packaging: Add python3-base dependency
[platform/upstream/gdb.git] / gdb / macrotab.c
1 /* C preprocessor macro tables for GDB.
2    Copyright (C) 2002-2023 Free Software Foundation, Inc.
3    Contributed by Red Hat, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20 #include "defs.h"
21 #include "gdbsupport/gdb_obstack.h"
22 #include "gdbsupport/pathstuff.h"
23 #include "splay-tree.h"
24 #include "filenames.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "macrotab.h"
29 #include "bcache.h"
30 #include "complaints.h"
31 #include "macroexp.h"
32
33 \f
34 /* The macro table structure.  */
35
36 struct macro_table
37 {
38   /* The obstack this table's data should be allocated in, or zero if
39      we should use xmalloc.  */
40   struct obstack *obstack;
41
42   /* The bcache we should use to hold macro names, argument names, and
43      definitions, or zero if we should use xmalloc.  */
44   gdb::bcache *bcache;
45
46   /* The main source file for this compilation unit --- the one whose
47      name was given to the compiler.  This is the root of the
48      #inclusion tree; everything else is #included from here.  */
49   struct macro_source_file *main_source;
50
51   /* Backlink to containing compilation unit, or NULL if there isn't one.  */
52   struct compunit_symtab *compunit_symtab;
53
54   /* True if macros in this table can be redefined without issuing an
55      error.  */
56   int redef_ok;
57
58   /* The table of macro definitions.  This is a splay tree (an ordered
59      binary tree that stays balanced, effectively), sorted by macro
60      name.  Where a macro gets defined more than once (presumably with
61      an #undefinition in between), we sort the definitions by the
62      order they would appear in the preprocessor's output.  That is,
63      if `a.c' #includes `m.h' and then #includes `n.h', and both
64      header files #define X (with an #undef somewhere in between),
65      then the definition from `m.h' appears in our splay tree before
66      the one from `n.h'.
67
68      The splay tree's keys are `struct macro_key' pointers;
69      the values are `struct macro_definition' pointers.
70
71      The splay tree, its nodes, and the keys and values are allocated
72      in obstack, if it's non-zero, or with xmalloc otherwise.  The
73      macro names, argument names, argument name arrays, and definition
74      strings are all allocated in bcache, if non-zero, or with xmalloc
75      otherwise.  */
76   splay_tree definitions;
77 };
78
79
80 \f
81 /* Allocation and freeing functions.  */
82
83 /* Allocate SIZE bytes of memory appropriately for the macro table T.
84    This just checks whether T has an obstack, or whether its pieces
85    should be allocated with xmalloc.  */
86 static void *
87 macro_alloc (int size, struct macro_table *t)
88 {
89   if (t->obstack)
90     return obstack_alloc (t->obstack, size);
91   else
92     return xmalloc (size);
93 }
94
95
96 static void
97 macro_free (void *object, struct macro_table *t)
98 {
99   if (t->obstack)
100     /* There are cases where we need to remove entries from a macro
101        table, even when reading debugging information.  This should be
102        rare, and there's no easy way to free arbitrary data from an
103        obstack, so we just leak it.  */
104     ;
105   else
106     xfree (object);
107 }
108
109
110 /* If the macro table T has a bcache, then cache the LEN bytes at ADDR
111    there, and return the cached copy.  Otherwise, just xmalloc a copy
112    of the bytes, and return a pointer to that.  */
113 static const void *
114 macro_bcache (struct macro_table *t, const void *addr, int len)
115 {
116   if (t->bcache)
117     return t->bcache->insert (addr, len);
118   else
119     {
120       void *copy = xmalloc (len);
121
122       memcpy (copy, addr, len);
123       return copy;
124     }
125 }
126
127
128 /* If the macro table T has a bcache, cache the null-terminated string
129    S there, and return a pointer to the cached copy.  Otherwise,
130    xmalloc a copy and return that.  */
131 static const char *
132 macro_bcache_str (struct macro_table *t, const char *s)
133 {
134   return (const char *) macro_bcache (t, s, strlen (s) + 1);
135 }
136
137
138 /* Free a possibly bcached object OBJ.  That is, if the macro table T
139    has a bcache, do nothing; otherwise, xfree OBJ.  */
140 static void
141 macro_bcache_free (struct macro_table *t, void *obj)
142 {
143   if (t->bcache)
144     /* There are cases where we need to remove entries from a macro
145        table, even when reading debugging information.  This should be
146        rare, and there's no easy way to free data from a bcache, so we
147        just leak it.  */
148     ;
149   else
150     xfree (obj);
151 }
152
153
154 \f
155 /* Macro tree keys, w/their comparison, allocation, and freeing functions.  */
156
157 /* A key in the splay tree.  */
158 struct macro_key
159 {
160   /* The table we're in.  We only need this in order to free it, since
161      the splay tree library's key and value freeing functions require
162      that the key or value contain all the information needed to free
163      themselves.  */
164   struct macro_table *table;
165
166   /* The name of the macro.  This is in the table's bcache, if it has
167      one.  */
168   const char *name;
169
170   /* The source file and line number where the definition's scope
171      begins.  This is also the line of the definition itself.  */
172   struct macro_source_file *start_file;
173   int start_line;
174
175   /* The first source file and line after the definition's scope.
