Imported Upstream version 1.12.0
[platform/upstream/gtest.git] / googletest / test / gtest_unittest.cc
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30 //
31 // Tests for Google Test itself.  This verifies that the basic constructs of
32 // Google Test work.
33
34 #include "gtest/gtest.h"
35
36 // Verifies that the command line flag variables can be accessed in
37 // code once "gtest.h" has been #included.
38 // Do not move it after other gtest #includes.
39 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
40   bool dummy =
41       GTEST_FLAG_GET(also_run_disabled_tests) ||
42       GTEST_FLAG_GET(break_on_failure) || GTEST_FLAG_GET(catch_exceptions) ||
43       GTEST_FLAG_GET(color) != "unknown" || GTEST_FLAG_GET(fail_fast) ||
44       GTEST_FLAG_GET(filter) != "unknown" || GTEST_FLAG_GET(list_tests) ||
45       GTEST_FLAG_GET(output) != "unknown" || GTEST_FLAG_GET(brief) ||
46       GTEST_FLAG_GET(print_time) || GTEST_FLAG_GET(random_seed) ||
47       GTEST_FLAG_GET(repeat) > 0 ||
48       GTEST_FLAG_GET(recreate_environments_when_repeating) ||
49       GTEST_FLAG_GET(show_internal_stack_frames) || GTEST_FLAG_GET(shuffle) ||
50       GTEST_FLAG_GET(stack_trace_depth) > 0 ||
51       GTEST_FLAG_GET(stream_result_to) != "unknown" ||
52       GTEST_FLAG_GET(throw_on_failure);
53   EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
54 }
55
56 #include <limits.h>  // For INT_MAX.
57 #include <stdlib.h>
58 #include <string.h>
59 #include <time.h>
60
61 #include <cstdint>
62 #include <map>
63 #include <ostream>
64 #include <string>
65 #include <type_traits>
66 #include <unordered_set>
67 #include <vector>
68
69 #include "gtest/gtest-spi.h"
70 #include "src/gtest-internal-inl.h"
71
72 namespace testing {
73 namespace internal {
74
75 #if GTEST_CAN_STREAM_RESULTS_
76
77 class StreamingListenerTest : public Test {
78  public:
79   class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
80    public:
81     // Sends a string to the socket.
82     void Send(const std::string& message) override { output_ += message; }
83
84     std::string output_;
85   };
86
87   StreamingListenerTest()
88       : fake_sock_writer_(new FakeSocketWriter),
89         streamer_(fake_sock_writer_),
90         test_info_obj_("FooTest", "Bar", nullptr, nullptr,
91                        CodeLocation(__FILE__, __LINE__), nullptr, nullptr) {}
92
93  protected:
94   std::string* output() { return &(fake_sock_writer_->output_); }
95
96   FakeSocketWriter* const fake_sock_writer_;
97   StreamingListener streamer_;
98   UnitTest unit_test_;
99   TestInfo test_info_obj_;  // The name test_info_ was taken by testing::Test.
100 };
101
102 TEST_F(StreamingListenerTest, OnTestProgramEnd) {
103   *output() = "";
104   streamer_.OnTestProgramEnd(unit_test_);
105   EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
106 }
107
108 TEST_F(StreamingListenerTest, OnTestIterationEnd) {
109   *output() = "";
110   streamer_.OnTestIterationEnd(unit_test_, 42);
111   EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
112 }
113
114 TEST_F(StreamingListenerTest, OnTestSuiteStart) {
115   *output() = "";
116   streamer_.OnTestSuiteStart(TestSuite("FooTest", "Bar", nullptr, nullptr));
117   EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
118 }
119
120 TEST_F(StreamingListenerTest, OnTestSuiteEnd) {
121   *output() = "";
122   streamer_.OnTestSuiteEnd(TestSuite("FooTest", "Bar", nullptr, nullptr));
123   EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
124 }
125
126 TEST_F(StreamingListenerTest, OnTestStart) {
127   *output() = "";
128   streamer_.OnTestStart(test_info_obj_);
129   EXPECT_EQ("event=TestStart&name=Bar\n", *output());
130 }
131
132 TEST_F(StreamingListenerTest, OnTestEnd) {
133   *output() = "";
134   streamer_.OnTestEnd(test_info_obj_);
135   EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
136 }
137
138 TEST_F(StreamingListenerTest, OnTestPartResult) {
139   *output() = "";
140   streamer_.OnTestPartResult(TestPartResult(TestPartResult::kFatalFailure,
141                                             "foo.cc", 42, "failed=\n&%"));
142
143   // Meta characters in the failure message should be properly escaped.
144   EXPECT_EQ(
145       "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
146       *output());
147 }
148
149 #endif  // GTEST_CAN_STREAM_RESULTS_
150
151 // Provides access to otherwise private parts of the TestEventListeners class
152 // that are needed to test it.
153 class TestEventListenersAccessor {
154  public:
155   static TestEventListener* GetRepeater(TestEventListeners* listeners) {
156     return listeners->repeater();
157   }
158
159   static void SetDefaultResultPrinter(TestEventListeners* listeners,
160                                       TestEventListener* listener) {
161     listeners->SetDefaultResultPrinter(listener);
162   }
163   static void SetDefaultXmlGenerator(TestEventListeners* listeners,
164                                      TestEventListener* listener) {
165     listeners->SetDefaultXmlGenerator(listener);
166   }
167
168   static bool EventForwardingEnabled(const TestEventListeners& listeners) {
169     return listeners.EventForwardingEnabled();
170   }
171
172   static void SuppressEventForwarding(TestEventListeners* listeners) {
173     listeners->SuppressEventForwarding();
174   }
175 };
176
177 class UnitTestRecordPropertyTestHelper : public Test {
178  protected:
179   UnitTestRecordPropertyTestHelper() {}
180
181   // Forwards to UnitTest::RecordProperty() to bypass access controls.
182   void UnitTestRecordProperty(const char* key, const std::string& value) {
183     unit_test_.RecordProperty(key, value);
184   }
185
186   UnitTest unit_test_;
187 };
188
189 }  // namespace internal
190 }  // namespace testing
191
192 using testing::AssertionFailure;
193 using testing::AssertionResult;
194 using testing::AssertionSuccess;
195 using testing::DoubleLE;
196 using testing::EmptyTestEventListener;
197 using testing::Environment;
198 using testing::FloatLE;
199 using testing::IsNotSubstring;
200 using testing::IsSubstring;
201 using testing::kMaxStackTraceDepth;
202 using testing::Message;
203 using testing::ScopedFakeTestPartResultReporter;
204 using testing::StaticAssertTypeEq;
205 using testing::Test;
206 using testing::TestEventListeners;
207 using testing::TestInfo;
208 using testing::TestPartResult;
209 using testing::TestPartResultArray;
210 using testing::TestProperty;
211 using testing::TestResult;
212 using testing::TestSuite;
213 using testing::TimeInMillis;
214 using testing::UnitTest;
215 using testing::internal::AlwaysFalse;
216 using testing::internal::AlwaysTrue;
217 using testing::internal::AppendUserMessage;
218 using testing::internal::ArrayAwareFind;
219 using testing::internal::ArrayEq;
220 using testing::internal::CodePointToUtf8;
221 using testing::internal::CopyArray;
222 using testing::internal::CountIf;
223 using testing::internal::EqFailure;
224 using testing::internal::FloatingPoint;
225 using testing::internal::ForEach;
226 using testing::internal::FormatEpochTimeInMillisAsIso8601;
227 using testing::internal::FormatTimeInMillisAsSeconds;
228 using testing::internal::GetCurrentOsStackTraceExceptTop;
229 using testing::internal::GetElementOr;
230 using testing::internal::GetNextRandomSeed;
231 using testing::internal::GetRandomSeedFromFlag;
232 using testing::internal::GetTestTypeId;
233 using testing::internal::GetTimeInMillis;
234 using testing::internal::GetTypeId;
235 using testing::internal::GetUnitTestImpl;
236 using testing::internal::GTestFlagSaver;
237 using testing::internal::HasDebugStringAndShortDebugString;
238 using testing::internal::Int32FromEnvOrDie;
239 using testing::internal::IsContainer;
240 using testing::internal::IsContainerTest;
241 using testing::internal::IsNotContainer;
242 using testing::internal::kMaxRandomSeed;
243 using testing::internal::kTestTypeIdInGoogleTest;
244 using testing::internal::NativeArray;
245 using testing::internal::OsStackTraceGetter;
246 using testing::internal::OsStackTraceGetterInterface;
247 using testing::internal::ParseFlag;
248 using testing::internal::RelationToSourceCopy;
249 using testing::internal::RelationToSourceReference;
250 using testing::internal::ShouldRunTestOnShard;
251 using testing::internal::ShouldShard;
252 using testing::internal::ShouldUseColor;
253 using testing::internal::Shuffle;
254 using testing::internal::ShuffleRange;
255 using testing::internal::SkipPrefix;
256 using testing::internal::StreamableToString;
257 using testing::internal::String;
258 using testing::internal::TestEventListenersAccessor;
259 using testing::internal::TestResultAccessor;
260 using testing::internal::UnitTestImpl;
261 using testing::internal::WideStringToUtf8;
262 using testing::internal::edit_distance::CalculateOptimalEdits;
263 using testing::internal::edit_distance::CreateUnifiedDiff;
264 using testing::internal::edit_distance::EditType;
265
266 #if GTEST_HAS_STREAM_REDIRECTION
267 using testing::internal::CaptureStdout;
268 using testing::internal::GetCapturedStdout;
269 #endif
270
271 #if GTEST_IS_THREADSAFE
272 using testing::internal::ThreadWithParam;
273 #endif
274
275 class TestingVector : public std::vector<int> {};
276
277 ::std::ostream& operator<<(::std::ostream& os, const TestingVector& vector) {
278   os << "{ ";
279   for (size_t i = 0; i < vector.size(); i++) {
280     os << vector[i] << " ";
281   }
282   os << "}";
283   return os;
284 }
285
286 // This line tests that we can define tests in an unnamed namespace.
287 namespace {
288
289 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
290   const int seed = GetRandomSeedFromFlag(0);
291   EXPECT_LE(1, seed);
292   EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
293 }
294
295 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
296   EXPECT_EQ(1, GetRandomSeedFromFlag(1));
297   EXPECT_EQ(2, GetRandomSeedFromFlag(2));
298   EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
299   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
300             GetRandomSeedFromFlag(kMaxRandomSeed));
301 }
302
303 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
304   const int seed1 = GetRandomSeedFromFlag(-1);
305   EXPECT_LE(1, seed1);
306   EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
307
308   const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
309   EXPECT_LE(1, seed2);
310   EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
311 }
312
313 TEST(GetNextRandomSeedTest, WorksForValidInput) {
314   EXPECT_EQ(2, GetNextRandomSeed(1));
315   EXPECT_EQ(3, GetNextRandomSeed(2));
316   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
317             GetNextRandomSeed(kMaxRandomSeed - 1));
318   EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
319
320   // We deliberately don't test GetNextRandomSeed() with invalid
321   // inputs, as that requires death tests, which are expensive.  This
322   // is fine as GetNextRandomSeed() is internal and has a
323   // straightforward definition.
324 }
325
326 static void ClearCurrentTestPartResults() {
327   TestResultAccessor::ClearTestPartResults(
328       GetUnitTestImpl()->current_test_result());
329 }
330
331 // Tests GetTypeId.
332
333 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
334   EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
335   EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
336 }
337
338 class SubClassOfTest : public Test {};
339 class AnotherSubClassOfTest : public Test {};
340
341 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
342   EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
343   EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
344   EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
345   EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
346   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
347   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
348 }
349
350 // Verifies that GetTestTypeId() returns the same value, no matter it
351 // is called from inside Google Test or outside of it.
352 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
353   EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
354 }
355
356 // Tests CanonicalizeForStdLibVersioning.
357
358 using ::testing::internal::CanonicalizeForStdLibVersioning;
359
360 TEST(CanonicalizeForStdLibVersioning, LeavesUnversionedNamesUnchanged) {
361   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::bind"));
362   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::_"));
363   EXPECT_EQ("std::__foo", CanonicalizeForStdLibVersioning("std::__foo"));
364   EXPECT_EQ("gtl::__1::x", CanonicalizeForStdLibVersioning("gtl::__1::x"));
365   EXPECT_EQ("__1::x", CanonicalizeForStdLibVersioning("__1::x"));
366   EXPECT_EQ("::__1::x", CanonicalizeForStdLibVersioning("::__1::x"));
367 }
368
369 TEST(CanonicalizeForStdLibVersioning, ElidesDoubleUnderNames) {
370   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__1::bind"));
371   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__1::_"));
372
373   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__g::bind"));
374   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__g::_"));
375
376   EXPECT_EQ("std::bind",
377             CanonicalizeForStdLibVersioning("std::__google::bind"));
378   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__google::_"));
379 }
380
381 // Tests FormatTimeInMillisAsSeconds().
382
383 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
384   EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
385 }
386
387 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
388   EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
389   EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
390   EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
391   EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
392   EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
393 }
394
395 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
396   EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
397   EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
398   EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
399   EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
400   EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
401 }
402
403 // Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
404 // for particular dates below was verified in Python using
405 // datetime.datetime.fromutctimestamp(<timestamp>/1000).
406
407 // FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
408 // have to set up a particular timezone to obtain predictable results.
409 class FormatEpochTimeInMillisAsIso8601Test : public Test {
410  public:
411   // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
412   // 32 bits, even when 64-bit integer types are available.  We have to
413   // force the constants to have a 64-bit type here.
414   static const TimeInMillis kMillisPerSec = 1000;
415
416  private:
417   void SetUp() override {
418     saved_tz_ = nullptr;
419
420     GTEST_DISABLE_MSC_DEPRECATED_PUSH_(/* getenv, strdup: deprecated */)
421     if (getenv("TZ")) saved_tz_ = strdup(getenv("TZ"));
422     GTEST_DISABLE_MSC_DEPRECATED_POP_()
423
424     // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use.  We
425     // cannot use the local time zone because the function's output depends
426     // on the time zone.
427     SetTimeZone("UTC+00");
428   }
429
430   void TearDown() override {
431     SetTimeZone(saved_tz_);
432     free(const_cast<char*>(saved_tz_));
433     saved_tz_ = nullptr;
434   }
435
436   static void SetTimeZone(const char* time_zone) {
437     // tzset() distinguishes between the TZ variable being present and empty
438     // and not being present, so we have to consider the case of time_zone
439     // being NULL.
440 #if _MSC_VER || GTEST_OS_WINDOWS_MINGW
441     // ...Unless it's MSVC, whose standard library's _putenv doesn't
442     // distinguish between an empty and a missing variable.
443     const std::string env_var =
444         std::string("TZ=") + (time_zone ? time_zone : "");
445     _putenv(env_var.c_str());
446     GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */)
447     tzset();
448     GTEST_DISABLE_MSC_WARNINGS_POP_()
449 #else
450 #if GTEST_OS_LINUX_ANDROID && __ANDROID_API__ < 21
451     // Work around KitKat bug in tzset by setting "UTC" before setting "UTC+00".
452     // See https://github.com/android/ndk/issues/1604.
453     setenv("TZ", "UTC", 1);
454     tzset();
455 #endif
456     if (time_zone) {
457       setenv(("TZ"), time_zone, 1);
458     } else {
459       unsetenv("TZ");
460     }
461     tzset();
462 #endif
463   }
464
465   const char* saved_tz_;
466 };
467
468 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
469
470 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
471   EXPECT_EQ("2011-10-31T18:52:42.000",
472             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
473 }
474
475 TEST_F(FormatEpochTimeInMillisAsIso8601Test, IncludesMillisecondsAfterDot) {
476   EXPECT_EQ("2011-10-31T18:52:42.234",
477             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
478 }
479
480 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
481   EXPECT_EQ("2011-09-03T05:07:02.000",
482             FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
483 }
484
485 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
486   EXPECT_EQ("2011-09-28T17:08:22.000",
487             FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
488 }
489
490 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
491   EXPECT_EQ("1970-01-01T00:00:00.000", FormatEpochTimeInMillisAsIso8601(0));
492 }
493
494 #ifdef __BORLANDC__
495 // Silences warnings: "Condition is always true", "Unreachable code"
496 #pragma option push -w-ccc -w-rch
497 #endif
498
499 // Tests that the LHS of EXPECT_EQ or ASSERT_EQ can be used as a null literal
500 // when the RHS is a pointer type.
501 TEST(NullLiteralTest, LHSAllowsNullLiterals) {
502   EXPECT_EQ(0, static_cast<void*>(nullptr));     // NOLINT
503   ASSERT_EQ(0, static_cast<void*>(nullptr));     // NOLINT
504   EXPECT_EQ(NULL, static_cast<void*>(nullptr));  // NOLINT
505   ASSERT_EQ(NULL, static_cast<void*>(nullptr));  // NOLINT
506   EXPECT_EQ(nullptr, static_cast<void*>(nullptr));
507   ASSERT_EQ(nullptr, static_cast<void*>(nullptr));
508
509   const int* const p = nullptr;
510   EXPECT_EQ(0, p);     // NOLINT
511   ASSERT_EQ(0, p);     // NOLINT
512   EXPECT_EQ(NULL, p);  // NOLINT
513   ASSERT_EQ(NULL, p);  // NOLINT
514   EXPECT_EQ(nullptr, p);
515   ASSERT_EQ(nullptr, p);
516 }
517
518 struct ConvertToAll {
519   template <typename T>
520   operator T() const {  // NOLINT
521     return T();
522   }
523 };
524
525 struct ConvertToPointer {
526   template <class T>
527   operator T*() const {  // NOLINT
528     return nullptr;
529   }
530 };
531
532 struct ConvertToAllButNoPointers {
533   template <typename T,
534             typename std::enable_if<!std::is_pointer<T>::value, int>::type = 0>
535   operator T() const {  // NOLINT
536     return T();
537   }
538 };
539
540 struct MyType {};
541 inline bool operator==(MyType const&, MyType const&) { return true; }
542
543 TEST(NullLiteralTest, ImplicitConversion) {
544   EXPECT_EQ(ConvertToPointer{}, static_cast<void*>(nullptr));
545 #if !defined(__GNUC__) || defined(__clang__)
546   // Disabled due to GCC bug gcc.gnu.org/PR89580
547   EXPECT_EQ(ConvertToAll{}, static_cast<void*>(nullptr));
548 #endif
549   EXPECT_EQ(ConvertToAll{}, MyType{});
550   EXPECT_EQ(ConvertToAllButNoPointers{}, MyType{});
551 }
552
553 #ifdef __clang__
554 #pragma clang diagnostic push
555 #if __has_warning("-Wzero-as-null-pointer-constant")
556 #pragma clang diagnostic error "-Wzero-as-null-pointer-constant"
557 #endif
558 #endif
559
560 TEST(NullLiteralTest, NoConversionNoWarning) {
561   // Test that gtests detection and handling of null pointer constants
562   // doesn't trigger a warning when '0' isn't actually used as null.
563   EXPECT_EQ(0, 0);
564   ASSERT_EQ(0, 0);
565 }
566
567 #ifdef __clang__
568 #pragma clang diagnostic pop
569 #endif
570
571 #ifdef __BORLANDC__
572 // Restores warnings after previous "#pragma option push" suppressed them.
573 #pragma option pop
574 #endif
575
576 //
577 // Tests CodePointToUtf8().
578
579 // Tests that the NUL character L'\0' is encoded correctly.
580 TEST(CodePointToUtf8Test, CanEncodeNul) {
581   EXPECT_EQ("", CodePointToUtf8(L'\0'));
582 }
583
584 // Tests that ASCII characters are encoded correctly.
585 TEST(CodePointToUtf8Test, CanEncodeAscii) {
586   EXPECT_EQ("a", CodePointToUtf8(L'a'));
587   EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
588   EXPECT_EQ("&", CodePointToUtf8(L'&'));
589   EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
590 }
591
592 // Tests that Unicode code-points that have 8 to 11 bits are encoded
593 // as 110xxxxx 10xxxxxx.
594 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
595   // 000 1101 0011 => 110-00011 10-010011
596   EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
597
598   // 101 0111 0110 => 110-10101 10-110110
599   // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
600   // in wide strings and wide chars. In order to accommodate them, we have to
601   // introduce such character constants as integers.
602   EXPECT_EQ("\xD5\xB6", CodePointToUtf8(static_cast<wchar_t>(0x576)));
603 }
604
605 // Tests that Unicode code-points that have 12 to 16 bits are encoded
606 // as 1110xxxx 10xxxxxx 10xxxxxx.
607 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
608   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
609   EXPECT_EQ("\xE0\xA3\x93", CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
610
611   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
612   EXPECT_EQ("\xEC\x9D\x8D", CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
613 }
614
615 #if !GTEST_WIDE_STRING_USES_UTF16_
616 // Tests in this group require a wchar_t to hold > 16 bits, and thus
617 // are skipped on Windows, and Cygwin, where a wchar_t is
618 // 16-bit wide. This code may not compile on those systems.
619
620 // Tests that Unicode code-points that have 17 to 21 bits are encoded
621 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
622 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
623   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
624   EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
625
626   // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
627   EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
628
629   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
630   EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
631 }
632
633 // Tests that encoding an invalid code-point generates the expected result.
634 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
635   EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
636 }
637
638 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
639
640 // Tests WideStringToUtf8().
641
642 // Tests that the NUL character L'\0' is encoded correctly.
643 TEST(WideStringToUtf8Test, CanEncodeNul) {
644   EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
645   EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
646 }
647
648 // Tests that ASCII strings are encoded correctly.
649 TEST(WideStringToUtf8Test, CanEncodeAscii) {
650   EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
651   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
652   EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
653   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
654 }
655
656 // Tests that Unicode code-points that have 8 to 11 bits are encoded
657 // as 110xxxxx 10xxxxxx.
658 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
659   // 000 1101 0011 => 110-00011 10-010011
660   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
661   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
662
663   // 101 0111 0110 => 110-10101 10-110110
664   const wchar_t s[] = {0x576, '\0'};
665   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
666   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
667 }
668
669 // Tests that Unicode code-points that have 12 to 16 bits are encoded
670 // as 1110xxxx 10xxxxxx 10xxxxxx.
671 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
672   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
673   const wchar_t s1[] = {0x8D3, '\0'};
674   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
675   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
676
677   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
678   const wchar_t s2[] = {0xC74D, '\0'};
679   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
680   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
681 }
682
683 // Tests that the conversion stops when the function encounters \0 character.
684 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
685   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
686 }
687
688 // Tests that the conversion stops when the function reaches the limit
689 // specified by the 'length' parameter.
690 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
691   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
692 }
693
694 #if !GTEST_WIDE_STRING_USES_UTF16_
695 // Tests that Unicode code-points that have 17 to 21 bits are encoded
696 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
697 // on the systems using UTF-16 encoding.
698 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
699   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
700   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
701   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
702
703   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
704   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
705   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
706 }
707
708 // Tests that encoding an invalid code-point generates the expected result.
709 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
710   EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
711                WideStringToUtf8(L"\xABCDFF", -1).c_str());
712 }
713 #else   // !GTEST_WIDE_STRING_USES_UTF16_
714 // Tests that surrogate pairs are encoded correctly on the systems using
715 // UTF-16 encoding in the wide strings.
716 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
717   const wchar_t s[] = {0xD801, 0xDC00, '\0'};
718   EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
719 }
720
721 // Tests that encoding an invalid UTF-16 surrogate pair
722 // generates the expected result.
723 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
724   // Leading surrogate is at the end of the string.
725   const wchar_t s1[] = {0xD800, '\0'};
726   EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
727   // Leading surrogate is not followed by the trailing surrogate.
728   const wchar_t s2[] = {0xD800, 'M', '\0'};
729   EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
730   // Trailing surrogate appearas without a leading surrogate.
731   const wchar_t s3[] = {0xDC00, 'P', 'Q', 'R', '\0'};
732   EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
733 }
734 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
735
736 // Tests that codepoint concatenation works correctly.
737 #if !GTEST_WIDE_STRING_USES_UTF16_
738 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
739   const wchar_t s[] = {0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
740   EXPECT_STREQ(
741       "\xF4\x88\x98\xB4"
742       "\xEC\x9D\x8D"
743       "\n"
744       "\xD5\xB6"
745       "\xE0\xA3\x93"
746       "\xF4\x88\x98\xB4",
747       WideStringToUtf8(s, -1).c_str());
748 }
749 #else
750 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
751   const wchar_t s[] = {0xC74D, '\n', 0x576, 0x8D3, '\0'};
752   EXPECT_STREQ(
753       "\xEC\x9D\x8D"
754       "\n"
755       "\xD5\xB6"
756       "\xE0\xA3\x93",
757       WideStringToUtf8(s, -1).c_str());
758 }
759 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
760
761 // Tests the Random class.
762
763 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
764   testing::internal::Random random(42);
765   EXPECT_DEATH_IF_SUPPORTED(random.Generate(0),
766                             "Cannot generate a number in the range \\[0, 0\\)");
767   EXPECT_DEATH_IF_SUPPORTED(
768       random.Generate(testing::internal::Random::kMaxRange + 1),
769       "Generation of a number in \\[0, 2147483649\\) was requested, "
770       "but this can only generate numbers in \\[0, 2147483648\\)");
771 }
772
773 TEST(RandomTest, GeneratesNumbersWithinRange) {
774   constexpr uint32_t kRange = 10000;
775   testing::internal::Random random(12345);
776   for (int i = 0; i < 10; i++) {
777     EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
778   }
779
780   testing::internal::Random random2(testing::internal::Random::kMaxRange);
781   for (int i = 0; i < 10; i++) {
782     EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
783   }
784 }
785
786 TEST(RandomTest, RepeatsWhenReseeded) {
787   constexpr int kSeed = 123;
788   constexpr int kArraySize = 10;
789   constexpr uint32_t kRange = 10000;
790   uint32_t values[kArraySize];
791
792   testing::internal::Random random(kSeed);
793   for (int i = 0; i < kArraySize; i++) {
794     values[i] = random.Generate(kRange);
795   }
796
797   random.Reseed(kSeed);
798   for (int i = 0; i < kArraySize; i++) {
799     EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
800   }
801 }
802
803 // Tests STL container utilities.
804
805 // Tests CountIf().
806
807 static bool IsPositive(int n) { return n > 0; }
808
809 TEST(ContainerUtilityTest, CountIf) {
810   std::vector<int> v;
811   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
812
813   v.push_back(-1);
814   v.push_back(0);
815   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
816
817   v.push_back(2);
818   v.push_back(-10);
819   v.push_back(10);
820   EXPECT_EQ(2, CountIf(v, IsPositive));
821 }
822
823 // Tests ForEach().
824
825 static int g_sum = 0;
826 static void Accumulate(int n) { g_sum += n; }
827
828 TEST(ContainerUtilityTest, ForEach) {
829   std::vector<int> v;
830   g_sum = 0;
831   ForEach(v, Accumulate);
832   EXPECT_EQ(0, g_sum);  // Works for an empty container;
833
834   g_sum = 0;
835   v.push_back(1);
836   ForEach(v, Accumulate);
837   EXPECT_EQ(1, g_sum);  // Works for a container with one element.
838
839   g_sum = 0;
840   v.push_back(20);
841   v.push_back(300);
842   ForEach(v, Accumulate);
843   EXPECT_EQ(321, g_sum);
844 }
845
846 // Tests GetElementOr().
847 TEST(ContainerUtilityTest, GetElementOr) {
848   std::vector<char> a;
849   EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
850
851   a.push_back('a');
852   a.push_back('b');
853   EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
854   EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
855   EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
856   EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
857 }
858
859 TEST(ContainerUtilityDeathTest, ShuffleRange) {
860   std::vector<int> a;
861   a.push_back(0);
862   a.push_back(1);
863   a.push_back(2);
864   testing::internal::Random random(1);
865
866   EXPECT_DEATH_IF_SUPPORTED(
867       ShuffleRange(&random, -1, 1, &a),
868       "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
869   EXPECT_DEATH_IF_SUPPORTED(
870       ShuffleRange(&random, 4, 4, &a),
871       "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
872   EXPECT_DEATH_IF_SUPPORTED(
873       ShuffleRange(&random, 3, 2, &a),
874       "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
875   EXPECT_DEATH_IF_SUPPORTED(
876       ShuffleRange(&random, 3, 4, &a),
877       "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
878 }
879
880 class VectorShuffleTest : public Test {
881  protected:
882   static const size_t kVectorSize = 20;
883
884   VectorShuffleTest() : random_(1) {
885     for (int i = 0; i < static_cast<int>(kVectorSize); i++) {
886       vector_.push_back(i);
887     }
888   }
889
890   static bool VectorIsCorrupt(const TestingVector& vector) {
891     if (kVectorSize != vector.size()) {
892       return true;
893     }
894
895     bool found_in_vector[kVectorSize] = {false};
896     for (size_t i = 0; i < vector.size(); i++) {
897       const int e = vector[i];
898       if (e < 0 || e >= static_cast<int>(kVectorSize) || found_in_vector[e]) {
899         return true;
900       }
901       found_in_vector[e] = true;
902     }
903
904     // Vector size is correct, elements' range is correct, no
905     // duplicate elements.  Therefore no corruption has occurred.
906     return false;
907   }
908
909   static bool VectorIsNotCorrupt(const TestingVector& vector) {
910     return !VectorIsCorrupt(vector);
911   }
912
913   static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
914     for (int i = begin; i < end; i++) {
915       if (i != vector[static_cast<size_t>(i)]) {
916         return true;
917       }
918     }
919     return false;
920   }
921
922   static bool RangeIsUnshuffled(const TestingVector& vector, int begin,
923                                 int end) {
924     return !RangeIsShuffled(vector, begin, end);
925   }
926
927   static bool VectorIsShuffled(const TestingVector& vector) {
928     return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
929   }
930
931   static bool VectorIsUnshuffled(const TestingVector& vector) {
932     return !VectorIsShuffled(vector);
933   }
934
935   testing::internal::Random random_;
936   TestingVector vector_;
937 };  // class VectorShuffleTest
938
939 const size_t VectorShuffleTest::kVectorSize;
940
941 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
942   // Tests an empty range at the beginning...
943   ShuffleRange(&random_, 0, 0, &vector_);
944   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
945   ASSERT_PRED1(VectorIsUnshuffled, vector_);
946
947   // ...in the middle...
948   ShuffleRange(&random_, kVectorSize / 2, kVectorSize / 2, &vector_);
949   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
950   ASSERT_PRED1(VectorIsUnshuffled, vector_);
951
952   // ...at the end...
953   ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
954   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
955   ASSERT_PRED1(VectorIsUnshuffled, vector_);
956
957   // ...and past the end.
958   ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
959   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
960   ASSERT_PRED1(VectorIsUnshuffled, vector_);
961 }
962
963 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
964   // Tests a size one range at the beginning...
965   ShuffleRange(&random_, 0, 1, &vector_);
966   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
967   ASSERT_PRED1(VectorIsUnshuffled, vector_);
968
969   // ...in the middle...
970   ShuffleRange(&random_, kVectorSize / 2, kVectorSize / 2 + 1, &vector_);
971   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
972   ASSERT_PRED1(VectorIsUnshuffled, vector_);
973
974   // ...and at the end.
975   ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
976   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
977   ASSERT_PRED1(VectorIsUnshuffled, vector_);
978 }
979
980 // Because we use our own random number generator and a fixed seed,
981 // we can guarantee that the following "random" tests will succeed.
982
983 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
984   Shuffle(&random_, &vector_);
985   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
986   EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
987
988   // Tests the first and last elements in particular to ensure that
989   // there are no off-by-one problems in our shuffle algorithm.
990   EXPECT_NE(0, vector_[0]);
991   EXPECT_NE(static_cast<int>(kVectorSize - 1), vector_[kVectorSize - 1]);
992 }
993
994 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
995   const int kRangeSize = kVectorSize / 2;
996
997   ShuffleRange(&random_, 0, kRangeSize, &vector_);
998
999   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1000   EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
1001   EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize,
1002                static_cast<int>(kVectorSize));
1003 }
1004
1005 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
1006   const int kRangeSize = kVectorSize / 2;
1007   ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
1008
1009   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1010   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
1011   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize,
1012                static_cast<int>(kVectorSize));
1013 }
1014
1015 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
1016   const int kRangeSize = static_cast<int>(kVectorSize) / 3;
1017   ShuffleRange(&random_, kRangeSize, 2 * kRangeSize, &vector_);
1018
1019   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1020   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
1021   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2 * kRangeSize);
1022   EXPECT_PRED3(RangeIsUnshuffled, vector_, 2 * kRangeSize,
1023                static_cast<int>(kVectorSize));
1024 }
1025
1026 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
1027   TestingVector vector2;
1028   for (size_t i = 0; i < kVectorSize; i++) {
1029     vector2.push_back(static_cast<int>(i));
1030   }
1031
1032   random_.Reseed(1234);
1033   Shuffle(&random_, &vector_);
1034   random_.Reseed(1234);
1035   Shuffle(&random_, &vector2);
1036
1037   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1038   ASSERT_PRED1(VectorIsNotCorrupt, vector2);
1039
1040   for (size_t i = 0; i < kVectorSize; i++) {
1041     EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
1042   }
1043 }
1044
1045 // Tests the size of the AssertHelper class.
