d0b25acdc0939538aca6f0f1dc3fc042321a541a
[platform/upstream/cryptsetup.git] / lib / setup.c
1 /*
2  * libcryptsetup - cryptsetup library
3  *
4  * Copyright (C) 2004, Christophe Saout <christophe@saout.de>
5  * Copyright (C) 2004-2007, Clemens Fruhwirth <clemens@endorphin.org>
6  * Copyright (C) 2009-2012, Red Hat, Inc. All rights reserved.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * version 2 as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  */
21
22 #include <string.h>
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <stdarg.h>
26 #include <fcntl.h>
27 #include <errno.h>
28
29 #include "libcryptsetup.h"
30 #include "luks.h"
31 #include "loopaes.h"
32 #include "verity.h"
33 #include "internal.h"
34
35 struct crypt_device {
36         char *type;
37
38         struct device *device;
39         struct device *metadata_device;
40
41         struct volume_key *volume_key;
42         uint64_t timeout;
43         uint64_t iteration_time;
44         int tries;
45         int password_verify;
46         int rng_type;
47
48         /* used in CRYPT_LUKS1 */
49         struct luks_phdr hdr;
50         uint64_t PBKDF2_per_sec;
51
52         /* used in CRYPT_PLAIN */
53         struct crypt_params_plain plain_hdr;
54         char *plain_cipher;
55         char *plain_cipher_mode;
56         char *plain_uuid;
57         unsigned int plain_key_size;
58
59         /* used in CRYPT_LOOPAES */
60         struct crypt_params_loopaes loopaes_hdr;
61         char *loopaes_cipher;
62         char *loopaes_cipher_mode;
63         char *loopaes_uuid;
64         unsigned int loopaes_key_size;
65
66         /* used in CRYPT_VERITY */
67         struct crypt_params_verity verity_hdr;
68         char *verity_root_hash;
69         unsigned int verity_root_hash_size;
70         char *verity_uuid;
71
72         /* callbacks definitions */
73         void (*log)(int level, const char *msg, void *usrptr);
74         void *log_usrptr;
75         int (*confirm)(const char *msg, void *usrptr);
76         void *confirm_usrptr;
77         int (*password)(const char *msg, char *buf, size_t length, void *usrptr);
78         void *password_usrptr;
79
80         /* last error message */
81         char error[MAX_ERROR_LENGTH];
82 };
83
84 /* Global error */
85 /* FIXME: not thread safe, remove this later */
86 static char global_error[MAX_ERROR_LENGTH] = {0};
87
88 /* Log helper */
89 static void (*_default_log)(int level, const char *msg, void *usrptr) = NULL;
90 static int _debug_level = 0;
91
92 void crypt_set_debug_level(int level)
93 {
94         _debug_level = level;
95 }
96
97 int crypt_get_debug_level(void)
98 {
99         return _debug_level;
100 }
101
102 static void crypt_set_error(struct crypt_device *cd, const char *error)
103 {
104         size_t size = strlen(error);
105
106         /* Set global error, ugly hack... */
107         strncpy(global_error, error, MAX_ERROR_LENGTH - 2);
108         if (size < MAX_ERROR_LENGTH && global_error[size - 1] == '\n')
109                 global_error[size - 1] = '\0';
110
111         /* Set error string per context */
112         if (cd) {
113                 strncpy(cd->error, error, MAX_ERROR_LENGTH - 2);
114                 if (size < MAX_ERROR_LENGTH && cd->error[size - 1] == '\n')
115                         cd->error[size - 1] = '\0';
116         }
117 }
118
119 void crypt_log(struct crypt_device *cd, int level, const char *msg)
120 {
121         if (cd && cd->log)
122                 cd->log(level, msg, cd->log_usrptr);
123         else if (_default_log)
124                 _default_log(level, msg, NULL);
125
126         if (level == CRYPT_LOG_ERROR)
127                 crypt_set_error(cd, msg);
128 }
129
130 __attribute__((format(printf, 5, 6)))
131 void logger(struct crypt_device *cd, int level, const char *file,
132             int line, const char *format, ...)
133 {
134         va_list argp;
135         char *target = NULL;
136
137         va_start(argp, format);
138
139         if (vasprintf(&target, format, argp) > 0 ) {
140                 if (level >= 0) {
141                         crypt_log(cd, level, target);
142 #ifdef CRYPT_DEBUG
143                 } else if (_debug_level)
144                         printf("# %s:%d %s\n", file ?: "?", line, target);
145 #else
146                 } else if (_debug_level)
147                         printf("# %s\n", target);
148 #endif
149         }
150
151         va_end(argp);
152         free(target);
153 }
154
155 static const char *mdata_device_path(struct crypt_device *cd)
156 {
157         return device_path(cd->metadata_device ?: cd->device);
158 }
159
160 /* internal only */
161 struct device *crypt_metadata_device(struct crypt_device *cd)
162 {
163         return cd->metadata_device ?: cd->device;
164 }
165
166 struct device *crypt_data_device(struct crypt_device *cd)
167 {
168         return cd->device;
169 }
170
171 static int init_crypto(struct crypt_device *ctx)
172 {
173         int r;
174
175         crypt_fips_libcryptsetup_check(ctx);
176
177         r = crypt_random_init(ctx);
178         if (r < 0) {
179                 log_err(ctx, _("Cannot initialize crypto RNG backend.\n"));
180                 return r;
181         }
182
183         r = crypt_backend_init(ctx);
184         if (r < 0)
185                 log_err(ctx, _("Cannot initialize crypto backend.\n"));
186
187         log_dbg("Crypto backend (%s) initialized.", crypt_backend_version());
188         return r;
189 }
190
191 static int process_key(struct crypt_device *cd, const char *hash_name,
192                        size_t key_size, const char *pass, size_t passLen,
193                        struct volume_key **vk)
194 {
195         int r;
196
197         if (!key_size)
198                 return -EINVAL;
199
200         *vk = crypt_alloc_volume_key(key_size, NULL);
201         if (!*vk)
202                 return -ENOMEM;
203
204         if (hash_name) {
205                 r = crypt_plain_hash(cd, hash_name, (*vk)->key, key_size, pass, passLen);
206                 if (r < 0) {
207                         if (r == -ENOENT)
208                                 log_err(cd, _("Hash algorithm %s not supported.\n"),
209                                         hash_name);
210                         else
211                                 log_err(cd, _("Key processing error (using hash %s).\n"),
212                                         hash_name);
213                         crypt_free_volume_key(*vk);
214                         *vk = NULL;
215                         return -EINVAL;
216                 }
217         } else if (passLen > key_size) {
218                 memcpy((*vk)->key, pass, key_size);
219         } else {
220                 memcpy((*vk)->key, pass, passLen);
221         }
222
223         return 0;
224 }
225
226 static int isPLAIN(const char *type)
227 {
228         return (type && !strcmp(CRYPT_PLAIN, type));
229 }
230
231 static int isLUKS(const char *type)
232 {
233         return (type && !strcmp(CRYPT_LUKS1, type));
234 }
235
236 static int isLOOPAES(const char *type)
237 {
238         return (type && !strcmp(CRYPT_LOOPAES, type));
239 }
240
241 static int isVERITY(const char *type)
242 {
243         return (type && !strcmp(CRYPT_VERITY, type));
244 }
245
246 /* keyslot helpers */
247 static int keyslot_verify_or_find_empty(struct crypt_device *cd, int *keyslot)
248 {
249         if (*keyslot == CRYPT_ANY_SLOT) {
250                 *keyslot = LUKS_keyslot_find_empty(&cd->hdr);
251                 if (*keyslot < 0) {
252                         log_err(cd, _("All key slots full.\n"));
253                         return -EINVAL;
254                 }
255         }
256
257         switch (LUKS_keyslot_info(&cd->hdr, *keyslot)) {
258                 case CRYPT_SLOT_INVALID:
259                         log_err(cd, _("Key slot %d is invalid, please select between 0 and %d.\n"),
260                                 *keyslot, LUKS_NUMKEYS - 1);
261                         return -EINVAL;
262                 case CRYPT_SLOT_INACTIVE:
263                         break;
264                 default:
265                         log_err(cd, _("Key slot %d is full, please select another one.\n"),
266                                 *keyslot);
267                         return -EINVAL;
268         }
269
270         return 0;
271 }
272
273 /*
274  * compares UUIDs returned by device-mapper (striped by cryptsetup) and uuid in header
275  */
276 static int crypt_uuid_cmp(const char *dm_uuid, const char *hdr_uuid)
277 {
278         int i, j;
279         char *str;
280
281         if (!dm_uuid || !hdr_uuid)
282                 return -EINVAL;
283
284         str = strchr(dm_uuid, '-');
285         if (!str)
286                 return -EINVAL;
287
288         for (i = 0, j = 1; hdr_uuid[i]; i++) {
289                 if (hdr_uuid[i] == '-')
290                         continue;
291
292                 if (!str[j] || str[j] == '-')
293                         return -EINVAL;
294
295                 if (str[j] != hdr_uuid[i])
296                         return -EINVAL;
297                 j++;
298         }
299
300         return 0;
301 }
302
303 int PLAIN_activate(struct crypt_device *cd,
304                      const char *name,
305                      struct volume_key *vk,
306                      uint64_t size,
307                      uint32_t flags)
308 {
309         int r;
310         char *dm_cipher = NULL;
311         enum devcheck device_check;
312         struct crypt_dm_active_device dmd = {
313                 .target = DM_CRYPT,
314                 .uuid   = crypt_get_uuid(cd),
315                 .size   = size,
316                 .flags  = flags,
317                 .data_device = crypt_data_device(cd),
318                 .u.crypt  = {
319                         .cipher = NULL,
320                         .vk     = vk,
321                         .offset = crypt_get_data_offset(cd),
322                         .iv_offset = crypt_get_iv_offset(cd),
323                 }
324         };
325
326         if (dmd.flags & CRYPT_ACTIVATE_SHARED)
327                 device_check = DEV_SHARED;
328         else
329                 device_check = DEV_EXCL;
330
331         r = device_block_adjust(cd, dmd.data_device, device_check,
332                                 dmd.u.crypt.offset, &dmd.size, &dmd.flags);
333         if (r)
334                 return r;
335
336         if (crypt_get_cipher_mode(cd))
337                 r = asprintf(&dm_cipher, "%s-%s", crypt_get_cipher(cd), crypt_get_cipher_mode(cd));
338         else
339                 r = asprintf(&dm_cipher, "%s", crypt_get_cipher(cd));
340         if (r < 0)
341                 return -ENOMEM;
342
343         dmd.u.crypt.cipher = dm_cipher;
344         log_dbg("Trying to activate PLAIN device %s using cipher %s.",
345                 name, dmd.u.crypt.cipher);
346
347         r = dm_create_device(cd, name, CRYPT_PLAIN, &dmd, 0);
348
349         // FIXME
350         if (!cd->plain_uuid && dm_query_device(cd, name, DM_ACTIVE_UUID, &dmd) >= 0)
351                 cd->plain_uuid = CONST_CAST(char*)dmd.uuid;
352
353         free(dm_cipher);
354         return r;
355 }
356
357 int crypt_confirm(struct crypt_device *cd, const char *msg)
358 {
359         if (!cd || !cd->confirm)
360                 return 1;
361         else
362                 return cd->confirm(msg, cd->confirm_usrptr);
363 }
364
365 static int key_from_terminal(struct crypt_device *cd, char *msg, char **key,
366                               size_t *key_len, int force_verify)
367 {
368         char *prompt = NULL, *device_name;
369         int r;
370
371         *key = NULL;
