Imported Upstream version 1.57.0
[platform/upstream/boost.git] / libs / math / doc / distributions / dist_tutorial.qbk
1 [/ def names all end in distrib to avoid clashes with names of functions]
2
3 [def __binomial_distrib [link math_toolkit.dist_ref.dists.binomial_dist Binomial Distribution]]
4 [def __chi_squared_distrib [link math_toolkit.dist_ref.dists.chi_squared_dist Chi Squared Distribution]]
5 [def __normal_distrib [link math_toolkit.dist_ref.dists.normal_dist Normal Distribution]]
6 [def __F_distrib [link math_toolkit.dist_ref.dists.f_dist Fisher F Distribution]]
7 [def __students_t_distrib [link math_toolkit.dist_ref.dists.students_t_dist Students t Distribution]]
8
9 [def __handbook [@http://www.itl.nist.gov/div898/handbook/
10 NIST/SEMATECH e-Handbook of Statistical Methods.]]
11
12 [section:stat_tut Statistical Distributions Tutorial]
13 This library is centred around statistical distributions, this tutorial
14 will give you an overview of what they are, how they can be used, and
15 provides a few worked examples of applying the library to statistical tests.
16
17 [section:overview Overview of Distributions]
18
19 [section:headers Headers and Namespaces]
20
21 All the code in this library is inside namespace boost::math.
22
23 In order to use a distribution /my_distribution/ you will need to include
24 either the header <boost/math/my_distribution.hpp> or
25 the "include all the distributions" header: <boost/math/distributions.hpp>.
26
27 For example, to use the Students-t distribution include either
28 <boost/math/students_t.hpp> or
29 <boost/math/distributions.hpp>
30
31 You also need to bring distribution names into scope,
32 perhaps with a `using namespace boost::math;` declaration,
33
34 or specific  `using` declarations like `using boost::math::normal;` (*recommended*).
35
36 [caution Some math function names are also used in namespace std so including <random> could cause ambiguity!]
37
38 [endsect] [/ section:headers Headers and Namespaces]
39
40 [section:objects Distributions are Objects]
41
42 Each kind of distribution in this library is a class type - an object.
43
44 [link policy Policies] provide fine-grained control
45 of the behaviour of these classes, allowing the user to customise
46 behaviour such as how errors are handled, or how the quantiles
47 of discrete distribtions behave.
48
49 [tip If you are familiar with statistics libraries using functions,
50 and 'Distributions as Objects' seem alien, see
51 [link math_toolkit.stat_tut.weg.nag_library the comparison to
52 other statistics libraries.]
53 ] [/tip]
54
55 Making distributions class types does two things:
56
57 * It encapsulates the kind of distribution in the C++ type system;
58 so, for example, Students-t distributions are always a different C++ type from
59 Chi-Squared distributions.
60 * The distribution objects store any parameters associated with the
61 distribution: for example, the Students-t distribution has a
62 ['degrees of freedom] parameter that controls the shape of the distribution.
63 This ['degrees of freedom] parameter has to be provided
64 to the Students-t object when it is constructed.
65
66 Although the distribution classes in this library are templates, there
67 are typedefs on type /double/ that mostly take the usual name of the
68 distribution
69 (except where there is a clash with a function of the same name: beta and gamma,
70 in which case using the default template arguments - `RealType = double` -
71 is nearly as convenient).
72 Probably 95% of uses are covered by these typedefs:
73
74    // using namespace boost::math; // Avoid potential ambiguity with names in std <random>
75    // Safer to declare specific functions with using statement(s):
76
77    using boost::math::beta_distribution;
78    using boost::math::binomial_distribution;
79    using boost::math::students_t;
80
81    // Construct a students_t distribution with 4 degrees of freedom:
82    students_t d1(4);
83
84    // Construct a double-precision beta distribution
85    // with parameters a = 10, b = 20
86    beta_distribution<> d2(10, 20); // Note: _distribution<> suffix !