1046
1047 TEST(AssertHelperTest, AssertHelperIsSmall) {
1048   // To avoid breaking clients that use lots of assertions in one
1049   // function, we cannot grow the size of AssertHelper.
1050   EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
1051 }
1052
1053 // Tests String::EndsWithCaseInsensitive().
1054 TEST(StringTest, EndsWithCaseInsensitive) {
1055   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
1056   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
1057   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
1058   EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
1059
1060   EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
1061   EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
1062   EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
1063 }
1064
1065 // C++Builder's preprocessor is buggy; it fails to expand macros that
1066 // appear in macro parameters after wide char literals.  Provide an alias
1067 // for NULL as a workaround.
1068 static const wchar_t* const kNull = nullptr;
1069
1070 // Tests String::CaseInsensitiveWideCStringEquals
1071 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1072   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(nullptr, nullptr));
1073   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
1074   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
1075   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
1076   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
1077   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
1078   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
1079   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
1080 }
1081
1082 #if GTEST_OS_WINDOWS
1083
1084 // Tests String::ShowWideCString().
1085 TEST(StringTest, ShowWideCString) {
1086   EXPECT_STREQ("(null)", String::ShowWideCString(NULL).c_str());
1087   EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1088   EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1089 }
1090
1091 #if GTEST_OS_WINDOWS_MOBILE
1092 TEST(StringTest, AnsiAndUtf16Null) {
1093   EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1094   EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1095 }
1096
1097 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1098   const char* ansi = String::Utf16ToAnsi(L"str");
1099   EXPECT_STREQ("str", ansi);
1100   delete[] ansi;
1101   const WCHAR* utf16 = String::AnsiToUtf16("str");
1102   EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1103   delete[] utf16;
1104 }
1105
1106 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1107   const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1108   EXPECT_STREQ(".:\\ \"*?", ansi);
1109   delete[] ansi;
1110   const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1111   EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1112   delete[] utf16;
1113 }
1114 #endif  // GTEST_OS_WINDOWS_MOBILE
1115
1116 #endif  // GTEST_OS_WINDOWS
1117
1118 // Tests TestProperty construction.
1119 TEST(TestPropertyTest, StringValue) {
1120   TestProperty property("key", "1");
1121   EXPECT_STREQ("key", property.key());
1122   EXPECT_STREQ("1", property.value());
1123 }
1124
1125 // Tests TestProperty replacing a value.
1126 TEST(TestPropertyTest, ReplaceStringValue) {
1127   TestProperty property("key", "1");
1128   EXPECT_STREQ("1", property.value());
1129   property.SetValue("2");
1130   EXPECT_STREQ("2", property.value());
1131 }
1132
1133 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1134 // functions (i.e. their definitions cannot be inlined at the call
1135 // sites), or C++Builder won't compile the code.
1136 static void AddFatalFailure() { FAIL() << "Expected fatal failure."; }
1137
1138 static void AddNonfatalFailure() {
1139   ADD_FAILURE() << "Expected non-fatal failure.";
1140 }
1141
1142 class ScopedFakeTestPartResultReporterTest : public Test {
1143  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
1144   enum FailureMode { FATAL_FAILURE, NONFATAL_FAILURE };
1145   static void AddFailure(FailureMode failure) {
1146     if (failure == FATAL_FAILURE) {
1147       AddFatalFailure();
1148     } else {
1149       AddNonfatalFailure();
1150     }
1151   }
1152 };
1153
1154 // Tests that ScopedFakeTestPartResultReporter intercepts test
1155 // failures.
1156 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1157   TestPartResultArray results;
1158   {
1159     ScopedFakeTestPartResultReporter reporter(
1160         ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
1161         &results);
1162     AddFailure(NONFATAL_FAILURE);
1163     AddFailure(FATAL_FAILURE);
1164   }
1165
1166   EXPECT_EQ(2, results.size());
1167   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1168   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1169 }
1170
1171 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1172   TestPartResultArray results;
1173   {
1174     // Tests, that the deprecated constructor still works.
1175     ScopedFakeTestPartResultReporter reporter(&results);
1176     AddFailure(NONFATAL_FAILURE);
1177   }
1178   EXPECT_EQ(1, results.size());
1179 }
1180
1181 #if GTEST_IS_THREADSAFE
1182
1183 class ScopedFakeTestPartResultReporterWithThreadsTest
1184     : public ScopedFakeTestPartResultReporterTest {
1185  protected:
1186   static void AddFailureInOtherThread(FailureMode failure) {
1187     ThreadWithParam<FailureMode> thread(&AddFailure, failure, nullptr);
1188     thread.Join();
1189   }
1190 };
1191
1192 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1193        InterceptsTestFailuresInAllThreads) {
1194   TestPartResultArray results;
1195   {
1196     ScopedFakeTestPartResultReporter reporter(
1197         ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
1198     AddFailure(NONFATAL_FAILURE);
1199     AddFailure(FATAL_FAILURE);
1200     AddFailureInOtherThread(NONFATAL_FAILURE);
1201     AddFailureInOtherThread(FATAL_FAILURE);
1202   }
1203
1204   EXPECT_EQ(4, results.size());
1205   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1206   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1207   EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
1208   EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
1209 }
1210
1211 #endif  // GTEST_IS_THREADSAFE
1212
1213 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
1214 // work even if the failure is generated in a called function rather than
1215 // the current context.
1216
1217 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1218
1219 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1220   EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1221 }
1222
1223 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1224   EXPECT_FATAL_FAILURE(AddFatalFailure(),
1225                        ::std::string("Expected fatal failure."));
1226 }
1227
1228 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1229   // We have another test below to verify that the macro catches fatal
1230   // failures generated on another thread.
1231   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1232                                       "Expected fatal failure.");
1233 }
1234
1235 #ifdef __BORLANDC__
1236 // Silences warnings: "Condition is always true"
1237 #pragma option push -w-ccc
1238 #endif
1239
1240 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1241 // function even when the statement in it contains ASSERT_*.
1242
1243 int NonVoidFunction() {
1244   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1245   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1246   return 0;
1247 }
1248
1249 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1250   NonVoidFunction();
1251 }
1252
1253 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1254 // current function even though 'statement' generates a fatal failure.
1255
1256 void DoesNotAbortHelper(bool* aborted) {
1257   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1258   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1259
1260   *aborted = false;
1261 }
1262
1263 #ifdef __BORLANDC__
1264 // Restores warnings after previous "#pragma option push" suppressed them.
1265 #pragma option pop
1266 #endif
1267
1268 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1269   bool aborted = true;
1270   DoesNotAbortHelper(&aborted);
1271   EXPECT_FALSE(aborted);
1272 }
1273
1274 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1275 // statement that contains a macro which expands to code containing an
1276 // unprotected comma.
1277
1278 static int global_var = 0;
1279 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1280
1281 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1282 #ifndef __BORLANDC__
1283   // ICE's in C++Builder.
1284   EXPECT_FATAL_FAILURE(
1285       {
1286         GTEST_USE_UNPROTECTED_COMMA_;
1287         AddFatalFailure();
1288       },
1289       "");
1290 #endif
1291
1292   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(
1293       {
1294         GTEST_USE_UNPROTECTED_COMMA_;
1295         AddFatalFailure();
1296       },
1297       "");
1298 }
1299
1300 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1301
1302 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1303
1304 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1305   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), "Expected non-fatal failure.");
1306 }
1307
1308 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1309   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1310                           ::std::string("Expected non-fatal failure."));
1311 }
1312
1313 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1314   // We have another test below to verify that the macro catches
1315   // non-fatal failures generated on another thread.
1316   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1317                                          "Expected non-fatal failure.");
1318 }
1319
1320 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1321 // statement that contains a macro which expands to code containing an
1322 // unprotected comma.
1323 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1324   EXPECT_NONFATAL_FAILURE(
1325       {
1326         GTEST_USE_UNPROTECTED_COMMA_;
1327         AddNonfatalFailure();
1328       },
1329       "");
1330
1331   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1332       {
1333         GTEST_USE_UNPROTECTED_COMMA_;
1334         AddNonfatalFailure();
1335       },
1336       "");
1337 }
1338
1339 #if GTEST_IS_THREADSAFE
1340
1341 typedef ScopedFakeTestPartResultReporterWithThreadsTest
1342     ExpectFailureWithThreadsTest;
1343
1344 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1345   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1346                                       "Expected fatal failure.");
1347 }
1348
1349 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1350   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1351       AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1352 }
1353
1354 #endif  // GTEST_IS_THREADSAFE
1355
1356 // Tests the TestProperty class.
1357
1358 TEST(TestPropertyTest, ConstructorWorks) {
1359   const TestProperty property("key", "value");
1360   EXPECT_STREQ("key", property.key());
1361   EXPECT_STREQ("value", property.value());
1362 }
1363
1364 TEST(TestPropertyTest, SetValue) {
1365   TestProperty property("key", "value_1");
1366   EXPECT_STREQ("key", property.key());
1367   property.SetValue("value_2");
1368   EXPECT_STREQ("key", property.key());
1369   EXPECT_STREQ("value_2", property.value());
1370 }
1371
1372 // Tests the TestResult class
1373
1374 // The test fixture for testing TestResult.
1375 class TestResultTest : public Test {
1376  protected:
1377   typedef std::vector<TestPartResult> TPRVector;
1378
1379   // We make use of 2 TestPartResult objects,
1380   TestPartResult *pr1, *pr2;
1381
1382   // ... and 3 TestResult objects.
1383   TestResult *r0, *r1, *r2;
1384
1385   void SetUp() override {
1386     // pr1 is for success.
1387     pr1 = new TestPartResult(TestPartResult::kSuccess, "foo/bar.cc", 10,
1388                              "Success!");
1389
1390     // pr2 is for fatal failure.
1391     pr2 = new TestPartResult(TestPartResult::kFatalFailure, "foo/bar.cc",
1392                              -1,  // This line number means "unknown"
1393                              "Failure!");
1394
1395     // Creates the TestResult objects.
1396     r0 = new TestResult();
1397     r1 = new TestResult();
1398     r2 = new TestResult();
1399
1400     // In order to test TestResult, we need to modify its internal
1401     // state, in particular the TestPartResult vector it holds.
1402     // test_part_results() returns a const reference to this vector.
1403     // We cast it to a non-const object s.t. it can be modified
1404     TPRVector* results1 =
1405         const_cast<TPRVector*>(&TestResultAccessor::test_part_results(*r1));
1406     TPRVector* results2 =
1407         const_cast<TPRVector*>(&TestResultAccessor::test_part_results(*r2));
1408
1409     // r0 is an empty TestResult.
1410
1411     // r1 contains a single SUCCESS TestPartResult.
1412     results1->push_back(*pr1);
1413
1414     // r2 contains a SUCCESS, and a FAILURE.
1415     results2->push_back(*pr1);
1416     results2->push_back(*pr2);
1417   }
1418
1419   void TearDown() override {
1420     delete pr1;
1421     delete pr2;
1422
1423     delete r0;
1424     delete r1;
1425     delete r2;
1426   }
1427
1428   // Helper that compares two TestPartResults.
1429   static void CompareTestPartResult(const TestPartResult& expected,
1430                                     const TestPartResult& actual) {
1431     EXPECT_EQ(expected.type(), actual.type());
1432     EXPECT_STREQ(expected.file_name(), actual.file_name());
1433     EXPECT_EQ(expected.line_number(), actual.line_number());
1434     EXPECT_STREQ(expected.summary(), actual.summary());
1435     EXPECT_STREQ(expected.message(), actual.message());
1436     EXPECT_EQ(expected.passed(), actual.passed());
1437     EXPECT_EQ(expected.failed(), actual.failed());
1438     EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1439     EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1440   }
1441 };
1442
1443 // Tests TestResult::total_part_count().
1444 TEST_F(TestResultTest, total_part_count) {
1445   ASSERT_EQ(0, r0->total_part_count());
1446   ASSERT_EQ(1, r1->total_part_count());
1447   ASSERT_EQ(2, r2->total_part_count());
1448 }
1449
1450 // Tests TestResult::Passed().
1451 TEST_F(TestResultTest, Passed) {
1452   ASSERT_TRUE(r0->Passed());
1453   ASSERT_TRUE(r1->Passed());
1454   ASSERT_FALSE(r2->Passed());
1455 }
1456
1457 // Tests TestResult::Failed().
1458 TEST_F(TestResultTest, Failed) {
1459   ASSERT_FALSE(r0->Failed());
1460   ASSERT_FALSE(r1->Failed());
1461   ASSERT_TRUE(r2->Failed());
1462 }
1463
1464 // Tests TestResult::GetTestPartResult().
1465
1466 typedef TestResultTest TestResultDeathTest;
1467
1468 TEST_F(TestResultDeathTest, GetTestPartResult) {
1469   CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1470   CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1471   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1472   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1473 }
1474
1475 // Tests TestResult has no properties when none are added.
1476 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1477   TestResult test_result;
1478   ASSERT_EQ(0, test_result.test_property_count());
1479 }
1480
1481 // Tests TestResult has the expected property when added.
1482 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1483   TestResult test_result;
1484   TestProperty property("key_1", "1");
1485   TestResultAccessor::RecordProperty(&test_result, "testcase", property);
1486   ASSERT_EQ(1, test_result.test_property_count());
1487   const TestProperty& actual_property = test_result.GetTestProperty(0);
1488   EXPECT_STREQ("key_1", actual_property.key());
1489   EXPECT_STREQ("1", actual_property.value());
1490 }
1491
1492 // Tests TestResult has multiple properties when added.
1493 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1494   TestResult test_result;
1495   TestProperty property_1("key_1", "1");
1496   TestProperty property_2("key_2", "2");
1497   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1498   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1499   ASSERT_EQ(2, test_result.test_property_count());
1500   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1501   EXPECT_STREQ("key_1", actual_property_1.key());
1502   EXPECT_STREQ("1", actual_property_1.value());
1503
1504   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1505   EXPECT_STREQ("key_2", actual_property_2.key());
1506   EXPECT_STREQ("2", actual_property_2.value());
1507 }
1508
1509 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
1510 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1511   TestResult test_result;
1512   TestProperty property_1_1("key_1", "1");
1513   TestProperty property_2_1("key_2", "2");
1514   TestProperty property_1_2("key_1", "12");
1515   TestProperty property_2_2("key_2", "22");
1516   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
1517   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
1518   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
1519   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
1520
1521   ASSERT_EQ(2, test_result.test_property_count());
1522   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1523   EXPECT_STREQ("key_1", actual_property_1.key());
1524   EXPECT_STREQ("12", actual_property_1.value());
1525
1526   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1527   EXPECT_STREQ("key_2", actual_property_2.key());
1528   EXPECT_STREQ("22", actual_property_2.value());
1529 }
1530
1531 // Tests TestResult::GetTestProperty().
1532 TEST(TestResultPropertyTest, GetTestProperty) {
1533   TestResult test_result;
1534   TestProperty property_1("key_1", "1");
1535   TestProperty property_2("key_2", "2");
1536   TestProperty property_3("key_3", "3");
1537   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1538   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1539   TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
1540
1541   const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1542   const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1543   const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1544
1545   EXPECT_STREQ("key_1", fetched_property_1.key());
1546   EXPECT_STREQ("1", fetched_property_1.value());
1547
1548   EXPECT_STREQ("key_2", fetched_property_2.key());
1549   EXPECT_STREQ("2", fetched_property_2.value());
1550
1551   EXPECT_STREQ("key_3", fetched_property_3.key());
1552   EXPECT_STREQ("3", fetched_property_3.value());
1553
1554   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1555   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1556 }
1557
1558 // Tests the Test class.
1559 //
1560 // It's difficult to test every public method of this class (we are
1561 // already stretching the limit of Google Test by using it to test itself!).
1562 // Fortunately, we don't have to do that, as we are already testing
1563 // the functionalities of the Test class extensively by using Google Test
1564 // alone.
1565 //
1566 // Therefore, this section only contains one test.
1567
1568 // Tests that GTestFlagSaver works on Windows and Mac.
1569
1570 class GTestFlagSaverTest : public Test {
1571  protected:
1572   // Saves the Google Test flags such that we can restore them later, and
1573   // then sets them to their default values.  This will be called
1574   // before the first test in this test case is run.
1575   static void SetUpTestSuite() {
1576     saver_ = new GTestFlagSaver;
1577
1578     GTEST_FLAG_SET(also_run_disabled_tests, false);
1579     GTEST_FLAG_SET(break_on_failure, false);
1580     GTEST_FLAG_SET(catch_exceptions, false);
1581     GTEST_FLAG_SET(death_test_use_fork, false);
1582     GTEST_FLAG_SET(color, "auto");
1583     GTEST_FLAG_SET(fail_fast, false);
1584     GTEST_FLAG_SET(filter, "");
1585     GTEST_FLAG_SET(list_tests, false);
1586     GTEST_FLAG_SET(output, "");
1587     GTEST_FLAG_SET(brief, false);
1588     GTEST_FLAG_SET(print_time, true);
1589     GTEST_FLAG_SET(random_seed, 0);
1590     GTEST_FLAG_SET(repeat, 1);
1591     GTEST_FLAG_SET(recreate_environments_when_repeating, true);
1592     GTEST_FLAG_SET(shuffle, false);
1593     GTEST_FLAG_SET(stack_trace_depth, kMaxStackTraceDepth);
1594     GTEST_FLAG_SET(stream_result_to, "");
1595     GTEST_FLAG_SET(throw_on_failure, false);
1596   }
1597
1598   // Restores the Google Test flags that the tests have modified.  This will
1599   // be called after the last test in this test case is run.
1600   static void TearDownTestSuite() {
1601     delete saver_;
1602     saver_ = nullptr;
1603   }
1604
1605   // Verifies that the Google Test flags have their default values, and then
1606   // modifies each of them.
1607   void VerifyAndModifyFlags() {
1608     EXPECT_FALSE(GTEST_FLAG_GET(also_run_disabled_tests));
1609     EXPECT_FALSE(GTEST_FLAG_GET(break_on_failure));
1610     EXPECT_FALSE(GTEST_FLAG_GET(catch_exceptions));
1611     EXPECT_STREQ("auto", GTEST_FLAG_GET(color).c_str());
1612     EXPECT_FALSE(GTEST_FLAG_GET(death_test_use_fork));
1613     EXPECT_FALSE(GTEST_FLAG_GET(fail_fast));
1614     EXPECT_STREQ("", GTEST_FLAG_GET(filter).c_str());
1615     EXPECT_FALSE(GTEST_FLAG_GET(list_tests));
1616     EXPECT_STREQ("", GTEST_FLAG_GET(output).c_str());
1617     EXPECT_FALSE(GTEST_FLAG_GET(brief));
1618     EXPECT_TRUE(GTEST_FLAG_GET(print_time));
1619     EXPECT_EQ(0, GTEST_FLAG_GET(random_seed));
1620     EXPECT_EQ(1, GTEST_FLAG_GET(repeat));
1621     EXPECT_TRUE(GTEST_FLAG_GET(recreate_environments_when_repeating));
1622     EXPECT_FALSE(GTEST_FLAG_GET(shuffle));
1623     EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG_GET(stack_trace_depth));
1624     EXPECT_STREQ("", GTEST_FLAG_GET(stream_result_to).c_str());
1625     EXPECT_FALSE(GTEST_FLAG_GET(throw_on_failure));
1626
1627     GTEST_FLAG_SET(also_run_disabled_tests, true);
1628     GTEST_FLAG_SET(break_on_failure, true);
1629     GTEST_FLAG_SET(catch_exceptions, true);
1630     GTEST_FLAG_SET(color, "no");
1631     GTEST_FLAG_SET(death_test_use_fork, true);
1632     GTEST_FLAG_SET(fail_fast, true);
1633     GTEST_FLAG_SET(filter, "abc");
1634     GTEST_FLAG_SET(list_tests, true);
1635     GTEST_FLAG_SET(output, "xml:foo.xml");
1636     GTEST_FLAG_SET(brief, true);
1637     GTEST_FLAG_SET(print_time, false);
1638     GTEST_FLAG_SET(random_seed, 1);
1639     GTEST_FLAG_SET(repeat, 100);
1640     GTEST_FLAG_SET(recreate_environments_when_repeating, false);
1641     GTEST_FLAG_SET(shuffle, true);
1642     GTEST_FLAG_SET(stack_trace_depth, 1);
1643     GTEST_FLAG_SET(stream_result_to, "localhost:1234");
1644     GTEST_FLAG_SET(throw_on_failure, true);
1645   }
1646
1647  private:
1648   // For saving Google Test flags during this test case.
1649   static GTestFlagSaver* saver_;
1650 };
1651
1652 GTestFlagSaver* GTestFlagSaverTest::saver_ = nullptr;
1653
1654 // Google Test doesn't guarantee the order of tests.  The following two
1655 // tests are designed to work regardless of their order.
1656
1657 // Modifies the Google Test flags in the test body.
1658 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) { VerifyAndModifyFlags(); }
1659
1660 // Verifies that the Google Test flags in the body of the previous test were
1661 // restored to their original values.
1662 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) { VerifyAndModifyFlags(); }
1663
1664 // Sets an environment variable with the given name to the given
1665 // value.  If the value argument is "", unsets the environment
1666 // variable.  The caller must ensure that both arguments are not NULL.
1667 static void SetEnv(const char* name, const char* value) {
1668 #if GTEST_OS_WINDOWS_MOBILE
1669   // Environment variables are not supported on Windows CE.
1670   return;
1671 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1672   // C++Builder's putenv only stores a pointer to its parameter; we have to
1673   // ensure that the string remains valid as long as it might be needed.
1674   // We use an std::map to do so.
1675   static std::map<std::string, std::string*> added_env;
1676
1677   // Because putenv stores a pointer to the string buffer, we can't delete the
1678   // previous string (if present) until after it's replaced.
1679   std::string* prev_env = NULL;
1680   if (added_env.find(name) != added_env.end()) {
1681     prev_env = added_env[name];
1682   }
1683   added_env[name] =
1684       new std::string((Message() << name << "=" << value).GetString());
1685
1686   // The standard signature of putenv accepts a 'char*' argument. Other
1687   // implementations, like C++Builder's, accept a 'const char*'.
1688   // We cast away the 'const' since that would work for both variants.
1689   putenv(const_cast<char*>(added_env[name]->c_str()));
1690   delete prev_env;
1691 #elif GTEST_OS_WINDOWS  // If we are on Windows proper.
1692   _putenv((Message() << name << "=" << value).GetString().c_str());
1693 #else
1694   if (*value == '\0') {
1695     unsetenv(name);
1696   } else {
1697     setenv(name, value, 1);
1698   }
1699 #endif  // GTEST_OS_WINDOWS_MOBILE
1700 }
1701
1702 #if !GTEST_OS_WINDOWS_MOBILE
1703 // Environment variables are not supported on Windows CE.
1704
1705 using testing::internal::Int32FromGTestEnv;
1706
1707 // Tests Int32FromGTestEnv().
1708
1709 // Tests that Int32FromGTestEnv() returns the default value when the
1710 // environment variable is not set.
1711 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1712   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1713   EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1714 }
1715
1716 #if !defined(GTEST_GET_INT32_FROM_ENV_)
1717
1718 // Tests that Int32FromGTestEnv() returns the default value when the
1719 // environment variable overflows as an Int32.
1720 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1721   printf("(expecting 2 warnings)\n");
1722
1723   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1724   EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1725
1726   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1727   EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1728 }
1729
1730 // Tests that Int32FromGTestEnv() returns the default value when the
1731 // environment variable does not represent a valid decimal integer.
1732 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1733   printf("(expecting 2 warnings)\n");
1734
1735   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1736   EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1737
1738   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1739   EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
1740 }
1741
1742 #endif  // !defined(GTEST_GET_INT32_FROM_ENV_)
1743
1744 // Tests that Int32FromGTestEnv() parses and returns the value of the
1745 // environment variable when it represents a valid decimal integer in
1746 // the range of an Int32.
1747 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
1748   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
1749   EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
1750
1751   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
1752   EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
1753 }
1754 #endif  // !GTEST_OS_WINDOWS_MOBILE
1755
1756 // Tests ParseFlag().
1757
1758 // Tests that ParseInt32Flag() returns false and doesn't change the
1759 // output value when the flag has wrong format
1760 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
1761   int32_t value = 123;
1762   EXPECT_FALSE(ParseFlag("--a=100", "b", &value));
1763   EXPECT_EQ(123, value);
1764
1765   EXPECT_FALSE(ParseFlag("a=100", "a", &value));
1766   EXPECT_EQ(123, value);
1767 }
1768
1769 // Tests that ParseFlag() returns false and doesn't change the
1770 // output value when the flag overflows as an Int32.
1771 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
1772   printf("(expecting 2 warnings)\n");
1773
1774   int32_t value = 123;
1775   EXPECT_FALSE(ParseFlag("--abc=12345678987654321", "abc", &value));
1776   EXPECT_EQ(123, value);
1777
1778   EXPECT_FALSE(ParseFlag("--abc=-12345678987654321", "abc", &value));
1779   EXPECT_EQ(123, value);
1780 }
1781
1782 // Tests that ParseInt32Flag() returns false and doesn't change the
1783 // output value when the flag does not represent a valid decimal
1784 // integer.
1785 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
1786   printf("(expecting 2 warnings)\n");
1787
1788   int32_t value = 123;
1789   EXPECT_FALSE(ParseFlag("--abc=A1", "abc", &value));
1790   EXPECT_EQ(123, value);
1791
1792   EXPECT_FALSE(ParseFlag("--abc=12X", "abc", &value));
1793   EXPECT_EQ(123, value);
1794 }
1795
1796 // Tests that ParseInt32Flag() parses the value of the flag and
1797 // returns true when the flag represents a valid decimal integer in
1798 // the range of an Int32.
1799 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
1800   int32_t value = 123;
1801   EXPECT_TRUE(ParseFlag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
1802   EXPECT_EQ(456, value);
1803
1804   EXPECT_TRUE(ParseFlag("--" GTEST_FLAG_PREFIX_ "abc=-789", "abc", &value));
1805   EXPECT_EQ(-789, value);
1806 }
1807
1808 // Tests that Int32FromEnvOrDie() parses the value of the var or
1809 // returns the correct default.
1810 // Environment variables are not supported on Windows CE.
1811 #if !GTEST_OS_WINDOWS_MOBILE
1812 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
1813   EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1814   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
1815   EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1816   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
1817   EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1818 }
1819 #endif  // !GTEST_OS_WINDOWS_MOBILE
1820
1821 // Tests that Int32FromEnvOrDie() aborts with an error message
1822 // if the variable is not an int32_t.
1823 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
1824   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
1825   EXPECT_DEATH_IF_SUPPORTED(
1826       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*");
1827 }
1828
1829 // Tests that Int32FromEnvOrDie() aborts with an error message
1830 // if the variable cannot be represented by an int32_t.
1831 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
1832   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
1833   EXPECT_DEATH_IF_SUPPORTED(
1834       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*");
1835 }
1836
1837 // Tests that ShouldRunTestOnShard() selects all tests
1838 // where there is 1 shard.
1839 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
1840   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
1841   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
1842   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
1843   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
1844   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
1845 }
1846
1847 class ShouldShardTest : public testing::Test {
1848  protected:
1849   void SetUp() override {
1850     index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
1851     total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
1852   }
1853
1854   void TearDown() override {
1855     SetEnv(index_var_, "");
1856     SetEnv(total_var_, "");
1857   }
1858
1859   const char* index_var_;
1860   const char* total_var_;
1861 };
1862
1863 // Tests that sharding is disabled if neither of the environment variables
1864 // are set.
1865 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
1866   SetEnv(index_var_, "");
1867   SetEnv(total_var_, "");
1868
1869   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1870   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1871 }
1872
1873 // Tests that sharding is not enabled if total_shards  == 1.
1874 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
1875   SetEnv(index_var_, "0");
1876   SetEnv(total_var_, "1");
1877   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1878   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1879 }
1880
1881 // Tests that sharding is enabled if total_shards > 1 and
1882 // we are not in a death test subprocess.
1883 // Environment variables are not supported on Windows CE.
1884 #if !GTEST_OS_WINDOWS_MOBILE
1885 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
1886   SetEnv(index_var_, "4");
1887   SetEnv(total_var_, "22");
1888   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1889   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1890
1891   SetEnv(index_var_, "8");
1892   SetEnv(total_var_, "9");
1893   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1894   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1895
1896   SetEnv(index_var_, "0");
1897   SetEnv(total_var_, "9");
1898   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1899   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1900 }
1901 #endif  // !GTEST_OS_WINDOWS_MOBILE
1902
1903 // Tests that we exit in error if the sharding values are not valid.
1904
1905 typedef ShouldShardTest ShouldShardDeathTest;
1906
1907 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
1908   SetEnv(index_var_, "4");
1909   SetEnv(total_var_, "4");
1910   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1911
1912   SetEnv(index_var_, "4");
1913   SetEnv(total_var_, "-2");
1914   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1915
1916   SetEnv(index_var_, "5");
1917   SetEnv(total_var_, "");
1918   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1919
1920   SetEnv(index_var_, "");
1921   SetEnv(total_var_, "5");
1922   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1923 }
1924
1925 // Tests that ShouldRunTestOnShard is a partition when 5
1926 // shards are used.
1927 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
1928   // Choose an arbitrary number of tests and shards.
1929   const int num_tests = 17;
1930   const int num_shards = 5;
1931
1932   // Check partitioning: each test should be on exactly 1 shard.
1933   for (int test_id = 0; test_id < num_tests; test_id++) {
1934     int prev_selected_shard_index = -1;
1935     for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1936       if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
1937         if (prev_selected_shard_index < 0) {
1938           prev_selected_shard_index = shard_index;
1939         } else {
1940           ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
1941                         << shard_index << " are both selected to run test "
1942                         << test_id;
1943         }
1944       }
1945     }
1946   }
1947
1948   // Check balance: This is not required by the sharding protocol, but is a
1949   // desirable property for performance.
1950   for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1951     int num_tests_on_shard = 0;
1952     for (int test_id = 0; test_id < num_tests; test_id++) {
1953       num_tests_on_shard +=
1954           ShouldRunTestOnShard(num_shards, shard_index, test_id);
1955     }
1956     EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
1957   }
1958 }
1959
1960 // For the same reason we are not explicitly testing everything in the
1961 // Test class, there are no separate tests for the following classes
1962 // (except for some trivial cases):
1963 //
1964 //   TestSuite, UnitTest, UnitTestResultPrinter.
1965 //
1966 // Similarly, there are no separate tests for the following macros:
1967 //
1968 //   TEST, TEST_F, RUN_ALL_TESTS
1969
1970 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
1971   ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != nullptr);
1972   EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
1973 }
1974
1975 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
1976   EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
1977   EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
1978 }
1979
1980 // When a property using a reserved key is supplied to this function, it
1981 // tests that a non-fatal failure is added, a fatal failure is not added,
1982 // and that the property is not recorded.
1983 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1984     const TestResult& test_result, const char* key) {
1985   EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
1986   ASSERT_EQ(0, test_result.test_property_count())
1987       << "Property for key '" << key << "' recorded unexpectedly.";
1988 }
1989
1990 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
1991     const char* key) {
1992   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
1993   ASSERT_TRUE(test_info != nullptr);
1994   ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
1995                                                         key);
1996 }
1997
1998 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
1999     const char* key) {
2000   const testing::TestSuite* test_suite =
2001       UnitTest::GetInstance()->current_test_suite();
2002   ASSERT_TRUE(test_suite != nullptr);
2003   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2004       test_suite->ad_hoc_test_result(), key);
2005 }
2006
2007 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2008     const char* key) {
2009   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2010       UnitTest::GetInstance()->ad_hoc_test_result(), key);
2011 }
2012
2013 // Tests that property recording functions in UnitTest outside of tests
2014 // functions correctly.  Creating a separate instance of UnitTest ensures it
2015 // is in a state similar to the UnitTest's singleton's between tests.
2016 class UnitTestRecordPropertyTest
2017     : public testing::internal::UnitTestRecordPropertyTestHelper {
2018  public:
2019   static void SetUpTestSuite() {
2020     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2021         "disabled");
2022     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2023         "errors");
2024     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2025         "failures");
2026     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2027         "name");
2028     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2029         "tests");
2030     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2031         "time");
2032
2033     Test::RecordProperty("test_case_key_1", "1");
2034
2035     const testing::TestSuite* test_suite =
2036         UnitTest::GetInstance()->current_test_suite();
2037
2038     ASSERT_TRUE(test_suite != nullptr);
2039
2040     ASSERT_EQ(1, test_suite->ad_hoc_test_result().test_property_count());
2041     EXPECT_STREQ("test_case_key_1",
2042                  test_suite->ad_hoc_test_result().GetTestProperty(0).key());
2043     EXPECT_STREQ("1",
2044                  test_suite->ad_hoc_test_result().GetTestProperty(0).value());
2045   }
2046 };
2047
2048 // Tests TestResult has the expected property when added.