372         if(!msg) {
373                 if (crypt_loop_device(crypt_get_device_name(cd)))
374                         device_name = crypt_loop_backing_file(crypt_get_device_name(cd));
375                 else
376                         device_name = strdup(crypt_get_device_name(cd));
377                 if (!device_name)
378                         return -ENOMEM;
379                 r = asprintf(&prompt, _("Enter passphrase for %s: "), device_name);
380                 free(device_name);
381                 if (r < 0)
382                         return -ENOMEM;
383                 msg = prompt;
384         }
385
386         if (cd->password) {
387                 *key = crypt_safe_alloc(DEFAULT_PASSPHRASE_SIZE_MAX);
388                 if (!*key) {
389                         r = -ENOMEM;
390                         goto out;
391                 }
392                 r = cd->password(msg, *key, DEFAULT_PASSPHRASE_SIZE_MAX,
393                                  cd->password_usrptr);
394                 if (r < 0) {
395                         crypt_safe_free(*key);
396                         *key = NULL;
397                 } else
398                         *key_len = r;
399         } else
400                 r = crypt_get_key(msg, key, key_len, 0, 0, NULL, cd->timeout,
401                                   (force_verify || cd->password_verify), cd);
402 out:
403         free(prompt);
404         return (r < 0) ? r: 0;
405 }
406
407 static int volume_key_by_terminal_passphrase(struct crypt_device *cd, int keyslot,
408                                              struct volume_key **vk)
409 {
410         char *passphrase_read = NULL;
411         size_t passphrase_size_read;
412         int r = -EINVAL, eperm = 0, tries = cd->tries;
413
414         *vk = NULL;
415         do {
416                 crypt_free_volume_key(*vk);
417                 *vk = NULL;
418
419                 r = key_from_terminal(cd, NULL, &passphrase_read,
420                                       &passphrase_size_read, 0);
421                 /* Continue if it is just passphrase verify mismatch */
422                 if (r == -EPERM)
423                         continue;
424                 if(r < 0)
425                         goto out;
426
427                 r = LUKS_open_key_with_hdr(keyslot, passphrase_read,
428                                            passphrase_size_read, &cd->hdr, vk, cd);
429                 if (r == -EPERM)
430                         eperm = 1;
431                 crypt_safe_free(passphrase_read);
432                 passphrase_read = NULL;
433         } while (r == -EPERM && (--tries > 0));
434 out:
435         if (r < 0) {
436                 crypt_free_volume_key(*vk);
437                 *vk = NULL;
438
439                 /* Report wrong passphrase if at least one try failed */
440                 if (eperm && r == -EPIPE)
441                         r = -EPERM;
442         }
443
444         crypt_safe_free(passphrase_read);
445         return r;
446 }
447
448 static int key_from_file(struct crypt_device *cd, char *msg,
449                           char **key, size_t *key_len,
450                           const char *key_file, size_t key_offset,
451                           size_t key_size)
452 {
453         return crypt_get_key(msg, key, key_len, key_offset, key_size, key_file,
454                              cd->timeout, 0, cd);
455 }
456
457 void crypt_set_log_callback(struct crypt_device *cd,
458         void (*log)(int level, const char *msg, void *usrptr),
459         void *usrptr)
460 {
461         if (!cd)
462                 _default_log = log;
463         else {
464                 cd->log = log;
465                 cd->log_usrptr = usrptr;
466         }
467 }
468
469 void crypt_set_confirm_callback(struct crypt_device *cd,
470         int (*confirm)(const char *msg, void *usrptr),
471         void *usrptr)
472 {
473         cd->confirm = confirm;
474         cd->confirm_usrptr = usrptr;
475 }
476
477 void crypt_set_password_callback(struct crypt_device *cd,
478         int (*password)(const char *msg, char *buf, size_t length, void *usrptr),
479         void *usrptr)
480 {
481         cd->password = password;
482         cd->password_usrptr = usrptr;
483 }
484
485 static void _get_error(char *error, char *buf, size_t size)
486 {
487         if (!buf || size < 1)
488                 error[0] = '\0';
489         else if (*error) {
490                 strncpy(buf, error, size - 1);
491                 buf[size - 1] = '\0';
492                 error[0] = '\0';
493         } else
494                 buf[0] = '\0';
495 }
496
497 void crypt_last_error(struct crypt_device *cd, char *buf, size_t size)
498 {
499         if (cd)
500                 return _get_error(cd->error, buf, size);
501 }
502
503 /* Deprecated global error interface */
504 void crypt_get_error(char *buf, size_t size)
505 {
506         return _get_error(global_error, buf, size);
507 }
508
509 const char *crypt_get_dir(void)
510 {
511         return dm_get_dir();
512 }
513
514 int crypt_init(struct crypt_device **cd, const char *device)
515 {
516         struct crypt_device *h = NULL;
517         int r;
518
519         if (!cd)
520                 return -EINVAL;
521
522         log_dbg("Allocating crypt device %s context.", device);
523
524         if (!(h = malloc(sizeof(struct crypt_device))))
525                 return -ENOMEM;
526
527         memset(h, 0, sizeof(*h));
528
529         r = device_alloc(&h->device, device);
530         if (r < 0)
531                 goto bad;
532
533         dm_backend_init();
534
535         h->iteration_time = 1000;
536         h->password_verify = 0;
537         h->tries = 3;
538         h->rng_type = crypt_random_default_key_rng();
539         *cd = h;
540         return 0;
541 bad:
542         device_free(h->device);
543         free(h);
544         return r;
545 }
546
547 static int crypt_check_data_device_size(struct crypt_device *cd)
548 {
549         int r;
550         uint64_t size, size_min;
551
552         /* Check data device size, require at least one sector */
553         size_min = crypt_get_data_offset(cd) << SECTOR_SHIFT ?: SECTOR_SIZE;
554
555         r = device_size(cd->device, &size);
556         if (r < 0)
557                 return r;
558
559         if (size < size_min) {
560                 log_err(cd, _("Header detected but device %s is too small.\n"),
561                         device_path(cd->device));
562                 return -EINVAL;
563         }
564
565         return r;
566 }
567
568 int crypt_set_data_device(struct crypt_device *cd, const char *device)
569 {
570         struct device *dev = NULL;
571         int r;
572
573         log_dbg("Setting ciphertext data device to %s.", device ?: "(none)");
574
575         if (!isLUKS(cd->type) && !isVERITY(cd->type)) {
576                 log_err(cd, _("This operation is not supported for this device type.\n"));
577                 return  -EINVAL;
578         }
579
580         /* metadata device must be set */
581         if (!cd->device || !device)
582                 return -EINVAL;
583
584         r = device_alloc(&dev, device);
585         if (r < 0)
586                 return r;
587
588         if (!cd->metadata_device) {
589                 cd->metadata_device = cd->device;
590         } else
591                 device_free(cd->device);
592
593         cd->device = dev;
594
595         return crypt_check_data_device_size(cd);
596 }
597
598 static int _crypt_load_luks1(struct crypt_device *cd, int require_header, int repair)
599 {
600         struct luks_phdr hdr;
601         int r;
602
603         r = init_crypto(cd);
604         if (r < 0)
605                 return r;
606
607         r = LUKS_read_phdr(&hdr, require_header, repair, cd);
608         if (r < 0)
609                 return r;
610
611         if (!cd->type && !(cd->type = strdup(CRYPT_LUKS1)))
612                 return -ENOMEM;
613
614         memcpy(&cd->hdr, &hdr, sizeof(hdr));
615
616         return r;
617 }
618
619 static int _crypt_load_verity(struct crypt_device *cd, struct crypt_params_verity *params)
620 {
621         int r;
622         size_t sb_offset = 0;
623
624         r = init_crypto(cd);
625         if (r < 0)
626                 return r;
627
628         if (params->flags & CRYPT_VERITY_NO_HEADER)
629                 return -EINVAL;
630
631         if (params)
632                 sb_offset = params->hash_area_offset;
633
634         r = VERITY_read_sb(cd, sb_offset, &cd->verity_uuid, &cd->verity_hdr);
635         if (r < 0)
636                 return r;
637
638         if (params)
639                 cd->verity_hdr.flags = params->flags;
640
641         /* Hash availability checked in sb load */
642         cd->verity_root_hash_size = crypt_hash_size(cd->verity_hdr.hash_name);
643         if (cd->verity_root_hash_size > 4096)
644                 return -EINVAL;
645
646         if (!cd->type && !(cd->type = strdup(CRYPT_VERITY)))
647                 return -ENOMEM;
648
649         if (params && params->data_device &&
650             (r = crypt_set_data_device(cd, params->data_device)) < 0)
651                 return r;
652
653         return r;
654 }
655
656 static int _init_by_name_crypt(struct crypt_device *cd, const char *name)
657 {
658         struct crypt_dm_active_device dmd = {};
659         char cipher[MAX_CIPHER_LEN], cipher_mode[MAX_CIPHER_LEN];
660         int key_nums, r;
661
662         r = dm_query_device(cd, name,
663                         DM_ACTIVE_DEVICE |
664                         DM_ACTIVE_UUID |
665                         DM_ACTIVE_CRYPT_CIPHER |
666                         DM_ACTIVE_CRYPT_KEYSIZE, &dmd);
667         if (r < 0)
668                 goto out;
669
670         if (isPLAIN(cd->type)) {
671                 cd->plain_uuid = dmd.uuid ? strdup(dmd.uuid) : NULL;
672                 cd->plain_hdr.hash = NULL; /* no way to get this */
673                 cd->plain_hdr.offset = dmd.u.crypt.offset;
674                 cd->plain_hdr.skip = dmd.u.crypt.iv_offset;
675                 cd->plain_key_size = dmd.u.crypt.vk->keylength;
676
677                 r = crypt_parse_name_and_mode(dmd.u.crypt.cipher, cipher, NULL, cipher_mode);
678                 if (!r) {
679                         cd->plain_cipher = strdup(cipher);
680                         cd->plain_cipher_mode = strdup(cipher_mode);
681                 }
682         } else if (isLOOPAES(cd->type)) {
683                 cd->loopaes_uuid = dmd.uuid ? strdup(dmd.uuid) : NULL;
684                 cd->loopaes_hdr.offset = dmd.u.crypt.offset;
685
686                 r = crypt_parse_name_and_mode(dmd.u.crypt.cipher, cipher,
687                                               &key_nums, cipher_mode);
688                 if (!r) {
689                         cd->loopaes_cipher = strdup(cipher);
690                         cd->loopaes_cipher_mode = strdup(cipher_mode);
691                         /* version 3 uses last key for IV */
692                         if (dmd.u.crypt.vk->keylength % key_nums)
693                                 key_nums++;
694                         cd->loopaes_key_size = dmd.u.crypt.vk->keylength / key_nums;
695                 }
696         } else if (isLUKS(cd->type)) {
697                 if (crypt_metadata_device(cd)) {
698                         r = _crypt_load_luks1(cd, 0, 0);
699                         if (r < 0) {
700                                 log_dbg("LUKS device header does not match active device.");
701                                 free(cd->type);
702                                 cd->type = NULL;
703                                 r = 0;
