f2393bd3afadaba8506261b18a32040395a28267
[platform/upstream/gtest.git] / googlemock / include / gmock / gmock-actions.h
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30
31 // Google Mock - a framework for writing C++ mock classes.
32 //
33 // The ACTION* family of macros can be used in a namespace scope to
34 // define custom actions easily.  The syntax:
35 //
36 //   ACTION(name) { statements; }
37 //
38 // will define an action with the given name that executes the
39 // statements.  The value returned by the statements will be used as
40 // the return value of the action.  Inside the statements, you can
41 // refer to the K-th (0-based) argument of the mock function by
42 // 'argK', and refer to its type by 'argK_type'.  For example:
43 //
44 //   ACTION(IncrementArg1) {
45 //     arg1_type temp = arg1;
46 //     return ++(*temp);
47 //   }
48 //
49 // allows you to write
50 //
51 //   ...WillOnce(IncrementArg1());
52 //
53 // You can also refer to the entire argument tuple and its type by
54 // 'args' and 'args_type', and refer to the mock function type and its
55 // return type by 'function_type' and 'return_type'.
56 //
57 // Note that you don't need to specify the types of the mock function
58 // arguments.  However rest assured that your code is still type-safe:
59 // you'll get a compiler error if *arg1 doesn't support the ++
60 // operator, or if the type of ++(*arg1) isn't compatible with the
61 // mock function's return type, for example.
62 //
63 // Sometimes you'll want to parameterize the action.   For that you can use
64 // another macro:
65 //
66 //   ACTION_P(name, param_name) { statements; }
67 //
68 // For example:
69 //
70 //   ACTION_P(Add, n) { return arg0 + n; }
71 //
72 // will allow you to write:
73 //
74 //   ...WillOnce(Add(5));
75 //
76 // Note that you don't need to provide the type of the parameter
77 // either.  If you need to reference the type of a parameter named
78 // 'foo', you can write 'foo_type'.  For example, in the body of
79 // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
80 // of 'n'.
81 //
82 // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
83 // multi-parameter actions.
84 //
85 // For the purpose of typing, you can view
86 //
87 //   ACTION_Pk(Foo, p1, ..., pk) { ... }
88 //
89 // as shorthand for
90 //
91 //   template <typename p1_type, ..., typename pk_type>
92 //   FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
93 //
94 // In particular, you can provide the template type arguments
95 // explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
96 // although usually you can rely on the compiler to infer the types
97 // for you automatically.  You can assign the result of expression
98 // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
99 // pk_type>.  This can be useful when composing actions.
100 //
101 // You can also overload actions with different numbers of parameters:
102 //
103 //   ACTION_P(Plus, a) { ... }
104 //   ACTION_P2(Plus, a, b) { ... }
105 //
106 // While it's tempting to always use the ACTION* macros when defining
107 // a new action, you should also consider implementing ActionInterface
108 // or using MakePolymorphicAction() instead, especially if you need to
109 // use the action a lot.  While these approaches require more work,
110 // they give you more control on the types of the mock function
111 // arguments and the action parameters, which in general leads to
112 // better compiler error messages that pay off in the long run.  They
113 // also allow overloading actions based on parameter types (as opposed
114 // to just based on the number of parameters).
115 //
116 // CAVEAT:
117 //
118 // ACTION*() can only be used in a namespace scope as templates cannot be
119 // declared inside of a local class.
120 // Users can, however, define any local functors (e.g. a lambda) that
121 // can be used as actions.
122 //
123 // MORE INFORMATION:
124 //
125 // To learn more about using these macros, please search for 'ACTION' on
126 // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
127
128 // GOOGLETEST_CM0002 DO NOT DELETE
129
130 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
131 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
132
133 #ifndef _WIN32_WCE
134 # include <errno.h>
135 #endif
136
137 #include <algorithm>
138 #include <functional>
139 #include <memory>
140 #include <string>
141 #include <tuple>
142 #include <type_traits>
143 #include <utility>
144
145 #include "gmock/internal/gmock-internal-utils.h"
146 #include "gmock/internal/gmock-port.h"
147 #include "gmock/internal/gmock-pp.h"
148
149 #ifdef _MSC_VER
150 # pragma warning(push)
151 # pragma warning(disable:4100)
152 #endif
153
154 namespace testing {
155
156 // To implement an action Foo, define:
157 //   1. a class FooAction that implements the ActionInterface interface, and
158 //   2. a factory function that creates an Action object from a
159 //      const FooAction*.
160 //
161 // The two-level delegation design follows that of Matcher, providing
162 // consistency for extension developers.  It also eases ownership
163 // management as Action objects can now be copied like plain values.
164
165 namespace internal {
166
167 // BuiltInDefaultValueGetter<T, true>::Get() returns a
168 // default-constructed T value.  BuiltInDefaultValueGetter<T,
169 // false>::Get() crashes with an error.
170 //
171 // This primary template is used when kDefaultConstructible is true.
172 template <typename T, bool kDefaultConstructible>
173 struct BuiltInDefaultValueGetter {
174   static T Get() { return T(); }
175 };
176 template <typename T>
177 struct BuiltInDefaultValueGetter<T, false> {
178   static T Get() {
179     Assert(false, __FILE__, __LINE__,
180            "Default action undefined for the function return type.");
181     return internal::Invalid<T>();
182     // The above statement will never be reached, but is required in
183     // order for this function to compile.
184   }
185 };
186
187 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value
188 // for type T, which is NULL when T is a raw pointer type, 0 when T is
189 // a numeric type, false when T is bool, or "" when T is string or
190 // std::string.  In addition, in C++11 and above, it turns a
191 // default-constructed T value if T is default constructible.  For any
192 // other type T, the built-in default T value is undefined, and the
193 // function will abort the process.
194 template <typename T>
195 class BuiltInDefaultValue {
196  public:
197   // This function returns true if and only if type T has a built-in default
198   // value.
199   static bool Exists() {
200     return ::std::is_default_constructible<T>::value;
201   }
202
203   static T Get() {
204     return BuiltInDefaultValueGetter<
205         T, ::std::is_default_constructible<T>::value>::Get();
206   }
207 };
208
209 // This partial specialization says that we use the same built-in
210 // default value for T and const T.
211 template <typename T>
212 class BuiltInDefaultValue<const T> {
213  public:
214   static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
215   static T Get() { return BuiltInDefaultValue<T>::Get(); }
216 };
217
218 // This partial specialization defines the default values for pointer
219 // types.
220 template <typename T>
221 class BuiltInDefaultValue<T*> {
222  public:
223   static bool Exists() { return true; }
224   static T* Get() { return nullptr; }
225 };
226
227 // The following specializations define the default values for
228 // specific types we care about.