2049 TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
2050   UnitTestRecordProperty("key_1", "1");
2051
2052   ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
2053
2054   EXPECT_STREQ("key_1",
2055                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2056   EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2057 }
2058
2059 // Tests TestResult has multiple properties when added.
2060 TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
2061   UnitTestRecordProperty("key_1", "1");
2062   UnitTestRecordProperty("key_2", "2");
2063
2064   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2065
2066   EXPECT_STREQ("key_1",
2067                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2068   EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2069
2070   EXPECT_STREQ("key_2",
2071                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2072   EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2073 }
2074
2075 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
2076 TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
2077   UnitTestRecordProperty("key_1", "1");
2078   UnitTestRecordProperty("key_2", "2");
2079   UnitTestRecordProperty("key_1", "12");
2080   UnitTestRecordProperty("key_2", "22");
2081
2082   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2083
2084   EXPECT_STREQ("key_1",
2085                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2086   EXPECT_STREQ("12",
2087                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2088
2089   EXPECT_STREQ("key_2",
2090                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2091   EXPECT_STREQ("22",
2092                unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2093 }
2094
2095 TEST_F(UnitTestRecordPropertyTest,
2096        AddFailureInsideTestsWhenUsingTestSuiteReservedKeys) {
2097   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("name");
2098   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2099       "value_param");
2100   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2101       "type_param");
2102   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("status");
2103   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("time");
2104   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2105       "classname");
2106 }
2107
2108 TEST_F(UnitTestRecordPropertyTest,
2109        AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
2110   EXPECT_NONFATAL_FAILURE(
2111       Test::RecordProperty("name", "1"),
2112       "'classname', 'name', 'status', 'time', 'type_param', 'value_param',"
2113       " 'file', and 'line' are reserved");
2114 }
2115
2116 class UnitTestRecordPropertyTestEnvironment : public Environment {
2117  public:
2118   void TearDown() override {
2119     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2120         "tests");
2121     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2122         "failures");
2123     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2124         "disabled");
2125     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2126         "errors");
2127     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2128         "name");
2129     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2130         "timestamp");
2131     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2132         "time");
2133     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2134         "random_seed");
2135   }
2136 };
2137
2138 // This will test property recording outside of any test or test case.
2139 static Environment* record_property_env GTEST_ATTRIBUTE_UNUSED_ =
2140     AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
2141
2142 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2143 // of various arities.  They do not attempt to be exhaustive.  Rather,
2144 // view them as smoke tests that can be easily reviewed and verified.
2145 // A more complete set of tests for predicate assertions can be found
2146 // in gtest_pred_impl_unittest.cc.
2147
2148 // First, some predicates and predicate-formatters needed by the tests.
2149
2150 // Returns true if and only if the argument is an even number.
2151 bool IsEven(int n) { return (n % 2) == 0; }
2152
2153 // A functor that returns true if and only if the argument is an even number.
2154 struct IsEvenFunctor {
2155   bool operator()(int n) { return IsEven(n); }
2156 };
2157
2158 // A predicate-formatter function that asserts the argument is an even
2159 // number.
2160 AssertionResult AssertIsEven(const char* expr, int n) {
2161   if (IsEven(n)) {
2162     return AssertionSuccess();
2163   }
2164
2165   Message msg;
2166   msg << expr << " evaluates to " << n << ", which is not even.";
2167   return AssertionFailure(msg);
2168 }
2169
2170 // A predicate function that returns AssertionResult for use in
2171 // EXPECT/ASSERT_TRUE/FALSE.
2172 AssertionResult ResultIsEven(int n) {
2173   if (IsEven(n))
2174     return AssertionSuccess() << n << " is even";
2175   else
2176     return AssertionFailure() << n << " is odd";
2177 }
2178
2179 // A predicate function that returns AssertionResult but gives no
2180 // explanation why it succeeds. Needed for testing that
2181 // EXPECT/ASSERT_FALSE handles such functions correctly.
2182 AssertionResult ResultIsEvenNoExplanation(int n) {
2183   if (IsEven(n))
2184     return AssertionSuccess();
2185   else
2186     return AssertionFailure() << n << " is odd";
2187 }
2188
2189 // A predicate-formatter functor that asserts the argument is an even
2190 // number.
2191 struct AssertIsEvenFunctor {
2192   AssertionResult operator()(const char* expr, int n) {
2193     return AssertIsEven(expr, n);
2194   }
2195 };
2196
2197 // Returns true if and only if the sum of the arguments is an even number.
2198 bool SumIsEven2(int n1, int n2) { return IsEven(n1 + n2); }
2199
2200 // A functor that returns true if and only if the sum of the arguments is an
2201 // even number.
2202 struct SumIsEven3Functor {
2203   bool operator()(int n1, int n2, int n3) { return IsEven(n1 + n2 + n3); }
2204 };
2205
2206 // A predicate-formatter function that asserts the sum of the
2207 // arguments is an even number.
2208 AssertionResult AssertSumIsEven4(const char* e1, const char* e2, const char* e3,
2209                                  const char* e4, int n1, int n2, int n3,
2210                                  int n4) {
2211   const int sum = n1 + n2 + n3 + n4;
2212   if (IsEven(sum)) {
2213     return AssertionSuccess();
2214   }
2215
2216   Message msg;
2217   msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " (" << n1 << " + "
2218       << n2 << " + " << n3 << " + " << n4 << ") evaluates to " << sum
2219       << ", which is not even.";
2220   return AssertionFailure(msg);
2221 }
2222
2223 // A predicate-formatter functor that asserts the sum of the arguments
2224 // is an even number.
2225 struct AssertSumIsEven5Functor {
2226   AssertionResult operator()(const char* e1, const char* e2, const char* e3,
2227                              const char* e4, const char* e5, int n1, int n2,
2228                              int n3, int n4, int n5) {
2229     const int sum = n1 + n2 + n3 + n4 + n5;
2230     if (IsEven(sum)) {
2231       return AssertionSuccess();
2232     }
2233
2234     Message msg;
2235     msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2236         << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + "
2237         << n5 << ") evaluates to " << sum << ", which is not even.";
2238     return AssertionFailure(msg);
2239   }
2240 };
2241
2242 // Tests unary predicate assertions.
2243
2244 // Tests unary predicate assertions that don't use a custom formatter.
2245 TEST(Pred1Test, WithoutFormat) {
2246   // Success cases.
2247   EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2248   ASSERT_PRED1(IsEven, 4);
2249
2250   // Failure cases.
2251   EXPECT_NONFATAL_FAILURE(
2252       {  // NOLINT
2253         EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2254       },
2255       "This failure is expected.");
2256   EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5), "evaluates to false");
2257 }
2258
2259 // Tests unary predicate assertions that use a custom formatter.
2260 TEST(Pred1Test, WithFormat) {
2261   // Success cases.
2262   EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2263   ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2264       << "This failure is UNEXPECTED!";
2265
2266   // Failure cases.
2267   const int n = 5;
2268   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2269                           "n evaluates to 5, which is not even.");
2270   EXPECT_FATAL_FAILURE(
2271       {  // NOLINT
2272         ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2273       },
2274       "This failure is expected.");
2275 }
2276
2277 // Tests that unary predicate assertions evaluates their arguments
2278 // exactly once.
2279 TEST(Pred1Test, SingleEvaluationOnFailure) {
2280   // A success case.
2281   static int n = 0;
2282   EXPECT_PRED1(IsEven, n++);
2283   EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2284
2285   // A failure case.
2286   EXPECT_FATAL_FAILURE(
2287       {  // NOLINT
2288         ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2289             << "This failure is expected.";
2290       },
2291       "This failure is expected.");
2292   EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2293 }
2294
2295 // Tests predicate assertions whose arity is >= 2.
2296
2297 // Tests predicate assertions that don't use a custom formatter.
2298 TEST(PredTest, WithoutFormat) {
2299   // Success cases.
2300   ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2301   EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2302
2303   // Failure cases.
2304   const int n1 = 1;
2305   const int n2 = 2;
2306   EXPECT_NONFATAL_FAILURE(
2307       {  // NOLINT
2308         EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2309       },
2310       "This failure is expected.");
2311   EXPECT_FATAL_FAILURE(
2312       {  // NOLINT
2313         ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2314       },
2315       "evaluates to false");
2316 }
2317
2318 // Tests predicate assertions that use a custom formatter.
2319 TEST(PredTest, WithFormat) {
2320   // Success cases.
2321   ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10)
2322       << "This failure is UNEXPECTED!";
2323   EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2324
2325   // Failure cases.
2326   const int n1 = 1;
2327   const int n2 = 2;
2328   const int n3 = 4;
2329   const int n4 = 6;
2330   EXPECT_NONFATAL_FAILURE(
2331       {  // NOLINT
2332         EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2333       },
2334       "evaluates to 13, which is not even.");
2335   EXPECT_FATAL_FAILURE(
2336       {  // NOLINT
2337         ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2338             << "This failure is expected.";
2339       },
2340       "This failure is expected.");
2341 }
2342
2343 // Tests that predicate assertions evaluates their arguments
2344 // exactly once.
2345 TEST(PredTest, SingleEvaluationOnFailure) {
2346   // A success case.
2347   int n1 = 0;
2348   int n2 = 0;
2349   EXPECT_PRED2(SumIsEven2, n1++, n2++);
2350   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2351   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2352
2353   // Another success case.
2354   n1 = n2 = 0;
2355   int n3 = 0;
2356   int n4 = 0;
2357   int n5 = 0;
2358   ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), n1++, n2++, n3++, n4++, n5++)
2359       << "This failure is UNEXPECTED!";
2360   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2361   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2362   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2363   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2364   EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2365
2366   // A failure case.
2367   n1 = n2 = n3 = 0;
2368   EXPECT_NONFATAL_FAILURE(
2369       {  // NOLINT
2370         EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2371             << "This failure is expected.";
2372       },
2373       "This failure is expected.");
2374   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2375   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2376   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2377
2378   // Another failure case.
2379   n1 = n2 = n3 = n4 = 0;
2380   EXPECT_NONFATAL_FAILURE(
2381       {  // NOLINT
2382         EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2383       },
2384       "evaluates to 1, which is not even.");
2385   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2386   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2387   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2388   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2389 }
2390
2391 // Test predicate assertions for sets
2392 TEST(PredTest, ExpectPredEvalFailure) {
2393   std::set<int> set_a = {2, 1, 3, 4, 5};
2394   std::set<int> set_b = {0, 4, 8};
2395   const auto compare_sets = [](std::set<int>, std::set<int>) { return false; };
2396   EXPECT_NONFATAL_FAILURE(
2397       EXPECT_PRED2(compare_sets, set_a, set_b),
2398       "compare_sets(set_a, set_b) evaluates to false, where\nset_a evaluates "
2399       "to { 1, 2, 3, 4, 5 }\nset_b evaluates to { 0, 4, 8 }");
2400 }
2401
2402 // Some helper functions for testing using overloaded/template
2403 // functions with ASSERT_PREDn and EXPECT_PREDn.
2404
2405 bool IsPositive(double x) { return x > 0; }
2406
2407 template <typename T>
2408 bool IsNegative(T x) {
2409   return x < 0;
2410 }
2411
2412 template <typename T1, typename T2>
2413 bool GreaterThan(T1 x1, T2 x2) {
2414   return x1 > x2;
2415 }
2416
2417 // Tests that overloaded functions can be used in *_PRED* as long as
2418 // their types are explicitly specified.
2419 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2420   // C++Builder requires C-style casts rather than static_cast.
2421   EXPECT_PRED1((bool (*)(int))(IsPositive), 5);       // NOLINT
2422   ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
2423 }
2424
2425 // Tests that template functions can be used in *_PRED* as long as
2426 // their types are explicitly specified.
2427 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2428   EXPECT_PRED1(IsNegative<int>, -5);
2429   // Makes sure that we can handle templates with more than one
2430   // parameter.
2431   ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2432 }
2433
2434 // Some helper functions for testing using overloaded/template
2435 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2436
2437 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2438   return n > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2439 }
2440
2441 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2442   return x > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2443 }
2444
2445 template <typename T>
2446 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2447   return x < 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2448 }
2449
2450 template <typename T1, typename T2>
2451 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2452                              const T1& x1, const T2& x2) {
2453   return x1 == x2 ? AssertionSuccess()
2454                   : AssertionFailure(Message() << "Failure");
2455 }
2456
2457 // Tests that overloaded functions can be used in *_PRED_FORMAT*
2458 // without explicitly specifying their types.
2459 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2460   EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2461   ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2462 }
2463
2464 // Tests that template functions can be used in *_PRED_FORMAT* without
2465 // explicitly specifying their types.
2466 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2467   EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2468   ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2469 }
2470
2471 // Tests string assertions.
2472
2473 // Tests ASSERT_STREQ with non-NULL arguments.
2474 TEST(StringAssertionTest, ASSERT_STREQ) {
2475   const char* const p1 = "good";
2476   ASSERT_STREQ(p1, p1);
2477
2478   // Let p2 have the same content as p1, but be at a different address.
2479   const char p2[] = "good";
2480   ASSERT_STREQ(p1, p2);
2481
2482   EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"), "  \"bad\"\n  \"good\"");
2483 }
2484
2485 // Tests ASSERT_STREQ with NULL arguments.
2486 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2487   ASSERT_STREQ(static_cast<const char*>(nullptr), nullptr);
2488   EXPECT_FATAL_FAILURE(ASSERT_STREQ(nullptr, "non-null"), "non-null");
2489 }
2490
2491 // Tests ASSERT_STREQ with NULL arguments.
2492 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2493   EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", nullptr), "non-null");
2494 }
2495
2496 // Tests ASSERT_STRNE.
2497 TEST(StringAssertionTest, ASSERT_STRNE) {
2498   ASSERT_STRNE("hi", "Hi");
2499   ASSERT_STRNE("Hi", nullptr);
2500   ASSERT_STRNE(nullptr, "Hi");
2501   ASSERT_STRNE("", nullptr);
2502   ASSERT_STRNE(nullptr, "");
2503   ASSERT_STRNE("", "Hi");
2504   ASSERT_STRNE("Hi", "");
2505   EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"), "\"Hi\" vs \"Hi\"");
2506 }
2507
2508 // Tests ASSERT_STRCASEEQ.
2509 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2510   ASSERT_STRCASEEQ("hi", "Hi");
2511   ASSERT_STRCASEEQ(static_cast<const char*>(nullptr), nullptr);
2512
2513   ASSERT_STRCASEEQ("", "");
2514   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"), "Ignoring case");
2515 }
2516
2517 // Tests ASSERT_STRCASENE.
2518 TEST(StringAssertionTest, ASSERT_STRCASENE) {
2519   ASSERT_STRCASENE("hi1", "Hi2");
2520   ASSERT_STRCASENE("Hi", nullptr);
2521   ASSERT_STRCASENE(nullptr, "Hi");
2522   ASSERT_STRCASENE("", nullptr);
2523   ASSERT_STRCASENE(nullptr, "");
2524   ASSERT_STRCASENE("", "Hi");
2525   ASSERT_STRCASENE("Hi", "");
2526   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"), "(ignoring case)");
2527 }
2528
2529 // Tests *_STREQ on wide strings.
2530 TEST(StringAssertionTest, STREQ_Wide) {
2531   // NULL strings.
2532   ASSERT_STREQ(static_cast<const wchar_t*>(nullptr), nullptr);
2533
2534   // Empty strings.
2535   ASSERT_STREQ(L"", L"");
2536
2537   // Non-null vs NULL.
2538   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", nullptr), "non-null");
2539
2540   // Equal strings.
2541   EXPECT_STREQ(L"Hi", L"Hi");
2542
2543   // Unequal strings.
2544   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"), "Abc");
2545
2546   // Strings containing wide characters.
2547   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"), "abc");
2548
2549   // The streaming variation.
2550   EXPECT_NONFATAL_FAILURE(
2551       {  // NOLINT
2552         EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
2553       },
2554       "Expected failure");
2555 }
2556
2557 // Tests *_STRNE on wide strings.
2558 TEST(StringAssertionTest, STRNE_Wide) {
2559   // NULL strings.
2560   EXPECT_NONFATAL_FAILURE(
2561       {  // NOLINT
2562         EXPECT_STRNE(static_cast<const wchar_t*>(nullptr), nullptr);
2563       },
2564       "");
2565
2566   // Empty strings.
2567   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""), "L\"\"");
2568
2569   // Non-null vs NULL.
2570   ASSERT_STRNE(L"non-null", nullptr);
2571
2572   // Equal strings.
2573   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"), "L\"Hi\"");
2574
2575   // Unequal strings.
2576   EXPECT_STRNE(L"abc", L"Abc");
2577
2578   // Strings containing wide characters.
2579   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"), "abc");
2580
2581   // The streaming variation.
2582   ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
2583 }
2584
2585 // Tests for ::testing::IsSubstring().
2586
2587 // Tests that IsSubstring() returns the correct result when the input
2588 // argument type is const char*.
2589 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2590   EXPECT_FALSE(IsSubstring("", "", nullptr, "a"));
2591   EXPECT_FALSE(IsSubstring("", "", "b", nullptr));
2592   EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2593
2594   EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(nullptr), nullptr));
2595   EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2596 }
2597
2598 // Tests that IsSubstring() returns the correct result when the input
2599 // argument type is const wchar_t*.
2600 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2601   EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2602   EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2603   EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2604
2605   EXPECT_TRUE(
2606       IsSubstring("", "", static_cast<const wchar_t*>(nullptr), nullptr));
2607   EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2608 }
2609
2610 // Tests that IsSubstring() generates the correct message when the input
2611 // argument type is const char*.
2612 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2613   EXPECT_STREQ(
2614       "Value of: needle_expr\n"
2615       "  Actual: \"needle\"\n"
2616       "Expected: a substring of haystack_expr\n"
2617       "Which is: \"haystack\"",
2618       IsSubstring("needle_expr", "haystack_expr", "needle", "haystack")
2619           .failure_message());
2620 }
2621
2622 // Tests that IsSubstring returns the correct result when the input
2623 // argument type is ::std::string.
2624 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2625   EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2626   EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2627 }
2628
2629 #if GTEST_HAS_STD_WSTRING
2630 // Tests that IsSubstring returns the correct result when the input
2631 // argument type is ::std::wstring.
2632 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2633   EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2634   EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2635 }
2636
2637 // Tests that IsSubstring() generates the correct message when the input
2638 // argument type is ::std::wstring.
2639 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2640   EXPECT_STREQ(
2641       "Value of: needle_expr\n"
2642       "  Actual: L\"needle\"\n"
2643       "Expected: a substring of haystack_expr\n"
2644       "Which is: L\"haystack\"",
2645       IsSubstring("needle_expr", "haystack_expr", ::std::wstring(L"needle"),
2646                   L"haystack")
2647           .failure_message());
2648 }
2649
2650 #endif  // GTEST_HAS_STD_WSTRING
2651
2652 // Tests for ::testing::IsNotSubstring().
2653
2654 // Tests that IsNotSubstring() returns the correct result when the input
2655 // argument type is const char*.
2656 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2657   EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2658   EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2659 }
2660
2661 // Tests that IsNotSubstring() returns the correct result when the input
2662 // argument type is const wchar_t*.
2663 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2664   EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2665   EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2666 }
2667
2668 // Tests that IsNotSubstring() generates the correct message when the input
2669 // argument type is const wchar_t*.
2670 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2671   EXPECT_STREQ(
2672       "Value of: needle_expr\n"
2673       "  Actual: L\"needle\"\n"
2674       "Expected: not a substring of haystack_expr\n"
2675       "Which is: L\"two needles\"",
2676       IsNotSubstring("needle_expr", "haystack_expr", L"needle", L"two needles")
2677           .failure_message());
2678 }
2679
2680 // Tests that IsNotSubstring returns the correct result when the input
2681 // argument type is ::std::string.
2682 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2683   EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2684   EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2685 }
2686
2687 // Tests that IsNotSubstring() generates the correct message when the input
2688 // argument type is ::std::string.
2689 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2690   EXPECT_STREQ(
2691       "Value of: needle_expr\n"
2692       "  Actual: \"needle\"\n"
2693       "Expected: not a substring of haystack_expr\n"
2694       "Which is: \"two needles\"",
2695       IsNotSubstring("needle_expr", "haystack_expr", ::std::string("needle"),
2696                      "two needles")
2697           .failure_message());
2698 }
2699
2700 #if GTEST_HAS_STD_WSTRING
2701
2702 // Tests that IsNotSubstring returns the correct result when the input
2703 // argument type is ::std::wstring.
2704 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2705   EXPECT_FALSE(
2706       IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2707   EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2708 }
2709
2710 #endif  // GTEST_HAS_STD_WSTRING
2711
2712 // Tests floating-point assertions.
2713
2714 template <typename RawType>
2715 class FloatingPointTest : public Test {
2716  protected:
2717   // Pre-calculated numbers to be used by the tests.
2718   struct TestValues {
2719     RawType close_to_positive_zero;
2720     RawType close_to_negative_zero;
2721     RawType further_from_negative_zero;
2722
2723     RawType close_to_one;
2724     RawType further_from_one;
2725
2726     RawType infinity;
2727     RawType close_to_infinity;
2728     RawType further_from_infinity;
2729
2730     RawType nan1;
2731     RawType nan2;
2732   };
2733
2734   typedef typename testing::internal::FloatingPoint<RawType> Floating;
2735   typedef typename Floating::Bits Bits;
2736
2737   void SetUp() override {
2738     const uint32_t max_ulps = Floating::kMaxUlps;
2739
2740     // The bits that represent 0.0.
2741     const Bits zero_bits = Floating(0).bits();
2742
2743     // Makes some numbers close to 0.0.
2744     values_.close_to_positive_zero =
2745         Floating::ReinterpretBits(zero_bits + max_ulps / 2);
2746     values_.close_to_negative_zero =
2747         -Floating::ReinterpretBits(zero_bits + max_ulps - max_ulps / 2);
2748     values_.further_from_negative_zero =
2749         -Floating::ReinterpretBits(zero_bits + max_ulps + 1 - max_ulps / 2);
2750
2751     // The bits that represent 1.0.
2752     const Bits one_bits = Floating(1).bits();
2753
2754     // Makes some numbers close to 1.0.
2755     values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2756     values_.further_from_one =
2757         Floating::ReinterpretBits(one_bits + max_ulps + 1);
2758
2759     // +infinity.
2760     values_.infinity = Floating::Infinity();
2761
2762     // The bits that represent +infinity.
2763     const Bits infinity_bits = Floating(values_.infinity).bits();
2764
2765     // Makes some numbers close to infinity.
2766     values_.close_to_infinity =
2767         Floating::ReinterpretBits(infinity_bits - max_ulps);
2768     values_.further_from_infinity =
2769         Floating::ReinterpretBits(infinity_bits - max_ulps - 1);
2770
2771     // Makes some NAN's.  Sets the most significant bit of the fraction so that
2772     // our NaN's are quiet; trying to process a signaling NaN would raise an
2773     // exception if our environment enables floating point exceptions.
2774     values_.nan1 = Floating::ReinterpretBits(
2775         Floating::kExponentBitMask |
2776         (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2777     values_.nan2 = Floating::ReinterpretBits(
2778         Floating::kExponentBitMask |
2779         (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2780   }
2781
2782   void TestSize() { EXPECT_EQ(sizeof(RawType), sizeof(Bits)); }
2783
2784   static TestValues values_;
2785 };
2786
2787 template <typename RawType>
2788 typename FloatingPointTest<RawType>::TestValues
2789     FloatingPointTest<RawType>::values_;
2790
2791 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2792 typedef FloatingPointTest<float> FloatTest;
2793
2794 // Tests that the size of Float::Bits matches the size of float.
2795 TEST_F(FloatTest, Size) { TestSize(); }
2796
2797 // Tests comparing with +0 and -0.
2798 TEST_F(FloatTest, Zeros) {
2799   EXPECT_FLOAT_EQ(0.0, -0.0);
2800   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0), "1.0");
2801   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5), "1.5");
2802 }
2803
2804 // Tests comparing numbers close to 0.
2805 //
2806 // This ensures that *_FLOAT_EQ handles the sign correctly and no
2807 // overflow occurs when comparing numbers whose absolute value is very
2808 // small.
2809 TEST_F(FloatTest, AlmostZeros) {
2810   // In C++Builder, names within local classes (such as used by
2811   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2812   // scoping class.  Use a static local alias as a workaround.
2813   // We use the assignment syntax since some compilers, like Sun Studio,
2814   // don't allow initializing references using construction syntax
2815   // (parentheses).
2816   static const FloatTest::TestValues& v = this->values_;
2817
2818   EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2819   EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2820   EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2821
2822   EXPECT_FATAL_FAILURE(
2823       {  // NOLINT
2824         ASSERT_FLOAT_EQ(v.close_to_positive_zero, v.further_from_negative_zero);
2825       },
2826       "v.further_from_negative_zero");
2827 }
2828
2829 // Tests comparing numbers close to each other.
2830 TEST_F(FloatTest, SmallDiff) {
2831   EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2832   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2833                           "values_.further_from_one");
2834 }
2835
2836 // Tests comparing numbers far apart.
2837 TEST_F(FloatTest, LargeDiff) {
2838   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0), "3.0");
2839 }
2840
2841 // Tests comparing with infinity.
2842 //
2843 // This ensures that no overflow occurs when comparing numbers whose
2844 // absolute value is very large.
2845 TEST_F(FloatTest, Infinity) {
2846   EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2847   EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2848   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2849                           "-values_.infinity");
2850
2851   // This is interesting as the representations of infinity and nan1
2852   // are only 1 DLP apart.
2853   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2854                           "values_.nan1");
2855 }
2856
2857 // Tests that comparing with NAN always returns false.
2858 TEST_F(FloatTest, NaN) {
2859   // In C++Builder, names within local classes (such as used by
2860   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2861   // scoping class.  Use a static local alias as a workaround.
2862   // We use the assignment syntax since some compilers, like Sun Studio,
2863   // don't allow initializing references using construction syntax
2864   // (parentheses).
2865   static const FloatTest::TestValues& v = this->values_;
2866
2867   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1), "v.nan1");
2868   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2), "v.nan2");
2869   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1), "v.nan1");
2870
2871   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity), "v.infinity");
2872 }
2873
2874 // Tests that *_FLOAT_EQ are reflexive.
2875 TEST_F(FloatTest, Reflexive) {
2876   EXPECT_FLOAT_EQ(0.0, 0.0);
2877   EXPECT_FLOAT_EQ(1.0, 1.0);
2878   ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2879 }
2880
2881 // Tests that *_FLOAT_EQ are commutative.
2882 TEST_F(FloatTest, Commutative) {
2883   // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2884   EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2885
2886   // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2887   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2888                           "1.0");
2889 }
2890
2891 // Tests EXPECT_NEAR.
2892 TEST_F(FloatTest, EXPECT_NEAR) {
2893   EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
2894   EXPECT_NEAR(2.0f, 3.0f, 1.0f);
2895   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f, 1.5f, 0.25f),  // NOLINT
2896                           "The difference between 1.0f and 1.5f is 0.5, "
2897                           "which exceeds 0.25f");
2898 }
2899
2900 // Tests ASSERT_NEAR.
2901 TEST_F(FloatTest, ASSERT_NEAR) {
2902   ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
2903   ASSERT_NEAR(2.0f, 3.0f, 1.0f);
2904   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f, 1.5f, 0.25f),  // NOLINT
2905                        "The difference between 1.0f and 1.5f is 0.5, "
2906                        "which exceeds 0.25f");
2907 }
2908
2909 // Tests the cases where FloatLE() should succeed.
2910 TEST_F(FloatTest, FloatLESucceeds) {
2911   EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
2912   ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
2913
2914   // or when val1 is greater than, but almost equals to, val2.
2915   EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
2916 }
2917
2918 // Tests the cases where FloatLE() should fail.
2919 TEST_F(FloatTest, FloatLEFails) {
2920   // When val1 is greater than val2 by a large margin,
2921   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
2922                           "(2.0f) <= (1.0f)");
2923
2924   // or by a small yet non-negligible margin,
2925   EXPECT_NONFATAL_FAILURE(
2926       {  // NOLINT
2927         EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
2928       },
2929       "(values_.further_from_one) <= (1.0f)");
2930
2931   EXPECT_NONFATAL_FAILURE(
2932       {  // NOLINT
2933         EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
2934       },
2935       "(values_.nan1) <= (values_.infinity)");
2936   EXPECT_NONFATAL_FAILURE(
2937       {  // NOLINT
2938         EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
2939       },
2940       "(-values_.infinity) <= (values_.nan1)");
2941   EXPECT_FATAL_FAILURE(
2942       {  // NOLINT
2943         ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
2944       },
2945       "(values_.nan1) <= (values_.nan1)");
2946 }
2947
2948 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
2949 typedef FloatingPointTest<double> DoubleTest;
2950
2951 // Tests that the size of Double::Bits matches the size of double.
2952 TEST_F(DoubleTest, Size) { TestSize(); }
2953
2954 // Tests comparing with +0 and -0.
2955 TEST_F(DoubleTest, Zeros) {
2956   EXPECT_DOUBLE_EQ(0.0, -0.0);
2957   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0), "1.0");
2958   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0), "1.0");
2959 }
2960
2961 // Tests comparing numbers close to 0.
2962 //
2963 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
2964 // overflow occurs when comparing numbers whose absolute value is very
2965 // small.
2966 TEST_F(DoubleTest, AlmostZeros) {
2967   // In C++Builder, names within local classes (such as used by
2968   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2969   // scoping class.  Use a static local alias as a workaround.
2970   // We use the assignment syntax since some compilers, like Sun Studio,
2971   // don't allow initializing references using construction syntax
2972   // (parentheses).
2973   static const DoubleTest::TestValues& v = this->values_;
2974
2975   EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
2976   EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
2977   EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2978
2979   EXPECT_FATAL_FAILURE(
2980       {  // NOLINT
2981         ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
2982                          v.further_from_negative_zero);
2983       },
2984       "v.further_from_negative_zero");
2985 }
2986
2987 // Tests comparing numbers close to each other.
2988 TEST_F(DoubleTest, SmallDiff) {
2989   EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
2990   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
2991                           "values_.further_from_one");
2992 }
2993
2994 // Tests comparing numbers far apart.
2995 TEST_F(DoubleTest, LargeDiff) {
2996   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0), "3.0");
2997 }
2998
2999 // Tests comparing with infinity.
3000 //
3001 // This ensures that no overflow occurs when comparing numbers whose
3002 // absolute value is very large.
3003 TEST_F(DoubleTest, Infinity) {
3004   EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
3005   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
3006   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
3007                           "-values_.infinity");
3008
3009   // This is interesting as the representations of infinity_ and nan1_
3010   // are only 1 DLP apart.
3011   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
3012                           "values_.nan1");
3013 }
3014
3015 // Tests that comparing with NAN always returns false.
3016 TEST_F(DoubleTest, NaN) {
3017   static const DoubleTest::TestValues& v = this->values_;
3018
3019   // Nokia's STLport crashes if we try to output infinity or NaN.
3020   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1), "v.nan1");
3021   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
3022   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
3023   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity), "v.infinity");
3024 }
3025
3026 // Tests that *_DOUBLE_EQ are reflexive.
3027 TEST_F(DoubleTest, Reflexive) {
3028   EXPECT_DOUBLE_EQ(0.0, 0.0);
3029   EXPECT_DOUBLE_EQ(1.0, 1.0);
3030   ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3031 }
3032
3033 // Tests that *_DOUBLE_EQ are commutative.
3034 TEST_F(DoubleTest, Commutative) {
3035   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3036   EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3037
3038   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3039   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3040                           "1.0");
3041 }
3042
3043 // Tests EXPECT_NEAR.
3044 TEST_F(DoubleTest, EXPECT_NEAR) {
3045   EXPECT_NEAR(-1.0, -1.1, 0.2);
3046   EXPECT_NEAR(2.0, 3.0, 1.0);
3047   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3048                           "The difference between 1.0 and 1.5 is 0.5, "
3049                           "which exceeds 0.25");
3050   // At this magnitude adjacent doubles are 512.0 apart, so this triggers a
3051   // slightly different failure reporting path.
3052   EXPECT_NONFATAL_FAILURE(
3053       EXPECT_NEAR(4.2934311416234112e+18, 4.2934311416234107e+18, 1.0),
3054       "The abs_error parameter 1.0 evaluates to 1 which is smaller than the "
3055       "minimum distance between doubles for numbers of this magnitude which is "
3056       "512");
3057 }
3058
3059 // Tests ASSERT_NEAR.
3060 TEST_F(DoubleTest, ASSERT_NEAR) {
3061   ASSERT_NEAR(-1.0, -1.1, 0.2);
3062   ASSERT_NEAR(2.0, 3.0, 1.0);
3063   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3064                        "The difference between 1.0 and 1.5 is 0.5, "
3065                        "which exceeds 0.25");
3066 }
3067
3068 // Tests the cases where DoubleLE() should succeed.
3069 TEST_F(DoubleTest, DoubleLESucceeds) {
3070   EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
3071   ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
3072
3073   // or when val1 is greater than, but almost equals to, val2.
3074   EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3075 }
3076
3077 // Tests the cases where DoubleLE() should fail.