704                                 goto out;
705                         }
706                         /* check whether UUIDs match each other */
707                         r = crypt_uuid_cmp(dmd.uuid, cd->hdr.uuid);
708                         if (r < 0) {
709                                 log_dbg("LUKS device header uuid: %s mismatches DM returned uuid %s",
710                                         cd->hdr.uuid, dmd.uuid);
711                                 free(cd->type);
712                                 cd->type = NULL;
713                                 r = 0;
714                                 goto out;
715                         }
716                 }
717         }
718 out:
719         crypt_free_volume_key(dmd.u.crypt.vk);
720         device_free(dmd.data_device);
721         free(CONST_CAST(void*)dmd.u.crypt.cipher);
722         free(CONST_CAST(void*)dmd.uuid);
723         return r;
724 }
725
726 static int _init_by_name_verity(struct crypt_device *cd, const char *name)
727 {
728         struct crypt_params_verity params = {};
729         struct crypt_dm_active_device dmd = {
730                 .target = DM_VERITY,
731                 .u.verity.vp = &params,
732         };
733         int r;
734
735         r = dm_query_device(cd, name,
736                                 DM_ACTIVE_DEVICE |
737                                 DM_ACTIVE_UUID |
738                                 DM_ACTIVE_VERITY_HASH_DEVICE |
739                                 DM_ACTIVE_VERITY_PARAMS, &dmd);
740         if (r < 0)
741                 goto out;
742
743         if (isVERITY(cd->type)) {
744                 cd->verity_uuid = dmd.uuid ? strdup(dmd.uuid) : NULL;
745                 cd->verity_hdr.flags = CRYPT_VERITY_NO_HEADER; //FIXME
746                 cd->verity_hdr.data_size = params.data_size;
747                 cd->verity_root_hash_size = dmd.u.verity.root_hash_size;
748                 cd->verity_root_hash = NULL;
749                 cd->verity_hdr.hash_name = params.hash_name;
750                 cd->verity_hdr.data_device = NULL;
751                 cd->verity_hdr.hash_device = NULL;
752                 cd->verity_hdr.data_block_size = params.data_block_size;
753                 cd->verity_hdr.hash_block_size = params.hash_block_size;
754                 cd->verity_hdr.hash_area_offset = dmd.u.verity.hash_offset;
755                 cd->verity_hdr.hash_type = params.hash_type;
756                 cd->verity_hdr.flags = params.flags;
757                 cd->verity_hdr.salt_size = params.salt_size;
758                 cd->verity_hdr.salt = params.salt;
759                 cd->metadata_device = dmd.u.verity.hash_device;
760         }
761 out:
762         device_free(dmd.data_device);
763         free(CONST_CAST(void*)dmd.uuid);
764         return r;
765 }
766
767 int crypt_init_by_name_and_header(struct crypt_device **cd,
768                                   const char *name,
769                                   const char *header_device)
770 {
771         crypt_status_info ci;
772         struct crypt_dm_active_device dmd;
773         int r;
774
775         log_dbg("Allocating crypt device context by device %s.", name);
776
777         ci = crypt_status(NULL, name);
778         if (ci == CRYPT_INVALID)
779                 return -ENODEV;
780
781         if (ci < CRYPT_ACTIVE) {
782                 log_err(NULL, _("Device %s is not active.\n"), name);
783                 return -ENODEV;
784         }
785
786         r = dm_query_device(NULL, name, DM_ACTIVE_DEVICE | DM_ACTIVE_UUID, &dmd);
787         if (r < 0)
788                 goto out;
789
790         *cd = NULL;
791
792         if (header_device) {
793                 r = crypt_init(cd, header_device);
794         } else {
795                 r = crypt_init(cd, device_path(dmd.data_device));
796
797                 /* Underlying device disappeared but mapping still active */
798                 if (!dmd.data_device || r == -ENOTBLK)
799                         log_verbose(NULL, _("Underlying device for crypt device %s disappeared.\n"),
800                                     name);
801
802                 /* Underlying device is not readable but crypt mapping exists */
803                 if (r == -ENOTBLK) {
804                         device_free(dmd.data_device);
805                         dmd.data_device = NULL;
806                         r = crypt_init(cd, NULL);
807                 }
808         }
809
810         if (r < 0)
811                 goto out;
812
813         if (dmd.uuid) {
814                 if (!strncmp(CRYPT_PLAIN, dmd.uuid, sizeof(CRYPT_PLAIN)-1))
815                         (*cd)->type = strdup(CRYPT_PLAIN);
816                 else if (!strncmp(CRYPT_LOOPAES, dmd.uuid, sizeof(CRYPT_LOOPAES)-1))
817                         (*cd)->type = strdup(CRYPT_LOOPAES);
818                 else if (!strncmp(CRYPT_LUKS1, dmd.uuid, sizeof(CRYPT_LUKS1)-1))
819                         (*cd)->type = strdup(CRYPT_LUKS1);
820                 else if (!strncmp(CRYPT_VERITY, dmd.uuid, sizeof(CRYPT_VERITY)-1))
821                         (*cd)->type = strdup(CRYPT_VERITY);
822                 else
823                         log_dbg("Unknown UUID set, some parameters are not set.");
824         } else
825                 log_dbg("Active device has no UUID set, some parameters are not set.");
826
827         if (header_device) {
828                 r = crypt_set_data_device(*cd, device_path(dmd.data_device));
829                 if (r < 0)
830                         goto out;
831         }
832
833         /* Try to initialise basic parameters from active device */
834
835         if (dmd.target == DM_CRYPT)
836                 r = _init_by_name_crypt(*cd, name);
837         else if (dmd.target == DM_VERITY)
838                 r = _init_by_name_verity(*cd, name);
839 out:
840         if (r < 0) {
841                 crypt_free(*cd);
842                 *cd = NULL;
843         }
844         device_free(dmd.data_device);
845         free(CONST_CAST(void*)dmd.uuid);
846         return r;
847 }
848
849 int crypt_init_by_name(struct crypt_device **cd, const char *name)
850 {
851         return crypt_init_by_name_and_header(cd, name, NULL);
852 }
853
854 static int _crypt_format_plain(struct crypt_device *cd,
855                                const char *cipher,
856                                const char *cipher_mode,
857                                const char *uuid,
858                                size_t volume_key_size,
859                                struct crypt_params_plain *params)
860 {
861         if (!cipher || !cipher_mode) {
862                 log_err(cd, _("Invalid plain crypt parameters.\n"));
863                 return -EINVAL;
864         }
865
866         if (volume_key_size > 1024) {
867                 log_err(cd, _("Invalid key size.\n"));
868                 return -EINVAL;
869         }
870
871         if (!(cd->type = strdup(CRYPT_PLAIN)))
872                 return -ENOMEM;
873
874         cd->plain_key_size = volume_key_size;
875         cd->volume_key = crypt_alloc_volume_key(volume_key_size, NULL);
876         if (!cd->volume_key)
877                 return -ENOMEM;
878
879         cd->plain_cipher = strdup(cipher);
880         cd->plain_cipher_mode = strdup(cipher_mode);
881
882         if (uuid)
883                 cd->plain_uuid = strdup(uuid);
884
885         if (params && params->hash)
886                 cd->plain_hdr.hash = strdup(params->hash);
887
888         cd->plain_hdr.offset = params ? params->offset : 0;
889         cd->plain_hdr.skip = params ? params->skip : 0;
890         cd->plain_hdr.size = params ? params->size : 0;
891
892         if (!cd->plain_cipher || !cd->plain_cipher_mode)
893                 return -ENOMEM;
894
895         return 0;
896 }
897
898 static int _crypt_format_luks1(struct crypt_device *cd,
899                                const char *cipher,
900                                const char *cipher_mode,
901                                const char *uuid,
902                                const char *volume_key,
903                                size_t volume_key_size,
904                                struct crypt_params_luks1 *params)
905 {
906         int r;
907         unsigned long required_alignment = DEFAULT_DISK_ALIGNMENT;
908         unsigned long alignment_offset = 0;
909
910         if (!crypt_metadata_device(cd)) {
911                 log_err(cd, _("Can't format LUKS without device.\n"));
912                 return -EINVAL;
913         }
914
915         if (!(cd->type = strdup(CRYPT_LUKS1)))
916                 return -ENOMEM;
917
918         if (volume_key)
919                 cd->volume_key = crypt_alloc_volume_key(volume_key_size,
920                                                       volume_key);
921         else
922                 cd->volume_key = crypt_generate_volume_key(cd, volume_key_size);
923
924         if(!cd->volume_key)
925                 return -ENOMEM;
926
927         if (params && params->data_device) {
928                 cd->metadata_device = cd->device;
929                 cd->device = NULL;
930                 if (device_alloc(&cd->device, params->data_device) < 0)
931                         return -ENOMEM;
932                 required_alignment = params->data_alignment * SECTOR_SIZE;
933         } else if (params && params->data_alignment) {
934                 required_alignment = params->data_alignment * SECTOR_SIZE;
935         } else
936                 device_topology_alignment(cd->device,
937                                        &required_alignment,
938                                        &alignment_offset, DEFAULT_DISK_ALIGNMENT);
939
940         /* Check early if we cannot allocate block device for key slot access */
941         r = device_block_adjust(cd, cd->device, DEV_OK, 0, NULL, NULL);
942         if(r < 0)
943                 return r;
944
945         r = LUKS_generate_phdr(&cd->hdr, cd->volume_key, cipher, cipher_mode,
946                                (params && params->hash) ? params->hash : "sha1",
947                                uuid, LUKS_STRIPES,
948                                required_alignment / SECTOR_SIZE,
949                                alignment_offset / SECTOR_SIZE,
950                                cd->iteration_time, &cd->PBKDF2_per_sec,
951                                cd->metadata_device ? 1 : 0, cd);
952         if(r < 0)
953                 return r;
954
955         /* Wipe first 8 sectors - fs magic numbers etc. */
956         r = crypt_wipe(crypt_metadata_device(cd), 0, 8 * SECTOR_SIZE, CRYPT_WIPE_ZERO, 1);
957         if(r < 0) {
958                 if (r == -EBUSY)
959                         log_err(cd, _("Cannot format device %s which is still in use.\n"),
960                                 mdata_device_path(cd));
961                 else if (r == -EACCES) {
962                         log_err(cd, _("Cannot format device %s, permission denied.\n"),
963                                 mdata_device_path(cd));
964                         r = -EINVAL;
965                 } else
966                         log_err(cd, _("Cannot wipe header on device %s.\n"),
967                                 mdata_device_path(cd));
968
969                 return r;
970         }
971
972         r = LUKS_write_phdr(&cd->hdr, cd);
973
974         return r;
975 }
976
977 static int _crypt_format_loopaes(struct crypt_device *cd,
978                                  const char *cipher,
979                                  const char *uuid,
980                                  size_t volume_key_size,
981                                  struct crypt_params_loopaes *params)