229 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
230   template <> \
231   class BuiltInDefaultValue<type> { \
232    public: \
233     static bool Exists() { return true; } \
234     static type Get() { return value; } \
235   }
236
237 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
238 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
239 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
240 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
241 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
242 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
243
244 // There's no need for a default action for signed wchar_t, as that
245 // type is the same as wchar_t for gcc, and invalid for MSVC.
246 //
247 // There's also no need for a default action for unsigned wchar_t, as
248 // that type is the same as unsigned int for gcc, and invalid for
249 // MSVC.
250 #if GMOCK_WCHAR_T_IS_NATIVE_
251 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
252 #endif
253
254 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
255 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
256 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
257 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
258 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
259 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
260 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0);  // NOLINT
261 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0);  // NOLINT
262 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
263 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
264
265 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
266
267 // Simple two-arg form of std::disjunction.
268 template <typename P, typename Q>
269 using disjunction = typename ::std::conditional<P::value, P, Q>::type;
270
271 }  // namespace internal
272
273 // When an unexpected function call is encountered, Google Mock will
274 // let it return a default value if the user has specified one for its
275 // return type, or if the return type has a built-in default value;
276 // otherwise Google Mock won't know what value to return and will have
277 // to abort the process.
278 //
279 // The DefaultValue<T> class allows a user to specify the
280 // default value for a type T that is both copyable and publicly
281 // destructible (i.e. anything that can be used as a function return
282 // type).  The usage is:
283 //
284 //   // Sets the default value for type T to be foo.
285 //   DefaultValue<T>::Set(foo);
286 template <typename T>
287 class DefaultValue {
288  public:
289   // Sets the default value for type T; requires T to be
290   // copy-constructable and have a public destructor.
291   static void Set(T x) {
292     delete producer_;
293     producer_ = new FixedValueProducer(x);
294   }
295
296   // Provides a factory function to be called to generate the default value.
297   // This method can be used even if T is only move-constructible, but it is not
298   // limited to that case.
299   typedef T (*FactoryFunction)();
300   static void SetFactory(FactoryFunction factory) {
301     delete producer_;
302     producer_ = new FactoryValueProducer(factory);
303   }
304
305   // Unsets the default value for type T.
306   static void Clear() {
307     delete producer_;
308     producer_ = nullptr;
309   }
310
311   // Returns true if and only if the user has set the default value for type T.
312   static bool IsSet() { return producer_ != nullptr; }
313
314   // Returns true if T has a default return value set by the user or there
315   // exists a built-in default value.
316   static bool Exists() {
317     return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
318   }
319
320   // Returns the default value for type T if the user has set one;
321   // otherwise returns the built-in default value. Requires that Exists()
322   // is true, which ensures that the return value is well-defined.
323   static T Get() {
324     return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
325                                 : producer_->Produce();
326   }
327
328  private:
329   class ValueProducer {
330    public:
331     virtual ~ValueProducer() {}
332     virtual T Produce() = 0;
333   };
334
335   class FixedValueProducer : public ValueProducer {
336    public:
337     explicit FixedValueProducer(T value) : value_(value) {}
338     T Produce() override { return value_; }
339
340    private:
341     const T value_;
342     GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
343   };
344
345   class FactoryValueProducer : public ValueProducer {
346    public:
347     explicit FactoryValueProducer(FactoryFunction factory)
348         : factory_(factory) {}
349     T Produce() override { return factory_(); }
350
351    private:
352     const FactoryFunction factory_;
353     GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
354   };
355
356   static ValueProducer* producer_;
357 };
358
359 // This partial specialization allows a user to set default values for
360 // reference types.
361 template <typename T>
362 class DefaultValue<T&> {
363  public:
364   // Sets the default value for type T&.
365   static void Set(T& x) {  // NOLINT
366     address_ = &x;
367   }
368
369   // Unsets the default value for type T&.
370   static void Clear() { address_ = nullptr; }
371
372   // Returns true if and only if the user has set the default value for type T&.
373   static bool IsSet() { return address_ != nullptr; }
374
375   // Returns true if T has a default return value set by the user or there
376   // exists a built-in default value.
377   static bool Exists() {
378     return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
379   }
380
381   // Returns the default value for type T& if the user has set one;
382   // otherwise returns the built-in default value if there is one;
383   // otherwise aborts the process.
384   static T& Get() {
385     return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
386                                : *address_;
387   }
388
389  private:
390   static T* address_;
391 };
392
393 // This specialization allows DefaultValue<void>::Get() to
394 // compile.
395 template <>
396 class DefaultValue<void> {
397  public:
398   static bool Exists() { return true; }
399   static void Get() {}
400 };
401
402 // Points to the user-set default value for type T.
403 template <typename T>
404 typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
405
406 // Points to the user-set default value for type T&.
407 template <typename T>
408 T* DefaultValue<T&>::address_ = nullptr;
409
410 // Implement this interface to define an action for function type F.
411 template <typename F>
412 class ActionInterface {
413  public:
414   typedef typename internal::Function<F>::Result Result;
415   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
416
417   ActionInterface() {}
418   virtual ~ActionInterface() {}
419
420   // Performs the action.  This method is not const, as in general an
421   // action can have side effects and be stateful.  For example, a
422   // get-the-next-element-from-the-collection action will need to
423   // remember the current element.
424   virtual Result Perform(const ArgumentTuple& args) = 0;
425
426  private:
427   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
428 };
429
430 // An Action<F> is a copyable and IMMUTABLE (except by assignment)
431 // object that represents an action to be taken when a mock function
432 // of type F is called.  The implementation of Action<T> is just a
433 // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action!
434 // You can view an object implementing ActionInterface<F> as a
435 // concrete action (including its current state), and an Action<F>
436 // object as a handle to it.
437 template <typename F>
438 class Action {
439   // Adapter class to allow constructing Action from a legacy ActionInterface.
440   // New code should create Actions from functors instead.
441   struct ActionAdapter {
442     // Adapter must be copyable to satisfy std::function requirements.
443     ::std::shared_ptr<ActionInterface<F>> impl_;
444
445     template <typename... Args>
446     typename internal::Function<F>::Result operator()(Args&&... args) {
447       return impl_->Perform(
448           ::std::forward_as_tuple(::std::forward<Args>(args)...));
449     }
450   };
451
452   template <typename G>
453   using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
454
455  public:
456   typedef typename internal::Function<F>::Result Result;
457   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
458
459   // Constructs a null Action.  Needed for storing Action objects in
460   // STL containers.
461   Action() {}
462
463   // Construct an Action from a specified callable.
464   // This cannot take std::function directly, because then Action would not be
465   // directly constructible from lambda (it would require two conversions).
466   template <
467       typename G,
468       typename = typename std::enable_if<internal::disjunction<
469           IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
470                                                         G>>::value>::type>
471   Action(G&& fun) {  // NOLINT
472     Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
473   }
474
475   // Constructs an Action from its implementation.