176      (That is, the scope does not include this endpoint.)  If end_file
177      is zero, then the definition extends to the end of the
178      compilation unit.  */
179   struct macro_source_file *end_file;
180   int end_line;
181 };
182
183
184 /* Return the #inclusion depth of the source file FILE.  This is the
185    number of #inclusions it took to reach this file.  For the main
186    source file, the #inclusion depth is zero; for a file it #includes
187    directly, the depth would be one; and so on.  */
188 static int
189 inclusion_depth (struct macro_source_file *file)
190 {
191   int depth;
192
193   for (depth = 0; file->included_by; depth++)
194     file = file->included_by;
195
196   return depth;
197 }
198
199
200 /* Compare two source locations (from the same compilation unit).
201    This is part of the comparison function for the tree of
202    definitions.
203
204    LINE1 and LINE2 are line numbers in the source files FILE1 and
205    FILE2.  Return a value:
206    - less than zero if {LINE,FILE}1 comes before {LINE,FILE}2,
207    - greater than zero if {LINE,FILE}1 comes after {LINE,FILE}2, or
208    - zero if they are equal.
209
210    When the two locations are in different source files --- perhaps
211    one is in a header, while another is in the main source file --- we
212    order them by where they would appear in the fully pre-processed
213    sources, where all the #included files have been substituted into
214    their places.  */
215 static int
216 compare_locations (struct macro_source_file *file1, int line1, 
217                    struct macro_source_file *file2, int line2)
218 {
219   /* We want to treat positions in an #included file as coming *after*
220      the line containing the #include, but *before* the line after the
221      include.  As we walk up the #inclusion tree toward the main
222      source file, we update fileX and lineX as we go; includedX
223      indicates whether the original position was from the #included
224      file.  */
225   int included1 = 0;
226   int included2 = 0;
227
228   /* If a file is zero, that means "end of compilation unit."  Handle
229      that specially.  */
230   if (! file1)
231     {
232       if (! file2)
233         return 0;
234       else
235         return 1;
236     }
237   else if (! file2)
238     return -1;
239
240   /* If the two files are not the same, find their common ancestor in
241      the #inclusion tree.  */
242   if (file1 != file2)
243     {
244       /* If one file is deeper than the other, walk up the #inclusion
245          chain until the two files are at least at the same *depth*.