982 {
983         if (!crypt_metadata_device(cd)) {
984                 log_err(cd, _("Can't format LOOPAES without device.\n"));
985                 return -EINVAL;
986         }
987
988         if (volume_key_size > 1024) {
989                 log_err(cd, _("Invalid key size.\n"));
990                 return -EINVAL;
991         }
992
993         if (!(cd->type = strdup(CRYPT_LOOPAES)))
994                 return -ENOMEM;
995
996         cd->loopaes_key_size = volume_key_size;
997
998         cd->loopaes_cipher = strdup(cipher ?: DEFAULT_LOOPAES_CIPHER);
999
1000         if (uuid)
1001                 cd->loopaes_uuid = strdup(uuid);
1002
1003         if (params && params->hash)
1004                 cd->loopaes_hdr.hash = strdup(params->hash);
1005
1006         cd->loopaes_hdr.offset = params ? params->offset : 0;
1007         cd->loopaes_hdr.skip = params ? params->skip : 0;
1008
1009         return 0;
1010 }
1011
1012 static int _crypt_format_verity(struct crypt_device *cd,
1013                                  const char *uuid,
1014                                  struct crypt_params_verity *params)
1015 {
1016         int r = 0, hash_size;
1017         uint64_t data_device_size;
1018
1019         if (!crypt_metadata_device(cd)) {
1020                 log_err(cd, _("Can't format VERITY without device.\n"));
1021                 return -EINVAL;
1022         }
1023
1024         if (!params || !params->data_device)
1025                 return -EINVAL;
1026
1027         if (params->hash_type > VERITY_MAX_HASH_TYPE) {
1028                 log_err(cd, _("Unsupported VERITY hash type %d.\n"), params->hash_type);
1029                 return -EINVAL;
1030         }
1031
1032         if (VERITY_BLOCK_SIZE_OK(params->data_block_size) ||
1033             VERITY_BLOCK_SIZE_OK(params->hash_block_size)) {
1034                 log_err(cd, _("Unsupported VERITY block size.\n"));
1035                 return -EINVAL;
1036         }
1037
1038         if (params->hash_area_offset % 512) {
1039                 log_err(cd, _("Unsupported VERITY hash offset.\n"));
1040                 return -EINVAL;
1041         }
1042
1043         if (!(cd->type = strdup(CRYPT_VERITY)))
1044                 return -ENOMEM;
1045
1046         r = crypt_set_data_device(cd, params->data_device);
1047         if (r)
1048                 return r;
1049         if (!params->data_size) {
1050                 r = device_size(cd->device, &data_device_size);
1051                 if (r < 0)
1052                         return r;
1053
1054                 cd->verity_hdr.data_size = data_device_size / params->data_block_size;
1055         } else
1056                 cd->verity_hdr.data_size = params->data_size;
1057
1058         hash_size = crypt_hash_size(params->hash_name);
1059         if (hash_size <= 0) {
1060                 log_err(cd, _("Hash algorithm %s not supported.\n"),
1061                         params->hash_name);
1062                 return -EINVAL;
1063         }
1064         cd->verity_root_hash_size = hash_size;
1065
1066         cd->verity_root_hash = malloc(cd->verity_root_hash_size);
1067         if (!cd->verity_root_hash)
1068                 return -ENOMEM;
1069
1070         cd->verity_hdr.flags = params->flags;
1071         cd->verity_hdr.hash_name = strdup(params->hash_name);
1072         cd->verity_hdr.data_device = NULL;
1073         cd->verity_hdr.data_block_size = params->data_block_size;
1074         cd->verity_hdr.hash_block_size = params->hash_block_size;
1075         cd->verity_hdr.hash_area_offset = params->hash_area_offset;
1076         cd->verity_hdr.hash_type = params->hash_type;
1077         cd->verity_hdr.flags = params->flags;
1078         cd->verity_hdr.salt_size = params->salt_size;
1079         cd->verity_hdr.salt = malloc(params->salt_size);
1080         if (params->salt)
1081                 memcpy(CONST_CAST(char*)cd->verity_hdr.salt, params->salt,
1082                        params->salt_size);
1083         else
1084                 r = crypt_random_get(cd, CONST_CAST(char*)cd->verity_hdr.salt,
1085                                      params->salt_size, CRYPT_RND_SALT);
1086         if (r)
1087                 return r;
1088
1089         if (params->flags & CRYPT_VERITY_CREATE_HASH) {
1090                 r = VERITY_create(cd, &cd->verity_hdr,
1091                                   cd->verity_root_hash, cd->verity_root_hash_size);
1092                 if (r)
1093                         return r;
1094         }
1095
1096         if (!(params->flags & CRYPT_VERITY_NO_HEADER)) {
1097                 if (uuid)
1098                         cd->verity_uuid = strdup(uuid);
1099                 else {
1100                         r = VERITY_UUID_generate(cd, &cd->verity_uuid);
1101                         if (r)
1102                                 return r;
1103                 }
1104
1105                 r = VERITY_write_sb(cd, cd->verity_hdr.hash_area_offset,
1106                                     cd->verity_uuid,
1107                                     &cd->verity_hdr);
1108         }
1109         return r;
1110 }
1111
1112 int crypt_format(struct crypt_device *cd,
1113         const char *type,
1114         const char *cipher,
1115         const char *cipher_mode,
1116         const char *uuid,
1117         const char *volume_key,
1118         size_t volume_key_size,
1119         void *params)
1120 {
1121         int r;
1122
1123         if (!type)
1124                 return -EINVAL;
1125
1126         if (cd->type) {
1127                 log_dbg("Context already formatted as %s.", cd->type);
1128                 return -EINVAL;
1129         }
1130
1131         log_dbg("Formatting device %s as type %s.", mdata_device_path(cd) ?: "(none)", type);
1132
1133         r = init_crypto(cd);
1134         if (r < 0)
1135                 return r;
1136
1137         if (isPLAIN(type))
1138                 r = _crypt_format_plain(cd, cipher, cipher_mode,
1139                                         uuid, volume_key_size, params);
1140         else if (isLUKS(type))
1141                 r = _crypt_format_luks1(cd, cipher, cipher_mode,
1142                                         uuid, volume_key, volume_key_size, params);
1143         else if (isLOOPAES(type))
1144                 r = _crypt_format_loopaes(cd, cipher, uuid, volume_key_size, params);
1145         else if (isVERITY(type))
1146                 r = _crypt_format_verity(cd, uuid, params);
1147         else {
1148                 log_err(cd, _("Unknown crypt device type %s requested.\n"), type);
1149                 r = -EINVAL;
1150         }
1151
1152         if (r < 0) {
1153                 free(cd->type);
1154                 cd->type = NULL;
1155                 crypt_free_volume_key(cd->volume_key);
1156                 cd->volume_key = NULL;
1157         }
1158
1159         return r;
1160 }
1161
1162 int crypt_load(struct crypt_device *cd,
1163                const char *requested_type,
1164                void *params)
1165 {
1166         int r;
1167
1168         log_dbg("Trying to load %s crypt type from device %s.",
1169                 requested_type ?: "any", mdata_device_path(cd) ?: "(none)");
1170
1171         if (!crypt_metadata_device(cd))
1172                 return -EINVAL;
1173
1174         if (!requested_type || isLUKS(requested_type)) {
1175                 if (cd->type && !isLUKS(cd->type)) {
1176                         log_dbg("Context is already initialised to type %s", cd->type);
1177                         return -EINVAL;
1178                 }
1179
1180                 r = _crypt_load_luks1(cd, 1, 0);
1181         } else if (isVERITY(requested_type)) {
1182                 if (cd->type && !isVERITY(cd->type)) {
1183                         log_dbg("Context is already initialised to type %s", cd->type);
1184                         return -EINVAL;
1185                 }
1186                 r = _crypt_load_verity(cd, params);
1187         } else
1188                 return -EINVAL;
1189
1190         return r;
1191 }
1192
1193 int crypt_repair(struct crypt_device *cd,
1194                  const char *requested_type,
1195                  void *params __attribute__((unused)))
1196 {
1197         int r;
1198
1199         log_dbg("Trying to repair %s crypt type from device %s.",
1200                 requested_type ?: "any", mdata_device_path(cd) ?: "(none)");
1201
1202         if (!crypt_metadata_device(cd))
1203                 return -EINVAL;
1204
1205         if (requested_type && !isLUKS(requested_type))
1206                 return -EINVAL;
1207
1208
1209         /* Load with repair */
1210         r = _crypt_load_luks1(cd, 1, 1);
1211         if (r < 0)
1212                 return r;
1213
1214         /* cd->type and header must be set in context */
1215         r = crypt_check_data_device_size(cd);
1216         if (r < 0) {
1217                 free(cd->type);
1218                 cd->type = NULL;
1219         }
1220
1221         return r;
1222 }
1223
1224 int crypt_resize(struct crypt_device *cd, const char *name, uint64_t new_size)
1225 {
1226         struct crypt_dm_active_device dmd;
1227         int r;
1228
1229         /* Device context type must be initialised */
1230         if (!cd->type || !crypt_get_uuid(cd))
1231                 return -EINVAL;
1232
1233         log_dbg("Resizing device %s to %" PRIu64 " sectors.", name, new_size);
1234
1235         r = dm_query_device(cd, name, DM_ACTIVE_DEVICE | DM_ACTIVE_CRYPT_CIPHER |
1236                                   DM_ACTIVE_UUID | DM_ACTIVE_CRYPT_KEYSIZE |
1237                                   DM_ACTIVE_CRYPT_KEY, &dmd);
1238         if (r < 0) {
1239                 log_err(NULL, _("Device %s is not active.\n"), name);
1240                 return -EINVAL;
1241         }
1242
1243         if (!dmd.uuid || dmd.target != DM_CRYPT) {
1244                 r = -EINVAL;
1245                 goto out;
1246         }
1247
1248         r = device_block_adjust(cd, dmd.data_device, DEV_OK,
1249                                 dmd.u.crypt.offset, &new_size, &dmd.flags);
1250         if (r)
1251                 goto out;
1252
1253         if (new_size == dmd.size) {
1254                 log_dbg("Device has already requested size %" PRIu64
1255                         " sectors.", dmd.size);
1256                 r = 0;
1257         } else {
1258                 dmd.size = new_size;
1259                 r = dm_create_device(cd, name, cd->type, &dmd, 1);
1260         }
1261 out:
1262         if (dmd.target == DM_CRYPT) {
1263                 crypt_free_volume_key(dmd.u.crypt.vk);
1264                 free(CONST_CAST(void*)dmd.u.crypt.cipher);
1265         }
1266         free(CONST_CAST(void*)dmd.data_device);
1267         free(CONST_CAST(void*)dmd.uuid);
1268
1269         return r;
1270 }
1271
1272 int crypt_set_uuid(struct crypt_device *cd, const char *uuid)
1273 {
1274         if (!isLUKS(cd->type)) {
1275                 log_err(cd, _("This operation is not supported for this device type.\n"));
1276                 return  -EINVAL;
1277         }
1278
1279         if (uuid && !strncmp(uuid, cd->hdr.uuid, sizeof(cd->hdr.uuid))) {
1280                 log_dbg("UUID is the same as requested (%s) for device %s.",
1281                         uuid, mdata_device_path(cd));
1282                 return 0;
1283         }
1284
1285         if (uuid)
1286                 log_dbg("Requested new UUID change to %s for %s.", uuid, mdata_device_path(cd));
1287         else
1288                 log_dbg("Requested new UUID refresh for %s.", mdata_device_path(cd));
1289
1290         if (!crypt_confirm(cd, _("Do you really want to change UUID of device?")))
