Imported Upstream version 6.1
[platform/upstream/ffmpeg.git] / libavfilter / af_afade.c
1 /*
2  * Copyright (c) 2013-2015 Paul B Mahol
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20
21 /**
22  * @file
23  * fade audio filter
24  */
25
26 #include "config_components.h"
27
28 #include "libavutil/opt.h"
29 #include "audio.h"
30 #include "avfilter.h"
31 #include "filters.h"
32 #include "internal.h"
33
34 typedef struct AudioFadeContext {
35     const AVClass *class;
36     int type;
37     int curve, curve2;
38     int64_t nb_samples;
39     int64_t start_sample;
40     int64_t duration;
41     int64_t start_time;
42     double silence;
43     double unity;
44     int overlap;
45     int status[2];
46     int passthrough;
47     int64_t pts;
48
49     void (*fade_samples)(uint8_t **dst, uint8_t * const *src,
50                          int nb_samples, int channels, int direction,
51                          int64_t start, int64_t range, int curve,
52                          double silence, double unity);
53     void (*scale_samples)(uint8_t **dst, uint8_t * const *src,
54                           int nb_samples, int channels, double unity);
55     void (*crossfade_samples)(uint8_t **dst, uint8_t * const *cf0,
56                               uint8_t * const *cf1,
57                               int nb_samples, int channels,
58                               int curve0, int curve1);
59 } AudioFadeContext;
60
61 enum CurveType { NONE = -1, TRI, QSIN, ESIN, HSIN, LOG, IPAR, QUA, CUB, SQU, CBR, PAR, EXP, IQSIN, IHSIN, DESE, DESI, LOSI, SINC, ISINC, QUAT, QUATR, QSIN2, HSIN2, NB_CURVES };
62
63 #define OFFSET(x) offsetof(AudioFadeContext, x)
64 #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
65 #define TFLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
66
67     static const enum AVSampleFormat sample_fmts[] = {
68         AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16P,
69         AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32P,
70         AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLTP,
71         AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBLP,
72         AV_SAMPLE_FMT_NONE
73     };
74
75 static double fade_gain(int curve, int64_t index, int64_t range, double silence, double unity)
76 {
77 #define CUBE(a) ((a)*(a)*(a))
78     double gain;
79
80     gain = av_clipd(1.0 * index / range, 0, 1.0);
81
82     switch (curve) {
83     case QSIN:
84         gain = sin(gain * M_PI / 2.0);
85         break;
86     case IQSIN:
87         /* 0.6... = 2 / M_PI */
88         gain = 0.6366197723675814 * asin(gain);
89         break;
90     case ESIN:
91         gain = 1.0 - cos(M_PI / 4.0 * (CUBE(2.0*gain - 1) + 1));
92         break;
93     case HSIN:
94         gain = (1.0 - cos(gain * M_PI)) / 2.0;
95         break;
96     case IHSIN:
97         /* 0.3... = 1 / M_PI */
98         gain = 0.3183098861837907 * acos(1 - 2 * gain);
99         break;
100     case EXP:
101         /* -11.5... = 5*ln(0.1) */
102         gain = exp(-11.512925464970227 * (1 - gain));
103         break;
104     case LOG:
105         gain = av_clipd(1 + 0.2 * log10(gain), 0, 1.0);
106         break;
107     case PAR:
108         gain = 1 - sqrt(1 - gain);
109         break;
110     case IPAR:
111         gain = (1 - (1 - gain) * (1 - gain));
112         break;
113     case QUA:
114         gain *= gain;
115         break;
116     case CUB:
117         gain = CUBE(gain);
118         break;
119     case SQU:
120         gain = sqrt(gain);
121         break;
122     case CBR:
123         gain = cbrt(gain);
124         break;
125     case DESE:
126         gain = gain <= 0.5 ? cbrt(2 * gain) / 2: 1 - cbrt(2 * (1 - gain)) / 2;
127         break;
128     case DESI:
129         gain = gain <= 0.5 ? CUBE(2 * gain) / 2: 1 - CUBE(2 * (1 - gain)) / 2;
130         break;
131     case LOSI: {
132                    const double a = 1. / (1. - 0.787) - 1;
133                    double A = 1. / (1.0 + exp(0 -((gain-0.5) * a * 2.0)));
134                    double B = 1. / (1.0 + exp(a));
135                    double C = 1. / (1.0 + exp(0-a));
136                    gain = (A - B) / (C - B);
137                }
138         break;
139     case SINC:
140         gain = gain >= 1.0 ? 1.0 : sin(M_PI * (1.0 - gain)) / (M_PI * (1.0 - gain));
141         break;
142     case ISINC:
143         gain = gain <= 0.0 ? 0.0 : 1.0 - sin(M_PI * gain) / (M_PI * gain);
144         break;
145     case QUAT:
146         gain = gain * gain * gain * gain;
147         break;
148     case QUATR:
149         gain = pow(gain, 0.25);
150         break;
151     case QSIN2:
152         gain = sin(gain * M_PI / 2.0) * sin(gain * M_PI / 2.0);
153         break;
154     case HSIN2:
155         gain = pow((1.0 - cos(gain * M_PI)) / 2.0, 2.0);
156         break;
157     case NONE:
158         gain = 1.0;
159         break;
160     }
161
162     return silence + (unity - silence) * gain;
163 }
164
