btrfs-progs: gitignore: Ignore patches
[platform/upstream/btrfs-progs.git] / cmds-inspect-tree-stats.c
1 /*
2  * Copyright (C) 2011 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <ctype.h>
20 #include <stdio.h>
21 #include <stdlib.h>
22 #include <unistd.h>
23 #include <fcntl.h>
24 #include <sys/stat.h>
25 #include <sys/time.h>
26 #include <sys/types.h>
27 #include <zlib.h>
28
29 #include "kerncompat.h"
30 #include "ctree.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "transaction.h"
34 #include "list.h"
35 #include "volumes.h"
36 #include "utils.h"
37 #include "commands.h"
38 #include "help.h"
39
40 static int verbose = 0;
41 static int no_pretty = 0;
42
43 struct seek {
44         u64 distance;
45         u64 count;
46         struct rb_node n;
47 };
48
49 struct root_stats {
50         u64 total_nodes;
51         u64 total_leaves;
52         u64 total_bytes;
53         u64 total_inline;
54         u64 total_seeks;
55         u64 forward_seeks;
56         u64 backward_seeks;
57         u64 total_seek_len;
58         u64 max_seek_len;
59         u64 total_clusters;
60         u64 total_cluster_size;
61         u64 min_cluster_size;
62         u64 max_cluster_size;
63         u64 lowest_bytenr;
64         u64 highest_bytenr;
65         struct rb_root seek_root;
66         int total_levels;
67 };
68
69 static int add_seek(struct rb_root *root, u64 dist)
70 {
71         struct rb_node **p = &root->rb_node;
72         struct rb_node *parent = NULL;
73         struct seek *seek = NULL;
74
75         while (*p) {
76                 parent = *p;
77                 seek = rb_entry(parent, struct seek, n);
78
79                 if (dist < seek->distance) {
80                         p = &(*p)->rb_left;
81                 } else if (dist > seek->distance) {
82                         p = &(*p)->rb_right;
83                 } else {
84                         seek->count++;
85                         return 0;
86                 }
87         }
88
89         seek = malloc(sizeof(struct seek));
90         if (!seek)
91                 return -ENOMEM;
92         seek->distance = dist;
93         seek->count = 1;
94         rb_link_node(&seek->n, parent, p);
95         rb_insert_color(&seek->n, root);
96         return 0;
97 }
98
99 static int walk_leaf(struct btrfs_root *root, struct btrfs_path *path,
100                      struct root_stats *stat, int find_inline)
101 {
102         struct extent_buffer *b = path->nodes[0];
103         struct btrfs_file_extent_item *fi;
104         struct btrfs_key found_key;
105         int i;
106
107         stat->total_bytes += root->fs_info->nodesize;
108         stat->total_leaves++;
109
110         if (!find_inline)
111                 return 0;
112
113         for (i = 0; i < btrfs_header_nritems(b); i++) {
114                 btrfs_item_key_to_cpu(b, &found_key, i);
115                 if (found_key.type != BTRFS_EXTENT_DATA_KEY)
116                         continue;
117
118                 fi = btrfs_item_ptr(b, i, struct btrfs_file_extent_item);
119                 if (btrfs_file_extent_type(b, fi) == BTRFS_FILE_EXTENT_INLINE)
120                         stat->total_inline +=
121                                 btrfs_file_extent_inline_item_len(b,
122                                                         btrfs_item_nr(i));
123         }
124
125         return 0;
126 }
127
128 static u64 calc_distance(u64 block1, u64 block2)
129 {
130         if (block1 < block2)
131                 return block2 - block1;
132         return block1 - block2;
133 }
134
135 static int walk_nodes(struct btrfs_root *root, struct btrfs_path *path,
136                       struct root_stats *stat, int level, int find_inline)
137 {
138         struct extent_buffer *b = path->nodes[level];
139         u32 nodesize = root->fs_info->nodesize;
140         u64 last_block;
141         u64 cluster_size = nodesize;
142         int i;
143         int ret = 0;
144
145         stat->total_bytes += nodesize;
146         stat->total_nodes++;
147
148         last_block = btrfs_header_bytenr(b);
149         for (i = 0; i < btrfs_header_nritems(b); i++) {
150                 struct extent_buffer *tmp = NULL;
151                 u64 cur_blocknr = btrfs_node_blockptr(b, i);
152
153                 path->slots[level] = i;
154                 if ((level - 1) > 0 || find_inline) {
155                         tmp = read_tree_block(root->fs_info, cur_blocknr,
156                                               btrfs_node_ptr_generation(b, i));
157                         if (!extent_buffer_uptodate(tmp)) {
158                                 error("failed to read blocknr %llu",
159                                         btrfs_node_blockptr(b, i));
160                                 continue;
161                         }
162                         path->nodes[level - 1] = tmp;
163                 }
164                 if (level - 1)