1291                 return -EPERM;
1292
1293         return LUKS_hdr_uuid_set(&cd->hdr, uuid, cd);
1294 }
1295
1296 int crypt_header_backup(struct crypt_device *cd,
1297                         const char *requested_type,
1298                         const char *backup_file)
1299 {
1300         int r;
1301
1302         if ((requested_type && !isLUKS(requested_type)) || !backup_file)
1303                 return -EINVAL;
1304
1305         r = init_crypto(cd);
1306         if (r < 0)
1307                 return r;
1308
1309         log_dbg("Requested header backup of device %s (%s) to "
1310                 "file %s.", mdata_device_path(cd), requested_type, backup_file);
1311
1312         return LUKS_hdr_backup(backup_file, &cd->hdr, cd);
1313 }
1314
1315 int crypt_header_restore(struct crypt_device *cd,
1316                          const char *requested_type,
1317                          const char *backup_file)
1318 {
1319         int r;
1320
1321         if (requested_type && !isLUKS(requested_type))
1322                 return -EINVAL;
1323
1324         r = init_crypto(cd);
1325         if (r < 0)
1326                 return r;
1327
1328         log_dbg("Requested header restore to device %s (%s) from "
1329                 "file %s.", mdata_device_path(cd), requested_type, backup_file);
1330
1331         return LUKS_hdr_restore(backup_file, &cd->hdr, cd);
1332 }
1333
1334 void crypt_free(struct crypt_device *cd)
1335 {
1336         if (cd) {
1337                 log_dbg("Releasing crypt device %s context.", mdata_device_path(cd));
1338
1339                 dm_backend_exit();
1340                 crypt_free_volume_key(cd->volume_key);
1341
1342                 device_free(cd->device);
1343                 device_free(cd->metadata_device);
1344                 free(cd->type);
1345
1346                 /* used in plain device only */
1347                 free(CONST_CAST(void*)cd->plain_hdr.hash);
1348                 free(cd->plain_cipher);
1349                 free(cd->plain_cipher_mode);
1350                 free(cd->plain_uuid);
1351
1352                 /* used in loop-AES device only */
1353                 free(CONST_CAST(void*)cd->loopaes_hdr.hash);
1354                 free(cd->loopaes_cipher);
1355                 free(cd->loopaes_uuid);
1356
1357                 /* used in verity device only */
1358                 free(CONST_CAST(void*)cd->verity_hdr.hash_name);
1359                 free(CONST_CAST(void*)cd->verity_hdr.salt);
1360                 free(cd->verity_root_hash);
1361                 free(cd->verity_uuid);
1362
1363                 free(cd);
1364         }
1365 }
1366
1367 int crypt_suspend(struct crypt_device *cd,
1368                   const char *name)
1369 {
1370         crypt_status_info ci;
1371         int r;
1372
1373         log_dbg("Suspending volume %s.", name);
1374
1375         if (!isLUKS(cd->type)) {
1376                 log_err(cd, _("This operation is supported only for LUKS device.\n"));
1377                 r = -EINVAL;
1378                 goto out;
1379         }
1380
1381         ci = crypt_status(NULL, name);
1382         if (ci < CRYPT_ACTIVE) {
1383                 log_err(cd, _("Volume %s is not active.\n"), name);
1384                 return -EINVAL;
1385         }
1386
1387         if (!cd)
1388                 dm_backend_init();
1389
1390         r = dm_status_suspended(cd, name);
1391         if (r < 0)
1392                 goto out;
1393
1394         if (r) {
1395                 log_err(cd, _("Volume %s is already suspended.\n"), name);
1396                 r = -EINVAL;
1397                 goto out;
1398         }
1399
1400         r = dm_suspend_and_wipe_key(cd, name);
1401         if (r == -ENOTSUP)
1402                 log_err(cd, "Suspend is not supported for device %s.\n", name);
1403         else if (r)
1404                 log_err(cd, "Error during suspending device %s.\n", name);
1405 out:
1406         if (!cd)
1407                 dm_backend_exit();
1408         return r;
1409 }
1410
1411 int crypt_resume_by_passphrase(struct crypt_device *cd,
1412                                const char *name,
1413                                int keyslot,
1414                                const char *passphrase,
1415                                size_t passphrase_size)
1416 {
1417         struct volume_key *vk = NULL;
1418         int r;
1419
1420         log_dbg("Resuming volume %s.", name);
1421
1422         if (!isLUKS(cd->type)) {
1423                 log_err(cd, _("This operation is supported only for LUKS device.\n"));
1424                 r = -EINVAL;
1425                 goto out;
1426         }
1427
1428         r = dm_status_suspended(cd, name);
1429         if (r < 0)
1430                 return r;
1431
1432         if (!r) {
1433                 log_err(cd, _("Volume %s is not suspended.\n"), name);
1434                 return -EINVAL;
1435         }
1436
1437         if (passphrase) {
1438                 r = LUKS_open_key_with_hdr(keyslot, passphrase, passphrase_size,
1439                                            &cd->hdr, &vk, cd);
1440         } else
1441                 r = volume_key_by_terminal_passphrase(cd, keyslot, &vk);
1442
1443         if (r >= 0) {
1444                 keyslot = r;
1445                 r = dm_resume_and_reinstate_key(cd, name, vk->keylength, vk->key);
1446                 if (r == -ENOTSUP)
1447                         log_err(cd, "Resume is not supported for device %s.\n", name);
1448                 else if (r)
1449                         log_err(cd, "Error during resuming device %s.\n", name);
1450         } else
1451                 r = keyslot;
1452 out:
1453         crypt_free_volume_key(vk);
1454         return r < 0 ? r : keyslot;
1455 }
1456
1457 int crypt_resume_by_keyfile_offset(struct crypt_device *cd,
1458                                    const char *name,
1459                                    int keyslot,
1460                                    const char *keyfile,
1461                                    size_t keyfile_size,
1462                                    size_t keyfile_offset)
1463 {
1464         struct volume_key *vk = NULL;
1465         char *passphrase_read = NULL;
1466         size_t passphrase_size_read;
1467         int r;
1468
1469         log_dbg("Resuming volume %s.", name);
1470
1471         if (!isLUKS(cd->type)) {
1472                 log_err(cd, _("This operation is supported only for LUKS device.\n"));
1473                 r = -EINVAL;
1474                 goto out;
1475         }
1476
1477         r = dm_status_suspended(cd, name);
1478         if (r < 0)
1479                 return r;
1480
1481         if (!r) {
1482                 log_err(cd, _("Volume %s is not suspended.\n"), name);
1483                 return -EINVAL;
1484         }
1485
1486         if (!keyfile)
1487                 return -EINVAL;
1488
1489         r = key_from_file(cd, _("Enter passphrase: "), &passphrase_read,
1490                           &passphrase_size_read, keyfile, keyfile_offset,
1491                           keyfile_size);
1492         if (r < 0)
1493                 goto out;
1494
1495         r = LUKS_open_key_with_hdr(keyslot, passphrase_read,
1496                                    passphrase_size_read, &cd->hdr, &vk, cd);
1497         if (r < 0)
1498                 goto out;
1499
1500         keyslot = r;
1501         r = dm_resume_and_reinstate_key(cd, name, vk->keylength, vk->key);
1502         if (r)
1503                 log_err(cd, "Error during resuming device %s.\n", name);
1504 out:
1505         crypt_safe_free(passphrase_read);
1506         crypt_free_volume_key(vk);
1507         return r < 0 ? r : keyslot;
1508 }
1509
1510 int crypt_resume_by_keyfile(struct crypt_device *cd,
1511                             const char *name,
1512                             int keyslot,
1513                             const char *keyfile,
1514                             size_t keyfile_size)
1515 {
1516         return crypt_resume_by_keyfile_offset(cd, name, keyslot,
1517                                               keyfile, keyfile_size, 0);
1518 }
1519
1520 // slot manipulation
1521 int crypt_keyslot_add_by_passphrase(struct crypt_device *cd,
1522         int keyslot, // -1 any
1523         const char *passphrase, // NULL -> terminal
1524         size_t passphrase_size,
1525         const char *new_passphrase, // NULL -> terminal
1526         size_t new_passphrase_size)
1527 {
1528         struct volume_key *vk = NULL;
1529         char *password = NULL, *new_password = NULL;
1530         size_t passwordLen, new_passwordLen;
1531         int r;
1532
1533         log_dbg("Adding new keyslot, existing passphrase %sprovided,"
1534                 "new passphrase %sprovided.",
1535                 passphrase ? "" : "not ", new_passphrase  ? "" : "not ");
1536
1537         if (!isLUKS(cd->type)) {
1538                 log_err(cd, _("This operation is supported only for LUKS device.\n"));
1539                 return -EINVAL;
1540         }
1541
1542         r = keyslot_verify_or_find_empty(cd, &keyslot);
1543         if (r)
1544                 return r;
1545
1546         if (!LUKS_keyslot_active_count(&cd->hdr)) {
1547                 /* No slots used, try to use pre-generated key in header */
1548                 if (cd->volume_key) {
1549                         vk = crypt_alloc_volume_key(cd->volume_key->keylength, cd->volume_key->key);
1550                         r = vk ? 0 : -ENOMEM;
1551                 } else {
1552                         log_err(cd, _("Cannot add key slot, all slots disabled and no volume key provided.\n"));
1553                         return -EINVAL;
1554                 }
1555         } else if (passphrase) {
1556                 /* Passphrase provided, use it to unlock existing keyslot */
1557                 r = LUKS_open_key_with_hdr(CRYPT_ANY_SLOT, passphrase,
1558                                            passphrase_size, &cd->hdr, &vk, cd);
1559         } else {
1560                 /* Passphrase not provided, ask first and use it to unlock existing keyslot */
1561                 r = key_from_terminal(cd, _("Enter any passphrase: "),
1562                                       &password, &passwordLen, 0);
1563                 if (r < 0)
1564                         goto out;
1565
1566                 r = LUKS_open_key_with_hdr(CRYPT_ANY_SLOT, password,
1567                                            passwordLen, &cd->hdr, &vk, cd);
1568                 crypt_safe_free(password);
1569         }
1570
1571         if(r < 0)
1572                 goto out;
1573
1574         if (new_passphrase) {
1575                 new_password = CONST_CAST(char*)new_passphrase;
1576                 new_passwordLen = new_passphrase_size;
1577         } else {
1578                 r = key_from_terminal(cd, _("Enter new passphrase for key slot: "),
1579                                       &new_password, &new_passwordLen, 1);