165 #define FADE_PLANAR(name, type)                                             \
166 static void fade_samples_## name ##p(uint8_t **dst, uint8_t * const *src,   \
167                                      int nb_samples, int channels, int dir, \
168                                      int64_t start, int64_t range,int curve,\
169                                      double silence, double unity)          \
170 {                                                                           \
171     int i, c;                                                               \
172                                                                             \
173     for (i = 0; i < nb_samples; i++) {                                      \
174         double gain = fade_gain(curve, start + i * dir,range,silence,unity);\
175         for (c = 0; c < channels; c++) {                                    \
176             type *d = (type *)dst[c];                                       \
177             const type *s = (type *)src[c];                                 \
178                                                                             \
179             d[i] = s[i] * gain;                                             \
180         }                                                                   \
181     }                                                                       \
182 }
183
184 #define FADE(name, type)                                                    \
185 static void fade_samples_## name (uint8_t **dst, uint8_t * const *src,      \
186                                   int nb_samples, int channels, int dir,    \
187                                   int64_t start, int64_t range, int curve,  \
188                                   double silence, double unity)             \
189 {                                                                           \
190     type *d = (type *)dst[0];                                               \
191     const type *s = (type *)src[0];                                         \
192     int i, c, k = 0;                                                        \
193                                                                             \
194     for (i = 0; i < nb_samples; i++) {                                      \
195         double gain = fade_gain(curve, start + i * dir,range,silence,unity);\
196         for (c = 0; c < channels; c++, k++)                                 \
197             d[k] = s[k] * gain;                                             \
198     }                                                                       \
199 }
200
201 FADE_PLANAR(dbl, double)
202 FADE_PLANAR(flt, float)
203 FADE_PLANAR(s16, int16_t)
204 FADE_PLANAR(s32, int32_t)
205
206 FADE(dbl, double)
207 FADE(flt, float)
208 FADE(s16, int16_t)
209 FADE(s32, int32_t)
210
211 #define SCALE_PLANAR(name, type)                                            \
212 static void scale_samples_## name ##p(uint8_t **dst, uint8_t * const *src,  \
213                                      int nb_samples, int channels,          \
214                                      double gain)                           \
215 {                                                                           \
216     int i, c;                                                               \
217                                                                             \
218     for (i = 0; i < nb_samples; i++) {                                      \
219         for (c = 0; c < channels; c++) {                                    \
220             type *d = (type *)dst[c];                                       \
221             const type *s = (type *)src[c];                                 \
222                                                                             \
223             d[i] = s[i] * gain;                                             \
224         }                                                                   \
225     }                                                                       \
226 }
227
228 #define SCALE(name, type)                                                   \
229 static void scale_samples_## name (uint8_t **dst, uint8_t * const *src,     \
230                                   int nb_samples, int channels, double gain)\
231 {                                                                           \
232     type *d = (type *)dst[0];                                               \
233     const type *s = (type *)src[0];                                         \
234     int i, c, k = 0;                                                        \
235                                                                             \
236     for (i = 0; i < nb_samples; i++) {                                      \
237         for (c = 0; c < channels; c++, k++)                                 \
238             d[k] = s[k] * gain;                                             \