476   explicit Action(ActionInterface<F>* impl)
477       : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
478
479   // This constructor allows us to turn an Action<Func> object into an
480   // Action<F>, as long as F's arguments can be implicitly converted
481   // to Func's and Func's return type can be implicitly converted to F's.
482   template <typename Func>
483   explicit Action(const Action<Func>& action) : fun_(action.fun_) {}
484
485   // Returns true if and only if this is the DoDefault() action.
486   bool IsDoDefault() const { return fun_ == nullptr; }
487
488   // Performs the action.  Note that this method is const even though
489   // the corresponding method in ActionInterface is not.  The reason
490   // is that a const Action<F> means that it cannot be re-bound to
491   // another concrete action, not that the concrete action it binds to
492   // cannot change state.  (Think of the difference between a const
493   // pointer and a pointer to const.)
494   Result Perform(ArgumentTuple args) const {
495     if (IsDoDefault()) {
496       internal::IllegalDoDefault(__FILE__, __LINE__);
497     }
498     return internal::Apply(fun_, ::std::move(args));
499   }
500
501  private:
502   template <typename G>
503   friend class Action;
504
505   template <typename G>
506   void Init(G&& g, ::std::true_type) {
507     fun_ = ::std::forward<G>(g);
508   }
509
510   template <typename G>
511   void Init(G&& g, ::std::false_type) {
512     fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
513   }
514
515   template <typename FunctionImpl>
516   struct IgnoreArgs {
517     template <typename... Args>
518     Result operator()(const Args&...) const {
519       return function_impl();
520     }
521
522     FunctionImpl function_impl;
523   };
524
525   // fun_ is an empty function if and only if this is the DoDefault() action.
526   ::std::function<F> fun_;
527 };
528
529 // The PolymorphicAction class template makes it easy to implement a
530 // polymorphic action (i.e. an action that can be used in mock
531 // functions of than one type, e.g. Return()).
532 //
533 // To define a polymorphic action, a user first provides a COPYABLE
534 // implementation class that has a Perform() method template:
535 //
536 //   class FooAction {
537 //    public:
538 //     template <typename Result, typename ArgumentTuple>
539 //     Result Perform(const ArgumentTuple& args) const {
540 //       // Processes the arguments and returns a result, using
541 //       // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
542 //     }
543 //     ...
544 //   };
545 //
546 // Then the user creates the polymorphic action using
547 // MakePolymorphicAction(object) where object has type FooAction.  See
548 // the definition of Return(void) and SetArgumentPointee<N>(value) for
549 // complete examples.
550 template <typename Impl>
551 class PolymorphicAction {
552  public:
553   explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
554
555   template <typename F>
556   operator Action<F>() const {
557     return Action<F>(new MonomorphicImpl<F>(impl_));
558   }
559
560  private:
561   template <typename F>
562   class MonomorphicImpl : public ActionInterface<F> {
563    public:
564     typedef typename internal::Function<F>::Result Result;
565     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
566
567     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
568
569     Result Perform(const ArgumentTuple& args) override {
570       return impl_.template Perform<Result>(args);
571     }
572
573    private:
574     Impl impl_;
575   };
576
577   Impl impl_;
578 };
579
580 // Creates an Action from its implementation and returns it.  The
581 // created Action object owns the implementation.
582 template <typename F>
583 Action<F> MakeAction(ActionInterface<F>* impl) {
584   return Action<F>(impl);
585 }
586
587 // Creates a polymorphic action from its implementation.  This is
588 // easier to use than the PolymorphicAction<Impl> constructor as it
589 // doesn't require you to explicitly write the template argument, e.g.
590 //
591 //   MakePolymorphicAction(foo);
592 // vs
593 //   PolymorphicAction<TypeOfFoo>(foo);
594 template <typename Impl>
595 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
596   return PolymorphicAction<Impl>(impl);
597 }
598
599 namespace internal {
600
601 // Helper struct to specialize ReturnAction to execute a move instead of a copy
602 // on return. Useful for move-only types, but could be used on any type.
603 template <typename T>
604 struct ByMoveWrapper {
605   explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
606   T payload;
607 };
608
609 // Implements the polymorphic Return(x) action, which can be used in
610 // any function that returns the type of x, regardless of the argument
611 // types.
612 //
613 // Note: The value passed into Return must be converted into
614 // Function<F>::Result when this action is cast to Action<F> rather than
615 // when that action is performed. This is important in scenarios like
616 //
617 // MOCK_METHOD1(Method, T(U));
618 // ...
619 // {
620 //   Foo foo;
621 //   X x(&foo);
622 //   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
623 // }
624 //
625 // In the example above the variable x holds reference to foo which leaves
626 // scope and gets destroyed.  If copying X just copies a reference to foo,
627 // that copy will be left with a hanging reference.  If conversion to T
628 // makes a copy of foo, the above code is safe. To support that scenario, we
629 // need to make sure that the type conversion happens inside the EXPECT_CALL
630 // statement, and conversion of the result of Return to Action<T(U)> is a
631 // good place for that.
632 //
633 // The real life example of the above scenario happens when an invocation
634 // of gtl::Container() is passed into Return.
635 //
636 template <typename R>
637 class ReturnAction {
638  public:
639   // Constructs a ReturnAction object from the value to be returned.
640   // 'value' is passed by value instead of by const reference in order
641   // to allow Return("string literal") to compile.
642   explicit ReturnAction(R value) : value_(new R(std::move(value))) {}
643
644   // This template type conversion operator allows Return(x) to be
645   // used in ANY function that returns x's type.
646   template <typename F>
647   operator Action<F>() const {  // NOLINT
648     // Assert statement belongs here because this is the best place to verify
649     // conditions on F. It produces the clearest error messages
650     // in most compilers.
651     // Impl really belongs in this scope as a local class but can't
652     // because MSVC produces duplicate symbols in different translation units
653     // in this case. Until MS fixes that bug we put Impl into the class scope
654     // and put the typedef both here (for use in assert statement) and
655     // in the Impl class. But both definitions must be the same.
656     typedef typename Function<F>::Result Result;
657     GTEST_COMPILE_ASSERT_(
658         !std::is_reference<Result>::value,
659         use_ReturnRef_instead_of_Return_to_return_a_reference);
660     static_assert(!std::is_void<Result>::value,
661                   "Can't use Return() on an action expected to return `void`.");
662     return Action<F>(new Impl<R, F>(value_));
663   }
664
665  private:
666   // Implements the Return(x) action for a particular function type F.
667   template <typename R_, typename F>
668   class Impl : public ActionInterface<F> {
669    public:
670     typedef typename Function<F>::Result Result;
671     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
672
673     // The implicit cast is necessary when Result has more than one
674     // single-argument constructor (e.g. Result is std::vector<int>) and R
675     // has a type conversion operator template.  In that case, value_(value)
676     // won't compile as the compiler doesn't known which constructor of
677     // Result to call.  ImplicitCast_ forces the compiler to convert R to
678     // Result without considering explicit constructors, thus resolving the
679     // ambiguity. value_ is then initialized using its copy constructor.
