Merge "Fix crashes in various GParamSpec creation functions" into tizen
[platform/upstream/glib.git] / glib / gbytes.c
1 /*
2  * Copyright © 2009, 2010 Codethink Limited
3  * Copyright © 2011 Collabora Ltd.
4  *
5  * SPDX-License-Identifier: LGPL-2.1-or-later
6  *
7  * This library is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * This library is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19  *
20  * Author: Ryan Lortie <desrt@desrt.ca>
21  *         Stef Walter <stefw@collabora.co.uk>
22  */
23
24 #include "config.h"
25
26 #include "gbytes.h"
27
28 #include <glib/garray.h>
29 #include <glib/gstrfuncs.h>
30 #include <glib/gatomic.h>
31 #include <glib/gslice.h>
32 #include <glib/gtestutils.h>
33 #include <glib/gmem.h>
34 #include <glib/gmessages.h>
35 #include <glib/grefcount.h>
36
37 #include <string.h>
38
39 /**
40  * GBytes:
41  *
42  * A simple refcounted data type representing an immutable sequence of zero or
43  * more bytes from an unspecified origin.
44  *
45  * The purpose of a #GBytes is to keep the memory region that it holds
46  * alive for as long as anyone holds a reference to the bytes.  When
47  * the last reference count is dropped, the memory is released. Multiple
48  * unrelated callers can use byte data in the #GBytes without coordinating
49  * their activities, resting assured that the byte data will not change or
50  * move while they hold a reference.
51  *
52  * A #GBytes can come from many different origins that may have
53  * different procedures for freeing the memory region.  Examples are
54  * memory from g_malloc(), from memory slices, from a #GMappedFile or
55  * memory from other allocators.
56  *
57  * #GBytes work well as keys in #GHashTable. Use g_bytes_equal() and
58  * g_bytes_hash() as parameters to g_hash_table_new() or g_hash_table_new_full().
59  * #GBytes can also be used as keys in a #GTree by passing the g_bytes_compare()
60  * function to g_tree_new().
61  *
62  * The data pointed to by this bytes must not be modified. For a mutable
63  * array of bytes see #GByteArray. Use g_bytes_unref_to_array() to create a
64  * mutable array for a #GBytes sequence. To create an immutable #GBytes from
65  * a mutable #GByteArray, use the g_byte_array_free_to_bytes() function.
66  *
67  * Since: 2.32
68  **/
69
70 /* Keep in sync with glib/tests/bytes.c */
71 struct _GBytes
72 {
73   gconstpointer data;  /* may be NULL iff (size == 0) */
74   gsize size;  /* may be 0 */
75   gatomicrefcount ref_count;
76   GDestroyNotify free_func;
77   gpointer user_data;
78 };
79
80 /**
81  * g_bytes_new:
82  * @data: (transfer none) (array length=size) (element-type guint8) (nullable):
83  *        the data to be used for the bytes
84  * @size: the size of @data
85  *
86  * Creates a new #GBytes from @data.
87  *
88  * @data is copied. If @size is 0, @data may be %NULL.
89  *
90  * Returns: (transfer full): a new #GBytes
91  *
92  * Since: 2.32
93  */
94 GBytes *
95 g_bytes_new (gconstpointer data,
96              gsize         size)
97 {
98   g_return_val_if_fail (data != NULL || size == 0, NULL);
99
100   return g_bytes_new_take (g_memdup2 (data, size), size);
101 }
102
103 /**
104  * g_bytes_new_take:
105  * @data: (transfer full) (array length=size) (element-type guint8) (nullable):
106  *        the data to be used for the bytes
107  * @size: the size of @data
108  *
109  * Creates a new #GBytes from @data.
110  *
111  * After this call, @data belongs to the #GBytes and may no longer be
112  * modified by the caller. The memory of @data has to be dynamically
113  * allocated and will eventually be freed with g_free().
114  *
115  * For creating #GBytes with memory from other allocators, see
116  * g_bytes_new_with_free_func().
117  *
118  * @data may be %NULL if @size is 0.