3078 TEST_F(DoubleTest, DoubleLEFails) {
3079   // When val1 is greater than val2 by a large margin,
3080   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
3081                           "(2.0) <= (1.0)");
3082
3083   // or by a small yet non-negligible margin,
3084   EXPECT_NONFATAL_FAILURE(
3085       {  // NOLINT
3086         EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3087       },
3088       "(values_.further_from_one) <= (1.0)");
3089
3090   EXPECT_NONFATAL_FAILURE(
3091       {  // NOLINT
3092         EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3093       },
3094       "(values_.nan1) <= (values_.infinity)");
3095   EXPECT_NONFATAL_FAILURE(
3096       {  // NOLINT
3097         EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3098       },
3099       " (-values_.infinity) <= (values_.nan1)");
3100   EXPECT_FATAL_FAILURE(
3101       {  // NOLINT
3102         ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3103       },
3104       "(values_.nan1) <= (values_.nan1)");
3105 }
3106
3107 // Verifies that a test or test case whose name starts with DISABLED_ is
3108 // not run.
3109
3110 // A test whose name starts with DISABLED_.
3111 // Should not run.
3112 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3113   FAIL() << "Unexpected failure: Disabled test should not be run.";
3114 }
3115
3116 // A test whose name does not start with DISABLED_.
3117 // Should run.
3118 TEST(DisabledTest, NotDISABLED_TestShouldRun) { EXPECT_EQ(1, 1); }
3119
3120 // A test case whose name starts with DISABLED_.
3121 // Should not run.
3122 TEST(DISABLED_TestSuite, TestShouldNotRun) {
3123   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3124 }
3125
3126 // A test case and test whose names start with DISABLED_.
3127 // Should not run.
3128 TEST(DISABLED_TestSuite, DISABLED_TestShouldNotRun) {
3129   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3130 }
3131
3132 // Check that when all tests in a test case are disabled, SetUpTestSuite() and
3133 // TearDownTestSuite() are not called.
3134 class DisabledTestsTest : public Test {
3135  protected:
3136   static void SetUpTestSuite() {
3137     FAIL() << "Unexpected failure: All tests disabled in test case. "
3138               "SetUpTestSuite() should not be called.";
3139   }
3140
3141   static void TearDownTestSuite() {
3142     FAIL() << "Unexpected failure: All tests disabled in test case. "
3143               "TearDownTestSuite() should not be called.";
3144   }
3145 };
3146
3147 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3148   FAIL() << "Unexpected failure: Disabled test should not be run.";
3149 }
3150
3151 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3152   FAIL() << "Unexpected failure: Disabled test should not be run.";
3153 }
3154
3155 // Tests that disabled typed tests aren't run.
3156
3157 template <typename T>
3158 class TypedTest : public Test {};
3159
3160 typedef testing::Types<int, double> NumericTypes;
3161 TYPED_TEST_SUITE(TypedTest, NumericTypes);
3162
3163 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3164   FAIL() << "Unexpected failure: Disabled typed test should not run.";
3165 }
3166
3167 template <typename T>
3168 class DISABLED_TypedTest : public Test {};
3169
3170 TYPED_TEST_SUITE(DISABLED_TypedTest, NumericTypes);
3171
3172 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3173   FAIL() << "Unexpected failure: Disabled typed test should not run.";
3174 }
3175
3176 // Tests that disabled type-parameterized tests aren't run.
3177
3178 template <typename T>
3179 class TypedTestP : public Test {};
3180
3181 TYPED_TEST_SUITE_P(TypedTestP);
3182
3183 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3184   FAIL() << "Unexpected failure: "
3185          << "Disabled type-parameterized test should not run.";
3186 }
3187
3188 REGISTER_TYPED_TEST_SUITE_P(TypedTestP, DISABLED_ShouldNotRun);
3189
3190 INSTANTIATE_TYPED_TEST_SUITE_P(My, TypedTestP, NumericTypes);
3191
3192 template <typename T>
3193 class DISABLED_TypedTestP : public Test {};
3194
3195 TYPED_TEST_SUITE_P(DISABLED_TypedTestP);
3196
3197 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3198   FAIL() << "Unexpected failure: "
3199          << "Disabled type-parameterized test should not run.";
3200 }
3201
3202 REGISTER_TYPED_TEST_SUITE_P(DISABLED_TypedTestP, ShouldNotRun);
3203
3204 INSTANTIATE_TYPED_TEST_SUITE_P(My, DISABLED_TypedTestP, NumericTypes);
3205
3206 // Tests that assertion macros evaluate their arguments exactly once.
3207
3208 class SingleEvaluationTest : public Test {
3209  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
3210   // This helper function is needed by the FailedASSERT_STREQ test
3211   // below.  It's public to work around C++Builder's bug with scoping local
3212   // classes.
3213   static void CompareAndIncrementCharPtrs() { ASSERT_STREQ(p1_++, p2_++); }
3214
3215   // This helper function is needed by the FailedASSERT_NE test below.  It's
3216   // public to work around C++Builder's bug with scoping local classes.
3217   static void CompareAndIncrementInts() { ASSERT_NE(a_++, b_++); }
3218
3219  protected:
3220   SingleEvaluationTest() {
3221     p1_ = s1_;
3222     p2_ = s2_;
3223     a_ = 0;
3224     b_ = 0;
3225   }
3226
3227   static const char* const s1_;
3228   static const char* const s2_;
3229   static const char* p1_;
3230   static const char* p2_;
3231
3232   static int a_;
3233   static int b_;
3234 };
3235
3236 const char* const SingleEvaluationTest::s1_ = "01234";
3237 const char* const SingleEvaluationTest::s2_ = "abcde";
3238 const char* SingleEvaluationTest::p1_;
3239 const char* SingleEvaluationTest::p2_;
3240 int SingleEvaluationTest::a_;
3241 int SingleEvaluationTest::b_;
3242
3243 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
3244 // exactly once.
3245 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3246   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3247                        "p2_++");
3248   EXPECT_EQ(s1_ + 1, p1_);
3249   EXPECT_EQ(s2_ + 1, p2_);
3250 }
3251
3252 // Tests that string assertion arguments are evaluated exactly once.
3253 TEST_F(SingleEvaluationTest, ASSERT_STR) {
3254   // successful EXPECT_STRNE
3255   EXPECT_STRNE(p1_++, p2_++);
3256   EXPECT_EQ(s1_ + 1, p1_);
3257   EXPECT_EQ(s2_ + 1, p2_);
3258
3259   // failed EXPECT_STRCASEEQ
3260   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++), "Ignoring case");
3261   EXPECT_EQ(s1_ + 2, p1_);
3262   EXPECT_EQ(s2_ + 2, p2_);
3263 }
3264
3265 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3266 // once.
3267 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3268   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3269                        "(a_++) != (b_++)");
3270   EXPECT_EQ(1, a_);
3271   EXPECT_EQ(1, b_);
3272 }
3273
3274 // Tests that assertion arguments are evaluated exactly once.
3275 TEST_F(SingleEvaluationTest, OtherCases) {
3276   // successful EXPECT_TRUE
3277   EXPECT_TRUE(0 == a_++);  // NOLINT
3278   EXPECT_EQ(1, a_);
3279
3280   // failed EXPECT_TRUE
3281   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3282   EXPECT_EQ(2, a_);
3283
3284   // successful EXPECT_GT
3285   EXPECT_GT(a_++, b_++);
3286   EXPECT_EQ(3, a_);
3287   EXPECT_EQ(1, b_);
3288
3289   // failed EXPECT_LT
3290   EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3291   EXPECT_EQ(4, a_);
3292   EXPECT_EQ(2, b_);
3293
3294   // successful ASSERT_TRUE
3295   ASSERT_TRUE(0 < a_++);  // NOLINT
3296   EXPECT_EQ(5, a_);
3297
3298   // successful ASSERT_GT
3299   ASSERT_GT(a_++, b_++);
3300   EXPECT_EQ(6, a_);
3301   EXPECT_EQ(3, b_);
3302 }
3303
3304 #if GTEST_HAS_EXCEPTIONS
3305
3306 #if GTEST_HAS_RTTI
3307
3308 #ifdef _MSC_VER
3309 #define ERROR_DESC "class std::runtime_error"
3310 #else
3311 #define ERROR_DESC "std::runtime_error"
3312 #endif
3313
3314 #else  // GTEST_HAS_RTTI
3315
3316 #define ERROR_DESC "an std::exception-derived error"
3317
3318 #endif  // GTEST_HAS_RTTI
3319
3320 void ThrowAnInteger() { throw 1; }
3321 void ThrowRuntimeError(const char* what) { throw std::runtime_error(what); }
3322
3323 // Tests that assertion arguments are evaluated exactly once.
3324 TEST_F(SingleEvaluationTest, ExceptionTests) {
3325   // successful EXPECT_THROW
3326   EXPECT_THROW(
3327       {  // NOLINT
3328         a_++;
3329         ThrowAnInteger();
3330       },
3331       int);
3332   EXPECT_EQ(1, a_);
3333
3334   // failed EXPECT_THROW, throws different
3335   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(
3336                               {  // NOLINT
3337                                 a_++;
3338                                 ThrowAnInteger();
3339                               },
3340                               bool),
3341                           "throws a different type");
3342   EXPECT_EQ(2, a_);
3343
3344   // failed EXPECT_THROW, throws runtime error
3345   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(
3346                               {  // NOLINT
3347                                 a_++;
3348                                 ThrowRuntimeError("A description");
3349                               },
3350                               bool),
3351                           "throws " ERROR_DESC
3352                           " with description \"A description\"");
3353   EXPECT_EQ(3, a_);
3354
3355   // failed EXPECT_THROW, throws nothing
3356   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3357   EXPECT_EQ(4, a_);
3358
3359   // successful EXPECT_NO_THROW
3360   EXPECT_NO_THROW(a_++);
3361   EXPECT_EQ(5, a_);
3362
3363   // failed EXPECT_NO_THROW
3364   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
3365                             a_++;
3366                             ThrowAnInteger();
3367                           }),
3368                           "it throws");
3369   EXPECT_EQ(6, a_);
3370
3371   // successful EXPECT_ANY_THROW
3372   EXPECT_ANY_THROW({  // NOLINT
3373     a_++;
3374     ThrowAnInteger();
3375   });
3376   EXPECT_EQ(7, a_);
3377
3378   // failed EXPECT_ANY_THROW
3379   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3380   EXPECT_EQ(8, a_);
3381 }
3382
3383 #endif  // GTEST_HAS_EXCEPTIONS
3384
3385 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3386 class NoFatalFailureTest : public Test {
3387  protected:
3388   void Succeeds() {}
3389   void FailsNonFatal() { ADD_FAILURE() << "some non-fatal failure"; }
3390   void Fails() { FAIL() << "some fatal failure"; }
3391
3392   void DoAssertNoFatalFailureOnFails() {
3393     ASSERT_NO_FATAL_FAILURE(Fails());
3394     ADD_FAILURE() << "should not reach here.";
3395   }
3396
3397   void DoExpectNoFatalFailureOnFails() {
3398     EXPECT_NO_FATAL_FAILURE(Fails());
3399     ADD_FAILURE() << "other failure";
3400   }
3401 };
3402
3403 TEST_F(NoFatalFailureTest, NoFailure) {
3404   EXPECT_NO_FATAL_FAILURE(Succeeds());
3405   ASSERT_NO_FATAL_FAILURE(Succeeds());
3406 }
3407
3408 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3409   EXPECT_NONFATAL_FAILURE(EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3410                           "some non-fatal failure");
3411   EXPECT_NONFATAL_FAILURE(ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3412                           "some non-fatal failure");
3413 }
3414
3415 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3416   TestPartResultArray gtest_failures;
3417   {
3418     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3419     DoAssertNoFatalFailureOnFails();
3420   }
3421   ASSERT_EQ(2, gtest_failures.size());
3422   EXPECT_EQ(TestPartResult::kFatalFailure,
3423             gtest_failures.GetTestPartResult(0).type());
3424   EXPECT_EQ(TestPartResult::kFatalFailure,
3425             gtest_failures.GetTestPartResult(1).type());
3426   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3427                       gtest_failures.GetTestPartResult(0).message());
3428   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3429                       gtest_failures.GetTestPartResult(1).message());
3430 }
3431
3432 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3433   TestPartResultArray gtest_failures;
3434   {
3435     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3436     DoExpectNoFatalFailureOnFails();
3437   }
3438   ASSERT_EQ(3, gtest_failures.size());
3439   EXPECT_EQ(TestPartResult::kFatalFailure,
3440             gtest_failures.GetTestPartResult(0).type());
3441   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3442             gtest_failures.GetTestPartResult(1).type());
3443   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3444             gtest_failures.GetTestPartResult(2).type());
3445   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3446                       gtest_failures.GetTestPartResult(0).message());
3447   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3448                       gtest_failures.GetTestPartResult(1).message());
3449   EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3450                       gtest_failures.GetTestPartResult(2).message());
3451 }
3452
3453 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3454   TestPartResultArray gtest_failures;
3455   {
3456     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3457     EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
3458   }
3459   ASSERT_EQ(2, gtest_failures.size());
3460   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3461             gtest_failures.GetTestPartResult(0).type());
3462   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3463             gtest_failures.GetTestPartResult(1).type());
3464   EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
3465                       gtest_failures.GetTestPartResult(0).message());
3466   EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
3467                       gtest_failures.GetTestPartResult(1).message());
3468 }
3469
3470 // Tests non-string assertions.
3471
3472 std::string EditsToString(const std::vector<EditType>& edits) {
3473   std::string out;
3474   for (size_t i = 0; i < edits.size(); ++i) {
3475     static const char kEdits[] = " +-/";
3476     out.append(1, kEdits[edits[i]]);
3477   }
3478   return out;
3479 }
3480
3481 std::vector<size_t> CharsToIndices(const std::string& str) {
3482   std::vector<size_t> out;
3483   for (size_t i = 0; i < str.size(); ++i) {
3484     out.push_back(static_cast<size_t>(str[i]));
3485   }
3486   return out;
3487 }
3488
3489 std::vector<std::string> CharsToLines(const std::string& str) {
3490   std::vector<std::string> out;
3491   for (size_t i = 0; i < str.size(); ++i) {
3492     out.push_back(str.substr(i, 1));
3493   }
3494   return out;
3495 }
3496
3497 TEST(EditDistance, TestSuites) {
3498   struct Case {
3499     int line;
3500     const char* left;
3501     const char* right;
3502     const char* expected_edits;
3503     const char* expected_diff;
3504   };
3505   static const Case kCases[] = {
3506       // No change.
3507       {__LINE__, "A", "A", " ", ""},
3508       {__LINE__, "ABCDE", "ABCDE", "     ", ""},
3509       // Simple adds.
3510       {__LINE__, "X", "XA", " +", "@@ +1,2 @@\n X\n+A\n"},
3511       {__LINE__, "X", "XABCD", " ++++", "@@ +1,5 @@\n X\n+A\n+B\n+C\n+D\n"},
3512       // Simple removes.
3513       {__LINE__, "XA", "X", " -", "@@ -1,2 @@\n X\n-A\n"},
3514       {__LINE__, "XABCD", "X", " ----", "@@ -1,5 @@\n X\n-A\n-B\n-C\n-D\n"},
3515       // Simple replaces.
3516       {__LINE__, "A", "a", "/", "@@ -1,1 +1,1 @@\n-A\n+a\n"},
3517       {__LINE__, "ABCD", "abcd", "////",
3518        "@@ -1,4 +1,4 @@\n-A\n-B\n-C\n-D\n+a\n+b\n+c\n+d\n"},
3519       // Path finding.
3520       {__LINE__, "ABCDEFGH", "ABXEGH1", "  -/ -  +",
3521        "@@ -1,8 +1,7 @@\n A\n B\n-C\n-D\n+X\n E\n-F\n G\n H\n+1\n"},
3522       {__LINE__, "AAAABCCCC", "ABABCDCDC", "- /   + / ",
3523        "@@ -1,9 +1,9 @@\n-A\n A\n-A\n+B\n A\n B\n C\n+D\n C\n-C\n+D\n C\n"},
3524       {__LINE__, "ABCDE", "BCDCD", "-   +/",
3525        "@@ -1,5 +1,5 @@\n-A\n B\n C\n D\n-E\n+C\n+D\n"},
3526       {__LINE__, "ABCDEFGHIJKL", "BCDCDEFGJKLJK", "- ++     --   ++",
3527        "@@ -1,4 +1,5 @@\n-A\n B\n+C\n+D\n C\n D\n"
3528        "@@ -6,7 +7,7 @@\n F\n G\n-H\n-I\n J\n K\n L\n+J\n+K\n"},
3529       {}};
3530   for (const Case* c = kCases; c->left; ++c) {
3531     EXPECT_TRUE(c->expected_edits ==
3532                 EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
3533                                                     CharsToIndices(c->right))))
3534         << "Left <" << c->left << "> Right <" << c->right << "> Edits <"
3535         << EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
3536                                                CharsToIndices(c->right)))
3537         << ">";
3538     EXPECT_TRUE(c->expected_diff == CreateUnifiedDiff(CharsToLines(c->left),
3539                                                       CharsToLines(c->right)))
3540         << "Left <" << c->left << "> Right <" << c->right << "> Diff <"
3541         << CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right))
3542         << ">";
3543   }
3544 }
3545
3546 // Tests EqFailure(), used for implementing *EQ* assertions.
3547 TEST(AssertionTest, EqFailure) {
3548   const std::string foo_val("5"), bar_val("6");
3549   const std::string msg1(
3550       EqFailure("foo", "bar", foo_val, bar_val, false).failure_message());
3551   EXPECT_STREQ(
3552       "Expected equality of these values:\n"
3553       "  foo\n"
3554       "    Which is: 5\n"
3555       "  bar\n"
3556       "    Which is: 6",
3557       msg1.c_str());
3558
3559   const std::string msg2(
3560       EqFailure("foo", "6", foo_val, bar_val, false).failure_message());
3561   EXPECT_STREQ(
3562       "Expected equality of these values:\n"
3563       "  foo\n"
3564       "    Which is: 5\n"
3565       "  6",
3566       msg2.c_str());
3567
3568   const std::string msg3(
3569       EqFailure("5", "bar", foo_val, bar_val, false).failure_message());
3570   EXPECT_STREQ(
3571       "Expected equality of these values:\n"
3572       "  5\n"
3573       "  bar\n"
3574       "    Which is: 6",
3575       msg3.c_str());
3576
3577   const std::string msg4(
3578       EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3579   EXPECT_STREQ(
3580       "Expected equality of these values:\n"
3581       "  5\n"
3582       "  6",
3583       msg4.c_str());
3584
3585   const std::string msg5(
3586       EqFailure("foo", "bar", std::string("\"x\""), std::string("\"y\""), true)
3587           .failure_message());
3588   EXPECT_STREQ(
3589       "Expected equality of these values:\n"
3590       "  foo\n"
3591       "    Which is: \"x\"\n"
3592       "  bar\n"
3593       "    Which is: \"y\"\n"
3594       "Ignoring case",
3595       msg5.c_str());
3596 }
3597
3598 TEST(AssertionTest, EqFailureWithDiff) {
3599   const std::string left(
3600       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15");
3601   const std::string right(
3602       "1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14");
3603   const std::string msg1(
3604       EqFailure("left", "right", left, right, false).failure_message());
3605   EXPECT_STREQ(
3606       "Expected equality of these values:\n"
3607       "  left\n"
3608       "    Which is: "
3609       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15\n"
3610       "  right\n"
3611       "    Which is: 1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14\n"
3612       "With diff:\n@@ -1,5 +1,6 @@\n 1\n-2XXX\n+2\n 3\n+4\n 5\n 6\n"
3613       "@@ -7,8 +8,6 @@\n 8\n 9\n-10\n 11\n-12XXX\n+12\n 13\n 14\n-15\n",
3614       msg1.c_str());
3615 }
3616
3617 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
3618 TEST(AssertionTest, AppendUserMessage) {
3619   const std::string foo("foo");
3620
3621   Message msg;
3622   EXPECT_STREQ("foo", AppendUserMessage(foo, msg).c_str());
3623
3624   msg << "bar";
3625   EXPECT_STREQ("foo\nbar", AppendUserMessage(foo, msg).c_str());
3626 }
3627
3628 #ifdef __BORLANDC__
3629 // Silences warnings: "Condition is always true", "Unreachable code"
3630 #pragma option push -w-ccc -w-rch
3631 #endif
3632
3633 // Tests ASSERT_TRUE.
3634 TEST(AssertionTest, ASSERT_TRUE) {
3635   ASSERT_TRUE(2 > 1);  // NOLINT
3636   EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1), "2 < 1");
3637 }
3638
3639 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
3640 TEST(AssertionTest, AssertTrueWithAssertionResult) {
3641   ASSERT_TRUE(ResultIsEven(2));
3642 #ifndef __BORLANDC__
3643   // ICE's in C++Builder.
3644   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3645                        "Value of: ResultIsEven(3)\n"
3646                        "  Actual: false (3 is odd)\n"
3647                        "Expected: true");
3648 #endif
3649   ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3650   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3651                        "Value of: ResultIsEvenNoExplanation(3)\n"
3652                        "  Actual: false (3 is odd)\n"
3653                        "Expected: true");
3654 }
3655
3656 // Tests ASSERT_FALSE.
3657 TEST(AssertionTest, ASSERT_FALSE) {
3658   ASSERT_FALSE(2 < 1);  // NOLINT
3659   EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
3660                        "Value of: 2 > 1\n"
3661                        "  Actual: true\n"
3662                        "Expected: false");
3663 }
3664
3665 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
3666 TEST(AssertionTest, AssertFalseWithAssertionResult) {
3667   ASSERT_FALSE(ResultIsEven(3));
3668 #ifndef __BORLANDC__
3669   // ICE's in C++Builder.
3670   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3671                        "Value of: ResultIsEven(2)\n"
3672                        "  Actual: true (2 is even)\n"
3673                        "Expected: false");
3674 #endif
3675   ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3676   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3677                        "Value of: ResultIsEvenNoExplanation(2)\n"
3678                        "  Actual: true\n"
3679                        "Expected: false");
3680 }
3681
3682 #ifdef __BORLANDC__
3683 // Restores warnings after previous "#pragma option push" suppressed them
3684 #pragma option pop
3685 #endif
3686
3687 // Tests using ASSERT_EQ on double values.  The purpose is to make
3688 // sure that the specialization we did for integer and anonymous enums
3689 // isn't used for double arguments.
3690 TEST(ExpectTest, ASSERT_EQ_Double) {
3691   // A success.
3692   ASSERT_EQ(5.6, 5.6);
3693
3694   // A failure.
3695   EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2), "5.1");
3696 }
3697
3698 // Tests ASSERT_EQ.
3699 TEST(AssertionTest, ASSERT_EQ) {
3700   ASSERT_EQ(5, 2 + 3);
3701   // clang-format off
3702   EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
3703                        "Expected equality of these values:\n"
3704                        "  5\n"
3705                        "  2*3\n"
3706                        "    Which is: 6");
3707   // clang-format on
3708 }
3709
3710 // Tests ASSERT_EQ(NULL, pointer).
3711 TEST(AssertionTest, ASSERT_EQ_NULL) {
3712   // A success.
3713   const char* p = nullptr;
3714   ASSERT_EQ(nullptr, p);
3715
3716   // A failure.
3717   static int n = 0;
3718   EXPECT_FATAL_FAILURE(ASSERT_EQ(nullptr, &n), "  &n\n    Which is:");
3719 }
3720
3721 // Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
3722 // treated as a null pointer by the compiler, we need to make sure
3723 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3724 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
3725 TEST(ExpectTest, ASSERT_EQ_0) {
3726   int n = 0;
3727
3728   // A success.
3729   ASSERT_EQ(0, n);
3730
3731   // A failure.
3732   EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6), "  0\n  5.6");
3733 }
3734
3735 // Tests ASSERT_NE.
3736 TEST(AssertionTest, ASSERT_NE) {
3737   ASSERT_NE(6, 7);
3738   EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3739                        "Expected: ('a') != ('a'), "
3740                        "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3741 }
3742
3743 // Tests ASSERT_LE.
3744 TEST(AssertionTest, ASSERT_LE) {
3745   ASSERT_LE(2, 3);
3746   ASSERT_LE(2, 2);
3747   EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0), "Expected: (2) <= (0), actual: 2 vs 0");
3748 }
3749
3750 // Tests ASSERT_LT.
3751 TEST(AssertionTest, ASSERT_LT) {
3752   ASSERT_LT(2, 3);
3753   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2), "Expected: (2) < (2), actual: 2 vs 2");
3754 }
3755
3756 // Tests ASSERT_GE.
3757 TEST(AssertionTest, ASSERT_GE) {
3758   ASSERT_GE(2, 1);
3759   ASSERT_GE(2, 2);
3760   EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3), "Expected: (2) >= (3), actual: 2 vs 3");
3761 }
3762
3763 // Tests ASSERT_GT.
3764 TEST(AssertionTest, ASSERT_GT) {
3765   ASSERT_GT(2, 1);
3766   EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2), "Expected: (2) > (2), actual: 2 vs 2");
3767 }
3768
3769 #if GTEST_HAS_EXCEPTIONS
3770
3771 void ThrowNothing() {}
3772
3773 // Tests ASSERT_THROW.
3774 TEST(AssertionTest, ASSERT_THROW) {
3775   ASSERT_THROW(ThrowAnInteger(), int);
3776
3777 #ifndef __BORLANDC__
3778
3779   // ICE's in C++Builder 2007 and 2009.
3780   EXPECT_FATAL_FAILURE(
3781       ASSERT_THROW(ThrowAnInteger(), bool),
3782       "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3783       "  Actual: it throws a different type.");
3784   EXPECT_FATAL_FAILURE(
3785       ASSERT_THROW(ThrowRuntimeError("A description"), std::logic_error),
3786       "Expected: ThrowRuntimeError(\"A description\") "
3787       "throws an exception of type std::logic_error.\n  "
3788       "Actual: it throws " ERROR_DESC
3789       " "
3790       "with description \"A description\".");
3791 #endif
3792
3793   EXPECT_FATAL_FAILURE(
3794       ASSERT_THROW(ThrowNothing(), bool),
3795       "Expected: ThrowNothing() throws an exception of type bool.\n"
3796       "  Actual: it throws nothing.");
3797 }
3798
3799 // Tests ASSERT_NO_THROW.
3800 TEST(AssertionTest, ASSERT_NO_THROW) {
3801   ASSERT_NO_THROW(ThrowNothing());
3802   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3803                        "Expected: ThrowAnInteger() doesn't throw an exception."
3804                        "\n  Actual: it throws.");
3805   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowRuntimeError("A description")),
3806                        "Expected: ThrowRuntimeError(\"A description\") "
3807                        "doesn't throw an exception.\n  "
3808                        "Actual: it throws " ERROR_DESC
3809                        " "
3810                        "with description \"A description\".");
3811 }
3812
3813 // Tests ASSERT_ANY_THROW.
3814 TEST(AssertionTest, ASSERT_ANY_THROW) {
3815   ASSERT_ANY_THROW(ThrowAnInteger());
3816   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()),
3817                        "Expected: ThrowNothing() throws an exception.\n"
3818                        "  Actual: it doesn't.");
3819 }
3820
3821 #endif  // GTEST_HAS_EXCEPTIONS
3822
3823 // Makes sure we deal with the precedence of <<.  This test should
3824 // compile.
3825 TEST(AssertionTest, AssertPrecedence) {
3826   ASSERT_EQ(1 < 2, true);
3827   bool false_value = false;
3828   ASSERT_EQ(true && false_value, false);
3829 }
3830
3831 // A subroutine used by the following test.
3832 void TestEq1(int x) { ASSERT_EQ(1, x); }
3833
3834 // Tests calling a test subroutine that's not part of a fixture.
3835 TEST(AssertionTest, NonFixtureSubroutine) {
3836   EXPECT_FATAL_FAILURE(TestEq1(2), "  x\n    Which is: 2");
3837 }
3838
3839 // An uncopyable class.
3840 class Uncopyable {
3841  public:
3842   explicit Uncopyable(int a_value) : value_(a_value) {}
3843
3844   int value() const { return value_; }
3845   bool operator==(const Uncopyable& rhs) const {
3846     return value() == rhs.value();
3847   }
3848
3849  private:
3850   // This constructor deliberately has no implementation, as we don't
3851   // want this class to be copyable.
3852   Uncopyable(const Uncopyable&);  // NOLINT
3853
3854   int value_;
3855 };
3856
3857 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3858   return os << value.value();
3859 }
3860
3861 bool IsPositiveUncopyable(const Uncopyable& x) { return x.value() > 0; }
3862
3863 // A subroutine used by the following test.
3864 void TestAssertNonPositive() {
3865   Uncopyable y(-1);
3866   ASSERT_PRED1(IsPositiveUncopyable, y);
3867 }
3868 // A subroutine used by the following test.
3869 void TestAssertEqualsUncopyable() {
3870   Uncopyable x(5);
3871   Uncopyable y(-1);
3872   ASSERT_EQ(x, y);
3873 }
3874
3875 // Tests that uncopyable objects can be used in assertions.
3876 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3877   Uncopyable x(5);
3878   ASSERT_PRED1(IsPositiveUncopyable, x);
3879   ASSERT_EQ(x, x);
3880   EXPECT_FATAL_FAILURE(
3881       TestAssertNonPositive(),
3882       "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3883   EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3884                        "Expected equality of these values:\n"
3885                        "  x\n    Which is: 5\n  y\n    Which is: -1");
3886 }
3887
3888 // Tests that uncopyable objects can be used in expects.
3889 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3890   Uncopyable x(5);
3891   EXPECT_PRED1(IsPositiveUncopyable, x);
3892   Uncopyable y(-1);
3893   EXPECT_NONFATAL_FAILURE(
3894       EXPECT_PRED1(IsPositiveUncopyable, y),
3895       "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3896   EXPECT_EQ(x, x);
3897   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
3898                           "Expected equality of these values:\n"
3899                           "  x\n    Which is: 5\n  y\n    Which is: -1");
3900 }
3901
3902 enum NamedEnum { kE1 = 0, kE2 = 1 };
3903
3904 TEST(AssertionTest, NamedEnum) {
3905   EXPECT_EQ(kE1, kE1);
3906   EXPECT_LT(kE1, kE2);
3907   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3908   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 1");
3909 }
3910
3911 // Sun Studio and HP aCC2reject this code.
3912 #if !defined(__SUNPRO_CC) && !defined(__HP_aCC)
3913
3914 // Tests using assertions with anonymous enums.
3915 enum {
3916   kCaseA = -1,
3917
3918 #if GTEST_OS_LINUX
3919
3920   // We want to test the case where the size of the anonymous enum is
3921   // larger than sizeof(int), to make sure our implementation of the
3922   // assertions doesn't truncate the enums.  However, MSVC
3923   // (incorrectly) doesn't allow an enum value to exceed the range of
3924   // an int, so this has to be conditionally compiled.
3925   //
3926   // On Linux, kCaseB and kCaseA have the same value when truncated to
3927   // int size.  We want to test whether this will confuse the
3928   // assertions.
3929   kCaseB = testing::internal::kMaxBiggestInt,
3930
3931 #else
3932
3933   kCaseB = INT_MAX,
3934
3935 #endif  // GTEST_OS_LINUX
3936
3937   kCaseC = 42
3938 };
3939
3940 TEST(AssertionTest, AnonymousEnum) {
3941 #if GTEST_OS_LINUX
3942
3943   EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
3944
3945 #endif  // GTEST_OS_LINUX
3946
3947   EXPECT_EQ(kCaseA, kCaseA);
3948   EXPECT_NE(kCaseA, kCaseB);
3949   EXPECT_LT(kCaseA, kCaseB);
3950   EXPECT_LE(kCaseA, kCaseB);
3951   EXPECT_GT(kCaseB, kCaseA);
3952   EXPECT_GE(kCaseA, kCaseA);
3953   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB), "(kCaseA) >= (kCaseB)");
3954   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC), "-1 vs 42");
3955
3956   ASSERT_EQ(kCaseA, kCaseA);
3957   ASSERT_NE(kCaseA, kCaseB);
3958   ASSERT_LT(kCaseA, kCaseB);
3959   ASSERT_LE(kCaseA, kCaseB);
3960   ASSERT_GT(kCaseB, kCaseA);
3961   ASSERT_GE(kCaseA, kCaseA);
3962
3963 #ifndef __BORLANDC__
3964
3965   // ICE's in C++Builder.
3966   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB), "  kCaseB\n    Which is: ");
3967   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "\n    Which is: 42");
3968 #endif
3969
3970   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "\n    Which is: -1");
3971 }
3972
3973 #endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
3974
3975 #if GTEST_OS_WINDOWS
3976
3977 static HRESULT UnexpectedHRESULTFailure() { return E_UNEXPECTED; }
3978
3979 static HRESULT OkHRESULTSuccess() { return S_OK; }
3980
3981 static HRESULT FalseHRESULTSuccess() { return S_FALSE; }
3982
3983 // HRESULT assertion tests test both zero and non-zero
3984 // success codes as well as failure message for each.
3985 //
3986 // Windows CE doesn't support message texts.