165                         ret = walk_nodes(root, path, stat, level - 1,
166                                          find_inline);
167                 else
168                         ret = walk_leaf(root, path, stat, find_inline);
169                 if (last_block + nodesize != cur_blocknr) {
170                         u64 distance = calc_distance(last_block +
171                                                      nodesize,
172                                                      cur_blocknr);
173                         stat->total_seeks++;
174                         stat->total_seek_len += distance;
175                         if (stat->max_seek_len < distance)
176                                 stat->max_seek_len = distance;
177                         if (add_seek(&stat->seek_root, distance)) {
178                                 error("cannot add new seek at distance %llu",
179                                                 (unsigned long long)distance);
180                                 ret = -ENOMEM;
181                                 break;
182                         }
183
184                         if (last_block < cur_blocknr)
185                                 stat->forward_seeks++;
186                         else
187                                 stat->backward_seeks++;
188                         if (cluster_size != nodesize) {
189                                 stat->total_cluster_size += cluster_size;
190                                 stat->total_clusters++;
191                                 if (cluster_size < stat->min_cluster_size)
192                                         stat->min_cluster_size = cluster_size;
193                                 if (cluster_size > stat->max_cluster_size)
194                                         stat->max_cluster_size = cluster_size;
195                         }
196                         cluster_size = nodesize;
197                 } else {
198                         cluster_size += nodesize;
199                 }
200                 last_block = cur_blocknr;
201                 if (cur_blocknr < stat->lowest_bytenr)
202                         stat->lowest_bytenr = cur_blocknr;
203                 if (cur_blocknr > stat->highest_bytenr)
204                         stat->highest_bytenr = cur_blocknr;
205                 free_extent_buffer(tmp);
206                 if (ret) {
207                         error("walking down path failed: %d",  ret);
208                         break;
209                 }
210         }
211
212         return ret;
213 }
214
215 static void print_seek_histogram(struct root_stats *stat)
216 {
217         struct rb_node *n = rb_first(&stat->seek_root);
218         struct seek *seek;
219         u64 tick_interval;
220         u64 group_start = 0;
221         u64 group_count = 0;
222         u64 group_end = 0;
223         u64 i;
224         u64 max_seek = stat->max_seek_len;
225         int digits = 1;
226
227         if (stat->total_seeks < 20)
228                 return;
229
230         while ((max_seek /= 10))
231                 digits++;
232
233         /* Make a tick count as 5% of the total seeks */
234         tick_interval = stat->total_seeks / 20;
235         printf("\tSeek histogram\n");
236         for (; n; n = rb_next(n)) {
237                 u64 ticks, gticks = 0;
238
239                 seek = rb_entry(n, struct seek, n);
240                 ticks = seek->count / tick_interval;
241                 if (group_count)
242                         gticks = group_count / tick_interval;
243
244                 if (ticks <= 2 && gticks <= 2) {
245                         if (group_count == 0)
246                                 group_start = seek->distance;
247                         group_end = seek->distance;
248                         group_count += seek->count;
249                         continue;
250                 }
251
252                 if (group_count) {
253
254                         gticks = group_count / tick_interval;
255                         printf("\t\t%*Lu - %*Lu: %*Lu ", digits, group_start,
256                                digits, group_end, digits, group_count);
257                         if (gticks) {
258                                 for (i = 0; i < gticks; i++)
259                                         printf("#");
260                                 printf("\n");
261                         } else {
262                                 printf("|\n");
263                         }
264                         group_count = 0;
265                 }
266
267                 if (ticks <= 2)
268                         continue;
269
270                 printf("\t\t%*Lu - %*Lu: %*Lu ", digits, seek->distance,
271                        digits, seek->distance, digits, seek->count);
272                 for (i = 0; i < ticks; i++)
273                         printf("#");
274                 printf("\n");
275         }