119  *
120  * Returns: (transfer full): a new #GBytes
121  *
122  * Since: 2.32
123  */
124 GBytes *
125 g_bytes_new_take (gpointer data,
126                   gsize    size)
127 {
128   return g_bytes_new_with_free_func (data, size, g_free, data);
129 }
130
131
132 /**
133  * g_bytes_new_static: (skip)
134  * @data: (transfer full) (array length=size) (element-type guint8) (nullable):
135  *        the data to be used for the bytes
136  * @size: the size of @data
137  *
138  * Creates a new #GBytes from static data.
139  *
140  * @data must be static (ie: never modified or freed). It may be %NULL if @size
141  * is 0.
142  *
143  * Returns: (transfer full): a new #GBytes
144  *
145  * Since: 2.32
146  */
147 GBytes *
148 g_bytes_new_static (gconstpointer data,
149                     gsize         size)
150 {
151   return g_bytes_new_with_free_func (data, size, NULL, NULL);
152 }
153
154 /**
155  * g_bytes_new_with_free_func: (skip)
156  * @data: (array length=size) (element-type guint8) (nullable):
157  *        the data to be used for the bytes
158  * @size: the size of @data
159  * @free_func: the function to call to release the data
160  * @user_data: data to pass to @free_func
161  *
162  * Creates a #GBytes from @data.
163  *
164  * When the last reference is dropped, @free_func will be called with the
165  * @user_data argument.
166  *
167  * @data must not be modified after this call is made until @free_func has
168  * been called to indicate that the bytes is no longer in use.
169  *
170  * @data may be %NULL if @size is 0.
171  *
172  * Returns: (transfer full): a new #GBytes
173  *
174  * Since: 2.32
175  */
176 GBytes *
177 g_bytes_new_with_free_func (gconstpointer  data,
178                             gsize          size,
179                             GDestroyNotify free_func,
180                             gpointer       user_data)
181 {
182   GBytes *bytes;
183
184   g_return_val_if_fail (data != NULL || size == 0, NULL);
185
186   bytes = g_slice_new (GBytes);
187   bytes->data = data;
188   bytes->size = size;
189   bytes->free_func = free_func;
190   bytes->user_data = user_data;
191   g_atomic_ref_count_init (&bytes->ref_count);
192
193   return (GBytes *)bytes;
194 }
195
196 /**
197  * g_bytes_new_from_bytes:
198  * @bytes: a #GBytes
199  * @offset: offset which subsection starts at
200  * @length: length of subsection
201  *
202  * Creates a #GBytes which is a subsection of another #GBytes. The @offset +
203  * @length may not be longer than the size of @bytes.
204  *
205  * A reference to @bytes will be held by the newly created #GBytes until
206  * the byte data is no longer needed.
207  *
208  * Since 2.56, if @offset is 0 and @length matches the size of @bytes, then
209  * @bytes will be returned with the reference count incremented by 1. If @bytes
210  * is a slice of another #GBytes, then the resulting #GBytes will reference
211  * the same #GBytes instead of @bytes. This allows consumers to simplify the
212  * usage of #GBytes when asynchronously writing to streams.
213  *
214  * Returns: (transfer full): a new #GBytes
215  *
216  * Since: 2.32
217  */
218 GBytes *
219 g_bytes_new_from_bytes (GBytes  *bytes,
220                         gsize    offset,
221                         gsize    length)
222 {
223   gchar *base;
224
225   /* Note that length may be 0. */
226   g_return_val_if_fail (bytes != NULL, NULL);
227   g_return_val_if_fail (offset <= bytes->size, NULL);
228   g_return_val_if_fail (offset + length <= bytes->size, NULL);
229
230   /* Avoid an extra GBytes if all bytes were requested */
231   if (offset == 0 && length == bytes->size)
232     return g_bytes_ref (bytes);
233
234   base = (gchar *)bytes->data + offset;
235
236   /* Avoid referencing intermediate GBytes. In practice, this should
237    * only loop once.