87
88 If you need to use the distributions with a type other than `double`,
89 then you can instantiate the template directly: the names of the
90 templates are the same as the `double` typedef but with `_distribution`
91 appended, for example: __students_t_distrib or __binomial_distrib:
92
93    // Construct a students_t distribution, of float type,
94    // with 4 degrees of freedom:
95    students_t_distribution<float> d3(4);
96
97    // Construct a binomial distribution, of long double type,
98    // with probability of success 0.3
99    // and 20 trials in total:
100    binomial_distribution<long double> d4(20, 0.3);
101
102 The parameters passed to the distributions can be accessed via getter member
103 functions:
104
105    d1.degrees_of_freedom();  // returns 4.0
106
107 This is all well and good, but not very useful so far.  What we often want
108 is to be able to calculate the /cumulative distribution functions/ and
109 /quantiles/ etc for these distributions.
110
111 [endsect] [/section:objects Distributions are Objects]
112
113
114 [section:generic Generic operations common to all distributions are non-member functions]
115
116 Want to calculate the PDF (Probability Density Function) of a distribution?
117 No problem, just use:
118
119    pdf(my_dist, x);  // Returns PDF (density) at point x of distribution my_dist.
120
121 Or how about the CDF (Cumulative Distribution Function):
122
123    cdf(my_dist, x);  // Returns CDF (integral from -infinity to point x)
124                      // of distribution my_dist.
125
126 And quantiles are just the same:
127
128    quantile(my_dist, p);  // Returns the value of the random variable x
129                           // such that cdf(my_dist, x) == p.
130
131 If you're wondering why these aren't member functions, it's to
132 make the library more easily extensible: if you want to add additional
133 generic operations - let's say the /n'th moment/ - then all you have to
134 do is add the appropriate non-member functions, overloaded for each
135 implemented distribution type.
136
137 [tip
138
139 [*Random numbers that approximate Quantiles of Distributions]
140
141 If you want random numbers that are distributed in a specific way,
142 for example in a uniform, normal or triangular,
143 see [@http://www.boost.org/libs/random/ Boost.Random].
144
145 Whilst in principal there's nothing to prevent you from using the
146 quantile function to convert a uniformly distributed random
147 number to another distribution, in practice there are much more
148 efficient algorithms available that are specific to random number generation.
149 ] [/tip Random numbers that approximate Quantiles of Distributions]
150
151 For example, the binomial distribution has two parameters:
152 n (the number of trials) and p (the probability of success on any one trial).
153
154 The `binomial_distribution` constructor therefore has two parameters:
155
156 `binomial_distribution(RealType n, RealType p);`
157
158 For this distribution the __random_variate is k: the number of successes observed.
159 The probability density\/mass function (pdf) is therefore written as ['f(k; n, p)].
160
161 [note
162
163 [*Random Variates and Distribution Parameters]
164
165 The concept of a __random_variable is closely linked to the term __random_variate:
166 a random variate is a particular value (outcome) of a random variable.
167 and [@http://en.wikipedia.org/wiki/Parameter distribution parameters]
168 are conventionally distinguished (for example in Wikipedia and Wolfram MathWorld)
169 by placing a semi-colon or vertical bar)
170 /after/ the __random_variable (whose value you 'choose'),
171 to separate the variate from the parameter(s) that defines the shape of the distribution.[br]
172 For example, the binomial distribution probability distribution function (PDF) is written as
173 ['f(k| n, p)] = Pr(K = k|n, p) = probability of observing k successes out of n trials.
174 K is the __random_variable, k is the __random_variate, 
175 the parameters are n (trials) and p (probability).
176 ] [/tip Random Variates and Distribution Parameters]
177
178 [note  By convention, __random_variate are lower case, usually k is integral, x if real, and
179 __random_variable are upper case, K if integral, X if real.  But this implementation treats
180 all as floating point values `RealType`, so if you really want an integral result,
181 you must round: see note on Discrete Probability Distributions below for details.] 