239     }                                                                       \
240 }
241
242 SCALE_PLANAR(dbl, double)
243 SCALE_PLANAR(flt, float)
244 SCALE_PLANAR(s16, int16_t)
245 SCALE_PLANAR(s32, int32_t)
246
247 SCALE(dbl, double)
248 SCALE(flt, float)
249 SCALE(s16, int16_t)
250 SCALE(s32, int32_t)
251
252 static int config_output(AVFilterLink *outlink)
253 {
254     AVFilterContext *ctx = outlink->src;
255     AudioFadeContext *s  = ctx->priv;
256
257     switch (outlink->format) {
258     case AV_SAMPLE_FMT_DBL:  s->fade_samples = fade_samples_dbl;
259                              s->scale_samples = scale_samples_dbl;
260                              break;
261     case AV_SAMPLE_FMT_DBLP: s->fade_samples = fade_samples_dblp;
262                              s->scale_samples = scale_samples_dblp;
263                              break;
264     case AV_SAMPLE_FMT_FLT:  s->fade_samples = fade_samples_flt;
265                              s->scale_samples = scale_samples_flt;
266                              break;
267     case AV_SAMPLE_FMT_FLTP: s->fade_samples = fade_samples_fltp;
268                              s->scale_samples = scale_samples_fltp;
269                              break;
270     case AV_SAMPLE_FMT_S16:  s->fade_samples = fade_samples_s16;
271                              s->scale_samples = scale_samples_s16;
272                              break;
273     case AV_SAMPLE_FMT_S16P: s->fade_samples = fade_samples_s16p;
274                              s->scale_samples = scale_samples_s16p;
275                              break;
276     case AV_SAMPLE_FMT_S32:  s->fade_samples = fade_samples_s32;
277                              s->scale_samples = scale_samples_s32;
278                              break;
279     case AV_SAMPLE_FMT_S32P: s->fade_samples = fade_samples_s32p;
280                              s->scale_samples = scale_samples_s32p;
281                              break;
282     }
283
284     if (s->duration)
285         s->nb_samples = av_rescale(s->duration, outlink->sample_rate, AV_TIME_BASE);
286     s->duration = 0;
287     if (s->start_time)
288         s->start_sample = av_rescale(s->start_time, outlink->sample_rate, AV_TIME_BASE);
289     s->start_time = 0;
290
291     return 0;
292 }
293
294 #if CONFIG_AFADE_FILTER
295
296 static const AVOption afade_options[] = {
297     { "type",         "set the fade direction",                      OFFSET(type),         AV_OPT_TYPE_INT,    {.i64 = 0    }, 0, 1, TFLAGS, "type" },
298     { "t",            "set the fade direction",                      OFFSET(type),         AV_OPT_TYPE_INT,    {.i64 = 0    }, 0, 1, TFLAGS, "type" },
299     { "in",           "fade-in",                                     0,                    AV_OPT_TYPE_CONST,  {.i64 = 0    }, 0, 0, TFLAGS, "type" },
300     { "out",          "fade-out",                                    0,                    AV_OPT_TYPE_CONST,  {.i64 = 1    }, 0, 0, TFLAGS, "type" },
301     { "start_sample", "set number of first sample to start fading",  OFFSET(start_sample), AV_OPT_TYPE_INT64,  {.i64 = 0    }, 0, INT64_MAX, TFLAGS },
302     { "ss",           "set number of first sample to start fading",  OFFSET(start_sample), AV_OPT_TYPE_INT64,  {.i64 = 0    }, 0, INT64_MAX, TFLAGS },
303     { "nb_samples",   "set number of samples for fade duration",     OFFSET(nb_samples),   AV_OPT_TYPE_INT64,  {.i64 = 44100}, 1, INT64_MAX, TFLAGS },
304     { "ns",           "set number of samples for fade duration",     OFFSET(nb_samples),   AV_OPT_TYPE_INT64,  {.i64 = 44100}, 1, INT64_MAX, TFLAGS },
305     { "start_time",   "set time to start fading",                    OFFSET(start_time),   AV_OPT_TYPE_DURATION, {.i64 = 0 },  0, INT64_MAX, TFLAGS },
306     { "st",           "set time to start fading",                    OFFSET(start_time),   AV_OPT_TYPE_DURATION, {.i64 = 0 },  0, INT64_MAX, TFLAGS },
307     { "duration",     "set fade duration",                           OFFSET(duration),     AV_OPT_TYPE_DURATION, {.i64 = 0 },  0, INT64_MAX, TFLAGS },
308     { "d",            "set fade duration",                           OFFSET(duration),     AV_OPT_TYPE_DURATION, {.i64 = 0 },  0, INT64_MAX, TFLAGS },
309     { "curve",        "set fade curve type",                         OFFSET(curve),        AV_OPT_TYPE_INT,    {.i64 = TRI  }, NONE, NB_CURVES - 1, TFLAGS, "curve" },
310     { "c",            "set fade curve type",                         OFFSET(curve),        AV_OPT_TYPE_INT,    {.i64 = TRI  }, NONE, NB_CURVES - 1, TFLAGS, "curve" },
311     { "nofade",       "no fade; keep audio as-is",                   0,                    AV_OPT_TYPE_CONST,  {.i64 = NONE }, 0, 0, TFLAGS, "curve" },
312     { "tri",          "linear slope",                                0,                    AV_OPT_TYPE_CONST,  {.i64 = TRI  }, 0, 0, TFLAGS, "curve" },