238    */
239   while (bytes->free_func == (gpointer)g_bytes_unref)
240     bytes = bytes->user_data;
241
242   g_return_val_if_fail (bytes != NULL, NULL);
243   g_return_val_if_fail (base >= (gchar *)bytes->data, NULL);
244   g_return_val_if_fail (base <= (gchar *)bytes->data + bytes->size, NULL);
245   g_return_val_if_fail (base + length <= (gchar *)bytes->data + bytes->size, NULL);
246
247   return g_bytes_new_with_free_func (base, length,
248                                      (GDestroyNotify)g_bytes_unref, g_bytes_ref (bytes));
249 }
250
251 /**
252  * g_bytes_get_data:
253  * @bytes: a #GBytes
254  * @size: (out) (optional): location to return size of byte data
255  *
256  * Get the byte data in the #GBytes. This data should not be modified.
257  *
258  * This function will always return the same pointer for a given #GBytes.
259  *
260  * %NULL may be returned if @size is 0. This is not guaranteed, as the #GBytes
261  * may represent an empty string with @data non-%NULL and @size as 0. %NULL will
262  * not be returned if @size is non-zero.
263  *
264  * Returns: (transfer none) (array length=size) (element-type guint8) (nullable):
265  *          a pointer to the byte data, or %NULL
266  *
267  * Since: 2.32
268  */
269 gconstpointer
270 g_bytes_get_data (GBytes *bytes,
271                   gsize *size)
272 {
273   g_return_val_if_fail (bytes != NULL, NULL);
274   if (size)
275     *size = bytes->size;
276   return bytes->data;
277 }
278
279 /**
280  * g_bytes_get_size:
281  * @bytes: a #GBytes
282  *
283  * Get the size of the byte data in the #GBytes.
284  *
285  * This function will always return the same value for a given #GBytes.
286  *
287  * Returns: the size
288  *
289  * Since: 2.32
290  */
291 gsize
292 g_bytes_get_size (GBytes *bytes)
293 {
294   g_return_val_if_fail (bytes != NULL, 0);
295   return bytes->size;
296 }
297
298
299 /**
300  * g_bytes_ref:
301  * @bytes: a #GBytes
302  *
303  * Increase the reference count on @bytes.
304  *
305  * Returns: the #GBytes
306  *
307  * Since: 2.32
308  */
309 GBytes *
310 g_bytes_ref (GBytes *bytes)
311 {
312   g_return_val_if_fail (bytes != NULL, NULL);
313
314   g_atomic_ref_count_inc (&bytes->ref_count);
315
316   return bytes;
317 }
318
319 /**
320  * g_bytes_unref:
321  * @bytes: (nullable): a #GBytes
322  *
323  * Releases a reference on @bytes.  This may result in the bytes being
324  * freed. If @bytes is %NULL, it will return immediately.
325  *
326  * Since: 2.32
327  */
328 void
329 g_bytes_unref (GBytes *bytes)
330 {
331   if (bytes == NULL)
332     return;
333
334   if (g_atomic_ref_count_dec (&bytes->ref_count))
335     {
336       if (bytes->free_func != NULL)
337         bytes->free_func (bytes->user_data);
338       g_slice_free (GBytes, bytes);
339     }
340 }
341
342 /**
343  * g_bytes_equal:
344  * @bytes1: (type GLib.Bytes): a pointer to a #GBytes
345  * @bytes2: (type GLib.Bytes): a pointer to a #GBytes to compare with @bytes1
346  *
347  * Compares the two #GBytes values being pointed to and returns
348  * %TRUE if they are equal.
349  *
350  * This function can be passed to g_hash_table_new() as the @key_equal_func
351  * parameter, when using non-%NULL #GBytes pointers as keys in a #GHashTable.
352  *
353  * Returns: %TRUE if the two keys match.
354  *
355  * Since: 2.32
356  */
357 gboolean
358 g_bytes_equal (gconstpointer bytes1,
359                gconstpointer bytes2)
360 {
361   const GBytes *b1 = bytes1;
362   const GBytes *b2 = bytes2;
363
364   g_return_val_if_fail (bytes1 != NULL, FALSE);
365   g_return_val_if_fail (bytes2 != NULL, FALSE);
366
367   return b1->size == b2->size &&
368          (b1->size == 0 || memcmp (b1->data, b2->data, b1->size) == 0);
369 }
370
371 /**
372  * g_bytes_hash:
373  * @bytes: (type GLib.Bytes): a pointer to a #GBytes key
374  *
375  * Creates an integer hash code for the byte data in the #GBytes.