246          Then, walk up both files in synchrony until they're the same
247          file.  That file is the common ancestor.  */
248       int depth1 = inclusion_depth (file1);
249       int depth2 = inclusion_depth (file2);
250
251       /* Only one of these while loops will ever execute in any given
252          case.  */
253       while (depth1 > depth2)
254         {
255           line1 = file1->included_at_line;
256           file1 = file1->included_by;
257           included1 = 1;
258           depth1--;
259         }
260       while (depth2 > depth1)
261         {
262           line2 = file2->included_at_line;
263           file2 = file2->included_by;
264           included2 = 1;
265           depth2--;
266         }
267
268       /* Now both file1 and file2 are at the same depth.  Walk toward
269          the root of the tree until we find where the branches meet.  */
270       while (file1 != file2)
271         {
272           line1 = file1->included_at_line;
273           file1 = file1->included_by;
274           /* At this point, we know that the case the includedX flags
275              are trying to deal with won't come up, but we'll just
276              maintain them anyway.  */
277           included1 = 1;
278
279           line2 = file2->included_at_line;
280           file2 = file2->included_by;
281           included2 = 1;
282
283           /* Sanity check.  If file1 and file2 are really from the
284              same compilation unit, then they should both be part of
285              the same tree, and this shouldn't happen.  */
286           gdb_assert (file1 && file2);
287         }
288     }
289
290   /* Now we've got two line numbers in the same file.  */
291   if (line1 == line2)
292     {
293       /* They can't both be from #included files.  Then we shouldn't
294          have walked up this far.  */
295       gdb_assert (! included1 || ! included2);
296
297       /* Any #included position comes after a non-#included position
298          with the same line number in the #including file.  */
299       if (included1)
300         return 1;
301       else if (included2)
302         return -1;
303       else
304         return 0;
305     }
306   else
307     return line1 - line2;
308 }
309
310
311 /* Compare a macro key KEY against NAME, the source file FILE, and
312    line number LINE.
313
314    Sort definitions by name; for two definitions with the same name,
315    place the one whose definition comes earlier before the one whose
316    definition comes later.
317
318    Return -1, 0, or 1 if key comes before, is identical to, or comes
319    after NAME, FILE, and LINE.  */
320 static int
321 key_compare (struct macro_key *key,
322              const char *name, struct macro_source_file *file, int line)
323 {
324   int names = strcmp (key->name, name);
325
326   if (names)
327     return names;
328
329   return compare_locations (key->start_file, key->start_line,
330                             file, line);
331 }
332
333
334 /* The macro tree comparison function, typed for the splay tree
335    library's happiness.  */
336 static int
337 macro_tree_compare (splay_tree_key untyped_key1,
338                     splay_tree_key untyped_key2)
339 {
340   struct macro_key *key1 = (struct macro_key *) untyped_key1;
341   struct macro_key *key2 = (struct macro_key *) untyped_key2;
342
343   return key_compare (key1, key2->name, key2->start_file, key2->start_line);
344 }
345
346
347 /* Construct a new macro key node for a macro in table T whose name is
348    NAME, and whose scope starts at LINE in FILE; register the name in
349    the bcache.  */
350 static struct macro_key *
351 new_macro_key (struct macro_table *t,
352                const char *name,
353                struct macro_source_file *file,
354                int line)
355 {
356   struct macro_key *k = (struct macro_key *) macro_alloc (sizeof (*k), t);
357
358   memset (k, 0, sizeof (*k));
359   k->table = t;
360   k->name = macro_bcache_str (t, name);
361   k->start_file = file;
362   k->start_line = line;
363   k->end_file = 0;
364
365   return k;
366 }
367
368
369 static void
370 macro_tree_delete_key (void *untyped_key)
371 {
372   struct macro_key *key = (struct macro_key *) untyped_key;
373
374   macro_bcache_free (key->table, (char *) key->name);
375   macro_free (key, key->table);
376 }
377
378
379 \f
380 /* Building and querying the tree of #included files.  */
381
382
383 /* Allocate and initialize a new source file structure.  */
384 static struct macro_source_file *
385 new_source_file (struct macro_table *t,
386                  const char *filename)
387 {
388   /* Get space for the source file structure itself.  */
389   struct macro_source_file *f
390     = (struct macro_source_file *) macro_alloc (sizeof (*f), t);
391
392   memset (f, 0, sizeof (*f));
393   f->table = t;
394   f->filename = macro_bcache_str (t, filename);
395   f->includes = 0;
396
397   return f;
398 }
399
400
401 /* Free a source file, and all the source files it #included.  */
402 static void
403 free_macro_source_file (struct macro_source_file *src)
404 {
405   struct macro_source_file *child, *next_child;
406
407   /* Free this file's children.  */
408   for (child = src->includes; child; child = next_child)
409     {
410       next_child = child->next_included;
411       free_macro_source_file (child);
412     }
413
414   macro_bcache_free (src->table, (char *) src->filename);
415   macro_free (src, src->table);