313     { "qsin",         "quarter of sine wave",                        0,                    AV_OPT_TYPE_CONST,  {.i64 = QSIN }, 0, 0, TFLAGS, "curve" },
314     { "esin",         "exponential sine wave",                       0,                    AV_OPT_TYPE_CONST,  {.i64 = ESIN }, 0, 0, TFLAGS, "curve" },
315     { "hsin",         "half of sine wave",                           0,                    AV_OPT_TYPE_CONST,  {.i64 = HSIN }, 0, 0, TFLAGS, "curve" },
316     { "log",          "logarithmic",                                 0,                    AV_OPT_TYPE_CONST,  {.i64 = LOG  }, 0, 0, TFLAGS, "curve" },
317     { "ipar",         "inverted parabola",                           0,                    AV_OPT_TYPE_CONST,  {.i64 = IPAR }, 0, 0, TFLAGS, "curve" },
318     { "qua",          "quadratic",                                   0,                    AV_OPT_TYPE_CONST,  {.i64 = QUA  }, 0, 0, TFLAGS, "curve" },
319     { "cub",          "cubic",                                       0,                    AV_OPT_TYPE_CONST,  {.i64 = CUB  }, 0, 0, TFLAGS, "curve" },
320     { "squ",          "square root",                                 0,                    AV_OPT_TYPE_CONST,  {.i64 = SQU  }, 0, 0, TFLAGS, "curve" },
321     { "cbr",          "cubic root",                                  0,                    AV_OPT_TYPE_CONST,  {.i64 = CBR  }, 0, 0, TFLAGS, "curve" },
322     { "par",          "parabola",                                    0,                    AV_OPT_TYPE_CONST,  {.i64 = PAR  }, 0, 0, TFLAGS, "curve" },
323     { "exp",          "exponential",                                 0,                    AV_OPT_TYPE_CONST,  {.i64 = EXP  }, 0, 0, TFLAGS, "curve" },
324     { "iqsin",        "inverted quarter of sine wave",               0,                    AV_OPT_TYPE_CONST,  {.i64 = IQSIN}, 0, 0, TFLAGS, "curve" },
325     { "ihsin",        "inverted half of sine wave",                  0,                    AV_OPT_TYPE_CONST,  {.i64 = IHSIN}, 0, 0, TFLAGS, "curve" },
326     { "dese",         "double-exponential seat",                     0,                    AV_OPT_TYPE_CONST,  {.i64 = DESE }, 0, 0, TFLAGS, "curve" },
327     { "desi",         "double-exponential sigmoid",                  0,                    AV_OPT_TYPE_CONST,  {.i64 = DESI }, 0, 0, TFLAGS, "curve" },
328     { "losi",         "logistic sigmoid",                            0,                    AV_OPT_TYPE_CONST,  {.i64 = LOSI }, 0, 0, TFLAGS, "curve" },
329     { "sinc",         "sine cardinal function",                      0,                    AV_OPT_TYPE_CONST,  {.i64 = SINC }, 0, 0, TFLAGS, "curve" },
330     { "isinc",        "inverted sine cardinal function",             0,                    AV_OPT_TYPE_CONST,  {.i64 = ISINC}, 0, 0, TFLAGS, "curve" },
331     { "quat",         "quartic",                                     0,                    AV_OPT_TYPE_CONST,  {.i64 = QUAT }, 0, 0, TFLAGS, "curve" },
332     { "quatr",        "quartic root",                                0,                    AV_OPT_TYPE_CONST,  {.i64 = QUATR}, 0, 0, TFLAGS, "curve" },
333     { "qsin2",        "squared quarter of sine wave",                0,                    AV_OPT_TYPE_CONST,  {.i64 = QSIN2}, 0, 0, TFLAGS, "curve" },
334     { "hsin2",        "squared half of sine wave",                   0,                    AV_OPT_TYPE_CONST,  {.i64 = HSIN2}, 0, 0, TFLAGS, "curve" },
335     { "silence",      "set the silence gain",                        OFFSET(silence),      AV_OPT_TYPE_DOUBLE, {.dbl = 0 },    0, 1, TFLAGS },
336     { "unity",        "set the unity gain",                          OFFSET(unity),        AV_OPT_TYPE_DOUBLE, {.dbl = 1 },    0, 1, TFLAGS },
337     { NULL }
338 };
339
340 AVFILTER_DEFINE_CLASS(afade);
341
342 static av_cold int init(AVFilterContext *ctx)
343 {
344     AudioFadeContext *s = ctx->priv;
345
346     if (INT64_MAX - s->nb_samples < s->start_sample)
347         return AVERROR(EINVAL);
348
349     return 0;
350 }
351
352 static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
353 {
354     AudioFadeContext *s     = inlink->dst->priv;
355     AVFilterLink *outlink   = inlink->dst->outputs[0];
356     int nb_samples          = buf->nb_samples;
357     AVFrame *out_buf;
358     int64_t cur_sample = av_rescale_q(buf->pts, inlink->time_base, (AVRational){1, inlink->sample_rate});
359
360     if (s->unity == 1.0 &&
361         ((!s->type && (s->start_sample + s->nb_samples < cur_sample)) ||
362          ( s->type && (cur_sample + nb_samples < s->start_sample))))
363         return ff_filter_frame(outlink, buf);
364
365     if (av_frame_is_writable(buf)) {
366         out_buf = buf;
367     } else {
368         out_buf = ff_get_audio_buffer(outlink, nb_samples);
369         if (!out_buf)
370             return AVERROR(ENOMEM);
371         av_frame_copy_props(out_buf, buf);
372     }
373
374     if ((!s->type && (cur_sample + nb_samples < s->start_sample)) ||
375         ( s->type && (s->start_sample + s->nb_samples < cur_sample))) {
