500be1fd0db71259d0207e50d3eaf3169f2d744b
[platform/upstream/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2014 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 inline bool
66 is_branch_reloc(unsigned int r_type);
67
68 template<int size, bool big_endian>
69 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
70 {
71 public:
72   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
73   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
74   typedef Unordered_map<Address, Section_refs> Access_from;
75
76   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
77                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
78     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
79       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
80       opd_ent_(), access_from_map_(), has14_(), stub_table_(),
81       e_flags_(ehdr.get_e_flags()), st_other_()
82   {
83     this->set_abiversion(0);
84   }
85
86   ~Powerpc_relobj()
87   { }
88
89   // Read the symbols then set up st_other vector.
90   void
91   do_read_symbols(Read_symbols_data*);
92
93   // The .got2 section shndx.
94   unsigned int
95   got2_shndx() const
96   {
97     if (size == 32)
98       return this->special_;
99     else
100       return 0;
101   }
102
103   // The .opd section shndx.
104   unsigned int
105   opd_shndx() const
106   {
107     if (size == 32)
108       return 0;
109     else
110       return this->special_;
111   }
112
113   // Init OPD entry arrays.
114   void
115   init_opd(size_t opd_size)
116   {
117     size_t count = this->opd_ent_ndx(opd_size);
118     this->opd_ent_.resize(count);
119   }
120
121   // Return section and offset of function entry for .opd + R_OFF.
122   unsigned int
123   get_opd_ent(Address r_off, Address* value = NULL) const
124   {
125     size_t ndx = this->opd_ent_ndx(r_off);
126     gold_assert(ndx < this->opd_ent_.size());
127     gold_assert(this->opd_ent_[ndx].shndx != 0);
128     if (value != NULL)
129       *value = this->opd_ent_[ndx].off;
130     return this->opd_ent_[ndx].shndx;
131   }
132
133   // Set section and offset of function entry for .opd + R_OFF.
134   void
135   set_opd_ent(Address r_off, unsigned int shndx, Address value)
136   {
137     size_t ndx = this->opd_ent_ndx(r_off);
138     gold_assert(ndx < this->opd_ent_.size());
139     this->opd_ent_[ndx].shndx = shndx;
140     this->opd_ent_[ndx].off = value;
141   }
142
143   // Return discard flag for .opd + R_OFF.
144   bool
145   get_opd_discard(Address r_off) const
146   {
147     size_t ndx = this->opd_ent_ndx(r_off);
148     gold_assert(ndx < this->opd_ent_.size());
149     return this->opd_ent_[ndx].discard;
150   }
151
152   // Set discard flag for .opd + R_OFF.
153   void
154   set_opd_discard(Address r_off)
155   {
156     size_t ndx = this->opd_ent_ndx(r_off);
157     gold_assert(ndx < this->opd_ent_.size());
158     this->opd_ent_[ndx].discard = true;
159   }
160
161   bool
162   opd_valid() const
163   { return this->opd_valid_; }
164
165   void
166   set_opd_valid()
167   { this->opd_valid_ = true; }
168
169   // Examine .rela.opd to build info about function entry points.
170   void
171   scan_opd_relocs(size_t reloc_count,
172                   const unsigned char* prelocs,
173                   const unsigned char* plocal_syms);
174
175   // Perform the Sized_relobj_file method, then set up opd info from
176   // .opd relocs.
177   void
178   do_read_relocs(Read_relocs_data*);
179
180   bool
181   do_find_special_sections(Read_symbols_data* sd);
182
183   // Adjust this local symbol value.  Return false if the symbol
184   // should be discarded from the output file.
185   bool
186   do_adjust_local_symbol(Symbol_value<size>* lv) const
187   {
188     if (size == 64 && this->opd_shndx() != 0)
189       {
190         bool is_ordinary;
191         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
192           return true;
193         if (this->get_opd_discard(lv->input_value()))
194           return false;
195       }
196     return true;
197   }
198
199   Access_from*
200   access_from_map()
201   { return &this->access_from_map_; }
202
203   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
204   // section at DST_OFF.
205   void
206   add_reference(Object* src_obj,
207                 unsigned int src_indx,
208                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
209   {
210     Section_id src_id(src_obj, src_indx);
211     this->access_from_map_[dst_off].insert(src_id);
212   }
213
214   // Add a reference to the code section specified by the .opd entry
215   // at DST_OFF
216   void
217   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218   {
219     size_t ndx = this->opd_ent_ndx(dst_off);
220     if (ndx >= this->opd_ent_.size())
221       this->opd_ent_.resize(ndx + 1);
222     this->opd_ent_[ndx].gc_mark = true;
223   }
224
225   void
226   process_gc_mark(Symbol_table* symtab)
227   {
228     for (size_t i = 0; i < this->opd_ent_.size(); i++)
229       if (this->opd_ent_[i].gc_mark)
230         {
231           unsigned int shndx = this->opd_ent_[i].shndx;
232           symtab->gc()->worklist().push(Section_id(this, shndx));
233         }
234   }
235
236   // Return offset in output GOT section that this object will use
237   // as a TOC pointer.  Won't be just a constant with multi-toc support.
238   Address
239   toc_base_offset() const
240   { return 0x8000; }
241
242   void
243   set_has_small_toc_reloc()
244   { has_small_toc_reloc_ = true; }
245
246   bool
247   has_small_toc_reloc() const
248   { return has_small_toc_reloc_; }
249
250   void
251   set_has_14bit_branch(unsigned int shndx)
252   {
253     if (shndx >= this->has14_.size())
254       this->has14_.resize(shndx + 1);
255     this->has14_[shndx] = true;
256   }
257
258   bool
259   has_14bit_branch(unsigned int shndx) const
260   { return shndx < this->has14_.size() && this->has14_[shndx];  }
261
262   void
263   set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
264   {
265     if (shndx >= this->stub_table_.size())
266       this->stub_table_.resize(shndx + 1);
267     this->stub_table_[shndx] = stub_table;
268   }
269
270   Stub_table<size, big_endian>*
271   stub_table(unsigned int shndx)
272   {
273     if (shndx < this->stub_table_.size())
274       return this->stub_table_[shndx];
275     return NULL;
276   }
277
278   int
279   abiversion() const
280   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
281
282   // Set ABI version for input and output
283   void
284   set_abiversion(int ver);
285
286   unsigned int
287   ppc64_local_entry_offset(const Symbol* sym) const
288   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
289
290   unsigned int
291   ppc64_local_entry_offset(unsigned int symndx) const
292   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
293
294 private:
295   struct Opd_ent
296   {
297     unsigned int shndx;
298     bool discard : 1;
299     bool gc_mark : 1;
300     Address off;
301   };
302
303   // Return index into opd_ent_ array for .opd entry at OFF.
304   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
305   // apart when the language doesn't use the last 8-byte word, the
306   // environment pointer.  Thus dividing the entry section offset by
307   // 16 will give an index into opd_ent_ that works for either layout
308   // of .opd.  (It leaves some elements of the vector unused when .opd
309   // entries are spaced 24 bytes apart, but we don't know the spacing
310   // until relocations are processed, and in any case it is possible
311   // for an object to have some entries spaced 16 bytes apart and
312   // others 24 bytes apart.)
313   size_t
314   opd_ent_ndx(size_t off) const
315   { return off >> 4;}
316
317   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
318   unsigned int special_;
319
320   // For 64-bit, whether this object uses small model relocs to access
321   // the toc.
322   bool has_small_toc_reloc_;
323
324   // Set at the start of gc_process_relocs, when we know opd_ent_
325   // vector is valid.  The flag could be made atomic and set in
326   // do_read_relocs with memory_order_release and then tested with
327   // memory_order_acquire, potentially resulting in fewer entries in
328   // access_from_map_.
329   bool opd_valid_;
330
331   // The first 8-byte word of an OPD entry gives the address of the
332   // entry point of the function.  Relocatable object files have a
333   // relocation on this word.  The following vector records the
334   // section and offset specified by these relocations.
335   std::vector<Opd_ent> opd_ent_;
336
337   // References made to this object's .opd section when running
338   // gc_process_relocs for another object, before the opd_ent_ vector
339   // is valid for this object.
340   Access_from access_from_map_;
341
342   // Whether input section has a 14-bit branch reloc.
343   std::vector<bool> has14_;
344
345   // The stub table to use for a given input section.
346   std::vector<Stub_table<size, big_endian>*> stub_table_;
347
348   // Header e_flags
349   elfcpp::Elf_Word e_flags_;
350
351   // ELF st_other field for local symbols.
352   std::vector<unsigned char> st_other_;
353 };
354
355 template<int size, bool big_endian>
356 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
357 {
358 public:
359   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
360
361   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
362                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
363     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
364       opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
365   {
366     this->set_abiversion(0);
367   }
368
369   ~Powerpc_dynobj()
370   { }
371
372   // Call Sized_dynobj::do_read_symbols to read the symbols then
373   // read .opd from a dynamic object, filling in opd_ent_ vector,
374   void
375   do_read_symbols(Read_symbols_data*);
376
377   // The .opd section shndx.
378   unsigned int
379   opd_shndx() const
380   {
381     return this->opd_shndx_;
382   }
383
384   // The .opd section address.
385   Address
386   opd_address() const
387   {
388     return this->opd_address_;
389   }
390
391   // Init OPD entry arrays.
392   void
393   init_opd(size_t opd_size)
394   {
395     size_t count = this->opd_ent_ndx(opd_size);
396     this->opd_ent_.resize(count);
397   }
398
399   // Return section and offset of function entry for .opd + R_OFF.
400   unsigned int
401   get_opd_ent(Address r_off, Address* value = NULL) const
402   {
403     size_t ndx = this->opd_ent_ndx(r_off);
404     gold_assert(ndx < this->opd_ent_.size());
405     gold_assert(this->opd_ent_[ndx].shndx != 0);
406     if (value != NULL)
407       *value = this->opd_ent_[ndx].off;
408     return this->opd_ent_[ndx].shndx;
409   }
410
411   // Set section and offset of function entry for .opd + R_OFF.
412   void
413   set_opd_ent(Address r_off, unsigned int shndx, Address value)
414   {
415     size_t ndx = this->opd_ent_ndx(r_off);
416     gold_assert(ndx < this->opd_ent_.size());
417     this->opd_ent_[ndx].shndx = shndx;
418     this->opd_ent_[ndx].off = value;
419   }
420
421   int
422   abiversion() const
423   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
424
425   // Set ABI version for input and output.
426   void
427   set_abiversion(int ver);
428
429 private:
430   // Used to specify extent of executable sections.
431   struct Sec_info
432   {
433     Sec_info(Address start_, Address len_, unsigned int shndx_)
434       : start(start_), len(len_), shndx(shndx_)
435     { }
436
437     bool
438     operator<(const Sec_info& that) const
439     { return this->start < that.start; }
440
441     Address start;
442     Address len;
443     unsigned int shndx;
444   };
445
446   struct Opd_ent
447   {
448     unsigned int shndx;
449     Address off;
450   };
451
452   // Return index into opd_ent_ array for .opd entry at OFF.
453   size_t
454   opd_ent_ndx(size_t off) const
455   { return off >> 4;}
456
457   // For 64-bit the .opd section shndx and address.
458   unsigned int opd_shndx_;
459   Address opd_address_;
460
461   // The first 8-byte word of an OPD entry gives the address of the
462   // entry point of the function.  Records the section and offset
463   // corresponding to the address.  Note that in dynamic objects,
464   // offset is *not* relative to the section.
465   std::vector<Opd_ent> opd_ent_;
466
467   // Header e_flags
468   elfcpp::Elf_Word e_flags_;
469 };
470
471 template<int size, bool big_endian>
472 class Target_powerpc : public Sized_target<size, big_endian>
473 {
474  public:
475   typedef
476     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
477   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
478   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
479   static const Address invalid_address = static_cast<Address>(0) - 1;
480   // Offset of tp and dtp pointers from start of TLS block.
481   static const Address tp_offset = 0x7000;
482   static const Address dtp_offset = 0x8000;
483
484   Target_powerpc()
485     : Sized_target<size, big_endian>(&powerpc_info),
486       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
487       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
488       tlsld_got_offset_(-1U),
489       stub_tables_(), branch_lookup_table_(), branch_info_(),
490       plt_thread_safe_(false)
491   {
492   }
493
494   // Process the relocations to determine unreferenced sections for
495   // garbage collection.
496   void
497   gc_process_relocs(Symbol_table* symtab,
498                     Layout* layout,
499                     Sized_relobj_file<size, big_endian>* object,
500                     unsigned int data_shndx,
501                     unsigned int sh_type,
502                     const unsigned char* prelocs,
503                     size_t reloc_count,
504                     Output_section* output_section,
505                     bool needs_special_offset_handling,
506                     size_t local_symbol_count,
507                     const unsigned char* plocal_symbols);
508
509   // Scan the relocations to look for symbol adjustments.
510   void
511   scan_relocs(Symbol_table* symtab,
512               Layout* layout,
513               Sized_relobj_file<size, big_endian>* object,
514               unsigned int data_shndx,
515               unsigned int sh_type,
516               const unsigned char* prelocs,
517               size_t reloc_count,
518               Output_section* output_section,
519               bool needs_special_offset_handling,
520               size_t local_symbol_count,
521               const unsigned char* plocal_symbols);
522
523   // Map input .toc section to output .got section.
524   const char*
525   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
526   {
527     if (size == 64 && strcmp(name, ".toc") == 0)
528       {
529         *plen = 4;
530         return ".got";
531       }
532     return NULL;
533   }
534
535   // Provide linker defined save/restore functions.
536   void
537   define_save_restore_funcs(Layout*, Symbol_table*);
538
539   // No stubs unless a final link.
540   bool
541   do_may_relax() const
542   { return !parameters->options().relocatable(); }
543
544   bool
545   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
546
547   void
548   do_plt_fde_location(const Output_data*, unsigned char*,
549                       uint64_t*, off_t*) const;
550
551   // Stash info about branches, for stub generation.
552   void
553   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
554               unsigned int data_shndx, Address r_offset,
555               unsigned int r_type, unsigned int r_sym, Address addend)
556   {
557     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
558     this->branch_info_.push_back(info);
559     if (r_type == elfcpp::R_POWERPC_REL14
560         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
561         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
562       ppc_object->set_has_14bit_branch(data_shndx);
563   }
564
565   Stub_table<size, big_endian>*
566   new_stub_table();
567
568   void
569   do_define_standard_symbols(Symbol_table*, Layout*);
570
571   // Finalize the sections.
572   void
573   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
574
575   // Return the value to use for a dynamic which requires special
576   // treatment.
577   uint64_t
578   do_dynsym_value(const Symbol*) const;
579
580   // Return the PLT address to use for a local symbol.
581   uint64_t
582   do_plt_address_for_local(const Relobj*, unsigned int) const;
583
584   // Return the PLT address to use for a global symbol.
585   uint64_t
586   do_plt_address_for_global(const Symbol*) const;
587
588   // Return the offset to use for the GOT_INDX'th got entry which is
589   // for a local tls symbol specified by OBJECT, SYMNDX.
590   int64_t
591   do_tls_offset_for_local(const Relobj* object,
592                           unsigned int symndx,
593                           unsigned int got_indx) const;
594
595   // Return the offset to use for the GOT_INDX'th got entry which is
596   // for global tls symbol GSYM.
597   int64_t
598   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
599
600   void
601   do_function_location(Symbol_location*) const;
602
603   bool
604   do_can_check_for_function_pointers() const
605   { return true; }
606
607   // Relocate a section.
608   void
609   relocate_section(const Relocate_info<size, big_endian>*,
610                    unsigned int sh_type,
611                    const unsigned char* prelocs,
612                    size_t reloc_count,
613                    Output_section* output_section,
614                    bool needs_special_offset_handling,
615                    unsigned char* view,
616                    Address view_address,
617                    section_size_type view_size,
618                    const Reloc_symbol_changes*);
619
620   // Scan the relocs during a relocatable link.
621   void
622   scan_relocatable_relocs(Symbol_table* symtab,
623                           Layout* layout,
624                           Sized_relobj_file<size, big_endian>* object,
625                           unsigned int data_shndx,
626                           unsigned int sh_type,
627                           const unsigned char* prelocs,
628                           size_t reloc_count,
629                           Output_section* output_section,
630                           bool needs_special_offset_handling,
631                           size_t local_symbol_count,
632                           const unsigned char* plocal_symbols,
633                           Relocatable_relocs*);
634
635   // Emit relocations for a section.
636   void
637   relocate_relocs(const Relocate_info<size, big_endian>*,
638                   unsigned int sh_type,
639                   const unsigned char* prelocs,
640                   size_t reloc_count,
641                   Output_section* output_section,
642                   typename elfcpp::Elf_types<size>::Elf_Off
643                     offset_in_output_section,
644                   const Relocatable_relocs*,
645                   unsigned char*,
646                   Address view_address,
647                   section_size_type,
648                   unsigned char* reloc_view,
649                   section_size_type reloc_view_size);
650
651   // Return whether SYM is defined by the ABI.
652   bool
653   do_is_defined_by_abi(const Symbol* sym) const
654   {
655     return strcmp(sym->name(), "__tls_get_addr") == 0;
656   }
657
658   // Return the size of the GOT section.
659   section_size_type
660   got_size() const
661   {
662     gold_assert(this->got_ != NULL);
663     return this->got_->data_size();
664   }
665
666   // Get the PLT section.
667   const Output_data_plt_powerpc<size, big_endian>*
668   plt_section() const
669   {
670     gold_assert(this->plt_ != NULL);
671     return this->plt_;
672   }
673
674   // Get the IPLT section.
675   const Output_data_plt_powerpc<size, big_endian>*
676   iplt_section() const
677   {
678     gold_assert(this->iplt_ != NULL);
679     return this->iplt_;
680   }
681
682   // Get the .glink section.
683   const Output_data_glink<size, big_endian>*
684   glink_section() const
685   {
686     gold_assert(this->glink_ != NULL);
687     return this->glink_;
688   }
689
690   Output_data_glink<size, big_endian>*
691   glink_section()
692   {
693     gold_assert(this->glink_ != NULL);
694     return this->glink_;
695   }
696
697   bool has_glink() const
698   { return this->glink_ != NULL; }
699
700   // Get the GOT section.
701   const Output_data_got_powerpc<size, big_endian>*
702   got_section() const
703   {
704     gold_assert(this->got_ != NULL);
705     return this->got_;
706   }
707
708   // Get the GOT section, creating it if necessary.
709   Output_data_got_powerpc<size, big_endian>*
710   got_section(Symbol_table*, Layout*);
711
712   Object*
713   do_make_elf_object(const std::string&, Input_file*, off_t,
714                      const elfcpp::Ehdr<size, big_endian>&);
715
716   // Return the number of entries in the GOT.
717   unsigned int
718   got_entry_count() const
719   {
720     if (this->got_ == NULL)
721       return 0;
722     return this->got_size() / (size / 8);
723   }
724
725   // Return the number of entries in the PLT.
726   unsigned int
727   plt_entry_count() const;
728
729   // Return the offset of the first non-reserved PLT entry.
730   unsigned int
731   first_plt_entry_offset() const
732   {
733     if (size == 32)
734       return 0;
735     if (this->abiversion() >= 2)
736       return 16;
737     return 24;
738   }
739
740   // Return the size of each PLT entry.
741   unsigned int
742   plt_entry_size() const
743   {
744     if (size == 32)
745       return 4;
746     if (this->abiversion() >= 2)
747       return 8;
748     return 24;
749   }
750
751   // Add any special sections for this symbol to the gc work list.
752   // For powerpc64, this adds the code section of a function
753   // descriptor.
754   void
755   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
756
757   // Handle target specific gc actions when adding a gc reference from
758   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
759   // and DST_OFF.  For powerpc64, this adds a referenc to the code
760   // section of a function descriptor.
761   void
762   do_gc_add_reference(Symbol_table* symtab,
763                       Object* src_obj,
764                       unsigned int src_shndx,
765                       Object* dst_obj,
766                       unsigned int dst_shndx,
767                       Address dst_off) const;
768
769   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
770   const Stub_tables&
771   stub_tables() const
772   { return this->stub_tables_; }
773
774   const Output_data_brlt_powerpc<size, big_endian>*
775   brlt_section() const
776   { return this->brlt_section_; }
777
778   void
779   add_branch_lookup_table(Address to)
780   {
781     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
782     this->branch_lookup_table_.insert(std::make_pair(to, off));
783   }
784
785   Address
786   find_branch_lookup_table(Address to)
787   {
788     typename Branch_lookup_table::const_iterator p
789       = this->branch_lookup_table_.find(to);
790     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
791   }
792
793   void
794   write_branch_lookup_table(unsigned char *oview)
795   {
796     for (typename Branch_lookup_table::const_iterator p
797            = this->branch_lookup_table_.begin();
798          p != this->branch_lookup_table_.end();
799          ++p)
800       {
801         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
802       }
803   }
804
805   bool
806   plt_thread_safe() const
807   { return this->plt_thread_safe_; }
808
809   int
810   abiversion () const
811   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
812
813   void
814   set_abiversion (int ver)
815   {
816     elfcpp::Elf_Word flags = this->processor_specific_flags();
817     flags &= ~elfcpp::EF_PPC64_ABI;
818     flags |= ver & elfcpp::EF_PPC64_ABI;
819     this->set_processor_specific_flags(flags);
820   }
821
822   // Offset to to save stack slot
823   int
824   stk_toc () const
825   { return this->abiversion() < 2 ? 40 : 24; }
826
827  private:
828
829   class Track_tls
830   {
831   public:
832     enum Tls_get_addr
833     {
834       NOT_EXPECTED = 0,
835       EXPECTED = 1,
836       SKIP = 2,
837       NORMAL = 3
838     };
839
840     Track_tls()
841       : tls_get_addr_(NOT_EXPECTED),
842         relinfo_(NULL), relnum_(0), r_offset_(0)
843     { }
844
845     ~Track_tls()
846     {
847       if (this->tls_get_addr_ != NOT_EXPECTED)
848         this->missing();
849     }
850
851     void
852     missing(void)
853     {
854       if (this->relinfo_ != NULL)
855         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
856                                _("missing expected __tls_get_addr call"));
857     }
858
859     void
860     expect_tls_get_addr_call(
861         const Relocate_info<size, big_endian>* relinfo,
862         size_t relnum,
863         Address r_offset)
864     {
865       this->tls_get_addr_ = EXPECTED;
866       this->relinfo_ = relinfo;
867       this->relnum_ = relnum;
868       this->r_offset_ = r_offset;
869     }
870
871     void
872     expect_tls_get_addr_call()
873     { this->tls_get_addr_ = EXPECTED; }
874
875     void
876     skip_next_tls_get_addr_call()
877     {this->tls_get_addr_ = SKIP; }
878
879     Tls_get_addr
880     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
881     {
882       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
883                            || r_type == elfcpp::R_PPC_PLTREL24)
884                           && gsym != NULL
885                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
886       Tls_get_addr last_tls = this->tls_get_addr_;
887       this->tls_get_addr_ = NOT_EXPECTED;
888       if (is_tls_call && last_tls != EXPECTED)
889         return last_tls;
890       else if (!is_tls_call && last_tls != NOT_EXPECTED)
891         {
892           this->missing();
893           return EXPECTED;
894         }
895       return NORMAL;
896     }
897
898   private:
899     // What we're up to regarding calls to __tls_get_addr.