416 }
417
418
419 struct macro_source_file *
420 macro_set_main (struct macro_table *t,
421                 const char *filename)
422 {
423   /* You can't change a table's main source file.  What would that do
424      to the tree?  */
425   gdb_assert (! t->main_source);
426
427   t->main_source = new_source_file (t, filename);
428
429   return t->main_source;
430 }
431
432
433 struct macro_source_file *
434 macro_main (struct macro_table *t)
435 {
436   gdb_assert (t->main_source);
437
438   return t->main_source;
439 }
440
441
442 void
443 macro_allow_redefinitions (struct macro_table *t)
444 {
445   gdb_assert (! t->obstack);
446   t->redef_ok = 1;
447 }
448
449
450 struct macro_source_file *
451 macro_include (struct macro_source_file *source,
452                int line,
453                const char *included)
454 {
455   struct macro_source_file *newobj;
456   struct macro_source_file **link;
457
458   /* Find the right position in SOURCE's `includes' list for the new
459      file.  Skip inclusions at earlier lines, until we find one at the
460      same line or later --- or until the end of the list.  */
461   for (link = &source->includes;
462        *link && (*link)->included_at_line < line;
463        link = &(*link)->next_included)
464     ;
465
466   /* Did we find another file already #included at the same line as
467      the new one?  */
468   if (*link && line == (*link)->included_at_line)
469     {
470       /* This means the compiler is emitting bogus debug info.  (GCC
471          circa March 2002 did this.)  It also means that the splay
472          tree ordering function, macro_tree_compare, will abort,
473          because it can't tell which #inclusion came first.  But GDB
474          should tolerate bad debug info.  So:
475
476          First, squawk.  */
477
478       std::string link_fullname = macro_source_fullname (*link);
479       std::string source_fullname = macro_source_fullname (source);
480       complaint (_("both `%s' and `%s' allegedly #included at %s:%d"),
481                  included, link_fullname.c_str (), source_fullname.c_str (),
482                  line);
483
484       /* Now, choose a new, unoccupied line number for this
485          #inclusion, after the alleged #inclusion line.  */
486       while (*link && line == (*link)->included_at_line)
487         {
488           /* This line number is taken, so try the next line.  */
489           line++;
490           link = &(*link)->next_included;
491         }
492     }
493
494   /* At this point, we know that LINE is an unused line number, and
495      *LINK points to the entry an #inclusion at that line should
496      precede.  */
497   newobj = new_source_file (source->table, included);
498   newobj->included_by = source;
499   newobj->included_at_line = line;
500   newobj->next_included = *link;
501   *link = newobj;
502
503   return newobj;
504 }
505
506
507 struct macro_source_file *
508 macro_lookup_inclusion (struct macro_source_file *source, const char *name)
509 {
510   /* Is SOURCE itself named NAME?  */
511   if (filename_cmp (name, source->filename) == 0)
512     return source;
513
514   /* It's not us.  Try all our children, and return the lowest.  */
515   {
516     struct macro_source_file *child;
517     struct macro_source_file *best = NULL;
518     int best_depth = 0;
519
520     for (child = source->includes; child; child = child->next_included)
521       {
522         struct macro_source_file *result
523           = macro_lookup_inclusion (child, name);
524
525         if (result)
526           {
527             int result_depth = inclusion_depth (result);
528
529             if (! best || result_depth < best_depth)
530               {
531                 best = result;
532                 best_depth = result_depth;
533               }
534           }
535       }
536
537     return best;
538   }
539 }
540
541
542 \f
543 /* Registering and looking up macro definitions.  */
544
545
546 /* Construct a definition for a macro in table T.  Cache all strings,
547    and the macro_definition structure itself, in T's bcache.  */
548 static struct macro_definition *
549 new_macro_definition (struct macro_table *t,
550                       enum macro_kind kind,
551                       int argc, const char **argv,
552                       const char *replacement)
553 {
554   struct macro_definition *d
555     = (struct macro_definition *) macro_alloc (sizeof (*d), t);
556
557   memset (d, 0, sizeof (*d));
558   d->table = t;
559   d->kind = kind;
560   d->replacement = macro_bcache_str (t, replacement);
561   d->argc = argc;
562
563   if (kind == macro_function_like)
564     {
565       int i;
566       const char **cached_argv;
567       int cached_argv_size = argc * sizeof (*cached_argv);
568
569       /* Bcache all the arguments.  */
570       cached_argv = (const char **) alloca (cached_argv_size);
571       for (i = 0; i < argc; i++)
572         cached_argv[i] = macro_bcache_str (t, argv[i]);
573
574       /* Now bcache the array of argument pointers itself.  */
575       d->argv = ((const char * const *)
576                  macro_bcache (t, cached_argv, cached_argv_size));
577     }
578
579   /* We don't bcache the entire definition structure because it's got
580      a pointer to the macro table in it; since each compilation unit
581      has its own macro table, you'd only get bcache hits for identical
582      definitions within a compilation unit, which seems unlikely.