376         if (s->silence == 0.) {
377             av_samples_set_silence(out_buf->extended_data, 0, nb_samples,
378                                    out_buf->ch_layout.nb_channels, out_buf->format);
379         } else {
380             s->scale_samples(out_buf->extended_data, buf->extended_data,
381                              nb_samples, buf->ch_layout.nb_channels,
382                              s->silence);
383         }
384     } else if (( s->type && (cur_sample + nb_samples < s->start_sample)) ||
385                (!s->type && (s->start_sample + s->nb_samples < cur_sample))) {
386         s->scale_samples(out_buf->extended_data, buf->extended_data,
387                          nb_samples, buf->ch_layout.nb_channels,
388                          s->unity);
389     } else {
390         int64_t start;
391
392         if (!s->type)
393             start = cur_sample - s->start_sample;
394         else
395             start = s->start_sample + s->nb_samples - cur_sample;
396
397         s->fade_samples(out_buf->extended_data, buf->extended_data,
398                         nb_samples, buf->ch_layout.nb_channels,
399                         s->type ? -1 : 1, start,
400                         s->nb_samples, s->curve, s->silence, s->unity);
401     }
402
403     if (buf != out_buf)
404         av_frame_free(&buf);
405
406     return ff_filter_frame(outlink, out_buf);
407 }
408
409 static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
410                            char *res, int res_len, int flags)
411 {
412     int ret;
413
414     ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
415     if (ret < 0)
416         return ret;
417
418     return config_output(ctx->outputs[0]);
419 }
420
421 static const AVFilterPad avfilter_af_afade_inputs[] = {
422     {
423         .name         = "default",
424         .type         = AVMEDIA_TYPE_AUDIO,
425         .filter_frame = filter_frame,
426     },
427 };
428
429 static const AVFilterPad avfilter_af_afade_outputs[] = {
430     {
431         .name         = "default",
432         .type         = AVMEDIA_TYPE_AUDIO,
433         .config_props = config_output,
434     },
435 };
436
437 const AVFilter ff_af_afade = {
438     .name          = "afade",
439     .description   = NULL_IF_CONFIG_SMALL("Fade in/out input audio."),
440     .priv_size     = sizeof(AudioFadeContext),
441     .init          = init,
442     FILTER_INPUTS(avfilter_af_afade_inputs),
443     FILTER_OUTPUTS(avfilter_af_afade_outputs),
444     FILTER_SAMPLEFMTS_ARRAY(sample_fmts),
445     .priv_class    = &afade_class,
446     .process_command = process_command,
447     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC,
448 };
449
450 #endif /* CONFIG_AFADE_FILTER */
451
452 #if CONFIG_ACROSSFADE_FILTER
453
454 static const AVOption acrossfade_options[] = {
455     { "nb_samples",   "set number of samples for cross fade duration", OFFSET(nb_samples),   AV_OPT_TYPE_INT,    {.i64 = 44100}, 1, INT32_MAX/10, FLAGS },
456     { "ns",           "set number of samples for cross fade duration", OFFSET(nb_samples),   AV_OPT_TYPE_INT,    {.i64 = 44100}, 1, INT32_MAX/10, FLAGS },
457     { "duration",     "set cross fade duration",                       OFFSET(duration),     AV_OPT_TYPE_DURATION, {.i64 = 0 },  0, 60000000, FLAGS },
458     { "d",            "set cross fade duration",                       OFFSET(duration),     AV_OPT_TYPE_DURATION, {.i64 = 0 },  0, 60000000, FLAGS },
459     { "overlap",      "overlap 1st stream end with 2nd stream start",  OFFSET(overlap),      AV_OPT_TYPE_BOOL,   {.i64 = 1    }, 0,  1, FLAGS },
460     { "o",            "overlap 1st stream end with 2nd stream start",  OFFSET(overlap),      AV_OPT_TYPE_BOOL,   {.i64 = 1    }, 0,  1, FLAGS },
461     { "curve1",       "set fade curve type for 1st stream",            OFFSET(curve),        AV_OPT_TYPE_INT,    {.i64 = TRI  }, NONE, NB_CURVES - 1, FLAGS, "curve" },
462     { "c1",           "set fade curve type for 1st stream",            OFFSET(curve),        AV_OPT_TYPE_INT,    {.i64 = TRI  }, NONE, NB_CURVES - 1, FLAGS, "curve" },
463     {     "nofade",   "no fade; keep audio as-is",                     0,                    AV_OPT_TYPE_CONST,  {.i64 = NONE }, 0, 0, FLAGS, "curve" },
464     {     "tri",      "linear slope",                                  0,                    AV_OPT_TYPE_CONST,  {.i64 = TRI  }, 0, 0, FLAGS, "curve" },
465     {     "qsin",     "quarter of sine wave",                          0,                    AV_OPT_TYPE_CONST,  {.i64 = QSIN }, 0, 0, FLAGS, "curve" },
466     {     "esin",     "exponential sine wave",                         0,                    AV_OPT_TYPE_CONST,  {.i64 = ESIN }, 0, 0, FLAGS, "curve" },
467     {     "hsin",     "half of sine wave",                             0,                    AV_OPT_TYPE_CONST,  {.i64 = HSIN }, 0, 0, FLAGS, "curve" },