276         if (group_count) {
277                 u64 gticks;
278
279                 gticks = group_count / tick_interval;
280                 printf("\t\t%*Lu - %*Lu: %*Lu ", digits, group_start,
281                        digits, group_end, digits, group_count);
282                 if (gticks) {
283                         for (i = 0; i < gticks; i++)
284                                 printf("#");
285                         printf("\n");
286                 } else {
287                         printf("|\n");
288                 }
289                 group_count = 0;
290         }
291 }
292
293 static void timeval_subtract(struct timeval *result, struct timeval *x,
294                              struct timeval *y)
295 {
296         if (x->tv_usec < y->tv_usec) {
297                 int nsec = (y->tv_usec - x->tv_usec) / 1000000 + 1;
298                 y->tv_usec -= 1000000 * nsec;
299                 y->tv_sec += nsec;
300         }
301
302         if (x->tv_usec - y->tv_usec > 1000000) {
303                 int nsec = (x->tv_usec - y->tv_usec) / 1000000;
304                 y->tv_usec += 1000000 * nsec;
305                 y->tv_sec -= nsec;
306         }
307
308         result->tv_sec = x->tv_sec - y->tv_sec;
309         result->tv_usec = x->tv_usec - y->tv_usec;
310 }
311
312 static int calc_root_size(struct btrfs_root *tree_root, struct btrfs_key *key,
313                           int find_inline)
314 {
315         struct btrfs_root *root;
316         struct btrfs_path path;
317         struct rb_node *n;
318         struct timeval start, end, diff = {0};
319         struct root_stats stat;
320         int level;
321         int ret = 0;
322         int size_fail = 0;
323
324         root = btrfs_read_fs_root(tree_root->fs_info, key);
325         if (IS_ERR(root)) {
326                 error("failed to read root %llu", key->objectid);
327                 return 1;
328         }
329
330         btrfs_init_path(&path);
331         memset(&stat, 0, sizeof(stat));
332         level = btrfs_header_level(root->node);
333         stat.lowest_bytenr = btrfs_header_bytenr(root->node);
334         stat.highest_bytenr = stat.lowest_bytenr;
335         stat.min_cluster_size = (u64)-1;
336         stat.max_cluster_size = root->fs_info->nodesize;
337         path.nodes[level] = root->node;
338         if (gettimeofday(&start, NULL)) {
339                 error("cannot get time: %m");
340                 goto out;
341         }
342         if (!level) {
343                 ret = walk_leaf(root, &path, &stat, find_inline);
344                 if (ret)
345                         goto out;
346                 goto out_print;
347         }
348
349         ret = walk_nodes(root, &path, &stat, level, find_inline);
350         if (ret)
351                 goto out;
352         if (gettimeofday(&end, NULL)) {
353                 error("cannot get time: %m");
354                 goto out;
355         }
356         timeval_subtract(&diff, &end, &start);
357 out_print:
358         if (stat.min_cluster_size == (u64)-1) {
359                 stat.min_cluster_size = 0;
360                 stat.total_clusters = 1;
361         }
362
363         if (no_pretty || size_fail) {
364                 printf("\tTotal size: %llu\n", stat.total_bytes);
365                 printf("\t\tInline data: %llu\n", stat.total_inline);
366                 printf("\tTotal seeks: %llu\n", stat.total_seeks);
367                 printf("\t\tForward seeks: %llu\n", stat.forward_seeks);
368                 printf("\t\tBackward seeks: %llu\n", stat.backward_seeks);
369                 printf("\t\tAvg seek len: %llu\n", stat.total_seeks ?
370                         stat.total_seek_len / stat.total_seeks : 0);
371                 print_seek_histogram(&stat);
372                 printf("\tTotal clusters: %llu\n", stat.total_clusters);
373                 printf("\t\tAvg cluster size: %llu\n", stat.total_cluster_size /
374                        stat.total_clusters);
375                 printf("\t\tMin cluster size: %llu\n", stat.min_cluster_size);
376                 printf("\t\tMax cluster size: %llu\n", stat.max_cluster_size);
377                 printf("\tTotal disk spread: %llu\n", stat.highest_bytenr -
378                        stat.lowest_bytenr);
379                 printf("\tTotal read time: %d s %d us\n", (int)diff.tv_sec,
380                        (int)diff.tv_usec);
381                 printf("\tLevels: %d\n", level + 1);
382         } else {
383                 printf("\tTotal size: %s\n", pretty_size(stat.total_bytes));
384                 printf("\t\tInline data: %s\n", pretty_size(stat.total_inline));
385                 printf("\tTotal seeks: %llu\n", stat.total_seeks);
386                 printf("\t\tForward seeks: %llu\n", stat.forward_seeks);
387                 printf("\t\tBackward seeks: %llu\n", stat.backward_seeks);
388                 printf("\t\tAvg seek len: %s\n", stat.total_seeks ?