376  *
377  * This function can be passed to g_hash_table_new() as the @key_hash_func
378  * parameter, when using non-%NULL #GBytes pointers as keys in a #GHashTable.
379  *
380  * Returns: a hash value corresponding to the key.
381  *
382  * Since: 2.32
383  */
384 guint
385 g_bytes_hash (gconstpointer bytes)
386 {
387   const GBytes *a = bytes;
388   const signed char *p, *e;
389   guint32 h = 5381;
390
391   g_return_val_if_fail (bytes != NULL, 0);
392
393   for (p = (signed char *)a->data, e = (signed char *)a->data + a->size; p != e; p++)
394     h = (h << 5) + h + *p;
395
396   return h;
397 }
398
399 /**
400  * g_bytes_compare:
401  * @bytes1: (type GLib.Bytes): a pointer to a #GBytes
402  * @bytes2: (type GLib.Bytes): a pointer to a #GBytes to compare with @bytes1
403  *
404  * Compares the two #GBytes values.
405  *
406  * This function can be used to sort GBytes instances in lexicographical order.
407  *
408  * If @bytes1 and @bytes2 have different length but the shorter one is a
409  * prefix of the longer one then the shorter one is considered to be less than
410  * the longer one. Otherwise the first byte where both differ is used for
411  * comparison. If @bytes1 has a smaller value at that position it is
412  * considered less, otherwise greater than @bytes2.
413  *
414  * Returns: a negative value if @bytes1 is less than @bytes2, a positive value
415  *          if @bytes1 is greater than @bytes2, and zero if @bytes1 is equal to
416  *          @bytes2
417  *
418  *
419  * Since: 2.32
420  */
421 gint
422 g_bytes_compare (gconstpointer bytes1,
423                  gconstpointer bytes2)
424 {
425   const GBytes *b1 = bytes1;
426   const GBytes *b2 = bytes2;
427   gint ret;
428
429   g_return_val_if_fail (bytes1 != NULL, 0);
430   g_return_val_if_fail (bytes2 != NULL, 0);
431
432   ret = memcmp (b1->data, b2->data, MIN (b1->size, b2->size));
433   if (ret == 0 && b1->size != b2->size)
434       ret = b1->size < b2->size ? -1 : 1;
435   return ret;
436 }
437
438 static gpointer
439 try_steal_and_unref (GBytes         *bytes,
440                      GDestroyNotify  free_func,
441                      gsize          *size)
442 {
443   gpointer result;
444
445   if (bytes->free_func != free_func || bytes->data == NULL ||
446       bytes->user_data != bytes->data)
447     return NULL;
448
449   /* Are we the only reference? */
450   if (g_atomic_ref_count_compare (&bytes->ref_count, 1))
451     {
452       *size = bytes->size;
453       result = (gpointer)bytes->data;
454       g_slice_free (GBytes, bytes);
455       return result;
456     }
457
458   return NULL;
459 }
460
461
462 /**
463  * g_bytes_unref_to_data:
464  * @bytes: (transfer full): a #GBytes
465  * @size: (out): location to place the length of the returned data
466  *
467  * Unreferences the bytes, and returns a pointer the same byte data
468  * contents.
469  *
470  * As an optimization, the byte data is returned without copying if this was
471  * the last reference to bytes and bytes was created with g_bytes_new(),
472  * g_bytes_new_take() or g_byte_array_free_to_bytes(). In all other cases the
473  * data is copied.
474  *
475  * Returns: (transfer full) (array length=size) (element-type guint8)
476  *          (not nullable): a pointer to the same byte data, which should be
477  *          freed with g_free()
478  *
479  * Since: 2.32
480  */
481 gpointer
482 g_bytes_unref_to_data (GBytes *bytes,
483                        gsize  *size)
484 {
485   gpointer result;
486
487   g_return_val_if_fail (bytes != NULL, NULL);
488   g_return_val_if_fail (size != NULL, NULL);
489
490   /*
491    * Optimal path: if this is was the last reference, then we can return
492    * the data from this GBytes without copying.