583
584      "So, why do macro definitions have pointers to their macro tables
585      at all?"  Well, when the splay tree library wants to free a
586      node's value, it calls the value freeing function with nothing
587      but the value itself.  It makes the (apparently reasonable)
588      assumption that the value carries enough information to free
589      itself.  But not all macro tables have bcaches, so not all macro
590      definitions would be bcached.  There's no way to tell whether a
591      given definition is bcached without knowing which table the
592      definition belongs to.  ...  blah.  The thing's only sixteen
593      bytes anyway, and we can still bcache the name, args, and
594      definition, so we just don't bother bcaching the definition
595      structure itself.  */
596   return d;
597 }
598
599
600 /* Free a macro definition.  */
601 static void
602 macro_tree_delete_value (void *untyped_definition)
603 {
604   struct macro_definition *d = (struct macro_definition *) untyped_definition;
605   struct macro_table *t = d->table;
606
607   if (d->kind == macro_function_like)
608     {
609       int i;
610
611       for (i = 0; i < d->argc; i++)
612         macro_bcache_free (t, (char *) d->argv[i]);
613       macro_bcache_free (t, (char **) d->argv);
614     }
615   
616   macro_bcache_free (t, (char *) d->replacement);
617   macro_free (d, t);
618 }
619
620
621 /* Find the splay tree node for the definition of NAME at LINE in
622    SOURCE, or zero if there is none.  */
623 static splay_tree_node
624 find_definition (const char *name,
625                  struct macro_source_file *file,
626                  int line)
627 {
628   struct macro_table *t = file->table;
629   splay_tree_node n;
630
631   /* Construct a macro_key object, just for the query.  */
632   struct macro_key query;
633
634   query.name = name;
635   query.start_file = file;
636   query.start_line = line;
637   query.end_file = NULL;
638
639   n = splay_tree_lookup (t->definitions, (splay_tree_key) &query);
640   if (! n)
641     {
642       /* It's okay for us to do two queries like this: the real work
643          of the searching is done when we splay, and splaying the tree
644          a second time at the same key is a constant time operation.
645          If this still bugs you, you could always just extend the
646          splay tree library with a predecessor-or-equal operation, and
647          use that.  */
648       splay_tree_node pred = splay_tree_predecessor (t->definitions,
649                                                      (splay_tree_key) &query);
650      
651       if (pred)
652         {
653           /* Make sure this predecessor actually has the right name.
654              We just want to search within a given name's definitions.  */
655           struct macro_key *found = (struct macro_key *) pred->key;
656
657           if (strcmp (found->name, name) == 0)
658             n = pred;
659         }
660     }
661
662   if (n)
663     {
664       struct macro_key *found = (struct macro_key *) n->key;
665
666       /* Okay, so this definition has the right name, and its scope
667          begins before the given source location.  But does its scope
668          end after the given source location?  */
669       if (compare_locations (file, line, found->end_file, found->end_line) < 0)
670         return n;
671       else
672         return 0;
673     }
674   else
675     return 0;
676 }
677
678
679 /* If NAME already has a definition in scope at LINE in SOURCE, return
680    the key.  If the old definition is different from the definition
681    given by KIND, ARGC, ARGV, and REPLACEMENT, complain, too.