680     explicit Impl(const std::shared_ptr<R>& value)
681         : value_before_cast_(*value),
682           value_(ImplicitCast_<Result>(value_before_cast_)) {}
683
684     Result Perform(const ArgumentTuple&) override { return value_; }
685
686    private:
687     GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value,
688                           Result_cannot_be_a_reference_type);
689     // We save the value before casting just in case it is being cast to a
690     // wrapper type.
691     R value_before_cast_;
692     Result value_;
693
694     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
695   };
696
697   // Partially specialize for ByMoveWrapper. This version of ReturnAction will
698   // move its contents instead.
699   template <typename R_, typename F>
700   class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
701    public:
702     typedef typename Function<F>::Result Result;
703     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
704
705     explicit Impl(const std::shared_ptr<R>& wrapper)
706         : performed_(false), wrapper_(wrapper) {}
707
708     Result Perform(const ArgumentTuple&) override {
709       GTEST_CHECK_(!performed_)
710           << "A ByMove() action should only be performed once.";
711       performed_ = true;
712       return std::move(wrapper_->payload);
713     }
714
715    private:
716     bool performed_;
717     const std::shared_ptr<R> wrapper_;
718   };
719
720   const std::shared_ptr<R> value_;
721 };
722
723 // Implements the ReturnNull() action.
724 class ReturnNullAction {
725  public:
726   // Allows ReturnNull() to be used in any pointer-returning function. In C++11
727   // this is enforced by returning nullptr, and in non-C++11 by asserting a
728   // pointer type on compile time.
729   template <typename Result, typename ArgumentTuple>
730   static Result Perform(const ArgumentTuple&) {
731     return nullptr;
732   }
733 };
734
735 // Implements the Return() action.
736 class ReturnVoidAction {
737  public:
738   // Allows Return() to be used in any void-returning function.
739   template <typename Result, typename ArgumentTuple>
740   static void Perform(const ArgumentTuple&) {
741     static_assert(std::is_void<Result>::value, "Result should be void.");
742   }
743 };
744
745 // Implements the polymorphic ReturnRef(x) action, which can be used
746 // in any function that returns a reference to the type of x,
747 // regardless of the argument types.
748 template <typename T>
749 class ReturnRefAction {
750  public:
751   // Constructs a ReturnRefAction object from the reference to be returned.
752   explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
753
754   // This template type conversion operator allows ReturnRef(x) to be
755   // used in ANY function that returns a reference to x's type.
756   template <typename F>
757   operator Action<F>() const {
758     typedef typename Function<F>::Result Result;
759     // Asserts that the function return type is a reference.  This
760     // catches the user error of using ReturnRef(x) when Return(x)
761     // should be used, and generates some helpful error message.
762     GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value,
763                           use_Return_instead_of_ReturnRef_to_return_a_value);
764     return Action<F>(new Impl<F>(ref_));
765   }
766
767  private:
768   // Implements the ReturnRef(x) action for a particular function type F.
769   template <typename F>
770   class Impl : public ActionInterface<F> {
771    public:
772     typedef typename Function<F>::Result Result;
773     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
774
775     explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
776
777     Result Perform(const ArgumentTuple&) override { return ref_; }
778
779    private:
780     T& ref_;
781   };
782
783   T& ref_;
784 };
785
786 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
787 // used in any function that returns a reference to the type of x,
788 // regardless of the argument types.
789 template <typename T>
790 class ReturnRefOfCopyAction {
791  public:
792   // Constructs a ReturnRefOfCopyAction object from the reference to
793   // be returned.
794   explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
795
796   // This template type conversion operator allows ReturnRefOfCopy(x) to be
797   // used in ANY function that returns a reference to x's type.
798   template <typename F>
799   operator Action<F>() const {
800     typedef typename Function<F>::Result Result;
801     // Asserts that the function return type is a reference.  This
802     // catches the user error of using ReturnRefOfCopy(x) when Return(x)
803     // should be used, and generates some helpful error message.
804     GTEST_COMPILE_ASSERT_(
805         std::is_reference<Result>::value,
806         use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
807     return Action<F>(new Impl<F>(value_));
808   }
809
810  private:
811   // Implements the ReturnRefOfCopy(x) action for a particular function type F.
812   template <typename F>
813   class Impl : public ActionInterface<F> {
814    public:
815     typedef typename Function<F>::Result Result;
816     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
817
818     explicit Impl(const T& value) : value_(value) {}  // NOLINT
819
820     Result Perform(const ArgumentTuple&) override { return value_; }
821
822    private:
823     T value_;
824   };
825
826   const T value_;
827 };
828
829 // Implements the polymorphic ReturnRoundRobin(v) action, which can be
830 // used in any function that returns the element_type of v.
831 template <typename T>
832 class ReturnRoundRobinAction {
833  public:
834   explicit ReturnRoundRobinAction(std::vector<T> values) {
835     GTEST_CHECK_(!values.empty())
836         << "ReturnRoundRobin requires at least one element.";
837     state_->values = std::move(values);
838   }
839
840   template <typename... Args>
841   T operator()(Args&&...) const {
842      return state_->Next();
843   }
844
845  private:
846   struct State {
847     T Next() {
848       T ret_val = values[i++];
849       if (i == values.size()) i = 0;
850       return ret_val;
851     }
852
853     std::vector<T> values;
854     size_t i = 0;
855   };
856   std::shared_ptr<State> state_ = std::make_shared<State>();
857 };
858
859 // Implements the polymorphic DoDefault() action.
860 class DoDefaultAction {
861  public:
862   // This template type conversion operator allows DoDefault() to be
863   // used in any function.
864   template <typename F>
865   operator Action<F>() const { return Action<F>(); }  // NOLINT
866 };
867
868 // Implements the Assign action to set a given pointer referent to a
869 // particular value.
870 template <typename T1, typename T2>
871 class AssignAction {
872  public:
873   AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
874
875   template <typename Result, typename ArgumentTuple>
876   void Perform(const ArgumentTuple& /* args */) const {
877     *ptr_ = value_;
878   }
879
880  private:
881   T1* const ptr_;
882   const T2 value_;
883 };
884
885 #if !GTEST_OS_WINDOWS_MOBILE
886
887 // Implements the SetErrnoAndReturn action to simulate return from
888 // various system calls and libc functions.
889 template <typename T>
890 class SetErrnoAndReturnAction {
891  public:
892   SetErrnoAndReturnAction(int errno_value, T result)
893       : errno_(errno_value),
894         result_(result) {}
895   template <typename Result, typename ArgumentTuple>
896   Result Perform(const ArgumentTuple& /* args */) const {
897     errno = errno_;
898     return result_;
899   }
900
901  private:
902   const int errno_;
903   const T result_;
904 };
905
906 #endif  // !GTEST_OS_WINDOWS_MOBILE
907
908 // Implements the SetArgumentPointee<N>(x) action for any function
909 // whose N-th argument (0-based) is a pointer to x's type.