182
183 As noted above the non-member function `pdf` has one parameter for the distribution object,
184 and a second for the random variate.  So taking our binomial distribution
185 example, we would write:
186
187 `pdf(binomial_distribution<RealType>(n, p), k);`
188
189 The ranges of __random_variate values that are permitted and are supported can be
190 tested by using two functions `range` and `support`.
191
192 The distribution (effectively the __random_variate) is said to be 'supported'
193 over a range that is
194 [@http://en.wikipedia.org/wiki/Probability_distribution
195  "the smallest closed set whose complement has probability zero"].
196 MathWorld uses the word 'defined' for this range.
197 Non-mathematicians might say it means the 'interesting' smallest range
198 of random variate x that has the cdf going from zero to unity.
199 Outside are uninteresting zones where the pdf is zero, and the cdf zero or unity.
200
201 For most distributions, with probability distribution functions one might describe
202 as 'well-behaved', we have decided that it is most useful for the supported range
203 to *exclude* random variate values like exact zero *if the end point is discontinuous*.
204 For example, the Weibull (scale 1, shape 1) distribution smoothly heads for unity
205 as the random variate x declines towards zero.
206 But at x = zero, the value of the pdf is suddenly exactly zero, by definition.
207 If you are plotting the PDF, or otherwise calculating,
208 zero is not the most useful value for the lower limit of supported, as we discovered.
209 So for this, and similar distributions,
210 we have decided it is most numerically useful to use
211 the closest value to zero, min_value, for the limit of the supported range.
212 (The `range` remains from zero, so you will still get `pdf(weibull, 0) == 0`).
213 (Exponential and gamma distributions have similarly discontinuous functions).
214
215 Mathematically, the functions may make sense with an (+ or -) infinite value,
216 but except for a few special cases (in the Normal and Cauchy distributions)
217 this implementation limits random variates to finite values from the `max`
218 to `min` for the `RealType`.
219 (See [link math_toolkit.sf_implementation.handling_of_floating_point_infin
220 Handling of Floating-Point Infinity] for rationale).
221
222
223 [note
224
225 [*Discrete Probability Distributions]
226
227 Note that the [@http://en.wikipedia.org/wiki/Discrete_probability_distribution
228 discrete distributions], including the binomial, negative binomial, Poisson & Bernoulli,
229 are all mathematically defined as discrete functions:
230 that is to say the functions `cdf` and `pdf` are only defined for integral values
231 of the random variate.
232
233 However, because the method of calculation often uses continuous functions
234 it is convenient to treat them as if they were continuous functions,
235 and permit non-integral values of their parameters.
236
237 Users wanting to enforce a strict mathematical model may use `floor`
238 or `ceil` functions on the random variate prior to calling the distribution
239 function.
240
241 The quantile functions for these distributions are hard to specify
242 in a manner that will satisfy everyone all of the time.  The default
243 behaviour is to return an integer result, that has been rounded
244 /outwards/: that is to say, lower quantiles - where the probablity
245 is less than 0.5 are rounded down, while upper quantiles - where
246 the probability is greater than 0.5 - are rounded up.  This behaviour
247 ensures that if an X% quantile is requested, then /at least/ the requested
248 coverage will be present in the central region, and /no more than/
249 the requested coverage will be present in the tails.
250
251 This behaviour can be changed so that the quantile functions are rounded
252 differently, or return a real-valued result using
253 [link math_toolkit.pol_overview Policies].  It is strongly
254 recommended that you read the tutorial
255 [link math_toolkit.pol_tutorial.understand_dis_quant
256 Understanding Quantiles of Discrete Distributions] before
257 using the quantile function on a discrete distribtion.  The
258 [link math_toolkit.pol_ref.discrete_quant_ref reference docs]
259 describe how to change the rounding policy
260 for these distributions.