3987 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
3988   EXPECT_HRESULT_SUCCEEDED(S_OK);
3989   EXPECT_HRESULT_SUCCEEDED(S_FALSE);
3990
3991   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3992                           "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3993                           "  Actual: 0x8000FFFF");
3994 }
3995
3996 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
3997   ASSERT_HRESULT_SUCCEEDED(S_OK);
3998   ASSERT_HRESULT_SUCCEEDED(S_FALSE);
3999
4000   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4001                        "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4002                        "  Actual: 0x8000FFFF");
4003 }
4004
4005 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
4006   EXPECT_HRESULT_FAILED(E_UNEXPECTED);
4007
4008   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
4009                           "Expected: (OkHRESULTSuccess()) fails.\n"
4010                           "  Actual: 0x0");
4011   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
4012                           "Expected: (FalseHRESULTSuccess()) fails.\n"
4013                           "  Actual: 0x1");
4014 }
4015
4016 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
4017   ASSERT_HRESULT_FAILED(E_UNEXPECTED);
4018
4019 #ifndef __BORLANDC__
4020
4021   // ICE's in C++Builder 2007 and 2009.
4022   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
4023                        "Expected: (OkHRESULTSuccess()) fails.\n"
4024                        "  Actual: 0x0");
4025 #endif
4026
4027   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
4028                        "Expected: (FalseHRESULTSuccess()) fails.\n"
4029                        "  Actual: 0x1");
4030 }
4031
4032 // Tests that streaming to the HRESULT macros works.
4033 TEST(HRESULTAssertionTest, Streaming) {
4034   EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4035   ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4036   EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4037   ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4038
4039   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED)
4040                               << "expected failure",
4041                           "expected failure");
4042
4043 #ifndef __BORLANDC__
4044
4045   // ICE's in C++Builder 2007 and 2009.
4046   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED)
4047                            << "expected failure",
4048                        "expected failure");
4049 #endif
4050
4051   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
4052                           "expected failure");
4053
4054   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
4055                        "expected failure");
4056 }
4057
4058 #endif  // GTEST_OS_WINDOWS
4059
4060 // The following code intentionally tests a suboptimal syntax.
4061 #ifdef __GNUC__
4062 #pragma GCC diagnostic push
4063 #pragma GCC diagnostic ignored "-Wdangling-else"
4064 #pragma GCC diagnostic ignored "-Wempty-body"
4065 #pragma GCC diagnostic ignored "-Wpragmas"
4066 #endif
4067 // Tests that the assertion macros behave like single statements.
4068 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
4069   if (AlwaysFalse())
4070     ASSERT_TRUE(false) << "This should never be executed; "
4071                           "It's a compilation test only.";
4072
4073   if (AlwaysTrue())
4074     EXPECT_FALSE(false);
4075   else
4076     ;  // NOLINT
4077
4078   if (AlwaysFalse()) ASSERT_LT(1, 3);
4079
4080   if (AlwaysFalse())
4081     ;  // NOLINT
4082   else
4083     EXPECT_GT(3, 2) << "";
4084 }
4085 #ifdef __GNUC__
4086 #pragma GCC diagnostic pop
4087 #endif
4088
4089 #if GTEST_HAS_EXCEPTIONS
4090 // Tests that the compiler will not complain about unreachable code in the
4091 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
4092 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
4093   int n = 0;
4094
4095   EXPECT_THROW(throw 1, int);
4096   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
4097   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
4098   EXPECT_NO_THROW(n++);
4099   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
4100   EXPECT_ANY_THROW(throw 1);
4101   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
4102 }
4103
4104 TEST(ExpectThrowTest, DoesNotGenerateDuplicateCatchClauseWarning) {
4105   EXPECT_THROW(throw std::exception(), std::exception);
4106 }
4107
4108 // The following code intentionally tests a suboptimal syntax.
4109 #ifdef __GNUC__
4110 #pragma GCC diagnostic push
4111 #pragma GCC diagnostic ignored "-Wdangling-else"
4112 #pragma GCC diagnostic ignored "-Wempty-body"
4113 #pragma GCC diagnostic ignored "-Wpragmas"
4114 #endif
4115 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
4116   if (AlwaysFalse()) EXPECT_THROW(ThrowNothing(), bool);
4117
4118   if (AlwaysTrue())
4119     EXPECT_THROW(ThrowAnInteger(), int);
4120   else
4121     ;  // NOLINT
4122
4123   if (AlwaysFalse()) EXPECT_NO_THROW(ThrowAnInteger());
4124
4125   if (AlwaysTrue())
4126     EXPECT_NO_THROW(ThrowNothing());
4127   else
4128     ;  // NOLINT
4129
4130   if (AlwaysFalse()) EXPECT_ANY_THROW(ThrowNothing());
4131
4132   if (AlwaysTrue())
4133     EXPECT_ANY_THROW(ThrowAnInteger());
4134   else
4135     ;  // NOLINT
4136 }
4137 #ifdef __GNUC__
4138 #pragma GCC diagnostic pop
4139 #endif
4140
4141 #endif  // GTEST_HAS_EXCEPTIONS
4142
4143 // The following code intentionally tests a suboptimal syntax.
4144 #ifdef __GNUC__
4145 #pragma GCC diagnostic push
4146 #pragma GCC diagnostic ignored "-Wdangling-else"
4147 #pragma GCC diagnostic ignored "-Wempty-body"
4148 #pragma GCC diagnostic ignored "-Wpragmas"
4149 #endif
4150 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4151   if (AlwaysFalse())
4152     EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
4153                                     << "It's a compilation test only.";
4154   else
4155     ;  // NOLINT
4156
4157   if (AlwaysFalse())
4158     ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4159   else
4160     ;  // NOLINT
4161
4162   if (AlwaysTrue())
4163     EXPECT_NO_FATAL_FAILURE(SUCCEED());
4164   else
4165     ;  // NOLINT
4166
4167   if (AlwaysFalse())
4168     ;  // NOLINT
4169   else
4170     ASSERT_NO_FATAL_FAILURE(SUCCEED());
4171 }
4172 #ifdef __GNUC__
4173 #pragma GCC diagnostic pop
4174 #endif
4175
4176 // Tests that the assertion macros work well with switch statements.
4177 TEST(AssertionSyntaxTest, WorksWithSwitch) {
4178   switch (0) {
4179     case 1:
4180       break;
4181     default:
4182       ASSERT_TRUE(true);
4183   }
4184
4185   switch (0)
4186   case 0:
4187     EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4188
4189   // Binary assertions are implemented using a different code path
4190   // than the Boolean assertions.  Hence we test them separately.
4191   switch (0) {
4192     case 1:
4193     default:
4194       ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4195   }
4196
4197   switch (0)
4198   case 0:
4199     EXPECT_NE(1, 2);
4200 }
4201
4202 #if GTEST_HAS_EXCEPTIONS
4203
4204 void ThrowAString() { throw "std::string"; }
4205
4206 // Test that the exception assertion macros compile and work with const
4207 // type qualifier.
4208 TEST(AssertionSyntaxTest, WorksWithConst) {
4209   ASSERT_THROW(ThrowAString(), const char*);
4210
4211   EXPECT_THROW(ThrowAString(), const char*);
4212 }
4213
4214 #endif  // GTEST_HAS_EXCEPTIONS
4215
4216 }  // namespace
4217
4218 namespace testing {
4219
4220 // Tests that Google Test tracks SUCCEED*.
4221 TEST(SuccessfulAssertionTest, SUCCEED) {
4222   SUCCEED();
4223   SUCCEED() << "OK";
4224   EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4225 }
4226
4227 // Tests that Google Test doesn't track successful EXPECT_*.
4228 TEST(SuccessfulAssertionTest, EXPECT) {
4229   EXPECT_TRUE(true);
4230   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4231 }
4232
4233 // Tests that Google Test doesn't track successful EXPECT_STR*.
4234 TEST(SuccessfulAssertionTest, EXPECT_STR) {
4235   EXPECT_STREQ("", "");
4236   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4237 }
4238
4239 // Tests that Google Test doesn't track successful ASSERT_*.
4240 TEST(SuccessfulAssertionTest, ASSERT) {
4241   ASSERT_TRUE(true);
4242   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4243 }
4244
4245 // Tests that Google Test doesn't track successful ASSERT_STR*.
4246 TEST(SuccessfulAssertionTest, ASSERT_STR) {
4247   ASSERT_STREQ("", "");
4248   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4249 }
4250
4251 }  // namespace testing
4252
4253 namespace {
4254
4255 // Tests the message streaming variation of assertions.
4256
4257 TEST(AssertionWithMessageTest, EXPECT) {
4258   EXPECT_EQ(1, 1) << "This should succeed.";
4259   EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
4260                           "Expected failure #1");
4261   EXPECT_LE(1, 2) << "This should succeed.";
4262   EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
4263                           "Expected failure #2.");
4264   EXPECT_GE(1, 0) << "This should succeed.";
4265   EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
4266                           "Expected failure #3.");
4267
4268   EXPECT_STREQ("1", "1") << "This should succeed.";
4269   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
4270                           "Expected failure #4.");
4271   EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
4272   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
4273                           "Expected failure #5.");
4274
4275   EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
4276   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
4277                           "Expected failure #6.");
4278   EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
4279 }
4280
4281 TEST(AssertionWithMessageTest, ASSERT) {
4282   ASSERT_EQ(1, 1) << "This should succeed.";
4283   ASSERT_NE(1, 2) << "This should succeed.";
4284   ASSERT_LE(1, 2) << "This should succeed.";
4285   ASSERT_LT(1, 2) << "This should succeed.";
4286   ASSERT_GE(1, 0) << "This should succeed.";
4287   EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
4288                        "Expected failure.");
4289 }
4290
4291 TEST(AssertionWithMessageTest, ASSERT_STR) {
4292   ASSERT_STREQ("1", "1") << "This should succeed.";
4293   ASSERT_STRNE("1", "2") << "This should succeed.";
4294   ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
4295   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
4296                        "Expected failure.");
4297 }
4298
4299 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
4300   ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
4301   ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
4302   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1, 1.2, 0.1) << "Expect failure.",  // NOLINT
4303                        "Expect failure.");
4304 }
4305
4306 // Tests using ASSERT_FALSE with a streamed message.
4307 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
4308   ASSERT_FALSE(false) << "This shouldn't fail.";
4309   EXPECT_FATAL_FAILURE(
4310       {  // NOLINT
4311         ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
4312                            << " evaluates to " << true;
4313       },
4314       "Expected failure");
4315 }
4316
4317 // Tests using FAIL with a streamed message.
4318 TEST(AssertionWithMessageTest, FAIL) { EXPECT_FATAL_FAILURE(FAIL() << 0, "0"); }
4319
4320 // Tests using SUCCEED with a streamed message.
4321 TEST(AssertionWithMessageTest, SUCCEED) { SUCCEED() << "Success == " << 1; }
4322
4323 // Tests using ASSERT_TRUE with a streamed message.
4324 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
4325   ASSERT_TRUE(true) << "This should succeed.";
4326   ASSERT_TRUE(true) << true;
4327   EXPECT_FATAL_FAILURE(
4328       {  // NOLINT
4329         ASSERT_TRUE(false) << static_cast<const char*>(nullptr)
4330                            << static_cast<char*>(nullptr);
4331       },
4332       "(null)(null)");
4333 }
4334
4335 #if GTEST_OS_WINDOWS
4336 // Tests using wide strings in assertion messages.
4337 TEST(AssertionWithMessageTest, WideStringMessage) {
4338   EXPECT_NONFATAL_FAILURE(
4339       {  // NOLINT
4340         EXPECT_TRUE(false) << L"This failure is expected.\x8119";
4341       },
4342       "This failure is expected.");
4343   EXPECT_FATAL_FAILURE(
4344       {  // NOLINT
4345         ASSERT_EQ(1, 2) << "This failure is " << L"expected too.\x8120";
4346       },
4347       "This failure is expected too.");
4348 }
4349 #endif  // GTEST_OS_WINDOWS
4350
4351 // Tests EXPECT_TRUE.
4352 TEST(ExpectTest, EXPECT_TRUE) {
4353   EXPECT_TRUE(true) << "Intentional success";
4354   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
4355                           "Intentional failure #1.");
4356   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
4357                           "Intentional failure #2.");
4358   EXPECT_TRUE(2 > 1);  // NOLINT
4359   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
4360                           "Value of: 2 < 1\n"
4361                           "  Actual: false\n"
4362                           "Expected: true");
4363   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3), "2 > 3");
4364 }
4365
4366 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
4367 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4368   EXPECT_TRUE(ResultIsEven(2));
4369   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4370                           "Value of: ResultIsEven(3)\n"
4371                           "  Actual: false (3 is odd)\n"
4372                           "Expected: true");
4373   EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4374   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4375                           "Value of: ResultIsEvenNoExplanation(3)\n"
4376                           "  Actual: false (3 is odd)\n"
4377                           "Expected: true");
4378 }
4379
4380 // Tests EXPECT_FALSE with a streamed message.
4381 TEST(ExpectTest, EXPECT_FALSE) {
4382   EXPECT_FALSE(2 < 1);  // NOLINT
4383   EXPECT_FALSE(false) << "Intentional success";
4384   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
4385                           "Intentional failure #1.");
4386   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
4387                           "Intentional failure #2.");
4388   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
4389                           "Value of: 2 > 1\n"
4390                           "  Actual: true\n"
4391                           "Expected: false");
4392   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3), "2 < 3");
4393 }
4394
4395 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
4396 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4397   EXPECT_FALSE(ResultIsEven(3));
4398   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4399                           "Value of: ResultIsEven(2)\n"
4400                           "  Actual: true (2 is even)\n"
4401                           "Expected: false");
4402   EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4403   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4404                           "Value of: ResultIsEvenNoExplanation(2)\n"
4405                           "  Actual: true\n"
4406                           "Expected: false");
4407 }
4408
4409 #ifdef __BORLANDC__
4410 // Restores warnings after previous "#pragma option push" suppressed them
4411 #pragma option pop
4412 #endif
4413
4414 // Tests EXPECT_EQ.
4415 TEST(ExpectTest, EXPECT_EQ) {
4416   EXPECT_EQ(5, 2 + 3);
4417   // clang-format off
4418   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
4419                           "Expected equality of these values:\n"
4420                           "  5\n"
4421                           "  2*3\n"
4422                           "    Which is: 6");
4423   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3), "2 - 3");
4424   // clang-format on
4425 }
4426
4427 // Tests using EXPECT_EQ on double values.  The purpose is to make
4428 // sure that the specialization we did for integer and anonymous enums
4429 // isn't used for double arguments.
4430 TEST(ExpectTest, EXPECT_EQ_Double) {
4431   // A success.
4432   EXPECT_EQ(5.6, 5.6);
4433
4434   // A failure.
4435   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2), "5.1");
4436 }
4437
4438 // Tests EXPECT_EQ(NULL, pointer).
4439 TEST(ExpectTest, EXPECT_EQ_NULL) {
4440   // A success.
4441   const char* p = nullptr;
4442   EXPECT_EQ(nullptr, p);
4443
4444   // A failure.
4445   int n = 0;
4446   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(nullptr, &n), "  &n\n    Which is:");
4447 }
4448
4449 // Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
4450 // treated as a null pointer by the compiler, we need to make sure
4451 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4452 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
4453 TEST(ExpectTest, EXPECT_EQ_0) {
4454   int n = 0;
4455
4456   // A success.
4457   EXPECT_EQ(0, n);
4458
4459   // A failure.
4460   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6), "  0\n  5.6");
4461 }
4462
4463 // Tests EXPECT_NE.
4464 TEST(ExpectTest, EXPECT_NE) {
4465   EXPECT_NE(6, 7);
4466
4467   EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
4468                           "Expected: ('a') != ('a'), "
4469                           "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4470   EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2), "2");
4471   char* const p0 = nullptr;
4472   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0), "p0");
4473   // Only way to get the Nokia compiler to compile the cast
4474   // is to have a separate void* variable first. Putting
4475   // the two casts on the same line doesn't work, neither does
4476   // a direct C-style to char*.
4477   void* pv1 = (void*)0x1234;  // NOLINT
4478   char* const p1 = reinterpret_cast<char*>(pv1);
4479   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1), "p1");
4480 }
4481
4482 // Tests EXPECT_LE.
4483 TEST(ExpectTest, EXPECT_LE) {
4484   EXPECT_LE(2, 3);
4485   EXPECT_LE(2, 2);
4486   EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
4487                           "Expected: (2) <= (0), actual: 2 vs 0");
4488   EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9), "(1.1) <= (0.9)");
4489 }
4490
4491 // Tests EXPECT_LT.
4492 TEST(ExpectTest, EXPECT_LT) {
4493   EXPECT_LT(2, 3);
4494   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
4495                           "Expected: (2) < (2), actual: 2 vs 2");
4496   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1), "(2) < (1)");
4497 }
4498
4499 // Tests EXPECT_GE.
4500 TEST(ExpectTest, EXPECT_GE) {
4501   EXPECT_GE(2, 1);
4502   EXPECT_GE(2, 2);
4503   EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
4504                           "Expected: (2) >= (3), actual: 2 vs 3");
4505   EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1), "(0.9) >= (1.1)");
4506 }
4507
4508 // Tests EXPECT_GT.
4509 TEST(ExpectTest, EXPECT_GT) {
4510   EXPECT_GT(2, 1);
4511   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
4512                           "Expected: (2) > (2), actual: 2 vs 2");
4513   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3), "(2) > (3)");
4514 }
4515
4516 #if GTEST_HAS_EXCEPTIONS
4517
4518 // Tests EXPECT_THROW.
4519 TEST(ExpectTest, EXPECT_THROW) {
4520   EXPECT_THROW(ThrowAnInteger(), int);
4521   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4522                           "Expected: ThrowAnInteger() throws an exception of "
4523                           "type bool.\n  Actual: it throws a different type.");
4524   EXPECT_NONFATAL_FAILURE(
4525       EXPECT_THROW(ThrowRuntimeError("A description"), std::logic_error),
4526       "Expected: ThrowRuntimeError(\"A description\") "
4527       "throws an exception of type std::logic_error.\n  "
4528       "Actual: it throws " ERROR_DESC
4529       " "
4530       "with description \"A description\".");
4531   EXPECT_NONFATAL_FAILURE(
4532       EXPECT_THROW(ThrowNothing(), bool),
4533       "Expected: ThrowNothing() throws an exception of type bool.\n"
4534       "  Actual: it throws nothing.");
4535 }
4536
4537 // Tests EXPECT_NO_THROW.
4538 TEST(ExpectTest, EXPECT_NO_THROW) {
4539   EXPECT_NO_THROW(ThrowNothing());
4540   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4541                           "Expected: ThrowAnInteger() doesn't throw an "
4542                           "exception.\n  Actual: it throws.");
4543   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowRuntimeError("A description")),
4544                           "Expected: ThrowRuntimeError(\"A description\") "
4545                           "doesn't throw an exception.\n  "
4546                           "Actual: it throws " ERROR_DESC
4547                           " "
4548                           "with description \"A description\".");
4549 }
4550
4551 // Tests EXPECT_ANY_THROW.
4552 TEST(ExpectTest, EXPECT_ANY_THROW) {
4553   EXPECT_ANY_THROW(ThrowAnInteger());
4554   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()),
4555                           "Expected: ThrowNothing() throws an exception.\n"
4556                           "  Actual: it doesn't.");
4557 }
4558
4559 #endif  // GTEST_HAS_EXCEPTIONS
4560
4561 // Make sure we deal with the precedence of <<.
4562 TEST(ExpectTest, ExpectPrecedence) {
4563   EXPECT_EQ(1 < 2, true);
4564   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4565                           "  true && false\n    Which is: false");
4566 }
4567
4568 // Tests the StreamableToString() function.
4569
4570 // Tests using StreamableToString() on a scalar.
4571 TEST(StreamableToStringTest, Scalar) {
4572   EXPECT_STREQ("5", StreamableToString(5).c_str());
4573 }
4574
4575 // Tests using StreamableToString() on a non-char pointer.
4576 TEST(StreamableToStringTest, Pointer) {
4577   int n = 0;
4578   int* p = &n;
4579   EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4580 }
4581
4582 // Tests using StreamableToString() on a NULL non-char pointer.
4583 TEST(StreamableToStringTest, NullPointer) {
4584   int* p = nullptr;
4585   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4586 }
4587
4588 // Tests using StreamableToString() on a C string.
4589 TEST(StreamableToStringTest, CString) {
4590   EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4591 }
4592
4593 // Tests using StreamableToString() on a NULL C string.
4594 TEST(StreamableToStringTest, NullCString) {
4595   char* p = nullptr;
4596   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4597 }
4598
4599 // Tests using streamable values as assertion messages.
4600
4601 // Tests using std::string as an assertion message.
4602 TEST(StreamableTest, string) {
4603   static const std::string str(
4604       "This failure message is a std::string, and is expected.");
4605   EXPECT_FATAL_FAILURE(FAIL() << str, str.c_str());
4606 }
4607
4608 // Tests that we can output strings containing embedded NULs.
4609 // Limited to Linux because we can only do this with std::string's.
4610 TEST(StreamableTest, stringWithEmbeddedNUL) {
4611   static const char char_array_with_nul[] =
4612       "Here's a NUL\0 and some more string";
4613   static const std::string string_with_nul(
4614       char_array_with_nul,
4615       sizeof(char_array_with_nul) - 1);  // drops the trailing NUL
4616   EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4617                        "Here's a NUL\\0 and some more string");
4618 }
4619
4620 // Tests that we can output a NUL char.
4621 TEST(StreamableTest, NULChar) {
4622   EXPECT_FATAL_FAILURE(
4623       {  // NOLINT
4624         FAIL() << "A NUL" << '\0' << " and some more string";
4625       },
4626       "A NUL\\0 and some more string");
4627 }
4628
4629 // Tests using int as an assertion message.
4630 TEST(StreamableTest, int) { EXPECT_FATAL_FAILURE(FAIL() << 900913, "900913"); }
4631
4632 // Tests using NULL char pointer as an assertion message.
4633 //
4634 // In MSVC, streaming a NULL char * causes access violation.  Google Test
4635 // implemented a workaround (substituting "(null)" for NULL).  This
4636 // tests whether the workaround works.
4637 TEST(StreamableTest, NullCharPtr) {
4638   EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(nullptr), "(null)");
4639 }
4640
4641 // Tests that basic IO manipulators (endl, ends, and flush) can be
4642 // streamed to testing::Message.
4643 TEST(StreamableTest, BasicIoManip) {
4644   EXPECT_FATAL_FAILURE(
4645       {  // NOLINT
4646         FAIL() << "Line 1." << std::endl
4647                << "A NUL char " << std::ends << std::flush << " in line 2.";
4648       },
4649       "Line 1.\nA NUL char \\0 in line 2.");
4650 }
4651
4652 // Tests the macros that haven't been covered so far.
4653
4654 void AddFailureHelper(bool* aborted) {
4655   *aborted = true;
4656   ADD_FAILURE() << "Intentional failure.";
4657   *aborted = false;
4658 }
4659
4660 // Tests ADD_FAILURE.
4661 TEST(MacroTest, ADD_FAILURE) {
4662   bool aborted = true;
4663   EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted), "Intentional failure.");
4664   EXPECT_FALSE(aborted);
4665 }
4666
4667 // Tests ADD_FAILURE_AT.
4668 TEST(MacroTest, ADD_FAILURE_AT) {
4669   // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4670   // the failure message contains the user-streamed part.
4671   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4672
4673   // Verifies that the user-streamed part is optional.
4674   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4675
4676   // Unfortunately, we cannot verify that the failure message contains
4677   // the right file path and line number the same way, as
4678   // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4679   // line number.  Instead, we do that in googletest-output-test_.cc.
4680 }
4681
4682 // Tests FAIL.
4683 TEST(MacroTest, FAIL) {
4684   EXPECT_FATAL_FAILURE(FAIL(), "Failed");
4685   EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4686                        "Intentional failure.");
4687 }
4688
4689 // Tests GTEST_FAIL_AT.
4690 TEST(MacroTest, GTEST_FAIL_AT) {
4691   // Verifies that GTEST_FAIL_AT does generate a fatal failure and
4692   // the failure message contains the user-streamed part.
4693   EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4694
4695   // Verifies that the user-streamed part is optional.
4696   EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42), "Failed");
4697
4698   // See the ADD_FAIL_AT test above to see how we test that the failure message
4699   // contains the right filename and line number -- the same applies here.
4700 }
4701
4702 // Tests SUCCEED
4703 TEST(MacroTest, SUCCEED) {
4704   SUCCEED();
4705   SUCCEED() << "Explicit success.";
4706 }
4707
4708 // Tests for EXPECT_EQ() and ASSERT_EQ().
4709 //
4710 // These tests fail *intentionally*, s.t. the failure messages can be
4711 // generated and tested.
4712 //
4713 // We have different tests for different argument types.
4714
4715 // Tests using bool values in {EXPECT|ASSERT}_EQ.
4716 TEST(EqAssertionTest, Bool) {
4717   EXPECT_EQ(true, true);
4718   EXPECT_FATAL_FAILURE(
4719       {
4720         bool false_value = false;
4721         ASSERT_EQ(false_value, true);
4722       },
4723       "  false_value\n    Which is: false\n  true");
4724 }
4725
4726 // Tests using int values in {EXPECT|ASSERT}_EQ.
4727 TEST(EqAssertionTest, Int) {
4728   ASSERT_EQ(32, 32);
4729   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33), "  32\n  33");
4730 }
4731
4732 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
4733 TEST(EqAssertionTest, Time_T) {
4734   EXPECT_EQ(static_cast<time_t>(0), static_cast<time_t>(0));
4735   EXPECT_FATAL_FAILURE(
4736       ASSERT_EQ(static_cast<time_t>(0), static_cast<time_t>(1234)), "1234");
4737 }
4738
4739 // Tests using char values in {EXPECT|ASSERT}_EQ.
4740 TEST(EqAssertionTest, Char) {
4741   ASSERT_EQ('z', 'z');
4742   const char ch = 'b';
4743   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch), "  ch\n    Which is: 'b'");
4744   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch), "  ch\n    Which is: 'b'");
4745 }
4746
4747 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
4748 TEST(EqAssertionTest, WideChar) {
4749   EXPECT_EQ(L'b', L'b');
4750
4751   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4752                           "Expected equality of these values:\n"
4753                           "  L'\0'\n"
4754                           "    Which is: L'\0' (0, 0x0)\n"
4755                           "  L'x'\n"
4756                           "    Which is: L'x' (120, 0x78)");
4757
4758   static wchar_t wchar;
4759   wchar = L'b';
4760   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar), "wchar");
4761   wchar = 0x8119;
4762   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4763                        "  wchar\n    Which is: L'");
4764 }
4765
4766 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
4767 TEST(EqAssertionTest, StdString) {
4768   // Compares a const char* to an std::string that has identical
4769   // content.
4770   ASSERT_EQ("Test", ::std::string("Test"));
4771
4772   // Compares two identical std::strings.
4773   static const ::std::string str1("A * in the middle");
4774   static const ::std::string str2(str1);
4775   EXPECT_EQ(str1, str2);
4776
4777   // Compares a const char* to an std::string that has different
4778   // content
4779   EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")), "\"test\"");
4780
4781   // Compares an std::string to a char* that has different content.
4782   char* const p1 = const_cast<char*>("foo");
4783   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1), "p1");
4784
4785   // Compares two std::strings that have different contents, one of
4786   // which having a NUL character in the middle.  This should fail.
4787   static ::std::string str3(str1);
4788   str3.at(2) = '\0';
4789   EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4790                        "  str3\n    Which is: \"A \\0 in the middle\"");
4791 }
4792
4793 #if GTEST_HAS_STD_WSTRING
4794
4795 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
4796 TEST(EqAssertionTest, StdWideString) {
4797   // Compares two identical std::wstrings.
4798   const ::std::wstring wstr1(L"A * in the middle");
4799   const ::std::wstring wstr2(wstr1);
4800   ASSERT_EQ(wstr1, wstr2);
4801
4802   // Compares an std::wstring to a const wchar_t* that has identical
4803   // content.
4804   const wchar_t kTestX8119[] = {'T', 'e', 's', 't', 0x8119, '\0'};
4805   EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4806
4807   // Compares an std::wstring to a const wchar_t* that has different
4808   // content.
4809   const wchar_t kTestX8120[] = {'T', 'e', 's', 't', 0x8120, '\0'};
4810   EXPECT_NONFATAL_FAILURE(
4811       {  // NOLINT
4812         EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4813       },
4814       "kTestX8120");
4815
4816   // Compares two std::wstrings that have different contents, one of
4817   // which having a NUL character in the middle.
4818   ::std::wstring wstr3(wstr1);
4819   wstr3.at(2) = L'\0';
4820   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3), "wstr3");
4821
4822   // Compares a wchar_t* to an std::wstring that has different
4823   // content.
4824   EXPECT_FATAL_FAILURE(
4825       {  // NOLINT
4826         ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4827       },
4828       "");
4829 }
4830
4831 #endif  // GTEST_HAS_STD_WSTRING
4832
4833 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
4834 TEST(EqAssertionTest, CharPointer) {
4835   char* const p0 = nullptr;
4836   // Only way to get the Nokia compiler to compile the cast
4837   // is to have a separate void* variable first. Putting
4838   // the two casts on the same line doesn't work, neither does
4839   // a direct C-style to char*.
4840   void* pv1 = (void*)0x1234;  // NOLINT
4841   void* pv2 = (void*)0xABC0;  // NOLINT
4842   char* const p1 = reinterpret_cast<char*>(pv1);
4843   char* const p2 = reinterpret_cast<char*>(pv2);
4844   ASSERT_EQ(p1, p1);
4845
4846   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), "  p2\n    Which is:");
4847   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), "  p2\n    Which is:");
4848   EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4849                                  reinterpret_cast<char*>(0xABC0)),
4850                        "ABC0");
4851 }
4852
4853 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
4854 TEST(EqAssertionTest, WideCharPointer) {
4855   wchar_t* const p0 = nullptr;
4856   // Only way to get the Nokia compiler to compile the cast
4857   // is to have a separate void* variable first. Putting
4858   // the two casts on the same line doesn't work, neither does
4859   // a direct C-style to char*.
4860   void* pv1 = (void*)0x1234;  // NOLINT
4861   void* pv2 = (void*)0xABC0;  // NOLINT
4862   wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4863   wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4864   EXPECT_EQ(p0, p0);
4865
4866   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), "  p2\n    Which is:");
4867   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), "  p2\n    Which is:");
4868   void* pv3 = (void*)0x1234;  // NOLINT
4869   void* pv4 = (void*)0xABC0;  // NOLINT
4870   const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4871   const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4872   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4), "p4");
4873 }
4874
4875 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
4876 TEST(EqAssertionTest, OtherPointer) {
4877   ASSERT_EQ(static_cast<const int*>(nullptr), static_cast<const int*>(nullptr));
4878   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(nullptr),
4879                                  reinterpret_cast<const int*>(0x1234)),
4880                        "0x1234");
4881 }
4882
4883 // A class that supports binary comparison operators but not streaming.
4884 class UnprintableChar {
4885  public:
4886   explicit UnprintableChar(char ch) : char_(ch) {}
4887
4888   bool operator==(const UnprintableChar& rhs) const {
4889     return char_ == rhs.char_;
4890   }
4891   bool operator!=(const UnprintableChar& rhs) const {
4892     return char_ != rhs.char_;
4893   }
4894   bool operator<(const UnprintableChar& rhs) const { return char_ < rhs.char_; }
4895   bool operator<=(const UnprintableChar& rhs) const {
4896     return char_ <= rhs.char_;
4897   }
4898   bool operator>(const UnprintableChar& rhs) const { return char_ > rhs.char_; }
4899   bool operator>=(const UnprintableChar& rhs) const {
4900     return char_ >= rhs.char_;
4901   }
4902
4903  private:
4904   char char_;
4905 };
4906
4907 // Tests that ASSERT_EQ() and friends don't require the arguments to
4908 // be printable.
4909 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
4910   const UnprintableChar x('x'), y('y');
4911   ASSERT_EQ(x, x);
4912   EXPECT_NE(x, y);
4913   ASSERT_LT(x, y);
4914   EXPECT_LE(x, y);
4915   ASSERT_GT(y, x);
4916   EXPECT_GE(x, x);
4917
4918   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
4919   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
4920   EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
4921   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
4922   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
4923
4924   // Code tested by EXPECT_FATAL_FAILURE cannot reference local
4925   // variables, so we have to write UnprintableChar('x') instead of x.
4926 #ifndef __BORLANDC__
4927   // ICE's in C++Builder.
4928   EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
4929                        "1-byte object <78>");
4930   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4931                        "1-byte object <78>");
4932 #endif
4933   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4934                        "1-byte object <79>");
4935   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4936                        "1-byte object <78>");
4937   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4938                        "1-byte object <79>");
4939 }
4940
4941 // Tests the FRIEND_TEST macro.
4942
4943 // This class has a private member we want to test.  We will test it
4944 // both in a TEST and in a TEST_F.