682    Otherwise, return zero.  (ARGC and ARGV are meaningless unless KIND
683    is `macro_function_like'.)  */
684 static struct macro_key *
685 check_for_redefinition (struct macro_source_file *source, int line,
686                         const char *name, enum macro_kind kind,
687                         int argc, const char **argv,
688                         const char *replacement)
689 {
690   splay_tree_node n = find_definition (name, source, line);
691
692   if (n)
693     {
694       struct macro_key *found_key = (struct macro_key *) n->key;
695       struct macro_definition *found_def
696         = (struct macro_definition *) n->value;
697       int same = 1;
698
699       /* Is this definition the same as the existing one?
700          According to the standard, this comparison needs to be done
701          on lists of tokens, not byte-by-byte, as we do here.  But
702          that's too hard for us at the moment, and comparing
703          byte-by-byte will only yield false negatives (i.e., extra
704          warning messages), not false positives (i.e., unnoticed
705          definition changes).  */
706       if (kind != found_def->kind)
707         same = 0;
708       else if (strcmp (replacement, found_def->replacement))
709         same = 0;
710       else if (kind == macro_function_like)
711         {
712           if (argc != found_def->argc)
713             same = 0;
714           else
715             {
716               int i;
717
718               for (i = 0; i < argc; i++)
719                 if (strcmp (argv[i], found_def->argv[i]))
720                   same = 0;
721             }
722         }
723
724       if (! same)
725         {
726           std::string source_fullname = macro_source_fullname (source);
727           std::string found_key_fullname
728             = macro_source_fullname (found_key->start_file);
729           complaint (_("macro `%s' redefined at %s:%d; "
730                        "original definition at %s:%d"),
731                      name, source_fullname.c_str (), line,
732                      found_key_fullname.c_str (),
733                      found_key->start_line);
734         }
735
736       return found_key;
737     }
738   else
739     return 0;
740 }
741
742 /* A helper function to define a new object-like or function-like macro
743    according to KIND.  When KIND is macro_object_like,
744    the macro_special_kind must be provided as ARGC, and ARGV must be NULL.
745    When KIND is macro_function_like, ARGC and ARGV are giving the function
746    arguments.  */
747
748 static void
749 macro_define_internal (struct macro_source_file *source, int line,
750                        const char *name, enum macro_kind kind,
751                        int argc, const char **argv,
752                        const char *replacement)
753 {
754   struct macro_table *t = source->table;
755   struct macro_key *k = NULL;
756   struct macro_definition *d;
757
758   if (! t->redef_ok)
759     k = check_for_redefinition (source, line,
760                                 name, kind,
761                                 argc, argv,
762                                 replacement);
763
764   /* If we're redefining a symbol, and the existing key would be
765      identical to our new key, then the splay_tree_insert function
766      will try to delete the old definition.  When the definition is
767      living on an obstack, this isn't a happy thing.
768
769      Since this only happens in the presence of questionable debug
770      info, we just ignore all definitions after the first.  The only
771      case I know of where this arises is in GCC's output for
772      predefined macros, and all the definitions are the same in that
773      case.  */
774   if (k && ! key_compare (k, name, source, line))
775     return;
776
777   k = new_macro_key (t, name, source, line);
778   d = new_macro_definition (t, kind, argc, argv, replacement);
779   splay_tree_insert (t->definitions, (splay_tree_key) k, (splay_tree_value) d);
780 }
781
782 /* A helper function to define a new object-like macro.  */
783
784 static void
785 macro_define_object_internal (struct macro_source_file *source, int line,
786                               const char *name, const char *replacement,
787                               enum macro_special_kind special_kind)
788 {
789   macro_define_internal (source, line,
790                          name, macro_object_like,
791                          special_kind, NULL,
792                          replacement);
793 }
794
795 void
796 macro_define_object (struct macro_source_file *source, int line,
797                      const char *name, const char *replacement)
798 {