910 template <size_t N, typename A, typename = void>
911 struct SetArgumentPointeeAction {
912   A value;
913
914   template <typename... Args>
915   void operator()(const Args&... args) const {
916     *::std::get<N>(std::tie(args...)) = value;
917   }
918 };
919
920 // Implements the Invoke(object_ptr, &Class::Method) action.
921 template <class Class, typename MethodPtr>
922 struct InvokeMethodAction {
923   Class* const obj_ptr;
924   const MethodPtr method_ptr;
925
926   template <typename... Args>
927   auto operator()(Args&&... args) const
928       -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
929     return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
930   }
931 };
932
933 // Implements the InvokeWithoutArgs(f) action.  The template argument
934 // FunctionImpl is the implementation type of f, which can be either a
935 // function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
936 // Action<F> as long as f's type is compatible with F.
937 template <typename FunctionImpl>
938 struct InvokeWithoutArgsAction {
939   FunctionImpl function_impl;
940
941   // Allows InvokeWithoutArgs(f) to be used as any action whose type is
942   // compatible with f.
943   template <typename... Args>
944   auto operator()(const Args&...) -> decltype(function_impl()) {
945     return function_impl();
946   }
947 };
948
949 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
950 template <class Class, typename MethodPtr>
951 struct InvokeMethodWithoutArgsAction {
952   Class* const obj_ptr;
953   const MethodPtr method_ptr;
954
955   using ReturnType =
956       decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
957
958   template <typename... Args>
959   ReturnType operator()(const Args&...) const {
960     return (obj_ptr->*method_ptr)();
961   }
962 };
963
964 // Implements the IgnoreResult(action) action.
965 template <typename A>
966 class IgnoreResultAction {
967  public:
968   explicit IgnoreResultAction(const A& action) : action_(action) {}
969
970   template <typename F>
971   operator Action<F>() const {
972     // Assert statement belongs here because this is the best place to verify
973     // conditions on F. It produces the clearest error messages
974     // in most compilers.
975     // Impl really belongs in this scope as a local class but can't
976     // because MSVC produces duplicate symbols in different translation units
977     // in this case. Until MS fixes that bug we put Impl into the class scope
978     // and put the typedef both here (for use in assert statement) and
979     // in the Impl class. But both definitions must be the same.
980     typedef typename internal::Function<F>::Result Result;
981
982     // Asserts at compile time that F returns void.
983     static_assert(std::is_void<Result>::value, "Result type should be void.");
984
985     return Action<F>(new Impl<F>(action_));
986   }
987
988  private:
989   template <typename F>
990   class Impl : public ActionInterface<F> {
991    public:
992     typedef typename internal::Function<F>::Result Result;
993     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
994
995     explicit Impl(const A& action) : action_(action) {}
996
997     void Perform(const ArgumentTuple& args) override {
998       // Performs the action and ignores its result.
999       action_.Perform(args);
1000     }
1001
1002    private:
1003     // Type OriginalFunction is the same as F except that its return
1004     // type is IgnoredValue.
1005     typedef typename internal::Function<F>::MakeResultIgnoredValue
1006         OriginalFunction;
1007
1008     const Action<OriginalFunction> action_;
1009   };
1010
1011   const A action_;
1012 };
1013
1014 template <typename InnerAction, size_t... I>
1015 struct WithArgsAction {
1016   InnerAction action;
1017
1018   // The inner action could be anything convertible to Action<X>.
1019   // We use the conversion operator to detect the signature of the inner Action.
1020   template <typename R, typename... Args>
1021   operator Action<R(Args...)>() const {  // NOLINT
1022     using TupleType = std::tuple<Args...>;
1023     Action<R(typename std::tuple_element<I, TupleType>::type...)>
1024         converted(action);
1025
1026     return [converted](Args... args) -> R {
1027       return converted.Perform(std::forward_as_tuple(
1028         std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
1029     };
1030   }
1031 };
1032
1033 template <typename... Actions>
1034 struct DoAllAction {
1035  private:
1036   template <typename T>
1037   using NonFinalType =
1038       typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
1039
1040   template <typename ActionT, size_t... I>
1041   std::vector<ActionT> Convert(IndexSequence<I...>) const {
1042     return {ActionT(std::get<I>(actions))...};
1043   }
1044
1045  public:
1046   std::tuple<Actions...> actions;
1047
1048   template <typename R, typename... Args>
1049   operator Action<R(Args...)>() const {  // NOLINT
1050     struct Op {
1051       std::vector<Action<void(NonFinalType<Args>...)>> converted;
1052       Action<R(Args...)> last;
1053       R operator()(Args... args) const {
1054         auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...);
1055         for (auto& a : converted) {
1056           a.Perform(tuple_args);
1057         }
1058         return last.Perform(std::move(tuple_args));
1059       }
1060     };
1061     return Op{Convert<Action<void(NonFinalType<Args>...)>>(
1062                   MakeIndexSequence<sizeof...(Actions) - 1>()),
1063               std::get<sizeof...(Actions) - 1>(actions)};
1064   }
1065 };
1066
1067 template <typename T, typename... Params>
1068 struct ReturnNewAction {
1069   T* operator()() const {
1070     return internal::Apply(
1071         [](const Params&... unpacked_params) {
1072           return new T(unpacked_params...);
1073         },
1074         params);
1075   }
1076   std::tuple<Params...> params;
1077 };
1078
1079 template <size_t k>
1080 struct ReturnArgAction {
1081   template <typename... Args>
1082   auto operator()(const Args&... args) const ->
1083       typename std::tuple_element<k, std::tuple<Args...>>::type {
1084     return std::get<k>(std::tie(args...));
1085   }
1086 };
1087
1088 template <size_t k, typename Ptr>
1089 struct SaveArgAction {
1090   Ptr pointer;
1091
1092   template <typename... Args>
1093   void operator()(const Args&... args) const {
1094     *pointer = std::get<k>(std::tie(args...));
1095   }
1096 };
1097
1098 template <size_t k, typename Ptr>
1099 struct SaveArgPointeeAction {
1100   Ptr pointer;
1101
1102   template <typename... Args>
1103   void operator()(const Args&... args) const {
1104     *pointer = *std::get<k>(std::tie(args...));
1105   }
1106 };
1107
1108 template <size_t k, typename T>
1109 struct SetArgRefereeAction {
1110   T value;
1111
1112   template <typename... Args>
1113   void operator()(Args&&... args) const {
1114     using argk_type =
1115         typename ::std::tuple_element<k, std::tuple<Args...>>::type;
1116     static_assert(std::is_lvalue_reference<argk_type>::value,
1117                   "Argument must be a reference type.");
1118     std::get<k>(std::tie(args...)) = value;
1119   }
1120 };
1121
1122 template <size_t k, typename I1, typename I2>
1123 struct SetArrayArgumentAction {
1124   I1 first;
1125   I2 last;
1126
1127   template <typename... Args>
1128   void operator()(const Args&... args) const {
1129     auto value = std::get<k>(std::tie(args...));
1130     for (auto it = first; it != last; ++it, (void)++value) {
1131       *value = *it;
1132     }
1133   }
1134 };
1135
1136 template <size_t k>
1137 struct DeleteArgAction {
1138   template <typename... Args>
1139   void operator()(const Args&... args) const {
1140     delete std::get<k>(std::tie(args...));
1141   }
1142 };
1143
1144 template <typename Ptr>
1145 struct ReturnPointeeAction {
1146   Ptr pointer;
1147   template <typename... Args>
1148   auto operator()(const Args&...) const -> decltype(*pointer) {
1149     return *pointer;
1150   }
1151 };
1152
1153 #if GTEST_HAS_EXCEPTIONS
1154 template <typename T>
1155 struct ThrowAction {
1156   T exception;
1157   // We use a conversion operator to adapt to any return type.