4945 class Foo {
4946  public:
4947   Foo() {}
4948
4949  private:
4950   int Bar() const { return 1; }
4951
4952   // Declares the friend tests that can access the private member
4953   // Bar().
4954   FRIEND_TEST(FRIEND_TEST_Test, TEST);
4955   FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
4956 };
4957
4958 // Tests that the FRIEND_TEST declaration allows a TEST to access a
4959 // class's private members.  This should compile.
4960 TEST(FRIEND_TEST_Test, TEST) { ASSERT_EQ(1, Foo().Bar()); }
4961
4962 // The fixture needed to test using FRIEND_TEST with TEST_F.
4963 class FRIEND_TEST_Test2 : public Test {
4964  protected:
4965   Foo foo;
4966 };
4967
4968 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
4969 // class's private members.  This should compile.
4970 TEST_F(FRIEND_TEST_Test2, TEST_F) { ASSERT_EQ(1, foo.Bar()); }
4971
4972 // Tests the life cycle of Test objects.
4973
4974 // The test fixture for testing the life cycle of Test objects.
4975 //
4976 // This class counts the number of live test objects that uses this
4977 // fixture.
4978 class TestLifeCycleTest : public Test {
4979  protected:
4980   // Constructor.  Increments the number of test objects that uses
4981   // this fixture.
4982   TestLifeCycleTest() { count_++; }
4983
4984   // Destructor.  Decrements the number of test objects that uses this
4985   // fixture.
4986   ~TestLifeCycleTest() override { count_--; }
4987
4988   // Returns the number of live test objects that uses this fixture.
4989   int count() const { return count_; }
4990
4991  private:
4992   static int count_;
4993 };
4994
4995 int TestLifeCycleTest::count_ = 0;
4996
4997 // Tests the life cycle of test objects.
4998 TEST_F(TestLifeCycleTest, Test1) {
4999   // There should be only one test object in this test case that's
5000   // currently alive.
5001   ASSERT_EQ(1, count());
5002 }
5003
5004 // Tests the life cycle of test objects.
5005 TEST_F(TestLifeCycleTest, Test2) {
5006   // After Test1 is done and Test2 is started, there should still be
5007   // only one live test object, as the object for Test1 should've been
5008   // deleted.
5009   ASSERT_EQ(1, count());
5010 }
5011
5012 }  // namespace
5013
5014 // Tests that the copy constructor works when it is NOT optimized away by
5015 // the compiler.
5016 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
5017   // Checks that the copy constructor doesn't try to dereference NULL pointers
5018   // in the source object.
5019   AssertionResult r1 = AssertionSuccess();
5020   AssertionResult r2 = r1;
5021   // The following line is added to prevent the compiler from optimizing
5022   // away the constructor call.
5023   r1 << "abc";
5024
5025   AssertionResult r3 = r1;
5026   EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
5027   EXPECT_STREQ("abc", r1.message());
5028 }
5029
5030 // Tests that AssertionSuccess and AssertionFailure construct
5031 // AssertionResult objects as expected.
5032 TEST(AssertionResultTest, ConstructionWorks) {
5033   AssertionResult r1 = AssertionSuccess();
5034   EXPECT_TRUE(r1);
5035   EXPECT_STREQ("", r1.message());
5036
5037   AssertionResult r2 = AssertionSuccess() << "abc";
5038   EXPECT_TRUE(r2);
5039   EXPECT_STREQ("abc", r2.message());
5040
5041   AssertionResult r3 = AssertionFailure();
5042   EXPECT_FALSE(r3);
5043   EXPECT_STREQ("", r3.message());
5044
5045   AssertionResult r4 = AssertionFailure() << "def";
5046   EXPECT_FALSE(r4);
5047   EXPECT_STREQ("def", r4.message());
5048
5049   AssertionResult r5 = AssertionFailure(Message() << "ghi");
5050   EXPECT_FALSE(r5);
5051   EXPECT_STREQ("ghi", r5.message());
5052 }
5053
5054 // Tests that the negation flips the predicate result but keeps the message.
5055 TEST(AssertionResultTest, NegationWorks) {
5056   AssertionResult r1 = AssertionSuccess() << "abc";
5057   EXPECT_FALSE(!r1);
5058   EXPECT_STREQ("abc", (!r1).message());
5059
5060   AssertionResult r2 = AssertionFailure() << "def";
5061   EXPECT_TRUE(!r2);
5062   EXPECT_STREQ("def", (!r2).message());
5063 }
5064
5065 TEST(AssertionResultTest, StreamingWorks) {
5066   AssertionResult r = AssertionSuccess();
5067   r << "abc" << 'd' << 0 << true;
5068   EXPECT_STREQ("abcd0true", r.message());
5069 }
5070
5071 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
5072   AssertionResult r = AssertionSuccess();
5073   r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
5074   EXPECT_STREQ("Data\n\\0Will be visible", r.message());
5075 }
5076
5077 // The next test uses explicit conversion operators
5078
5079 TEST(AssertionResultTest, ConstructibleFromContextuallyConvertibleToBool) {
5080   struct ExplicitlyConvertibleToBool {
5081     explicit operator bool() const { return value; }
5082     bool value;
5083   };
5084   ExplicitlyConvertibleToBool v1 = {false};
5085   ExplicitlyConvertibleToBool v2 = {true};
5086   EXPECT_FALSE(v1);
5087   EXPECT_TRUE(v2);
5088 }
5089
5090 struct ConvertibleToAssertionResult {
5091   operator AssertionResult() const { return AssertionResult(true); }
5092 };
5093
5094 TEST(AssertionResultTest, ConstructibleFromImplicitlyConvertible) {
5095   ConvertibleToAssertionResult obj;
5096   EXPECT_TRUE(obj);
5097 }
5098
5099 // Tests streaming a user type whose definition and operator << are
5100 // both in the global namespace.
5101 class Base {
5102  public:
5103   explicit Base(int an_x) : x_(an_x) {}
5104   int x() const { return x_; }
5105
5106  private:
5107   int x_;
5108 };
5109 std::ostream& operator<<(std::ostream& os, const Base& val) {
5110   return os << val.x();
5111 }
5112 std::ostream& operator<<(std::ostream& os, const Base* pointer) {
5113   return os << "(" << pointer->x() << ")";
5114 }
5115
5116 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
5117   Message msg;
5118   Base a(1);
5119
5120   msg << a << &a;  // Uses ::operator<<.
5121   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5122 }
5123
5124 // Tests streaming a user type whose definition and operator<< are
5125 // both in an unnamed namespace.
5126 namespace {
5127 class MyTypeInUnnamedNameSpace : public Base {
5128  public:
5129   explicit MyTypeInUnnamedNameSpace(int an_x) : Base(an_x) {}
5130 };
5131 std::ostream& operator<<(std::ostream& os,
5132                          const MyTypeInUnnamedNameSpace& val) {
5133   return os << val.x();
5134 }
5135 std::ostream& operator<<(std::ostream& os,
5136                          const MyTypeInUnnamedNameSpace* pointer) {
5137   return os << "(" << pointer->x() << ")";
5138 }
5139 }  // namespace
5140
5141 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
5142   Message msg;
5143   MyTypeInUnnamedNameSpace a(1);
5144
5145   msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
5146   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5147 }
5148
5149 // Tests streaming a user type whose definition and operator<< are
5150 // both in a user namespace.
5151 namespace namespace1 {
5152 class MyTypeInNameSpace1 : public Base {
5153  public:
5154   explicit MyTypeInNameSpace1(int an_x) : Base(an_x) {}
5155 };
5156 std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1& val) {
5157   return os << val.x();
5158 }
5159 std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1* pointer) {
5160   return os << "(" << pointer->x() << ")";
5161 }
5162 }  // namespace namespace1
5163
5164 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5165   Message msg;
5166   namespace1::MyTypeInNameSpace1 a(1);
5167
5168   msg << a << &a;  // Uses namespace1::operator<<.
5169   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5170 }
5171
5172 // Tests streaming a user type whose definition is in a user namespace
5173 // but whose operator<< is in the global namespace.
5174 namespace namespace2 {
5175 class MyTypeInNameSpace2 : public ::Base {
5176  public:
5177   explicit MyTypeInNameSpace2(int an_x) : Base(an_x) {}
5178 };
5179 }  // namespace namespace2
5180 std::ostream& operator<<(std::ostream& os,
5181                          const namespace2::MyTypeInNameSpace2& val) {
5182   return os << val.x();
5183 }
5184 std::ostream& operator<<(std::ostream& os,
5185                          const namespace2::MyTypeInNameSpace2* pointer) {
5186   return os << "(" << pointer->x() << ")";
5187 }
5188
5189 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5190   Message msg;
5191   namespace2::MyTypeInNameSpace2 a(1);
5192
5193   msg << a << &a;  // Uses ::operator<<.
5194   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5195 }
5196
5197 // Tests streaming NULL pointers to testing::Message.
5198 TEST(MessageTest, NullPointers) {
5199   Message msg;
5200   char* const p1 = nullptr;
5201   unsigned char* const p2 = nullptr;
5202   int* p3 = nullptr;
5203   double* p4 = nullptr;
5204   bool* p5 = nullptr;
5205   Message* p6 = nullptr;
5206
5207   msg << p1 << p2 << p3 << p4 << p5 << p6;
5208   ASSERT_STREQ("(null)(null)(null)(null)(null)(null)", msg.GetString().c_str());
5209 }
5210
5211 // Tests streaming wide strings to testing::Message.
5212 TEST(MessageTest, WideStrings) {
5213   // Streams a NULL of type const wchar_t*.
5214   const wchar_t* const_wstr = nullptr;
5215   EXPECT_STREQ("(null)", (Message() << const_wstr).GetString().c_str());
5216
5217   // Streams a NULL of type wchar_t*.
5218   wchar_t* wstr = nullptr;
5219   EXPECT_STREQ("(null)", (Message() << wstr).GetString().c_str());
5220
5221   // Streams a non-NULL of type const wchar_t*.
5222   const_wstr = L"abc\x8119";
5223   EXPECT_STREQ("abc\xe8\x84\x99",
5224                (Message() << const_wstr).GetString().c_str());
5225
5226   // Streams a non-NULL of type wchar_t*.
5227   wstr = const_cast<wchar_t*>(const_wstr);
5228   EXPECT_STREQ("abc\xe8\x84\x99", (Message() << wstr).GetString().c_str());
5229 }
5230
5231 // This line tests that we can define tests in the testing namespace.
5232 namespace testing {
5233
5234 // Tests the TestInfo class.
5235
5236 class TestInfoTest : public Test {
5237  protected:
5238   static const TestInfo* GetTestInfo(const char* test_name) {
5239     const TestSuite* const test_suite =
5240         GetUnitTestImpl()->GetTestSuite("TestInfoTest", "", nullptr, nullptr);
5241
5242     for (int i = 0; i < test_suite->total_test_count(); ++i) {
5243       const TestInfo* const test_info = test_suite->GetTestInfo(i);
5244       if (strcmp(test_name, test_info->name()) == 0) return test_info;
5245     }
5246     return nullptr;
5247   }
5248
5249   static const TestResult* GetTestResult(const TestInfo* test_info) {
5250     return test_info->result();
5251   }
5252 };
5253
5254 // Tests TestInfo::test_case_name() and TestInfo::name().
5255 TEST_F(TestInfoTest, Names) {
5256   const TestInfo* const test_info = GetTestInfo("Names");
5257
5258   ASSERT_STREQ("TestInfoTest", test_info->test_suite_name());
5259   ASSERT_STREQ("Names", test_info->name());
5260 }
5261
5262 // Tests TestInfo::result().
5263 TEST_F(TestInfoTest, result) {
5264   const TestInfo* const test_info = GetTestInfo("result");
5265
5266   // Initially, there is no TestPartResult for this test.
5267   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5268
5269   // After the previous assertion, there is still none.
5270   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5271 }
5272
5273 #define VERIFY_CODE_LOCATION                                                \
5274   const int expected_line = __LINE__ - 1;                                   \
5275   const TestInfo* const test_info = GetUnitTestImpl()->current_test_info(); \
5276   ASSERT_TRUE(test_info);                                                   \
5277   EXPECT_STREQ(__FILE__, test_info->file());                                \
5278   EXPECT_EQ(expected_line, test_info->line())
5279
5280 // clang-format off
5281 TEST(CodeLocationForTEST, Verify) {
5282   VERIFY_CODE_LOCATION;
5283 }
5284
5285 class CodeLocationForTESTF : public Test {};
5286
5287 TEST_F(CodeLocationForTESTF, Verify) {
5288   VERIFY_CODE_LOCATION;
5289 }
5290
5291 class CodeLocationForTESTP : public TestWithParam<int> {};
5292
5293 TEST_P(CodeLocationForTESTP, Verify) {
5294   VERIFY_CODE_LOCATION;
5295 }
5296
5297 INSTANTIATE_TEST_SUITE_P(, CodeLocationForTESTP, Values(0));
5298
5299 template <typename T>
5300 class CodeLocationForTYPEDTEST : public Test {};
5301
5302 TYPED_TEST_SUITE(CodeLocationForTYPEDTEST, int);
5303
5304 TYPED_TEST(CodeLocationForTYPEDTEST, Verify) {
5305   VERIFY_CODE_LOCATION;
5306 }
5307
5308 template <typename T>
5309 class CodeLocationForTYPEDTESTP : public Test {};
5310
5311 TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP);
5312
5313 TYPED_TEST_P(CodeLocationForTYPEDTESTP, Verify) {
5314   VERIFY_CODE_LOCATION;
5315 }
5316
5317 REGISTER_TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP, Verify);
5318
5319 INSTANTIATE_TYPED_TEST_SUITE_P(My, CodeLocationForTYPEDTESTP, int);
5320
5321 #undef VERIFY_CODE_LOCATION
5322 // clang-format on
5323
5324 // Tests setting up and tearing down a test case.
5325 // Legacy API is deprecated but still available
5326 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5327 class SetUpTestCaseTest : public Test {
5328  protected:
5329   // This will be called once before the first test in this test case
5330   // is run.
5331   static void SetUpTestCase() {
5332     printf("Setting up the test case . . .\n");
5333
5334     // Initializes some shared resource.  In this simple example, we
5335     // just create a C string.  More complex stuff can be done if
5336     // desired.
5337     shared_resource_ = "123";
5338
5339     // Increments the number of test cases that have been set up.
5340     counter_++;
5341
5342     // SetUpTestCase() should be called only once.
5343     EXPECT_EQ(1, counter_);
5344   }
5345
5346   // This will be called once after the last test in this test case is
5347   // run.
5348   static void TearDownTestCase() {
5349     printf("Tearing down the test case . . .\n");
5350
5351     // Decrements the number of test cases that have been set up.
5352     counter_--;
5353
5354     // TearDownTestCase() should be called only once.
5355     EXPECT_EQ(0, counter_);
5356
5357     // Cleans up the shared resource.
5358     shared_resource_ = nullptr;
5359   }
5360
5361   // This will be called before each test in this test case.
5362   void SetUp() override {
5363     // SetUpTestCase() should be called only once, so counter_ should
5364     // always be 1.
5365     EXPECT_EQ(1, counter_);
5366   }
5367
5368   // Number of test cases that have been set up.
5369   static int counter_;
5370
5371   // Some resource to be shared by all tests in this test case.
5372   static const char* shared_resource_;
5373 };
5374
5375 int SetUpTestCaseTest::counter_ = 0;
5376 const char* SetUpTestCaseTest::shared_resource_ = nullptr;
5377
5378 // A test that uses the shared resource.
5379 TEST_F(SetUpTestCaseTest, Test1) { EXPECT_STRNE(nullptr, shared_resource_); }
5380
5381 // Another test that uses the shared resource.
5382 TEST_F(SetUpTestCaseTest, Test2) { EXPECT_STREQ("123", shared_resource_); }
5383 #endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5384
5385 // Tests SetupTestSuite/TearDown TestSuite
5386 class SetUpTestSuiteTest : public Test {
5387  protected:
5388   // This will be called once before the first test in this test case
5389   // is run.
5390   static void SetUpTestSuite() {
5391     printf("Setting up the test suite . . .\n");
5392
5393     // Initializes some shared resource.  In this simple example, we
5394     // just create a C string.  More complex stuff can be done if
5395     // desired.
5396     shared_resource_ = "123";
5397
5398     // Increments the number of test cases that have been set up.
5399     counter_++;
5400
5401     // SetUpTestSuite() should be called only once.
5402     EXPECT_EQ(1, counter_);
5403   }
5404
5405   // This will be called once after the last test in this test case is
5406   // run.
5407   static void TearDownTestSuite() {
5408     printf("Tearing down the test suite . . .\n");
5409
5410     // Decrements the number of test suites that have been set up.
5411     counter_--;
5412
5413     // TearDownTestSuite() should be called only once.
5414     EXPECT_EQ(0, counter_);
5415
5416     // Cleans up the shared resource.
5417     shared_resource_ = nullptr;
5418   }
5419
5420   // This will be called before each test in this test case.
5421   void SetUp() override {
5422     // SetUpTestSuite() should be called only once, so counter_ should
5423     // always be 1.
5424     EXPECT_EQ(1, counter_);
5425   }
5426
5427   // Number of test suites that have been set up.
5428   static int counter_;
5429
5430   // Some resource to be shared by all tests in this test case.
5431   static const char* shared_resource_;
5432 };
5433
5434 int SetUpTestSuiteTest::counter_ = 0;
5435 const char* SetUpTestSuiteTest::shared_resource_ = nullptr;
5436
5437 // A test that uses the shared resource.
5438 TEST_F(SetUpTestSuiteTest, TestSetupTestSuite1) {
5439   EXPECT_STRNE(nullptr, shared_resource_);
5440 }
5441
5442 // Another test that uses the shared resource.
5443 TEST_F(SetUpTestSuiteTest, TestSetupTestSuite2) {
5444   EXPECT_STREQ("123", shared_resource_);
5445 }
5446
5447 // The ParseFlagsTest test case tests ParseGoogleTestFlagsOnly.
5448
5449 // The Flags struct stores a copy of all Google Test flags.
5450 struct Flags {
5451   // Constructs a Flags struct where each flag has its default value.
5452   Flags()
5453       : also_run_disabled_tests(false),
5454         break_on_failure(false),
5455         catch_exceptions(false),
5456         death_test_use_fork(false),
5457         fail_fast(false),
5458         filter(""),
5459         list_tests(false),
5460         output(""),
5461         brief(false),
5462         print_time(true),
5463         random_seed(0),
5464         repeat(1),
5465         recreate_environments_when_repeating(true),
5466         shuffle(false),
5467         stack_trace_depth(kMaxStackTraceDepth),
5468         stream_result_to(""),
5469         throw_on_failure(false) {}
5470
5471   // Factory methods.
5472
5473   // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5474   // the given value.
5475   static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5476     Flags flags;
5477     flags.also_run_disabled_tests = also_run_disabled_tests;
5478     return flags;
5479   }
5480
5481   // Creates a Flags struct where the gtest_break_on_failure flag has
5482   // the given value.
5483   static Flags BreakOnFailure(bool break_on_failure) {
5484     Flags flags;
5485     flags.break_on_failure = break_on_failure;
5486     return flags;
5487   }
5488
5489   // Creates a Flags struct where the gtest_catch_exceptions flag has
5490   // the given value.
5491   static Flags CatchExceptions(bool catch_exceptions) {
5492     Flags flags;
5493     flags.catch_exceptions = catch_exceptions;
5494     return flags;
5495   }
5496
5497   // Creates a Flags struct where the gtest_death_test_use_fork flag has
5498   // the given value.
5499   static Flags DeathTestUseFork(bool death_test_use_fork) {
5500     Flags flags;
5501     flags.death_test_use_fork = death_test_use_fork;
5502     return flags;
5503   }
5504
5505   // Creates a Flags struct where the gtest_fail_fast flag has
5506   // the given value.
5507   static Flags FailFast(bool fail_fast) {
5508     Flags flags;
5509     flags.fail_fast = fail_fast;
5510     return flags;
5511   }
5512
5513   // Creates a Flags struct where the gtest_filter flag has the given
5514   // value.
5515   static Flags Filter(const char* filter) {
5516     Flags flags;
5517     flags.filter = filter;
5518     return flags;
5519   }
5520
5521   // Creates a Flags struct where the gtest_list_tests flag has the
5522   // given value.
5523   static Flags ListTests(bool list_tests) {
5524     Flags flags;
5525     flags.list_tests = list_tests;
5526     return flags;
5527   }
5528
5529   // Creates a Flags struct where the gtest_output flag has the given
5530   // value.
5531   static Flags Output(const char* output) {
5532     Flags flags;
5533     flags.output = output;
5534     return flags;
5535   }
5536
5537   // Creates a Flags struct where the gtest_brief flag has the given
5538   // value.
5539   static Flags Brief(bool brief) {
5540     Flags flags;
5541     flags.brief = brief;
5542     return flags;
5543   }
5544
5545   // Creates a Flags struct where the gtest_print_time flag has the given
5546   // value.
5547   static Flags PrintTime(bool print_time) {
5548     Flags flags;
5549     flags.print_time = print_time;
5550     return flags;
5551   }
5552
5553   // Creates a Flags struct where the gtest_random_seed flag has the given
5554   // value.
5555   static Flags RandomSeed(int32_t random_seed) {
5556     Flags flags;
5557     flags.random_seed = random_seed;
5558     return flags;
5559   }
5560
5561   // Creates a Flags struct where the gtest_repeat flag has the given
5562   // value.
5563   static Flags Repeat(int32_t repeat) {
5564     Flags flags;
5565     flags.repeat = repeat;
5566     return flags;
5567   }
5568
5569   // Creates a Flags struct where the gtest_recreate_environments_when_repeating
5570   // flag has the given value.
5571   static Flags RecreateEnvironmentsWhenRepeating(
5572       bool recreate_environments_when_repeating) {
5573     Flags flags;
5574     flags.recreate_environments_when_repeating =
5575         recreate_environments_when_repeating;
5576     return flags;
5577   }
5578
5579   // Creates a Flags struct where the gtest_shuffle flag has the given
5580   // value.
5581   static Flags Shuffle(bool shuffle) {
5582     Flags flags;
5583     flags.shuffle = shuffle;
5584     return flags;
5585   }
5586
5587   // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5588   // the given value.
5589   static Flags StackTraceDepth(int32_t stack_trace_depth) {
5590     Flags flags;
5591     flags.stack_trace_depth = stack_trace_depth;
5592     return flags;
5593   }
5594
5595   // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5596   // the given value.
5597   static Flags StreamResultTo(const char* stream_result_to) {
5598     Flags flags;
5599     flags.stream_result_to = stream_result_to;
5600     return flags;
5601   }
5602
5603   // Creates a Flags struct where the gtest_throw_on_failure flag has
5604   // the given value.
5605   static Flags ThrowOnFailure(bool throw_on_failure) {
5606     Flags flags;
5607     flags.throw_on_failure = throw_on_failure;
5608     return flags;
5609   }
5610
5611   // These fields store the flag values.
5612   bool also_run_disabled_tests;
5613   bool break_on_failure;
5614   bool catch_exceptions;
5615   bool death_test_use_fork;
5616   bool fail_fast;
5617   const char* filter;
5618   bool list_tests;
5619   const char* output;
5620   bool brief;
5621   bool print_time;
5622   int32_t random_seed;
5623   int32_t repeat;
5624   bool recreate_environments_when_repeating;
5625   bool shuffle;
5626   int32_t stack_trace_depth;
5627   const char* stream_result_to;
5628   bool throw_on_failure;
5629 };
5630
5631 // Fixture for testing ParseGoogleTestFlagsOnly().
5632 class ParseFlagsTest : public Test {
5633  protected:
5634   // Clears the flags before each test.
5635   void SetUp() override {
5636     GTEST_FLAG_SET(also_run_disabled_tests, false);
5637     GTEST_FLAG_SET(break_on_failure, false);
5638     GTEST_FLAG_SET(catch_exceptions, false);
5639     GTEST_FLAG_SET(death_test_use_fork, false);
5640     GTEST_FLAG_SET(fail_fast, false);
5641     GTEST_FLAG_SET(filter, "");
5642     GTEST_FLAG_SET(list_tests, false);
5643     GTEST_FLAG_SET(output, "");
5644     GTEST_FLAG_SET(brief, false);
5645     GTEST_FLAG_SET(print_time, true);
5646     GTEST_FLAG_SET(random_seed, 0);
5647     GTEST_FLAG_SET(repeat, 1);
5648     GTEST_FLAG_SET(recreate_environments_when_repeating, true);
5649     GTEST_FLAG_SET(shuffle, false);
5650     GTEST_FLAG_SET(stack_trace_depth, kMaxStackTraceDepth);
5651     GTEST_FLAG_SET(stream_result_to, "");
5652     GTEST_FLAG_SET(throw_on_failure, false);
5653   }
5654
5655   // Asserts that two narrow or wide string arrays are equal.
5656   template <typename CharType>
5657   static void AssertStringArrayEq(int size1, CharType** array1, int size2,
5658                                   CharType** array2) {
5659     ASSERT_EQ(size1, size2) << " Array sizes different.";
5660
5661     for (int i = 0; i != size1; i++) {
5662       ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5663     }
5664   }
5665
5666   // Verifies that the flag values match the expected values.
5667   static void CheckFlags(const Flags& expected) {
5668     EXPECT_EQ(expected.also_run_disabled_tests,
5669               GTEST_FLAG_GET(also_run_disabled_tests));
5670     EXPECT_EQ(expected.break_on_failure, GTEST_FLAG_GET(break_on_failure));
5671     EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG_GET(catch_exceptions));
5672     EXPECT_EQ(expected.death_test_use_fork,
5673               GTEST_FLAG_GET(death_test_use_fork));
5674     EXPECT_EQ(expected.fail_fast, GTEST_FLAG_GET(fail_fast));
5675     EXPECT_STREQ(expected.filter, GTEST_FLAG_GET(filter).c_str());
5676     EXPECT_EQ(expected.list_tests, GTEST_FLAG_GET(list_tests));
5677     EXPECT_STREQ(expected.output, GTEST_FLAG_GET(output).c_str());
5678     EXPECT_EQ(expected.brief, GTEST_FLAG_GET(brief));
5679     EXPECT_EQ(expected.print_time, GTEST_FLAG_GET(print_time));
5680     EXPECT_EQ(expected.random_seed, GTEST_FLAG_GET(random_seed));
5681     EXPECT_EQ(expected.repeat, GTEST_FLAG_GET(repeat));
5682     EXPECT_EQ(expected.recreate_environments_when_repeating,
5683               GTEST_FLAG_GET(recreate_environments_when_repeating));
5684     EXPECT_EQ(expected.shuffle, GTEST_FLAG_GET(shuffle));
5685     EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG_GET(stack_trace_depth));
5686     EXPECT_STREQ(expected.stream_result_to,
5687                  GTEST_FLAG_GET(stream_result_to).c_str());
5688     EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG_GET(throw_on_failure));
5689   }
5690
5691   // Parses a command line (specified by argc1 and argv1), then
5692   // verifies that the flag values are expected and that the
5693   // recognized flags are removed from the command line.
5694   template <typename CharType>
5695   static void TestParsingFlags(int argc1, const CharType** argv1, int argc2,
5696                                const CharType** argv2, const Flags& expected,
5697                                bool should_print_help) {
5698     const bool saved_help_flag = ::testing::internal::g_help_flag;
5699     ::testing::internal::g_help_flag = false;
5700
5701 #if GTEST_HAS_STREAM_REDIRECTION
5702     CaptureStdout();
5703 #endif
5704
5705     // Parses the command line.
5706     internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5707
5708 #if GTEST_HAS_STREAM_REDIRECTION
5709     const std::string captured_stdout = GetCapturedStdout();
5710 #endif
5711
5712     // Verifies the flag values.
5713     CheckFlags(expected);
5714
5715     // Verifies that the recognized flags are removed from the command
5716     // line.
5717     AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5718
5719     // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5720     // help message for the flags it recognizes.
5721     EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5722
5723 #if GTEST_HAS_STREAM_REDIRECTION
5724     const char* const expected_help_fragment =
5725         "This program contains tests written using";
5726     if (should_print_help) {
5727       EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5728     } else {
5729       EXPECT_PRED_FORMAT2(IsNotSubstring, expected_help_fragment,
5730                           captured_stdout);
5731     }
5732 #endif  // GTEST_HAS_STREAM_REDIRECTION
5733
5734     ::testing::internal::g_help_flag = saved_help_flag;
5735   }
5736
5737   // This macro wraps TestParsingFlags s.t. the user doesn't need
5738   // to specify the array sizes.
5739
5740 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5741   TestParsingFlags(sizeof(argv1) / sizeof(*argv1) - 1, argv1,                \
5742                    sizeof(argv2) / sizeof(*argv2) - 1, argv2, expected,      \
5743                    should_print_help)
5744 };
5745
5746 // Tests parsing an empty command line.
5747 TEST_F(ParseFlagsTest, Empty) {
5748   const char* argv[] = {nullptr};
5749
5750   const char* argv2[] = {nullptr};
5751
5752   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5753 }
5754
5755 // Tests parsing a command line that has no flag.
5756 TEST_F(ParseFlagsTest, NoFlag) {
5757   const char* argv[] = {"foo.exe", nullptr};
5758
5759   const char* argv2[] = {"foo.exe", nullptr};
5760
5761   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5762 }
5763
5764 // Tests parsing --gtest_fail_fast.
5765 TEST_F(ParseFlagsTest, FailFast) {
5766   const char* argv[] = {"foo.exe", "--gtest_fail_fast", nullptr};
5767
5768   const char* argv2[] = {"foo.exe", nullptr};
5769
5770   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::FailFast(true), false);
5771 }
5772
5773 // Tests parsing an empty --gtest_filter flag.
5774 TEST_F(ParseFlagsTest, FilterEmpty) {
5775   const char* argv[] = {"foo.exe", "--gtest_filter=", nullptr};
5776
5777   const char* argv2[] = {"foo.exe", nullptr};
5778
5779   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5780 }
5781
5782 // Tests parsing a non-empty --gtest_filter flag.
5783 TEST_F(ParseFlagsTest, FilterNonEmpty) {
5784   const char* argv[] = {"foo.exe", "--gtest_filter=abc", nullptr};
5785
5786   const char* argv2[] = {"foo.exe", nullptr};
5787
5788   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5789 }
5790
5791 // Tests parsing --gtest_break_on_failure.
5792 TEST_F(ParseFlagsTest, BreakOnFailureWithoutValue) {
5793   const char* argv[] = {"foo.exe", "--gtest_break_on_failure", nullptr};
5794
5795   const char* argv2[] = {"foo.exe", nullptr};
5796
5797   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5798 }
5799
5800 // Tests parsing --gtest_break_on_failure=0.
5801 TEST_F(ParseFlagsTest, BreakOnFailureFalse_0) {
5802   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=0", nullptr};
5803
5804   const char* argv2[] = {"foo.exe", nullptr};
5805
5806   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5807 }
5808
5809 // Tests parsing --gtest_break_on_failure=f.
5810 TEST_F(ParseFlagsTest, BreakOnFailureFalse_f) {
5811   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=f", nullptr};
5812
5813   const char* argv2[] = {"foo.exe", nullptr};
5814
5815   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5816 }
5817
5818 // Tests parsing --gtest_break_on_failure=F.
5819 TEST_F(ParseFlagsTest, BreakOnFailureFalse_F) {
5820   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=F", nullptr};
5821
5822   const char* argv2[] = {"foo.exe", nullptr};
5823
5824   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5825 }
5826
5827 // Tests parsing a --gtest_break_on_failure flag that has a "true"
5828 // definition.
5829 TEST_F(ParseFlagsTest, BreakOnFailureTrue) {
5830   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=1", nullptr};
5831
5832   const char* argv2[] = {"foo.exe", nullptr};
5833
5834   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5835 }
5836
5837 // Tests parsing --gtest_catch_exceptions.
5838 TEST_F(ParseFlagsTest, CatchExceptions) {
5839   const char* argv[] = {"foo.exe", "--gtest_catch_exceptions", nullptr};
5840
5841   const char* argv2[] = {"foo.exe", nullptr};
5842
5843   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5844 }
5845
5846 // Tests parsing --gtest_death_test_use_fork.
5847 TEST_F(ParseFlagsTest, DeathTestUseFork) {
5848   const char* argv[] = {"foo.exe", "--gtest_death_test_use_fork", nullptr};
5849
5850   const char* argv2[] = {"foo.exe", nullptr};
5851
5852   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5853 }
5854
5855 // Tests having the same flag twice with different values.  The
5856 // expected behavior is that the one coming last takes precedence.
5857 TEST_F(ParseFlagsTest, DuplicatedFlags) {
5858   const char* argv[] = {"foo.exe", "--gtest_filter=a", "--gtest_filter=b",
5859                         nullptr};
5860
5861   const char* argv2[] = {"foo.exe", nullptr};
5862
5863   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5864 }
5865
5866 // Tests having an unrecognized flag on the command line.
5867 TEST_F(ParseFlagsTest, UnrecognizedFlag) {
5868   const char* argv[] = {"foo.exe", "--gtest_break_on_failure",
5869                         "bar",  // Unrecognized by Google Test.
