45b368ce2f318a9c174df2127a3a415fc3da1e4b
[platform/upstream/btrfs-progs.git] / ctree.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include "ctree.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "repair.h"
23 #include "internal.h"
24 #include "sizes.h"
25
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27                       *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_key *ins_key,
30                       struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32                           struct btrfs_root *root, struct extent_buffer *dst,
33                           struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35                               struct btrfs_root *root,
36                               struct extent_buffer *dst_buf,
37                               struct extent_buffer *src_buf);
38
39 inline void btrfs_init_path(struct btrfs_path *p)
40 {
41         memset(p, 0, sizeof(*p));
42 }
43
44 struct btrfs_path *btrfs_alloc_path(void)
45 {
46         struct btrfs_path *path;
47         path = kzalloc(sizeof(struct btrfs_path), GFP_NOFS);
48         return path;
49 }
50
51 void btrfs_free_path(struct btrfs_path *p)
52 {
53         if (!p)
54                 return;
55         btrfs_release_path(p);
56         kfree(p);
57 }
58
59 void btrfs_release_path(struct btrfs_path *p)
60 {
61         int i;
62         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
63                 if (!p->nodes[i])
64                         continue;
65                 free_extent_buffer(p->nodes[i]);
66         }
67         memset(p, 0, sizeof(*p));
68 }
69
70 void add_root_to_dirty_list(struct btrfs_root *root)
71 {
72         if (root->track_dirty && list_empty(&root->dirty_list)) {
73                 list_add(&root->dirty_list,
74                          &root->fs_info->dirty_cowonly_roots);
75         }
76 }
77
78 int btrfs_copy_root(struct btrfs_trans_handle *trans,
79                       struct btrfs_root *root,
80                       struct extent_buffer *buf,
81                       struct extent_buffer **cow_ret, u64 new_root_objectid)
82 {
83         struct extent_buffer *cow;
84         int ret = 0;
85         int level;
86         struct btrfs_root *new_root;
87         struct btrfs_disk_key disk_key;
88
89         new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
90         if (!new_root)
91                 return -ENOMEM;
92
93         memcpy(new_root, root, sizeof(*new_root));
94         new_root->root_key.objectid = new_root_objectid;
95
96         WARN_ON(root->ref_cows && trans->transid !=
97                 root->fs_info->running_transaction->transid);
98         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
99
100         level = btrfs_header_level(buf);
101         if (level == 0)
102                 btrfs_item_key(buf, &disk_key, 0);
103         else
104                 btrfs_node_key(buf, &disk_key, 0);
105         cow = btrfs_alloc_free_block(trans, new_root, buf->len,
106                                      new_root_objectid, &disk_key,
107                                      level, buf->start, 0);
108         if (IS_ERR(cow)) {
109                 kfree(new_root);
110                 return PTR_ERR(cow);
111         }
112
113         copy_extent_buffer(cow, buf, 0, 0, cow->len);
114         btrfs_set_header_bytenr(cow, cow->start);
115         btrfs_set_header_generation(cow, trans->transid);
116         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
117         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
118                                      BTRFS_HEADER_FLAG_RELOC);
119         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
120                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
121         else
122                 btrfs_set_header_owner(cow, new_root_objectid);
123
124         write_extent_buffer(cow, root->fs_info->fsid,
125                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
126
127         WARN_ON(btrfs_header_generation(buf) > trans->transid);
128         ret = btrfs_inc_ref(trans, new_root, cow, 0);
129         kfree(new_root);
130
131         if (ret)
132                 return ret;
133
134         btrfs_mark_buffer_dirty(cow);
135         *cow_ret = cow;
136         return 0;
137 }
138
139 /*
140  * check if the tree block can be shared by multiple trees
141  */
142 static int btrfs_block_can_be_shared(struct btrfs_root *root,
143                                      struct extent_buffer *buf)
144 {
145         /*
146          * Tree blocks not in reference counted trees and tree roots
147          * are never shared. If a block was allocated after the last
148          * snapshot and the block was not allocated by tree relocation,
149          * we know the block is not shared.
150          */
151         if (root->ref_cows &&
152             buf != root->node && buf != root->commit_root &&
153             (btrfs_header_generation(buf) <=
154              btrfs_root_last_snapshot(&root->root_item) ||
155              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
156                 return 1;
157 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
158         if (root->ref_cows &&
159             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
160                 return 1;
161 #endif
162         return 0;
163 }
164
165 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
166                                        struct btrfs_root *root,
167                                        struct extent_buffer *buf,
168                                        struct extent_buffer *cow)
169 {
170         u64 refs;
171         u64 owner;
172         u64 flags;
173         u64 new_flags = 0;
174         int ret;
175
176         /*
177          * Backrefs update rules:
178          *
179          * Always use full backrefs for extent pointers in tree block
180          * allocated by tree relocation.
181          *
182          * If a shared tree block is no longer referenced by its owner
183          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
184          * use full backrefs for extent pointers in tree block.
185          *
186          * If a tree block is been relocating
187          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
188          * use full backrefs for extent pointers in tree block.
189          * The reason for this is some operations (such as drop tree)
190          * are only allowed for blocks use full backrefs.
191          */
192
193         if (btrfs_block_can_be_shared(root, buf)) {
194                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
195                                                btrfs_header_level(buf), 1,
196                                                &refs, &flags);
197                 BUG_ON(ret);
198                 BUG_ON(refs == 0);
199         } else {
200                 refs = 1;
201                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
202                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
203                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
204                 else
205                         flags = 0;
206         }
207
208         owner = btrfs_header_owner(buf);
209         BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
210                owner == BTRFS_TREE_RELOC_OBJECTID);
211
212         if (refs > 1) {
213                 if ((owner == root->root_key.objectid ||
214                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
215                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
216                         ret = btrfs_inc_ref(trans, root, buf, 1);
217                         BUG_ON(ret);
218
219                         if (root->root_key.objectid ==
220                             BTRFS_TREE_RELOC_OBJECTID) {
221                                 ret = btrfs_dec_ref(trans, root, buf, 0);
222                                 BUG_ON(ret);
223                                 ret = btrfs_inc_ref(trans, root, cow, 1);
224                                 BUG_ON(ret);
225                         }
226                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
227                 } else {
228
229                         if (root->root_key.objectid ==
230                             BTRFS_TREE_RELOC_OBJECTID)
231                                 ret = btrfs_inc_ref(trans, root, cow, 1);
232                         else
233                                 ret = btrfs_inc_ref(trans, root, cow, 0);
234                         BUG_ON(ret);
235                 }
236                 if (new_flags != 0) {
237                         ret = btrfs_set_block_flags(trans, root, buf->start,
238                                                     btrfs_header_level(buf),
239                                                     new_flags);
240                         BUG_ON(ret);
241                 }
242         } else {
243                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
244                         if (root->root_key.objectid ==
245                             BTRFS_TREE_RELOC_OBJECTID)
246                                 ret = btrfs_inc_ref(trans, root, cow, 1);
247                         else
248                                 ret = btrfs_inc_ref(trans, root, cow, 0);
249                         BUG_ON(ret);
250                         ret = btrfs_dec_ref(trans, root, buf, 1);
251                         BUG_ON(ret);
252                 }
253                 clean_tree_block(trans, root, buf);
254         }
255         return 0;
256 }
257
258 int __btrfs_cow_block(struct btrfs_trans_handle *trans,
259                              struct btrfs_root *root,
260                              struct extent_buffer *buf,
261                              struct extent_buffer *parent, int parent_slot,
262                              struct extent_buffer **cow_ret,
263                              u64 search_start, u64 empty_size)
264 {
265         struct extent_buffer *cow;
266         struct btrfs_disk_key disk_key;
267         int level;
268
269         WARN_ON(root->ref_cows && trans->transid !=
270                 root->fs_info->running_transaction->transid);
271         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
272
273         level = btrfs_header_level(buf);
274
275         if (level == 0)
276                 btrfs_item_key(buf, &disk_key, 0);
277         else
278                 btrfs_node_key(buf, &disk_key, 0);
279
280         cow = btrfs_alloc_free_block(trans, root, buf->len,
281                                      root->root_key.objectid, &disk_key,
282                                      level, search_start, empty_size);
283         if (IS_ERR(cow))
284                 return PTR_ERR(cow);
285
286         copy_extent_buffer(cow, buf, 0, 0, cow->len);
287         btrfs_set_header_bytenr(cow, cow->start);
288         btrfs_set_header_generation(cow, trans->transid);
289         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
290         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
291                                      BTRFS_HEADER_FLAG_RELOC);
292         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
293                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
294         else
295                 btrfs_set_header_owner(cow, root->root_key.objectid);
296
297         write_extent_buffer(cow, root->fs_info->fsid,
298                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
299
300         WARN_ON(!(buf->flags & EXTENT_BAD_TRANSID) &&
301                 btrfs_header_generation(buf) > trans->transid);
302
303         update_ref_for_cow(trans, root, buf, cow);
304
305         if (buf == root->node) {
306                 root->node = cow;
307                 extent_buffer_get(cow);
308
309                 btrfs_free_extent(trans, root, buf->start, buf->len,
310                                   0, root->root_key.objectid, level, 0);
311                 free_extent_buffer(buf);
312                 add_root_to_dirty_list(root);
313         } else {
314                 btrfs_set_node_blockptr(parent, parent_slot,
315                                         cow->start);
316                 WARN_ON(trans->transid == 0);
317                 btrfs_set_node_ptr_generation(parent, parent_slot,
318                                               trans->transid);
319                 btrfs_mark_buffer_dirty(parent);
320                 WARN_ON(btrfs_header_generation(parent) != trans->transid);
321
322                 btrfs_free_extent(trans, root, buf->start, buf->len,
323                                   0, root->root_key.objectid, level, 1);
324         }
325         if (!list_empty(&buf->recow)) {
326                 list_del_init(&buf->recow);
327                 free_extent_buffer(buf);
328         }
329         free_extent_buffer(buf);
330         btrfs_mark_buffer_dirty(cow);
331         *cow_ret = cow;
332         return 0;
333 }
334
335 static inline int should_cow_block(struct btrfs_trans_handle *trans,
336                                    struct btrfs_root *root,
337                                    struct extent_buffer *buf)
338 {
339         if (btrfs_header_generation(buf) == trans->transid &&
340             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
341             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
342               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
343                 return 0;
344         return 1;
345 }
346
347 int btrfs_cow_block(struct btrfs_trans_handle *trans,
348                     struct btrfs_root *root, struct extent_buffer *buf,
349                     struct extent_buffer *parent, int parent_slot,
350                     struct extent_buffer **cow_ret)
351 {
352         u64 search_start;
353         int ret;
354         /*
355         if (trans->transaction != root->fs_info->running_transaction) {
356                 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
357                        root->fs_info->running_transaction->transid);
358                 WARN_ON(1);
359         }
360         */
361         if (trans->transid != root->fs_info->generation) {
362                 printk(KERN_CRIT "trans %llu running %llu\n",
363                         (unsigned long long)trans->transid,
364                         (unsigned long long)root->fs_info->generation);
365                 WARN_ON(1);
366         }
367         if (!should_cow_block(trans, root, buf)) {
368                 *cow_ret = buf;
369                 return 0;
370         }
371
372         search_start = buf->start & ~((u64)SZ_1G - 1);
373         ret = __btrfs_cow_block(trans, root, buf, parent,
374                                  parent_slot, cow_ret, search_start, 0);
375         return ret;
376 }
377
378 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
379 {
380         if (k1->objectid > k2->objectid)
381                 return 1;
382         if (k1->objectid < k2->objectid)
383                 return -1;
384         if (k1->type > k2->type)
385                 return 1;
386         if (k1->type < k2->type)
387                 return -1;
388         if (k1->offset > k2->offset)
389                 return 1;
390         if (k1->offset < k2->offset)
391                 return -1;
392         return 0;
393 }
394
395 /*
396  * compare two keys in a memcmp fashion
397  */
398 static int btrfs_comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
399 {
400         struct btrfs_key k1;
401
402         btrfs_disk_key_to_cpu(&k1, disk);
403         return btrfs_comp_cpu_keys(&k1, k2);
404 }
405
406 /*
407  * The leaf data grows from end-to-front in the node.