900     // On powerpc, the branch and link insn making a call to
901     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
902     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
903     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
904     // The marker relocation always comes first, and has the same
905     // symbol as the reloc on the insn setting up the __tls_get_addr
906     // argument.  This ties the arg setup insn with the call insn,
907     // allowing ld to safely optimize away the call.  We check that
908     // every call to __tls_get_addr has a marker relocation, and that
909     // every marker relocation is on a call to __tls_get_addr.
910     Tls_get_addr tls_get_addr_;
911     // Info about the last reloc for error message.
912     const Relocate_info<size, big_endian>* relinfo_;
913     size_t relnum_;
914     Address r_offset_;
915   };
916
917   // The class which scans relocations.
918   class Scan : protected Track_tls
919   {
920   public:
921     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
922
923     Scan()
924       : Track_tls(), issued_non_pic_error_(false)
925     { }
926
927     static inline int
928     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
929
930     inline void
931     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
932           Sized_relobj_file<size, big_endian>* object,
933           unsigned int data_shndx,
934           Output_section* output_section,
935           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
936           const elfcpp::Sym<size, big_endian>& lsym,
937           bool is_discarded);
938
939     inline void
940     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
941            Sized_relobj_file<size, big_endian>* object,
942            unsigned int data_shndx,
943            Output_section* output_section,
944            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
945            Symbol* gsym);
946
947     inline bool
948     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
949                                         Target_powerpc* ,
950                                         Sized_relobj_file<size, big_endian>* relobj,
951                                         unsigned int ,
952                                         Output_section* ,
953                                         const elfcpp::Rela<size, big_endian>& ,
954                                         unsigned int r_type,
955                                         const elfcpp::Sym<size, big_endian>&)
956     {
957       // PowerPC64 .opd is not folded, so any identical function text
958       // may be folded and we'll still keep function addresses distinct.
959       // That means no reloc is of concern here.
960       if (size == 64)
961         {
962           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
963             <Powerpc_relobj<size, big_endian>*>(relobj);
964           if (ppcobj->abiversion() == 1)
965             return false;
966         }
967       // For 32-bit and ELFv2, conservatively assume anything but calls to
968       // function code might be taking the address of the function.
969       return !is_branch_reloc(r_type);
970     }
971
972     inline bool
973     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
974                                          Target_powerpc* ,
975                                          Sized_relobj_file<size, big_endian>* relobj,
976                                          unsigned int ,
977                                          Output_section* ,
978                                          const elfcpp::Rela<size, big_endian>& ,
979                                          unsigned int r_type,
980                                          Symbol*)
981     {
982       // As above.
983       if (size == 64)
984         {
985           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
986             <Powerpc_relobj<size, big_endian>*>(relobj);
987           if (ppcobj->abiversion() == 1)
988             return false;
989         }
990       return !is_branch_reloc(r_type);
991     }
992
993     static bool
994     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
995                               Sized_relobj_file<size, big_endian>* object,
996                               unsigned int r_type, bool report_err);
997
998   private:
999     static void
1000     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1001                             unsigned int r_type);
1002
1003     static void
1004     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1005                              unsigned int r_type, Symbol*);
1006
1007     static void
1008     generate_tls_call(Symbol_table* symtab, Layout* layout,
1009                       Target_powerpc* target);
1010
1011     void
1012     check_non_pic(Relobj*, unsigned int r_type);
1013
1014     // Whether we have issued an error about a non-PIC compilation.
1015     bool issued_non_pic_error_;
1016   };
1017
1018   Address
1019   symval_for_branch(const Symbol_table* symtab, Address value,
1020                     const Sized_symbol<size>* gsym,
1021                     Powerpc_relobj<size, big_endian>* object,
1022                     unsigned int *dest_shndx);
1023
1024   // The class which implements relocation.
1025   class Relocate : protected Track_tls
1026   {
1027    public:
1028     // Use 'at' branch hints when true, 'y' when false.
1029     // FIXME maybe: set this with an option.
1030     static const bool is_isa_v2 = true;
1031
1032     Relocate()
1033       : Track_tls()
1034     { }
1035
1036     // Do a relocation.  Return false if the caller should not issue
1037     // any warnings about this relocation.
1038     inline bool
1039     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1040              Output_section*, size_t relnum,
1041              const elfcpp::Rela<size, big_endian>&,
1042              unsigned int r_type, const Sized_symbol<size>*,
1043              const Symbol_value<size>*,
1044              unsigned char*,
1045              typename elfcpp::Elf_types<size>::Elf_Addr,
1046              section_size_type);
1047   };
1048
1049   class Relocate_comdat_behavior
1050   {
1051    public:
1052     // Decide what the linker should do for relocations that refer to
1053     // discarded comdat sections.
1054     inline Comdat_behavior
1055     get(const char* name)
1056     {
1057       gold::Default_comdat_behavior default_behavior;
1058       Comdat_behavior ret = default_behavior.get(name);
1059       if (ret == CB_WARNING)
1060         {
1061           if (size == 32
1062               && (strcmp(name, ".fixup") == 0
1063                   || strcmp(name, ".got2") == 0))
1064             ret = CB_IGNORE;
1065           if (size == 64
1066               && (strcmp(name, ".opd") == 0
1067                   || strcmp(name, ".toc") == 0
1068                   || strcmp(name, ".toc1") == 0))
1069             ret = CB_IGNORE;
1070         }
1071       return ret;
1072     }
1073   };
1074
1075   // A class which returns the size required for a relocation type,
1076   // used while scanning relocs during a relocatable link.
1077   class Relocatable_size_for_reloc
1078   {
1079    public:
1080     unsigned int
1081     get_size_for_reloc(unsigned int, Relobj*)
1082     {
1083       gold_unreachable();
1084       return 0;
1085     }
1086   };
1087
1088   // Optimize the TLS relocation type based on what we know about the
1089   // symbol.  IS_FINAL is true if the final address of this symbol is
1090   // known at link time.
1091
1092   tls::Tls_optimization
1093   optimize_tls_gd(bool is_final)
1094   {
1095     // If we are generating a shared library, then we can't do anything
1096     // in the linker.
1097     if (parameters->options().shared())
1098       return tls::TLSOPT_NONE;
1099
1100     if (!is_final)
1101       return tls::TLSOPT_TO_IE;
1102     return tls::TLSOPT_TO_LE;
1103   }
1104
1105   tls::Tls_optimization
1106   optimize_tls_ld()
1107   {
1108     if (parameters->options().shared())
1109       return tls::TLSOPT_NONE;
1110
1111     return tls::TLSOPT_TO_LE;
1112   }
1113
1114   tls::Tls_optimization
1115   optimize_tls_ie(bool is_final)
1116   {
1117     if (!is_final || parameters->options().shared())
1118       return tls::TLSOPT_NONE;
1119
1120     return tls::TLSOPT_TO_LE;
1121   }
1122
1123   // Create glink.
1124   void
1125   make_glink_section(Layout*);
1126
1127   // Create the PLT section.
1128   void
1129   make_plt_section(Symbol_table*, Layout*);
1130
1131   void
1132   make_iplt_section(Symbol_table*, Layout*);
1133
1134   void
1135   make_brlt_section(Layout*);
1136
1137   // Create a PLT entry for a global symbol.
1138   void
1139   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1140
1141   // Create a PLT entry for a local IFUNC symbol.
1142   void
1143   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1144                              Sized_relobj_file<size, big_endian>*,
1145                              unsigned int);
1146
1147
1148   // Create a GOT entry for local dynamic __tls_get_addr.
1149   unsigned int
1150   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1151                    Sized_relobj_file<size, big_endian>* object);
1152
1153   unsigned int
1154   tlsld_got_offset() const
1155   {
1156     return this->tlsld_got_offset_;
1157   }
1158
1159   // Get the dynamic reloc section, creating it if necessary.
1160   Reloc_section*
1161   rela_dyn_section(Layout*);
1162
1163   // Similarly, but for ifunc symbols get the one for ifunc.
1164   Reloc_section*
1165   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1166
1167   // Copy a relocation against a global symbol.
1168   void
1169   copy_reloc(Symbol_table* symtab, Layout* layout,
1170              Sized_relobj_file<size, big_endian>* object,
1171              unsigned int shndx, Output_section* output_section,
1172              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1173   {
1174     this->copy_relocs_.copy_reloc(symtab, layout,
1175                                   symtab->get_sized_symbol<size>(sym),
1176                                   object, shndx, output_section,
1177                                   reloc, this->rela_dyn_section(layout));
1178   }
1179
1180   // Look over all the input sections, deciding where to place stubs.
1181   void
1182   group_sections(Layout*, const Task*);
1183
1184   // Sort output sections by address.
1185   struct Sort_sections
1186   {
1187     bool
1188     operator()(const Output_section* sec1, const Output_section* sec2)
1189     { return sec1->address() < sec2->address(); }
1190   };
1191
1192   class Branch_info
1193   {
1194    public:
1195     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1196                 unsigned int data_shndx,
1197                 Address r_offset,
1198                 unsigned int r_type,
1199                 unsigned int r_sym,
1200                 Address addend)
1201       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1202         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1203     { }
1204
1205     ~Branch_info()
1206     { }
1207
1208     // If this branch needs a plt call stub, or a long branch stub, make one.
1209     void
1210     make_stub(Stub_table<size, big_endian>*,
1211               Stub_table<size, big_endian>*,
1212               Symbol_table*) const;
1213
1214    private:
1215     // The branch location..
1216     Powerpc_relobj<size, big_endian>* object_;
1217     unsigned int shndx_;
1218     Address offset_;
1219     // ..and the branch type and destination.
1220     unsigned int r_type_;
1221     unsigned int r_sym_;
1222     Address addend_;
1223   };
1224
1225   // Information about this specific target which we pass to the
1226   // general Target structure.
1227   static Target::Target_info powerpc_info;
1228
1229   // The types of GOT entries needed for this platform.
1230   // These values are exposed to the ABI in an incremental link.
1231   // Do not renumber existing values without changing the version
1232   // number of the .gnu_incremental_inputs section.
1233   enum Got_type
1234   {
1235     GOT_TYPE_STANDARD,
1236     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1237     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1238     GOT_TYPE_TPREL      // entry for @got@tprel
1239   };
1240
1241   // The GOT section.
1242   Output_data_got_powerpc<size, big_endian>* got_;
1243   // The PLT section.  This is a container for a table of addresses,
1244   // and their relocations.  Each address in the PLT has a dynamic
1245   // relocation (R_*_JMP_SLOT) and each address will have a
1246   // corresponding entry in .glink for lazy resolution of the PLT.
1247   // ppc32 initialises the PLT to point at the .glink entry, while
1248   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1249   // linker adds a stub that loads the PLT entry into ctr then
1250   // branches to ctr.  There may be more than one stub for each PLT
1251   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1252   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1253   Output_data_plt_powerpc<size, big_endian>* plt_;
1254   // The IPLT section.  Like plt_, this is a container for a table of
1255   // addresses and their relocations, specifically for STT_GNU_IFUNC
1256   // functions that resolve locally (STT_GNU_IFUNC functions that
1257   // don't resolve locally go in PLT).  Unlike plt_, these have no
1258   // entry in .glink for lazy resolution, and the relocation section
1259   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1260   // the relocation section may contain relocations against
1261   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1262   // relocation section will appear at the end of other dynamic
1263   // relocations, so that ld.so applies these relocations after other
1264   // dynamic relocations.  In a static executable, the relocation
1265   // section is emitted and marked with __rela_iplt_start and
1266   // __rela_iplt_end symbols.
1267   Output_data_plt_powerpc<size, big_endian>* iplt_;
1268   // Section holding long branch destinations.
1269   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1270   // The .glink section.
1271   Output_data_glink<size, big_endian>* glink_;
1272   // The dynamic reloc section.
1273   Reloc_section* rela_dyn_;
1274   // Relocs saved to avoid a COPY reloc.
1275   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1276   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1277   unsigned int tlsld_got_offset_;
1278
1279   Stub_tables stub_tables_;
1280   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1281   Branch_lookup_table branch_lookup_table_;
1282
1283   typedef std::vector<Branch_info> Branches;
1284   Branches branch_info_;
1285
1286   bool plt_thread_safe_;
1287 };
1288
1289 template<>
1290 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1291 {
1292   32,                   // size
1293   true,                 // is_big_endian
1294   elfcpp::EM_PPC,       // machine_code
1295   false,                // has_make_symbol
1296   false,                // has_resolve
1297   false,                // has_code_fill
1298   true,                 // is_default_stack_executable
1299   false,                // can_icf_inline_merge_sections
1300   '\0',                 // wrap_char
1301   "/usr/lib/ld.so.1",   // dynamic_linker
1302   0x10000000,           // default_text_segment_address
1303   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1304   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1305   false,                // isolate_execinstr
1306   0,                    // rosegment_gap
1307   elfcpp::SHN_UNDEF,    // small_common_shndx
1308   elfcpp::SHN_UNDEF,    // large_common_shndx
1309   0,                    // small_common_section_flags
1310   0,                    // large_common_section_flags
1311   NULL,                 // attributes_section
1312   NULL,                 // attributes_vendor
1313   "_start"              // entry_symbol_name
1314 };
1315
1316 template<>
1317 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1318 {
1319   32,                   // size
1320   false,                // is_big_endian
1321   elfcpp::EM_PPC,       // machine_code
1322   false,                // has_make_symbol
1323   false,                // has_resolve
1324   false,                // has_code_fill
1325   true,                 // is_default_stack_executable
1326   false,                // can_icf_inline_merge_sections
1327   '\0',                 // wrap_char
1328   "/usr/lib/ld.so.1",   // dynamic_linker
1329   0x10000000,           // default_text_segment_address
1330   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1331   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1332   false,                // isolate_execinstr
1333   0,                    // rosegment_gap
1334   elfcpp::SHN_UNDEF,    // small_common_shndx
1335   elfcpp::SHN_UNDEF,    // large_common_shndx
1336   0,                    // small_common_section_flags
1337   0,                    // large_common_section_flags
1338   NULL,                 // attributes_section
1339   NULL,                 // attributes_vendor
1340   "_start"              // entry_symbol_name
1341 };
1342
1343 template<>
1344 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1345 {
1346   64,                   // size
1347   true,                 // is_big_endian
1348   elfcpp::EM_PPC64,     // machine_code
1349   false,                // has_make_symbol
1350   false,                // has_resolve
1351   false,                // has_code_fill
1352   true,                 // is_default_stack_executable
1353   false,                // can_icf_inline_merge_sections
1354   '\0',                 // wrap_char
1355   "/usr/lib/ld.so.1",   // dynamic_linker
1356   0x10000000,           // default_text_segment_address
1357   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1358   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1359   false,                // isolate_execinstr
1360   0,                    // rosegment_gap
1361   elfcpp::SHN_UNDEF,    // small_common_shndx
1362   elfcpp::SHN_UNDEF,    // large_common_shndx
1363   0,                    // small_common_section_flags
1364   0,                    // large_common_section_flags
1365   NULL,                 // attributes_section
1366   NULL,                 // attributes_vendor
1367   "_start"              // entry_symbol_name
1368 };
1369
1370 template<>
1371 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1372 {
1373   64,                   // size
1374   false,                // is_big_endian
1375   elfcpp::EM_PPC64,     // machine_code
1376   false,                // has_make_symbol
1377   false,                // has_resolve
1378   false,                // has_code_fill
1379   true,                 // is_default_stack_executable
1380   false,                // can_icf_inline_merge_sections
1381   '\0',                 // wrap_char
1382   "/usr/lib/ld.so.1",   // dynamic_linker
1383   0x10000000,           // default_text_segment_address
1384   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1385   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1386   false,                // isolate_execinstr
1387   0,                    // rosegment_gap
1388   elfcpp::SHN_UNDEF,    // small_common_shndx
1389   elfcpp::SHN_UNDEF,    // large_common_shndx
1390   0,                    // small_common_section_flags
1391   0,                    // large_common_section_flags
1392   NULL,                 // attributes_section
1393   NULL,                 // attributes_vendor
1394   "_start"              // entry_symbol_name
1395 };
1396
1397 inline bool
1398 is_branch_reloc(unsigned int r_type)
1399 {
1400   return (r_type == elfcpp::R_POWERPC_REL24
1401           || r_type == elfcpp::R_PPC_PLTREL24
1402           || r_type == elfcpp::R_PPC_LOCAL24PC
1403           || r_type == elfcpp::R_POWERPC_REL14
1404           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1405           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1406           || r_type == elfcpp::R_POWERPC_ADDR24
1407           || r_type == elfcpp::R_POWERPC_ADDR14
1408           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1409           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1410 }
1411
1412 // If INSN is an opcode that may be used with an @tls operand, return
1413 // the transformed insn for TLS optimisation, otherwise return 0.  If
1414 // REG is non-zero only match an insn with RB or RA equal to REG.
1415 uint32_t
1416 at_tls_transform(uint32_t insn, unsigned int reg)
1417 {
1418   if ((insn & (0x3f << 26)) != 31 << 26)
1419     return 0;
1420
1421   unsigned int rtra;
1422   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1423     rtra = insn & ((1 << 26) - (1 << 16));
1424   else if (((insn >> 16) & 0x1f) == reg)
1425     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1426   else
1427     return 0;
1428
1429   if ((insn & (0x3ff << 1)) == 266 << 1)
1430     // add -> addi
1431     insn = 14 << 26;
1432   else if ((insn & (0x1f << 1)) == 23 << 1
1433            && ((insn & (0x1f << 6)) < 14 << 6
1434                || ((insn & (0x1f << 6)) >= 16 << 6
1435                    && (insn & (0x1f << 6)) < 24 << 6)))
1436     // load and store indexed -> dform
1437     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1438   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1439     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1440     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1441   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1442     // lwax -> lwa
1443     insn = (58 << 26) | 2;
1444   else
1445     return 0;
1446   insn |= rtra;
1447   return insn;
1448 }
1449
1450
1451 template<int size, bool big_endian>
1452 class Powerpc_relocate_functions
1453 {
1454 public:
1455   enum Overflow_check
1456   {
1457     CHECK_NONE,
1458     CHECK_SIGNED,
1459     CHECK_UNSIGNED,
1460     CHECK_BITFIELD,
1461     CHECK_LOW_INSN,
1462     CHECK_HIGH_INSN
1463   };
1464
1465   enum Status
1466   {
1467     STATUS_OK,
1468     STATUS_OVERFLOW
1469   };
1470
1471 private:
1472   typedef Powerpc_relocate_functions<size, big_endian> This;
1473   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1474
1475   template<int valsize>
1476   static inline bool
1477   has_overflow_signed(Address value)
1478   {
1479     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1480     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1481     limit <<= ((valsize - 1) >> 1);
1482     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1483     return value + limit > (limit << 1) - 1;
1484   }
1485
1486   template<int valsize>
1487   static inline bool
1488   has_overflow_unsigned(Address value)
1489   {
1490     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1491     limit <<= ((valsize - 1) >> 1);
1492     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1493     return value > (limit << 1) - 1;
1494   }
1495
1496   template<int valsize>
1497   static inline bool
1498   has_overflow_bitfield(Address value)
1499   {
1500     return (has_overflow_unsigned<valsize>(value)
1501             && has_overflow_signed<valsize>(value));
1502   }
1503
1504   template<int valsize>
1505   static inline Status
1506   overflowed(Address value, Overflow_check overflow)
1507   {
1508     if (overflow == CHECK_SIGNED)
1509       {
1510         if (has_overflow_signed<valsize>(value))
1511           return STATUS_OVERFLOW;
1512       }
1513     else if (overflow == CHECK_UNSIGNED)
1514       {
1515         if (has_overflow_unsigned<valsize>(value))
1516           return STATUS_OVERFLOW;
1517       }
1518     else if (overflow == CHECK_BITFIELD)
1519       {
1520         if (has_overflow_bitfield<valsize>(value))
1521           return STATUS_OVERFLOW;
1522       }
1523     return STATUS_OK;
1524   }
1525
1526   // Do a simple RELA relocation
1527   template<int valsize>
1528   static inline Status
1529   rela(unsigned char* view, Address value, Overflow_check overflow)
1530   {
1531     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1532     Valtype* wv = reinterpret_cast<Valtype*>(view);
1533     elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1534     return overflowed<valsize>(value, overflow);
1535   }
1536
1537   template<int valsize>
1538   static inline Status
1539   rela(unsigned char* view,
1540        unsigned int right_shift,
1541        typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1542        Address value,
1543        Overflow_check overflow)
1544   {
1545     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1546     Valtype* wv = reinterpret_cast<Valtype*>(view);
1547     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1548     Valtype reloc = value >> right_shift;
1549     val &= ~dst_mask;
1550     reloc &= dst_mask;
1551     elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1552     return overflowed<valsize>(value >> right_shift, overflow);
1553   }
1554
1555   // Do a simple RELA relocation, unaligned.
1556   template<int valsize>
1557   static inline Status
1558   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1559   {
1560     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1561     return overflowed<valsize>(value, overflow);
1562   }
1563
1564   template<int valsize>
1565   static inline Status
1566   rela_ua(unsigned char* view,
1567           unsigned int right_shift,
1568           typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1569           Address value,
1570           Overflow_check overflow)
1571   {
1572     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1573       Valtype;
1574     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1575     Valtype reloc = value >> right_shift;
1576     val &= ~dst_mask;
1577     reloc &= dst_mask;
1578     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1579     return overflowed<valsize>(value >> right_shift, overflow);
1580   }
1581
1582 public:
1583   // R_PPC64_ADDR64: (Symbol + Addend)
1584   static inline void
1585   addr64(unsigned char* view, Address value)
1586   { This::template rela<64>(view, value, CHECK_NONE); }
1587
1588   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1589   static inline void
1590   addr64_u(unsigned char* view, Address value)
1591   { This::template rela_ua<64>(view, value, CHECK_NONE); }
1592
1593   // R_POWERPC_ADDR32: (Symbol + Addend)
1594   static inline Status
1595   addr32(unsigned char* view, Address value, Overflow_check overflow)
1596   { return This::template rela<32>(view, value, overflow); }
1597
1598   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1599   static inline Status
1600   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1601   { return This::template rela_ua<32>(view, value, overflow); }
1602
1603   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1604   static inline Status
1605   addr24(unsigned char* view, Address value, Overflow_check overflow)
1606   {
1607     Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1608     if (overflow != CHECK_NONE && (value & 3) != 0)
1609       stat = STATUS_OVERFLOW;
1610     return stat;
1611   }
1612
1613   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1614   static inline Status
1615   addr16(unsigned char* view, Address value, Overflow_check overflow)
1616   { return This::template rela<16>(view, value, overflow); }
1617
1618   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1619   static inline Status
1620   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1621   { return This::template rela_ua<16>(view, value, overflow); }
1622
1623   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1624   static inline Status
1625   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1626   {
1627     Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1628     if (overflow != CHECK_NONE && (value & 3) != 0)
1629       stat = STATUS_OVERFLOW;
1630     return stat;
1631   }
1632
1633   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1634   static inline void
1635   addr16_hi(unsigned char* view, Address value)
1636   { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1637
1638   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1639   static inline void
1640   addr16_ha(unsigned char* view, Address value)
1641   { This::addr16_hi(view, value + 0x8000); }
1642
1643   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1644   static inline void
1645   addr16_hi2(unsigned char* view, Address value)
1646   { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1647
1648   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1649   static inline void
1650   addr16_ha2(unsigned char* view, Address value)
1651   { This::addr16_hi2(view, value + 0x8000); }
1652
1653   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1654   static inline void
1655   addr16_hi3(unsigned char* view, Address value)
1656   { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1657
1658   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1659   static inline void
1660   addr16_ha3(unsigned char* view, Address value)
1661   { This::addr16_hi3(view, value + 0x8000); }
1662
1663   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1664   static inline Status
1665   addr14(unsigned char* view, Address value, Overflow_check overflow)
1666   {
1667     Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1668     if (overflow != CHECK_NONE && (value & 3) != 0)
1669       stat = STATUS_OVERFLOW;
1670     return stat;
1671   }
1672 };
1673
1674 // Set ABI version for input and output.