468     {     "log",      "logarithmic",                                   0,                    AV_OPT_TYPE_CONST,  {.i64 = LOG  }, 0, 0, FLAGS, "curve" },
469     {     "ipar",     "inverted parabola",                             0,                    AV_OPT_TYPE_CONST,  {.i64 = IPAR }, 0, 0, FLAGS, "curve" },
470     {     "qua",      "quadratic",                                     0,                    AV_OPT_TYPE_CONST,  {.i64 = QUA  }, 0, 0, FLAGS, "curve" },
471     {     "cub",      "cubic",                                         0,                    AV_OPT_TYPE_CONST,  {.i64 = CUB  }, 0, 0, FLAGS, "curve" },
472     {     "squ",      "square root",                                   0,                    AV_OPT_TYPE_CONST,  {.i64 = SQU  }, 0, 0, FLAGS, "curve" },
473     {     "cbr",      "cubic root",                                    0,                    AV_OPT_TYPE_CONST,  {.i64 = CBR  }, 0, 0, FLAGS, "curve" },
474     {     "par",      "parabola",                                      0,                    AV_OPT_TYPE_CONST,  {.i64 = PAR  }, 0, 0, FLAGS, "curve" },
475     {     "exp",      "exponential",                                   0,                    AV_OPT_TYPE_CONST,  {.i64 = EXP  }, 0, 0, FLAGS, "curve" },
476     {     "iqsin",    "inverted quarter of sine wave",                 0,                    AV_OPT_TYPE_CONST,  {.i64 = IQSIN}, 0, 0, FLAGS, "curve" },
477     {     "ihsin",    "inverted half of sine wave",                    0,                    AV_OPT_TYPE_CONST,  {.i64 = IHSIN}, 0, 0, FLAGS, "curve" },
478     {     "dese",     "double-exponential seat",                       0,                    AV_OPT_TYPE_CONST,  {.i64 = DESE }, 0, 0, FLAGS, "curve" },
479     {     "desi",     "double-exponential sigmoid",                    0,                    AV_OPT_TYPE_CONST,  {.i64 = DESI }, 0, 0, FLAGS, "curve" },
480     {     "losi",     "logistic sigmoid",                              0,                    AV_OPT_TYPE_CONST,  {.i64 = LOSI }, 0, 0, FLAGS, "curve" },
481     {     "sinc",     "sine cardinal function",                        0,                    AV_OPT_TYPE_CONST,  {.i64 = SINC }, 0, 0, FLAGS, "curve" },
482     {     "isinc",    "inverted sine cardinal function",               0,                    AV_OPT_TYPE_CONST,  {.i64 = ISINC}, 0, 0, FLAGS, "curve" },
483     {     "quat",     "quartic",                                       0,                    AV_OPT_TYPE_CONST,  {.i64 = QUAT }, 0, 0, FLAGS, "curve" },
484     {     "quatr",    "quartic root",                                  0,                    AV_OPT_TYPE_CONST,  {.i64 = QUATR}, 0, 0, FLAGS, "curve" },
485     {     "qsin2",    "squared quarter of sine wave",                  0,                    AV_OPT_TYPE_CONST,  {.i64 = QSIN2}, 0, 0, FLAGS, "curve" },
486     {     "hsin2",    "squared half of sine wave",                     0,                    AV_OPT_TYPE_CONST,  {.i64 = HSIN2}, 0, 0, FLAGS, "curve" },
487     { "curve2",       "set fade curve type for 2nd stream",            OFFSET(curve2),       AV_OPT_TYPE_INT,    {.i64 = TRI  }, NONE, NB_CURVES - 1, FLAGS, "curve" },
488     { "c2",           "set fade curve type for 2nd stream",            OFFSET(curve2),       AV_OPT_TYPE_INT,    {.i64 = TRI  }, NONE, NB_CURVES - 1, FLAGS, "curve" },
489     { NULL }
490 };
491
492 AVFILTER_DEFINE_CLASS(acrossfade);
493
494 #define CROSSFADE_PLANAR(name, type)                                           \
495 static void crossfade_samples_## name ##p(uint8_t **dst, uint8_t * const *cf0, \
496                                           uint8_t * const *cf1,                \
497                                           int nb_samples, int channels,        \
498                                           int curve0, int curve1)              \
499 {                                                                              \
500     int i, c;                                                                  \
501                                                                                \
502     for (i = 0; i < nb_samples; i++) {                                         \
503         double gain0 = fade_gain(curve0, nb_samples - 1 - i, nb_samples,0.,1.);\
504         double gain1 = fade_gain(curve1, i, nb_samples, 0., 1.);               \
505         for (c = 0; c < channels; c++) {                                       \
506             type *d = (type *)dst[c];                                          \
507             const type *s0 = (type *)cf0[c];                                   \
508             const type *s1 = (type *)cf1[c];                                   \
509                                                                                \
510             d[i] = s0[i] * gain0 + s1[i] * gain1;                              \
511         }                                                                      \
512     }                                                                          \