408  * this returns the address of the start of the last item,
409  * which is the stop of the leaf data stack
410  */
411 static inline unsigned int leaf_data_end(const struct btrfs_fs_info *fs_info,
412                                          const struct extent_buffer *leaf)
413 {
414         u32 nr = btrfs_header_nritems(leaf);
415         if (nr == 0)
416                 return BTRFS_LEAF_DATA_SIZE(fs_info);
417         return btrfs_item_offset_nr(leaf, nr - 1);
418 }
419
420 enum btrfs_tree_block_status
421 btrfs_check_node(struct btrfs_root *root, struct btrfs_disk_key *parent_key,
422                  struct extent_buffer *buf)
423 {
424         int i;
425         struct btrfs_key cpukey;
426         struct btrfs_disk_key key;
427         u32 nritems = btrfs_header_nritems(buf);
428         enum btrfs_tree_block_status ret = BTRFS_TREE_BLOCK_INVALID_NRITEMS;
429
430         if (nritems == 0 || nritems > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info))
431                 goto fail;
432
433         ret = BTRFS_TREE_BLOCK_INVALID_PARENT_KEY;
434         if (parent_key && parent_key->type) {
435                 btrfs_node_key(buf, &key, 0);
436                 if (memcmp(parent_key, &key, sizeof(key)))
437                         goto fail;
438         }
439         ret = BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
440         for (i = 0; nritems > 1 && i < nritems - 2; i++) {
441                 btrfs_node_key(buf, &key, i);
442                 btrfs_node_key_to_cpu(buf, &cpukey, i + 1);
443                 if (btrfs_comp_keys(&key, &cpukey) >= 0)
444                         goto fail;
445         }
446         return BTRFS_TREE_BLOCK_CLEAN;
447 fail:
448         if (btrfs_header_owner(buf) == BTRFS_EXTENT_TREE_OBJECTID) {
449                 if (parent_key)
450                         btrfs_disk_key_to_cpu(&cpukey, parent_key);
451                 else
452                         btrfs_node_key_to_cpu(buf, &cpukey, 0);
453                 btrfs_add_corrupt_extent_record(root->fs_info, &cpukey,
454                                                 buf->start, buf->len,
455                                                 btrfs_header_level(buf));
456         }
457         return ret;
458 }
459
460 enum btrfs_tree_block_status
461 btrfs_check_leaf(struct btrfs_root *root, struct btrfs_disk_key *parent_key,
462                  struct extent_buffer *buf)
463 {
464         int i;
465         struct btrfs_key cpukey;
466         struct btrfs_disk_key key;
467         u32 nritems = btrfs_header_nritems(buf);
468         enum btrfs_tree_block_status ret = BTRFS_TREE_BLOCK_INVALID_NRITEMS;
469
470         if (nritems * sizeof(struct btrfs_item) > buf->len)  {
471                 fprintf(stderr, "invalid number of items %llu\n",
472                         (unsigned long long)buf->start);
473                 goto fail;
474         }
475
476         if (btrfs_header_level(buf) != 0) {
477                 ret = BTRFS_TREE_BLOCK_INVALID_LEVEL;
478                 fprintf(stderr, "leaf is not a leaf %llu\n",
479                        (unsigned long long)btrfs_header_bytenr(buf));
480                 goto fail;
481         }
482         if (btrfs_leaf_free_space(root, buf) < 0) {
483                 ret = BTRFS_TREE_BLOCK_INVALID_FREE_SPACE;
484                 fprintf(stderr, "leaf free space incorrect %llu %d\n",
485                         (unsigned long long)btrfs_header_bytenr(buf),
486                         btrfs_leaf_free_space(root, buf));
487                 goto fail;
488         }
489
490         if (nritems == 0)
491                 return BTRFS_TREE_BLOCK_CLEAN;
492
493         btrfs_item_key(buf, &key, 0);
494         if (parent_key && parent_key->type &&
495             memcmp(parent_key, &key, sizeof(key))) {
496                 ret = BTRFS_TREE_BLOCK_INVALID_PARENT_KEY;
497                 fprintf(stderr, "leaf parent key incorrect %llu\n",
498                        (unsigned long long)btrfs_header_bytenr(buf));
499                 goto fail;
500         }
501         for (i = 0; nritems > 1 && i < nritems - 1; i++) {
502                 btrfs_item_key(buf, &key, i);
503                 btrfs_item_key_to_cpu(buf, &cpukey, i + 1);
504                 if (btrfs_comp_keys(&key, &cpukey) >= 0) {
505                         ret = BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
506                         fprintf(stderr, "bad key ordering %d %d\n", i, i+1);
507                         goto fail;
508                 }
509                 if (btrfs_item_offset_nr(buf, i) !=
510                         btrfs_item_end_nr(buf, i + 1)) {
511                         ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
512                         fprintf(stderr, "incorrect offsets %u %u\n",
513                                 btrfs_item_offset_nr(buf, i),
514                                 btrfs_item_end_nr(buf, i + 1));
515                         goto fail;
516                 }
517                 if (i == 0 && btrfs_item_end_nr(buf, i) !=
518                     BTRFS_LEAF_DATA_SIZE(root->fs_info)) {
519                         ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
520                         fprintf(stderr, "bad item end %u wanted %u\n",
521                                 btrfs_item_end_nr(buf, i),
522                                 (unsigned)BTRFS_LEAF_DATA_SIZE(root->fs_info));
523                         goto fail;
524                 }
525         }
526
527         for (i = 0; i < nritems; i++) {
528                 if (btrfs_item_end_nr(buf, i) >
529                                 BTRFS_LEAF_DATA_SIZE(root->fs_info)) {
530                         btrfs_item_key(buf, &key, 0);
531                         btrfs_print_key(&key);
532                         fflush(stdout);
533                         ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
534                         fprintf(stderr, "slot end outside of leaf %llu > %llu\n",
535                                 (unsigned long long)btrfs_item_end_nr(buf, i),
536                                 (unsigned long long)BTRFS_LEAF_DATA_SIZE(
537                                         root->fs_info));
538                         goto fail;
539                 }
540         }
541
542         return BTRFS_TREE_BLOCK_CLEAN;
543 fail:
544         if (btrfs_header_owner(buf) == BTRFS_EXTENT_TREE_OBJECTID) {
545                 if (parent_key)
546                         btrfs_disk_key_to_cpu(&cpukey, parent_key);
547                 else
548                         btrfs_item_key_to_cpu(buf, &cpukey, 0);
549
550                 btrfs_add_corrupt_extent_record(root->fs_info, &cpukey,
551                                                 buf->start, buf->len, 0);
552         }
553         return ret;
554 }
555
556 static int noinline check_block(struct btrfs_root *root,
557                                 struct btrfs_path *path, int level)
558 {
559         struct btrfs_disk_key key;
560         struct btrfs_disk_key *key_ptr = NULL;
561         struct extent_buffer *parent;
562         enum btrfs_tree_block_status ret;
563
564         if (path->skip_check_block)
565                 return 0;
566         if (path->nodes[level + 1]) {
567                 parent = path->nodes[level + 1];
568                 btrfs_node_key(parent, &key, path->slots[level + 1]);
569                 key_ptr = &key;
570         }
571         if (level == 0)
572                 ret =  btrfs_check_leaf(root, key_ptr, path->nodes[0]);
573         else
574                 ret = btrfs_check_node(root, key_ptr, path->nodes[level]);
575         if (ret == BTRFS_TREE_BLOCK_CLEAN)
576                 return 0;
577         return -EIO;
578 }
579
580 /*
581  * search for key in the extent_buffer.  The items start at offset p,
582  * and they are item_size apart.  There are 'max' items in p.
583  *
584  * the slot in the array is returned via slot, and it points to
585  * the place where you would insert key if it is not found in
586  * the array.
587  *
588  * slot may point to max if the key is bigger than all of the keys
589  */
590 static int generic_bin_search(struct extent_buffer *eb, unsigned long p,
591                               int item_size, struct btrfs_key *key,
592                               int max, int *slot)
593 {
594         int low = 0;
595         int high = max;
596         int mid;
597         int ret;
598         unsigned long offset;
599         struct btrfs_disk_key *tmp;
600
601         while(low < high) {
602                 mid = (low + high) / 2;
603                 offset = p + mid * item_size;
604
605                 tmp = (struct btrfs_disk_key *)(eb->data + offset);
606                 ret = btrfs_comp_keys(tmp, key);
607
608                 if (ret < 0)
609                         low = mid + 1;
610                 else if (ret > 0)
611                         high = mid;
612                 else {
613                         *slot = mid;
614                         return 0;
615                 }
616         }
617         *slot = low;
618         return 1;
619 }
620
621 /*
622  * simple bin_search frontend that does the right thing for
623  * leaves vs nodes
624  */
625 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
626                       int level, int *slot)
627 {
628         if (level == 0)
629                 return generic_bin_search(eb,
630                                           offsetof(struct btrfs_leaf, items),
631                                           sizeof(struct btrfs_item),
632                                           key, btrfs_header_nritems(eb),
633                                           slot);
634         else
635                 return generic_bin_search(eb,
636                                           offsetof(struct btrfs_node, ptrs),
637                                           sizeof(struct btrfs_key_ptr),
638                                           key, btrfs_header_nritems(eb),
639                                           slot);
640 }
641
642 struct extent_buffer *read_node_slot(struct btrfs_fs_info *fs_info,
643                                    struct extent_buffer *parent, int slot)
644 {
645         int level = btrfs_header_level(parent);
646         if (slot < 0)
647                 return NULL;
648         if (slot >= btrfs_header_nritems(parent))
649                 return NULL;
650
651         if (level == 0)
652                 return NULL;
653
654         return read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
655                        btrfs_node_ptr_generation(parent, slot));
656 }
657
658 static int balance_level(struct btrfs_trans_handle *trans,
659                          struct btrfs_root *root,
660                          struct btrfs_path *path, int level)
661 {
662         struct extent_buffer *right = NULL;
663         struct extent_buffer *mid;
664         struct extent_buffer *left = NULL;
665         struct extent_buffer *parent = NULL;
666         struct btrfs_fs_info *fs_info = root->fs_info;
667         int ret = 0;
668         int wret;
669         int pslot;
670         int orig_slot = path->slots[level];
671         u64 orig_ptr;
672
673         if (level == 0)
674                 return 0;
675
676         mid = path->nodes[level];
677         WARN_ON(btrfs_header_generation(mid) != trans->transid);
678
679         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
680
681         if (level < BTRFS_MAX_LEVEL - 1) {
682                 parent = path->nodes[level + 1];
683                 pslot = path->slots[level + 1];
684         }
685
686         /*
687          * deal with the case where there is only one pointer in the root
688          * by promoting the node below to a root
689          */
690         if (!parent) {
691                 struct extent_buffer *child;
692
693                 if (btrfs_header_nritems(mid) != 1)
694                         return 0;
695
696                 /* promote the child to a root */
697                 child = read_node_slot(fs_info, mid, 0);
698                 BUG_ON(!extent_buffer_uptodate(child));
699                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
700                 BUG_ON(ret);
701
702                 root->node = child;
703                 add_root_to_dirty_list(root);
704                 path->nodes[level] = NULL;
705                 clean_tree_block(trans, root, mid);
706                 /* once for the path */
707                 free_extent_buffer(mid);
708
709                 ret = btrfs_free_extent(trans, root, mid->start, mid->len,
710                                         0, root->root_key.objectid,
711                                         level, 1);
712                 /* once for the root ptr */
713                 free_extent_buffer(mid);
714                 return ret;
715         }
716         if (btrfs_header_nritems(mid) >
717             BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
718                 return 0;
719
720         left = read_node_slot(fs_info, parent, pslot - 1);
721         if (extent_buffer_uptodate(left)) {
722                 wret = btrfs_cow_block(trans, root, left,
723                                        parent, pslot - 1, &left);
724                 if (wret) {
725                         ret = wret;
726                         goto enospc;
727                 }
728         }
729         right = read_node_slot(fs_info, parent, pslot + 1);
730         if (extent_buffer_uptodate(right)) {
731                 wret = btrfs_cow_block(trans, root, right,
732                                        parent, pslot + 1, &right);
733                 if (wret) {
734                         ret = wret;
735                         goto enospc;
736                 }
737         }
738
739         /* first, try to make some room in the middle buffer */
740         if (left) {
741                 orig_slot += btrfs_header_nritems(left);
742                 wret = push_node_left(trans, root, left, mid, 1);
743                 if (wret < 0)
744                         ret = wret;
745         }
746
747         /*
748          * then try to empty the right most buffer into the middle
749          */
750         if (right) {
751                 wret = push_node_left(trans, root, mid, right, 1);
752                 if (wret < 0 && wret != -ENOSPC)
753                         ret = wret;
754                 if (btrfs_header_nritems(right) == 0) {
755                         u64 bytenr = right->start;
756                         u32 blocksize = right->len;
757
758                         clean_tree_block(trans, root, right);
759                         free_extent_buffer(right);
760                         right = NULL;
761                         wret = btrfs_del_ptr(root, path, level + 1, pslot + 1);
762                         if (wret)
763                                 ret = wret;
764                         wret = btrfs_free_extent(trans, root, bytenr,
765                                                  blocksize, 0,
766                                                  root->root_key.objectid,
767                                                  level, 0);
768                         if (wret)
769                                 ret = wret;
770                 } else {
771                         struct btrfs_disk_key right_key;
772                         btrfs_node_key(right, &right_key, 0);
773                         btrfs_set_node_key(parent, &right_key, pslot + 1);
774                         btrfs_mark_buffer_dirty(parent);
775                 }
776         }
777         if (btrfs_header_nritems(mid) == 1) {
778                 /*
779                  * we're not allowed to leave a node with one item in the
780                  * tree during a delete.  A deletion from lower in the tree
781                  * could try to delete the only pointer in this node.