493    */
494
495   result = try_steal_and_unref (bytes, g_free, size);
496   if (result == NULL)
497     {
498       /*
499        * Copy: Non g_malloc (or compatible) allocator, or static memory,
500        * so we have to copy, and then unref.
501        */
502       result = g_memdup2 (bytes->data, bytes->size);
503       *size = bytes->size;
504       g_bytes_unref (bytes);
505     }
506
507   return result;
508 }
509
510 /**
511  * g_bytes_unref_to_array:
512  * @bytes: (transfer full): a #GBytes
513  *
514  * Unreferences the bytes, and returns a new mutable #GByteArray containing
515  * the same byte data.
516  *
517  * As an optimization, the byte data is transferred to the array without copying
518  * if this was the last reference to bytes and bytes was created with
519  * g_bytes_new(), g_bytes_new_take() or g_byte_array_free_to_bytes(). In all
520  * other cases the data is copied.
521  *
522  * Do not use it if @bytes contains more than %G_MAXUINT
523  * bytes. #GByteArray stores the length of its data in #guint, which
524  * may be shorter than #gsize, that @bytes is using.
525  *
526  * Returns: (transfer full): a new mutable #GByteArray containing the same byte data
527  *
528  * Since: 2.32
529  */
530 GByteArray *
531 g_bytes_unref_to_array (GBytes *bytes)
532 {
533   gpointer data;
534   gsize size;
535
536   g_return_val_if_fail (bytes != NULL, NULL);
537
538   data = g_bytes_unref_to_data (bytes, &size);
539   return g_byte_array_new_take (data, size);
540 }
541
542 /**
543  * g_bytes_get_region:
544  * @bytes: a #GBytes
545  * @element_size: a non-zero element size
546  * @offset: an offset to the start of the region within the @bytes
547  * @n_elements: the number of elements in the region
548  *
549  * Gets a pointer to a region in @bytes.
550  *
551  * The region starts at @offset many bytes from the start of the data
552  * and contains @n_elements many elements of @element_size size.
553  *
554  * @n_elements may be zero, but @element_size must always be non-zero.
555  * Ideally, @element_size is a static constant (eg: sizeof a struct).
556  *
557  * This function does careful bounds checking (including checking for
558  * arithmetic overflows) and returns a non-%NULL pointer if the
559  * specified region lies entirely within the @bytes. If the region is
560  * in some way out of range, or if an overflow has occurred, then %NULL
561  * is returned.
562  *
563  * Note: it is possible to have a valid zero-size region. In this case,
564  * the returned pointer will be equal to the base pointer of the data of
565  * @bytes, plus @offset.  This will be non-%NULL except for the case
566  * where @bytes itself was a zero-sized region.  Since it is unlikely
567  * that you will be using this function to check for a zero-sized region
568  * in a zero-sized @bytes, %NULL effectively always means "error".
569  *
570  * Returns: (nullable): the requested region, or %NULL in case of an error
571  *
572  * Since: 2.70
573  */
574 gconstpointer
575 g_bytes_get_region (GBytes *bytes,
576                     gsize   element_size,
577                     gsize   offset,
578                     gsize   n_elements)
579 {
580   gsize total_size;
581   gsize end_offset;
582
583   g_return_val_if_fail (element_size > 0, NULL);
584
585   /* No other assertion checks here.  If something is wrong then we will
586    * simply crash (via NULL dereference or divide-by-zero).
587    */
588
589   if (!g_size_checked_mul (&total_size, element_size, n_elements))
590     return NULL;
591
592   if (!g_size_checked_add (&end_offset, offset, total_size))
593     return NULL;
594
595   /* We now have:
596    *
597    *   0 <= offset <= end_offset
598    *
599    * So we need only check that end_offset is within the range of the
600    * size of @bytes and we're good to go.
601    */
602
603   if (end_offset > bytes->size)
604     return NULL;
605
606   /* We now have:
607    *
608    *   0 <= offset <= end_offset <= bytes->size
609    */
610
611   return ((guchar *) bytes->data) + offset;
612 }