1580                 if(r < 0)
1581                         goto out;
1582         }
1583
1584         r = LUKS_set_key(keyslot, new_password, new_passwordLen,
1585                          &cd->hdr, vk, cd->iteration_time, &cd->PBKDF2_per_sec, cd);
1586         if(r < 0) goto out;
1587
1588         r = 0;
1589 out:
1590         if (!new_passphrase)
1591                 crypt_safe_free(new_password);
1592         crypt_free_volume_key(vk);
1593         return r ?: keyslot;
1594 }
1595
1596 int crypt_keyslot_add_by_keyfile_offset(struct crypt_device *cd,
1597         int keyslot,
1598         const char *keyfile,
1599         size_t keyfile_size,
1600         size_t keyfile_offset,
1601         const char *new_keyfile,
1602         size_t new_keyfile_size,
1603         size_t new_keyfile_offset)
1604 {
1605         struct volume_key *vk = NULL;
1606         char *password = NULL; size_t passwordLen;
1607         char *new_password = NULL; size_t new_passwordLen;
1608         int r;
1609
1610         log_dbg("Adding new keyslot, existing keyfile %s, new keyfile %s.",
1611                 keyfile ?: "[none]", new_keyfile ?: "[none]");
1612
1613         if (!isLUKS(cd->type)) {
1614                 log_err(cd, _("This operation is supported only for LUKS device.\n"));
1615                 return -EINVAL;
1616         }
1617
1618         r = keyslot_verify_or_find_empty(cd, &keyslot);
1619         if (r)
1620                 return r;
1621
1622         if (!LUKS_keyslot_active_count(&cd->hdr)) {
1623                 /* No slots used, try to use pre-generated key in header */
1624                 if (cd->volume_key) {
1625                         vk = crypt_alloc_volume_key(cd->volume_key->keylength, cd->volume_key->key);
1626                         r = vk ? 0 : -ENOMEM;
1627                 } else {
1628                         log_err(cd, _("Cannot add key slot, all slots disabled and no volume key provided.\n"));
1629                         return -EINVAL;
1630                 }
1631         } else {
1632                 /* Read password from file of (if NULL) from terminal */
1633                 if (keyfile)
1634                         r = key_from_file(cd, _("Enter any passphrase: "),
1635                                           &password, &passwordLen,
1636                                           keyfile, keyfile_offset, keyfile_size);
1637                 else
1638                         r = key_from_terminal(cd, _("Enter any passphrase: "),
1639                                               &password, &passwordLen, 0);
1640                 if (r < 0)
1641                         goto out;
1642
1643                 r = LUKS_open_key_with_hdr(CRYPT_ANY_SLOT, password, passwordLen,
1644                                            &cd->hdr, &vk, cd);
1645         }
1646
1647         if(r < 0)
1648                 goto out;
1649
1650         if (new_keyfile)
1651                 r = key_from_file(cd, _("Enter new passphrase for key slot: "),
1652                                   &new_password, &new_passwordLen, new_keyfile,
1653                                   new_keyfile_offset, new_keyfile_size);
1654         else
1655                 r = key_from_terminal(cd, _("Enter new passphrase for key slot: "),
1656                                       &new_password, &new_passwordLen, 1);
1657         if (r < 0)
1658                 goto out;
1659
1660         r = LUKS_set_key(keyslot, new_password, new_passwordLen,
1661                          &cd->hdr, vk, cd->iteration_time, &cd->PBKDF2_per_sec, cd);
1662 out:
1663         crypt_safe_free(password);
1664         crypt_safe_free(new_password);
1665         crypt_free_volume_key(vk);
1666         return r < 0 ? r : keyslot;
1667 }
1668
1669 int crypt_keyslot_add_by_keyfile(struct crypt_device *cd,
1670         int keyslot,
1671         const char *keyfile,
1672         size_t keyfile_size,
1673         const char *new_keyfile,
1674         size_t new_keyfile_size)
1675 {
1676         return crypt_keyslot_add_by_keyfile_offset(cd, keyslot,
1677                                 keyfile, keyfile_size, 0,
1678                                 new_keyfile, new_keyfile_size, 0);
1679 }
1680
1681 int crypt_keyslot_add_by_volume_key(struct crypt_device *cd,
1682         int keyslot,
1683         const char *volume_key,
1684         size_t volume_key_size,
1685         const char *passphrase,
1686         size_t passphrase_size)
1687 {
1688         struct volume_key *vk = NULL;
1689         int r = -EINVAL;
1690         char *new_password = NULL; size_t new_passwordLen;
1691
1692         log_dbg("Adding new keyslot %d using volume key.", keyslot);
1693
1694         if (!isLUKS(cd->type)) {
1695                 log_err(cd, _("This operation is supported only for LUKS device.\n"));
1696                 return -EINVAL;
1697         }
1698
1699         if (volume_key)
1700                 vk = crypt_alloc_volume_key(volume_key_size, volume_key);
1701         else if (cd->volume_key)
1702                 vk = crypt_alloc_volume_key(cd->volume_key->keylength, cd->volume_key->key);
1703
1704         if (!vk)
1705                 return -ENOMEM;
1706
1707         r = LUKS_verify_volume_key(&cd->hdr, vk);
1708         if (r < 0) {
1709                 log_err(cd, _("Volume key does not match the volume.\n"));
1710                 goto out;
1711         }
1712
1713         r = keyslot_verify_or_find_empty(cd, &keyslot);
1714         if (r)
1715                 goto out;
1716
1717         if (!passphrase) {
1718                 r = key_from_terminal(cd, _("Enter new passphrase for key slot: "),
1719                                       &new_password, &new_passwordLen, 1);
1720                 if (r < 0)
1721                         goto out;
1722                 passphrase = new_password;
1723                 passphrase_size = new_passwordLen;
1724         }
1725
1726         r = LUKS_set_key(keyslot, passphrase, passphrase_size,
1727                          &cd->hdr, vk, cd->iteration_time, &cd->PBKDF2_per_sec, cd);
1728 out:
1729         crypt_safe_free(new_password);
1730         crypt_free_volume_key(vk);
1731         return (r < 0) ? r : keyslot;
1732 }
1733
1734 int crypt_keyslot_destroy(struct crypt_device *cd, int keyslot)
1735 {
1736         crypt_keyslot_info ki;
1737
1738         log_dbg("Destroying keyslot %d.", keyslot);
1739
1740         if (!isLUKS(cd->type)) {
1741                 log_err(cd, _("This operation is supported only for LUKS device.\n"));
1742                 return -EINVAL;
1743         }
1744
1745         ki = crypt_keyslot_status(cd, keyslot);
1746         if (ki == CRYPT_SLOT_INVALID) {
1747                 log_err(cd, _("Key slot %d is invalid.\n"), keyslot);
1748                 return -EINVAL;
1749         }
1750
1751         if (ki == CRYPT_SLOT_INACTIVE) {
1752                 log_err(cd, _("Key slot %d is not used.\n"), keyslot);
1753                 return -EINVAL;
1754         }
1755
1756         return LUKS_del_key(keyslot, &cd->hdr, cd);
1757 }
1758
1759 // activation/deactivation of device mapping
1760 int crypt_activate_by_passphrase(struct crypt_device *cd,
1761         const char *name,
1762         int keyslot,
1763         const char *passphrase,
1764         size_t passphrase_size,
1765         uint32_t flags)
1766 {
1767         crypt_status_info ci;
1768         struct volume_key *vk = NULL;
1769         char *read_passphrase = NULL;
1770         size_t passphraseLen = 0;
1771         int r;
1772
1773         log_dbg("%s volume %s [keyslot %d] using %spassphrase.",
1774                 name ? "Activating" : "Checking", name ?: "",
1775                 keyslot, passphrase ? "" : "[none] ");
1776
1777         if (name) {
1778                 ci = crypt_status(NULL, name);
1779                 if (ci == CRYPT_INVALID)
1780                         return -EINVAL;
1781                 else if (ci >= CRYPT_ACTIVE) {
1782                         log_err(cd, _("Device %s already exists.\n"), name);
1783                         return -EEXIST;
1784                 }
1785         }
1786
1787         /* plain, use hashed passphrase */
1788         if (isPLAIN(cd->type)) {
1789                 if (!name)
1790                         return -EINVAL;
1791
1792                 if (!passphrase) {
1793                         r = key_from_terminal(cd, NULL, &read_passphrase,
1794                                               &passphraseLen, 0);
1795                         if (r < 0)
1796                                 goto out;
1797                         passphrase = read_passphrase;
1798                         passphrase_size = passphraseLen;
1799                 }
1800
1801                 r = process_key(cd, cd->plain_hdr.hash,
1802                                 cd->plain_key_size,
1803                                 passphrase, passphrase_size, &vk);
1804                 if (r < 0)
1805                         goto out;
1806
1807                 r = PLAIN_activate(cd, name, vk, cd->plain_hdr.size, flags);
1808                 keyslot = 0;
1809         } else if (isLUKS(cd->type)) {
1810                 /* provided passphrase, do not retry */
1811                 if (passphrase) {
1812                         r = LUKS_open_key_with_hdr(keyslot, passphrase,
1813                                                    passphrase_size, &cd->hdr, &vk, cd);
1814                 } else
1815                         r = volume_key_by_terminal_passphrase(cd, keyslot, &vk);
1816
1817                 if (r >= 0) {
1818                         keyslot = r;
1819                         if (name)
1820                                 r = LUKS1_activate(cd, name, vk, flags);
1821                 }
1822         } else
1823                 r = -EINVAL;
1824 out:
1825         crypt_safe_free(read_passphrase);
1826         crypt_free_volume_key(vk);
1827
1828         return r < 0  ? r : keyslot;
1829 }
1830
1831 int crypt_activate_by_keyfile_offset(struct crypt_device *cd,
1832         const char *name,
1833         int keyslot,
1834         const char *keyfile,
1835         size_t keyfile_size,
1836         size_t keyfile_offset,
1837         uint32_t flags)
1838 {
1839         crypt_status_info ci;
1840         struct volume_key *vk = NULL;
1841         char *passphrase_read = NULL;
1842         size_t passphrase_size_read;
1843         unsigned int key_count = 0;
1844         int r;
1845
1846         log_dbg("Activating volume %s [keyslot %d] using keyfile %s.",
1847                 name ?: "", keyslot, keyfile ?: "[none]");
1848
1849         if (name) {
1850                 ci = crypt_status(NULL, name);
1851                 if (ci == CRYPT_INVALID)
1852                         return -EINVAL;
1853                 else if (ci >= CRYPT_ACTIVE) {
1854                         log_err(cd, _("Device %s already exists.\n"), name);
1855                         return -EEXIST;
1856                 }
1857         }