782                  * So, pull some keys from the left.
783                  * There has to be a left pointer at this point because
784                  * otherwise we would have pulled some pointers from the
785                  * right
786                  */
787                 BUG_ON(!left);
788                 wret = balance_node_right(trans, root, mid, left);
789                 if (wret < 0) {
790                         ret = wret;
791                         goto enospc;
792                 }
793                 if (wret == 1) {
794                         wret = push_node_left(trans, root, left, mid, 1);
795                         if (wret < 0)
796                                 ret = wret;
797                 }
798                 BUG_ON(wret == 1);
799         }
800         if (btrfs_header_nritems(mid) == 0) {
801                 /* we've managed to empty the middle node, drop it */
802                 u64 bytenr = mid->start;
803                 u32 blocksize = mid->len;
804                 clean_tree_block(trans, root, mid);
805                 free_extent_buffer(mid);
806                 mid = NULL;
807                 wret = btrfs_del_ptr(root, path, level + 1, pslot);
808                 if (wret)
809                         ret = wret;
810                 wret = btrfs_free_extent(trans, root, bytenr, blocksize,
811                                          0, root->root_key.objectid,
812                                          level, 0);
813                 if (wret)
814                         ret = wret;
815         } else {
816                 /* update the parent key to reflect our changes */
817                 struct btrfs_disk_key mid_key;
818                 btrfs_node_key(mid, &mid_key, 0);
819                 btrfs_set_node_key(parent, &mid_key, pslot);
820                 btrfs_mark_buffer_dirty(parent);
821         }
822
823         /* update the path */
824         if (left) {
825                 if (btrfs_header_nritems(left) > orig_slot) {
826                         extent_buffer_get(left);
827                         path->nodes[level] = left;
828                         path->slots[level + 1] -= 1;
829                         path->slots[level] = orig_slot;
830                         if (mid)
831                                 free_extent_buffer(mid);
832                 } else {
833                         orig_slot -= btrfs_header_nritems(left);
834                         path->slots[level] = orig_slot;
835                 }
836         }
837         /* double check we haven't messed things up */
838         check_block(root, path, level);
839         if (orig_ptr !=
840             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
841                 BUG();
842 enospc:
843         if (right)
844                 free_extent_buffer(right);
845         if (left)
846                 free_extent_buffer(left);
847         return ret;
848 }
849
850 /* returns zero if the push worked, non-zero otherwise */
851 static int noinline push_nodes_for_insert(struct btrfs_trans_handle *trans,
852                                           struct btrfs_root *root,
853                                           struct btrfs_path *path, int level)
854 {
855         struct extent_buffer *right = NULL;
856         struct extent_buffer *mid;
857         struct extent_buffer *left = NULL;
858         struct extent_buffer *parent = NULL;
859         struct btrfs_fs_info *fs_info = root->fs_info;
860         int ret = 0;
861         int wret;
862         int pslot;
863         int orig_slot = path->slots[level];
864
865         if (level == 0)
866                 return 1;
867
868         mid = path->nodes[level];
869         WARN_ON(btrfs_header_generation(mid) != trans->transid);
870
871         if (level < BTRFS_MAX_LEVEL - 1) {
872                 parent = path->nodes[level + 1];
873                 pslot = path->slots[level + 1];
874         }
875
876         if (!parent)
877                 return 1;
878
879         left = read_node_slot(fs_info, parent, pslot - 1);
880
881         /* first, try to make some room in the middle buffer */
882         if (extent_buffer_uptodate(left)) {
883                 u32 left_nr;
884                 left_nr = btrfs_header_nritems(left);
885                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
886                         wret = 1;
887                 } else {
888                         ret = btrfs_cow_block(trans, root, left, parent,
889                                               pslot - 1, &left);
890                         if (ret)
891                                 wret = 1;
892                         else {
893                                 wret = push_node_left(trans, root,
894                                                       left, mid, 0);
895                         }
896                 }
897                 if (wret < 0)
898                         ret = wret;
899                 if (wret == 0) {
900                         struct btrfs_disk_key disk_key;
901                         orig_slot += left_nr;
902                         btrfs_node_key(mid, &disk_key, 0);
903                         btrfs_set_node_key(parent, &disk_key, pslot);
904                         btrfs_mark_buffer_dirty(parent);
905                         if (btrfs_header_nritems(left) > orig_slot) {
906                                 path->nodes[level] = left;
907                                 path->slots[level + 1] -= 1;
908                                 path->slots[level] = orig_slot;
909                                 free_extent_buffer(mid);
910                         } else {
911                                 orig_slot -=
912                                         btrfs_header_nritems(left);
913                                 path->slots[level] = orig_slot;
914                                 free_extent_buffer(left);
915                         }
916                         return 0;
917                 }
918                 free_extent_buffer(left);
919         }
920         right= read_node_slot(fs_info, parent, pslot + 1);
921
922         /*
923          * then try to empty the right most buffer into the middle
924          */
925         if (extent_buffer_uptodate(right)) {
926                 u32 right_nr;
927                 right_nr = btrfs_header_nritems(right);
928                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root->fs_info) - 1) {
929                         wret = 1;
930                 } else {
931                         ret = btrfs_cow_block(trans, root, right,
932                                               parent, pslot + 1,
933                                               &right);
934                         if (ret)
935                                 wret = 1;
936                         else {
937                                 wret = balance_node_right(trans, root,
938                                                           right, mid);
939                         }
940                 }
941                 if (wret < 0)
942                         ret = wret;
943                 if (wret == 0) {
944                         struct btrfs_disk_key disk_key;
945
946                         btrfs_node_key(right, &disk_key, 0);
947                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
948                         btrfs_mark_buffer_dirty(parent);
949
950                         if (btrfs_header_nritems(mid) <= orig_slot) {
951                                 path->nodes[level] = right;
952                                 path->slots[level + 1] += 1;
953                                 path->slots[level] = orig_slot -
954                                         btrfs_header_nritems(mid);
955                                 free_extent_buffer(mid);
956                         } else {
957                                 free_extent_buffer(right);
958                         }
959                         return 0;
960                 }
961                 free_extent_buffer(right);
962         }
963         return 1;
964 }
965
966 /*
967  * readahead one full node of leaves
968  */
969 void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
970                              int level, int slot, u64 objectid)
971 {
972         struct btrfs_fs_info *fs_info = root->fs_info;
973         struct extent_buffer *node;
974         struct btrfs_disk_key disk_key;
975         u32 nritems;
976         u64 search;
977         u64 lowest_read;
978         u64 highest_read;
979         u64 nread = 0;
980         int direction = path->reada;
981         struct extent_buffer *eb;
982         u32 nr;
983         u32 nscan = 0;
984
985         if (level != 1)
986                 return;
987
988         if (!path->nodes[level])
989                 return;
990
991         node = path->nodes[level];
992         search = btrfs_node_blockptr(node, slot);
993         eb = btrfs_find_tree_block(fs_info, search, fs_info->nodesize);
994         if (eb) {
995                 free_extent_buffer(eb);
996                 return;
997         }
998
999         highest_read = search;
1000         lowest_read = search;
1001
1002         nritems = btrfs_header_nritems(node);
1003         nr = slot;
1004         while(1) {
1005                 if (direction < 0) {
1006                         if (nr == 0)
1007                                 break;
1008                         nr--;
1009                 } else if (direction > 0) {
1010                         nr++;
1011                         if (nr >= nritems)
1012                                 break;
1013                 }
1014                 if (path->reada < 0 && objectid) {
1015                         btrfs_node_key(node, &disk_key, nr);
1016                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1017                                 break;
1018                 }
1019                 search = btrfs_node_blockptr(node, nr);
1020                 if ((search >= lowest_read && search <= highest_read) ||
1021                     (search < lowest_read && lowest_read - search <= 32768) ||
1022                     (search > highest_read && search - highest_read <= 32768)) {
1023                         readahead_tree_block(fs_info, search,
1024                                      btrfs_node_ptr_generation(node, nr));
1025                         nread += fs_info->nodesize;
1026                 }
1027                 nscan++;
1028                 if (path->reada < 2 && (nread > SZ_256K || nscan > 32))
1029                         break;
1030                 if(nread > SZ_1M || nscan > 128)
1031                         break;
1032
1033                 if (search < lowest_read)
1034                         lowest_read = search;
1035                 if (search > highest_read)
1036                         highest_read = search;
1037         }
1038 }
1039
1040 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
1041                 u64 iobjectid, u64 ioff, u8 key_type,
1042                 struct btrfs_key *found_key)
1043 {
1044         int ret;
1045         struct btrfs_key key;
1046         struct extent_buffer *eb;
1047         struct btrfs_path *path;
1048
1049         key.type = key_type;
1050         key.objectid = iobjectid;
1051         key.offset = ioff;
1052
1053         if (found_path == NULL) {
1054                 path = btrfs_alloc_path();
1055                 if (!path)
1056                         return -ENOMEM;
1057         } else
1058                 path = found_path;
1059
1060         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1061         if ((ret < 0) || (found_key == NULL))
1062                 goto out;
1063
1064         eb = path->nodes[0];
1065         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1066                 ret = btrfs_next_leaf(fs_root, path);
1067                 if (ret)
1068                         goto out;
1069                 eb = path->nodes[0];
1070         }
1071
1072         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1073         if (found_key->type != key.type ||
1074                         found_key->objectid != key.objectid) {
1075                 ret = 1;
1076                 goto out;
1077         }
1078
1079 out:
1080         if (path != found_path)
1081                 btrfs_free_path(path);
1082         return ret;
1083 }
1084
1085 /*
1086  * look for key in the tree.  path is filled in with nodes along the way
1087  * if key is found, we return zero and you can find the item in the leaf
1088  * level of the path (level 0)
1089  *
1090  * If the key isn't found, the path points to the slot where it should
1091  * be inserted, and 1 is returned.  If there are other errors during the
1092  * search a negative error number is returned.
1093  *
1094  * if ins_len > 0, nodes and leaves will be split as we walk down the
1095  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1096  * possible)
1097  */
1098 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1099                       *root, struct btrfs_key *key, struct btrfs_path *p, int
1100                       ins_len, int cow)
1101 {
1102         struct extent_buffer *b;
1103         int slot;
1104         int ret;
1105         int level;
1106         int should_reada = p->reada;
1107         struct btrfs_fs_info *fs_info = root->fs_info;
1108         u8 lowest_level = 0;
1109
1110         lowest_level = p->lowest_level;
1111         WARN_ON(lowest_level && ins_len > 0);
1112         WARN_ON(p->nodes[0] != NULL);
1113         /*
1114         WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
1115         */
1116 again:
1117         b = root->node;
1118         extent_buffer_get(b);
1119         while (b) {
1120                 level = btrfs_header_level(b);
1121                 if (cow) {
1122                         int wret;
1123                         wret = btrfs_cow_block(trans, root, b,
1124                                                p->nodes[level + 1],
1125                                                p->slots[level + 1],
1126                                                &b);
1127                         if (wret) {
1128                                 free_extent_buffer(b);
1129                                 return wret;
1130                         }
1131                 }
1132                 BUG_ON(!cow && ins_len);
1133                 if (level != btrfs_header_level(b))
1134                         WARN_ON(1);
1135                 level = btrfs_header_level(b);
1136                 p->nodes[level] = b;
1137                 ret = check_block(root, p, level);
1138                 if (ret)
1139                         return -1;
1140                 ret = bin_search(b, key, level, &slot);
1141                 if (level != 0) {
1142                         if (ret && slot > 0)
1143                                 slot -= 1;
1144                         p->slots[level] = slot;
1145                         if ((p->search_for_split || ins_len > 0) &&
1146                             btrfs_header_nritems(b) >=
1147                             BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1148                                 int sret = split_node(trans, root, p, level);
1149                                 BUG_ON(sret > 0);
1150                                 if (sret)
1151                                         return sret;
1152                                 b = p->nodes[level];
1153                                 slot = p->slots[level];
1154                         } else if (ins_len < 0) {
1155                                 int sret = balance_level(trans, root, p,
1156                                                          level);
1157                                 if (sret)
1158                                         return sret;
1159                                 b = p->nodes[level];
1160                                 if (!b) {
1161                                         btrfs_release_path(p);
1162                                         goto again;
1163                                 }
1164                                 slot = p->slots[level];
1165                                 BUG_ON(btrfs_header_nritems(b) == 1);
1166                         }
1167                         /* this is only true while dropping a snapshot */
1168                         if (level == lowest_level)
1169                                 break;
1170
1171                         if (should_reada)
1172                                 reada_for_search(root, p, level, slot,
1173                                                  key->objectid);
1174
1175                         b = read_node_slot(fs_info, b, slot);
1176                         if (!extent_buffer_uptodate(b))
1177                                 return -EIO;
1178                 } else {
1179                         p->slots[level] = slot;
1180                         if (ins_len > 0 &&
1181                             ins_len > btrfs_leaf_free_space(root, b)) {
1182                                 int sret = split_leaf(trans, root, key,
1183                                                       p, ins_len, ret == 0);
1184                                 BUG_ON(sret > 0);
1185                                 if (sret)
1186                                         return sret;
1187                         }
1188                         return ret;
1189                 }
1190         }
1191         return 1;
1192 }
1193
1194 /*
1195  * adjust the pointers going up the tree, starting at level
1196  * making sure the right key of each node is points to 'key'.