389                         pretty_size(stat.total_seek_len / stat.total_seeks) :
390                         pretty_size(0));
391                 print_seek_histogram(&stat);
392                 printf("\tTotal clusters: %llu\n", stat.total_clusters);
393                 printf("\t\tAvg cluster size: %s\n",
394                                 pretty_size((stat.total_cluster_size /
395                                                 stat.total_clusters)));
396                 printf("\t\tMin cluster size: %s\n",
397                                 pretty_size(stat.min_cluster_size));
398                 printf("\t\tMax cluster size: %s\n",
399                                 pretty_size(stat.max_cluster_size));
400                 printf("\tTotal disk spread: %s\n",
401                                 pretty_size(stat.highest_bytenr -
402                                         stat.lowest_bytenr));
403                 printf("\tTotal read time: %d s %d us\n", (int)diff.tv_sec,
404                        (int)diff.tv_usec);
405                 printf("\tLevels: %d\n", level + 1);
406         }
407 out:
408         while ((n = rb_first(&stat.seek_root)) != NULL) {
409                 struct seek *seek = rb_entry(n, struct seek, n);
410                 rb_erase(n, &stat.seek_root);
411                 free(seek);
412         }
413
414         /*
415          * We only use path to save node data in iterating, without holding
416          * eb's ref_cnt in path.  Don't use btrfs_release_path() here, it will
417          * free these eb again, and cause many problems, as negative ref_cnt or
418          * invalid memory access.
419          */
420         return ret;
421 }
422
423 const char * const cmd_inspect_tree_stats_usage[] = {
424         "btrfs inspect-internal tree-stats [options] <device>",
425         "Print various stats for trees",
426         "-b             raw numbers in bytes",
427         NULL
428 };
429
430 int cmd_inspect_tree_stats(int argc, char **argv)
431 {
432         struct btrfs_key key;
433         struct btrfs_root *root;
434         int opt;
435         int ret = 0;
436
437         while ((opt = getopt(argc, argv, "vb")) != -1) {
438                 switch (opt) {
439                 case 'v':
440                         verbose++;
441                         break;
442                 case 'b':
443                         no_pretty = 1;
444                         break;
445                 default:
446                         usage(cmd_inspect_tree_stats_usage);
447                 }
448         }
449
450         if (check_argc_exact(argc - optind, 1)) {
451                 usage(cmd_inspect_tree_stats_usage);
452         }
453
454         ret = check_mounted(argv[optind]);
455         if (ret < 0) {
456                 warning("unable to check mount status of: %s",
457                                 strerror(-ret));
458         } else if (ret) {
459                 warning("%s already mounted, results may be inaccurate",
460                                 argv[optind]);
461         }
462
463         root = open_ctree(argv[optind], 0, 0);
464         if (!root) {
465                 error("cannot open ctree");
466                 exit(1);
467         }
468
469         printf("Calculating size of root tree\n");
470         key.objectid = BTRFS_ROOT_TREE_OBJECTID;
471         ret = calc_root_size(root, &key, 0);
472         if (ret)
473                 goto out;
474
475         printf("Calculating size of extent tree\n");
476         key.objectid = BTRFS_EXTENT_TREE_OBJECTID;
477         ret = calc_root_size(root, &key, 0);
478         if (ret)
479                 goto out;
480
481         printf("Calculating size of csum tree\n");
482         key.objectid = BTRFS_CSUM_TREE_OBJECTID;
483         ret = calc_root_size(root, &key, 0);
484         if (ret)
485                 goto out;
486
487         key.objectid = BTRFS_FS_TREE_OBJECTID;
488         key.offset = (u64)-1;
489         printf("Calculating size of fs tree\n");
490         ret = calc_root_size(root, &key, 1);
491         if (ret)
492                 goto out;
493 out:
494         close_ctree(root);
495         return ret;
496 }