799   macro_define_object_internal (source, line, name, replacement,
800                                 macro_ordinary);
801 }
802
803 /* See macrotab.h.  */
804
805 void
806 macro_define_special (struct macro_table *table)
807 {
808   macro_define_object_internal (table->main_source, -1, "__FILE__", "",
809                                 macro_FILE);
810   macro_define_object_internal (table->main_source, -1, "__LINE__", "",
811                                 macro_LINE);
812 }
813
814 void
815 macro_define_function (struct macro_source_file *source, int line,
816                        const char *name, int argc, const char **argv,
817                        const char *replacement)
818 {
819   macro_define_internal (source, line,
820                          name, macro_function_like,
821                          argc, argv,
822                          replacement);
823 }
824
825 void
826 macro_undef (struct macro_source_file *source, int line,
827              const char *name)
828 {
829   splay_tree_node n = find_definition (name, source, line);
830
831   if (n)
832     {
833       struct macro_key *key = (struct macro_key *) n->key;
834
835       /* If we're removing a definition at exactly the same point that
836          we defined it, then just delete the entry altogether.  GCC
837          4.1.2 will generate DWARF that says to do this if you pass it
838          arguments like '-DFOO -UFOO -DFOO=2'.  */
839       if (source == key->start_file
840           && line == key->start_line)
841         splay_tree_remove (source->table->definitions, n->key);
842
843       else
844         {
845           /* This function is the only place a macro's end-of-scope
846              location gets set to anything other than "end of the
847              compilation unit" (i.e., end_file is zero).  So if this
848              macro already has its end-of-scope set, then we're
849              probably seeing a second #undefinition for the same
850              #definition.  */
851           if (key->end_file)
852             {
853               std::string source_fullname = macro_source_fullname (source);
854               std::string key_fullname = macro_source_fullname (key->end_file);
855               complaint (_("macro '%s' is #undefined twice,"
856                            " at %s:%d and %s:%d"),
857                          name, source_fullname.c_str (), line,
858                          key_fullname.c_str (),
859                          key->end_line);
860             }
861
862           /* Whether or not we've seen a prior #undefinition, wipe out
863              the old ending point, and make this the ending point.  */
864           key->end_file = source;
865           key->end_line = line;
866         }
867     }
868   else
869     {
870       /* According to the ISO C standard, an #undef for a symbol that
871          has no macro definition in scope is ignored.  So we should
872          ignore it too.  */
873 #if 0
874       complaint (_("no definition for macro `%s' in scope to #undef at %s:%d"),
875                  name, source->filename, line);
876 #endif
877     }
878 }
879
880 /* A helper function that rewrites the definition of a special macro,
881    when needed.  */
882
883 static struct macro_definition *
884 fixup_definition (const char *filename, int line, struct macro_definition *def)
885 {
886   static gdb::unique_xmalloc_ptr<char> saved_expansion;
887
888   if (def->kind == macro_object_like)
889     {
890       if (def->argc == macro_FILE)
891         {
892           saved_expansion = macro_stringify (filename);
893           def->replacement = saved_expansion.get ();
894         }
895       else if (def->argc == macro_LINE)
896         {
897           saved_expansion = xstrprintf ("%d", line);
898           def->replacement = saved_expansion.get ();
899         }
900     }
901
902   return def;
903 }
904
905 struct macro_definition *
906 macro_lookup_definition (struct macro_source_file *source,
907                          int line, const char *name)
908 {
909   splay_tree_node n = find_definition (name, source, line);
910
911   if (n)
912     {
913       std::string source_fullname = macro_source_fullname (source);
914       return fixup_definition (source_fullname.c_str (), line,
915                                (struct macro_definition *) n->value);
916     }
917   else
918     return 0;
919 }
920
921
922 struct macro_source_file *
923 macro_definition_location (struct macro_source_file *source,
924                            int line,
925                            const char *name,
926                            int *definition_line)
927 {
928   splay_tree_node n = find_definition (name, source, line);
929
930   if (n)
931     {