1197  * This is used after shifting pointers to the left, so it stops
1198  * fixing up pointers when a given leaf/node is not in slot 0 of the
1199  * higher levels
1200  */
1201 void btrfs_fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
1202                           struct btrfs_disk_key *key, int level)
1203 {
1204         int i;
1205         struct extent_buffer *t;
1206
1207         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1208                 int tslot = path->slots[i];
1209                 if (!path->nodes[i])
1210                         break;
1211                 t = path->nodes[i];
1212                 btrfs_set_node_key(t, key, tslot);
1213                 btrfs_mark_buffer_dirty(path->nodes[i]);
1214                 if (tslot != 0)
1215                         break;
1216         }
1217 }
1218
1219 /*
1220  * update item key.
1221  *
1222  * This function isn't completely safe. It's the caller's responsibility
1223  * that the new key won't break the order
1224  */
1225 int btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
1226                             struct btrfs_key *new_key)
1227 {
1228         struct btrfs_disk_key disk_key;
1229         struct extent_buffer *eb;
1230         int slot;
1231
1232         eb = path->nodes[0];
1233         slot = path->slots[0];
1234         if (slot > 0) {
1235                 btrfs_item_key(eb, &disk_key, slot - 1);
1236                 if (btrfs_comp_keys(&disk_key, new_key) >= 0)
1237                         return -1;
1238         }
1239         if (slot < btrfs_header_nritems(eb) - 1) {
1240                 btrfs_item_key(eb, &disk_key, slot + 1);
1241                 if (btrfs_comp_keys(&disk_key, new_key) <= 0)
1242                         return -1;
1243         }
1244
1245         btrfs_cpu_key_to_disk(&disk_key, new_key);
1246         btrfs_set_item_key(eb, &disk_key, slot);
1247         btrfs_mark_buffer_dirty(eb);
1248         if (slot == 0)
1249                 btrfs_fixup_low_keys(root, path, &disk_key, 1);
1250         return 0;
1251 }
1252
1253 /*
1254  * update an item key without the safety checks.  This is meant to be called by
1255  * fsck only.
1256  */
1257 void btrfs_set_item_key_unsafe(struct btrfs_root *root,
1258                                struct btrfs_path *path,
1259                                struct btrfs_key *new_key)
1260 {
1261         struct btrfs_disk_key disk_key;
1262         struct extent_buffer *eb;
1263         int slot;
1264
1265         eb = path->nodes[0];
1266         slot = path->slots[0];
1267
1268         btrfs_cpu_key_to_disk(&disk_key, new_key);
1269         btrfs_set_item_key(eb, &disk_key, slot);
1270         btrfs_mark_buffer_dirty(eb);
1271         if (slot == 0)
1272                 btrfs_fixup_low_keys(root, path, &disk_key, 1);
1273 }
1274
1275 /*
1276  * try to push data from one node into the next node left in the
1277  * tree.
1278  *
1279  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1280  * error, and > 0 if there was no room in the left hand block.
1281  */
1282 static int push_node_left(struct btrfs_trans_handle *trans,
1283                           struct btrfs_root *root, struct extent_buffer *dst,
1284                           struct extent_buffer *src, int empty)
1285 {
1286         int push_items = 0;
1287         int src_nritems;
1288         int dst_nritems;
1289         int ret = 0;
1290
1291         src_nritems = btrfs_header_nritems(src);
1292         dst_nritems = btrfs_header_nritems(dst);
1293         push_items = BTRFS_NODEPTRS_PER_BLOCK(root->fs_info) - dst_nritems;
1294         WARN_ON(btrfs_header_generation(src) != trans->transid);
1295         WARN_ON(btrfs_header_generation(dst) != trans->transid);
1296
1297         if (!empty && src_nritems <= 8)
1298                 return 1;
1299
1300         if (push_items <= 0) {
1301                 return 1;
1302         }
1303
1304         if (empty) {
1305                 push_items = min(src_nritems, push_items);
1306                 if (push_items < src_nritems) {
1307                         /* leave at least 8 pointers in the node if
1308                          * we aren't going to empty it
1309                          */
1310                         if (src_nritems - push_items < 8) {
1311                                 if (push_items <= 8)
1312                                         return 1;
1313                                 push_items -= 8;
1314                         }
1315                 }
1316         } else
1317                 push_items = min(src_nritems - 8, push_items);
1318
1319         copy_extent_buffer(dst, src,
1320                            btrfs_node_key_ptr_offset(dst_nritems),
1321                            btrfs_node_key_ptr_offset(0),
1322                            push_items * sizeof(struct btrfs_key_ptr));
1323
1324         if (push_items < src_nritems) {
1325                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1326                                       btrfs_node_key_ptr_offset(push_items),
1327                                       (src_nritems - push_items) *
1328                                       sizeof(struct btrfs_key_ptr));
1329         }
1330         btrfs_set_header_nritems(src, src_nritems - push_items);
1331         btrfs_set_header_nritems(dst, dst_nritems + push_items);
1332         btrfs_mark_buffer_dirty(src);
1333         btrfs_mark_buffer_dirty(dst);
1334
1335         return ret;
1336 }
1337
1338 /*
1339  * try to push data from one node into the next node right in the
1340  * tree.
1341  *
1342  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1343  * error, and > 0 if there was no room in the right hand block.
1344  *
1345  * this will  only push up to 1/2 the contents of the left node over
1346  */
1347 static int balance_node_right(struct btrfs_trans_handle *trans,
1348                               struct btrfs_root *root,
1349                               struct extent_buffer *dst,
1350                               struct extent_buffer *src)
1351 {
1352         int push_items = 0;
1353         int max_push;
1354         int src_nritems;
1355         int dst_nritems;
1356         int ret = 0;
1357
1358         WARN_ON(btrfs_header_generation(src) != trans->transid);
1359         WARN_ON(btrfs_header_generation(dst) != trans->transid);
1360
1361         src_nritems = btrfs_header_nritems(src);
1362         dst_nritems = btrfs_header_nritems(dst);
1363         push_items = BTRFS_NODEPTRS_PER_BLOCK(root->fs_info) - dst_nritems;
1364         if (push_items <= 0) {
1365                 return 1;
1366         }
1367
1368         if (src_nritems < 4) {
1369                 return 1;
1370         }
1371
1372         max_push = src_nritems / 2 + 1;
1373         /* don't try to empty the node */
1374         if (max_push >= src_nritems) {
1375                 return 1;
1376         }
1377
1378         if (max_push < push_items)
1379                 push_items = max_push;
1380
1381         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
1382                                       btrfs_node_key_ptr_offset(0),
1383                                       (dst_nritems) *
1384                                       sizeof(struct btrfs_key_ptr));
1385
1386         copy_extent_buffer(dst, src,
1387                            btrfs_node_key_ptr_offset(0),
1388                            btrfs_node_key_ptr_offset(src_nritems - push_items),
1389                            push_items * sizeof(struct btrfs_key_ptr));
1390
1391         btrfs_set_header_nritems(src, src_nritems - push_items);
1392         btrfs_set_header_nritems(dst, dst_nritems + push_items);
1393
1394         btrfs_mark_buffer_dirty(src);
1395         btrfs_mark_buffer_dirty(dst);
1396
1397         return ret;
1398 }
1399
1400 /*
1401  * helper function to insert a new root level in the tree.
1402  * A new node is allocated, and a single item is inserted to
1403  * point to the existing root
1404  *
1405  * returns zero on success or < 0 on failure.
1406  */
1407 static int noinline insert_new_root(struct btrfs_trans_handle *trans,
1408                            struct btrfs_root *root,
1409                            struct btrfs_path *path, int level)
1410 {
1411         u64 lower_gen;
1412         struct extent_buffer *lower;
1413         struct extent_buffer *c;
1414         struct extent_buffer *old;
1415         struct btrfs_disk_key lower_key;
1416
1417         BUG_ON(path->nodes[level]);
1418         BUG_ON(path->nodes[level-1] != root->node);
1419
1420         lower = path->nodes[level-1];
1421         if (level == 1)
1422                 btrfs_item_key(lower, &lower_key, 0);
1423         else
1424                 btrfs_node_key(lower, &lower_key, 0);
1425
1426         c = btrfs_alloc_free_block(trans, root, root->fs_info->nodesize,
1427                                    root->root_key.objectid, &lower_key, 
1428                                    level, root->node->start, 0);
1429
1430         if (IS_ERR(c))
1431                 return PTR_ERR(c);
1432
1433         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
1434         btrfs_set_header_nritems(c, 1);
1435         btrfs_set_header_level(c, level);
1436         btrfs_set_header_bytenr(c, c->start);
1437         btrfs_set_header_generation(c, trans->transid);
1438         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
1439         btrfs_set_header_owner(c, root->root_key.objectid);
1440
1441         write_extent_buffer(c, root->fs_info->fsid,
1442                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1443
1444         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
1445                             btrfs_header_chunk_tree_uuid(c),
1446                             BTRFS_UUID_SIZE);
1447
1448         btrfs_set_node_key(c, &lower_key, 0);
1449         btrfs_set_node_blockptr(c, 0, lower->start);
1450         lower_gen = btrfs_header_generation(lower);
1451         WARN_ON(lower_gen != trans->transid);
1452
1453         btrfs_set_node_ptr_generation(c, 0, lower_gen);
1454
1455         btrfs_mark_buffer_dirty(c);
1456
1457         old = root->node;
1458         root->node = c;
1459
1460         /* the super has an extra ref to root->node */
1461         free_extent_buffer(old);
1462
1463         add_root_to_dirty_list(root);
1464         extent_buffer_get(c);
1465         path->nodes[level] = c;
1466         path->slots[level] = 0;
1467         return 0;
1468 }
1469
1470 /*
1471  * worker function to insert a single pointer in a node.
1472  * the node should have enough room for the pointer already
1473  *
1474  * slot and level indicate where you want the key to go, and
1475  * blocknr is the block the key points to.
1476  *
1477  * returns zero on success and < 0 on any error
1478  */
1479 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
1480                       *root, struct btrfs_path *path, struct btrfs_disk_key
1481                       *key, u64 bytenr, int slot, int level)
1482 {
1483         struct extent_buffer *lower;
1484         int nritems;
1485
1486         BUG_ON(!path->nodes[level]);
1487         lower = path->nodes[level];
1488         nritems = btrfs_header_nritems(lower);
1489         if (slot > nritems)
1490                 BUG();
1491         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root->fs_info))
1492                 BUG();
1493         if (slot < nritems) {
1494                 /* shift the items */
1495                 memmove_extent_buffer(lower,
1496                               btrfs_node_key_ptr_offset(slot + 1),
1497                               btrfs_node_key_ptr_offset(slot),
1498                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
1499         }
1500         btrfs_set_node_key(lower, key, slot);
1501         btrfs_set_node_blockptr(lower, slot, bytenr);
1502         WARN_ON(trans->transid == 0);
1503         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
1504         btrfs_set_header_nritems(lower, nritems + 1);
1505         btrfs_mark_buffer_dirty(lower);
1506         return 0;
1507 }
1508
1509 /*
1510  * split the node at the specified level in path in two.