1158   template <typename R, typename... Args>
1159   operator Action<R(Args...)>() const {  // NOLINT
1160     T copy = exception;
1161     return [copy](Args...) -> R { throw copy; };
1162   }
1163 };
1164 #endif  // GTEST_HAS_EXCEPTIONS
1165
1166 }  // namespace internal
1167
1168 // An Unused object can be implicitly constructed from ANY value.
1169 // This is handy when defining actions that ignore some or all of the
1170 // mock function arguments.  For example, given
1171 //
1172 //   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
1173 //   MOCK_METHOD3(Bar, double(int index, double x, double y));
1174 //
1175 // instead of
1176 //
1177 //   double DistanceToOriginWithLabel(const string& label, double x, double y) {
1178 //     return sqrt(x*x + y*y);
1179 //   }
1180 //   double DistanceToOriginWithIndex(int index, double x, double y) {
1181 //     return sqrt(x*x + y*y);
1182 //   }
1183 //   ...
1184 //   EXPECT_CALL(mock, Foo("abc", _, _))
1185 //       .WillOnce(Invoke(DistanceToOriginWithLabel));
1186 //   EXPECT_CALL(mock, Bar(5, _, _))
1187 //       .WillOnce(Invoke(DistanceToOriginWithIndex));
1188 //
1189 // you could write
1190 //
1191 //   // We can declare any uninteresting argument as Unused.
1192 //   double DistanceToOrigin(Unused, double x, double y) {
1193 //     return sqrt(x*x + y*y);
1194 //   }
1195 //   ...
1196 //   EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
1197 //   EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
1198 typedef internal::IgnoredValue Unused;
1199
1200 // Creates an action that does actions a1, a2, ..., sequentially in
1201 // each invocation. All but the last action will have a readonly view of the
1202 // arguments.
1203 template <typename... Action>
1204 internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
1205     Action&&... action) {
1206   return {std::forward_as_tuple(std::forward<Action>(action)...)};
1207 }
1208
1209 // WithArg<k>(an_action) creates an action that passes the k-th
1210 // (0-based) argument of the mock function to an_action and performs
1211 // it.  It adapts an action accepting one argument to one that accepts
1212 // multiple arguments.  For convenience, we also provide
1213 // WithArgs<k>(an_action) (defined below) as a synonym.
1214 template <size_t k, typename InnerAction>
1215 internal::WithArgsAction<typename std::decay<InnerAction>::type, k>
1216 WithArg(InnerAction&& action) {
1217   return {std::forward<InnerAction>(action)};
1218 }
1219
1220 // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
1221 // the selected arguments of the mock function to an_action and
1222 // performs it.  It serves as an adaptor between actions with
1223 // different argument lists.
1224 template <size_t k, size_t... ks, typename InnerAction>
1225 internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
1226 WithArgs(InnerAction&& action) {
1227   return {std::forward<InnerAction>(action)};
1228 }
1229
1230 // WithoutArgs(inner_action) can be used in a mock function with a
1231 // non-empty argument list to perform inner_action, which takes no
1232 // argument.  In other words, it adapts an action accepting no
1233 // argument to one that accepts (and ignores) arguments.
1234 template <typename InnerAction>
1235 internal::WithArgsAction<typename std::decay<InnerAction>::type>
1236 WithoutArgs(InnerAction&& action) {
1237   return {std::forward<InnerAction>(action)};
1238 }
1239
1240 // Creates an action that returns 'value'.  'value' is passed by value
1241 // instead of const reference - otherwise Return("string literal")
1242 // will trigger a compiler error about using array as initializer.
1243 template <typename R>
1244 internal::ReturnAction<R> Return(R value) {
1245   return internal::ReturnAction<R>(std::move(value));
1246 }
1247
1248 // Creates an action that returns NULL.
1249 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
1250   return MakePolymorphicAction(internal::ReturnNullAction());
1251 }
1252
1253 // Creates an action that returns from a void function.
1254 inline PolymorphicAction<internal::ReturnVoidAction> Return() {
1255   return MakePolymorphicAction(internal::ReturnVoidAction());
1256 }
1257
1258 // Creates an action that returns the reference to a variable.
1259 template <typename R>
1260 inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
1261   return internal::ReturnRefAction<R>(x);
1262 }
1263
1264 // Prevent using ReturnRef on reference to temporary.
1265 template <typename R, R* = nullptr>
1266 internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
1267
1268 // Creates an action that returns the reference to a copy of the
1269 // argument.  The copy is created when the action is constructed and
1270 // lives as long as the action.
1271 template <typename R>
1272 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
1273   return internal::ReturnRefOfCopyAction<R>(x);
1274 }
1275
1276 // Modifies the parent action (a Return() action) to perform a move of the
1277 // argument instead of a copy.
1278 // Return(ByMove()) actions can only be executed once and will assert this
1279 // invariant.
1280 template <typename R>
1281 internal::ByMoveWrapper<R> ByMove(R x) {
1282   return internal::ByMoveWrapper<R>(std::move(x));
1283 }
1284
1285 // Creates an action that returns an element of `vals`. Calling this action will
1286 // repeatedly return the next value from `vals` until it reaches the end and
1287 // will restart from the beginning.
1288 template <typename T>
1289 internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) {
1290   return internal::ReturnRoundRobinAction<T>(std::move(vals));
1291 }
1292
1293 // Creates an action that returns an element of `vals`. Calling this action will
1294 // repeatedly return the next value from `vals` until it reaches the end and
1295 // will restart from the beginning.