1675
1676 template<int size, bool big_endian>
1677 void
1678 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1679 {
1680   this->e_flags_ |= ver;
1681   if (this->abiversion() != 0)
1682     {
1683       Target_powerpc<size, big_endian>* target =
1684         static_cast<Target_powerpc<size, big_endian>*>(
1685            parameters->sized_target<size, big_endian>());
1686       if (target->abiversion() == 0)
1687         target->set_abiversion(this->abiversion());
1688       else if (target->abiversion() != this->abiversion())
1689         gold_error(_("%s: ABI version %d is not compatible "
1690                      "with ABI version %d output"),
1691                    this->name().c_str(),
1692                    this->abiversion(), target->abiversion());
1693
1694     }
1695 }
1696
1697 // Stash away the index of .got2 or .opd in a relocatable object, if
1698 // such a section exists.
1699
1700 template<int size, bool big_endian>
1701 bool
1702 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1703     Read_symbols_data* sd)
1704 {
1705   const unsigned char* const pshdrs = sd->section_headers->data();
1706   const unsigned char* namesu = sd->section_names->data();
1707   const char* names = reinterpret_cast<const char*>(namesu);
1708   section_size_type names_size = sd->section_names_size;
1709   const unsigned char* s;
1710
1711   s = this->template find_shdr<size, big_endian>(pshdrs,
1712                                                  size == 32 ? ".got2" : ".opd",
1713                                                  names, names_size, NULL);
1714   if (s != NULL)
1715     {
1716       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1717       this->special_ = ndx;
1718       if (size == 64)
1719         {
1720           if (this->abiversion() == 0)
1721             this->set_abiversion(1);
1722           else if (this->abiversion() > 1)
1723             gold_error(_("%s: .opd invalid in abiv%d"),
1724                        this->name().c_str(), this->abiversion());
1725         }
1726     }
1727   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1728 }
1729
1730 // Examine .rela.opd to build info about function entry points.
1731
1732 template<int size, bool big_endian>
1733 void
1734 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1735     size_t reloc_count,
1736     const unsigned char* prelocs,
1737     const unsigned char* plocal_syms)
1738 {
1739   if (size == 64)
1740     {
1741       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1742         Reltype;
1743       const int reloc_size
1744         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1745       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1746       Address expected_off = 0;
1747       bool regular = true;
1748       unsigned int opd_ent_size = 0;
1749
1750       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1751         {
1752           Reltype reloc(prelocs);
1753           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1754             = reloc.get_r_info();
1755           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1756           if (r_type == elfcpp::R_PPC64_ADDR64)
1757             {
1758               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1759               typename elfcpp::Elf_types<size>::Elf_Addr value;
1760               bool is_ordinary;
1761               unsigned int shndx;
1762               if (r_sym < this->local_symbol_count())
1763                 {
1764                   typename elfcpp::Sym<size, big_endian>
1765                     lsym(plocal_syms + r_sym * sym_size);
1766                   shndx = lsym.get_st_shndx();
1767                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1768                   value = lsym.get_st_value();
1769                 }
1770               else
1771                 shndx = this->symbol_section_and_value(r_sym, &value,
1772                                                        &is_ordinary);
1773               this->set_opd_ent(reloc.get_r_offset(), shndx,
1774                                 value + reloc.get_r_addend());
1775               if (i == 2)
1776                 {
1777                   expected_off = reloc.get_r_offset();
1778                   opd_ent_size = expected_off;
1779                 }
1780               else if (expected_off != reloc.get_r_offset())
1781                 regular = false;
1782               expected_off += opd_ent_size;
1783             }
1784           else if (r_type == elfcpp::R_PPC64_TOC)
1785             {
1786               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1787                 regular = false;
1788             }
1789           else
1790             {
1791               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1792                            this->name().c_str(), r_type);
1793               regular = false;
1794             }
1795         }
1796       if (reloc_count <= 2)
1797         opd_ent_size = this->section_size(this->opd_shndx());
1798       if (opd_ent_size != 24 && opd_ent_size != 16)
1799         regular = false;
1800       if (!regular)
1801         {
1802           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1803                        this->name().c_str());
1804           opd_ent_size = 0;
1805         }
1806     }
1807 }
1808
1809 template<int size, bool big_endian>
1810 void
1811 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1812 {
1813   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1814   if (size == 64)
1815     {
1816       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1817            p != rd->relocs.end();
1818            ++p)
1819         {
1820           if (p->data_shndx == this->opd_shndx())
1821             {
1822               uint64_t opd_size = this->section_size(this->opd_shndx());
1823               gold_assert(opd_size == static_cast<size_t>(opd_size));
1824               if (opd_size != 0)
1825                 {
1826                   this->init_opd(opd_size);
1827                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1828                                         rd->local_symbols->data());
1829                 }
1830               break;
1831             }
1832         }
1833     }
1834 }
1835
1836 // Read the symbols then set up st_other vector.
1837
1838 template<int size, bool big_endian>
1839 void
1840 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1841 {
1842   this->base_read_symbols(sd);
1843   if (size == 64)
1844     {
1845       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1846       const unsigned char* const pshdrs = sd->section_headers->data();
1847       const unsigned int loccount = this->do_local_symbol_count();
1848       if (loccount != 0)
1849         {
1850           this->st_other_.resize(loccount);
1851           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1852           off_t locsize = loccount * sym_size;
1853           const unsigned int symtab_shndx = this->symtab_shndx();
1854           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1855           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1856           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1857                                                       locsize, true, false);
1858           psyms += sym_size;
1859           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1860             {
1861               elfcpp::Sym<size, big_endian> sym(psyms);
1862               unsigned char st_other = sym.get_st_other();
1863               this->st_other_[i] = st_other;
1864               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1865                 {
1866                   if (this->abiversion() == 0)
1867                     this->set_abiversion(2);
1868                   else if (this->abiversion() < 2)
1869                     gold_error(_("%s: local symbol %d has invalid st_other"
1870                                  " for ABI version 1"),
1871                                this->name().c_str(), i);
1872                 }
1873             }
1874         }
1875     }
1876 }
1877
1878 template<int size, bool big_endian>
1879 void
1880 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1881 {
1882   this->e_flags_ |= ver;
1883   if (this->abiversion() != 0)
1884     {
1885       Target_powerpc<size, big_endian>* target =
1886         static_cast<Target_powerpc<size, big_endian>*>(
1887           parameters->sized_target<size, big_endian>());
1888       if (target->abiversion() == 0)
1889         target->set_abiversion(this->abiversion());
1890       else if (target->abiversion() != this->abiversion())
1891         gold_error(_("%s: ABI version %d is not compatible "
1892                      "with ABI version %d output"),
1893                    this->name().c_str(),
1894                    this->abiversion(), target->abiversion());
1895
1896     }
1897 }
1898
1899 // Call Sized_dynobj::base_read_symbols to read the symbols then
1900 // read .opd from a dynamic object, filling in opd_ent_ vector,
1901
1902 template<int size, bool big_endian>
1903 void
1904 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1905 {
1906   this->base_read_symbols(sd);
1907   if (size == 64)
1908     {
1909       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1910       const unsigned char* const pshdrs = sd->section_headers->data();
1911       const unsigned char* namesu = sd->section_names->data();
1912       const char* names = reinterpret_cast<const char*>(namesu);
1913       const unsigned char* s = NULL;
1914       const unsigned char* opd;
1915       section_size_type opd_size;
1916
1917       // Find and read .opd section.
1918       while (1)
1919         {
1920           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1921                                                          sd->section_names_size,
1922                                                          s);
1923           if (s == NULL)
1924             return;
1925
1926           typename elfcpp::Shdr<size, big_endian> shdr(s);
1927           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1928               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1929             {
1930               if (this->abiversion() == 0)
1931                 this->set_abiversion(1);
1932               else if (this->abiversion() > 1)
1933                 gold_error(_("%s: .opd invalid in abiv%d"),
1934                            this->name().c_str(), this->abiversion());
1935
1936               this->opd_shndx_ = (s - pshdrs) / shdr_size;
1937               this->opd_address_ = shdr.get_sh_addr();
1938               opd_size = convert_to_section_size_type(shdr.get_sh_size());
1939               opd = this->get_view(shdr.get_sh_offset(), opd_size,
1940                                    true, false);
1941               break;
1942             }
1943         }
1944
1945       // Build set of executable sections.
1946       // Using a set is probably overkill.  There is likely to be only
1947       // a few executable sections, typically .init, .text and .fini,
1948       // and they are generally grouped together.
1949       typedef std::set<Sec_info> Exec_sections;
1950       Exec_sections exec_sections;
1951       s = pshdrs;
1952       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1953         {
1954           typename elfcpp::Shdr<size, big_endian> shdr(s);
1955           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1956               && ((shdr.get_sh_flags()
1957                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1958                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1959               && shdr.get_sh_size() != 0)
1960             {
1961               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1962                                             shdr.get_sh_size(), i));
1963             }
1964         }
1965       if (exec_sections.empty())
1966         return;
1967
1968       // Look over the OPD entries.  This is complicated by the fact
1969       // that some binaries will use two-word entries while others
1970       // will use the standard three-word entries.  In most cases
1971       // the third word (the environment pointer for languages like
1972       // Pascal) is unused and will be zero.  If the third word is
1973       // used it should not be pointing into executable sections,
1974       // I think.
1975       this->init_opd(opd_size);
1976       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
1977         {
1978           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1979           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
1980           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
1981           if (val == 0)
1982             // Chances are that this is the third word of an OPD entry.
1983             continue;
1984           typename Exec_sections::const_iterator e
1985             = exec_sections.upper_bound(Sec_info(val, 0, 0));
1986           if (e != exec_sections.begin())
1987             {
1988               --e;
1989               if (e->start <= val && val < e->start + e->len)
1990                 {
1991                   // We have an address in an executable section.
1992                   // VAL ought to be the function entry, set it up.
1993                   this->set_opd_ent(p - opd, e->shndx, val);
1994                   // Skip second word of OPD entry, the TOC pointer.
1995                   p += 8;
1996                 }
1997             }
1998           // If we didn't match any executable sections, we likely
1999           // have a non-zero third word in the OPD entry.
2000         }
2001     }
2002 }
2003
2004 // Set up some symbols.
2005
2006 template<int size, bool big_endian>
2007 void
2008 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2009     Symbol_table* symtab,
2010     Layout* layout)
2011 {
2012   if (size == 32)
2013     {
2014       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2015       // undefined when scanning relocs (and thus requires
2016       // non-relative dynamic relocs).  The proper value will be
2017       // updated later.
2018       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2019       if (gotsym != NULL && gotsym->is_undefined())
2020         {
2021           Target_powerpc<size, big_endian>* target =
2022             static_cast<Target_powerpc<size, big_endian>*>(
2023                 parameters->sized_target<size, big_endian>());
2024           Output_data_got_powerpc<size, big_endian>* got
2025             = target->got_section(symtab, layout);
2026           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2027                                         Symbol_table::PREDEFINED,
2028                                         got, 0, 0,
2029                                         elfcpp::STT_OBJECT,
2030                                         elfcpp::STB_LOCAL,
2031                                         elfcpp::STV_HIDDEN, 0,
2032                                         false, false);
2033         }
2034
2035       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2036       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2037       if (sdasym != NULL && sdasym->is_undefined())
2038         {
2039           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2040           Output_section* os
2041             = layout->add_output_section_data(".sdata", 0,
2042                                               elfcpp::SHF_ALLOC
2043                                               | elfcpp::SHF_WRITE,
2044                                               sdata, ORDER_SMALL_DATA, false);
2045           symtab->define_in_output_data("_SDA_BASE_", NULL,
2046                                         Symbol_table::PREDEFINED,
2047                                         os, 32768, 0, elfcpp::STT_OBJECT,
2048                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2049                                         0, false, false);
2050         }
2051     }
2052   else
2053     {
2054       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2055       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2056       if (gotsym != NULL && gotsym->is_undefined())
2057         {
2058           Target_powerpc<size, big_endian>* target =
2059             static_cast<Target_powerpc<size, big_endian>*>(
2060                 parameters->sized_target<size, big_endian>());
2061           Output_data_got_powerpc<size, big_endian>* got
2062             = target->got_section(symtab, layout);
2063           symtab->define_in_output_data(".TOC.", NULL,
2064                                         Symbol_table::PREDEFINED,
2065                                         got, 0x8000, 0,
2066                                         elfcpp::STT_OBJECT,
2067                                         elfcpp::STB_LOCAL,
2068                                         elfcpp::STV_HIDDEN, 0,
2069                                         false, false);
2070         }
2071     }
2072 }
2073
2074 // Set up PowerPC target specific relobj.
2075
2076 template<int size, bool big_endian>
2077 Object*
2078 Target_powerpc<size, big_endian>::do_make_elf_object(
2079     const std::string& name,
2080     Input_file* input_file,
2081     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2082 {
2083   int et = ehdr.get_e_type();
2084   // ET_EXEC files are valid input for --just-symbols/-R,
2085   // and we treat them as relocatable objects.
2086   if (et == elfcpp::ET_REL
2087       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2088     {
2089       Powerpc_relobj<size, big_endian>* obj =
2090         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2091       obj->setup();
2092       return obj;
2093     }
2094   else if (et == elfcpp::ET_DYN)
2095     {
2096       Powerpc_dynobj<size, big_endian>* obj =
2097         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2098       obj->setup();
2099       return obj;
2100     }
2101   else
2102     {
2103       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2104       return NULL;
2105     }
2106 }
2107
2108 template<int size, bool big_endian>
2109 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2110 {
2111 public:
2112   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2113   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2114
2115   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2116     : Output_data_got<size, big_endian>(),
2117       symtab_(symtab), layout_(layout),
2118       header_ent_cnt_(size == 32 ? 3 : 1),
2119       header_index_(size == 32 ? 0x2000 : 0)
2120   { }
2121
2122   // Override all the Output_data_got methods we use so as to first call
2123   // reserve_ent().
2124   bool
2125   add_global(Symbol* gsym, unsigned int got_type)
2126   {
2127     this->reserve_ent();
2128     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2129   }
2130
2131   bool
2132   add_global_plt(Symbol* gsym, unsigned int got_type)
2133   {
2134     this->reserve_ent();
2135     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2136   }
2137
2138   bool
2139   add_global_tls(Symbol* gsym, unsigned int got_type)
2140   { return this->add_global_plt(gsym, got_type); }
2141
2142   void
2143   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2144                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2145   {
2146     this->reserve_ent();
2147     Output_data_got<size, big_endian>::
2148       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2149   }
2150
2151   void
2152   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2153                            Output_data_reloc_generic* rel_dyn,
2154                            unsigned int r_type_1, unsigned int r_type_2)
2155   {
2156     this->reserve_ent(2);
2157     Output_data_got<size, big_endian>::
2158       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2159   }
2160
2161   bool
2162   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2163   {
2164     this->reserve_ent();
2165     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2166                                                         got_type);
2167   }
2168
2169   bool
2170   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2171   {
2172     this->reserve_ent();
2173     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2174                                                             got_type);
2175   }
2176
2177   bool
2178   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2179   { return this->add_local_plt(object, sym_index, got_type); }
2180
2181   void
2182   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2183                      unsigned int got_type,
2184                      Output_data_reloc_generic* rel_dyn,
2185                      unsigned int r_type)
2186   {
2187     this->reserve_ent(2);
2188     Output_data_got<size, big_endian>::
2189       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2190   }
2191
2192   unsigned int
2193   add_constant(Valtype constant)
2194   {
2195     this->reserve_ent();
2196     return Output_data_got<size, big_endian>::add_constant(constant);
2197   }
2198
2199   unsigned int
2200   add_constant_pair(Valtype c1, Valtype c2)
2201   {
2202     this->reserve_ent(2);
2203     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2204   }
2205
2206   // Offset of _GLOBAL_OFFSET_TABLE_.
2207   unsigned int
2208   g_o_t() const
2209   {
2210     return this->got_offset(this->header_index_);
2211   }
2212
2213   // Offset of base used to access the GOT/TOC.
2214   // The got/toc pointer reg will be set to this value.
2215   Valtype
2216   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2217   {
2218     if (size == 32)
2219       return this->g_o_t();
2220     else
2221       return (this->output_section()->address()
2222               + object->toc_base_offset()
2223               - this->address());
2224   }
2225
2226   // Ensure our GOT has a header.
2227   void
2228   set_final_data_size()
2229   {
2230     if (this->header_ent_cnt_ != 0)
2231       this->make_header();
2232     Output_data_got<size, big_endian>::set_final_data_size();
2233   }
2234
2235   // First word of GOT header needs some values that are not
2236   // handled by Output_data_got so poke them in here.
2237   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2238   void
2239   do_write(Output_file* of)
2240   {
2241     Valtype val = 0;
2242     if (size == 32 && this->layout_->dynamic_data() != NULL)
2243       val = this->layout_->dynamic_section()->address();
2244     if (size == 64)
2245       val = this->output_section()->address() + 0x8000;
2246     this->replace_constant(this->header_index_, val);
2247     Output_data_got<size, big_endian>::do_write(of);
2248   }
2249
2250 private:
2251   void
2252   reserve_ent(unsigned int cnt = 1)
2253   {
2254     if (this->header_ent_cnt_ == 0)
2255       return;
2256     if (this->num_entries() + cnt > this->header_index_)
2257       this->make_header();
2258   }
2259
2260   void
2261   make_header()
2262   {
2263     this->header_ent_cnt_ = 0;
2264     this->header_index_ = this->num_entries();
2265     if (size == 32)
2266       {
2267         Output_data_got<size, big_endian>::add_constant(0);
2268         Output_data_got<size, big_endian>::add_constant(0);
2269         Output_data_got<size, big_endian>::add_constant(0);
2270
2271         // Define _GLOBAL_OFFSET_TABLE_ at the header
2272         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2273         if (gotsym != NULL)
2274           {
2275             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2276             sym->set_value(this->g_o_t());
2277           }
2278         else
2279           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2280                                                Symbol_table::PREDEFINED,
2281                                                this, this->g_o_t(), 0,
2282                                                elfcpp::STT_OBJECT,
2283                                                elfcpp::STB_LOCAL,
2284                                                elfcpp::STV_HIDDEN, 0,
2285                                                false, false);
2286       }
2287     else
2288       Output_data_got<size, big_endian>::add_constant(0);
2289   }
2290
2291   // Stashed pointers.
2292   Symbol_table* symtab_;
2293   Layout* layout_;
2294
2295   // GOT header size.
2296   unsigned int header_ent_cnt_;
2297   // GOT header index.
2298   unsigned int header_index_;
2299 };
2300
2301 // Get the GOT section, creating it if necessary.
2302
2303 template<int size, bool big_endian>
2304 Output_data_got_powerpc<size, big_endian>*
2305 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2306                                               Layout* layout)
2307 {
2308   if (this->got_ == NULL)
2309     {
2310       gold_assert(symtab != NULL && layout != NULL);
2311
2312       this->got_
2313         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2314
2315       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2316                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2317                                       this->got_, ORDER_DATA, false);
2318     }
2319
2320   return this->got_;
2321 }
2322
2323 // Get the dynamic reloc section, creating it if necessary.
2324
2325 template<int size, bool big_endian>
2326 typename Target_powerpc<size, big_endian>::Reloc_section*
2327 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2328 {
2329   if (this->rela_dyn_ == NULL)
2330     {
2331       gold_assert(layout != NULL);
2332       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2333       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2334                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2335                                       ORDER_DYNAMIC_RELOCS, false);
2336     }
2337   return this->rela_dyn_;
2338 }
2339
2340 // Similarly, but for ifunc symbols get the one for ifunc.
2341
2342 template<int size, bool big_endian>
2343 typename Target_powerpc<size, big_endian>::Reloc_section*
2344 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2345                                                    Layout* layout,
2346                                                    bool for_ifunc)
2347 {
2348   if (!for_ifunc)
2349     return this->rela_dyn_section(layout);
2350
2351   if (this->iplt_ == NULL)
2352     this->make_iplt_section(symtab, layout);
2353   return this->iplt_->rel_plt();
2354 }
2355
2356 class Stub_control
2357 {
2358  public:
2359   // Determine the stub group size.  The group size is the absolute
2360   // value of the parameter --stub-group-size.  If --stub-group-size
2361   // is passed a negative value, we restrict stubs to be always before
2362   // the stubbed branches.
2363   Stub_control(int32_t size)
2364     : state_(NO_GROUP), stub_group_size_(abs(size)),
2365       stub14_group_size_(abs(size)),
2366       stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
2367       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2368   {
2369     if (stub_group_size_ == 1)
2370       {
2371         // Default values.
2372         if (stubs_always_before_branch_)
2373           {
2374             stub_group_size_ = 0x1e00000;
2375             stub14_group_size_ = 0x7800;
2376           }
2377         else
2378           {
2379             stub_group_size_ = 0x1c00000;
2380             stub14_group_size_ = 0x7000;
2381           }
2382         suppress_size_errors_ = true;
2383       }
2384   }
2385
2386   // Return true iff input section can be handled by current stub
2387   // group.
2388   bool
2389   can_add_to_stub_group(Output_section* o,
2390                         const Output_section::Input_section* i,
2391                         bool has14);
2392
2393   const Output_section::Input_section*
2394   owner()
2395   { return owner_; }
2396
2397   Output_section*
2398   output_section()
2399   { return output_section_; }
2400
2401  private:
2402   typedef enum
2403   {
2404     NO_GROUP,
2405     FINDING_STUB_SECTION,
2406     HAS_STUB_SECTION
2407   } State;
2408
2409   State state_;
2410   uint32_t stub_group_size_;
2411   uint32_t stub14_group_size_;
2412   bool stubs_always_before_branch_;
2413   bool suppress_size_errors_;
2414   uint64_t group_end_addr_;
2415   const Output_section::Input_section* owner_;
2416   Output_section* output_section_;
2417 };
2418
2419 // Return true iff input section can be handled by current stub
2420 // group.