1511  * The path is corrected to point to the appropriate node after the split
1512  *
1513  * Before splitting this tries to make some room in the node by pushing
1514  * left and right, if either one works, it returns right away.
1515  *
1516  * returns 0 on success and < 0 on failure
1517  */
1518 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
1519                       *root, struct btrfs_path *path, int level)
1520 {
1521         struct extent_buffer *c;
1522         struct extent_buffer *split;
1523         struct btrfs_disk_key disk_key;
1524         int mid;
1525         int ret;
1526         int wret;
1527         u32 c_nritems;
1528
1529         c = path->nodes[level];
1530         WARN_ON(btrfs_header_generation(c) != trans->transid);
1531         if (c == root->node) {
1532                 /* trying to split the root, lets make a new one */
1533                 ret = insert_new_root(trans, root, path, level + 1);
1534                 if (ret)
1535                         return ret;
1536         } else {
1537                 ret = push_nodes_for_insert(trans, root, path, level);
1538                 c = path->nodes[level];
1539                 if (!ret && btrfs_header_nritems(c) <
1540                     BTRFS_NODEPTRS_PER_BLOCK(root->fs_info) - 3)
1541                         return 0;
1542                 if (ret < 0)
1543                         return ret;
1544         }
1545
1546         c_nritems = btrfs_header_nritems(c);
1547         mid = (c_nritems + 1) / 2;
1548         btrfs_node_key(c, &disk_key, mid);
1549
1550         split = btrfs_alloc_free_block(trans, root, root->fs_info->nodesize,
1551                                         root->root_key.objectid,
1552                                         &disk_key, level, c->start, 0);
1553         if (IS_ERR(split))
1554                 return PTR_ERR(split);
1555
1556         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
1557         btrfs_set_header_level(split, btrfs_header_level(c));
1558         btrfs_set_header_bytenr(split, split->start);
1559         btrfs_set_header_generation(split, trans->transid);
1560         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
1561         btrfs_set_header_owner(split, root->root_key.objectid);
1562         write_extent_buffer(split, root->fs_info->fsid,
1563                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1564         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
1565                             btrfs_header_chunk_tree_uuid(split),
1566                             BTRFS_UUID_SIZE);
1567
1568
1569         copy_extent_buffer(split, c,
1570                            btrfs_node_key_ptr_offset(0),
1571                            btrfs_node_key_ptr_offset(mid),
1572                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
1573         btrfs_set_header_nritems(split, c_nritems - mid);
1574         btrfs_set_header_nritems(c, mid);
1575         ret = 0;
1576
1577         btrfs_mark_buffer_dirty(c);
1578         btrfs_mark_buffer_dirty(split);
1579
1580         wret = insert_ptr(trans, root, path, &disk_key, split->start,
1581                           path->slots[level + 1] + 1,
1582                           level + 1);
1583         if (wret)
1584                 ret = wret;
1585
1586         if (path->slots[level] >= mid) {
1587                 path->slots[level] -= mid;
1588                 free_extent_buffer(c);
1589                 path->nodes[level] = split;
1590                 path->slots[level + 1] += 1;
1591         } else {
1592                 free_extent_buffer(split);
1593         }
1594         return ret;
1595 }
1596
1597 /*
1598  * how many bytes are required to store the items in a leaf.  start
1599  * and nr indicate which items in the leaf to check.  This totals up the
1600  * space used both by the item structs and the item data
1601  */
1602 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
1603 {
1604         int data_len;
1605         int nritems = btrfs_header_nritems(l);
1606         int end = min(nritems, start + nr) - 1;
1607
1608         if (!nr)
1609                 return 0;
1610         data_len = btrfs_item_end_nr(l, start);
1611         data_len = data_len - btrfs_item_offset_nr(l, end);
1612         data_len += sizeof(struct btrfs_item) * nr;
1613         WARN_ON(data_len < 0);
1614         return data_len;
1615 }
1616
1617 /*
1618  * The space between the end of the leaf items and
1619  * the start of the leaf data.  IOW, how much room
1620  * the leaf has left for both items and data
1621  */
1622 int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf)
1623 {
1624         u32 nodesize = (root ? BTRFS_LEAF_DATA_SIZE(root->fs_info) : leaf->len);
1625         int nritems = btrfs_header_nritems(leaf);
1626         int ret;
1627         ret = nodesize - leaf_space_used(leaf, 0, nritems);
1628         if (ret < 0) {
1629                 printk("leaf free space ret %d, leaf data size %u, used %d nritems %d\n",
1630                        ret, nodesize, leaf_space_used(leaf, 0, nritems),
1631                        nritems);
1632         }
1633         return ret;
1634 }
1635
1636 /*
1637  * push some data in the path leaf to the right, trying to free up at
1638  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
1639  *
1640  * returns 1 if the push failed because the other node didn't have enough
1641  * room, 0 if everything worked out and < 0 if there were major errors.
1642  */
1643 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
1644                            *root, struct btrfs_path *path, int data_size,
1645                            int empty)
1646 {
1647         struct extent_buffer *left = path->nodes[0];
1648         struct extent_buffer *right;
1649         struct extent_buffer *upper;
1650         struct btrfs_disk_key disk_key;
1651         struct btrfs_fs_info *fs_info = root->fs_info;
1652         int slot;
1653         u32 i;
1654         int free_space;
1655         int push_space = 0;
1656         int push_items = 0;
1657         struct btrfs_item *item;
1658         u32 left_nritems;
1659         u32 nr;
1660         u32 right_nritems;
1661         u32 data_end;
1662         u32 this_item_size;
1663         int ret;
1664
1665         slot = path->slots[1];
1666         if (!path->nodes[1]) {
1667                 return 1;
1668         }
1669         upper = path->nodes[1];
1670         if (slot >= btrfs_header_nritems(upper) - 1)
1671                 return 1;
1672
1673         right = read_node_slot(fs_info, upper, slot + 1);
1674         if (!extent_buffer_uptodate(right)) {
1675                 if (IS_ERR(right))
1676                         return PTR_ERR(right);
1677                 return -EIO;
1678         }
1679         free_space = btrfs_leaf_free_space(root, right);
1680         if (free_space < data_size) {
1681                 free_extent_buffer(right);
1682                 return 1;
1683         }
1684
1685         /* cow and double check */
1686         ret = btrfs_cow_block(trans, root, right, upper,
1687                               slot + 1, &right);
1688         if (ret) {
1689                 free_extent_buffer(right);
1690                 return 1;
1691         }
1692         free_space = btrfs_leaf_free_space(root, right);
1693         if (free_space < data_size) {
1694                 free_extent_buffer(right);
1695                 return 1;
1696         }
1697
1698         left_nritems = btrfs_header_nritems(left);
1699         if (left_nritems == 0) {
1700                 free_extent_buffer(right);
1701                 return 1;
1702         }
1703
1704         if (empty)
1705                 nr = 0;
1706         else
1707                 nr = 1;
1708
1709         i = left_nritems - 1;
1710         while (i >= nr) {
1711                 item = btrfs_item_nr(i);
1712
1713                 if (path->slots[0] == i)
1714                         push_space += data_size + sizeof(*item);
1715
1716                 this_item_size = btrfs_item_size(left, item);
1717                 if (this_item_size + sizeof(*item) + push_space > free_space)
1718                         break;
1719                 push_items++;
1720                 push_space += this_item_size + sizeof(*item);
1721                 if (i == 0)
1722                         break;
1723                 i--;
1724         }
1725
1726         if (push_items == 0) {
1727                 free_extent_buffer(right);
1728                 return 1;
1729         }
1730
1731         if (!empty && push_items == left_nritems)
1732                 WARN_ON(1);
1733
1734         /* push left to right */
1735         right_nritems = btrfs_header_nritems(right);
1736
1737         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
1738         push_space -= leaf_data_end(fs_info, left);
1739
1740         /* make room in the right data area */
1741         data_end = leaf_data_end(fs_info, right);
1742         memmove_extent_buffer(right,
1743                               btrfs_leaf_data(right) + data_end - push_space,
1744                               btrfs_leaf_data(right) + data_end,
1745                               BTRFS_LEAF_DATA_SIZE(root->fs_info) - data_end);
1746
1747         /* copy from the left data area */
1748         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
1749                      BTRFS_LEAF_DATA_SIZE(root->fs_info) - push_space,
1750                      btrfs_leaf_data(left) + leaf_data_end(fs_info, left),
1751                      push_space);
1752
1753         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
1754                               btrfs_item_nr_offset(0),
1755                               right_nritems * sizeof(struct btrfs_item));
1756
1757         /* copy the items from left to right */
1758         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
1759                    btrfs_item_nr_offset(left_nritems - push_items),
1760                    push_items * sizeof(struct btrfs_item));
1761
1762         /* update the item pointers */
1763         right_nritems += push_items;
1764         btrfs_set_header_nritems(right, right_nritems);
1765         push_space = BTRFS_LEAF_DATA_SIZE(root->fs_info);
1766         for (i = 0; i < right_nritems; i++) {
1767                 item = btrfs_item_nr(i);
1768                 push_space -= btrfs_item_size(right, item);
1769                 btrfs_set_item_offset(right, item, push_space);
1770         }
1771
1772         left_nritems -= push_items;
1773         btrfs_set_header_nritems(left, left_nritems);
1774
1775         if (left_nritems)
1776                 btrfs_mark_buffer_dirty(left);
1777         btrfs_mark_buffer_dirty(right);
1778
1779         btrfs_item_key(right, &disk_key, 0);
1780         btrfs_set_node_key(upper, &disk_key, slot + 1);
1781         btrfs_mark_buffer_dirty(upper);
1782
1783         /* then fixup the leaf pointer in the path */
1784         if (path->slots[0] >= left_nritems) {
1785                 path->slots[0] -= left_nritems;
1786                 free_extent_buffer(path->nodes[0]);
1787                 path->nodes[0] = right;
1788                 path->slots[1] += 1;
1789         } else {
1790                 free_extent_buffer(right);
1791         }
1792         return 0;
1793 }
1794 /*
1795  * push some data in the path leaf to the left, trying to free up at
1796  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
1797  */
1798 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
1799                           *root, struct btrfs_path *path, int data_size,
1800                           int empty)
1801 {
1802         struct btrfs_disk_key disk_key;
1803         struct extent_buffer *right = path->nodes[0];
1804         struct extent_buffer *left;
1805         struct btrfs_fs_info *fs_info = root->fs_info;
1806         int slot;
1807         int i;
1808         int free_space;
1809         int push_space = 0;
1810         int push_items = 0;
1811         struct btrfs_item *item;
1812         u32 old_left_nritems;
1813         u32 right_nritems;
1814         u32 nr;
1815         int ret = 0;
1816         u32 this_item_size;
1817         u32 old_left_item_size;
1818
1819         slot = path->slots[1];
1820         if (slot == 0)
1821                 return 1;
1822         if (!path->nodes[1])
1823                 return 1;
1824
1825         right_nritems = btrfs_header_nritems(right);
1826         if (right_nritems == 0) {
1827                 return 1;
1828         }
1829
1830         left = read_node_slot(fs_info, path->nodes[1], slot - 1);
1831         free_space = btrfs_leaf_free_space(root, left);
1832         if (free_space < data_size) {
1833                 free_extent_buffer(left);
1834                 return 1;
1835         }
1836
1837         /* cow and double check */
1838         ret = btrfs_cow_block(trans, root, left,
1839                               path->nodes[1], slot - 1, &left);
1840         if (ret) {
1841                 /* we hit -ENOSPC, but it isn't fatal here */
1842                 free_extent_buffer(left);
1843                 return 1;
1844         }
1845
1846         free_space = btrfs_leaf_free_space(root, left);
1847         if (free_space < data_size) {
1848                 free_extent_buffer(left);
1849                 return 1;
1850         }
1851
1852         if (empty)
1853                 nr = right_nritems;
1854         else
1855                 nr = right_nritems - 1;
1856
1857         for (i = 0; i < nr; i++) {
1858                 item = btrfs_item_nr(i);
1859
1860                 if (path->slots[0] == i)
1861                         push_space += data_size + sizeof(*item);
1862
1863                 this_item_size = btrfs_item_size(right, item);
1864                 if (this_item_size + sizeof(*item) + push_space > free_space)
1865                         break;
1866
1867                 push_items++;
1868                 push_space += this_item_size + sizeof(*item);
1869         }
1870
1871         if (push_items == 0) {
1872                 free_extent_buffer(left);
1873                 return 1;
1874         }
1875         if (!empty && push_items == btrfs_header_nritems(right))
1876                 WARN_ON(1);
1877
1878         /* push data from right to left */
1879         copy_extent_buffer(left, right,
1880                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
1881                            btrfs_item_nr_offset(0),
1882                            push_items * sizeof(struct btrfs_item));
1883
1884         push_space = BTRFS_LEAF_DATA_SIZE(root->fs_info) -
1885                      btrfs_item_offset_nr(right, push_items -1);
1886
1887         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
1888                      leaf_data_end(fs_info, left) - push_space,
1889                      btrfs_leaf_data(right) +
1890                      btrfs_item_offset_nr(right, push_items - 1),
1891                      push_space);
1892         old_left_nritems = btrfs_header_nritems(left);
1893         BUG_ON(old_left_nritems == 0);
1894
1895         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
1896         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1897                 u32 ioff;
1898
1899                 item = btrfs_item_nr(i);
1900                 ioff = btrfs_item_offset(left, item);
1901                 btrfs_set_item_offset(left, item,
1902                       ioff - (BTRFS_LEAF_DATA_SIZE(root->fs_info) -
1903                               old_left_item_size));
1904         }
1905         btrfs_set_header_nritems(left, old_left_nritems + push_items);
1906
1907         /* fixup right node */
1908         if (push_items > right_nritems) {
1909                 printk("push items %d nr %u\n", push_items, right_nritems);
1910                 WARN_ON(1);
1911         }
1912
1913         if (push_items < right_nritems) {
1914                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
1915                                                   leaf_data_end(fs_info, right);
1916                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
1917                                       BTRFS_LEAF_DATA_SIZE(root->fs_info) -
1918                                       push_space,
1919                                       btrfs_leaf_data(right) +
1920                                       leaf_data_end(fs_info, right),
1921                                       push_space);
1922
1923                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
1924                               btrfs_item_nr_offset(push_items),
1925                              (btrfs_header_nritems(right) - push_items) *
1926                              sizeof(struct btrfs_item));
1927         }
1928         right_nritems -= push_items;
1929         btrfs_set_header_nritems(right, right_nritems);
1930         push_space = BTRFS_LEAF_DATA_SIZE(root->fs_info);
1931         for (i = 0; i < right_nritems; i++) {
1932                 item = btrfs_item_nr(i);
1933                 push_space = push_space - btrfs_item_size(right, item);
1934                 btrfs_set_item_offset(right, item, push_space);
1935         }
1936
1937         btrfs_mark_buffer_dirty(left);
1938         if (right_nritems)
1939                 btrfs_mark_buffer_dirty(right);
1940
1941         btrfs_item_key(right, &disk_key, 0);
1942         btrfs_fixup_low_keys(root, path, &disk_key, 1);
1943
1944         /* then fixup the leaf pointer in the path */
1945         if (path->slots[0] < push_items) {
1946                 path->slots[0] += old_left_nritems;
1947                 free_extent_buffer(path->nodes[0]);
1948                 path->nodes[0] = left;
1949                 path->slots[1] -= 1;
1950         } else {
1951                 free_extent_buffer(left);
1952                 path->slots[0] -= push_items;
1953         }
1954         BUG_ON(path->slots[0] < 0);
1955         return ret;
1956 }
1957
1958 /*
1959  * split the path's leaf in two, making sure there is at least data_size
1960  * available for the resulting leaf level of the path.