1296 template <typename T>
1297 internal::ReturnRoundRobinAction<T> ReturnRoundRobin(
1298     std::initializer_list<T> vals) {
1299   return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
1300 }
1301
1302 // Creates an action that does the default action for the give mock function.
1303 inline internal::DoDefaultAction DoDefault() {
1304   return internal::DoDefaultAction();
1305 }
1306
1307 // Creates an action that sets the variable pointed by the N-th
1308 // (0-based) function argument to 'value'.
1309 template <size_t N, typename T>
1310 internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) {
1311   return {std::move(value)};
1312 }
1313
1314 // The following version is DEPRECATED.
1315 template <size_t N, typename T>
1316 internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
1317   return {std::move(value)};
1318 }
1319
1320 // Creates an action that sets a pointer referent to a given value.
1321 template <typename T1, typename T2>
1322 PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
1323   return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
1324 }
1325
1326 #if !GTEST_OS_WINDOWS_MOBILE
1327
1328 // Creates an action that sets errno and returns the appropriate error.
1329 template <typename T>
1330 PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
1331 SetErrnoAndReturn(int errval, T result) {
1332   return MakePolymorphicAction(
1333       internal::SetErrnoAndReturnAction<T>(errval, result));
1334 }
1335
1336 #endif  // !GTEST_OS_WINDOWS_MOBILE
1337
1338 // Various overloads for Invoke().
1339
1340 // Legacy function.
1341 // Actions can now be implicitly constructed from callables. No need to create
1342 // wrapper objects.
1343 // This function exists for backwards compatibility.
1344 template <typename FunctionImpl>
1345 typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
1346   return std::forward<FunctionImpl>(function_impl);
1347 }
1348
1349 // Creates an action that invokes the given method on the given object
1350 // with the mock function's arguments.
1351 template <class Class, typename MethodPtr>
1352 internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
1353                                                       MethodPtr method_ptr) {
1354   return {obj_ptr, method_ptr};
1355 }
1356
1357 // Creates an action that invokes 'function_impl' with no argument.
1358 template <typename FunctionImpl>
1359 internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
1360 InvokeWithoutArgs(FunctionImpl function_impl) {
1361   return {std::move(function_impl)};
1362 }
1363
1364 // Creates an action that invokes the given method on the given object
1365 // with no argument.
1366 template <class Class, typename MethodPtr>
1367 internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
1368     Class* obj_ptr, MethodPtr method_ptr) {
1369   return {obj_ptr, method_ptr};
1370 }
1371
1372 // Creates an action that performs an_action and throws away its
1373 // result.  In other words, it changes the return type of an_action to
1374 // void.  an_action MUST NOT return void, or the code won't compile.
1375 template <typename A>
1376 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
1377   return internal::IgnoreResultAction<A>(an_action);
1378 }
1379
1380 // Creates a reference wrapper for the given L-value.  If necessary,
1381 // you can explicitly specify the type of the reference.  For example,
1382 // suppose 'derived' is an object of type Derived, ByRef(derived)
1383 // would wrap a Derived&.  If you want to wrap a const Base& instead,
1384 // where Base is a base class of Derived, just write:
1385 //
1386 //   ByRef<const Base>(derived)
1387 //
1388 // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
1389 // However, it may still be used for consistency with ByMove().
1390 template <typename T>
1391 inline ::std::reference_wrapper<T> ByRef(T& l_value) {  // NOLINT
1392   return ::std::reference_wrapper<T>(l_value);
1393 }
1394
1395 // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
1396 // instance of type T, constructed on the heap with constructor arguments
1397 // a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
1398 template <typename T, typename... Params>
1399 internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew(
1400     Params&&... params) {
1401   return {std::forward_as_tuple(std::forward<Params>(params)...)};
1402 }
1403
1404 // Action ReturnArg<k>() returns the k-th argument of the mock function.
1405 template <size_t k>
1406 internal::ReturnArgAction<k> ReturnArg() {
1407   return {};
1408 }
1409
1410 // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
1411 // mock function to *pointer.
1412 template <size_t k, typename Ptr>
1413 internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) {
1414   return {pointer};
1415 }
1416
1417 // Action SaveArgPointee<k>(pointer) saves the value pointed to
1418 // by the k-th (0-based) argument of the mock function to *pointer.
1419 template <size_t k, typename Ptr>
1420 internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) {
1421   return {pointer};
1422 }
1423
1424 // Action SetArgReferee<k>(value) assigns 'value' to the variable
1425 // referenced by the k-th (0-based) argument of the mock function.
1426 template <size_t k, typename T>
1427 internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee(
1428     T&& value) {
1429   return {std::forward<T>(value)};
1430 }
1431
1432 // Action SetArrayArgument<k>(first, last) copies the elements in
1433 // source range [first, last) to the array pointed to by the k-th
1434 // (0-based) argument, which can be either a pointer or an
1435 // iterator. The action does not take ownership of the elements in the
1436 // source range.
1437 template <size_t k, typename I1, typename I2>
1438 internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first,
1439                                                              I2 last) {
1440   return {first, last};
1441 }
1442
1443 // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
1444 // function.
1445 template <size_t k>
1446 internal::DeleteArgAction<k> DeleteArg() {
1447   return {};
1448 }
1449
1450 // This action returns the value pointed to by 'pointer'.
1451 template <typename Ptr>
1452 internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) {
1453   return {pointer};
1454 }
1455
1456 // Action Throw(exception) can be used in a mock function of any type
1457 // to throw the given exception.  Any copyable value can be thrown.
1458 #if GTEST_HAS_EXCEPTIONS
1459 template <typename T>
1460 internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) {
1461   return {std::forward<T>(exception)};
1462 }
1463 #endif  // GTEST_HAS_EXCEPTIONS
1464
1465 namespace internal {
1466
1467 // A macro from the ACTION* family (defined later in gmock-generated-actions.h)
1468 // defines an action that can be used in a mock function.  Typically,
1469 // these actions only care about a subset of the arguments of the mock
1470 // function.  For example, if such an action only uses the second
1471 // argument, it can be used in any mock function that takes >= 2
1472 // arguments where the type of the second argument is compatible.
1473 //
1474 // Therefore, the action implementation must be prepared to take more
1475 // arguments than it needs.  The ExcessiveArg type is used to
1476 // represent those excessive arguments.  In order to keep the compiler
1477 // error messages tractable, we define it in the testing namespace
1478 // instead of testing::internal.  However, this is an INTERNAL TYPE
1479 // and subject to change without notice, so a user MUST NOT USE THIS
1480 // TYPE DIRECTLY.
1481 struct ExcessiveArg {};
1482
1483 // Builds an implementation of an Action<> for some particular signature, using
1484 // a class defined by an ACTION* macro.
1485 template <typename F, typename Impl> struct ActionImpl;
1486
1487 template <typename Impl>
1488 struct ImplBase {
1489   struct Holder {
1490     // Allows each copy of the Action<> to get to the Impl.