2421
2422 bool
2423 Stub_control::can_add_to_stub_group(Output_section* o,
2424                                     const Output_section::Input_section* i,
2425                                     bool has14)
2426 {
2427   uint32_t group_size
2428     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2429   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2430   uint64_t this_size;
2431   uint64_t start_addr = o->address();
2432
2433   if (whole_sec)
2434     // .init and .fini sections are pasted together to form a single
2435     // function.  We can't be adding stubs in the middle of the function.
2436     this_size = o->data_size();
2437   else
2438     {
2439       start_addr += i->relobj()->output_section_offset(i->shndx());
2440       this_size = i->data_size();
2441     }
2442   uint64_t end_addr = start_addr + this_size;
2443   bool toobig = this_size > group_size;
2444
2445   if (toobig && !this->suppress_size_errors_)
2446     gold_warning(_("%s:%s exceeds group size"),
2447                  i->relobj()->name().c_str(),
2448                  i->relobj()->section_name(i->shndx()).c_str());
2449
2450   if (this->state_ != HAS_STUB_SECTION
2451       && (!whole_sec || this->output_section_ != o)
2452       && (this->state_ == NO_GROUP
2453           || this->group_end_addr_ - end_addr < group_size))
2454     {
2455       this->owner_ = i;
2456       this->output_section_ = o;
2457     }
2458
2459   if (this->state_ == NO_GROUP)
2460     {
2461       this->state_ = FINDING_STUB_SECTION;
2462       this->group_end_addr_ = end_addr;
2463     }
2464   else if (this->group_end_addr_ - start_addr < group_size)
2465     ;
2466   // Adding this section would make the group larger than GROUP_SIZE.
2467   else if (this->state_ == FINDING_STUB_SECTION
2468            && !this->stubs_always_before_branch_
2469            && !toobig)
2470     {
2471       // But wait, there's more!  Input sections up to GROUP_SIZE
2472       // bytes before the stub table can be handled by it too.
2473       this->state_ = HAS_STUB_SECTION;
2474       this->group_end_addr_ = end_addr;
2475     }
2476   else
2477     {
2478       this->state_ = NO_GROUP;
2479       return false;
2480     }
2481   return true;
2482 }
2483
2484 // Look over all the input sections, deciding where to place stubs.
2485
2486 template<int size, bool big_endian>
2487 void
2488 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2489                                                  const Task*)
2490 {
2491   Stub_control stub_control(parameters->options().stub_group_size());
2492
2493   // Group input sections and insert stub table
2494   Stub_table<size, big_endian>* stub_table = NULL;
2495   Layout::Section_list section_list;
2496   layout->get_executable_sections(&section_list);
2497   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2498   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2499        o != section_list.rend();
2500        ++o)
2501     {
2502       typedef Output_section::Input_section_list Input_section_list;
2503       for (Input_section_list::const_reverse_iterator i
2504              = (*o)->input_sections().rbegin();
2505            i != (*o)->input_sections().rend();
2506            ++i)
2507         {
2508           if (i->is_input_section())
2509             {
2510               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2511                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2512               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2513               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2514                 {
2515                   stub_table->init(stub_control.owner(),
2516                                    stub_control.output_section());
2517                   stub_table = NULL;
2518                 }
2519               if (stub_table == NULL)
2520                 stub_table = this->new_stub_table();
2521               ppcobj->set_stub_table(i->shndx(), stub_table);
2522             }
2523         }
2524     }
2525   if (stub_table != NULL)
2526     {
2527       const Output_section::Input_section* i = stub_control.owner();
2528       if (!i->is_input_section())
2529         {
2530           // Corner case.  A new stub group was made for the first
2531           // section (last one looked at here) for some reason, but
2532           // the first section is already being used as the owner for
2533           // a stub table for following sections.  Force it into that
2534           // stub group.
2535           gold_assert(this->stub_tables_.size() >= 2);
2536           this->stub_tables_.pop_back();
2537           delete stub_table;
2538           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2539             <Powerpc_relobj<size, big_endian>*>(i->relobj());
2540           ppcobj->set_stub_table(i->shndx(), this->stub_tables_.back());
2541         }
2542       else
2543         stub_table->init(i, stub_control.output_section());
2544     }
2545 }
2546
2547 // If this branch needs a plt call stub, or a long branch stub, make one.
2548
2549 template<int size, bool big_endian>
2550 void
2551 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2552     Stub_table<size, big_endian>* stub_table,
2553     Stub_table<size, big_endian>* ifunc_stub_table,
2554     Symbol_table* symtab) const
2555 {
2556   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2557   if (sym != NULL && sym->is_forwarder())
2558     sym = symtab->resolve_forwards(sym);
2559   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2560   Target_powerpc<size, big_endian>* target =
2561     static_cast<Target_powerpc<size, big_endian>*>(
2562       parameters->sized_target<size, big_endian>());
2563   if (gsym != NULL
2564       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2565       : this->object_->local_has_plt_offset(this->r_sym_))
2566     {
2567       if (size == 64
2568           && gsym != NULL
2569           && target->abiversion() >= 2
2570           && !parameters->options().output_is_position_independent()
2571           && !is_branch_reloc(this->r_type_))
2572         target->glink_section()->add_global_entry(gsym);
2573       else
2574         {
2575           if (stub_table == NULL)
2576             stub_table = this->object_->stub_table(this->shndx_);
2577           if (stub_table == NULL)
2578             {
2579               // This is a ref from a data section to an ifunc symbol.
2580               stub_table = ifunc_stub_table;
2581             }
2582           gold_assert(stub_table != NULL);
2583           if (gsym != NULL)
2584             stub_table->add_plt_call_entry(this->object_, gsym,
2585                                            this->r_type_, this->addend_);
2586           else
2587             stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2588                                            this->r_type_, this->addend_);
2589         }
2590     }
2591   else
2592     {
2593       unsigned long max_branch_offset;
2594       if (this->r_type_ == elfcpp::R_POWERPC_REL14
2595           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2596           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2597         max_branch_offset = 1 << 15;
2598       else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2599                || this->r_type_ == elfcpp::R_PPC_PLTREL24
2600                || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2601         max_branch_offset = 1 << 25;
2602       else
2603         return;
2604       Address from = this->object_->get_output_section_offset(this->shndx_);
2605       gold_assert(from != invalid_address);
2606       from += (this->object_->output_section(this->shndx_)->address()
2607                + this->offset_);
2608       Address to;
2609       if (gsym != NULL)
2610         {
2611           switch (gsym->source())
2612             {
2613             case Symbol::FROM_OBJECT:
2614               {
2615                 Object* symobj = gsym->object();
2616                 if (symobj->is_dynamic()
2617                     || symobj->pluginobj() != NULL)
2618                   return;
2619                 bool is_ordinary;
2620                 unsigned int shndx = gsym->shndx(&is_ordinary);
2621                 if (shndx == elfcpp::SHN_UNDEF)
2622                   return;
2623               }
2624               break;
2625
2626             case Symbol::IS_UNDEFINED:
2627               return;
2628
2629             default:
2630               break;
2631             }
2632           Symbol_table::Compute_final_value_status status;
2633           to = symtab->compute_final_value<size>(gsym, &status);
2634           if (status != Symbol_table::CFVS_OK)
2635             return;
2636           if (size == 64)
2637             to += this->object_->ppc64_local_entry_offset(gsym);
2638         }
2639       else
2640         {
2641           const Symbol_value<size>* psymval
2642             = this->object_->local_symbol(this->r_sym_);
2643           Symbol_value<size> symval;
2644           typedef Sized_relobj_file<size, big_endian> ObjType;
2645           typename ObjType::Compute_final_local_value_status status
2646             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2647                                                        &symval, symtab);
2648           if (status != ObjType::CFLV_OK
2649               || !symval.has_output_value())
2650             return;
2651           to = symval.value(this->object_, 0);
2652           if (size == 64)
2653             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2654         }
2655       to += this->addend_;
2656       if (stub_table == NULL)
2657         stub_table = this->object_->stub_table(this->shndx_);
2658       if (size == 64 && target->abiversion() < 2)
2659         {
2660           unsigned int dest_shndx;
2661           to = target->symval_for_branch(symtab, to, gsym,
2662                                          this->object_, &dest_shndx);
2663         }
2664       Address delta = to - from;
2665       if (delta + max_branch_offset >= 2 * max_branch_offset)
2666         {
2667           if (stub_table == NULL)
2668             {
2669               gold_warning(_("%s:%s: branch in non-executable section,"
2670                              " no long branch stub for you"),
2671                            this->object_->name().c_str(),
2672                            this->object_->section_name(this->shndx_).c_str());
2673               return;
2674             }
2675           stub_table->add_long_branch_entry(this->object_, to);
2676         }
2677     }
2678 }
2679
2680 // Relaxation hook.  This is where we do stub generation.
2681
2682 template<int size, bool big_endian>
2683 bool
2684 Target_powerpc<size, big_endian>::do_relax(int pass,
2685                                            const Input_objects*,
2686                                            Symbol_table* symtab,
2687                                            Layout* layout,
2688                                            const Task* task)
2689 {
2690   unsigned int prev_brlt_size = 0;
2691   if (pass == 1)
2692     {
2693       bool thread_safe
2694         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2695       if (size == 64
2696           && this->abiversion() < 2
2697           && !thread_safe
2698           && !parameters->options().user_set_plt_thread_safe())
2699         {
2700           static const char* const thread_starter[] =
2701             {
2702               "pthread_create",
2703               /* libstdc++ */
2704               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2705               /* librt */
2706               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2707               "mq_notify", "create_timer",
2708               /* libanl */
2709               "getaddrinfo_a",
2710               /* libgomp */
2711               "GOMP_parallel",
2712               "GOMP_parallel_start",
2713               "GOMP_parallel_loop_static",
2714               "GOMP_parallel_loop_static_start",
2715               "GOMP_parallel_loop_dynamic",
2716               "GOMP_parallel_loop_dynamic_start",
2717               "GOMP_parallel_loop_guided",
2718               "GOMP_parallel_loop_guided_start",
2719               "GOMP_parallel_loop_runtime",
2720               "GOMP_parallel_loop_runtime_start",
2721               "GOMP_parallel_sections",
2722               "GOMP_parallel_sections_start",
2723               /* libgo */
2724               "__go_go",
2725             };
2726
2727           if (parameters->options().shared())
2728             thread_safe = true;
2729           else
2730             {
2731               for (unsigned int i = 0;
2732                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2733                    i++)
2734                 {
2735                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2736                   thread_safe = (sym != NULL
2737                                  && sym->in_reg()
2738                                  && sym->in_real_elf());
2739                   if (thread_safe)
2740                     break;
2741                 }
2742             }
2743         }
2744       this->plt_thread_safe_ = thread_safe;
2745       this->group_sections(layout, task);
2746     }
2747
2748   // We need address of stub tables valid for make_stub.
2749   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2750        p != this->stub_tables_.end();
2751        ++p)
2752     {
2753       const Powerpc_relobj<size, big_endian>* object
2754         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2755       Address off = object->get_output_section_offset((*p)->shndx());
2756       gold_assert(off != invalid_address);
2757       Output_section* os = (*p)->output_section();
2758       (*p)->set_address_and_size(os, off);
2759     }
2760
2761   if (pass != 1)
2762     {
2763       // Clear plt call stubs, long branch stubs and branch lookup table.
2764       prev_brlt_size = this->branch_lookup_table_.size();
2765       this->branch_lookup_table_.clear();
2766       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2767            p != this->stub_tables_.end();
2768            ++p)
2769         {
2770           (*p)->clear_stubs();
2771         }
2772     }
2773
2774   // Build all the stubs.
2775   Stub_table<size, big_endian>* ifunc_stub_table
2776     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2777   Stub_table<size, big_endian>* one_stub_table
2778     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2779   for (typename Branches::const_iterator b = this->branch_info_.begin();
2780        b != this->branch_info_.end();
2781        b++)
2782     {
2783       b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2784     }
2785
2786   // Did anything change size?
2787   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2788   bool again = num_huge_branches != prev_brlt_size;
2789   if (size == 64 && num_huge_branches != 0)
2790     this->make_brlt_section(layout);
2791   if (size == 64 && again)
2792     this->brlt_section_->set_current_size(num_huge_branches);
2793
2794   typedef Unordered_set<Output_section*> Output_sections;
2795   Output_sections os_need_update;
2796   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2797        p != this->stub_tables_.end();
2798        ++p)
2799     {
2800       if ((*p)->size_update())
2801         {
2802           again = true;
2803           (*p)->add_eh_frame(layout);
2804           os_need_update.insert((*p)->output_section());
2805         }
2806     }
2807
2808   // Set output section offsets for all input sections in an output
2809   // section that just changed size.  Anything past the stubs will
2810   // need updating.
2811   for (typename Output_sections::iterator p = os_need_update.begin();
2812        p != os_need_update.end();
2813        p++)
2814     {
2815       Output_section* os = *p;
2816       Address off = 0;
2817       typedef Output_section::Input_section_list Input_section_list;
2818       for (Input_section_list::const_iterator i = os->input_sections().begin();
2819            i != os->input_sections().end();
2820            ++i)
2821         {
2822           off = align_address(off, i->addralign());
2823           if (i->is_input_section() || i->is_relaxed_input_section())
2824             i->relobj()->set_section_offset(i->shndx(), off);
2825           if (i->is_relaxed_input_section())
2826             {
2827               Stub_table<size, big_endian>* stub_table
2828                 = static_cast<Stub_table<size, big_endian>*>(
2829                     i->relaxed_input_section());
2830               off += stub_table->set_address_and_size(os, off);
2831             }
2832           else
2833             off += i->data_size();
2834         }
2835       // If .branch_lt is part of this output section, then we have
2836       // just done the offset adjustment.
2837       os->clear_section_offsets_need_adjustment();
2838     }
2839
2840   if (size == 64
2841       && !again
2842       && num_huge_branches != 0
2843       && parameters->options().output_is_position_independent())
2844     {
2845       // Fill in the BRLT relocs.
2846       this->brlt_section_->reset_brlt_sizes();
2847       for (typename Branch_lookup_table::const_iterator p
2848              = this->branch_lookup_table_.begin();
2849            p != this->branch_lookup_table_.end();
2850            ++p)
2851         {
2852           this->brlt_section_->add_reloc(p->first, p->second);
2853         }
2854       this->brlt_section_->finalize_brlt_sizes();
2855     }
2856   return again;
2857 }
2858
2859 template<int size, bool big_endian>
2860 void
2861 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2862                                                       unsigned char* oview,
2863                                                       uint64_t* paddress,
2864                                                       off_t* plen) const
2865 {
2866   uint64_t address = plt->address();
2867   off_t len = plt->data_size();
2868
2869   if (plt == this->glink_)
2870     {
2871       // See Output_data_glink::do_write() for glink contents.
2872       if (len == 0)
2873         {
2874           gold_assert(parameters->doing_static_link());
2875           // Static linking may need stubs, to support ifunc and long
2876           // branches.  We need to create an output section for
2877           // .eh_frame early in the link process, to have a place to
2878           // attach stub .eh_frame info.  We also need to have
2879           // registered a CIE that matches the stub CIE.  Both of
2880           // these requirements are satisfied by creating an FDE and
2881           // CIE for .glink, even though static linking will leave
2882           // .glink zero length.
2883           // ??? Hopefully generating an FDE with a zero address range
2884           // won't confuse anything that consumes .eh_frame info.
2885         }
2886       else if (size == 64)
2887         {
2888           // There is one word before __glink_PLTresolve
2889           address += 8;
2890           len -= 8;
2891         }
2892       else if (parameters->options().output_is_position_independent())
2893         {
2894           // There are two FDEs for a position independent glink.
2895           // The first covers the branch table, the second
2896           // __glink_PLTresolve at the end of glink.
2897           off_t resolve_size = this->glink_->pltresolve_size;
2898           if (oview[9] == elfcpp::DW_CFA_nop)
2899             len -= resolve_size;
2900           else
2901             {
2902               address += len - resolve_size;
2903               len = resolve_size;
2904             }
2905         }
2906     }
2907   else
2908     {
2909       // Must be a stub table.
2910       const Stub_table<size, big_endian>* stub_table
2911         = static_cast<const Stub_table<size, big_endian>*>(plt);
2912       uint64_t stub_address = stub_table->stub_address();
2913       len -= stub_address - address;
2914       address = stub_address;
2915     }
2916
2917   *paddress = address;
2918   *plen = len;
2919 }
2920
2921 // A class to handle the PLT data.
2922
2923 template<int size, bool big_endian>
2924 class Output_data_plt_powerpc : public Output_section_data_build
2925 {
2926  public:
2927   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2928                             size, big_endian> Reloc_section;
2929
2930   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2931                           Reloc_section* plt_rel,
2932                           const char* name)
2933     : Output_section_data_build(size == 32 ? 4 : 8),
2934       rel_(plt_rel),
2935       targ_(targ),
2936       name_(name)
2937   { }
2938
2939   // Add an entry to the PLT.
2940   void
2941   add_entry(Symbol*);
2942
2943   void
2944   add_ifunc_entry(Symbol*);
2945
2946   void
2947   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2948
2949   // Return the .rela.plt section data.
2950   Reloc_section*
2951   rel_plt() const
2952   {
2953     return this->rel_;
2954   }
2955
2956   // Return the number of PLT entries.
2957   unsigned int
2958   entry_count() const
2959   {
2960     if (this->current_data_size() == 0)
2961       return 0;
2962     return ((this->current_data_size() - this->first_plt_entry_offset())
2963             / this->plt_entry_size());
2964   }
2965
2966  protected:
2967   void
2968   do_adjust_output_section(Output_section* os)
2969   {
2970     os->set_entsize(0);
2971   }
2972
2973   // Write to a map file.
2974   void
2975   do_print_to_mapfile(Mapfile* mapfile) const
2976   { mapfile->print_output_data(this, this->name_); }
2977
2978  private:
2979   // Return the offset of the first non-reserved PLT entry.
2980   unsigned int
2981   first_plt_entry_offset() const
2982   {
2983     // IPLT has no reserved entry.
2984     if (this->name_[3] == 'I')
2985       return 0;
2986     return this->targ_->first_plt_entry_offset();
2987   }
2988
2989   // Return the size of each PLT entry.
2990   unsigned int
2991   plt_entry_size() const
2992   {
2993     return this->targ_->plt_entry_size();
2994   }
2995
2996   // Write out the PLT data.
2997   void
2998   do_write(Output_file*);
2999
3000   // The reloc section.
3001   Reloc_section* rel_;
3002   // Allows access to .glink for do_write.
3003   Target_powerpc<size, big_endian>* targ_;
3004   // What to report in map file.
3005   const char *name_;
3006 };
3007
3008 // Add an entry to the PLT.
3009
3010 template<int size, bool big_endian>
3011 void
3012 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3013 {
3014   if (!gsym->has_plt_offset())
3015     {
3016       section_size_type off = this->current_data_size();
3017       if (off == 0)
3018         off += this->first_plt_entry_offset();
3019       gsym->set_plt_offset(off);
3020       gsym->set_needs_dynsym_entry();
3021       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3022       this->rel_->add_global(gsym, dynrel, this, off, 0);
3023       off += this->plt_entry_size();
3024       this->set_current_data_size(off);
3025     }
3026 }
3027
3028 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3029
3030 template<int size, bool big_endian>
3031 void
3032 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3033 {
3034   if (!gsym->has_plt_offset())
3035     {
3036       section_size_type off = this->current_data_size();
3037       gsym->set_plt_offset(off);
3038       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3039       if (size == 64 && this->targ_->abiversion() < 2)
3040         dynrel = elfcpp::R_PPC64_JMP_IREL;
3041       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3042       off += this->plt_entry_size();
3043       this->set_current_data_size(off);
3044     }
3045 }
3046
3047 // Add an entry for a local ifunc symbol to the IPLT.
3048
3049 template<int size, bool big_endian>
3050 void
3051 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3052     Sized_relobj_file<size, big_endian>* relobj,
3053     unsigned int local_sym_index)
3054 {
3055   if (!relobj->local_has_plt_offset(local_sym_index))
3056     {
3057       section_size_type off = this->current_data_size();
3058       relobj->set_local_plt_offset(local_sym_index, off);
3059       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3060       if (size == 64 && this->targ_->abiversion() < 2)
3061         dynrel = elfcpp::R_PPC64_JMP_IREL;
3062       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3063                                               this, off, 0);
3064       off += this->plt_entry_size();
3065       this->set_current_data_size(off);
3066     }
3067 }
3068
3069 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3070 static const uint32_t add_2_2_11        = 0x7c425a14;
3071 static const uint32_t add_3_3_2         = 0x7c631214;
3072 static const uint32_t add_3_3_13        = 0x7c636a14;
3073 static const uint32_t add_11_0_11       = 0x7d605a14;
3074 static const uint32_t add_11_2_11       = 0x7d625a14;
3075 static const uint32_t add_11_11_2       = 0x7d6b1214;
3076 static const uint32_t addi_0_12         = 0x380c0000;
3077 static const uint32_t addi_2_2          = 0x38420000;
3078 static const uint32_t addi_3_3          = 0x38630000;
3079 static const uint32_t addi_11_11        = 0x396b0000;
3080 static const uint32_t addi_12_12        = 0x398c0000;
3081 static const uint32_t addis_0_2         = 0x3c020000;
3082 static const uint32_t addis_0_13        = 0x3c0d0000;
3083 static const uint32_t addis_3_2         = 0x3c620000;
3084 static const uint32_t addis_3_13        = 0x3c6d0000;
3085 static const uint32_t addis_11_2        = 0x3d620000;
3086 static const uint32_t addis_11_11       = 0x3d6b0000;
3087 static const uint32_t addis_11_30       = 0x3d7e0000;
3088 static const uint32_t addis_12_2        = 0x3d820000;
3089 static const uint32_t addis_12_12       = 0x3d8c0000;
3090 static const uint32_t b                 = 0x48000000;
3091 static const uint32_t bcl_20_31         = 0x429f0005;
3092 static const uint32_t bctr              = 0x4e800420;
3093 static const uint32_t blr               = 0x4e800020;
3094 static const uint32_t bnectr_p4         = 0x4ce20420;
3095 static const uint32_t cmpldi_2_0        = 0x28220000;
3096 static const uint32_t cror_15_15_15     = 0x4def7b82;
3097 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3098 static const uint32_t ld_0_1            = 0xe8010000;
3099 static const uint32_t ld_0_12           = 0xe80c0000;
3100 static const uint32_t ld_2_1            = 0xe8410000;
3101 static const uint32_t ld_2_2            = 0xe8420000;
3102 static const uint32_t ld_2_11           = 0xe84b0000;
3103 static const uint32_t ld_11_2           = 0xe9620000;
3104 static const uint32_t ld_11_11          = 0xe96b0000;
3105 static const uint32_t ld_12_2           = 0xe9820000;
3106 static const uint32_t ld_12_11          = 0xe98b0000;
3107 static const uint32_t ld_12_12          = 0xe98c0000;
3108 static const uint32_t lfd_0_1           = 0xc8010000;
3109 static const uint32_t li_0_0            = 0x38000000;
3110 static const uint32_t li_12_0           = 0x39800000;
3111 static const uint32_t lis_0_0           = 0x3c000000;
3112 static const uint32_t lis_11            = 0x3d600000;
3113 static const uint32_t lis_12            = 0x3d800000;
3114 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3115 static const uint32_t lwz_0_12          = 0x800c0000;
3116 static const uint32_t lwz_11_11         = 0x816b0000;
3117 static const uint32_t lwz_11_30         = 0x817e0000;
3118 static const uint32_t lwz_12_12         = 0x818c0000;
3119 static const uint32_t lwzu_0_12         = 0x840c0000;
3120 static const uint32_t mflr_0            = 0x7c0802a6;
3121 static const uint32_t mflr_11           = 0x7d6802a6;
3122 static const uint32_t mflr_12           = 0x7d8802a6;
3123 static const uint32_t mtctr_0           = 0x7c0903a6;
3124 static const uint32_t mtctr_11          = 0x7d6903a6;
3125 static const uint32_t mtctr_12          = 0x7d8903a6;
3126 static const uint32_t mtlr_0            = 0x7c0803a6;
3127 static const uint32_t mtlr_12           = 0x7d8803a6;
3128 static const uint32_t nop               = 0x60000000;
3129 static const uint32_t ori_0_0_0         = 0x60000000;
3130 static const uint32_t srdi_0_0_2        = 0x7800f082;
3131 static const uint32_t std_0_1           = 0xf8010000;
3132 static const uint32_t std_0_12          = 0xf80c0000;
3133 static const uint32_t std_2_1           = 0xf8410000;
3134 static const uint32_t stfd_0_1          = 0xd8010000;
3135 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3136 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3137 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3138 static const uint32_t xor_2_12_12       = 0x7d826278;
3139 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3140
3141 // Write out the PLT.