513 }
514
515 #define CROSSFADE(name, type)                                               \
516 static void crossfade_samples_## name (uint8_t **dst, uint8_t * const *cf0, \
517                                        uint8_t * const *cf1,                \
518                                        int nb_samples, int channels,        \
519                                        int curve0, int curve1)              \
520 {                                                                           \
521     type *d = (type *)dst[0];                                               \
522     const type *s0 = (type *)cf0[0];                                        \
523     const type *s1 = (type *)cf1[0];                                        \
524     int i, c, k = 0;                                                        \
525                                                                             \
526     for (i = 0; i < nb_samples; i++) {                                      \
527         double gain0 = fade_gain(curve0, nb_samples - 1-i,nb_samples,0.,1.);\
528         double gain1 = fade_gain(curve1, i, nb_samples, 0., 1.);            \
529         for (c = 0; c < channels; c++, k++)                                 \
530             d[k] = s0[k] * gain0 + s1[k] * gain1;                           \
531     }                                                                       \
532 }
533
534 CROSSFADE_PLANAR(dbl, double)
535 CROSSFADE_PLANAR(flt, float)
536 CROSSFADE_PLANAR(s16, int16_t)
537 CROSSFADE_PLANAR(s32, int32_t)
538
539 CROSSFADE(dbl, double)
540 CROSSFADE(flt, float)
541 CROSSFADE(s16, int16_t)
542 CROSSFADE(s32, int32_t)
543
544 static int check_input(AVFilterLink *inlink)
545 {
546     const int queued_samples = ff_inlink_queued_samples(inlink);
547
548     return ff_inlink_check_available_samples(inlink, queued_samples + 1) == 1;
549 }
550
551 static int activate(AVFilterContext *ctx)
552 {
553     AudioFadeContext *s   = ctx->priv;
554     AVFilterLink *outlink = ctx->outputs[0];
555     AVFrame *in = NULL, *out, *cf[2] = { NULL };
556     int ret = 0, nb_samples, status;
557     int64_t pts;
558
559     FF_FILTER_FORWARD_STATUS_BACK_ALL(outlink, ctx);
560
561     if (s->passthrough && s->status[0]) {
562         ret = ff_inlink_consume_frame(ctx->inputs[1], &in);
563         if (ret > 0) {
564             in->pts = s->pts;
565             s->pts += av_rescale_q(in->nb_samples,
566                       (AVRational){ 1, outlink->sample_rate }, outlink->time_base);
567             return ff_filter_frame(outlink, in);
568         } else if (ret < 0) {
569             return ret;
570         } else if (ff_inlink_acknowledge_status(ctx->inputs[1], &status, &pts)) {
571             ff_outlink_set_status(outlink, status, pts);
572             return 0;
573         } else if (!ret) {
574             if (ff_outlink_frame_wanted(outlink)) {
575                 ff_inlink_request_frame(ctx->inputs[1]);
576                 return 0;
577             }
578         }
579     }
580
581     nb_samples = ff_inlink_queued_samples(ctx->inputs[0]);
582     if (nb_samples  > s->nb_samples) {
583         nb_samples -= s->nb_samples;
584         s->passthrough = 1;
585         ret = ff_inlink_consume_samples(ctx->inputs[0], nb_samples, nb_samples, &in);
586         if (ret < 0)
587             return ret;
588         in->pts = s->pts;
589         s->pts += av_rescale_q(in->nb_samples,
590             (AVRational){ 1, outlink->sample_rate }, outlink->time_base);
591         return ff_filter_frame(outlink, in);
592     } else if (s->status[0] && nb_samples >= s->nb_samples &&
593                ff_inlink_queued_samples(ctx->inputs[1]) >= s->nb_samples) {
594         if (s->overlap) {
595             out = ff_get_audio_buffer(outlink, s->nb_samples);
596             if (!out)
597                 return AVERROR(ENOMEM);
598
599             ret = ff_inlink_consume_samples(ctx->inputs[0], s->nb_samples, s->nb_samples, &cf[0]);
600             if (ret < 0) {
601                 av_frame_free(&out);
602                 return ret;
603             }
604
605             ret = ff_inlink_consume_samples(ctx->inputs[1], s->nb_samples, s->nb_samples, &cf[1]);
606             if (ret < 0) {
607                 av_frame_free(&out);
608                 return ret;
609             }
610
611             s->crossfade_samples(out->extended_data, cf[0]->extended_data,
612                                  cf[1]->extended_data,
613                                  s->nb_samples, out->ch_layout.nb_channels,
614                                  s->curve, s->curve2);
615             out->pts = s->pts;
616             s->pts += av_rescale_q(s->nb_samples,
617                 (AVRational){ 1, outlink->sample_rate }, outlink->time_base);
618             s->passthrough = 1;
619             av_frame_free(&cf[0]);
620             av_frame_free(&cf[1]);
621             return ff_filter_frame(outlink, out);