261
262 For similar reasons continuous distributions with parameters like
263 "degrees of freedom"
264 that might appear to be integral, are treated as real values
265 (and are promoted from integer to floating-point if necessary).
266 In this case however, there are a small number of situations where non-integral
267 degrees of freedom do have a genuine meaning.
268 ]
269
270 [endsect] [/ section:generic Generic operations common to all distributions are non-member functions]
271
272 [section:complements Complements are supported too - and when to use them]
273
274 Often you don't want the value of the CDF, but its complement, which is
275 to say `1-p` rather than `p`.  It is tempting to calculate the CDF and subtract
276 it from `1`, but if `p` is very close to `1` then cancellation error
277 will cause you to lose accuracy, perhaps totally.
278
279 [link why_complements See below ['"Why and when to use complements?"]]
280
281 In this library, whenever you want to receive a complement, just wrap
282 all the function arguments in a call to `complement(...)`, for example:
283
284    students_t dist(5);
285    cout << "CDF at t = 1 is " << cdf(dist, 1.0) << endl;
286    cout << "Complement of CDF at t = 1 is " << cdf(complement(dist, 1.0)) << endl;
287
288 But wait, now that we have a complement, we have to be able to use it as well.
289 Any function that accepts a probability as an argument can also accept a complement
290 by wrapping all of its arguments in a call to `complement(...)`, for example:
291
292    students_t dist(5);
293
294    for(double i = 10; i < 1e10; i *= 10)
295    {
296       // Calculate the quantile for a 1 in i chance:
297       double t = quantile(complement(dist, 1/i));
298       // Print it out:
299       cout << "Quantile of students-t with 5 degrees of freedom\n"
300               "for a 1 in " << i << " chance is " << t << endl;
301    }
302
303 [tip
304
305 [*Critical values are just quantiles]
306
307 Some texts talk about quantiles, or percentiles or fractiles,
308 others about critical values, the basic rule is:
309
310 ['Lower critical values] are the same as the quantile.
311
312 ['Upper critical values] are the same as the quantile from the complement
313 of the probability.
314
315 For example, suppose we have a Bernoulli process, giving rise to a binomial
316 distribution with success ratio 0.1 and 100 trials in total.  The
317 ['lower critical value] for a probability of 0.05 is given by:
318
319 `quantile(binomial(100, 0.1), 0.05)`
320
321 and the ['upper critical value] is given by:
322
323 `quantile(complement(binomial(100, 0.1), 0.05))`
324
325 which return 4.82 and 14.63 respectively.
326 ]
327
328 [#why_complements]
329 [tip
330
331 [*Why bother with complements anyway?]
332
333 It's very tempting to dispense with complements, and simply subtract
334 the probability from 1 when required.  However, consider what happens when
335 the probability is very close to 1: let's say the probability expressed at
336 float precision is `0.999999940f`, then `1 - 0.999999940f = 5.96046448e-008`,
337 but the result is actually accurate to just ['one single bit]: the only
338 bit that didn't cancel out!
339
340 Or to look at this another way: consider that we want the risk of falsely
341 rejecting the null-hypothesis in the Student's t test to be 1 in 1 billion,
342 for a sample size of 10,000.
343 This gives a probability of 1 - 10[super -9], which is exactly 1 when
344 calculated at float precision.  In this case calculating the quantile from
345 the complement neatly solves the problem, so for example:
346
347 `quantile(complement(students_t(10000), 1e-9))`
348
349 returns the expected t-statistic `6.00336`, where as:
350
351 `quantile(students_t(10000), 1-1e-9f)`
352
353 raises an overflow error, since it is the same as:
354
355 `quantile(students_t(10000), 1)`
356
357 Which has no finite result.
358
359 With all distributions, even for more reasonable probability
360 (unless the value of p can be represented exactly in the floating-point type)
361 the loss of accuracy quickly becomes significant if you simply calculate probability from 1 - p
362 (because it will be mostly garbage digits for p ~ 1).