3142
3143 template<int size, bool big_endian>
3144 void
3145 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3146 {
3147   if (size == 32 && this->name_[3] != 'I')
3148     {
3149       const section_size_type offset = this->offset();
3150       const section_size_type oview_size
3151         = convert_to_section_size_type(this->data_size());
3152       unsigned char* const oview = of->get_output_view(offset, oview_size);
3153       unsigned char* pov = oview;
3154       unsigned char* endpov = oview + oview_size;
3155
3156       // The address of the .glink branch table
3157       const Output_data_glink<size, big_endian>* glink
3158         = this->targ_->glink_section();
3159       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3160
3161       while (pov < endpov)
3162         {
3163           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3164           pov += 4;
3165           branch_tab += 4;
3166         }
3167
3168       of->write_output_view(offset, oview_size, oview);
3169     }
3170 }
3171
3172 // Create the PLT section.
3173
3174 template<int size, bool big_endian>
3175 void
3176 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3177                                                    Layout* layout)
3178 {
3179   if (this->plt_ == NULL)
3180     {
3181       if (this->got_ == NULL)
3182         this->got_section(symtab, layout);
3183
3184       if (this->glink_ == NULL)
3185         make_glink_section(layout);
3186
3187       // Ensure that .rela.dyn always appears before .rela.plt  This is
3188       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3189       // needs to include .rela.plt in its range.
3190       this->rela_dyn_section(layout);
3191
3192       Reloc_section* plt_rel = new Reloc_section(false);
3193       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3194                                       elfcpp::SHF_ALLOC, plt_rel,
3195                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3196       this->plt_
3197         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3198                                                         "** PLT");
3199       layout->add_output_section_data(".plt",
3200                                       (size == 32
3201                                        ? elfcpp::SHT_PROGBITS
3202                                        : elfcpp::SHT_NOBITS),
3203                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3204                                       this->plt_,
3205                                       (size == 32
3206                                        ? ORDER_SMALL_DATA
3207                                        : ORDER_SMALL_BSS),
3208                                       false);
3209     }
3210 }
3211
3212 // Create the IPLT section.
3213
3214 template<int size, bool big_endian>
3215 void
3216 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3217                                                     Layout* layout)
3218 {
3219   if (this->iplt_ == NULL)
3220     {
3221       this->make_plt_section(symtab, layout);
3222
3223       Reloc_section* iplt_rel = new Reloc_section(false);
3224       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3225       this->iplt_
3226         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3227                                                         "** IPLT");
3228       this->plt_->output_section()->add_output_section_data(this->iplt_);
3229     }
3230 }
3231
3232 // A section for huge long branch addresses, similar to plt section.
3233
3234 template<int size, bool big_endian>
3235 class Output_data_brlt_powerpc : public Output_section_data_build
3236 {
3237  public:
3238   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3239   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3240                             size, big_endian> Reloc_section;
3241
3242   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3243                            Reloc_section* brlt_rel)
3244     : Output_section_data_build(size == 32 ? 4 : 8),
3245       rel_(brlt_rel),
3246       targ_(targ)
3247   { }
3248
3249   void
3250   reset_brlt_sizes()
3251   {
3252     this->reset_data_size();
3253     this->rel_->reset_data_size();
3254   }
3255
3256   void
3257   finalize_brlt_sizes()
3258   {
3259     this->finalize_data_size();
3260     this->rel_->finalize_data_size();
3261   }
3262
3263   // Add a reloc for an entry in the BRLT.
3264   void
3265   add_reloc(Address to, unsigned int off)
3266   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3267
3268   // Update section and reloc section size.
3269   void
3270   set_current_size(unsigned int num_branches)
3271   {
3272     this->reset_address_and_file_offset();
3273     this->set_current_data_size(num_branches * 16);
3274     this->finalize_data_size();
3275     Output_section* os = this->output_section();
3276     os->set_section_offsets_need_adjustment();
3277     if (this->rel_ != NULL)
3278       {
3279         unsigned int reloc_size
3280           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3281         this->rel_->reset_address_and_file_offset();
3282         this->rel_->set_current_data_size(num_branches * reloc_size);
3283         this->rel_->finalize_data_size();
3284         Output_section* os = this->rel_->output_section();
3285         os->set_section_offsets_need_adjustment();
3286       }
3287   }
3288
3289  protected:
3290   void
3291   do_adjust_output_section(Output_section* os)
3292   {
3293     os->set_entsize(0);
3294   }
3295
3296   // Write to a map file.
3297   void
3298   do_print_to_mapfile(Mapfile* mapfile) const
3299   { mapfile->print_output_data(this, "** BRLT"); }
3300
3301  private:
3302   // Write out the BRLT data.
3303   void
3304   do_write(Output_file*);
3305
3306   // The reloc section.
3307   Reloc_section* rel_;
3308   Target_powerpc<size, big_endian>* targ_;
3309 };
3310
3311 // Make the branch lookup table section.
3312
3313 template<int size, bool big_endian>
3314 void
3315 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3316 {
3317   if (size == 64 && this->brlt_section_ == NULL)
3318     {
3319       Reloc_section* brlt_rel = NULL;
3320       bool is_pic = parameters->options().output_is_position_independent();
3321       if (is_pic)
3322         {
3323           // When PIC we can't fill in .branch_lt (like .plt it can be
3324           // a bss style section) but must initialise at runtime via
3325           // dynamic relocats.
3326           this->rela_dyn_section(layout);
3327           brlt_rel = new Reloc_section(false);
3328           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3329         }
3330       this->brlt_section_
3331         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3332       if (this->plt_ && is_pic)
3333         this->plt_->output_section()
3334           ->add_output_section_data(this->brlt_section_);
3335       else
3336         layout->add_output_section_data(".branch_lt",
3337                                         (is_pic ? elfcpp::SHT_NOBITS
3338                                          : elfcpp::SHT_PROGBITS),
3339                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3340                                         this->brlt_section_,
3341                                         (is_pic ? ORDER_SMALL_BSS
3342                                          : ORDER_SMALL_DATA),
3343                                         false);
3344     }
3345 }
3346
3347 // Write out .branch_lt when non-PIC.
3348
3349 template<int size, bool big_endian>
3350 void
3351 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3352 {
3353   if (size == 64 && !parameters->options().output_is_position_independent())
3354     {
3355       const section_size_type offset = this->offset();
3356       const section_size_type oview_size
3357         = convert_to_section_size_type(this->data_size());
3358       unsigned char* const oview = of->get_output_view(offset, oview_size);
3359
3360       this->targ_->write_branch_lookup_table(oview);
3361       of->write_output_view(offset, oview_size, oview);
3362     }
3363 }
3364
3365 static inline uint32_t
3366 l(uint32_t a)
3367 {
3368   return a & 0xffff;
3369 }
3370
3371 static inline uint32_t
3372 hi(uint32_t a)
3373 {
3374   return l(a >> 16);
3375 }
3376
3377 static inline uint32_t
3378 ha(uint32_t a)
3379 {
3380   return hi(a + 0x8000);
3381 }
3382
3383 template<int size>
3384 struct Eh_cie
3385 {
3386   static const unsigned char eh_frame_cie[12];
3387 };
3388
3389 template<int size>
3390 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3391 {
3392   1,                                    // CIE version.
3393   'z', 'R', 0,                          // Augmentation string.
3394   4,                                    // Code alignment.
3395   0x80 - size / 8 ,                     // Data alignment.
3396   65,                                   // RA reg.
3397   1,                                    // Augmentation size.
3398   (elfcpp::DW_EH_PE_pcrel
3399    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3400   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3401 };
3402
3403 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3404 static const unsigned char glink_eh_frame_fde_64v1[] =
3405 {
3406   0, 0, 0, 0,                           // Replaced with offset to .glink.
3407   0, 0, 0, 0,                           // Replaced with size of .glink.
3408   0,                                    // Augmentation size.
3409   elfcpp::DW_CFA_advance_loc + 1,
3410   elfcpp::DW_CFA_register, 65, 12,
3411   elfcpp::DW_CFA_advance_loc + 4,
3412   elfcpp::DW_CFA_restore_extended, 65
3413 };
3414
3415 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3416 static const unsigned char glink_eh_frame_fde_64v2[] =
3417 {
3418   0, 0, 0, 0,                           // Replaced with offset to .glink.
3419   0, 0, 0, 0,                           // Replaced with size of .glink.
3420   0,                                    // Augmentation size.
3421   elfcpp::DW_CFA_advance_loc + 1,
3422   elfcpp::DW_CFA_register, 65, 0,
3423   elfcpp::DW_CFA_advance_loc + 4,
3424   elfcpp::DW_CFA_restore_extended, 65
3425 };
3426
3427 // Describe __glink_PLTresolve use of LR, 32-bit version.
3428 static const unsigned char glink_eh_frame_fde_32[] =
3429 {
3430   0, 0, 0, 0,                           // Replaced with offset to .glink.
3431   0, 0, 0, 0,                           // Replaced with size of .glink.
3432   0,                                    // Augmentation size.
3433   elfcpp::DW_CFA_advance_loc + 2,
3434   elfcpp::DW_CFA_register, 65, 0,
3435   elfcpp::DW_CFA_advance_loc + 4,
3436   elfcpp::DW_CFA_restore_extended, 65
3437 };
3438
3439 static const unsigned char default_fde[] =
3440 {
3441   0, 0, 0, 0,                           // Replaced with offset to stubs.
3442   0, 0, 0, 0,                           // Replaced with size of stubs.
3443   0,                                    // Augmentation size.
3444   elfcpp::DW_CFA_nop,                   // Pad.
3445   elfcpp::DW_CFA_nop,
3446   elfcpp::DW_CFA_nop
3447 };
3448
3449 template<bool big_endian>
3450 static inline void
3451 write_insn(unsigned char* p, uint32_t v)
3452 {
3453   elfcpp::Swap<32, big_endian>::writeval(p, v);
3454 }
3455
3456 // Stub_table holds information about plt and long branch stubs.
3457 // Stubs are built in an area following some input section determined
3458 // by group_sections().  This input section is converted to a relaxed
3459 // input section allowing it to be resized to accommodate the stubs
3460
3461 template<int size, bool big_endian>
3462 class Stub_table : public Output_relaxed_input_section
3463 {
3464  public:
3465   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3466   static const Address invalid_address = static_cast<Address>(0) - 1;
3467
3468   Stub_table(Target_powerpc<size, big_endian>* targ)
3469     : Output_relaxed_input_section(NULL, 0, 0),
3470       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3471       orig_data_size_(0), plt_size_(0), last_plt_size_(0),
3472       branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3473   { }
3474
3475   // Delayed Output_relaxed_input_section init.
3476   void
3477   init(const Output_section::Input_section*, Output_section*);
3478
3479   // Add a plt call stub.
3480   void
3481   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3482                      const Symbol*,
3483                      unsigned int,
3484                      Address);
3485
3486   void
3487   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3488                      unsigned int,
3489                      unsigned int,
3490                      Address);
3491
3492   // Find a given plt call stub.
3493   Address
3494   find_plt_call_entry(const Symbol*) const;
3495
3496   Address
3497   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3498                       unsigned int) const;
3499
3500   Address
3501   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3502                       const Symbol*,
3503                       unsigned int,
3504                       Address) const;
3505
3506   Address
3507   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3508                       unsigned int,
3509                       unsigned int,
3510                       Address) const;
3511
3512   // Add a long branch stub.
3513   void
3514   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
3515
3516   Address
3517   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3518                          Address) const;
3519
3520   void
3521   clear_stubs()
3522   {
3523     this->plt_call_stubs_.clear();
3524     this->plt_size_ = 0;
3525     this->long_branch_stubs_.clear();
3526     this->branch_size_ = 0;
3527   }
3528
3529   Address
3530   set_address_and_size(const Output_section* os, Address off)
3531   {
3532     Address start_off = off;
3533     off += this->orig_data_size_;
3534     Address my_size = this->plt_size_ + this->branch_size_;
3535     if (my_size != 0)
3536       off = align_address(off, this->stub_align());
3537     // Include original section size and alignment padding in size
3538     my_size += off - start_off;
3539     this->reset_address_and_file_offset();
3540     this->set_current_data_size(my_size);
3541     this->set_address_and_file_offset(os->address() + start_off,
3542                                       os->offset() + start_off);
3543     return my_size;
3544   }
3545
3546   Address
3547   stub_address() const
3548   {
3549     return align_address(this->address() + this->orig_data_size_,
3550                          this->stub_align());
3551   }
3552
3553   Address
3554   stub_offset() const
3555   {
3556     return align_address(this->offset() + this->orig_data_size_,
3557                          this->stub_align());
3558   }
3559
3560   section_size_type
3561   plt_size() const
3562   { return this->plt_size_; }
3563
3564   bool
3565   size_update()
3566   {
3567     Output_section* os = this->output_section();
3568     if (os->addralign() < this->stub_align())
3569       {
3570         os->set_addralign(this->stub_align());
3571         // FIXME: get rid of the insane checkpointing.
3572         // We can't increase alignment of the input section to which
3573         // stubs are attached;  The input section may be .init which
3574         // is pasted together with other .init sections to form a
3575         // function.  Aligning might insert zero padding resulting in
3576         // sigill.  However we do need to increase alignment of the
3577         // output section so that the align_address() on offset in
3578         // set_address_and_size() adds the same padding as the
3579         // align_address() on address in stub_address().
3580         // What's more, we need this alignment for the layout done in
3581         // relaxation_loop_body() so that the output section starts at
3582         // a suitably aligned address.
3583         os->checkpoint_set_addralign(this->stub_align());
3584       }
3585     if (this->last_plt_size_ != this->plt_size_
3586         || this->last_branch_size_ != this->branch_size_)
3587       {
3588         this->last_plt_size_ = this->plt_size_;
3589         this->last_branch_size_ = this->branch_size_;
3590         return true;
3591       }
3592     return false;
3593   }
3594
3595   // Add .eh_frame info for this stub section.  Unlike other linker
3596   // generated .eh_frame this is added late in the link, because we
3597   // only want the .eh_frame info if this particular stub section is
3598   // non-empty.
3599   void
3600   add_eh_frame(Layout* layout)
3601   {
3602     if (!this->eh_frame_added_)
3603       {
3604         if (!parameters->options().ld_generated_unwind_info())
3605           return;
3606
3607         // Since we add stub .eh_frame info late, it must be placed
3608         // after all other linker generated .eh_frame info so that
3609         // merge mapping need not be updated for input sections.
3610         // There is no provision to use a different CIE to that used
3611         // by .glink.
3612         if (!this->targ_->has_glink())
3613           return;
3614
3615         layout->add_eh_frame_for_plt(this,
3616                                      Eh_cie<size>::eh_frame_cie,
3617                                      sizeof (Eh_cie<size>::eh_frame_cie),
3618                                      default_fde,
3619                                      sizeof (default_fde));
3620         this->eh_frame_added_ = true;
3621       }
3622   }
3623
3624   Target_powerpc<size, big_endian>*
3625   targ() const
3626   { return targ_; }
3627
3628  private:
3629   class Plt_stub_ent;
3630   class Plt_stub_ent_hash;
3631   typedef Unordered_map<Plt_stub_ent, unsigned int,
3632                         Plt_stub_ent_hash> Plt_stub_entries;
3633
3634   // Alignment of stub section.
3635   unsigned int
3636   stub_align() const
3637   {
3638     if (size == 32)
3639       return 16;
3640     unsigned int min_align = 32;
3641     unsigned int user_align = 1 << parameters->options().plt_align();
3642     return std::max(user_align, min_align);
3643   }
3644
3645   // Return the plt offset for the given call stub.
3646   Address
3647   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3648   {
3649     const Symbol* gsym = p->first.sym_;
3650     if (gsym != NULL)
3651       {
3652         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3653                     && gsym->can_use_relative_reloc(false));
3654         return gsym->plt_offset();
3655       }
3656     else
3657       {
3658         *is_iplt = true;
3659         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3660         unsigned int local_sym_index = p->first.locsym_;
3661         return relobj->local_plt_offset(local_sym_index);
3662       }
3663   }
3664
3665   // Size of a given plt call stub.
3666   unsigned int
3667   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3668   {
3669     if (size == 32)
3670       return 16;
3671
3672     bool is_iplt;
3673     Address plt_addr = this->plt_off(p, &is_iplt);
3674     if (is_iplt)
3675       plt_addr += this->targ_->iplt_section()->address();
3676     else
3677       plt_addr += this->targ_->plt_section()->address();
3678     Address got_addr = this->targ_->got_section()->output_section()->address();
3679     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3680       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3681     got_addr += ppcobj->toc_base_offset();
3682     Address off = plt_addr - got_addr;
3683     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3684     if (this->targ_->abiversion() < 2)
3685       {
3686         bool static_chain = parameters->options().plt_static_chain();
3687         bool thread_safe = this->targ_->plt_thread_safe();
3688         bytes += (4
3689                   + 4 * static_chain
3690                   + 8 * thread_safe
3691                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3692       }
3693     unsigned int align = 1 << parameters->options().plt_align();
3694     if (align > 1)
3695       bytes = (bytes + align - 1) & -align;
3696     return bytes;
3697   }
3698
3699   // Return long branch stub size.
3700   unsigned int
3701   branch_stub_size(Address to)
3702   {
3703     Address loc
3704       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3705     if (to - loc + (1 << 25) < 2 << 25)
3706       return 4;
3707     if (size == 64 || !parameters->options().output_is_position_independent())
3708       return 16;
3709     return 32;
3710   }
3711
3712   // Write out stubs.
3713   void
3714   do_write(Output_file*);
3715
3716   // Plt call stub keys.
3717   class Plt_stub_ent
3718   {
3719   public:
3720     Plt_stub_ent(const Symbol* sym)
3721       : sym_(sym), object_(0), addend_(0), locsym_(0)
3722     { }
3723
3724     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3725                  unsigned int locsym_index)
3726       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3727     { }
3728
3729     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3730                  const Symbol* sym,
3731                  unsigned int r_type,
3732                  Address addend)
3733       : sym_(sym), object_(0), addend_(0), locsym_(0)
3734     {
3735       if (size != 32)
3736         this->addend_ = addend;
3737       else if (parameters->options().output_is_position_independent()
3738                && r_type == elfcpp::R_PPC_PLTREL24)
3739         {
3740           this->addend_ = addend;
3741           if (this->addend_ >= 32768)
3742             this->object_ = object;
3743         }
3744     }
3745
3746     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3747                  unsigned int locsym_index,
3748                  unsigned int r_type,
3749                  Address addend)
3750       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3751     {
3752       if (size != 32)
3753         this->addend_ = addend;
3754       else if (parameters->options().output_is_position_independent()
3755                && r_type == elfcpp::R_PPC_PLTREL24)
3756         this->addend_ = addend;
3757     }
3758
3759     bool operator==(const Plt_stub_ent& that) const
3760     {
3761       return (this->sym_ == that.sym_
3762               && this->object_ == that.object_
3763               && this->addend_ == that.addend_
3764               && this->locsym_ == that.locsym_);
3765     }
3766
3767     const Symbol* sym_;
3768     const Sized_relobj_file<size, big_endian>* object_;
3769     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3770     unsigned int locsym_;
3771   };
3772
3773   class Plt_stub_ent_hash
3774   {
3775   public:
3776     size_t operator()(const Plt_stub_ent& ent) const
3777     {
3778       return (reinterpret_cast<uintptr_t>(ent.sym_)
3779               ^ reinterpret_cast<uintptr_t>(ent.object_)
3780               ^ ent.addend_
3781               ^ ent.locsym_);
3782     }
3783   };
3784
3785   // Long branch stub keys.
3786   class Branch_stub_ent
3787   {
3788   public:
3789     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3790       : dest_(to), toc_base_off_(0)
3791     {
3792       if (size == 64)
3793         toc_base_off_ = obj->toc_base_offset();
3794     }
3795
3796     bool operator==(const Branch_stub_ent& that) const
3797     {
3798       return (this->dest_ == that.dest_
3799               && (size == 32
3800                   || this->toc_base_off_ == that.toc_base_off_));
3801     }
3802
3803     Address dest_;
3804     unsigned int toc_base_off_;
3805   };
3806
3807   class Branch_stub_ent_hash
3808   {
3809   public:
3810     size_t operator()(const Branch_stub_ent& ent) const
3811     { return ent.dest_ ^ ent.toc_base_off_; }
3812   };
3813
3814   // In a sane world this would be a global.
3815   Target_powerpc<size, big_endian>* targ_;
3816   // Map sym/object/addend to stub offset.
3817   Plt_stub_entries plt_call_stubs_;
3818   // Map destination address to stub offset.
3819   typedef Unordered_map<Branch_stub_ent, unsigned int,
3820                         Branch_stub_ent_hash> Branch_stub_entries;
3821   Branch_stub_entries long_branch_stubs_;
3822   // size of input section
3823   section_size_type orig_data_size_;
3824   // size of stubs
3825   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3826   // Whether .eh_frame info has been created for this stub section.
3827   bool eh_frame_added_;
3828 };
3829
3830 // Make a new stub table, and record.
3831
3832 template<int size, bool big_endian>
3833 Stub_table<size, big_endian>*
3834 Target_powerpc<size, big_endian>::new_stub_table()
3835 {
3836   Stub_table<size, big_endian>* stub_table
3837     = new Stub_table<size, big_endian>(this);
3838   this->stub_tables_.push_back(stub_table);
3839   return stub_table;
3840 }
3841
3842 // Delayed stub table initialisation, because we create the stub table
3843 // before we know to which section it will be attached.