5870                         "--gtest_filter=b", nullptr};
5871
5872   const char* argv2[] = {"foo.exe", "bar", nullptr};
5873
5874   Flags flags;
5875   flags.break_on_failure = true;
5876   flags.filter = "b";
5877   GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5878 }
5879
5880 // Tests having a --gtest_list_tests flag
5881 TEST_F(ParseFlagsTest, ListTestsFlag) {
5882   const char* argv[] = {"foo.exe", "--gtest_list_tests", nullptr};
5883
5884   const char* argv2[] = {"foo.exe", nullptr};
5885
5886   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5887 }
5888
5889 // Tests having a --gtest_list_tests flag with a "true" value
5890 TEST_F(ParseFlagsTest, ListTestsTrue) {
5891   const char* argv[] = {"foo.exe", "--gtest_list_tests=1", nullptr};
5892
5893   const char* argv2[] = {"foo.exe", nullptr};
5894
5895   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5896 }
5897
5898 // Tests having a --gtest_list_tests flag with a "false" value
5899 TEST_F(ParseFlagsTest, ListTestsFalse) {
5900   const char* argv[] = {"foo.exe", "--gtest_list_tests=0", nullptr};
5901
5902   const char* argv2[] = {"foo.exe", nullptr};
5903
5904   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5905 }
5906
5907 // Tests parsing --gtest_list_tests=f.
5908 TEST_F(ParseFlagsTest, ListTestsFalse_f) {
5909   const char* argv[] = {"foo.exe", "--gtest_list_tests=f", nullptr};
5910
5911   const char* argv2[] = {"foo.exe", nullptr};
5912
5913   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5914 }
5915
5916 // Tests parsing --gtest_list_tests=F.
5917 TEST_F(ParseFlagsTest, ListTestsFalse_F) {
5918   const char* argv[] = {"foo.exe", "--gtest_list_tests=F", nullptr};
5919
5920   const char* argv2[] = {"foo.exe", nullptr};
5921
5922   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5923 }
5924
5925 // Tests parsing --gtest_output=xml
5926 TEST_F(ParseFlagsTest, OutputXml) {
5927   const char* argv[] = {"foo.exe", "--gtest_output=xml", nullptr};
5928
5929   const char* argv2[] = {"foo.exe", nullptr};
5930
5931   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
5932 }
5933
5934 // Tests parsing --gtest_output=xml:file
5935 TEST_F(ParseFlagsTest, OutputXmlFile) {
5936   const char* argv[] = {"foo.exe", "--gtest_output=xml:file", nullptr};
5937
5938   const char* argv2[] = {"foo.exe", nullptr};
5939
5940   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
5941 }
5942
5943 // Tests parsing --gtest_output=xml:directory/path/
5944 TEST_F(ParseFlagsTest, OutputXmlDirectory) {
5945   const char* argv[] = {"foo.exe", "--gtest_output=xml:directory/path/",
5946                         nullptr};
5947
5948   const char* argv2[] = {"foo.exe", nullptr};
5949
5950   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:directory/path/"),
5951                             false);
5952 }
5953
5954 // Tests having a --gtest_brief flag
5955 TEST_F(ParseFlagsTest, BriefFlag) {
5956   const char* argv[] = {"foo.exe", "--gtest_brief", nullptr};
5957
5958   const char* argv2[] = {"foo.exe", nullptr};
5959
5960   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false);
5961 }
5962
5963 // Tests having a --gtest_brief flag with a "true" value
5964 TEST_F(ParseFlagsTest, BriefFlagTrue) {
5965   const char* argv[] = {"foo.exe", "--gtest_brief=1", nullptr};
5966
5967   const char* argv2[] = {"foo.exe", nullptr};
5968
5969   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false);
5970 }
5971
5972 // Tests having a --gtest_brief flag with a "false" value
5973 TEST_F(ParseFlagsTest, BriefFlagFalse) {
5974   const char* argv[] = {"foo.exe", "--gtest_brief=0", nullptr};
5975
5976   const char* argv2[] = {"foo.exe", nullptr};
5977
5978   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(false), false);
5979 }
5980
5981 // Tests having a --gtest_print_time flag
5982 TEST_F(ParseFlagsTest, PrintTimeFlag) {
5983   const char* argv[] = {"foo.exe", "--gtest_print_time", nullptr};
5984
5985   const char* argv2[] = {"foo.exe", nullptr};
5986
5987   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
5988 }
5989
5990 // Tests having a --gtest_print_time flag with a "true" value
5991 TEST_F(ParseFlagsTest, PrintTimeTrue) {
5992   const char* argv[] = {"foo.exe", "--gtest_print_time=1", nullptr};
5993
5994   const char* argv2[] = {"foo.exe", nullptr};
5995
5996   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
5997 }
5998
5999 // Tests having a --gtest_print_time flag with a "false" value
6000 TEST_F(ParseFlagsTest, PrintTimeFalse) {
6001   const char* argv[] = {"foo.exe", "--gtest_print_time=0", nullptr};
6002
6003   const char* argv2[] = {"foo.exe", nullptr};
6004
6005   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6006 }
6007
6008 // Tests parsing --gtest_print_time=f.
6009 TEST_F(ParseFlagsTest, PrintTimeFalse_f) {
6010   const char* argv[] = {"foo.exe", "--gtest_print_time=f", nullptr};
6011
6012   const char* argv2[] = {"foo.exe", nullptr};
6013
6014   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6015 }
6016
6017 // Tests parsing --gtest_print_time=F.
6018 TEST_F(ParseFlagsTest, PrintTimeFalse_F) {
6019   const char* argv[] = {"foo.exe", "--gtest_print_time=F", nullptr};
6020
6021   const char* argv2[] = {"foo.exe", nullptr};
6022
6023   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6024 }
6025
6026 // Tests parsing --gtest_random_seed=number
6027 TEST_F(ParseFlagsTest, RandomSeed) {
6028   const char* argv[] = {"foo.exe", "--gtest_random_seed=1000", nullptr};
6029
6030   const char* argv2[] = {"foo.exe", nullptr};
6031
6032   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
6033 }
6034
6035 // Tests parsing --gtest_repeat=number
6036 TEST_F(ParseFlagsTest, Repeat) {
6037   const char* argv[] = {"foo.exe", "--gtest_repeat=1000", nullptr};
6038
6039   const char* argv2[] = {"foo.exe", nullptr};
6040
6041   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
6042 }
6043
6044 // Tests parsing --gtest_recreate_environments_when_repeating
6045 TEST_F(ParseFlagsTest, RecreateEnvironmentsWhenRepeating) {
6046   const char* argv[] = {
6047       "foo.exe",
6048       "--gtest_recreate_environments_when_repeating=0",
6049       nullptr,
6050   };
6051
6052   const char* argv2[] = {"foo.exe", nullptr};
6053
6054   GTEST_TEST_PARSING_FLAGS_(
6055       argv, argv2, Flags::RecreateEnvironmentsWhenRepeating(false), false);
6056 }
6057
6058 // Tests having a --gtest_also_run_disabled_tests flag
6059 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFlag) {
6060   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests", nullptr};
6061
6062   const char* argv2[] = {"foo.exe", nullptr};
6063
6064   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
6065                             false);
6066 }
6067
6068 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
6069 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsTrue) {
6070   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=1",
6071                         nullptr};
6072
6073   const char* argv2[] = {"foo.exe", nullptr};
6074
6075   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
6076                             false);
6077 }
6078
6079 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
6080 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFalse) {
6081   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=0",
6082                         nullptr};
6083
6084   const char* argv2[] = {"foo.exe", nullptr};
6085
6086   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(false),
6087                             false);
6088 }
6089
6090 // Tests parsing --gtest_shuffle.
6091 TEST_F(ParseFlagsTest, ShuffleWithoutValue) {
6092   const char* argv[] = {"foo.exe", "--gtest_shuffle", nullptr};
6093
6094   const char* argv2[] = {"foo.exe", nullptr};
6095
6096   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6097 }
6098
6099 // Tests parsing --gtest_shuffle=0.
6100 TEST_F(ParseFlagsTest, ShuffleFalse_0) {
6101   const char* argv[] = {"foo.exe", "--gtest_shuffle=0", nullptr};
6102
6103   const char* argv2[] = {"foo.exe", nullptr};
6104
6105   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6106 }
6107
6108 // Tests parsing a --gtest_shuffle flag that has a "true" definition.
6109 TEST_F(ParseFlagsTest, ShuffleTrue) {
6110   const char* argv[] = {"foo.exe", "--gtest_shuffle=1", nullptr};
6111
6112   const char* argv2[] = {"foo.exe", nullptr};
6113
6114   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6115 }
6116
6117 // Tests parsing --gtest_stack_trace_depth=number.
6118 TEST_F(ParseFlagsTest, StackTraceDepth) {
6119   const char* argv[] = {"foo.exe", "--gtest_stack_trace_depth=5", nullptr};
6120
6121   const char* argv2[] = {"foo.exe", nullptr};
6122
6123   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6124 }
6125
6126 TEST_F(ParseFlagsTest, StreamResultTo) {
6127   const char* argv[] = {"foo.exe", "--gtest_stream_result_to=localhost:1234",
6128                         nullptr};
6129
6130   const char* argv2[] = {"foo.exe", nullptr};
6131
6132   GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6133                             Flags::StreamResultTo("localhost:1234"), false);
6134 }
6135
6136 // Tests parsing --gtest_throw_on_failure.
6137 TEST_F(ParseFlagsTest, ThrowOnFailureWithoutValue) {
6138   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure", nullptr};
6139
6140   const char* argv2[] = {"foo.exe", nullptr};
6141
6142   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6143 }
6144
6145 // Tests parsing --gtest_throw_on_failure=0.
6146 TEST_F(ParseFlagsTest, ThrowOnFailureFalse_0) {
6147   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=0", nullptr};
6148
6149   const char* argv2[] = {"foo.exe", nullptr};
6150
6151   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6152 }
6153
6154 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
6155 // definition.
6156 TEST_F(ParseFlagsTest, ThrowOnFailureTrue) {
6157   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", nullptr};
6158
6159   const char* argv2[] = {"foo.exe", nullptr};
6160
6161   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6162 }
6163
6164 // Tests parsing a bad --gtest_filter flag.
6165 TEST_F(ParseFlagsTest, FilterBad) {
6166   const char* argv[] = {"foo.exe", "--gtest_filter", nullptr};
6167
6168   const char* argv2[] = {"foo.exe", "--gtest_filter", nullptr};
6169
6170 #if GTEST_HAS_ABSL && GTEST_HAS_DEATH_TEST
6171   // Invalid flag arguments are a fatal error when using the Abseil Flags.
6172   EXPECT_EXIT(GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true),
6173               testing::ExitedWithCode(1),
6174               "ERROR: Missing the value for the flag 'gtest_filter'");
6175 #elif !GTEST_HAS_ABSL
6176   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
6177 #else
6178   static_cast<void>(argv);
6179   static_cast<void>(argv2);
6180 #endif
6181 }
6182
6183 // Tests parsing --gtest_output (invalid).
6184 TEST_F(ParseFlagsTest, OutputEmpty) {
6185   const char* argv[] = {"foo.exe", "--gtest_output", nullptr};
6186
6187   const char* argv2[] = {"foo.exe", "--gtest_output", nullptr};
6188
6189 #if GTEST_HAS_ABSL && GTEST_HAS_DEATH_TEST
6190   // Invalid flag arguments are a fatal error when using the Abseil Flags.
6191   EXPECT_EXIT(GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true),
6192               testing::ExitedWithCode(1),
6193               "ERROR: Missing the value for the flag 'gtest_output'");
6194 #elif !GTEST_HAS_ABSL
6195   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
6196 #else
6197   static_cast<void>(argv);
6198   static_cast<void>(argv2);
6199 #endif
6200 }
6201
6202 #if GTEST_HAS_ABSL
6203 TEST_F(ParseFlagsTest, AbseilPositionalFlags) {
6204   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", "--",
6205                         "--other_flag", nullptr};
6206
6207   // When using Abseil flags, it should be possible to pass flags not recognized
6208   // using "--" to delimit positional arguments. These flags should be returned
6209   // though argv.
6210   const char* argv2[] = {"foo.exe", "--other_flag", nullptr};
6211
6212   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6213 }
6214 #endif
6215
6216 #if GTEST_OS_WINDOWS
6217 // Tests parsing wide strings.
6218 TEST_F(ParseFlagsTest, WideStrings) {
6219   const wchar_t* argv[] = {L"foo.exe",
6220                            L"--gtest_filter=Foo*",
6221                            L"--gtest_list_tests=1",
6222                            L"--gtest_break_on_failure",
6223                            L"--non_gtest_flag",
6224                            NULL};
6225
6226   const wchar_t* argv2[] = {L"foo.exe", L"--non_gtest_flag", NULL};
6227
6228   Flags expected_flags;
6229   expected_flags.break_on_failure = true;
6230   expected_flags.filter = "Foo*";
6231   expected_flags.list_tests = true;
6232
6233   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6234 }
6235 #endif  // GTEST_OS_WINDOWS
6236
6237 #if GTEST_USE_OWN_FLAGFILE_FLAG_
6238 class FlagfileTest : public ParseFlagsTest {
6239  public:
6240   void SetUp() override {
6241     ParseFlagsTest::SetUp();
6242
6243     testdata_path_.Set(internal::FilePath(
6244         testing::TempDir() + internal::GetCurrentExecutableName().string() +
6245         "_flagfile_test"));
6246     testing::internal::posix::RmDir(testdata_path_.c_str());
6247     EXPECT_TRUE(testdata_path_.CreateFolder());
6248   }
6249
6250   void TearDown() override {
6251     testing::internal::posix::RmDir(testdata_path_.c_str());
6252     ParseFlagsTest::TearDown();
6253   }
6254
6255   internal::FilePath CreateFlagfile(const char* contents) {
6256     internal::FilePath file_path(internal::FilePath::GenerateUniqueFileName(
6257         testdata_path_, internal::FilePath("unique"), "txt"));
6258     FILE* f = testing::internal::posix::FOpen(file_path.c_str(), "w");
6259     fprintf(f, "%s", contents);
6260     fclose(f);
6261     return file_path;
6262   }
6263
6264  private:
6265   internal::FilePath testdata_path_;
6266 };
6267
6268 // Tests an empty flagfile.
6269 TEST_F(FlagfileTest, Empty) {
6270   internal::FilePath flagfile_path(CreateFlagfile(""));
6271   std::string flagfile_flag =
6272       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6273
6274   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6275
6276   const char* argv2[] = {"foo.exe", nullptr};
6277
6278   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
6279 }
6280
6281 // Tests passing a non-empty --gtest_filter flag via --gtest_flagfile.
6282 TEST_F(FlagfileTest, FilterNonEmpty) {
6283   internal::FilePath flagfile_path(
6284       CreateFlagfile("--" GTEST_FLAG_PREFIX_ "filter=abc"));
6285   std::string flagfile_flag =
6286       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6287
6288   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6289
6290   const char* argv2[] = {"foo.exe", nullptr};
6291
6292   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
6293 }
6294
6295 // Tests passing several flags via --gtest_flagfile.
6296 TEST_F(FlagfileTest, SeveralFlags) {
6297   internal::FilePath flagfile_path(
6298       CreateFlagfile("--" GTEST_FLAG_PREFIX_ "filter=abc\n"
6299                      "--" GTEST_FLAG_PREFIX_ "break_on_failure\n"
6300                      "--" GTEST_FLAG_PREFIX_ "list_tests"));
6301   std::string flagfile_flag =
6302       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6303
6304   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6305
6306   const char* argv2[] = {"foo.exe", nullptr};
6307
6308   Flags expected_flags;
6309   expected_flags.break_on_failure = true;
6310   expected_flags.filter = "abc";
6311   expected_flags.list_tests = true;
6312
6313   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6314 }
6315 #endif  // GTEST_USE_OWN_FLAGFILE_FLAG_
6316
6317 // Tests current_test_info() in UnitTest.
6318 class CurrentTestInfoTest : public Test {
6319  protected:
6320   // Tests that current_test_info() returns NULL before the first test in
6321   // the test case is run.
6322   static void SetUpTestSuite() {
6323     // There should be no tests running at this point.
6324     const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6325     EXPECT_TRUE(test_info == nullptr)
6326         << "There should be no tests running at this point.";
6327   }
6328
6329   // Tests that current_test_info() returns NULL after the last test in
6330   // the test case has run.
6331   static void TearDownTestSuite() {
6332     const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6333     EXPECT_TRUE(test_info == nullptr)
6334         << "There should be no tests running at this point.";
6335   }
6336 };
6337
6338 // Tests that current_test_info() returns TestInfo for currently running
6339 // test by checking the expected test name against the actual one.
6340 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestSuite) {
6341   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6342   ASSERT_TRUE(nullptr != test_info)
6343       << "There is a test running so we should have a valid TestInfo.";
6344   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name())
6345       << "Expected the name of the currently running test suite.";
6346   EXPECT_STREQ("WorksForFirstTestInATestSuite", test_info->name())
6347       << "Expected the name of the currently running test.";
6348 }
6349
6350 // Tests that current_test_info() returns TestInfo for currently running
6351 // test by checking the expected test name against the actual one.  We
6352 // use this test to see that the TestInfo object actually changed from
6353 // the previous invocation.
6354 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestSuite) {
6355   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6356   ASSERT_TRUE(nullptr != test_info)
6357       << "There is a test running so we should have a valid TestInfo.";
6358   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name())
6359       << "Expected the name of the currently running test suite.";
6360   EXPECT_STREQ("WorksForSecondTestInATestSuite", test_info->name())
6361       << "Expected the name of the currently running test.";
6362 }
6363
6364 }  // namespace testing
6365
6366 // These two lines test that we can define tests in a namespace that
6367 // has the name "testing" and is nested in another namespace.
6368 namespace my_namespace {
6369 namespace testing {
6370
6371 // Makes sure that TEST knows to use ::testing::Test instead of
6372 // ::my_namespace::testing::Test.
6373 class Test {};
6374
6375 // Makes sure that an assertion knows to use ::testing::Message instead of
6376 // ::my_namespace::testing::Message.
6377 class Message {};
6378
6379 // Makes sure that an assertion knows to use
6380 // ::testing::AssertionResult instead of
6381 // ::my_namespace::testing::AssertionResult.
6382 class AssertionResult {};
6383
6384 // Tests that an assertion that should succeed works as expected.
6385 TEST(NestedTestingNamespaceTest, Success) {
6386   EXPECT_EQ(1, 1) << "This shouldn't fail.";
6387 }
6388
6389 // Tests that an assertion that should fail works as expected.
6390 TEST(NestedTestingNamespaceTest, Failure) {
6391   EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
6392                        "This failure is expected.");
6393 }
6394
6395 }  // namespace testing
6396 }  // namespace my_namespace
6397
6398 // Tests that one can call superclass SetUp and TearDown methods--
6399 // that is, that they are not private.
6400 // No tests are based on this fixture; the test "passes" if it compiles
6401 // successfully.
6402 class ProtectedFixtureMethodsTest : public Test {
6403  protected:
6404   void SetUp() override { Test::SetUp(); }
6405   void TearDown() override { Test::TearDown(); }
6406 };
6407
6408 // StreamingAssertionsTest tests the streaming versions of a representative
6409 // sample of assertions.
6410 TEST(StreamingAssertionsTest, Unconditional) {
6411   SUCCEED() << "expected success";
6412   EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
6413                           "expected failure");
6414   EXPECT_FATAL_FAILURE(FAIL() << "expected failure", "expected failure");
6415 }
6416
6417 #ifdef __BORLANDC__
6418 // Silences warnings: "Condition is always true", "Unreachable code"
6419 #pragma option push -w-ccc -w-rch
6420 #endif
6421
6422 TEST(StreamingAssertionsTest, Truth) {
6423   EXPECT_TRUE(true) << "unexpected failure";
6424   ASSERT_TRUE(true) << "unexpected failure";
6425   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
6426                           "expected failure");
6427   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
6428                        "expected failure");
6429 }
6430
6431 TEST(StreamingAssertionsTest, Truth2) {
6432   EXPECT_FALSE(false) << "unexpected failure";
6433   ASSERT_FALSE(false) << "unexpected failure";
6434   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
6435                           "expected failure");
6436   EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
6437                        "expected failure");
6438 }
6439
6440 #ifdef __BORLANDC__
6441 // Restores warnings after previous "#pragma option push" suppressed them
6442 #pragma option pop
6443 #endif
6444
6445 TEST(StreamingAssertionsTest, IntegerEquals) {
6446   EXPECT_EQ(1, 1) << "unexpected failure";
6447   ASSERT_EQ(1, 1) << "unexpected failure";
6448   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
6449                           "expected failure");
6450   EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
6451                        "expected failure");
6452 }
6453
6454 TEST(StreamingAssertionsTest, IntegerLessThan) {
6455   EXPECT_LT(1, 2) << "unexpected failure";
6456   ASSERT_LT(1, 2) << "unexpected failure";
6457   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
6458                           "expected failure");
6459   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
6460                        "expected failure");
6461 }
6462
6463 TEST(StreamingAssertionsTest, StringsEqual) {
6464   EXPECT_STREQ("foo", "foo") << "unexpected failure";
6465   ASSERT_STREQ("foo", "foo") << "unexpected failure";
6466   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
6467                           "expected failure");
6468   EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
6469                        "expected failure");
6470 }
6471
6472 TEST(StreamingAssertionsTest, StringsNotEqual) {
6473   EXPECT_STRNE("foo", "bar") << "unexpected failure";
6474   ASSERT_STRNE("foo", "bar") << "unexpected failure";
6475   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
6476                           "expected failure");
6477   EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
6478                        "expected failure");
6479 }
6480
6481 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
6482   EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6483   ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6484   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
6485                           "expected failure");
6486   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
6487                        "expected failure");
6488 }
6489
6490 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
6491   EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
6492   ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
6493   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
6494                           "expected failure");
6495   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
6496                        "expected failure");
6497 }
6498
6499 TEST(StreamingAssertionsTest, FloatingPointEquals) {
6500   EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6501   ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6502   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6503                           "expected failure");
6504   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6505                        "expected failure");
6506 }
6507
6508 #if GTEST_HAS_EXCEPTIONS
6509
6510 TEST(StreamingAssertionsTest, Throw) {
6511   EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6512   ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6513   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool)
6514                               << "expected failure",
6515                           "expected failure");
6516   EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool)
6517                            << "expected failure",
6518                        "expected failure");
6519 }
6520
6521 TEST(StreamingAssertionsTest, NoThrow) {
6522   EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
6523   ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
6524   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger())
6525                               << "expected failure",
6526                           "expected failure");
6527   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) << "expected failure",
6528                        "expected failure");
6529 }
6530
6531 TEST(StreamingAssertionsTest, AnyThrow) {
6532   EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6533   ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6534   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing())
6535                               << "expected failure",
6536                           "expected failure");
6537   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) << "expected failure",
6538                        "expected failure");
6539 }
6540
6541 #endif  // GTEST_HAS_EXCEPTIONS
6542
6543 // Tests that Google Test correctly decides whether to use colors in the output.
6544
6545 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
6546   GTEST_FLAG_SET(color, "yes");
6547
6548   SetEnv("TERM", "xterm");             // TERM supports colors.
6549   EXPECT_TRUE(ShouldUseColor(true));   // Stdout is a TTY.
6550   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6551
6552   SetEnv("TERM", "dumb");              // TERM doesn't support colors.
6553   EXPECT_TRUE(ShouldUseColor(true));   // Stdout is a TTY.
6554   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6555 }
6556
6557 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
6558   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6559
6560   GTEST_FLAG_SET(color, "True");
6561   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6562
6563   GTEST_FLAG_SET(color, "t");
6564   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6565
6566   GTEST_FLAG_SET(color, "1");
6567   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6568 }
6569
6570 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
6571   GTEST_FLAG_SET(color, "no");
6572
6573   SetEnv("TERM", "xterm");              // TERM supports colors.
6574   EXPECT_FALSE(ShouldUseColor(true));   // Stdout is a TTY.
6575   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6576
6577   SetEnv("TERM", "dumb");               // TERM doesn't support colors.
6578   EXPECT_FALSE(ShouldUseColor(true));   // Stdout is a TTY.
6579   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6580 }
6581
6582 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
6583   SetEnv("TERM", "xterm");  // TERM supports colors.
6584
6585   GTEST_FLAG_SET(color, "F");
6586   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6587
6588   GTEST_FLAG_SET(color, "0");
6589   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6590
6591   GTEST_FLAG_SET(color, "unknown");
6592   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6593 }
6594
6595 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
6596   GTEST_FLAG_SET(color, "auto");
6597
6598   SetEnv("TERM", "xterm");              // TERM supports colors.
6599   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6600   EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
6601 }
6602
6603 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
6604   GTEST_FLAG_SET(color, "auto");
6605
6606 #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MINGW
6607   // On Windows, we ignore the TERM variable as it's usually not set.
6608
6609   SetEnv("TERM", "dumb");
6610   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6611
6612   SetEnv("TERM", "");
6613   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6614
6615   SetEnv("TERM", "xterm");
6616   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6617 #else
6618   // On non-Windows platforms, we rely on TERM to determine if the
6619   // terminal supports colors.
6620
6621   SetEnv("TERM", "dumb");              // TERM doesn't support colors.
6622   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6623
6624   SetEnv("TERM", "emacs");             // TERM doesn't support colors.
6625   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6626
6627   SetEnv("TERM", "vt100");             // TERM doesn't support colors.
6628   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6629
6630   SetEnv("TERM", "xterm-mono");        // TERM doesn't support colors.
6631   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6632
6633   SetEnv("TERM", "xterm");            // TERM supports colors.
6634   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6635
6636   SetEnv("TERM", "xterm-color");      // TERM supports colors.
6637   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6638
6639   SetEnv("TERM", "xterm-256color");   // TERM supports colors.
6640   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6641
6642   SetEnv("TERM", "screen");           // TERM supports colors.
6643   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6644
6645   SetEnv("TERM", "screen-256color");  // TERM supports colors.
6646   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6647
6648   SetEnv("TERM", "tmux");             // TERM supports colors.
6649   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6650
6651   SetEnv("TERM", "tmux-256color");    // TERM supports colors.
6652   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6653
6654   SetEnv("TERM", "rxvt-unicode");     // TERM supports colors.
6655   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6656
6657   SetEnv("TERM", "rxvt-unicode-256color");  // TERM supports colors.
6658   EXPECT_TRUE(ShouldUseColor(true));        // Stdout is a TTY.
6659
6660   SetEnv("TERM", "linux");            // TERM supports colors.
6661   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6662
6663   SetEnv("TERM", "cygwin");           // TERM supports colors.
6664   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6665 #endif  // GTEST_OS_WINDOWS
6666 }
6667
6668 // Verifies that StaticAssertTypeEq works in a namespace scope.
6669
6670 static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
6671 static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
6672     StaticAssertTypeEq<const int, const int>();
6673
6674 // Verifies that StaticAssertTypeEq works in a class.
6675
6676 template <typename T>
6677 class StaticAssertTypeEqTestHelper {
6678  public:
6679   StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
6680 };
6681
6682 TEST(StaticAssertTypeEqTest, WorksInClass) {
6683   StaticAssertTypeEqTestHelper<bool>();
6684 }
6685
6686 // Verifies that StaticAssertTypeEq works inside a function.
6687
6688 typedef int IntAlias;
6689
6690 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
6691   StaticAssertTypeEq<int, IntAlias>();
6692   StaticAssertTypeEq<int*, IntAlias*>();
6693 }
6694
6695 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6696   EXPECT_FALSE(HasNonfatalFailure());
6697 }
6698
6699 static void FailFatally() { FAIL(); }
6700
6701 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
6702   FailFatally();
6703   const bool has_nonfatal_failure = HasNonfatalFailure();
6704   ClearCurrentTestPartResults();
6705   EXPECT_FALSE(has_nonfatal_failure);
6706 }
6707
6708 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6709   ADD_FAILURE();
6710   const bool has_nonfatal_failure = HasNonfatalFailure();
6711   ClearCurrentTestPartResults();
6712   EXPECT_TRUE(has_nonfatal_failure);
6713 }
6714
6715 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6716   FailFatally();
6717   ADD_FAILURE();
6718   const bool has_nonfatal_failure = HasNonfatalFailure();
6719   ClearCurrentTestPartResults();
6720   EXPECT_TRUE(has_nonfatal_failure);
6721 }
6722
6723 // A wrapper for calling HasNonfatalFailure outside of a test body.
6724 static bool HasNonfatalFailureHelper() {
6725   return testing::Test::HasNonfatalFailure();
6726 }
6727
6728 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
6729   EXPECT_FALSE(HasNonfatalFailureHelper());
6730 }
6731
6732 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
6733   ADD_FAILURE();
6734   const bool has_nonfatal_failure = HasNonfatalFailureHelper();
6735   ClearCurrentTestPartResults();
6736   EXPECT_TRUE(has_nonfatal_failure);
6737 }
6738
6739 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6740   EXPECT_FALSE(HasFailure());
6741 }
6742
6743 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
6744   FailFatally();
6745   const bool has_failure = HasFailure();
6746   ClearCurrentTestPartResults();
6747   EXPECT_TRUE(has_failure);
6748 }
6749
6750 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6751   ADD_FAILURE();
6752   const bool has_failure = HasFailure();
6753   ClearCurrentTestPartResults();
6754   EXPECT_TRUE(has_failure);
6755 }
6756
6757 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6758   FailFatally();
6759   ADD_FAILURE();
6760   const bool has_failure = HasFailure();
6761   ClearCurrentTestPartResults();
6762   EXPECT_TRUE(has_failure);
6763 }
6764
6765 // A wrapper for calling HasFailure outside of a test body.
6766 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
6767
6768 TEST(HasFailureTest, WorksOutsideOfTestBody) {
6769   EXPECT_FALSE(HasFailureHelper());
6770 }
6771
6772 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
6773   ADD_FAILURE();
6774   const bool has_failure = HasFailureHelper();
6775   ClearCurrentTestPartResults();
6776   EXPECT_TRUE(has_failure);
6777 }
6778
6779 class TestListener : public EmptyTestEventListener {
6780  public:
6781   TestListener() : on_start_counter_(nullptr), is_destroyed_(nullptr) {}
6782   TestListener(int* on_start_counter, bool* is_destroyed)
6783       : on_start_counter_(on_start_counter), is_destroyed_(is_destroyed) {}
6784
6785   ~TestListener() override {
6786     if (is_destroyed_) *is_destroyed_ = true;
6787   }
6788
6789  protected:
6790   void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
6791     if (on_start_counter_ != nullptr) (*on_start_counter_)++;
6792   }
6793
6794  private:
6795   int* on_start_counter_;
6796   bool* is_destroyed_;
6797 };
6798
6799 // Tests the constructor.
6800 TEST(TestEventListenersTest, ConstructionWorks) {
6801   TestEventListeners listeners;
6802
6803   EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != nullptr);
6804   EXPECT_TRUE(listeners.default_result_printer() == nullptr);
6805   EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
6806 }
6807
6808 // Tests that the TestEventListeners destructor deletes all the listeners it
6809 // owns.
6810 TEST(TestEventListenersTest, DestructionWorks) {
6811   bool default_result_printer_is_destroyed = false;
6812   bool default_xml_printer_is_destroyed = false;
6813   bool extra_listener_is_destroyed = false;
6814   TestListener* default_result_printer =
6815       new TestListener(nullptr, &default_result_printer_is_destroyed);
6816   TestListener* default_xml_printer =
6817       new TestListener(nullptr, &default_xml_printer_is_destroyed);
6818   TestListener* extra_listener =
6819       new TestListener(nullptr, &extra_listener_is_destroyed);
6820
6821   {
6822     TestEventListeners listeners;
6823     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
6824                                                         default_result_printer);
6825     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
6826                                                        default_xml_printer);
6827     listeners.Append(extra_listener);
6828   }
6829   EXPECT_TRUE(default_result_printer_is_destroyed);
6830   EXPECT_TRUE(default_xml_printer_is_destroyed);
6831   EXPECT_TRUE(extra_listener_is_destroyed);
6832 }
6833
6834 // Tests that a listener Append'ed to a TestEventListeners list starts
6835 // receiving events.
6836 TEST(TestEventListenersTest, Append) {
6837   int on_start_counter = 0;
6838   bool is_destroyed = false;
6839   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6840   {
6841     TestEventListeners listeners;
6842     listeners.Append(listener);
6843     TestEventListenersAccessor::GetRepeater(&listeners)
6844         ->OnTestProgramStart(*UnitTest::GetInstance());
6845     EXPECT_EQ(1, on_start_counter);
6846   }
6847   EXPECT_TRUE(is_destroyed);
6848 }
6849
6850 // Tests that listeners receive events in the order they were appended to
6851 // the list, except for *End requests, which must be received in the reverse
6852 // order.