363
364 So always avoid, for example, using a probability near to unity like 0.99999
365
366 `quantile(my_distribution, 0.99999)`
367
368 and instead use
369
370 `quantile(complement(my_distribution, 0.00001))`
371
372 since 1 - 0.99999 is not exactly equal to 0.00001 when using floating-point arithmetic.
373
374 This assumes that the 0.00001 value is either a constant,
375 or can be computed by some manner other than subtracting 0.99999 from 1.
376
377 ] [/ tip *Why bother with complements anyway?]
378
379 [endsect] [/ section:complements Complements are supported too - and why]
380
381 [section:parameters Parameters can be calculated]
382
383 Sometimes it's the parameters that define the distribution that you
384 need to find.  Suppose, for example, you have conducted a Students-t test
385 for equal means and the result is borderline.  Maybe your two samples
386 differ from each other, or maybe they don't; based on the result
387 of the test you can't be sure.  A legitimate question to ask then is
388 "How many more measurements would I have to take before I would get
389 an X% probability that the difference is real?"  Parameter finders
390 can answer questions like this, and are necessarily different for
391 each distribution.  They are implemented as static member functions
392 of the distributions, for example:
393
394    students_t::find_degrees_of_freedom(
395       1.3,        // difference from true mean to detect
396       0.05,       // maximum risk of falsely rejecting the null-hypothesis.
397       0.1,        // maximum risk of falsely failing to reject the null-hypothesis.
398       0.13);      // sample standard deviation
399
400 Returns the number of degrees of freedom required to obtain a 95%
401 probability that the observed differences in means is not down to
402 chance alone.  In the case that a borderline Students-t test result
403 was previously obtained, this can be used to estimate how large the sample size
404 would have to become before the observed difference was considered
405 significant.  It assumes, of course, that the sample mean and standard
406 deviation are invariant with sample size.
407
408 [endsect] [/ section:parameters Parameters can be calculated]
409
410 [section:summary Summary]
411
412 * Distributions are objects, which are constructed from whatever
413 parameters the distribution may have.
414 * Member functions allow you to retrieve the parameters of a distribution.
415 * Generic non-member functions provide access to the properties that
416 are common to all the distributions (PDF, CDF, quantile etc).
417 * Complements of probabilities are calculated by wrapping the function's
418 arguments in a call to `complement(...)`.
419 * Functions that accept a probability can accept a complement of the
420 probability as well, by wrapping the function's
421 arguments in a call to `complement(...)`.
422 * Static member functions allow the parameters of a distribution
423 to be found from other information.
424
425 Now that you have the basics, the next section looks at some worked examples.
426
427 [endsect] [/section:summary Summary]
428 [endsect] [/section:overview Overview]
429
430 [section:weg Worked Examples]
431 [include distribution_construction.qbk]
432 [include students_t_examples.qbk]
433 [include chi_squared_examples.qbk]
434 [include f_dist_example.qbk]
435 [include binomial_example.qbk]
436 [include geometric_example.qbk]
437 [include negative_binomial_example.qbk]
438 [include normal_example.qbk]
439 [/include inverse_gamma_example.qbk]
440 [/include inverse_gaussian_example.qbk]
441 [include inverse_chi_squared_eg.qbk]
442 [include nc_chi_squared_example.qbk]
443 [include error_handling_example.qbk]
444 [include find_location_and_scale.qbk]
445 [include nag_library.qbk]
446 [include c_sharp.qbk]
447 [endsect] [/section:weg Worked Examples]
448
449 [include background.qbk]
450
451 [endsect] [/ section:stat_tut Statistical Distributions Tutorial]
452
453 [/ dist_tutorial.qbk
454   Copyright 2006, 2010, 2011 John Maddock and Paul A. Bristow.
455   Distributed under the Boost Software License, Version 1.0.
456   (See accompanying file LICENSE_1_0.txt or copy at
457   http://www.boost.org/LICENSE_1_0.txt).
458 ]
459