3844
3845 template<int size, bool big_endian>
3846 void
3847 Stub_table<size, big_endian>::init(
3848     const Output_section::Input_section* owner,
3849     Output_section* output_section)
3850 {
3851   this->set_relobj(owner->relobj());
3852   this->set_shndx(owner->shndx());
3853   this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3854   this->set_output_section(output_section);
3855   this->orig_data_size_ = owner->current_data_size();
3856
3857   std::vector<Output_relaxed_input_section*> new_relaxed;
3858   new_relaxed.push_back(this);
3859   output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3860 }
3861
3862 // Add a plt call stub, if we do not already have one for this
3863 // sym/object/addend combo.
3864
3865 template<int size, bool big_endian>
3866 void
3867 Stub_table<size, big_endian>::add_plt_call_entry(
3868     const Sized_relobj_file<size, big_endian>* object,
3869     const Symbol* gsym,
3870     unsigned int r_type,
3871     Address addend)
3872 {
3873   Plt_stub_ent ent(object, gsym, r_type, addend);
3874   unsigned int off = this->plt_size_;
3875   std::pair<typename Plt_stub_entries::iterator, bool> p
3876     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3877   if (p.second)
3878     this->plt_size_ = off + this->plt_call_size(p.first);
3879 }
3880
3881 template<int size, bool big_endian>
3882 void
3883 Stub_table<size, big_endian>::add_plt_call_entry(
3884     const Sized_relobj_file<size, big_endian>* object,
3885     unsigned int locsym_index,
3886     unsigned int r_type,
3887     Address addend)
3888 {
3889   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3890   unsigned int off = this->plt_size_;
3891   std::pair<typename Plt_stub_entries::iterator, bool> p
3892     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3893   if (p.second)
3894     this->plt_size_ = off + this->plt_call_size(p.first);
3895 }
3896
3897 // Find a plt call stub.
3898
3899 template<int size, bool big_endian>
3900 typename Stub_table<size, big_endian>::Address
3901 Stub_table<size, big_endian>::find_plt_call_entry(
3902     const Sized_relobj_file<size, big_endian>* object,
3903     const Symbol* gsym,
3904     unsigned int r_type,
3905     Address addend) const
3906 {
3907   Plt_stub_ent ent(object, gsym, r_type, addend);
3908   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3909   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3910 }
3911
3912 template<int size, bool big_endian>
3913 typename Stub_table<size, big_endian>::Address
3914 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3915 {
3916   Plt_stub_ent ent(gsym);
3917   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3918   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3919 }
3920
3921 template<int size, bool big_endian>
3922 typename Stub_table<size, big_endian>::Address
3923 Stub_table<size, big_endian>::find_plt_call_entry(
3924     const Sized_relobj_file<size, big_endian>* object,
3925     unsigned int locsym_index,
3926     unsigned int r_type,
3927     Address addend) const
3928 {
3929   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3930   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3931   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3932 }
3933
3934 template<int size, bool big_endian>
3935 typename Stub_table<size, big_endian>::Address
3936 Stub_table<size, big_endian>::find_plt_call_entry(
3937     const Sized_relobj_file<size, big_endian>* object,
3938     unsigned int locsym_index) const
3939 {
3940   Plt_stub_ent ent(object, locsym_index);
3941   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3942   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3943 }
3944
3945 // Add a long branch stub if we don't already have one to given
3946 // destination.
3947
3948 template<int size, bool big_endian>
3949 void
3950 Stub_table<size, big_endian>::add_long_branch_entry(
3951     const Powerpc_relobj<size, big_endian>* object,
3952     Address to)
3953 {
3954   Branch_stub_ent ent(object, to);
3955   Address off = this->branch_size_;
3956   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3957     {
3958       unsigned int stub_size = this->branch_stub_size(to);
3959       this->branch_size_ = off + stub_size;
3960       if (size == 64 && stub_size != 4)
3961         this->targ_->add_branch_lookup_table(to);
3962     }
3963 }
3964
3965 // Find long branch stub.
3966
3967 template<int size, bool big_endian>
3968 typename Stub_table<size, big_endian>::Address
3969 Stub_table<size, big_endian>::find_long_branch_entry(
3970     const Powerpc_relobj<size, big_endian>* object,
3971     Address to) const
3972 {
3973   Branch_stub_ent ent(object, to);
3974   typename Branch_stub_entries::const_iterator p
3975     = this->long_branch_stubs_.find(ent);
3976   return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3977 }
3978
3979 // A class to handle .glink.
3980
3981 template<int size, bool big_endian>
3982 class Output_data_glink : public Output_section_data
3983 {
3984  public:
3985   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3986   static const Address invalid_address = static_cast<Address>(0) - 1;
3987   static const int pltresolve_size = 16*4;
3988
3989   Output_data_glink(Target_powerpc<size, big_endian>* targ)
3990     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
3991       end_branch_table_(), ge_size_(0)
3992   { }
3993
3994   void
3995   add_eh_frame(Layout* layout);
3996
3997   void
3998   add_global_entry(const Symbol*);
3999
4000   Address
4001   find_global_entry(const Symbol*) const;
4002
4003   Address
4004   global_entry_address() const
4005   {
4006     gold_assert(this->is_data_size_valid());
4007     unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4008     return this->address() + global_entry_off;
4009   }
4010
4011  protected:
4012   // Write to a map file.
4013   void
4014   do_print_to_mapfile(Mapfile* mapfile) const
4015   { mapfile->print_output_data(this, _("** glink")); }
4016
4017  private:
4018   void
4019   set_final_data_size();
4020
4021   // Write out .glink
4022   void
4023   do_write(Output_file*);
4024
4025   // Allows access to .got and .plt for do_write.
4026   Target_powerpc<size, big_endian>* targ_;
4027
4028   // Map sym to stub offset.
4029   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4030   Global_entry_stub_entries global_entry_stubs_;
4031
4032   unsigned int end_branch_table_, ge_size_;
4033 };
4034
4035 template<int size, bool big_endian>
4036 void
4037 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4038 {
4039   if (!parameters->options().ld_generated_unwind_info())
4040     return;
4041
4042   if (size == 64)
4043     {
4044       if (this->targ_->abiversion() < 2)
4045         layout->add_eh_frame_for_plt(this,
4046                                      Eh_cie<64>::eh_frame_cie,
4047                                      sizeof (Eh_cie<64>::eh_frame_cie),
4048                                      glink_eh_frame_fde_64v1,
4049                                      sizeof (glink_eh_frame_fde_64v1));
4050       else
4051         layout->add_eh_frame_for_plt(this,
4052                                      Eh_cie<64>::eh_frame_cie,
4053                                      sizeof (Eh_cie<64>::eh_frame_cie),
4054                                      glink_eh_frame_fde_64v2,
4055                                      sizeof (glink_eh_frame_fde_64v2));
4056     }
4057   else
4058     {
4059       // 32-bit .glink can use the default since the CIE return
4060       // address reg, LR, is valid.
4061       layout->add_eh_frame_for_plt(this,
4062                                    Eh_cie<32>::eh_frame_cie,
4063                                    sizeof (Eh_cie<32>::eh_frame_cie),
4064                                    default_fde,
4065                                    sizeof (default_fde));
4066       // Except where LR is used in a PIC __glink_PLTresolve.
4067       if (parameters->options().output_is_position_independent())
4068         layout->add_eh_frame_for_plt(this,
4069                                      Eh_cie<32>::eh_frame_cie,
4070                                      sizeof (Eh_cie<32>::eh_frame_cie),
4071                                      glink_eh_frame_fde_32,
4072                                      sizeof (glink_eh_frame_fde_32));
4073     }
4074 }
4075
4076 template<int size, bool big_endian>
4077 void
4078 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4079 {
4080   std::pair<typename Global_entry_stub_entries::iterator, bool> p
4081     = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4082   if (p.second)
4083     this->ge_size_ += 16;
4084 }
4085
4086 template<int size, bool big_endian>
4087 typename Output_data_glink<size, big_endian>::Address
4088 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4089 {
4090   typename Global_entry_stub_entries::const_iterator p
4091     = this->global_entry_stubs_.find(gsym);
4092   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4093 }
4094
4095 template<int size, bool big_endian>
4096 void
4097 Output_data_glink<size, big_endian>::set_final_data_size()
4098 {
4099   unsigned int count = this->targ_->plt_entry_count();
4100   section_size_type total = 0;
4101
4102   if (count != 0)
4103     {
4104       if (size == 32)
4105         {
4106           // space for branch table
4107           total += 4 * (count - 1);
4108
4109           total += -total & 15;
4110           total += this->pltresolve_size;
4111         }
4112       else
4113         {
4114           total += this->pltresolve_size;
4115
4116           // space for branch table
4117           total += 4 * count;
4118           if (this->targ_->abiversion() < 2)
4119             {
4120               total += 4 * count;
4121               if (count > 0x8000)
4122                 total += 4 * (count - 0x8000);
4123             }
4124         }
4125     }
4126   this->end_branch_table_ = total;
4127   total = (total + 15) & -16;
4128   total += this->ge_size_;
4129
4130   this->set_data_size(total);
4131 }
4132
4133 // Write out plt and long branch stub code.
4134
4135 template<int size, bool big_endian>
4136 void
4137 Stub_table<size, big_endian>::do_write(Output_file* of)
4138 {
4139   if (this->plt_call_stubs_.empty()
4140       && this->long_branch_stubs_.empty())
4141     return;
4142
4143   const section_size_type start_off = this->offset();
4144   const section_size_type off = this->stub_offset();
4145   const section_size_type oview_size =
4146     convert_to_section_size_type(this->data_size() - (off - start_off));
4147   unsigned char* const oview = of->get_output_view(off, oview_size);
4148   unsigned char* p;
4149
4150   if (size == 64)
4151     {
4152       const Output_data_got_powerpc<size, big_endian>* got
4153         = this->targ_->got_section();
4154       Address got_os_addr = got->output_section()->address();
4155
4156       if (!this->plt_call_stubs_.empty())
4157         {
4158           // The base address of the .plt section.
4159           Address plt_base = this->targ_->plt_section()->address();
4160           Address iplt_base = invalid_address;
4161
4162           // Write out plt call stubs.
4163           typename Plt_stub_entries::const_iterator cs;
4164           for (cs = this->plt_call_stubs_.begin();
4165                cs != this->plt_call_stubs_.end();
4166                ++cs)
4167             {
4168               bool is_iplt;
4169               Address pltoff = this->plt_off(cs, &is_iplt);
4170               Address plt_addr = pltoff;
4171               if (is_iplt)
4172                 {
4173                   if (iplt_base == invalid_address)
4174                     iplt_base = this->targ_->iplt_section()->address();
4175                   plt_addr += iplt_base;
4176                 }
4177               else
4178                 plt_addr += plt_base;
4179               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4180                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4181               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4182               Address off = plt_addr - got_addr;
4183
4184               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4185                 gold_error(_("%s: linkage table error against `%s'"),
4186                            cs->first.object_->name().c_str(),
4187                            cs->first.sym_->demangled_name().c_str());
4188
4189               bool plt_load_toc = this->targ_->abiversion() < 2;
4190               bool static_chain
4191                 = plt_load_toc && parameters->options().plt_static_chain();
4192               bool thread_safe
4193                 = plt_load_toc && this->targ_->plt_thread_safe();
4194               bool use_fake_dep = false;
4195               Address cmp_branch_off = 0;
4196               if (thread_safe)
4197                 {
4198                   unsigned int pltindex
4199                     = ((pltoff - this->targ_->first_plt_entry_offset())
4200                        / this->targ_->plt_entry_size());
4201                   Address glinkoff
4202                     = (this->targ_->glink_section()->pltresolve_size
4203                        + pltindex * 8);
4204                   if (pltindex > 32768)
4205                     glinkoff += (pltindex - 32768) * 4;
4206                   Address to
4207                     = this->targ_->glink_section()->address() + glinkoff;
4208                   Address from
4209                     = (this->stub_address() + cs->second + 24
4210                        + 4 * (ha(off) != 0)
4211                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4212                        + 4 * static_chain);
4213                   cmp_branch_off = to - from;
4214                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4215                 }
4216
4217               p = oview + cs->second;
4218               if (ha(off) != 0)
4219                 {
4220                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4221                   p += 4;
4222                   if (plt_load_toc)
4223                     {
4224                       write_insn<big_endian>(p, addis_11_2 + ha(off));
4225                       p += 4;
4226                       write_insn<big_endian>(p, ld_12_11 + l(off));
4227                       p += 4;
4228                     }
4229                   else
4230                     {
4231                       write_insn<big_endian>(p, addis_12_2 + ha(off));
4232                       p += 4;
4233                       write_insn<big_endian>(p, ld_12_12 + l(off));
4234                       p += 4;
4235                     }
4236                   if (plt_load_toc
4237                       && ha(off + 8 + 8 * static_chain) != ha(off))
4238                     {
4239                       write_insn<big_endian>(p, addi_11_11 + l(off));
4240                       p += 4;
4241                       off = 0;
4242                     }
4243                   write_insn<big_endian>(p, mtctr_12);
4244                   p += 4;
4245                   if (plt_load_toc)
4246                     {
4247                       if (use_fake_dep)
4248                         {
4249                           write_insn<big_endian>(p, xor_2_12_12);
4250                           p += 4;
4251                           write_insn<big_endian>(p, add_11_11_2);
4252                           p += 4;
4253                         }
4254                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4255                       p += 4;
4256                       if (static_chain)
4257                         {
4258                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4259                           p += 4;
4260                         }
4261                     }
4262                 }
4263               else
4264                 {
4265                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4266                   p += 4;
4267                   write_insn<big_endian>(p, ld_12_2 + l(off));
4268                   p += 4;
4269                   if (plt_load_toc
4270                       && ha(off + 8 + 8 * static_chain) != ha(off))
4271                     {
4272                       write_insn<big_endian>(p, addi_2_2 + l(off));
4273                       p += 4;
4274                       off = 0;
4275                     }
4276                   write_insn<big_endian>(p, mtctr_12);
4277                   p += 4;
4278                   if (plt_load_toc)
4279                     {
4280                       if (use_fake_dep)
4281                         {
4282                           write_insn<big_endian>(p, xor_11_12_12);
4283                           p += 4;
4284                           write_insn<big_endian>(p, add_2_2_11);
4285                           p += 4;
4286                         }
4287                       if (static_chain)
4288                         {
4289                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4290                           p += 4;
4291                         }
4292                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4293                       p += 4;
4294                     }
4295                 }
4296               if (thread_safe && !use_fake_dep)
4297                 {
4298                   write_insn<big_endian>(p, cmpldi_2_0);
4299                   p += 4;
4300                   write_insn<big_endian>(p, bnectr_p4);
4301                   p += 4;
4302                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4303                 }
4304               else
4305                 write_insn<big_endian>(p, bctr);
4306             }
4307         }
4308
4309       // Write out long branch stubs.
4310       typename Branch_stub_entries::const_iterator bs;
4311       for (bs = this->long_branch_stubs_.begin();
4312            bs != this->long_branch_stubs_.end();
4313            ++bs)
4314         {
4315           p = oview + this->plt_size_ + bs->second;
4316           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4317           Address delta = bs->first.dest_ - loc;
4318           if (delta + (1 << 25) < 2 << 25)
4319             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4320           else
4321             {
4322               Address brlt_addr
4323                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4324               gold_assert(brlt_addr != invalid_address);
4325               brlt_addr += this->targ_->brlt_section()->address();
4326               Address got_addr = got_os_addr + bs->first.toc_base_off_;
4327               Address brltoff = brlt_addr - got_addr;
4328               if (ha(brltoff) == 0)
4329                 {
4330                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
4331                 }
4332               else
4333                 {
4334                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
4335                   write_insn<big_endian>(p, ld_12_12 + l(brltoff)),     p += 4;
4336                 }
4337               write_insn<big_endian>(p, mtctr_12),                      p += 4;
4338               write_insn<big_endian>(p, bctr);
4339             }
4340         }
4341     }
4342   else
4343     {
4344       if (!this->plt_call_stubs_.empty())
4345         {
4346           // The base address of the .plt section.
4347           Address plt_base = this->targ_->plt_section()->address();
4348           Address iplt_base = invalid_address;
4349           // The address of _GLOBAL_OFFSET_TABLE_.
4350           Address g_o_t = invalid_address;
4351
4352           // Write out plt call stubs.
4353           typename Plt_stub_entries::const_iterator cs;
4354           for (cs = this->plt_call_stubs_.begin();
4355                cs != this->plt_call_stubs_.end();
4356                ++cs)
4357             {
4358               bool is_iplt;
4359               Address plt_addr = this->plt_off(cs, &is_iplt);
4360               if (is_iplt)
4361                 {
4362                   if (iplt_base == invalid_address)
4363                     iplt_base = this->targ_->iplt_section()->address();
4364                   plt_addr += iplt_base;
4365                 }
4366               else
4367                 plt_addr += plt_base;
4368
4369               p = oview + cs->second;
4370               if (parameters->options().output_is_position_independent())
4371                 {
4372                   Address got_addr;
4373                   const Powerpc_relobj<size, big_endian>* ppcobj
4374                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4375                        (cs->first.object_));
4376                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4377                     {
4378                       unsigned int got2 = ppcobj->got2_shndx();
4379                       got_addr = ppcobj->get_output_section_offset(got2);
4380                       gold_assert(got_addr != invalid_address);
4381                       got_addr += (ppcobj->output_section(got2)->address()
4382                                    + cs->first.addend_);
4383                     }
4384                   else
4385                     {
4386                       if (g_o_t == invalid_address)
4387                         {
4388                           const Output_data_got_powerpc<size, big_endian>* got
4389                             = this->targ_->got_section();
4390                           g_o_t = got->address() + got->g_o_t();
4391                         }
4392                       got_addr = g_o_t;
4393                     }
4394
4395                   Address off = plt_addr - got_addr;
4396                   if (ha(off) == 0)
4397                     {
4398                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4399                       write_insn<big_endian>(p +  4, mtctr_11);
4400                       write_insn<big_endian>(p +  8, bctr);
4401                     }
4402                   else
4403                     {
4404                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4405                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4406                       write_insn<big_endian>(p +  8, mtctr_11);
4407                       write_insn<big_endian>(p + 12, bctr);
4408                     }
4409                 }
4410               else
4411                 {
4412                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4413                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4414                   write_insn<big_endian>(p +  8, mtctr_11);
4415                   write_insn<big_endian>(p + 12, bctr);
4416                 }
4417             }
4418         }
4419
4420       // Write out long branch stubs.
4421       typename Branch_stub_entries::const_iterator bs;
4422       for (bs = this->long_branch_stubs_.begin();
4423            bs != this->long_branch_stubs_.end();
4424            ++bs)
4425         {
4426           p = oview + this->plt_size_ + bs->second;
4427           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4428           Address delta = bs->first.dest_ - loc;
4429           if (delta + (1 << 25) < 2 << 25)
4430             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4431           else if (!parameters->options().output_is_position_independent())
4432             {
4433               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4434               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4435               write_insn<big_endian>(p +  8, mtctr_12);
4436               write_insn<big_endian>(p + 12, bctr);
4437             }
4438           else
4439             {
4440               delta -= 8;
4441               write_insn<big_endian>(p +  0, mflr_0);
4442               write_insn<big_endian>(p +  4, bcl_20_31);
4443               write_insn<big_endian>(p +  8, mflr_12);
4444               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4445               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4446               write_insn<big_endian>(p + 20, mtlr_0);
4447               write_insn<big_endian>(p + 24, mtctr_12);
4448               write_insn<big_endian>(p + 28, bctr);
4449             }
4450         }
4451     }
4452 }
4453
4454 // Write out .glink.
4455
4456 template<int size, bool big_endian>
4457 void
4458 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4459 {
4460   const section_size_type off = this->offset();
4461   const section_size_type oview_size =
4462     convert_to_section_size_type(this->data_size());
4463   unsigned char* const oview = of->get_output_view(off, oview_size);
4464   unsigned char* p;
4465
4466   // The base address of the .plt section.
4467   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4468   Address plt_base = this->targ_->plt_section()->address();
4469
4470   if (size == 64)
4471     {
4472       if (this->end_branch_table_ != 0)
4473         {
4474           // Write pltresolve stub.
4475           p = oview;
4476           Address after_bcl = this->address() + 16;
4477           Address pltoff = plt_base - after_bcl;
4478
4479           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
4480
4481           if (this->targ_->abiversion() < 2)
4482             {
4483               write_insn<big_endian>(p, mflr_12),               p += 4;
4484               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4485               write_insn<big_endian>(p, mflr_11),               p += 4;
4486               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4487               write_insn<big_endian>(p, mtlr_12),               p += 4;
4488               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4489               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4490               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
4491               write_insn<big_endian>(p, mtctr_12),              p += 4;
4492               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
4493             }
4494           else
4495             {
4496               write_insn<big_endian>(p, mflr_0),                p += 4;
4497               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4498               write_insn<big_endian>(p, mflr_11),               p += 4;
4499               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4500               write_insn<big_endian>(p, mtlr_0),                p += 4;
4501               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
4502               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4503               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
4504               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4505               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
4506               write_insn<big_endian>(p, mtctr_12),              p += 4;
4507               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
4508             }
4509           write_insn<big_endian>(p, bctr),                      p += 4;
4510           while (p < oview + this->pltresolve_size)
4511             write_insn<big_endian>(p, nop), p += 4;
4512
4513           // Write lazy link call stubs.
4514           uint32_t indx = 0;
4515           while (p < oview + this->end_branch_table_)
4516             {
4517               if (this->targ_->abiversion() < 2)
4518                 {
4519                   if (indx < 0x8000)
4520                     {
4521                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
4522                     }
4523                   else
4524                     {
4525                       write_insn<big_endian>(p, lis_0_0 + hi(indx)),    p += 4;
4526                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
4527                     }
4528                 }
4529               uint32_t branch_off = 8 - (p - oview);
4530               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
4531               indx++;
4532             }
4533         }
4534
4535       Address plt_base = this->targ_->plt_section()->address();
4536       Address iplt_base = invalid_address;
4537       unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4538       Address global_entry_base = this->address() + global_entry_off;
4539       typename Global_entry_stub_entries::const_iterator ge;
4540       for (ge = this->global_entry_stubs_.begin();
4541            ge != this->global_entry_stubs_.end();
4542            ++ge)
4543         {
4544           p = oview + global_entry_off + ge->second;
4545           Address plt_addr = ge->first->plt_offset();
4546           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4547               && ge->first->can_use_relative_reloc(false))
4548             {
4549               if (iplt_base == invalid_address)
4550                 iplt_base = this->targ_->iplt_section()->address();
4551               plt_addr += iplt_base;
4552             }
4553           else
4554             plt_addr += plt_base;
4555           Address my_addr = global_entry_base + ge->second;
4556           Address off = plt_addr - my_addr;
4557
4558           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4559             gold_error(_("%s: linkage table error against `%s'"),
4560                        ge->first->object()->name().c_str(),
4561                        ge->first->demangled_name().c_str());
4562
4563           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
4564           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
4565           write_insn<big_endian>(p, mtctr_12),                  p += 4;
4566           write_insn<big_endian>(p, bctr);
4567         }
4568     }
4569   else
4570     {
4571       const Output_data_got_powerpc<size, big_endian>* got
4572         = this->targ_->got_section();
4573       // The address of _GLOBAL_OFFSET_TABLE_.