1961  *
1962  * returns 0 if all went well and < 0 on failure.
1963  */
1964 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
1965                                struct btrfs_root *root,
1966                                struct btrfs_path *path,
1967                                struct extent_buffer *l,
1968                                struct extent_buffer *right,
1969                                int slot, int mid, int nritems)
1970 {
1971         int data_copy_size;
1972         int rt_data_off;
1973         int i;
1974         int ret = 0;
1975         int wret;
1976         struct btrfs_disk_key disk_key;
1977
1978         nritems = nritems - mid;
1979         btrfs_set_header_nritems(right, nritems);
1980         data_copy_size = btrfs_item_end_nr(l, mid) -
1981                 leaf_data_end(root->fs_info, l);
1982
1983         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
1984                            btrfs_item_nr_offset(mid),
1985                            nritems * sizeof(struct btrfs_item));
1986
1987         copy_extent_buffer(right, l,
1988                      btrfs_leaf_data(right) +
1989                      BTRFS_LEAF_DATA_SIZE(root->fs_info) -
1990                      data_copy_size, btrfs_leaf_data(l) +
1991                      leaf_data_end(root->fs_info, l), data_copy_size);
1992
1993         rt_data_off = BTRFS_LEAF_DATA_SIZE(root->fs_info) -
1994                       btrfs_item_end_nr(l, mid);
1995
1996         for (i = 0; i < nritems; i++) {
1997                 struct btrfs_item *item = btrfs_item_nr(i);
1998                 u32 ioff = btrfs_item_offset(right, item);
1999                 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2000         }
2001
2002         btrfs_set_header_nritems(l, mid);
2003         ret = 0;
2004         btrfs_item_key(right, &disk_key, 0);
2005         wret = insert_ptr(trans, root, path, &disk_key, right->start,
2006                           path->slots[1] + 1, 1);
2007         if (wret)
2008                 ret = wret;
2009
2010         btrfs_mark_buffer_dirty(right);
2011         btrfs_mark_buffer_dirty(l);
2012         BUG_ON(path->slots[0] != slot);
2013
2014         if (mid <= slot) {
2015                 free_extent_buffer(path->nodes[0]);
2016                 path->nodes[0] = right;
2017                 path->slots[0] -= mid;
2018                 path->slots[1] += 1;
2019         } else {
2020                 free_extent_buffer(right);
2021         }
2022
2023         BUG_ON(path->slots[0] < 0);
2024
2025         return ret;
2026 }
2027
2028 /*
2029  * split the path's leaf in two, making sure there is at least data_size
2030  * available for the resulting leaf level of the path.
2031  *
2032  * returns 0 if all went well and < 0 on failure.
2033  */
2034 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2035                                struct btrfs_root *root,
2036                                struct btrfs_key *ins_key,
2037                                struct btrfs_path *path, int data_size,
2038                                int extend)
2039 {
2040         struct btrfs_disk_key disk_key;
2041         struct extent_buffer *l;
2042         u32 nritems;
2043         int mid;
2044         int slot;
2045         struct extent_buffer *right;
2046         int ret = 0;
2047         int wret;
2048         int split;
2049         int num_doubles = 0;
2050
2051         l = path->nodes[0];
2052         slot = path->slots[0];
2053         if (extend && data_size + btrfs_item_size_nr(l, slot) +
2054             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root->fs_info))
2055                 return -EOVERFLOW;
2056
2057         /* first try to make some room by pushing left and right */
2058         if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
2059                 wret = push_leaf_right(trans, root, path, data_size, 0);
2060                 if (wret < 0)
2061                         return wret;
2062                 if (wret) {
2063                         wret = push_leaf_left(trans, root, path, data_size, 0);
2064                         if (wret < 0)
2065                                 return wret;
2066                 }
2067                 l = path->nodes[0];
2068
2069                 /* did the pushes work? */
2070                 if (btrfs_leaf_free_space(root, l) >= data_size)
2071                         return 0;
2072         }
2073
2074         if (!path->nodes[1]) {
2075                 ret = insert_new_root(trans, root, path, 1);
2076                 if (ret)
2077                         return ret;
2078         }
2079 again:
2080         split = 1;
2081         l = path->nodes[0];
2082         slot = path->slots[0];
2083         nritems = btrfs_header_nritems(l);
2084         mid = (nritems + 1) / 2;
2085
2086         if (mid <= slot) {
2087                 if (nritems == 1 ||
2088                     leaf_space_used(l, mid, nritems - mid) + data_size >
2089                         BTRFS_LEAF_DATA_SIZE(root->fs_info)) {
2090                         if (slot >= nritems) {
2091                                 split = 0;
2092                         } else {
2093                                 mid = slot;
2094                                 if (mid != nritems &&
2095                                     leaf_space_used(l, mid, nritems - mid) +
2096                                     data_size >
2097                                     BTRFS_LEAF_DATA_SIZE(root->fs_info)) {
2098                                         split = 2;
2099                                 }
2100                         }
2101                 }
2102         } else {
2103                 if (leaf_space_used(l, 0, mid) + data_size >
2104                         BTRFS_LEAF_DATA_SIZE(root->fs_info)) {
2105                         if (!extend && data_size && slot == 0) {
2106                                 split = 0;
2107                         } else if ((extend || !data_size) && slot == 0) {
2108                                 mid = 1;
2109                         } else {
2110                                 mid = slot;
2111                                 if (mid != nritems &&
2112                                     leaf_space_used(l, mid, nritems - mid) +
2113                                     data_size >
2114                                     BTRFS_LEAF_DATA_SIZE(root->fs_info)) {
2115                                         split = 2 ;
2116                                 }
2117                         }
2118                 }
2119         }
2120         
2121         if (split == 0)
2122                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2123         else
2124                 btrfs_item_key(l, &disk_key, mid);
2125
2126         right = btrfs_alloc_free_block(trans, root, root->fs_info->nodesize,
2127                                         root->root_key.objectid,
2128                                         &disk_key, 0, l->start, 0);
2129         if (IS_ERR(right)) {
2130                 BUG_ON(1);
2131                 return PTR_ERR(right);
2132         }
2133
2134         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2135         btrfs_set_header_bytenr(right, right->start);
2136         btrfs_set_header_generation(right, trans->transid);
2137         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2138         btrfs_set_header_owner(right, root->root_key.objectid);
2139         btrfs_set_header_level(right, 0);
2140         write_extent_buffer(right, root->fs_info->fsid,
2141                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
2142
2143         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2144                             btrfs_header_chunk_tree_uuid(right),
2145                             BTRFS_UUID_SIZE);
2146
2147         if (split == 0) {
2148                 if (mid <= slot) {
2149                         btrfs_set_header_nritems(right, 0);
2150                         wret = insert_ptr(trans, root, path,
2151                                           &disk_key, right->start,
2152                                           path->slots[1] + 1, 1);
2153                         if (wret)
2154                                 ret = wret;
2155
2156                         free_extent_buffer(path->nodes[0]);
2157                         path->nodes[0] = right;
2158                         path->slots[0] = 0;
2159                         path->slots[1] += 1;
2160                 } else {
2161                         btrfs_set_header_nritems(right, 0);
2162                         wret = insert_ptr(trans, root, path,
2163                                           &disk_key,
2164                                           right->start,
2165                                           path->slots[1], 1);
2166                         if (wret)
2167                                 ret = wret;
2168                         free_extent_buffer(path->nodes[0]);
2169                         path->nodes[0] = right;
2170                         path->slots[0] = 0;
2171                         if (path->slots[1] == 0) {
2172                                 btrfs_fixup_low_keys(root, path,
2173                                                      &disk_key, 1);
2174                         }
2175                 }
2176                 btrfs_mark_buffer_dirty(right);
2177                 return ret;
2178         }
2179
2180         ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
2181         BUG_ON(ret);
2182
2183         if (split == 2) {
2184                 BUG_ON(num_doubles != 0);
2185                 num_doubles++;
2186                 goto again;
2187         }
2188
2189         return ret;
2190 }
2191
2192 /*
2193  * This function splits a single item into two items,
2194  * giving 'new_key' to the new item and splitting the
2195  * old one at split_offset (from the start of the item).
2196  *
2197  * The path may be released by this operation.  After
2198  * the split, the path is pointing to the old item.  The
2199  * new item is going to be in the same node as the old one.
2200  *
2201  * Note, the item being split must be smaller enough to live alone on
2202  * a tree block with room for one extra struct btrfs_item
2203  *
2204  * This allows us to split the item in place, keeping a lock on the
2205  * leaf the entire time.