1858
1859         if (!keyfile)
1860                 return -EINVAL;
1861
1862         if (isPLAIN(cd->type)) {
1863                 if (!name)
1864                         return -EINVAL;
1865
1866                 r = key_from_file(cd, _("Enter passphrase: "),
1867                                   &passphrase_read, &passphrase_size_read,
1868                                   keyfile, keyfile_offset, keyfile_size);
1869                 if (r < 0)
1870                         goto out;
1871
1872                 r = process_key(cd, cd->plain_hdr.hash,
1873                                 cd->plain_key_size,
1874                                 passphrase_read, passphrase_size_read, &vk);
1875                 if (r < 0)
1876                         goto out;
1877
1878                 r = PLAIN_activate(cd, name, vk, cd->plain_hdr.size, flags);
1879         } else if (isLUKS(cd->type)) {
1880                 r = key_from_file(cd, _("Enter passphrase: "), &passphrase_read,
1881                           &passphrase_size_read, keyfile, keyfile_offset, keyfile_size);
1882                 if (r < 0)
1883                         goto out;
1884                 r = LUKS_open_key_with_hdr(keyslot, passphrase_read,
1885                                            passphrase_size_read, &cd->hdr, &vk, cd);
1886                 if (r < 0)
1887                         goto out;
1888                 keyslot = r;
1889
1890                 if (name) {
1891                         r = LUKS1_activate(cd, name, vk, flags);
1892                         if (r < 0)
1893                                 goto out;
1894                 }
1895                 r = keyslot;
1896         } else if (isLOOPAES(cd->type)) {
1897                 r = key_from_file(cd, NULL, &passphrase_read, &passphrase_size_read,
1898                                   keyfile, keyfile_offset, keyfile_size);
1899                 if (r < 0)
1900                         goto out;
1901                 r = LOOPAES_parse_keyfile(cd, &vk, cd->loopaes_hdr.hash, &key_count,
1902                                           passphrase_read, passphrase_size_read);
1903                 if (r < 0)
1904                         goto out;
1905                 if (name)
1906                         r = LOOPAES_activate(cd, name, cd->loopaes_cipher,
1907                                              key_count, vk, flags);
1908         } else
1909                 r = -EINVAL;
1910
1911 out:
1912         crypt_safe_free(passphrase_read);
1913         crypt_free_volume_key(vk);
1914
1915         return r;
1916 }
1917
1918 int crypt_activate_by_keyfile(struct crypt_device *cd,
1919         const char *name,
1920         int keyslot,
1921         const char *keyfile,
1922         size_t keyfile_size,
1923         uint32_t flags)
1924 {
1925         return crypt_activate_by_keyfile_offset(cd, name, keyslot, keyfile,
1926                                                 keyfile_size, 0, flags);
1927 }
1928
1929 int crypt_activate_by_volume_key(struct crypt_device *cd,
1930         const char *name,
1931         const char *volume_key,
1932         size_t volume_key_size,
1933         uint32_t flags)
1934 {
1935         crypt_status_info ci;
1936         struct volume_key *vk = NULL;
1937         int r = -EINVAL;
1938
1939         log_dbg("Activating volume %s by volume key.", name ?: "[none]");
1940
1941         if (name) {
1942                 ci = crypt_status(NULL, name);
1943                 if (ci == CRYPT_INVALID)
1944                         return -EINVAL;
1945                 else if (ci >= CRYPT_ACTIVE) {
1946                         log_err(cd, _("Device %s already exists.\n"), name);
1947                         return -EEXIST;
1948                 }
1949         }
1950
1951         /* use key directly, no hash */
1952         if (isPLAIN(cd->type)) {
1953                 if (!name)
1954                         return -EINVAL;
1955
1956                 if (!volume_key || !volume_key_size || volume_key_size != cd->plain_key_size) {
1957                         log_err(cd, _("Incorrect volume key specified for plain device.\n"));
1958                         return -EINVAL;
1959                 }
1960
1961                 vk = crypt_alloc_volume_key(volume_key_size, volume_key);
1962                 if (!vk)
1963                         return -ENOMEM;
1964
1965                 r = PLAIN_activate(cd, name, vk, cd->plain_hdr.size, flags);
1966         } else if (isLUKS(cd->type)) {
1967                 /* If key is not provided, try to use internal key */
1968                 if (!volume_key) {
1969                         if (!cd->volume_key) {
1970                                 log_err(cd, _("Volume key does not match the volume.\n"));
1971                                 return -EINVAL;
1972                         }
1973                         volume_key_size = cd->volume_key->keylength;
1974                         volume_key = cd->volume_key->key;
1975                 }
1976
1977                 vk = crypt_alloc_volume_key(volume_key_size, volume_key);
1978                 if (!vk)
1979                         return -ENOMEM;
1980                 r = LUKS_verify_volume_key(&cd->hdr, vk);
1981
1982                 if (r == -EPERM)
1983                         log_err(cd, _("Volume key does not match the volume.\n"));
1984
1985                 if (!r && name)
1986                         r = LUKS1_activate(cd, name, vk, flags);
1987         } else if (isVERITY(cd->type)) {
1988                 /* volume_key == root hash */
1989                 if (!volume_key || !volume_key_size) {
1990                         log_err(cd, _("Incorrect root hash specified for verity device.\n"));
1991                         return -EINVAL;
1992                 }
1993
1994                 r = VERITY_activate(cd, name, volume_key, volume_key_size,
1995                                     &cd->verity_hdr, CRYPT_ACTIVATE_READONLY);
1996
1997                 if (r == -EPERM) {
1998                         free(cd->verity_root_hash);
1999                         cd->verity_root_hash = NULL;
2000                 } if (!r) {
2001                         cd->verity_root_hash_size = volume_key_size;
2002                         if (!cd->verity_root_hash)
2003                                 cd->verity_root_hash = malloc(volume_key_size);
2004                         if (cd->verity_root_hash)
2005                                 memcpy(cd->verity_root_hash, volume_key, volume_key_size);
2006                 }
2007         } else
2008                 log_err(cd, _("Device type is not properly initialised.\n"));
2009
2010         crypt_free_volume_key(vk);
2011
2012         return r;
2013 }
2014
2015 int crypt_deactivate(struct crypt_device *cd, const char *name)
2016 {
2017         int r;
2018
2019         if (!name)
2020                 return -EINVAL;
2021
2022         log_dbg("Deactivating volume %s.", name);
2023
2024         if (!cd)
2025                 dm_backend_init();
2026
2027         switch (crypt_status(cd, name)) {
2028                 case CRYPT_ACTIVE:
2029                 case CRYPT_BUSY:
2030                         r = dm_remove_device(cd, name, 0, 0);
2031                         break;
2032                 case CRYPT_INACTIVE:
2033                         log_err(cd, _("Device %s is not active.\n"), name);
2034                         r = -ENODEV;
2035                         break;
2036                 default:
2037                         log_err(cd, _("Invalid device %s.\n"), name);
2038                         r = -EINVAL;
2039         }
2040
2041         if (!cd)
2042                 dm_backend_exit();
2043
2044         return r;
2045 }
2046
2047 int crypt_volume_key_get(struct crypt_device *cd,
2048         int keyslot,
2049         char *volume_key,
2050         size_t *volume_key_size,
2051         const char *passphrase,
2052         size_t passphrase_size)
2053 {
2054         struct volume_key *vk = NULL;
2055         unsigned key_len;
2056         int r = -EINVAL;
2057
2058         if (crypt_fips_mode()) {
2059                 log_err(cd, "Function not available in FIPS mode.\n");
2060                 return -EACCES;
2061         }
2062
2063         key_len = crypt_get_volume_key_size(cd);
2064         if (key_len > *volume_key_size) {
2065                 log_err(cd, _("Volume key buffer too small.\n"));
2066                 return -ENOMEM;
2067         }
2068
2069         if (isPLAIN(cd->type) && cd->plain_hdr.hash) {
2070                 r = process_key(cd, cd->plain_hdr.hash, key_len,
2071                                 passphrase, passphrase_size, &vk);
2072                 if (r < 0)
2073                         log_err(cd, _("Cannot retrieve volume key for plain device.\n"));
2074         } else if (isLUKS(cd->type)) {
2075                 r = LUKS_open_key_with_hdr(keyslot, passphrase,
2076                                         passphrase_size, &cd->hdr, &vk, cd);
2077
2078         } else
2079                 log_err(cd, _("This operation is not supported for %s crypt device.\n"), cd->type ?: "(none)");
2080
2081         if (r >= 0) {
2082                 memcpy(volume_key, vk->key, vk->keylength);
2083                 *volume_key_size = vk->keylength;
2084         }
2085
2086         crypt_free_volume_key(vk);
2087         return r;
2088 }
2089
2090 int crypt_volume_key_verify(struct crypt_device *cd,
2091         const char *volume_key,
2092         size_t volume_key_size)
2093 {
2094         struct volume_key *vk;
2095         int r;
2096
2097         if (!isLUKS(cd->type)) {
2098                 log_err(cd, _("This operation is supported only for LUKS device.\n"));
2099                 return -EINVAL;
2100         }
2101
2102         vk = crypt_alloc_volume_key(volume_key_size, volume_key);
2103         if (!vk)
2104                 return -ENOMEM;
2105
2106         r = LUKS_verify_volume_key(&cd->hdr, vk);
2107
2108         if (r == -EPERM)
2109                 log_err(cd, _("Volume key does not match the volume.\n"));
2110
2111         crypt_free_volume_key(vk);
2112
2113         return r;
2114 }
2115
2116 void crypt_set_timeout(struct crypt_device *cd, uint64_t timeout_sec)
2117 {
2118         log_dbg("Timeout set to %" PRIu64 " miliseconds.", timeout_sec);
2119         cd->timeout = timeout_sec;
2120 }
2121
2122 void crypt_set_password_retry(struct crypt_device *cd, int tries)
2123 {
2124         log_dbg("Password retry count set to %d.", tries);
2125         cd->tries = tries;
2126 }
2127
2128 void crypt_set_iteration_time(struct crypt_device *cd, uint64_t iteration_time_ms)
2129 {
2130         log_dbg("Iteration time set to %" PRIu64 " miliseconds.", iteration_time_ms);
2131         cd->iteration_time = iteration_time_ms;
2132 }
2133 void crypt_set_iterarion_time(struct crypt_device *cd, uint64_t iteration_time_ms)
2134 {
2135         crypt_set_iteration_time(cd, iteration_time_ms);
2136 }
2137