4574       Address g_o_t = got->address() + got->g_o_t();
4575
4576       // Write out pltresolve branch table.
4577       p = oview;
4578       unsigned int the_end = oview_size - this->pltresolve_size;
4579       unsigned char* end_p = oview + the_end;
4580       while (p < end_p - 8 * 4)
4581         write_insn<big_endian>(p, b + end_p - p), p += 4;
4582       while (p < end_p)
4583         write_insn<big_endian>(p, nop), p += 4;
4584
4585       // Write out pltresolve call stub.
4586       if (parameters->options().output_is_position_independent())
4587         {
4588           Address res0_off = 0;
4589           Address after_bcl_off = the_end + 12;
4590           Address bcl_res0 = after_bcl_off - res0_off;
4591
4592           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4593           write_insn<big_endian>(p +  4, mflr_0);
4594           write_insn<big_endian>(p +  8, bcl_20_31);
4595           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4596           write_insn<big_endian>(p + 16, mflr_12);
4597           write_insn<big_endian>(p + 20, mtlr_0);
4598           write_insn<big_endian>(p + 24, sub_11_11_12);
4599
4600           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4601
4602           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4603           if (ha(got_bcl) == ha(got_bcl + 4))
4604             {
4605               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4606               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4607             }
4608           else
4609             {
4610               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4611               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4612             }
4613           write_insn<big_endian>(p + 40, mtctr_0);
4614           write_insn<big_endian>(p + 44, add_0_11_11);
4615           write_insn<big_endian>(p + 48, add_11_0_11);
4616           write_insn<big_endian>(p + 52, bctr);
4617           write_insn<big_endian>(p + 56, nop);
4618           write_insn<big_endian>(p + 60, nop);
4619         }
4620       else
4621         {
4622           Address res0 = this->address();
4623
4624           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4625           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4626           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4627             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4628           else
4629             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4630           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4631           write_insn<big_endian>(p + 16, mtctr_0);
4632           write_insn<big_endian>(p + 20, add_0_11_11);
4633           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4634             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4635           else
4636             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4637           write_insn<big_endian>(p + 28, add_11_0_11);
4638           write_insn<big_endian>(p + 32, bctr);
4639           write_insn<big_endian>(p + 36, nop);
4640           write_insn<big_endian>(p + 40, nop);
4641           write_insn<big_endian>(p + 44, nop);
4642           write_insn<big_endian>(p + 48, nop);
4643           write_insn<big_endian>(p + 52, nop);
4644           write_insn<big_endian>(p + 56, nop);
4645           write_insn<big_endian>(p + 60, nop);
4646         }
4647       p += 64;
4648     }
4649
4650   of->write_output_view(off, oview_size, oview);
4651 }
4652
4653
4654 // A class to handle linker generated save/restore functions.
4655
4656 template<int size, bool big_endian>
4657 class Output_data_save_res : public Output_section_data_build
4658 {
4659  public:
4660   Output_data_save_res(Symbol_table* symtab);
4661
4662  protected:
4663   // Write to a map file.
4664   void
4665   do_print_to_mapfile(Mapfile* mapfile) const
4666   { mapfile->print_output_data(this, _("** save/restore")); }
4667
4668   void
4669   do_write(Output_file*);
4670
4671  private:
4672   // The maximum size of save/restore contents.
4673   static const unsigned int savres_max = 218*4;
4674
4675   void
4676   savres_define(Symbol_table* symtab,
4677                 const char *name,
4678                 unsigned int lo, unsigned int hi,
4679                 unsigned char* write_ent(unsigned char*, int),
4680                 unsigned char* write_tail(unsigned char*, int));
4681
4682   unsigned char *contents_;
4683 };
4684
4685 template<bool big_endian>
4686 static unsigned char*
4687 savegpr0(unsigned char* p, int r)
4688 {
4689   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4690   write_insn<big_endian>(p, insn);
4691   return p + 4;
4692 }
4693
4694 template<bool big_endian>
4695 static unsigned char*
4696 savegpr0_tail(unsigned char* p, int r)
4697 {
4698   p = savegpr0<big_endian>(p, r);
4699   uint32_t insn = std_0_1 + 16;
4700   write_insn<big_endian>(p, insn);
4701   p = p + 4;
4702   write_insn<big_endian>(p, blr);
4703   return p + 4;
4704 }
4705
4706 template<bool big_endian>
4707 static unsigned char*
4708 restgpr0(unsigned char* p, int r)
4709 {
4710   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4711   write_insn<big_endian>(p, insn);
4712   return p + 4;
4713 }
4714
4715 template<bool big_endian>
4716 static unsigned char*
4717 restgpr0_tail(unsigned char* p, int r)
4718 {
4719   uint32_t insn = ld_0_1 + 16;
4720   write_insn<big_endian>(p, insn);
4721   p = p + 4;
4722   p = restgpr0<big_endian>(p, r);
4723   write_insn<big_endian>(p, mtlr_0);
4724   p = p + 4;
4725   if (r == 29)
4726     {
4727       p = restgpr0<big_endian>(p, 30);
4728       p = restgpr0<big_endian>(p, 31);
4729     }
4730   write_insn<big_endian>(p, blr);
4731   return p + 4;
4732 }
4733
4734 template<bool big_endian>
4735 static unsigned char*
4736 savegpr1(unsigned char* p, int r)
4737 {
4738   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4739   write_insn<big_endian>(p, insn);
4740   return p + 4;
4741 }
4742
4743 template<bool big_endian>
4744 static unsigned char*
4745 savegpr1_tail(unsigned char* p, int r)
4746 {
4747   p = savegpr1<big_endian>(p, r);
4748   write_insn<big_endian>(p, blr);
4749   return p + 4;
4750 }
4751
4752 template<bool big_endian>
4753 static unsigned char*
4754 restgpr1(unsigned char* p, int r)
4755 {
4756   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4757   write_insn<big_endian>(p, insn);
4758   return p + 4;
4759 }
4760
4761 template<bool big_endian>
4762 static unsigned char*
4763 restgpr1_tail(unsigned char* p, int r)
4764 {
4765   p = restgpr1<big_endian>(p, r);
4766   write_insn<big_endian>(p, blr);
4767   return p + 4;
4768 }
4769
4770 template<bool big_endian>
4771 static unsigned char*
4772 savefpr(unsigned char* p, int r)
4773 {
4774   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4775   write_insn<big_endian>(p, insn);
4776   return p + 4;
4777 }
4778
4779 template<bool big_endian>
4780 static unsigned char*
4781 savefpr0_tail(unsigned char* p, int r)
4782 {
4783   p = savefpr<big_endian>(p, r);
4784   write_insn<big_endian>(p, std_0_1 + 16);
4785   p = p + 4;
4786   write_insn<big_endian>(p, blr);
4787   return p + 4;
4788 }
4789
4790 template<bool big_endian>
4791 static unsigned char*
4792 restfpr(unsigned char* p, int r)
4793 {
4794   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4795   write_insn<big_endian>(p, insn);
4796   return p + 4;
4797 }
4798
4799 template<bool big_endian>
4800 static unsigned char*
4801 restfpr0_tail(unsigned char* p, int r)
4802 {
4803   write_insn<big_endian>(p, ld_0_1 + 16);
4804   p = p + 4;
4805   p = restfpr<big_endian>(p, r);
4806   write_insn<big_endian>(p, mtlr_0);
4807   p = p + 4;
4808   if (r == 29)
4809     {
4810       p = restfpr<big_endian>(p, 30);
4811       p = restfpr<big_endian>(p, 31);
4812     }
4813   write_insn<big_endian>(p, blr);
4814   return p + 4;
4815 }
4816
4817 template<bool big_endian>
4818 static unsigned char*
4819 savefpr1_tail(unsigned char* p, int r)
4820 {
4821   p = savefpr<big_endian>(p, r);
4822   write_insn<big_endian>(p, blr);
4823   return p + 4;
4824 }
4825
4826 template<bool big_endian>
4827 static unsigned char*
4828 restfpr1_tail(unsigned char* p, int r)
4829 {
4830   p = restfpr<big_endian>(p, r);
4831   write_insn<big_endian>(p, blr);
4832   return p + 4;
4833 }
4834
4835 template<bool big_endian>
4836 static unsigned char*
4837 savevr(unsigned char* p, int r)
4838 {
4839   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4840   write_insn<big_endian>(p, insn);
4841   p = p + 4;
4842   insn = stvx_0_12_0 + (r << 21);
4843   write_insn<big_endian>(p, insn);
4844   return p + 4;
4845 }
4846
4847 template<bool big_endian>
4848 static unsigned char*
4849 savevr_tail(unsigned char* p, int r)
4850 {
4851   p = savevr<big_endian>(p, r);
4852   write_insn<big_endian>(p, blr);
4853   return p + 4;
4854 }
4855
4856 template<bool big_endian>
4857 static unsigned char*
4858 restvr(unsigned char* p, int r)
4859 {
4860   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4861   write_insn<big_endian>(p, insn);
4862   p = p + 4;
4863   insn = lvx_0_12_0 + (r << 21);
4864   write_insn<big_endian>(p, insn);
4865   return p + 4;
4866 }
4867
4868 template<bool big_endian>
4869 static unsigned char*
4870 restvr_tail(unsigned char* p, int r)
4871 {
4872   p = restvr<big_endian>(p, r);
4873   write_insn<big_endian>(p, blr);
4874   return p + 4;
4875 }
4876
4877
4878 template<int size, bool big_endian>
4879 Output_data_save_res<size, big_endian>::Output_data_save_res(
4880     Symbol_table* symtab)
4881   : Output_section_data_build(4),
4882     contents_(NULL)
4883 {
4884   this->savres_define(symtab,
4885                       "_savegpr0_", 14, 31,
4886                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
4887   this->savres_define(symtab,
4888                       "_restgpr0_", 14, 29,
4889                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4890   this->savres_define(symtab,
4891                       "_restgpr0_", 30, 31,
4892                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4893   this->savres_define(symtab,
4894                       "_savegpr1_", 14, 31,
4895                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
4896   this->savres_define(symtab,
4897                       "_restgpr1_", 14, 31,
4898                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
4899   this->savres_define(symtab,
4900                       "_savefpr_", 14, 31,
4901                       savefpr<big_endian>, savefpr0_tail<big_endian>);
4902   this->savres_define(symtab,
4903                       "_restfpr_", 14, 29,
4904                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4905   this->savres_define(symtab,
4906                       "_restfpr_", 30, 31,
4907                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4908   this->savres_define(symtab,
4909                       "._savef", 14, 31,
4910                       savefpr<big_endian>, savefpr1_tail<big_endian>);
4911   this->savres_define(symtab,
4912                       "._restf", 14, 31,
4913                       restfpr<big_endian>, restfpr1_tail<big_endian>);
4914   this->savres_define(symtab,
4915                       "_savevr_", 20, 31,
4916                       savevr<big_endian>, savevr_tail<big_endian>);
4917   this->savres_define(symtab,
4918                       "_restvr_", 20, 31,
4919                       restvr<big_endian>, restvr_tail<big_endian>);
4920 }
4921
4922 template<int size, bool big_endian>
4923 void
4924 Output_data_save_res<size, big_endian>::savres_define(
4925     Symbol_table* symtab,
4926     const char *name,
4927     unsigned int lo, unsigned int hi,
4928     unsigned char* write_ent(unsigned char*, int),
4929     unsigned char* write_tail(unsigned char*, int))
4930 {
4931   size_t len = strlen(name);
4932   bool writing = false;
4933   char sym[16];
4934
4935   memcpy(sym, name, len);
4936   sym[len + 2] = 0;
4937
4938   for (unsigned int i = lo; i <= hi; i++)
4939     {
4940       sym[len + 0] = i / 10 + '0';
4941       sym[len + 1] = i % 10 + '0';
4942       Symbol* gsym = symtab->lookup(sym);
4943       bool refd = gsym != NULL && gsym->is_undefined();
4944       writing = writing || refd;
4945       if (writing)
4946         {
4947           if (this->contents_ == NULL)
4948             this->contents_ = new unsigned char[this->savres_max];
4949
4950           section_size_type value = this->current_data_size();
4951           unsigned char* p = this->contents_ + value;
4952           if (i != hi)
4953             p = write_ent(p, i);
4954           else
4955             p = write_tail(p, i);
4956           section_size_type cur_size = p - this->contents_;
4957           this->set_current_data_size(cur_size);
4958           if (refd)
4959             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4960                                           this, value, cur_size - value,
4961                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4962                                           elfcpp::STV_HIDDEN, 0, false, false);
4963         }
4964     }
4965 }
4966
4967 // Write out save/restore.
4968
4969 template<int size, bool big_endian>
4970 void
4971 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4972 {
4973   const section_size_type off = this->offset();
4974   const section_size_type oview_size =
4975     convert_to_section_size_type(this->data_size());
4976   unsigned char* const oview = of->get_output_view(off, oview_size);
4977   memcpy(oview, this->contents_, oview_size);
4978   of->write_output_view(off, oview_size, oview);
4979 }
4980
4981
4982 // Create the glink section.
4983
4984 template<int size, bool big_endian>
4985 void
4986 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4987 {
4988   if (this->glink_ == NULL)
4989     {
4990       this->glink_ = new Output_data_glink<size, big_endian>(this);
4991       this->glink_->add_eh_frame(layout);
4992       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4993                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4994                                       this->glink_, ORDER_TEXT, false);
4995     }
4996 }
4997
4998 // Create a PLT entry for a global symbol.
4999
5000 template<int size, bool big_endian>
5001 void
5002 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5003                                                  Layout* layout,
5004                                                  Symbol* gsym)
5005 {
5006   if (gsym->type() == elfcpp::STT_GNU_IFUNC
5007       && gsym->can_use_relative_reloc(false))
5008     {
5009       if (this->iplt_ == NULL)
5010         this->make_iplt_section(symtab, layout);
5011       this->iplt_->add_ifunc_entry(gsym);
5012     }
5013   else
5014     {
5015       if (this->plt_ == NULL)
5016         this->make_plt_section(symtab, layout);
5017       this->plt_->add_entry(gsym);
5018     }
5019 }
5020
5021 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5022
5023 template<int size, bool big_endian>
5024 void
5025 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5026     Symbol_table* symtab,
5027     Layout* layout,
5028     Sized_relobj_file<size, big_endian>* relobj,
5029     unsigned int r_sym)
5030 {
5031   if (this->iplt_ == NULL)
5032     this->make_iplt_section(symtab, layout);
5033   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5034 }
5035
5036 // Return the number of entries in the PLT.
5037
5038 template<int size, bool big_endian>
5039 unsigned int
5040 Target_powerpc<size, big_endian>::plt_entry_count() const
5041 {
5042   if (this->plt_ == NULL)
5043     return 0;
5044   return this->plt_->entry_count();
5045 }
5046
5047 // Create a GOT entry for local dynamic __tls_get_addr calls.
5048
5049 template<int size, bool big_endian>
5050 unsigned int
5051 Target_powerpc<size, big_endian>::tlsld_got_offset(
5052     Symbol_table* symtab,
5053     Layout* layout,
5054     Sized_relobj_file<size, big_endian>* object)
5055 {
5056   if (this->tlsld_got_offset_ == -1U)
5057     {
5058       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5059       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5060       Output_data_got_powerpc<size, big_endian>* got
5061         = this->got_section(symtab, layout);
5062       unsigned int got_offset = got->add_constant_pair(0, 0);
5063       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5064                           got_offset, 0);
5065       this->tlsld_got_offset_ = got_offset;
5066     }
5067   return this->tlsld_got_offset_;
5068 }
5069
5070 // Get the Reference_flags for a particular relocation.
5071
5072 template<int size, bool big_endian>
5073 int
5074 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5075     unsigned int r_type,
5076     const Target_powerpc* target)
5077 {
5078   int ref = 0;
5079
5080   switch (r_type)
5081     {
5082     case elfcpp::R_POWERPC_NONE:
5083     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5084     case elfcpp::R_POWERPC_GNU_VTENTRY:
5085     case elfcpp::R_PPC64_TOC:
5086       // No symbol reference.
5087       break;
5088
5089     case elfcpp::R_PPC64_ADDR64:
5090     case elfcpp::R_PPC64_UADDR64:
5091     case elfcpp::R_POWERPC_ADDR32:
5092     case elfcpp::R_POWERPC_UADDR32:
5093     case elfcpp::R_POWERPC_ADDR16:
5094     case elfcpp::R_POWERPC_UADDR16:
5095     case elfcpp::R_POWERPC_ADDR16_LO:
5096     case elfcpp::R_POWERPC_ADDR16_HI:
5097     case elfcpp::R_POWERPC_ADDR16_HA:
5098       ref = Symbol::ABSOLUTE_REF;
5099       break;
5100
5101     case elfcpp::R_POWERPC_ADDR24:
5102     case elfcpp::R_POWERPC_ADDR14:
5103     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5104     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5105       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5106       break;
5107
5108     case elfcpp::R_PPC64_REL64:
5109     case elfcpp::R_POWERPC_REL32:
5110     case elfcpp::R_PPC_LOCAL24PC:
5111     case elfcpp::R_POWERPC_REL16:
5112     case elfcpp::R_POWERPC_REL16_LO:
5113     case elfcpp::R_POWERPC_REL16_HI:
5114     case elfcpp::R_POWERPC_REL16_HA:
5115       ref = Symbol::RELATIVE_REF;
5116       break;
5117
5118     case elfcpp::R_POWERPC_REL24:
5119     case elfcpp::R_PPC_PLTREL24:
5120     case elfcpp::R_POWERPC_REL14:
5121     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5122     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5123       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5124       break;
5125
5126     case elfcpp::R_POWERPC_GOT16:
5127     case elfcpp::R_POWERPC_GOT16_LO:
5128     case elfcpp::R_POWERPC_GOT16_HI:
5129     case elfcpp::R_POWERPC_GOT16_HA:
5130     case elfcpp::R_PPC64_GOT16_DS:
5131     case elfcpp::R_PPC64_GOT16_LO_DS:
5132     case elfcpp::R_PPC64_TOC16:
5133     case elfcpp::R_PPC64_TOC16_LO:
5134     case elfcpp::R_PPC64_TOC16_HI:
5135     case elfcpp::R_PPC64_TOC16_HA:
5136     case elfcpp::R_PPC64_TOC16_DS:
5137     case elfcpp::R_PPC64_TOC16_LO_DS:
5138       // Absolute in GOT.
5139       ref = Symbol::ABSOLUTE_REF;
5140       break;
5141
5142     case elfcpp::R_POWERPC_GOT_TPREL16:
5143     case elfcpp::R_POWERPC_TLS:
5144       ref = Symbol::TLS_REF;
5145       break;
5146
5147     case elfcpp::R_POWERPC_COPY:
5148     case elfcpp::R_POWERPC_GLOB_DAT:
5149     case elfcpp::R_POWERPC_JMP_SLOT:
5150     case elfcpp::R_POWERPC_RELATIVE:
5151     case elfcpp::R_POWERPC_DTPMOD:
5152     default:
5153       // Not expected.  We will give an error later.
5154       break;
5155     }
5156
5157   if (size == 64 && target->abiversion() < 2)
5158     ref |= Symbol::FUNC_DESC_ABI;
5159   return ref;
5160 }
5161
5162 // Report an unsupported relocation against a local symbol.
5163
5164 template<int size, bool big_endian>
5165 void
5166 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5167     Sized_relobj_file<size, big_endian>* object,
5168     unsigned int r_type)
5169 {
5170   gold_error(_("%s: unsupported reloc %u against local symbol"),
5171              object->name().c_str(), r_type);
5172 }
5173
5174 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5175 // dynamic linker does not support it, issue an error.
5176
5177 template<int size, bool big_endian>
5178 void
5179 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5180                                                       unsigned int r_type)
5181 {
5182   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5183
5184   // These are the relocation types supported by glibc for both 32-bit
5185   // and 64-bit powerpc.
5186   switch (r_type)
5187     {
5188     case elfcpp::R_POWERPC_NONE:
5189     case elfcpp::R_POWERPC_RELATIVE:
5190     case elfcpp::R_POWERPC_GLOB_DAT:
5191     case elfcpp::R_POWERPC_DTPMOD:
5192     case elfcpp::R_POWERPC_DTPREL:
5193     case elfcpp::R_POWERPC_TPREL:
5194     case elfcpp::R_POWERPC_JMP_SLOT:
5195     case elfcpp::R_POWERPC_COPY:
5196     case elfcpp::R_POWERPC_IRELATIVE:
5197     case elfcpp::R_POWERPC_ADDR32:
5198     case elfcpp::R_POWERPC_UADDR32:
5199     case elfcpp::R_POWERPC_ADDR24:
5200     case elfcpp::R_POWERPC_ADDR16:
5201     case elfcpp::R_POWERPC_UADDR16:
5202     case elfcpp::R_POWERPC_ADDR16_LO:
5203     case elfcpp::R_POWERPC_ADDR16_HI:
5204     case elfcpp::R_POWERPC_ADDR16_HA:
5205     case elfcpp::R_POWERPC_ADDR14:
5206     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5207     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5208     case elfcpp::R_POWERPC_REL32:
5209     case elfcpp::R_POWERPC_REL24:
5210     case elfcpp::R_POWERPC_TPREL16:
5211     case elfcpp::R_POWERPC_TPREL16_LO:
5212     case elfcpp::R_POWERPC_TPREL16_HI:
5213     case elfcpp::R_POWERPC_TPREL16_HA:
5214       return;
5215
5216     default:
5217       break;
5218     }
5219
5220   if (size == 64)
5221     {
5222       switch (r_type)
5223         {
5224           // These are the relocation types supported only on 64-bit.
5225         case elfcpp::R_PPC64_ADDR64:
5226         case elfcpp::R_PPC64_UADDR64:
5227         case elfcpp::R_PPC64_JMP_IREL:
5228         case elfcpp::R_PPC64_ADDR16_DS:
5229         case elfcpp::R_PPC64_ADDR16_LO_DS:
5230         case elfcpp::R_PPC64_ADDR16_HIGH:
5231         case elfcpp::R_PPC64_ADDR16_HIGHA:
5232         case elfcpp::R_PPC64_ADDR16_HIGHER:
5233         case elfcpp::R_PPC64_ADDR16_HIGHEST:
5234         case elfcpp::R_PPC64_ADDR16_HIGHERA:
5235         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5236         case elfcpp::R_PPC64_REL64:
5237         case elfcpp::R_POWERPC_ADDR30:
5238         case elfcpp::R_PPC64_TPREL16_DS:
5239         case elfcpp::R_PPC64_TPREL16_LO_DS:
5240         case elfcpp::R_PPC64_TPREL16_HIGH:
5241         case elfcpp::R_PPC64_TPREL16_HIGHA:
5242         case elfcpp::R_PPC64_TPREL16_HIGHER:
5243         case elfcpp::R_PPC64_TPREL16_HIGHEST:
5244         case elfcpp::R_PPC64_TPREL16_HIGHERA:
5245         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5246           return;
5247
5248         default:
5249           break;
5250         }
5251     }
5252   else
5253     {
5254       switch (r_type)
5255         {
5256           // These are the relocation types supported only on 32-bit.
5257           // ??? glibc ld.so doesn't need to support these.