1491     explicit operator const Impl&() const { return *ptr; }
1492     std::shared_ptr<Impl> ptr;
1493   };
1494   using type = typename std::conditional<std::is_constructible<Impl>::value,
1495                                          Impl, Holder>::type;
1496 };
1497
1498 template <typename R, typename... Args, typename Impl>
1499 struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
1500   using Base = typename ImplBase<Impl>::type;
1501   using function_type = R(Args...);
1502   using args_type = std::tuple<Args...>;
1503
1504   ActionImpl() = default;  // Only defined if appropriate for Base.
1505   explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} { }
1506
1507   R operator()(Args&&... arg) const {
1508     static constexpr size_t kMaxArgs =
1509         sizeof...(Args) <= 10 ? sizeof...(Args) : 10;
1510     return Apply(MakeIndexSequence<kMaxArgs>{},
1511                  MakeIndexSequence<10 - kMaxArgs>{},
1512                  args_type{std::forward<Args>(arg)...});
1513   }
1514
1515   template <std::size_t... arg_id, std::size_t... excess_id>
1516   R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>,
1517           const args_type& args) const {
1518     // Impl need not be specific to the signature of action being implemented;
1519     // only the implementing function body needs to have all of the specific
1520     // types instantiated.  Up to 10 of the args that are provided by the
1521     // args_type get passed, followed by a dummy of unspecified type for the
1522     // remainder up to 10 explicit args.
1523     static constexpr ExcessiveArg kExcessArg{};
1524     return static_cast<const Impl&>(*this).template gmock_PerformImpl<
1525         /*function_type=*/function_type, /*return_type=*/R,
1526         /*args_type=*/args_type,
1527         /*argN_type=*/typename std::tuple_element<arg_id, args_type>::type...>(
1528         /*args=*/args, std::get<arg_id>(args)...,
1529         ((void)excess_id, kExcessArg)...);
1530   }
1531 };
1532
1533 // Stores a default-constructed Impl as part of the Action<>'s
1534 // std::function<>. The Impl should be trivial to copy.
1535 template <typename F, typename Impl>
1536 ::testing::Action<F> MakeAction() {
1537   return ::testing::Action<F>(ActionImpl<F, Impl>());
1538 }
1539
1540 // Stores just the one given instance of Impl.
1541 template <typename F, typename Impl>
1542 ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) {
1543   return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl)));
1544 }
1545
1546 #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
1547   , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
1548 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_           \
1549   const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
1550       GMOCK_INTERNAL_ARG_UNUSED, , 10)
1551
1552 #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
1553 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
1554   const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
1555
1556 #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
1557 #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
1558   GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
1559
1560 #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
1561 #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
1562   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
1563
1564 #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
1565 #define GMOCK_ACTION_TYPE_PARAMS_(params) \
1566   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
1567
1568 #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
1569   , param##_type gmock_p##i
1570 #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
1571   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
1572
1573 #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
1574   , std::forward<param##_type>(gmock_p##i)
1575 #define GMOCK_ACTION_GVALUE_PARAMS_(params) \
1576   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
1577
1578 #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
1579   , param(::std::forward<param##_type>(gmock_p##i))
1580 #define GMOCK_ACTION_INIT_PARAMS_(params) \
1581   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
1582
1583 #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
1584 #define GMOCK_ACTION_FIELD_PARAMS_(params) \
1585   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
1586
1587 #define GMOCK_INTERNAL_ACTION(name, full_name, params)                        \
1588   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                            \
1589   class full_name {                                                           \
1590    public:                                                                    \
1591     explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))              \
1592         : impl_(std::make_shared<gmock_Impl>(                                 \
1593                 GMOCK_ACTION_GVALUE_PARAMS_(params))) { }                     \
1594     full_name(const full_name&) = default;                                    \
1595     full_name(full_name&&) noexcept = default;                                \
1596     template <typename F>                                                     \
1597     operator ::testing::Action<F>() const {                                   \
1598       return ::testing::internal::MakeAction<F>(impl_);                       \
1599     }                                                                         \
1600    private:                                                                   \
1601     class gmock_Impl {                                                        \
1602      public:                                                                  \
1603       explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))           \
1604           : GMOCK_ACTION_INIT_PARAMS_(params) {}                              \
1605       template <typename function_type, typename return_type,                 \
1606                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>        \
1607       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
1608       GMOCK_ACTION_FIELD_PARAMS_(params)                                      \
1609     };                                                                        \
1610     std::shared_ptr<const gmock_Impl> impl_;                                  \
1611   };                                                                          \
1612   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                            \
1613   inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name(                   \
1614       GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) {                             \
1615     return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>(                      \
1616         GMOCK_ACTION_GVALUE_PARAMS_(params));                                 \
1617   }                                                                           \
1618   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                            \
1619   template <typename function_type, typename return_type, typename args_type, \
1620             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                \
1621   return_type full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::      \
1622   gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
1623
1624 }  // namespace internal
1625
1626 // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
1627 #define ACTION(name)                                                          \
1628   class name##Action {                                                        \
1629    public:                                                                    \
1630    explicit name##Action() noexcept {}                                        \
1631    name##Action(const name##Action&) noexcept {}                              \
1632     template <typename F>                                                     \
1633     operator ::testing::Action<F>() const {                                   \
1634       return ::testing::internal::MakeAction<F, gmock_Impl>();                \
1635     }                                                                         \
1636    private:                                                                   \
1637     class gmock_Impl {                                                        \
1638      public:                                                                  \
1639       template <typename function_type, typename return_type,                 \
1640                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>        \
1641       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
1642     };                                                                        \
1643   };                                                                          \
1644   inline name##Action name() GTEST_MUST_USE_RESULT_;                          \
1645   inline name##Action name() { return name##Action(); }                       \
1646   template <typename function_type, typename return_type, typename args_type, \
1647             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                \
1648   return_type name##Action::gmock_Impl::gmock_PerformImpl(                    \
1649       GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
1650
1651 #define ACTION_P(name, ...) \
1652   GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
1653
1654 #define ACTION_P2(name, ...) \
1655   GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
1656
1657 #define ACTION_P3(name, ...) \
1658   GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
1659
1660 #define ACTION_P4(name, ...) \
1661   GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
1662
1663 #define ACTION_P5(name, ...) \
1664   GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
1665
1666 #define ACTION_P6(name, ...) \
1667   GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
1668
1669 #define ACTION_P7(name, ...) \
1670   GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
1671
1672 #define ACTION_P8(name, ...) \
1673   GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
1674
1675 #define ACTION_P9(name, ...) \
1676   GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
1677
1678 #define ACTION_P10(name, ...) \
1679   GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
1680
1681 }  // namespace testing
1682
1683 #ifdef _MSC_VER
1684 # pragma warning(pop)
1685 #endif
1686
1687 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_