622         } else {
623             out = ff_get_audio_buffer(outlink, s->nb_samples);
624             if (!out)
625                 return AVERROR(ENOMEM);
626
627             ret = ff_inlink_consume_samples(ctx->inputs[0], s->nb_samples, s->nb_samples, &cf[0]);
628             if (ret < 0) {
629                 av_frame_free(&out);
630                 return ret;
631             }
632
633             s->fade_samples(out->extended_data, cf[0]->extended_data, s->nb_samples,
634                             outlink->ch_layout.nb_channels, -1, s->nb_samples - 1, s->nb_samples, s->curve, 0., 1.);
635             out->pts = s->pts;
636             s->pts += av_rescale_q(s->nb_samples,
637                 (AVRational){ 1, outlink->sample_rate }, outlink->time_base);
638             av_frame_free(&cf[0]);
639             ret = ff_filter_frame(outlink, out);
640             if (ret < 0)
641                 return ret;
642
643             out = ff_get_audio_buffer(outlink, s->nb_samples);
644             if (!out)
645                 return AVERROR(ENOMEM);
646
647             ret = ff_inlink_consume_samples(ctx->inputs[1], s->nb_samples, s->nb_samples, &cf[1]);
648             if (ret < 0) {
649                 av_frame_free(&out);
650                 return ret;
651             }
652
653             s->fade_samples(out->extended_data, cf[1]->extended_data, s->nb_samples,
654                             outlink->ch_layout.nb_channels, 1, 0, s->nb_samples, s->curve2, 0., 1.);
655             out->pts = s->pts;
656             s->pts += av_rescale_q(s->nb_samples,
657                 (AVRational){ 1, outlink->sample_rate }, outlink->time_base);
658             s->passthrough = 1;
659             av_frame_free(&cf[1]);
660             return ff_filter_frame(outlink, out);
661         }
662     } else if (ff_outlink_frame_wanted(outlink)) {
663         if (!s->status[0] && check_input(ctx->inputs[0]))
664             s->status[0] = AVERROR_EOF;
665         s->passthrough = !s->status[0];
666         if (check_input(ctx->inputs[1])) {
667             s->status[1] = AVERROR_EOF;
668             ff_outlink_set_status(outlink, AVERROR_EOF, AV_NOPTS_VALUE);
669             return 0;
670         }
671         if (!s->status[0])
672             ff_inlink_request_frame(ctx->inputs[0]);
673         else
674             ff_inlink_request_frame(ctx->inputs[1]);
675         return 0;
676     }
677
678     return ret;
679 }
680
681 static int acrossfade_config_output(AVFilterLink *outlink)
682 {
683     AVFilterContext *ctx = outlink->src;
684     AudioFadeContext *s  = ctx->priv;
685
686     outlink->time_base   = ctx->inputs[0]->time_base;
687
688     switch (outlink->format) {
689     case AV_SAMPLE_FMT_DBL:  s->crossfade_samples = crossfade_samples_dbl;  break;
690     case AV_SAMPLE_FMT_DBLP: s->crossfade_samples = crossfade_samples_dblp; break;
691     case AV_SAMPLE_FMT_FLT:  s->crossfade_samples = crossfade_samples_flt;  break;
692     case AV_SAMPLE_FMT_FLTP: s->crossfade_samples = crossfade_samples_fltp; break;
693     case AV_SAMPLE_FMT_S16:  s->crossfade_samples = crossfade_samples_s16;  break;
694     case AV_SAMPLE_FMT_S16P: s->crossfade_samples = crossfade_samples_s16p; break;
695     case AV_SAMPLE_FMT_S32:  s->crossfade_samples = crossfade_samples_s32;  break;
696     case AV_SAMPLE_FMT_S32P: s->crossfade_samples = crossfade_samples_s32p; break;
697     }
698
699     config_output(outlink);
700
701     return 0;
702 }
703
704 static AVFrame *get_audio_buffer(AVFilterLink *inlink, int nb_samples)
705 {
706     AVFilterContext *ctx = inlink->dst;
707     AudioFadeContext *s = ctx->priv;
708
709     return s->passthrough ?
710         ff_null_get_audio_buffer   (inlink, nb_samples) :
711         ff_default_get_audio_buffer(inlink, nb_samples);
712 }
713
714 static const AVFilterPad avfilter_af_acrossfade_inputs[] = {
715     {
716         .name         = "crossfade0",
717         .type         = AVMEDIA_TYPE_AUDIO,
718         .get_buffer.audio = get_audio_buffer,
719     },
720     {
721         .name         = "crossfade1",
722         .type         = AVMEDIA_TYPE_AUDIO,
723         .get_buffer.audio = get_audio_buffer,
724     },
725 };
726
727 static const AVFilterPad avfilter_af_acrossfade_outputs[] = {
728     {
729         .name          = "default",
730         .type          = AVMEDIA_TYPE_AUDIO,
731         .config_props  = acrossfade_config_output,
732     },
733 };
734
735 const AVFilter ff_af_acrossfade = {
736     .name          = "acrossfade",
737     .description   = NULL_IF_CONFIG_SMALL("Cross fade two input audio streams."),
738     .priv_size     = sizeof(AudioFadeContext),
739     .activate      = activate,
740     .priv_class    = &acrossfade_class,
741     FILTER_INPUTS(avfilter_af_acrossfade_inputs),
742     FILTER_OUTPUTS(avfilter_af_acrossfade_outputs),
743     FILTER_SAMPLEFMTS_ARRAY(sample_fmts),
744 };
745
746 #endif /* CONFIG_ACROSSFADE_FILTER */