2206  */
2207 int btrfs_split_item(struct btrfs_trans_handle *trans,
2208                      struct btrfs_root *root,
2209                      struct btrfs_path *path,
2210                      struct btrfs_key *new_key,
2211                      unsigned long split_offset)
2212 {
2213         u32 item_size;
2214         struct extent_buffer *leaf;
2215         struct btrfs_key orig_key;
2216         struct btrfs_item *item;
2217         struct btrfs_item *new_item;
2218         int ret = 0;
2219         int slot;
2220         u32 nritems;
2221         u32 orig_offset;
2222         struct btrfs_disk_key disk_key;
2223         char *buf;
2224
2225         leaf = path->nodes[0];
2226         btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
2227         if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
2228                 goto split;
2229
2230         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2231         btrfs_release_path(path);
2232
2233         path->search_for_split = 1;
2234
2235         ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
2236         path->search_for_split = 0;
2237
2238         /* if our item isn't there or got smaller, return now */
2239         if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
2240                                                         path->slots[0])) {
2241                 return -EAGAIN;
2242         }
2243
2244         ret = split_leaf(trans, root, &orig_key, path, 0, 0);
2245         BUG_ON(ret);
2246
2247         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
2248         leaf = path->nodes[0];
2249
2250 split:
2251         item = btrfs_item_nr(path->slots[0]);
2252         orig_offset = btrfs_item_offset(leaf, item);
2253         item_size = btrfs_item_size(leaf, item);
2254
2255
2256         buf = kmalloc(item_size, GFP_NOFS);
2257         BUG_ON(!buf);
2258         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
2259                             path->slots[0]), item_size);
2260         slot = path->slots[0] + 1;
2261         leaf = path->nodes[0];
2262
2263         nritems = btrfs_header_nritems(leaf);
2264
2265         if (slot < nritems) {
2266                 /* shift the items */
2267                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
2268                               btrfs_item_nr_offset(slot),
2269                               (nritems - slot) * sizeof(struct btrfs_item));
2270
2271         }
2272
2273         btrfs_cpu_key_to_disk(&disk_key, new_key);
2274         btrfs_set_item_key(leaf, &disk_key, slot);
2275
2276         new_item = btrfs_item_nr(slot);
2277
2278         btrfs_set_item_offset(leaf, new_item, orig_offset);
2279         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
2280
2281         btrfs_set_item_offset(leaf, item,
2282                               orig_offset + item_size - split_offset);
2283         btrfs_set_item_size(leaf, item, split_offset);
2284
2285         btrfs_set_header_nritems(leaf, nritems + 1);
2286
2287         /* write the data for the start of the original item */
2288         write_extent_buffer(leaf, buf,
2289                             btrfs_item_ptr_offset(leaf, path->slots[0]),
2290                             split_offset);
2291
2292         /* write the data for the new item */
2293         write_extent_buffer(leaf, buf + split_offset,
2294                             btrfs_item_ptr_offset(leaf, slot),
2295                             item_size - split_offset);
2296         btrfs_mark_buffer_dirty(leaf);
2297
2298         ret = 0;
2299         if (btrfs_leaf_free_space(root, leaf) < 0) {
2300                 btrfs_print_leaf(root, leaf);
2301                 BUG();
2302         }
2303         kfree(buf);
2304         return ret;
2305 }
2306
2307 int btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
2308                         u32 new_size, int from_end)
2309 {
2310         int ret = 0;
2311         int slot;
2312         struct extent_buffer *leaf;
2313         struct btrfs_item *item;
2314         u32 nritems;
2315         unsigned int data_end;
2316         unsigned int old_data_start;
2317         unsigned int old_size;
2318         unsigned int size_diff;
2319         int i;
2320
2321         leaf = path->nodes[0];
2322         slot = path->slots[0];
2323
2324         old_size = btrfs_item_size_nr(leaf, slot);
2325         if (old_size == new_size)
2326                 return 0;
2327
2328         nritems = btrfs_header_nritems(leaf);
2329         data_end = leaf_data_end(root->fs_info, leaf);
2330
2331         old_data_start = btrfs_item_offset_nr(leaf, slot);
2332
2333         size_diff = old_size - new_size;
2334
2335         BUG_ON(slot < 0);
2336         BUG_ON(slot >= nritems);
2337
2338         /*
2339          * item0..itemN ... dataN.offset..dataN.size .. data0.size
2340          */
2341         /* first correct the data pointers */
2342         for (i = slot; i < nritems; i++) {
2343                 u32 ioff;
2344                 item = btrfs_item_nr(i);
2345                 ioff = btrfs_item_offset(leaf, item);
2346                 btrfs_set_item_offset(leaf, item, ioff + size_diff);
2347         }
2348
2349         /* shift the data */
2350         if (from_end) {
2351                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2352                               data_end + size_diff, btrfs_leaf_data(leaf) +
2353                               data_end, old_data_start + new_size - data_end);
2354         } else {
2355                 struct btrfs_disk_key disk_key;
2356                 u64 offset;
2357
2358                 btrfs_item_key(leaf, &disk_key, slot);
2359
2360                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
2361                         unsigned long ptr;
2362                         struct btrfs_file_extent_item *fi;
2363
2364                         fi = btrfs_item_ptr(leaf, slot,
2365                                             struct btrfs_file_extent_item);
2366                         fi = (struct btrfs_file_extent_item *)(
2367                              (unsigned long)fi - size_diff);
2368
2369                         if (btrfs_file_extent_type(leaf, fi) ==
2370                             BTRFS_FILE_EXTENT_INLINE) {
2371                                 ptr = btrfs_item_ptr_offset(leaf, slot);
2372                                 memmove_extent_buffer(leaf, ptr,
2373                                         (unsigned long)fi,
2374                                         offsetof(struct btrfs_file_extent_item,
2375                                                  disk_bytenr));
2376                         }
2377                 }
2378
2379                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2380                               data_end + size_diff, btrfs_leaf_data(leaf) +
2381                               data_end, old_data_start - data_end);
2382
2383                 offset = btrfs_disk_key_offset(&disk_key);
2384                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
2385                 btrfs_set_item_key(leaf, &disk_key, slot);
2386                 if (slot == 0)
2387                         btrfs_fixup_low_keys(root, path, &disk_key, 1);
2388         }
2389
2390         item = btrfs_item_nr(slot);
2391         btrfs_set_item_size(leaf, item, new_size);
2392         btrfs_mark_buffer_dirty(leaf);
2393
2394         ret = 0;
2395         if (btrfs_leaf_free_space(root, leaf) < 0) {
2396                 btrfs_print_leaf(root, leaf);
2397                 BUG();
2398         }
2399         return ret;
2400 }
2401
2402 int btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
2403                       u32 data_size)
2404 {
2405         int ret = 0;
2406         int slot;
2407         struct extent_buffer *leaf;
2408         struct btrfs_item *item;
2409         u32 nritems;
2410         unsigned int data_end;
2411         unsigned int old_data;
2412         unsigned int old_size;
2413         int i;
2414
2415         leaf = path->nodes[0];
2416
2417         nritems = btrfs_header_nritems(leaf);
2418         data_end = leaf_data_end(root->fs_info, leaf);
2419
2420         if (btrfs_leaf_free_space(root, leaf) < data_size) {
2421                 btrfs_print_leaf(root, leaf);
2422                 BUG();
2423         }
2424         slot = path->slots[0];
2425         old_data = btrfs_item_end_nr(leaf, slot);
2426
2427         BUG_ON(slot < 0);
2428         if (slot >= nritems) {
2429                 btrfs_print_leaf(root, leaf);
2430                 printk("slot %d too large, nritems %d\n", slot, nritems);
2431                 BUG_ON(1);
2432         }
2433
2434         /*
2435          * item0..itemN ... dataN.offset..dataN.size .. data0.size
2436          */
2437         /* first correct the data pointers */
2438         for (i = slot; i < nritems; i++) {
2439                 u32 ioff;
2440                 item = btrfs_item_nr(i);
2441                 ioff = btrfs_item_offset(leaf, item);
2442                 btrfs_set_item_offset(leaf, item, ioff - data_size);
2443         }
2444
2445         /* shift the data */
2446         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2447                       data_end - data_size, btrfs_leaf_data(leaf) +
2448                       data_end, old_data - data_end);
2449
2450         data_end = old_data;
2451         old_size = btrfs_item_size_nr(leaf, slot);
2452         item = btrfs_item_nr(slot);
2453         btrfs_set_item_size(leaf, item, old_size + data_size);
2454         btrfs_mark_buffer_dirty(leaf);
2455
2456         ret = 0;
2457         if (btrfs_leaf_free_space(root, leaf) < 0) {
2458                 btrfs_print_leaf(root, leaf);
2459                 BUG();
2460         }
2461         return ret;
2462 }
2463
2464 /*
2465  * Given a key and some data, insert an item into the tree.
2466  * This does all the path init required, making room in the tree if needed.
2467  */
2468 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2469                             struct btrfs_root *root,
2470                             struct btrfs_path *path,
2471                             struct btrfs_key *cpu_key, u32 *data_size,
2472                             int nr)
2473 {
2474         struct extent_buffer *leaf;
2475         struct btrfs_item *item;
2476         int ret = 0;
2477         int slot;
2478         int i;
2479         u32 nritems;
2480         u32 total_size = 0;
2481         u32 total_data = 0;
2482         unsigned int data_end;
2483         struct btrfs_disk_key disk_key;
2484
2485         for (i = 0; i < nr; i++) {
2486                 total_data += data_size[i];
2487         }
2488
2489         /* create a root if there isn't one */
2490         if (!root->node)
2491                 BUG();
2492
2493         total_size = total_data + nr * sizeof(struct btrfs_item);
2494         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
2495         if (ret == 0) {
2496                 return -EEXIST;
2497         }
2498         if (ret < 0)
2499                 goto out;
2500
2501         leaf = path->nodes[0];
2502
2503         nritems = btrfs_header_nritems(leaf);
2504         data_end = leaf_data_end(root->fs_info, leaf);
2505
2506         if (btrfs_leaf_free_space(root, leaf) < total_size) {
2507                 btrfs_print_leaf(root, leaf);
2508                 printk("not enough freespace need %u have %d\n",
2509                        total_size, btrfs_leaf_free_space(root, leaf));
2510                 BUG();
2511         }
2512
2513         slot = path->slots[0];
2514         BUG_ON(slot < 0);
2515
2516         if (slot < nritems) {
2517                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
2518
2519                 if (old_data < data_end) {
2520                         btrfs_print_leaf(root, leaf);
2521                         printk("slot %d old_data %d data_end %d\n",
2522                                slot, old_data, data_end);
2523                         BUG_ON(1);
2524                 }
2525                 /*
2526                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
2527                  */
2528                 /* first correct the data pointers */
2529                 for (i = slot; i < nritems; i++) {
2530                         u32 ioff;
2531
2532                         item = btrfs_item_nr(i);
2533                         ioff = btrfs_item_offset(leaf, item);
2534                         btrfs_set_item_offset(leaf, item, ioff - total_data);
2535                 }
2536
2537                 /* shift the items */
2538                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
2539                               btrfs_item_nr_offset(slot),
2540                               (nritems - slot) * sizeof(struct btrfs_item));
2541
2542                 /* shift the data */
2543                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2544                               data_end - total_data, btrfs_leaf_data(leaf) +
2545                               data_end, old_data - data_end);
2546                 data_end = old_data;
2547         }
2548
2549         /* setup the item for the new data */
2550         for (i = 0; i < nr; i++) {
2551                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
2552                 btrfs_set_item_key(leaf, &disk_key, slot + i);
2553                 item = btrfs_item_nr(slot + i);
2554                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
2555                 data_end -= data_size[i];
2556                 btrfs_set_item_size(leaf, item, data_size[i]);
2557         }
2558         btrfs_set_header_nritems(leaf, nritems + nr);
2559         btrfs_mark_buffer_dirty(leaf);
2560
2561         ret = 0;
2562         if (slot == 0) {
2563                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
2564                 btrfs_fixup_low_keys(root, path, &disk_key, 1);
2565         }
2566
2567         if (btrfs_leaf_free_space(root, leaf) < 0) {
2568                 btrfs_print_leaf(root, leaf);
2569                 BUG();
2570         }
2571
2572 out:
2573         return ret;
2574 }
2575
2576 /*
2577  * Given a key and some data, insert an item into the tree.
2578  * This does all the path init required, making room in the tree if needed.
2579  */
2580 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
2581                       *root, struct btrfs_key *cpu_key, void *data, u32
2582                       data_size)
2583 {
2584         int ret = 0;
2585         struct btrfs_path *path;
2586         struct extent_buffer *leaf;
2587         unsigned long ptr;
2588
2589         path = btrfs_alloc_path();
2590         if (!path)
2591                 return -ENOMEM;
2592
2593         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
2594         if (!ret) {
2595                 leaf = path->nodes[0];
2596                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2597                 write_extent_buffer(leaf, data, ptr, data_size);
2598                 btrfs_mark_buffer_dirty(leaf);
2599         }
2600         btrfs_free_path(path);
2601         return ret;
2602 }
2603
2604 /*
2605  * delete the pointer from a given node.
2606  *
2607  * If the delete empties a node, the node is removed from the tree,
2608  * continuing all the way the root if required.  The root is converted into
2609  * a leaf if all the nodes are emptied.