6853 class SequenceTestingListener : public EmptyTestEventListener {
6854  public:
6855   SequenceTestingListener(std::vector<std::string>* vector, const char* id)
6856       : vector_(vector), id_(id) {}
6857
6858  protected:
6859   void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
6860     vector_->push_back(GetEventDescription("OnTestProgramStart"));
6861   }
6862
6863   void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {
6864     vector_->push_back(GetEventDescription("OnTestProgramEnd"));
6865   }
6866
6867   void OnTestIterationStart(const UnitTest& /*unit_test*/,
6868                             int /*iteration*/) override {
6869     vector_->push_back(GetEventDescription("OnTestIterationStart"));
6870   }
6871
6872   void OnTestIterationEnd(const UnitTest& /*unit_test*/,
6873                           int /*iteration*/) override {
6874     vector_->push_back(GetEventDescription("OnTestIterationEnd"));
6875   }
6876
6877  private:
6878   std::string GetEventDescription(const char* method) {
6879     Message message;
6880     message << id_ << "." << method;
6881     return message.GetString();
6882   }
6883
6884   std::vector<std::string>* vector_;
6885   const char* const id_;
6886
6887   SequenceTestingListener(const SequenceTestingListener&) = delete;
6888   SequenceTestingListener& operator=(const SequenceTestingListener&) = delete;
6889 };
6890
6891 TEST(EventListenerTest, AppendKeepsOrder) {
6892   std::vector<std::string> vec;
6893   TestEventListeners listeners;
6894   listeners.Append(new SequenceTestingListener(&vec, "1st"));
6895   listeners.Append(new SequenceTestingListener(&vec, "2nd"));
6896   listeners.Append(new SequenceTestingListener(&vec, "3rd"));
6897
6898   TestEventListenersAccessor::GetRepeater(&listeners)
6899       ->OnTestProgramStart(*UnitTest::GetInstance());
6900   ASSERT_EQ(3U, vec.size());
6901   EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
6902   EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
6903   EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
6904
6905   vec.clear();
6906   TestEventListenersAccessor::GetRepeater(&listeners)
6907       ->OnTestProgramEnd(*UnitTest::GetInstance());
6908   ASSERT_EQ(3U, vec.size());
6909   EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
6910   EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
6911   EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
6912
6913   vec.clear();
6914   TestEventListenersAccessor::GetRepeater(&listeners)
6915       ->OnTestIterationStart(*UnitTest::GetInstance(), 0);
6916   ASSERT_EQ(3U, vec.size());
6917   EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
6918   EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
6919   EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
6920
6921   vec.clear();
6922   TestEventListenersAccessor::GetRepeater(&listeners)
6923       ->OnTestIterationEnd(*UnitTest::GetInstance(), 0);
6924   ASSERT_EQ(3U, vec.size());
6925   EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
6926   EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
6927   EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
6928 }
6929
6930 // Tests that a listener removed from a TestEventListeners list stops receiving
6931 // events and is not deleted when the list is destroyed.
6932 TEST(TestEventListenersTest, Release) {
6933   int on_start_counter = 0;
6934   bool is_destroyed = false;
6935   // Although Append passes the ownership of this object to the list,
6936   // the following calls release it, and we need to delete it before the
6937   // test ends.
6938   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6939   {
6940     TestEventListeners listeners;
6941     listeners.Append(listener);
6942     EXPECT_EQ(listener, listeners.Release(listener));
6943     TestEventListenersAccessor::GetRepeater(&listeners)
6944         ->OnTestProgramStart(*UnitTest::GetInstance());
6945     EXPECT_TRUE(listeners.Release(listener) == nullptr);
6946   }
6947   EXPECT_EQ(0, on_start_counter);
6948   EXPECT_FALSE(is_destroyed);
6949   delete listener;
6950 }
6951
6952 // Tests that no events are forwarded when event forwarding is disabled.
6953 TEST(EventListenerTest, SuppressEventForwarding) {
6954   int on_start_counter = 0;
6955   TestListener* listener = new TestListener(&on_start_counter, nullptr);
6956
6957   TestEventListeners listeners;
6958   listeners.Append(listener);
6959   ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
6960   TestEventListenersAccessor::SuppressEventForwarding(&listeners);
6961   ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
6962   TestEventListenersAccessor::GetRepeater(&listeners)
6963       ->OnTestProgramStart(*UnitTest::GetInstance());
6964   EXPECT_EQ(0, on_start_counter);
6965 }
6966
6967 // Tests that events generated by Google Test are not forwarded in
6968 // death test subprocesses.
6969 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
6970   EXPECT_DEATH_IF_SUPPORTED(
6971       {
6972         GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
6973             *GetUnitTestImpl()->listeners()))
6974             << "expected failure";
6975       },
6976       "expected failure");
6977 }
6978
6979 // Tests that a listener installed via SetDefaultResultPrinter() starts
6980 // receiving events and is returned via default_result_printer() and that
6981 // the previous default_result_printer is removed from the list and deleted.
6982 TEST(EventListenerTest, default_result_printer) {
6983   int on_start_counter = 0;
6984   bool is_destroyed = false;
6985   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6986
6987   TestEventListeners listeners;
6988   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
6989
6990   EXPECT_EQ(listener, listeners.default_result_printer());
6991
6992   TestEventListenersAccessor::GetRepeater(&listeners)
6993       ->OnTestProgramStart(*UnitTest::GetInstance());
6994
6995   EXPECT_EQ(1, on_start_counter);
6996
6997   // Replacing default_result_printer with something else should remove it
6998   // from the list and destroy it.
6999   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, nullptr);
7000
7001   EXPECT_TRUE(listeners.default_result_printer() == nullptr);
7002   EXPECT_TRUE(is_destroyed);
7003
7004   // After broadcasting an event the counter is still the same, indicating
7005   // the listener is not in the list anymore.
7006   TestEventListenersAccessor::GetRepeater(&listeners)
7007       ->OnTestProgramStart(*UnitTest::GetInstance());
7008   EXPECT_EQ(1, on_start_counter);
7009 }
7010
7011 // Tests that the default_result_printer listener stops receiving events
7012 // when removed via Release and that is not owned by the list anymore.
7013 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
7014   int on_start_counter = 0;
7015   bool is_destroyed = false;
7016   // Although Append passes the ownership of this object to the list,
7017   // the following calls release it, and we need to delete it before the
7018   // test ends.
7019   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7020   {
7021     TestEventListeners listeners;
7022     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7023
7024     EXPECT_EQ(listener, listeners.Release(listener));
7025     EXPECT_TRUE(listeners.default_result_printer() == nullptr);
7026     EXPECT_FALSE(is_destroyed);
7027
7028     // Broadcasting events now should not affect default_result_printer.
7029     TestEventListenersAccessor::GetRepeater(&listeners)
7030         ->OnTestProgramStart(*UnitTest::GetInstance());
7031     EXPECT_EQ(0, on_start_counter);
7032   }
7033   // Destroying the list should not affect the listener now, too.
7034   EXPECT_FALSE(is_destroyed);
7035   delete listener;
7036 }
7037
7038 // Tests that a listener installed via SetDefaultXmlGenerator() starts
7039 // receiving events and is returned via default_xml_generator() and that
7040 // the previous default_xml_generator is removed from the list and deleted.
7041 TEST(EventListenerTest, default_xml_generator) {
7042   int on_start_counter = 0;
7043   bool is_destroyed = false;
7044   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7045
7046   TestEventListeners listeners;
7047   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7048
7049   EXPECT_EQ(listener, listeners.default_xml_generator());
7050
7051   TestEventListenersAccessor::GetRepeater(&listeners)
7052       ->OnTestProgramStart(*UnitTest::GetInstance());
7053
7054   EXPECT_EQ(1, on_start_counter);
7055
7056   // Replacing default_xml_generator with something else should remove it
7057   // from the list and destroy it.
7058   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, nullptr);
7059
7060   EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
7061   EXPECT_TRUE(is_destroyed);
7062
7063   // After broadcasting an event the counter is still the same, indicating
7064   // the listener is not in the list anymore.
7065   TestEventListenersAccessor::GetRepeater(&listeners)
7066       ->OnTestProgramStart(*UnitTest::GetInstance());
7067   EXPECT_EQ(1, on_start_counter);
7068 }
7069
7070 // Tests that the default_xml_generator listener stops receiving events
7071 // when removed via Release and that is not owned by the list anymore.
7072 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
7073   int on_start_counter = 0;
7074   bool is_destroyed = false;
7075   // Although Append passes the ownership of this object to the list,
7076   // the following calls release it, and we need to delete it before the
7077   // test ends.
7078   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7079   {
7080     TestEventListeners listeners;
7081     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7082
7083     EXPECT_EQ(listener, listeners.Release(listener));
7084     EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
7085     EXPECT_FALSE(is_destroyed);
7086
7087     // Broadcasting events now should not affect default_xml_generator.
7088     TestEventListenersAccessor::GetRepeater(&listeners)
7089         ->OnTestProgramStart(*UnitTest::GetInstance());
7090     EXPECT_EQ(0, on_start_counter);
7091   }
7092   // Destroying the list should not affect the listener now, too.
7093   EXPECT_FALSE(is_destroyed);
7094   delete listener;
7095 }
7096
7097 // Tests to ensure that the alternative, verbose spellings of
7098 // some of the macros work.  We don't test them thoroughly as that
7099 // would be quite involved.  Since their implementations are
7100 // straightforward, and they are rarely used, we'll just rely on the
7101 // users to tell us when they are broken.
7102 GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
7103   GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
7104
7105   // GTEST_FAIL is the same as FAIL.
7106   EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
7107                        "An expected failure");
7108
7109   // GTEST_ASSERT_XY is the same as ASSERT_XY.
7110
7111   GTEST_ASSERT_EQ(0, 0);
7112   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
7113                        "An expected failure");
7114   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
7115                        "An expected failure");
7116
7117   GTEST_ASSERT_NE(0, 1);
7118   GTEST_ASSERT_NE(1, 0);
7119   EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
7120                        "An expected failure");
7121
7122   GTEST_ASSERT_LE(0, 0);
7123   GTEST_ASSERT_LE(0, 1);
7124   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
7125                        "An expected failure");
7126
7127   GTEST_ASSERT_LT(0, 1);
7128   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
7129                        "An expected failure");
7130   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
7131                        "An expected failure");
7132
7133   GTEST_ASSERT_GE(0, 0);
7134   GTEST_ASSERT_GE(1, 0);
7135   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
7136                        "An expected failure");
7137
7138   GTEST_ASSERT_GT(1, 0);
7139   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
7140                        "An expected failure");
7141   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
7142                        "An expected failure");
7143 }
7144
7145 // Tests for internal utilities necessary for implementation of the universal
7146 // printing.
7147
7148 class ConversionHelperBase {};
7149 class ConversionHelperDerived : public ConversionHelperBase {};
7150
7151 struct HasDebugStringMethods {
7152   std::string DebugString() const { return ""; }
7153   std::string ShortDebugString() const { return ""; }
7154 };
7155
7156 struct InheritsDebugStringMethods : public HasDebugStringMethods {};
7157
7158 struct WrongTypeDebugStringMethod {
7159   std::string DebugString() const { return ""; }
7160   int ShortDebugString() const { return 1; }
7161 };
7162
7163 struct NotConstDebugStringMethod {
7164   std::string DebugString() { return ""; }
7165   std::string ShortDebugString() const { return ""; }
7166 };
7167
7168 struct MissingDebugStringMethod {
7169   std::string DebugString() { return ""; }
7170 };
7171
7172 struct IncompleteType;
7173
7174 // Tests that HasDebugStringAndShortDebugString<T>::value is a compile-time
7175 // constant.
7176 TEST(HasDebugStringAndShortDebugStringTest, ValueIsCompileTimeConstant) {
7177   static_assert(HasDebugStringAndShortDebugString<HasDebugStringMethods>::value,
7178                 "const_true");
7179   static_assert(
7180       HasDebugStringAndShortDebugString<InheritsDebugStringMethods>::value,
7181       "const_true");
7182   static_assert(HasDebugStringAndShortDebugString<
7183                     const InheritsDebugStringMethods>::value,
7184                 "const_true");
7185   static_assert(
7186       !HasDebugStringAndShortDebugString<WrongTypeDebugStringMethod>::value,
7187       "const_false");
7188   static_assert(
7189       !HasDebugStringAndShortDebugString<NotConstDebugStringMethod>::value,
7190       "const_false");
7191   static_assert(
7192       !HasDebugStringAndShortDebugString<MissingDebugStringMethod>::value,
7193       "const_false");
7194   static_assert(!HasDebugStringAndShortDebugString<IncompleteType>::value,
7195                 "const_false");
7196   static_assert(!HasDebugStringAndShortDebugString<int>::value, "const_false");
7197 }
7198
7199 // Tests that HasDebugStringAndShortDebugString<T>::value is true when T has
7200 // needed methods.
7201 TEST(HasDebugStringAndShortDebugStringTest,
7202      ValueIsTrueWhenTypeHasDebugStringAndShortDebugString) {
7203   EXPECT_TRUE(
7204       HasDebugStringAndShortDebugString<InheritsDebugStringMethods>::value);
7205 }
7206
7207 // Tests that HasDebugStringAndShortDebugString<T>::value is false when T
7208 // doesn't have needed methods.
7209 TEST(HasDebugStringAndShortDebugStringTest,
7210      ValueIsFalseWhenTypeIsNotAProtocolMessage) {
7211   EXPECT_FALSE(HasDebugStringAndShortDebugString<int>::value);
7212   EXPECT_FALSE(
7213       HasDebugStringAndShortDebugString<const ConversionHelperBase>::value);
7214 }
7215
7216 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
7217
7218 template <typename T1, typename T2>
7219 void TestGTestRemoveReferenceAndConst() {
7220   static_assert(std::is_same<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>::value,
7221                 "GTEST_REMOVE_REFERENCE_AND_CONST_ failed.");
7222 }
7223
7224 TEST(RemoveReferenceToConstTest, Works) {
7225   TestGTestRemoveReferenceAndConst<int, int>();
7226   TestGTestRemoveReferenceAndConst<double, double&>();
7227   TestGTestRemoveReferenceAndConst<char, const char>();
7228   TestGTestRemoveReferenceAndConst<char, const char&>();
7229   TestGTestRemoveReferenceAndConst<const char*, const char*>();
7230 }
7231
7232 // Tests GTEST_REFERENCE_TO_CONST_.
7233
7234 template <typename T1, typename T2>
7235 void TestGTestReferenceToConst() {
7236   static_assert(std::is_same<T1, GTEST_REFERENCE_TO_CONST_(T2)>::value,
7237                 "GTEST_REFERENCE_TO_CONST_ failed.");
7238 }
7239
7240 TEST(GTestReferenceToConstTest, Works) {
7241   TestGTestReferenceToConst<const char&, char>();
7242   TestGTestReferenceToConst<const int&, const int>();
7243   TestGTestReferenceToConst<const double&, double>();
7244   TestGTestReferenceToConst<const std::string&, const std::string&>();
7245 }
7246
7247 // Tests IsContainerTest.
7248
7249 class NonContainer {};
7250
7251 TEST(IsContainerTestTest, WorksForNonContainer) {
7252   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
7253   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
7254   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
7255 }
7256
7257 TEST(IsContainerTestTest, WorksForContainer) {
7258   EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest<std::vector<bool>>(0)));
7259   EXPECT_EQ(sizeof(IsContainer),
7260             sizeof(IsContainerTest<std::map<int, double>>(0)));
7261 }
7262
7263 struct ConstOnlyContainerWithPointerIterator {
7264   using const_iterator = int*;
7265   const_iterator begin() const;
7266   const_iterator end() const;
7267 };
7268
7269 struct ConstOnlyContainerWithClassIterator {
7270   struct const_iterator {
7271     const int& operator*() const;
7272     const_iterator& operator++(/* pre-increment */);
7273   };
7274   const_iterator begin() const;
7275   const_iterator end() const;
7276 };
7277
7278 TEST(IsContainerTestTest, ConstOnlyContainer) {
7279   EXPECT_EQ(sizeof(IsContainer),
7280             sizeof(IsContainerTest<ConstOnlyContainerWithPointerIterator>(0)));
7281   EXPECT_EQ(sizeof(IsContainer),
7282             sizeof(IsContainerTest<ConstOnlyContainerWithClassIterator>(0)));
7283 }
7284
7285 // Tests IsHashTable.
7286 struct AHashTable {
7287   typedef void hasher;
7288 };
7289 struct NotReallyAHashTable {
7290   typedef void hasher;
7291   typedef void reverse_iterator;
7292 };
7293 TEST(IsHashTable, Basic) {
7294   EXPECT_TRUE(testing::internal::IsHashTable<AHashTable>::value);
7295   EXPECT_FALSE(testing::internal::IsHashTable<NotReallyAHashTable>::value);
7296   EXPECT_FALSE(testing::internal::IsHashTable<std::vector<int>>::value);
7297   EXPECT_TRUE(testing::internal::IsHashTable<std::unordered_set<int>>::value);
7298 }
7299
7300 // Tests ArrayEq().
7301
7302 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
7303   EXPECT_TRUE(ArrayEq(5, 5L));
7304   EXPECT_FALSE(ArrayEq('a', 0));
7305 }
7306
7307 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
7308   // Note that a and b are distinct but compatible types.
7309   const int a[] = {0, 1};
7310   long b[] = {0, 1};
7311   EXPECT_TRUE(ArrayEq(a, b));
7312   EXPECT_TRUE(ArrayEq(a, 2, b));
7313
7314   b[0] = 2;
7315   EXPECT_FALSE(ArrayEq(a, b));
7316   EXPECT_FALSE(ArrayEq(a, 1, b));
7317 }
7318
7319 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
7320   const char a[][3] = {"hi", "lo"};
7321   const char b[][3] = {"hi", "lo"};
7322   const char c[][3] = {"hi", "li"};
7323
7324   EXPECT_TRUE(ArrayEq(a, b));
7325   EXPECT_TRUE(ArrayEq(a, 2, b));
7326
7327   EXPECT_FALSE(ArrayEq(a, c));
7328   EXPECT_FALSE(ArrayEq(a, 2, c));
7329 }
7330
7331 // Tests ArrayAwareFind().
7332
7333 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
7334   const char a[] = "hello";
7335   EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
7336   EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
7337 }
7338
7339 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
7340   int a[][2] = {{0, 1}, {2, 3}, {4, 5}};
7341   const int b[2] = {2, 3};
7342   EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
7343
7344   const int c[2] = {6, 7};
7345   EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
7346 }
7347
7348 // Tests CopyArray().
7349
7350 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
7351   int n = 0;
7352   CopyArray('a', &n);
7353   EXPECT_EQ('a', n);
7354 }
7355
7356 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
7357   const char a[3] = "hi";
7358   int b[3];
7359 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7360   CopyArray(a, &b);
7361   EXPECT_TRUE(ArrayEq(a, b));
7362 #endif
7363
7364   int c[3];
7365   CopyArray(a, 3, c);
7366   EXPECT_TRUE(ArrayEq(a, c));
7367 }
7368
7369 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
7370   const int a[2][3] = {{0, 1, 2}, {3, 4, 5}};
7371   int b[2][3];
7372 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7373   CopyArray(a, &b);
7374   EXPECT_TRUE(ArrayEq(a, b));
7375 #endif
7376
7377   int c[2][3];
7378   CopyArray(a, 2, c);
7379   EXPECT_TRUE(ArrayEq(a, c));
7380 }
7381
7382 // Tests NativeArray.
7383
7384 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
7385   const int a[3] = {0, 1, 2};
7386   NativeArray<int> na(a, 3, RelationToSourceReference());
7387   EXPECT_EQ(3U, na.size());
7388   EXPECT_EQ(a, na.begin());
7389 }
7390
7391 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
7392   typedef int Array[2];
7393   Array* a = new Array[1];
7394   (*a)[0] = 0;
7395   (*a)[1] = 1;
7396   NativeArray<int> na(*a, 2, RelationToSourceCopy());
7397   EXPECT_NE(*a, na.begin());
7398   delete[] a;
7399   EXPECT_EQ(0, na.begin()[0]);
7400   EXPECT_EQ(1, na.begin()[1]);
7401
7402   // We rely on the heap checker to verify that na deletes the copy of
7403   // array.
7404 }
7405
7406 TEST(NativeArrayTest, TypeMembersAreCorrect) {
7407   StaticAssertTypeEq<char, NativeArray<char>::value_type>();
7408   StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
7409
7410   StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
7411   StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
7412 }
7413
7414 TEST(NativeArrayTest, MethodsWork) {
7415   const int a[3] = {0, 1, 2};
7416   NativeArray<int> na(a, 3, RelationToSourceCopy());
7417   ASSERT_EQ(3U, na.size());
7418   EXPECT_EQ(3, na.end() - na.begin());
7419
7420   NativeArray<int>::const_iterator it = na.begin();
7421   EXPECT_EQ(0, *it);
7422   ++it;
7423   EXPECT_EQ(1, *it);
7424   it++;
7425   EXPECT_EQ(2, *it);
7426   ++it;
7427   EXPECT_EQ(na.end(), it);
7428
7429   EXPECT_TRUE(na == na);
7430
7431   NativeArray<int> na2(a, 3, RelationToSourceReference());
7432   EXPECT_TRUE(na == na2);
7433
7434   const int b1[3] = {0, 1, 1};
7435   const int b2[4] = {0, 1, 2, 3};
7436   EXPECT_FALSE(na == NativeArray<int>(b1, 3, RelationToSourceReference()));
7437   EXPECT_FALSE(na == NativeArray<int>(b2, 4, RelationToSourceCopy()));
7438 }
7439
7440 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
7441   const char a[2][3] = {"hi", "lo"};
7442   NativeArray<char[3]> na(a, 2, RelationToSourceReference());
7443   ASSERT_EQ(2U, na.size());
7444   EXPECT_EQ(a, na.begin());
7445 }
7446
7447 // IndexSequence
7448 TEST(IndexSequence, MakeIndexSequence) {
7449   using testing::internal::IndexSequence;
7450   using testing::internal::MakeIndexSequence;
7451   EXPECT_TRUE(
7452       (std::is_same<IndexSequence<>, MakeIndexSequence<0>::type>::value));
7453   EXPECT_TRUE(
7454       (std::is_same<IndexSequence<0>, MakeIndexSequence<1>::type>::value));
7455   EXPECT_TRUE(
7456       (std::is_same<IndexSequence<0, 1>, MakeIndexSequence<2>::type>::value));
7457   EXPECT_TRUE((
7458       std::is_same<IndexSequence<0, 1, 2>, MakeIndexSequence<3>::type>::value));
7459   EXPECT_TRUE(
7460       (std::is_base_of<IndexSequence<0, 1, 2>, MakeIndexSequence<3>>::value));
7461 }
7462
7463 // ElemFromList
7464 TEST(ElemFromList, Basic) {
7465   using testing::internal::ElemFromList;
7466   EXPECT_TRUE(
7467       (std::is_same<int, ElemFromList<0, int, double, char>::type>::value));
7468   EXPECT_TRUE(
7469       (std::is_same<double, ElemFromList<1, int, double, char>::type>::value));
7470   EXPECT_TRUE(
7471       (std::is_same<char, ElemFromList<2, int, double, char>::type>::value));
7472   EXPECT_TRUE((
7473       std::is_same<char, ElemFromList<7, int, int, int, int, int, int, int,
7474                                       char, int, int, int, int>::type>::value));
7475 }
7476
7477 // FlatTuple
7478 TEST(FlatTuple, Basic) {
7479   using testing::internal::FlatTuple;
7480
7481   FlatTuple<int, double, const char*> tuple = {};
7482   EXPECT_EQ(0, tuple.Get<0>());
7483   EXPECT_EQ(0.0, tuple.Get<1>());
7484   EXPECT_EQ(nullptr, tuple.Get<2>());
7485
7486   tuple = FlatTuple<int, double, const char*>(
7487       testing::internal::FlatTupleConstructTag{}, 7, 3.2, "Foo");
7488   EXPECT_EQ(7, tuple.Get<0>());
7489   EXPECT_EQ(3.2, tuple.Get<1>());
7490   EXPECT_EQ(std::string("Foo"), tuple.Get<2>());
7491
7492   tuple.Get<1>() = 5.1;
7493   EXPECT_EQ(5.1, tuple.Get<1>());
7494 }
7495
7496 namespace {
7497 std::string AddIntToString(int i, const std::string& s) {
7498   return s + std::to_string(i);
7499 }
7500 }  // namespace
7501
7502 TEST(FlatTuple, Apply) {
7503   using testing::internal::FlatTuple;
7504
7505   FlatTuple<int, std::string> tuple{testing::internal::FlatTupleConstructTag{},
7506                                     5, "Hello"};
7507
7508   // Lambda.
7509   EXPECT_TRUE(tuple.Apply([](int i, const std::string& s) -> bool {
7510     return i == static_cast<int>(s.size());
7511   }));
7512
7513   // Function.
7514   EXPECT_EQ(tuple.Apply(AddIntToString), "Hello5");
7515
7516   // Mutating operations.
7517   tuple.Apply([](int& i, std::string& s) {
7518     ++i;
7519     s += s;
7520   });
7521   EXPECT_EQ(tuple.Get<0>(), 6);
7522   EXPECT_EQ(tuple.Get<1>(), "HelloHello");
7523 }
7524
7525 struct ConstructionCounting {
7526   ConstructionCounting() { ++default_ctor_calls; }
7527   ~ConstructionCounting() { ++dtor_calls; }
7528   ConstructionCounting(const ConstructionCounting&) { ++copy_ctor_calls; }
7529   ConstructionCounting(ConstructionCounting&&) noexcept { ++move_ctor_calls; }
7530   ConstructionCounting& operator=(const ConstructionCounting&) {
7531     ++copy_assignment_calls;
7532     return *this;
7533   }
7534   ConstructionCounting& operator=(ConstructionCounting&&) noexcept {
7535     ++move_assignment_calls;
7536     return *this;
7537   }
7538
7539   static void Reset() {
7540     default_ctor_calls = 0;
7541     dtor_calls = 0;
7542     copy_ctor_calls = 0;
7543     move_ctor_calls = 0;
7544     copy_assignment_calls = 0;
7545     move_assignment_calls = 0;
7546   }
7547
7548   static int default_ctor_calls;
7549   static int dtor_calls;
7550   static int copy_ctor_calls;
7551   static int move_ctor_calls;
7552   static int copy_assignment_calls;
7553   static int move_assignment_calls;
7554 };
7555
7556 int ConstructionCounting::default_ctor_calls = 0;
7557 int ConstructionCounting::dtor_calls = 0;
7558 int ConstructionCounting::copy_ctor_calls = 0;
7559 int ConstructionCounting::move_ctor_calls = 0;
7560 int ConstructionCounting::copy_assignment_calls = 0;
7561 int ConstructionCounting::move_assignment_calls = 0;
7562
7563 TEST(FlatTuple, ConstructorCalls) {
7564   using testing::internal::FlatTuple;
7565
7566   // Default construction.
7567   ConstructionCounting::Reset();
7568   { FlatTuple<ConstructionCounting> tuple; }
7569   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7570   EXPECT_EQ(ConstructionCounting::dtor_calls, 1);
7571   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7572   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7573   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7574   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7575
7576   // Copy construction.
7577   ConstructionCounting::Reset();
7578   {
7579     ConstructionCounting elem;
7580     FlatTuple<ConstructionCounting> tuple{
7581         testing::internal::FlatTupleConstructTag{}, elem};
7582   }
7583   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7584   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7585   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 1);
7586   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7587   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7588   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7589
7590   // Move construction.
7591   ConstructionCounting::Reset();
7592   {
7593     FlatTuple<ConstructionCounting> tuple{
7594         testing::internal::FlatTupleConstructTag{}, ConstructionCounting{}};
7595   }
7596   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7597   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7598   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7599   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 1);
7600   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7601   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7602
7603   // Copy assignment.
7604   // TODO(ofats): it should be testing assignment operator of FlatTuple, not its
7605   // elements
7606   ConstructionCounting::Reset();
7607   {
7608     FlatTuple<ConstructionCounting> tuple;
7609     ConstructionCounting elem;
7610     tuple.Get<0>() = elem;
7611   }
7612   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2);
7613   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7614   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7615   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7616   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 1);
7617   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7618
7619   // Move assignment.
7620   // TODO(ofats): it should be testing assignment operator of FlatTuple, not its
7621   // elements
7622   ConstructionCounting::Reset();
7623   {
7624     FlatTuple<ConstructionCounting> tuple;
7625     tuple.Get<0>() = ConstructionCounting{};
7626   }
7627   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2);
7628   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7629   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7630   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7631   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7632   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 1);
7633
7634   ConstructionCounting::Reset();
7635 }
7636
7637 TEST(FlatTuple, ManyTypes) {
7638   using testing::internal::FlatTuple;
7639
7640   // Instantiate FlatTuple with 257 ints.
7641   // Tests show that we can do it with thousands of elements, but very long
7642   // compile times makes it unusuitable for this test.
7643 #define GTEST_FLAT_TUPLE_INT8 int, int, int, int, int, int, int, int,
7644 #define GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT8 GTEST_FLAT_TUPLE_INT8
7645 #define GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT16
7646 #define GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT32
7647 #define GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT64
7648 #define GTEST_FLAT_TUPLE_INT256 GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT128
7649
7650   // Let's make sure that we can have a very long list of types without blowing
7651   // up the template instantiation depth.
7652   FlatTuple<GTEST_FLAT_TUPLE_INT256 int> tuple;
7653
7654   tuple.Get<0>() = 7;
7655   tuple.Get<99>() = 17;
7656   tuple.Get<256>() = 1000;
7657   EXPECT_EQ(7, tuple.Get<0>());
7658   EXPECT_EQ(17, tuple.Get<99>());
7659   EXPECT_EQ(1000, tuple.Get<256>());
7660 }
7661
7662 // Tests SkipPrefix().
7663
7664 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
7665   const char* const str = "hello";
7666
7667   const char* p = str;
7668   EXPECT_TRUE(SkipPrefix("", &p));
7669   EXPECT_EQ(str, p);
7670
7671   p = str;
7672   EXPECT_TRUE(SkipPrefix("hell", &p));
7673   EXPECT_EQ(str + 4, p);
7674 }
7675
7676 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
7677   const char* const str = "world";
7678
7679   const char* p = str;
7680   EXPECT_FALSE(SkipPrefix("W", &p));
7681   EXPECT_EQ(str, p);
7682
7683   p = str;
7684   EXPECT_FALSE(SkipPrefix("world!", &p));
7685   EXPECT_EQ(str, p);
7686 }
7687
7688 // Tests ad_hoc_test_result().
7689 TEST(AdHocTestResultTest, AdHocTestResultForUnitTestDoesNotShowFailure) {
7690   const testing::TestResult& test_result =
7691       testing::UnitTest::GetInstance()->ad_hoc_test_result();
7692   EXPECT_FALSE(test_result.Failed());
7693 }
7694
7695 class DynamicUnitTestFixture : public testing::Test {};
7696
7697 class DynamicTest : public DynamicUnitTestFixture {
7698   void TestBody() override { EXPECT_TRUE(true); }
7699 };
7700
7701 auto* dynamic_test = testing::RegisterTest(
7702     "DynamicUnitTestFixture", "DynamicTest", "TYPE", "VALUE", __FILE__,
7703     __LINE__, []() -> DynamicUnitTestFixture* { return new DynamicTest; });
7704
7705 TEST(RegisterTest, WasRegistered) {
7706   auto* unittest = testing::UnitTest::GetInstance();
7707   for (int i = 0; i < unittest->total_test_suite_count(); ++i) {
7708     auto* tests = unittest->GetTestSuite(i);
7709     if (tests->name() != std::string("DynamicUnitTestFixture")) continue;
7710     for (int j = 0; j < tests->total_test_count(); ++j) {
7711       if (tests->GetTestInfo(j)->name() != std::string("DynamicTest")) continue;
7712       // Found it.
7713       EXPECT_STREQ(tests->GetTestInfo(j)->value_param(), "VALUE");
7714       EXPECT_STREQ(tests->GetTestInfo(j)->type_param(), "TYPE");
7715       return;
7716     }
7717   }
7718
7719   FAIL() << "Didn't find the test!";
7720 }
7721
7722 // Test that the pattern globbing algorithm is linear. If not, this test should
7723 // time out.
7724 TEST(PatternGlobbingTest, MatchesFilterLinearRuntime) {
7725   std::string name(100, 'a');  // Construct the string (a^100)b
7726   name.push_back('b');
7727
7728   std::string pattern;  // Construct the string ((a*)^100)b
7729   for (int i = 0; i < 100; ++i) {
7730     pattern.append("a*");
7731   }
7732   pattern.push_back('b');
7733
7734   EXPECT_TRUE(
7735       testing::internal::UnitTestOptions::MatchesFilter(name, pattern.c_str()));
7736 }
7737
7738 TEST(PatternGlobbingTest, MatchesFilterWithMultiplePatterns) {
7739   const std::string name = "aaaa";
7740   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "a*"));
7741   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "a*:"));
7742   EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab"));
7743   EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab:"));
7744   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab:a*"));
7745 }
7746
7747 TEST(PatternGlobbingTest, MatchesFilterEdgeCases) {
7748   EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter("", "*a"));
7749   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter("", "*"));
7750   EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter("a", ""));
7751   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter("", ""));
7752 }