2138 void crypt_set_password_verify(struct crypt_device *cd, int password_verify)
2139 {
2140         log_dbg("Password verification %s.", password_verify ? "enabled" : "disabled");
2141         cd->password_verify = password_verify ? 1 : 0;
2142 }
2143
2144 void crypt_set_rng_type(struct crypt_device *cd, int rng_type)
2145 {
2146         switch (rng_type) {
2147         case CRYPT_RNG_URANDOM:
2148         case CRYPT_RNG_RANDOM:
2149                 log_dbg("RNG set to %d (%s).", rng_type, rng_type ? "random" : "urandom");
2150                 cd->rng_type = rng_type;
2151         }
2152 }
2153
2154 int crypt_get_rng_type(struct crypt_device *cd)
2155 {
2156         if (!cd)
2157                 return -EINVAL;
2158
2159         return cd->rng_type;
2160 }
2161
2162 int crypt_memory_lock(struct crypt_device *cd, int lock)
2163 {
2164         return lock ? crypt_memlock_inc(cd) : crypt_memlock_dec(cd);
2165 }
2166
2167 // reporting
2168 crypt_status_info crypt_status(struct crypt_device *cd, const char *name)
2169 {
2170         int r;
2171
2172         if (!cd)
2173                 dm_backend_init();
2174
2175         r = dm_status_device(cd, name);
2176
2177         if (!cd)
2178                 dm_backend_exit();
2179
2180         if (r < 0 && r != -ENODEV)
2181                 return CRYPT_INVALID;
2182
2183         if (r == 0)
2184                 return CRYPT_ACTIVE;
2185
2186         if (r > 0)
2187                 return CRYPT_BUSY;
2188
2189         return CRYPT_INACTIVE;
2190 }
2191
2192 static void hexprint(struct crypt_device *cd, const char *d, int n, const char *sep)
2193 {
2194         int i;
2195         for(i = 0; i < n; i++)
2196                 log_std(cd, "%02hhx%s", (const char)d[i], sep);
2197 }
2198
2199 static int _luks_dump(struct crypt_device *cd)
2200 {
2201         int i;
2202
2203         log_std(cd, "LUKS header information for %s\n\n", mdata_device_path(cd));
2204         log_std(cd, "Version:       \t%d\n", cd->hdr.version);
2205         log_std(cd, "Cipher name:   \t%s\n", cd->hdr.cipherName);
2206         log_std(cd, "Cipher mode:   \t%s\n", cd->hdr.cipherMode);
2207         log_std(cd, "Hash spec:     \t%s\n", cd->hdr.hashSpec);
2208         log_std(cd, "Payload offset:\t%d\n", cd->hdr.payloadOffset);
2209         log_std(cd, "MK bits:       \t%d\n", cd->hdr.keyBytes * 8);
2210         log_std(cd, "MK digest:     \t");
2211         hexprint(cd, cd->hdr.mkDigest, LUKS_DIGESTSIZE, " ");
2212         log_std(cd, "\n");
2213         log_std(cd, "MK salt:       \t");
2214         hexprint(cd, cd->hdr.mkDigestSalt, LUKS_SALTSIZE/2, " ");
2215         log_std(cd, "\n               \t");
2216         hexprint(cd, cd->hdr.mkDigestSalt+LUKS_SALTSIZE/2, LUKS_SALTSIZE/2, " ");
2217         log_std(cd, "\n");
2218         log_std(cd, "MK iterations: \t%d\n", cd->hdr.mkDigestIterations);
2219         log_std(cd, "UUID:          \t%s\n\n", cd->hdr.uuid);
2220         for(i = 0; i < LUKS_NUMKEYS; i++) {
2221                 if(cd->hdr.keyblock[i].active == LUKS_KEY_ENABLED) {
2222                         log_std(cd, "Key Slot %d: ENABLED\n",i);
2223                         log_std(cd, "\tIterations:         \t%d\n",
2224                                 cd->hdr.keyblock[i].passwordIterations);
2225                         log_std(cd, "\tSalt:               \t");
2226                         hexprint(cd, cd->hdr.keyblock[i].passwordSalt,
2227                                  LUKS_SALTSIZE/2, " ");
2228                         log_std(cd, "\n\t                      \t");
2229                         hexprint(cd, cd->hdr.keyblock[i].passwordSalt +
2230                                  LUKS_SALTSIZE/2, LUKS_SALTSIZE/2, " ");
2231                         log_std(cd, "\n");
2232
2233                         log_std(cd, "\tKey material offset:\t%d\n",
2234                                 cd->hdr.keyblock[i].keyMaterialOffset);
2235                         log_std(cd, "\tAF stripes:            \t%d\n",
2236                                 cd->hdr.keyblock[i].stripes);
2237                 }
2238                 else 
2239                         log_std(cd, "Key Slot %d: DISABLED\n", i);
2240         }
2241         return 0;
2242 }
2243
2244 static int _verity_dump(struct crypt_device *cd)
2245 {
2246         log_std(cd, "VERITY header information for %s\n", mdata_device_path(cd));
2247         log_std(cd, "UUID:            \t%s\n", cd->verity_uuid ?: "");
2248         log_std(cd, "Hash type:       \t%u\n", cd->verity_hdr.hash_type);
2249         log_std(cd, "Data blocks:     \t%" PRIu64 "\n", cd->verity_hdr.data_size);
2250         log_std(cd, "Data block size: \t%u\n", cd->verity_hdr.data_block_size);
2251         log_std(cd, "Hash block size: \t%u\n", cd->verity_hdr.hash_block_size);
2252         log_std(cd, "Hash algorithm:  \t%s\n", cd->verity_hdr.hash_name);
2253         log_std(cd, "Salt:            \t");
2254         if (cd->verity_hdr.salt_size)
2255                 hexprint(cd, cd->verity_hdr.salt, cd->verity_hdr.salt_size, "");
2256         else
2257                 log_std(cd, "-");
2258         log_std(cd, "\n");
2259         if (cd->verity_root_hash) {
2260                 log_std(cd, "Root hash:      \t");
2261                 hexprint(cd, cd->verity_root_hash, cd->verity_root_hash_size, "");
2262                 log_std(cd, "\n");
2263         }
2264         return 0;
2265 }
2266
2267 int crypt_dump(struct crypt_device *cd)
2268 {
2269         if (isLUKS(cd->type))
2270                 return _luks_dump(cd);
2271         else if (isVERITY(cd->type))
2272                 return _verity_dump(cd);
2273
2274         log_err(cd, _("Dump operation is not supported for this device type.\n"));
2275         return -EINVAL;
2276 }
2277
2278 const char *crypt_get_cipher(struct crypt_device *cd)
2279 {
2280         if (isPLAIN(cd->type))
2281                 return cd->plain_cipher;
2282
2283         if (isLUKS(cd->type))
2284                 return cd->hdr.cipherName;
2285
2286         if (isLOOPAES(cd->type))
2287                 return cd->loopaes_cipher;
2288
2289         return NULL;
2290 }
2291
2292 const char *crypt_get_cipher_mode(struct crypt_device *cd)
2293 {
2294         if (isPLAIN(cd->type))
2295                 return cd->plain_cipher_mode;
2296
2297         if (isLUKS(cd->type))
2298                 return cd->hdr.cipherMode;
2299
2300         if (isLOOPAES(cd->type))
2301                 return cd->loopaes_cipher_mode;
2302
2303         return NULL;
2304 }
2305
2306 const char *crypt_get_uuid(struct crypt_device *cd)
2307 {
2308         if (isLUKS(cd->type))
2309                 return cd->hdr.uuid;
2310
2311         if (isPLAIN(cd->type))
2312                 return cd->plain_uuid;
2313
2314         if (isLOOPAES(cd->type))
2315                 return cd->loopaes_uuid;
2316
2317         if (isVERITY(cd->type))
2318                 return cd->verity_uuid;
2319
2320         return NULL;
2321 }
2322
2323 const char *crypt_get_device_name(struct crypt_device *cd)
2324 {
2325         const char *path = device_block_path(cd->device);
2326
2327         if (!path)
2328                 path = device_path(cd->device);
2329
2330         return path;
2331 }
2332
2333 int crypt_get_volume_key_size(struct crypt_device *cd)
2334 {
2335         if (isPLAIN(cd->type))
2336                 return cd->plain_key_size;
2337
2338         if (isLUKS(cd->type))
2339                 return cd->hdr.keyBytes;
2340
2341         if (isLOOPAES(cd->type))
2342                 return cd->loopaes_key_size;
2343
2344         if (isVERITY(cd->type))
2345                 return cd->verity_root_hash_size;
2346
2347         return 0;
2348 }
2349
2350 uint64_t crypt_get_data_offset(struct crypt_device *cd)
2351 {
2352         if (isPLAIN(cd->type))
2353                 return cd->plain_hdr.offset;
2354
2355         if (isLUKS(cd->type))
2356                 return cd->hdr.payloadOffset;
2357
2358         if (isLOOPAES(cd->type))
2359                 return cd->loopaes_hdr.offset;
2360
2361         return 0;
2362 }
2363
2364 uint64_t crypt_get_iv_offset(struct crypt_device *cd)
2365 {
2366         if (isPLAIN(cd->type))
2367                 return cd->plain_hdr.skip;
2368
2369         if (isLUKS(cd->type))
2370                 return 0;
2371
2372         if (isLOOPAES(cd->type))
2373                 return cd->loopaes_hdr.skip;
2374
2375         return 0;
2376 }
2377
2378 crypt_keyslot_info crypt_keyslot_status(struct crypt_device *cd, int keyslot)
2379 {
2380         if (!isLUKS(cd->type)) {
2381                 log_err(cd, _("This operation is supported only for LUKS device.\n"));
2382                 return CRYPT_SLOT_INVALID;
2383         }
2384
2385         return LUKS_keyslot_info(&cd->hdr, keyslot);
2386 }
2387
2388 int crypt_keyslot_max(const char *type)
2389 {
2390         if (type && isLUKS(type))
2391                 return LUKS_NUMKEYS;
2392
2393         return -EINVAL;
2394 }
2395
2396 int crypt_keyslot_area(struct crypt_device *cd,
2397         int keyslot,
2398         uint64_t *offset,
2399         uint64_t *length)
2400 {
2401         if (!isLUKS(cd->type))
2402                 return -EINVAL;
2403
2404         return LUKS_keyslot_area(&cd->hdr, keyslot, offset, length);
2405 }
2406
2407 const char *crypt_get_type(struct crypt_device *cd)
2408 {
2409         return cd->type;
2410 }
2411
2412 int crypt_get_verity_info(struct crypt_device *cd,
2413         struct crypt_params_verity *vp)
2414 {
2415         if (!isVERITY(cd->type) || !vp)
2416                 return -EINVAL;
2417
2418         vp->data_device = device_path(cd->device);
2419         vp->hash_device = mdata_device_path(cd);
2420         vp->hash_name = cd->verity_hdr.hash_name;
2421         vp->salt = cd->verity_hdr.salt;
2422         vp->salt_size = cd->verity_hdr.salt_size;
2423         vp->data_block_size = cd->verity_hdr.data_block_size;
2424         vp->hash_block_size = cd->verity_hdr.hash_block_size;
2425         vp->data_size = cd->verity_hdr.data_size;
2426         vp->hash_area_offset = cd->verity_hdr.hash_area_offset;
2427         vp->hash_type = cd->verity_hdr.hash_type;
2428         vp->flags = cd->verity_hdr.flags & CRYPT_VERITY_NO_HEADER;
2429         return 0;
2430 }
2431
2432 int crypt_get_active_device(struct crypt_device *cd __attribute__((unused)),
2433                             const char *name,
2434                             struct crypt_active_device *cad)
2435 {
2436         struct crypt_dm_active_device dmd;
2437         int r;
2438
2439         r = dm_query_device(cd, name, 0, &dmd);
2440         if (r < 0)
2441                 return r;
2442
2443         if (dmd.target != DM_CRYPT && dmd.target != DM_VERITY)
2444                 return -ENOTSUP;
2445
2446         cad->offset     = dmd.u.crypt.offset;
2447         cad->iv_offset  = dmd.u.crypt.iv_offset;
2448         cad->size       = dmd.size;
2449         cad->flags      = dmd.flags;
2450
2451         return 0;
2452 }