2610  */
2611 int btrfs_del_ptr(struct btrfs_root *root, struct btrfs_path *path,
2612                 int level, int slot)
2613 {
2614         struct extent_buffer *parent = path->nodes[level];
2615         u32 nritems;
2616         int ret = 0;
2617
2618         nritems = btrfs_header_nritems(parent);
2619         if (slot < nritems - 1) {
2620                 /* shift the items */
2621                 memmove_extent_buffer(parent,
2622                               btrfs_node_key_ptr_offset(slot),
2623                               btrfs_node_key_ptr_offset(slot + 1),
2624                               sizeof(struct btrfs_key_ptr) *
2625                               (nritems - slot - 1));
2626         }
2627         nritems--;
2628         btrfs_set_header_nritems(parent, nritems);
2629         if (nritems == 0 && parent == root->node) {
2630                 BUG_ON(btrfs_header_level(root->node) != 1);
2631                 /* just turn the root into a leaf and break */
2632                 btrfs_set_header_level(root->node, 0);
2633         } else if (slot == 0) {
2634                 struct btrfs_disk_key disk_key;
2635
2636                 btrfs_node_key(parent, &disk_key, 0);
2637                 btrfs_fixup_low_keys(root, path, &disk_key, level + 1);
2638         }
2639         btrfs_mark_buffer_dirty(parent);
2640         return ret;
2641 }
2642
2643 /*
2644  * a helper function to delete the leaf pointed to by path->slots[1] and
2645  * path->nodes[1].
2646  *
2647  * This deletes the pointer in path->nodes[1] and frees the leaf
2648  * block extent.  zero is returned if it all worked out, < 0 otherwise.
2649  *
2650  * The path must have already been setup for deleting the leaf, including
2651  * all the proper balancing.  path->nodes[1] must be locked.
2652  */
2653 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
2654                                    struct btrfs_root *root,
2655                                    struct btrfs_path *path,
2656                                    struct extent_buffer *leaf)
2657 {
2658         int ret;
2659
2660         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
2661         ret = btrfs_del_ptr(root, path, 1, path->slots[1]);
2662         if (ret)
2663                 return ret;
2664
2665         ret = btrfs_free_extent(trans, root, leaf->start, leaf->len,
2666                                 0, root->root_key.objectid, 0, 0);
2667         return ret;
2668 }
2669
2670 /*
2671  * delete the item at the leaf level in path.  If that empties
2672  * the leaf, remove it from the tree
2673  */
2674 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2675                     struct btrfs_path *path, int slot, int nr)
2676 {
2677         struct extent_buffer *leaf;
2678         struct btrfs_item *item;
2679         int last_off;
2680         int dsize = 0;
2681         int ret = 0;
2682         int wret;
2683         int i;
2684         u32 nritems;
2685
2686         leaf = path->nodes[0];
2687         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
2688
2689         for (i = 0; i < nr; i++)
2690                 dsize += btrfs_item_size_nr(leaf, slot + i);
2691
2692         nritems = btrfs_header_nritems(leaf);
2693
2694         if (slot + nr != nritems) {
2695                 int data_end = leaf_data_end(root->fs_info, leaf);
2696
2697                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2698                               data_end + dsize,
2699                               btrfs_leaf_data(leaf) + data_end,
2700                               last_off - data_end);
2701
2702                 for (i = slot + nr; i < nritems; i++) {
2703                         u32 ioff;
2704
2705                         item = btrfs_item_nr(i);
2706                         ioff = btrfs_item_offset(leaf, item);
2707                         btrfs_set_item_offset(leaf, item, ioff + dsize);
2708                 }
2709
2710                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
2711                               btrfs_item_nr_offset(slot + nr),
2712                               sizeof(struct btrfs_item) *
2713                               (nritems - slot - nr));
2714         }
2715         btrfs_set_header_nritems(leaf, nritems - nr);
2716         nritems -= nr;
2717
2718         /* delete the leaf if we've emptied it */
2719         if (nritems == 0) {
2720                 if (leaf == root->node) {
2721                         btrfs_set_header_level(leaf, 0);
2722                 } else {
2723                         clean_tree_block(trans, root, leaf);
2724                         wret = btrfs_del_leaf(trans, root, path, leaf);
2725                         BUG_ON(ret);
2726                         if (wret)
2727                                 ret = wret;
2728                 }
2729         } else {
2730                 int used = leaf_space_used(leaf, 0, nritems);
2731                 if (slot == 0) {
2732                         struct btrfs_disk_key disk_key;
2733
2734                         btrfs_item_key(leaf, &disk_key, 0);
2735                         btrfs_fixup_low_keys(root, path, &disk_key, 1);
2736                 }
2737
2738                 /* delete the leaf if it is mostly empty */
2739                 if (used < BTRFS_LEAF_DATA_SIZE(root->fs_info) / 4) {
2740                         /* push_leaf_left fixes the path.
2741                          * make sure the path still points to our leaf
2742                          * for possible call to del_ptr below
2743                          */
2744                         slot = path->slots[1];
2745                         extent_buffer_get(leaf);
2746
2747                         wret = push_leaf_left(trans, root, path, 1, 1);
2748                         if (wret < 0 && wret != -ENOSPC)
2749                                 ret = wret;
2750
2751                         if (path->nodes[0] == leaf &&
2752                             btrfs_header_nritems(leaf)) {
2753                                 wret = push_leaf_right(trans, root, path, 1, 1);
2754                                 if (wret < 0 && wret != -ENOSPC)
2755                                         ret = wret;
2756                         }
2757
2758                         if (btrfs_header_nritems(leaf) == 0) {
2759                                 clean_tree_block(trans, root, leaf);
2760                                 path->slots[1] = slot;
2761                                 ret = btrfs_del_leaf(trans, root, path, leaf);
2762                                 BUG_ON(ret);
2763                                 free_extent_buffer(leaf);
2764
2765                         } else {
2766                                 btrfs_mark_buffer_dirty(leaf);
2767                                 free_extent_buffer(leaf);
2768                         }
2769                 } else {
2770                         btrfs_mark_buffer_dirty(leaf);
2771                 }
2772         }
2773         return ret;
2774 }
2775
2776 /*
2777  * walk up the tree as far as required to find the previous leaf.
2778  * returns 0 if it found something or 1 if there are no lesser leaves.
2779  * returns < 0 on io errors.
2780  */
2781 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2782 {
2783         int slot;
2784         int level = 1;
2785         struct extent_buffer *c;
2786         struct extent_buffer *next = NULL;
2787         struct btrfs_fs_info *fs_info = root->fs_info;
2788
2789         while(level < BTRFS_MAX_LEVEL) {
2790                 if (!path->nodes[level])
2791                         return 1;
2792
2793                 slot = path->slots[level];
2794                 c = path->nodes[level];
2795                 if (slot == 0) {
2796                         level++;
2797                         if (level == BTRFS_MAX_LEVEL)
2798                                 return 1;
2799                         continue;
2800                 }
2801                 slot--;
2802
2803                 next = read_node_slot(fs_info, c, slot);
2804                 if (!extent_buffer_uptodate(next)) {
2805                         if (IS_ERR(next))
2806                                 return PTR_ERR(next);
2807                         return -EIO;
2808                 }
2809                 break;
2810         }
2811         path->slots[level] = slot;
2812         while(1) {
2813                 level--;
2814                 c = path->nodes[level];
2815                 free_extent_buffer(c);
2816                 slot = btrfs_header_nritems(next);
2817                 if (slot != 0)
2818                         slot--;
2819                 path->nodes[level] = next;
2820                 path->slots[level] = slot;
2821                 if (!level)
2822                         break;
2823                 next = read_node_slot(fs_info, next, slot);
2824                 if (!extent_buffer_uptodate(next)) {
2825                         if (IS_ERR(next))
2826                                 return PTR_ERR(next);
2827                         return -EIO;
2828                 }
2829         }
2830         return 0;
2831 }
2832
2833 /*
2834  * walk up the tree as far as required to find the next leaf.
2835  * returns 0 if it found something or 1 if there are no greater leaves.
2836  * returns < 0 on io errors.
2837  */
2838 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
2839 {
2840         int slot;
2841         int level = 1;
2842         struct extent_buffer *c;
2843         struct extent_buffer *next = NULL;
2844         struct btrfs_fs_info *fs_info = root->fs_info;
2845
2846         while(level < BTRFS_MAX_LEVEL) {
2847                 if (!path->nodes[level])
2848                         return 1;
2849
2850                 slot = path->slots[level] + 1;
2851                 c = path->nodes[level];
2852                 if (slot >= btrfs_header_nritems(c)) {
2853                         level++;
2854                         if (level == BTRFS_MAX_LEVEL)
2855                                 return 1;
2856                         continue;
2857                 }
2858
2859                 if (path->reada)
2860                         reada_for_search(root, path, level, slot, 0);
2861
2862                 next = read_node_slot(fs_info, c, slot);
2863                 if (!extent_buffer_uptodate(next))
2864                         return -EIO;
2865                 break;
2866         }
2867         path->slots[level] = slot;
2868         while(1) {
2869                 level--;
2870                 c = path->nodes[level];
2871                 free_extent_buffer(c);
2872                 path->nodes[level] = next;
2873                 path->slots[level] = 0;
2874                 if (!level)
2875                         break;
2876                 if (path->reada)
2877                         reada_for_search(root, path, level, 0, 0);
2878                 next = read_node_slot(fs_info, next, 0);
2879                 if (!extent_buffer_uptodate(next))
2880                         return -EIO;
2881         }
2882         return 0;
2883 }
2884
2885 int btrfs_previous_item(struct btrfs_root *root,
2886                         struct btrfs_path *path, u64 min_objectid,
2887                         int type)
2888 {
2889         struct btrfs_key found_key;
2890         struct extent_buffer *leaf;
2891         u32 nritems;
2892         int ret;
2893
2894         while(1) {
2895                 if (path->slots[0] == 0) {
2896                         ret = btrfs_prev_leaf(root, path);
2897                         if (ret != 0)
2898                                 return ret;
2899                 } else {
2900                         path->slots[0]--;
2901                 }
2902                 leaf = path->nodes[0];
2903                 nritems = btrfs_header_nritems(leaf);
2904                 if (nritems == 0)
2905                         return 1;
2906                 if (path->slots[0] == nritems)
2907                         path->slots[0]--;
2908
2909                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2910                 if (found_key.objectid < min_objectid)
2911                         break;
2912                 if (found_key.type == type)
2913                         return 0;
2914                 if (found_key.objectid == min_objectid &&
2915                     found_key.type < type)
2916                         break;
2917         }
2918         return 1;
2919 }
2920
2921 /*
2922  * search in extent tree to find a previous Metadata/Data extent item with
2923  * min objecitd.
2924  *
2925  * returns 0 if something is found, 1 if nothing was found and < 0 on error
2926  */
2927 int btrfs_previous_extent_item(struct btrfs_root *root,
2928                         struct btrfs_path *path, u64 min_objectid)
2929 {
2930         struct btrfs_key found_key;
2931         struct extent_buffer *leaf;
2932         u32 nritems;
2933         int ret;
2934
2935         while (1) {
2936                 if (path->slots[0] == 0) {
2937                         ret = btrfs_prev_leaf(root, path);
2938                         if (ret != 0)
2939                                 return ret;
2940                 } else {
2941                         path->slots[0]--;
2942                 }
2943                 leaf = path->nodes[0];
2944                 nritems = btrfs_header_nritems(leaf);
2945                 if (nritems == 0)
2946                         return 1;
2947                 if (path->slots[0] == nritems)
2948                         path->slots[0]--;
2949
2950                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2951                 if (found_key.objectid < min_objectid)
2952                         break;
2953                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
2954                     found_key.type == BTRFS_METADATA_ITEM_KEY)
2955                         return 0;
2956                 if (found_key.objectid == min_objectid &&
2957                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
2958                         break;
2959         }
2960         return 1;
2961 }
2962
2963 /*
2964  * Search in extent tree to found next meta/data extent
2965  * Caller needs to check for no-hole or skinny metadata features.
2966  */
2967 int btrfs_next_extent_item(struct btrfs_root *root,
2968                         struct btrfs_path *path, u64 max_objectid)
2969 {
2970         struct btrfs_key found_key;
2971         int ret;
2972
2973         while (1) {
2974                 ret = btrfs_next_item(root, path);
2975                 if (ret)
2976                         return ret;
2977                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2978                                       path->slots[0]);
2979                 if (found_key.objectid > max_objectid)
2980                         return 1;
2981                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
2982                     found_key.type == BTRFS_METADATA_ITEM_KEY)
2983                 return 0;
2984         }
2985 }