1 to 0.
399  */
400 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive(
401         __isl_take isl_pw_qpolynomial *pwqp,
402         int n_group, int *len, struct bernstein_data *data, int *tight)
403 {
404         int i;
405         unsigned nparam;
406         unsigned nvar;
407         isl_pw_qpolynomial_fold *pwf;
408
409         if (!pwqp)
410                 return NULL;
411
412         nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param);
413         nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_set);
414
415         pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam,
416                                         isl_dim_set, 0, nvar - len[n_group - 1]);
417         pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight);
418
419         for (i = n_group - 2; i >= 0; --i) {
420                 nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param);
421                 pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_set, 0,
422                                 isl_dim_param, nparam - len[i], len[i]);
423                 if (tight && !*tight)
424                         tight = NULL;
425                 pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
426         }
427
428         return pwf;
429 }
430
431 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors(
432         __isl_take isl_basic_set *bset,
433         __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
434 {
435         isl_factorizer *f;
436         isl_set *set;
437         isl_pw_qpolynomial *pwqp;
438         isl_pw_qpolynomial_fold *pwf;
439
440         f = isl_basic_set_factorizer(bset);
441         if (!f)
442                 goto error;
443         if (f->n_group == 0) {
444                 isl_factorizer_free(f);
445                 return  bernstein_coefficients_base(bset, poly, data, tight);
446         }
447
448         set = isl_set_from_basic_set(bset);
449         pwqp = isl_pw_qpolynomial_alloc(set, poly);
450         pwqp = isl_pw_qpolynomial_morph(pwqp, isl_morph_copy(f->morph));
451
452         pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data,
453                                                 tight);
454
455         isl_factorizer_free(f);
456
457         return pwf;
458 error:
459         isl_basic_set_free(bset);
460         isl_qpolynomial_free(poly);
461         return NULL;
462 }
463
464 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive(
465         __isl_take isl_basic_set *bset,
466         __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
467 {
468         int i;
469         int *len;
470         unsigned nvar;
471         isl_pw_qpolynomial_fold *pwf;
472         isl_set *set;
473         isl_pw_qpolynomial *pwqp;
474
475         if (!bset || !poly)
476                 goto error;
477
478         nvar = isl_basic_set_dim(bset, isl_dim_set);
479         
480         len = isl_alloc_array(bset->ctx, int, nvar);
481         if (!len)
482                 goto error;
483
484         for (i = 0; i < nvar; ++i)
485                 len[i] = 1;
486
487         set = isl_set_from_basic_set(bset);
488         pwqp = isl_pw_qpolynomial_alloc(set, poly);
489
490         pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight);
491
492         free(len);
493
494         return pwf;
495 error:
496         isl_basic_set_free(bset);
497         isl_qpolynomial_free(poly);
498         return NULL;
499 }
500
501 /* Compute a bound on the polynomial defined over the parametric polytope
502  * using bernstein expansion and store the result
503  * in bound->pwf and bound->pwf_tight.
504  *
505  * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
506  * the polytope can be factorized and apply bernstein expansion recursively
507  * on the factors.
508  * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
509  * bernstein expansion recursively on each dimension.
510  * Otherwise, we apply bernstein expansion on the entire polytope.
511  */
512 int isl_qpolynomial_bound_on_domain_bernstein(__isl_take isl_basic_set *bset,
513         __isl_take isl_qpolynomial *poly, struct isl_bound *bound)
514 {
515         struct bernstein_data data;
516         isl_pw_qpolynomial_fold *pwf;
517         unsigned nvar;
518         int tight = 0;
519         int *tp = bound->check_tight ? &tight : NULL;
520
521         if (!bset || !poly)
522                 goto error;
523
524         data.type = bound->type;
525         data.check_tight = bound->check_tight;
526
527         nvar = isl_basic_set_dim(bset, isl_dim_set);
528
529         if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS)
530                 pwf = bernstein_coefficients_factors(bset, poly, &data, tp);
531         else if (nvar > 1 &&
532             (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS))
533                 pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp);
534         else
535                 pwf = bernstein_coefficients_base(bset, poly, &data, tp);
536
537         if (tight)
538                 bound->pwf_tight = isl_pw_qpolynomial_fold_fold(bound->pwf_tight, pwf);
539         else
540                 bound->pwf = isl_pw_qpolynomial_fold_fold(bound->pwf, pwf);
541
542         return 0;
543 error:
544         isl_basic_set_free(bset);
545         isl_qpolynomial_free(poly);
546         return -1;
547 }