932       struct macro_key *key = (struct macro_key *) n->key;
933
934       *definition_line = key->start_line;
935       return key->start_file;
936     }
937   else
938     return 0;
939 }
940
941
942 /* The type for callback data for iterating the splay tree in
943    macro_for_each and macro_for_each_in_scope.  Only the latter uses
944    the FILE and LINE fields.  */
945 struct macro_for_each_data
946 {
947   gdb::function_view<macro_callback_fn> fn;
948   struct macro_source_file *file;
949   int line;
950 };
951
952 /* Helper function for macro_for_each.  */
953 static int
954 foreach_macro (splay_tree_node node, void *arg)
955 {
956   struct macro_for_each_data *datum = (struct macro_for_each_data *) arg;
957   struct macro_key *key = (struct macro_key *) node->key;
958   struct macro_definition *def;
959
960   std::string key_fullname = macro_source_fullname (key->start_file);
961   def = fixup_definition (key_fullname.c_str (), key->start_line,
962                           (struct macro_definition *) node->value);
963
964   datum->fn (key->name, def, key->start_file, key->start_line);
965   return 0;
966 }
967
968 /* Call FN for every macro in TABLE.  */
969 void
970 macro_for_each (struct macro_table *table,
971                 gdb::function_view<macro_callback_fn> fn)
972 {
973   struct macro_for_each_data datum;
974
975   datum.fn = fn;
976   datum.file = NULL;
977   datum.line = 0;
978   splay_tree_foreach (table->definitions, foreach_macro, &datum);
979 }
980
981 static int
982 foreach_macro_in_scope (splay_tree_node node, void *info)
983 {
984   struct macro_for_each_data *datum = (struct macro_for_each_data *) info;
985   struct macro_key *key = (struct macro_key *) node->key;
986   struct macro_definition *def;
987
988   std::string datum_fullname = macro_source_fullname (datum->file);
989   def = fixup_definition (datum_fullname.c_str (), datum->line,
990                           (struct macro_definition *) node->value);
991
992   /* See if this macro is defined before the passed-in line, and
993      extends past that line.  */
994   if (compare_locations (key->start_file, key->start_line,
995                          datum->file, datum->line) < 0
996       && (!key->end_file
997           || compare_locations (key->end_file, key->end_line,
998                                 datum->file, datum->line) >= 0))
999     datum->fn (key->name, def, key->start_file, key->start_line);
1000   return 0;
1001 }
1002
1003 /* Call FN for every macro is visible in SCOPE.  */
1004 void
1005 macro_for_each_in_scope (struct macro_source_file *file, int line,
1006                          gdb::function_view<macro_callback_fn> fn)
1007 {
1008   struct macro_for_each_data datum;
1009
1010   datum.fn = fn;
1011   datum.file = file;
1012   datum.line = line;
1013   splay_tree_foreach (file->table->definitions,
1014                       foreach_macro_in_scope, &datum);
1015 }
1016
1017
1018 \f
1019 /* Creating and freeing macro tables.  */
1020
1021
1022 struct macro_table *
1023 new_macro_table (struct obstack *obstack, gdb::bcache *b,
1024                  struct compunit_symtab *cust)
1025 {
1026   struct macro_table *t;
1027
1028   /* First, get storage for the `struct macro_table' itself.  */
1029   if (obstack)
1030     t = XOBNEW (obstack, struct macro_table);
1031   else
1032     t = XNEW (struct macro_table);
1033
1034   memset (t, 0, sizeof (*t));
1035   t->obstack = obstack;
1036   t->bcache = b;
1037   t->main_source = NULL;
1038   t->compunit_symtab = cust;
1039   t->redef_ok = 0;
1040   t->definitions = (splay_tree_new_with_allocator
1041                     (macro_tree_compare,
1042                      ((splay_tree_delete_key_fn) macro_tree_delete_key),
1043                      ((splay_tree_delete_value_fn) macro_tree_delete_value),
1044                      ((splay_tree_allocate_fn) macro_alloc),
1045                      ((splay_tree_deallocate_fn) macro_free),
1046                      t));
1047   
1048   return t;
1049 }
1050
1051
1052 void
1053 free_macro_table (struct macro_table *table)
1054 {
1055   /* Free the source file tree.  */
1056   free_macro_source_file (table->main_source);
1057
1058   /* Free the table of macro definitions.  */
1059   splay_tree_delete (table->definitions);
1060 }
1061
1062 /* See macrotab.h for the comment.  */
1063
1064 std::string
1065 macro_source_fullname (struct macro_source_file *file)
1066 {
1067   const char *comp_dir = NULL;
1068
1069   if (file->table->compunit_symtab != NULL)
1070     comp_dir = file->table->compunit_symtab->dirname ();
1071
1072   if (comp_dir == NULL || IS_ABSOLUTE_PATH (file->filename))
1073     return file->filename;
1074
1075   return path_join (comp_dir, file->filename);
1076 }