5258         case elfcpp::R_POWERPC_DTPREL16:
5259         case elfcpp::R_POWERPC_DTPREL16_LO:
5260         case elfcpp::R_POWERPC_DTPREL16_HI:
5261         case elfcpp::R_POWERPC_DTPREL16_HA:
5262           return;
5263
5264         default:
5265           break;
5266         }
5267     }
5268
5269   // This prevents us from issuing more than one error per reloc
5270   // section.  But we can still wind up issuing more than one
5271   // error per object file.
5272   if (this->issued_non_pic_error_)
5273     return;
5274   gold_assert(parameters->options().output_is_position_independent());
5275   object->error(_("requires unsupported dynamic reloc; "
5276                   "recompile with -fPIC"));
5277   this->issued_non_pic_error_ = true;
5278   return;
5279 }
5280
5281 // Return whether we need to make a PLT entry for a relocation of the
5282 // given type against a STT_GNU_IFUNC symbol.
5283
5284 template<int size, bool big_endian>
5285 bool
5286 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5287      Target_powerpc<size, big_endian>* target,
5288      Sized_relobj_file<size, big_endian>* object,
5289      unsigned int r_type,
5290      bool report_err)
5291 {
5292   // In non-pic code any reference will resolve to the plt call stub
5293   // for the ifunc symbol.
5294   if ((size == 32 || target->abiversion() >= 2)
5295       && !parameters->options().output_is_position_independent())
5296     return true;
5297
5298   switch (r_type)
5299     {
5300     // Word size refs from data sections are OK, but don't need a PLT entry.
5301     case elfcpp::R_POWERPC_ADDR32:
5302     case elfcpp::R_POWERPC_UADDR32:
5303       if (size == 32)
5304         return false;
5305       break;
5306
5307     case elfcpp::R_PPC64_ADDR64:
5308     case elfcpp::R_PPC64_UADDR64:
5309       if (size == 64)
5310         return false;
5311       break;
5312
5313     // GOT refs are good, but also don't need a PLT entry.
5314     case elfcpp::R_POWERPC_GOT16:
5315     case elfcpp::R_POWERPC_GOT16_LO:
5316     case elfcpp::R_POWERPC_GOT16_HI:
5317     case elfcpp::R_POWERPC_GOT16_HA:
5318     case elfcpp::R_PPC64_GOT16_DS:
5319     case elfcpp::R_PPC64_GOT16_LO_DS:
5320       return false;
5321
5322     // Function calls are good, and these do need a PLT entry.
5323     case elfcpp::R_POWERPC_ADDR24:
5324     case elfcpp::R_POWERPC_ADDR14:
5325     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5326     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5327     case elfcpp::R_POWERPC_REL24:
5328     case elfcpp::R_PPC_PLTREL24:
5329     case elfcpp::R_POWERPC_REL14:
5330     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5331     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5332       return true;
5333
5334     default:
5335       break;
5336     }
5337
5338   // Anything else is a problem.
5339   // If we are building a static executable, the libc startup function
5340   // responsible for applying indirect function relocations is going
5341   // to complain about the reloc type.
5342   // If we are building a dynamic executable, we will have a text
5343   // relocation.  The dynamic loader will set the text segment
5344   // writable and non-executable to apply text relocations.  So we'll
5345   // segfault when trying to run the indirection function to resolve
5346   // the reloc.
5347   if (report_err)
5348     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5349                object->name().c_str(), r_type);
5350   return false;
5351 }
5352
5353 // Scan a relocation for a local symbol.
5354
5355 template<int size, bool big_endian>
5356 inline void
5357 Target_powerpc<size, big_endian>::Scan::local(
5358     Symbol_table* symtab,
5359     Layout* layout,
5360     Target_powerpc<size, big_endian>* target,
5361     Sized_relobj_file<size, big_endian>* object,
5362     unsigned int data_shndx,
5363     Output_section* output_section,
5364     const elfcpp::Rela<size, big_endian>& reloc,
5365     unsigned int r_type,
5366     const elfcpp::Sym<size, big_endian>& lsym,
5367     bool is_discarded)
5368 {
5369   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5370
5371   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5372       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5373     {
5374       this->expect_tls_get_addr_call();
5375       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5376       if (tls_type != tls::TLSOPT_NONE)
5377         this->skip_next_tls_get_addr_call();
5378     }
5379   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5380            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5381     {
5382       this->expect_tls_get_addr_call();
5383       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5384       if (tls_type != tls::TLSOPT_NONE)
5385         this->skip_next_tls_get_addr_call();
5386     }
5387
5388   Powerpc_relobj<size, big_endian>* ppc_object
5389     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5390
5391   if (is_discarded)
5392     {
5393       if (size == 64
5394           && data_shndx == ppc_object->opd_shndx()
5395           && r_type == elfcpp::R_PPC64_ADDR64)
5396         ppc_object->set_opd_discard(reloc.get_r_offset());
5397       return;
5398     }
5399
5400   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5401   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5402   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5403     {
5404       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5405       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5406                           r_type, r_sym, reloc.get_r_addend());
5407       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5408     }
5409
5410   switch (r_type)
5411     {
5412     case elfcpp::R_POWERPC_NONE:
5413     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5414     case elfcpp::R_POWERPC_GNU_VTENTRY:
5415     case elfcpp::R_PPC64_TOCSAVE:
5416     case elfcpp::R_POWERPC_TLS:
5417       break;
5418
5419     case elfcpp::R_PPC64_TOC:
5420       {
5421         Output_data_got_powerpc<size, big_endian>* got
5422           = target->got_section(symtab, layout);
5423         if (parameters->options().output_is_position_independent())
5424           {
5425             Address off = reloc.get_r_offset();
5426             if (size == 64
5427                 && target->abiversion() < 2
5428                 && data_shndx == ppc_object->opd_shndx()
5429                 && ppc_object->get_opd_discard(off - 8))
5430               break;
5431
5432             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5433             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5434             rela_dyn->add_output_section_relative(got->output_section(),
5435                                                   elfcpp::R_POWERPC_RELATIVE,
5436                                                   output_section,
5437                                                   object, data_shndx, off,
5438                                                   symobj->toc_base_offset());
5439           }
5440       }
5441       break;
5442
5443     case elfcpp::R_PPC64_ADDR64:
5444     case elfcpp::R_PPC64_UADDR64:
5445     case elfcpp::R_POWERPC_ADDR32:
5446     case elfcpp::R_POWERPC_UADDR32:
5447     case elfcpp::R_POWERPC_ADDR24:
5448     case elfcpp::R_POWERPC_ADDR16:
5449     case elfcpp::R_POWERPC_ADDR16_LO:
5450     case elfcpp::R_POWERPC_ADDR16_HI:
5451     case elfcpp::R_POWERPC_ADDR16_HA:
5452     case elfcpp::R_POWERPC_UADDR16:
5453     case elfcpp::R_PPC64_ADDR16_HIGH:
5454     case elfcpp::R_PPC64_ADDR16_HIGHA:
5455     case elfcpp::R_PPC64_ADDR16_HIGHER:
5456     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5457     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5458     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5459     case elfcpp::R_PPC64_ADDR16_DS:
5460     case elfcpp::R_PPC64_ADDR16_LO_DS:
5461     case elfcpp::R_POWERPC_ADDR14:
5462     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5463     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5464       // If building a shared library (or a position-independent
5465       // executable), we need to create a dynamic relocation for
5466       // this location.
5467       if (parameters->options().output_is_position_independent()
5468           || (size == 64 && is_ifunc && target->abiversion() < 2))
5469         {
5470           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5471                                                              is_ifunc);
5472           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5473               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5474             {
5475               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5476               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5477                                      : elfcpp::R_POWERPC_RELATIVE);
5478               rela_dyn->add_local_relative(object, r_sym, dynrel,
5479                                            output_section, data_shndx,
5480                                            reloc.get_r_offset(),
5481                                            reloc.get_r_addend(), false);
5482             }
5483           else
5484             {
5485               check_non_pic(object, r_type);
5486               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5487               rela_dyn->add_local(object, r_sym, r_type, output_section,
5488                                   data_shndx, reloc.get_r_offset(),
5489                                   reloc.get_r_addend());
5490             }
5491         }
5492       break;
5493
5494     case elfcpp::R_POWERPC_REL24:
5495     case elfcpp::R_PPC_PLTREL24:
5496     case elfcpp::R_PPC_LOCAL24PC:
5497     case elfcpp::R_POWERPC_REL14:
5498     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5499     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5500       if (!is_ifunc)
5501         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5502                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5503                             reloc.get_r_addend());
5504       break;
5505
5506     case elfcpp::R_PPC64_REL64:
5507     case elfcpp::R_POWERPC_REL32:
5508     case elfcpp::R_POWERPC_REL16:
5509     case elfcpp::R_POWERPC_REL16_LO:
5510     case elfcpp::R_POWERPC_REL16_HI:
5511     case elfcpp::R_POWERPC_REL16_HA:
5512     case elfcpp::R_POWERPC_SECTOFF:
5513     case elfcpp::R_POWERPC_SECTOFF_LO:
5514     case elfcpp::R_POWERPC_SECTOFF_HI:
5515     case elfcpp::R_POWERPC_SECTOFF_HA:
5516     case elfcpp::R_PPC64_SECTOFF_DS:
5517     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5518     case elfcpp::R_POWERPC_TPREL16:
5519     case elfcpp::R_POWERPC_TPREL16_LO:
5520     case elfcpp::R_POWERPC_TPREL16_HI:
5521     case elfcpp::R_POWERPC_TPREL16_HA:
5522     case elfcpp::R_PPC64_TPREL16_DS:
5523     case elfcpp::R_PPC64_TPREL16_LO_DS:
5524     case elfcpp::R_PPC64_TPREL16_HIGH:
5525     case elfcpp::R_PPC64_TPREL16_HIGHA:
5526     case elfcpp::R_PPC64_TPREL16_HIGHER:
5527     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5528     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5529     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5530     case elfcpp::R_POWERPC_DTPREL16:
5531     case elfcpp::R_POWERPC_DTPREL16_LO:
5532     case elfcpp::R_POWERPC_DTPREL16_HI:
5533     case elfcpp::R_POWERPC_DTPREL16_HA:
5534     case elfcpp::R_PPC64_DTPREL16_DS:
5535     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5536     case elfcpp::R_PPC64_DTPREL16_HIGH:
5537     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5538     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5539     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5540     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5541     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5542     case elfcpp::R_PPC64_TLSGD:
5543     case elfcpp::R_PPC64_TLSLD:
5544     case elfcpp::R_PPC64_ADDR64_LOCAL:
5545       break;
5546
5547     case elfcpp::R_POWERPC_GOT16:
5548     case elfcpp::R_POWERPC_GOT16_LO:
5549     case elfcpp::R_POWERPC_GOT16_HI:
5550     case elfcpp::R_POWERPC_GOT16_HA:
5551     case elfcpp::R_PPC64_GOT16_DS:
5552     case elfcpp::R_PPC64_GOT16_LO_DS:
5553       {
5554         // The symbol requires a GOT entry.
5555         Output_data_got_powerpc<size, big_endian>* got
5556           = target->got_section(symtab, layout);
5557         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5558
5559         if (!parameters->options().output_is_position_independent())
5560           {
5561             if ((size == 32 && is_ifunc)
5562                 || (size == 64 && target->abiversion() >= 2))
5563               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5564             else
5565               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5566           }
5567         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5568           {
5569             // If we are generating a shared object or a pie, this
5570             // symbol's GOT entry will be set by a dynamic relocation.
5571             unsigned int off;
5572             off = got->add_constant(0);
5573             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5574
5575             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5576                                                                is_ifunc);
5577             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5578                                    : elfcpp::R_POWERPC_RELATIVE);
5579             rela_dyn->add_local_relative(object, r_sym, dynrel,
5580                                          got, off, 0, false);
5581           }
5582       }
5583       break;
5584
5585     case elfcpp::R_PPC64_TOC16:
5586     case elfcpp::R_PPC64_TOC16_LO:
5587     case elfcpp::R_PPC64_TOC16_HI:
5588     case elfcpp::R_PPC64_TOC16_HA:
5589     case elfcpp::R_PPC64_TOC16_DS:
5590     case elfcpp::R_PPC64_TOC16_LO_DS:
5591       // We need a GOT section.
5592       target->got_section(symtab, layout);
5593       break;
5594
5595     case elfcpp::R_POWERPC_GOT_TLSGD16:
5596     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5597     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5598     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5599       {
5600         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5601         if (tls_type == tls::TLSOPT_NONE)
5602           {
5603             Output_data_got_powerpc<size, big_endian>* got
5604               = target->got_section(symtab, layout);
5605             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5606             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5607             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5608                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5609           }
5610         else if (tls_type == tls::TLSOPT_TO_LE)
5611           {
5612             // no GOT relocs needed for Local Exec.
5613           }
5614         else
5615           gold_unreachable();
5616       }
5617       break;
5618
5619     case elfcpp::R_POWERPC_GOT_TLSLD16:
5620     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5621     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5622     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5623       {
5624         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5625         if (tls_type == tls::TLSOPT_NONE)
5626           target->tlsld_got_offset(symtab, layout, object);
5627         else if (tls_type == tls::TLSOPT_TO_LE)
5628           {
5629             // no GOT relocs needed for Local Exec.
5630             if (parameters->options().emit_relocs())
5631               {
5632                 Output_section* os = layout->tls_segment()->first_section();
5633                 gold_assert(os != NULL);
5634                 os->set_needs_symtab_index();
5635               }
5636           }
5637         else
5638           gold_unreachable();
5639       }
5640       break;
5641
5642     case elfcpp::R_POWERPC_GOT_DTPREL16:
5643     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5644     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5645     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5646       {
5647         Output_data_got_powerpc<size, big_endian>* got
5648           = target->got_section(symtab, layout);
5649         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5650         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5651       }
5652       break;
5653
5654     case elfcpp::R_POWERPC_GOT_TPREL16:
5655     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5656     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5657     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5658       {
5659         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5660         if (tls_type == tls::TLSOPT_NONE)
5661           {
5662             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5663             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5664               {
5665                 Output_data_got_powerpc<size, big_endian>* got
5666                   = target->got_section(symtab, layout);
5667                 unsigned int off = got->add_constant(0);
5668                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5669
5670                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5671                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5672                                                       elfcpp::R_POWERPC_TPREL,
5673                                                       got, off, 0);
5674               }
5675           }
5676         else if (tls_type == tls::TLSOPT_TO_LE)
5677           {
5678             // no GOT relocs needed for Local Exec.
5679           }
5680         else
5681           gold_unreachable();
5682       }
5683       break;
5684
5685     default:
5686       unsupported_reloc_local(object, r_type);
5687       break;
5688     }
5689
5690   switch (r_type)
5691     {
5692     case elfcpp::R_POWERPC_GOT_TLSLD16:
5693     case elfcpp::R_POWERPC_GOT_TLSGD16:
5694     case elfcpp::R_POWERPC_GOT_TPREL16:
5695     case elfcpp::R_POWERPC_GOT_DTPREL16:
5696     case elfcpp::R_POWERPC_GOT16:
5697     case elfcpp::R_PPC64_GOT16_DS:
5698     case elfcpp::R_PPC64_TOC16:
5699     case elfcpp::R_PPC64_TOC16_DS:
5700       ppc_object->set_has_small_toc_reloc();
5701     default:
5702       break;
5703     }
5704 }
5705
5706 // Report an unsupported relocation against a global symbol.
5707
5708 template<int size, bool big_endian>
5709 void
5710 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5711     Sized_relobj_file<size, big_endian>* object,
5712     unsigned int r_type,
5713     Symbol* gsym)
5714 {
5715   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5716              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5717 }
5718
5719 // Scan a relocation for a global symbol.
5720
5721 template<int size, bool big_endian>
5722 inline void
5723 Target_powerpc<size, big_endian>::Scan::global(
5724     Symbol_table* symtab,
5725     Layout* layout,
5726     Target_powerpc<size, big_endian>* target,
5727     Sized_relobj_file<size, big_endian>* object,
5728     unsigned int data_shndx,
5729     Output_section* output_section,
5730     const elfcpp::Rela<size, big_endian>& reloc,
5731     unsigned int r_type,
5732     Symbol* gsym)
5733 {
5734   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5735     return;
5736
5737   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5738       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5739     {
5740       this->expect_tls_get_addr_call();
5741       const bool final = gsym->final_value_is_known();
5742       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5743       if (tls_type != tls::TLSOPT_NONE)
5744         this->skip_next_tls_get_addr_call();
5745     }
5746   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5747            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5748     {
5749       this->expect_tls_get_addr_call();
5750       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5751       if (tls_type != tls::TLSOPT_NONE)
5752         this->skip_next_tls_get_addr_call();
5753     }
5754
5755   Powerpc_relobj<size, big_endian>* ppc_object
5756     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5757
5758   // A STT_GNU_IFUNC symbol may require a PLT entry.
5759   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5760   bool pushed_ifunc = false;
5761   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5762     {
5763       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5764                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5765                           reloc.get_r_addend());
5766       target->make_plt_entry(symtab, layout, gsym);
5767       pushed_ifunc = true;
5768     }
5769
5770   switch (r_type)
5771     {
5772     case elfcpp::R_POWERPC_NONE:
5773     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5774     case elfcpp::R_POWERPC_GNU_VTENTRY:
5775     case elfcpp::R_PPC_LOCAL24PC:
5776     case elfcpp::R_POWERPC_TLS:
5777       break;
5778
5779     case elfcpp::R_PPC64_TOC:
5780       {
5781         Output_data_got_powerpc<size, big_endian>* got
5782           = target->got_section(symtab, layout);
5783         if (parameters->options().output_is_position_independent())
5784           {
5785             Address off = reloc.get_r_offset();
5786             if (size == 64
5787                 && data_shndx == ppc_object->opd_shndx()
5788                 && ppc_object->get_opd_discard(off - 8))
5789               break;
5790
5791             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5792             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5793             if (data_shndx != ppc_object->opd_shndx())
5794               symobj = static_cast
5795                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5796             rela_dyn->add_output_section_relative(got->output_section(),
5797                                                   elfcpp::R_POWERPC_RELATIVE,
5798                                                   output_section,
5799                                                   object, data_shndx, off,
5800                                                   symobj->toc_base_offset());
5801           }
5802       }
5803       break;
5804
5805     case elfcpp::R_PPC64_ADDR64:
5806       if (size == 64
5807           && target->abiversion() < 2
5808           && data_shndx == ppc_object->opd_shndx()
5809           && (gsym->is_defined_in_discarded_section()
5810               || gsym->object() != object))
5811         {
5812           ppc_object->set_opd_discard(reloc.get_r_offset());
5813           break;
5814         }
5815       // Fall thru
5816     case elfcpp::R_PPC64_UADDR64:
5817     case elfcpp::R_POWERPC_ADDR32:
5818     case elfcpp::R_POWERPC_UADDR32:
5819     case elfcpp::R_POWERPC_ADDR24:
5820     case elfcpp::R_POWERPC_ADDR16:
5821     case elfcpp::R_POWERPC_ADDR16_LO:
5822     case elfcpp::R_POWERPC_ADDR16_HI:
5823     case elfcpp::R_POWERPC_ADDR16_HA:
5824     case elfcpp::R_POWERPC_UADDR16:
5825     case elfcpp::R_PPC64_ADDR16_HIGH:
5826     case elfcpp::R_PPC64_ADDR16_HIGHA:
5827     case elfcpp::R_PPC64_ADDR16_HIGHER:
5828     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5829     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5830     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5831     case elfcpp::R_PPC64_ADDR16_DS:
5832     case elfcpp::R_PPC64_ADDR16_LO_DS:
5833     case elfcpp::R_POWERPC_ADDR14:
5834     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5835     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5836       {
5837         // Make a PLT entry if necessary.
5838         if (gsym->needs_plt_entry())
5839           {
5840             // Since this is not a PC-relative relocation, we may be
5841             // taking the address of a function. In that case we need to
5842             // set the entry in the dynamic symbol table to the address of
5843             // the PLT call stub.
5844             bool need_ifunc_plt = false;
5845             if ((size == 32 || target->abiversion() >= 2)
5846                 && gsym->is_from_dynobj()
5847                 && !parameters->options().output_is_position_independent())
5848               {
5849                 gsym->set_needs_dynsym_value();
5850                 need_ifunc_plt = true;
5851               }
5852             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
5853               {
5854                 target->push_branch(ppc_object, data_shndx,
5855                                     reloc.get_r_offset(), r_type,
5856                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5857                                     reloc.get_r_addend());
5858                 target->make_plt_entry(symtab, layout, gsym);
5859               }
5860           }
5861         // Make a dynamic relocation if necessary.
5862         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5863             || (size == 64 && is_ifunc && target->abiversion() < 2))
5864           {
5865             if (!parameters->options().output_is_position_independent()
5866                 && gsym->may_need_copy_reloc())
5867               {
5868                 target->copy_reloc(symtab, layout, object,
5869                                    data_shndx, output_section, gsym, reloc);
5870               }
5871             else if ((((size == 32
5872                         && r_type == elfcpp::R_POWERPC_ADDR32)
5873                        || (size == 64
5874                            && r_type == elfcpp::R_PPC64_ADDR64
5875                            && target->abiversion() >= 2))
5876                       && gsym->can_use_relative_reloc(false)
5877                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
5878                            && parameters->options().shared()))
5879                      || (size == 64
5880                          && r_type == elfcpp::R_PPC64_ADDR64
5881                          && target->abiversion() < 2
5882                          && (gsym->can_use_relative_reloc(false)
5883                              || data_shndx == ppc_object->opd_shndx())))
5884               {
5885                 Reloc_section* rela_dyn
5886                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5887                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5888                                        : elfcpp::R_POWERPC_RELATIVE);
5889                 rela_dyn->add_symbolless_global_addend(
5890                     gsym, dynrel, output_section, object, data_shndx,
5891                     reloc.get_r_offset(), reloc.get_r_addend());
5892               }
5893             else
5894               {
5895                 Reloc_section* rela_dyn
5896                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5897                 check_non_pic(object, r_type);
5898                 rela_dyn->add_global(gsym, r_type, output_section,
5899                                      object, data_shndx,
5900                                      reloc.get_r_offset(),
5901                                      reloc.get_r_addend());
5902               }
5903           }
5904       }
5905       break;
5906
5907     case elfcpp::R_PPC_PLTREL24:
5908     case elfcpp::R_POWERPC_REL24:
5909       if (!is_ifunc)
5910         {
5911           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5912                               r_type,
5913                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5914                               reloc.get_r_addend());
5915           if (gsym->needs_plt_entry()
5916               || (!gsym->final_value_is_known()
5917                   && (gsym->is_undefined()
5918                       || gsym->is_from_dynobj()
5919                       || gsym->is_preemptible())))
5920             target->make_plt_entry(symtab, layout, gsym);
5921         }
5922       // Fall thru
5923
5924     case elfcpp::R_PPC64_REL64:
5925     case elfcpp::R_POWERPC_REL32:
5926       // Make a dynamic relocation if necessary.
5927       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
5928         {
5929           if (!parameters->options().output_is_position_independent()
5930               && gsym->may_need_copy_reloc())
5931             {
5932               target->copy_reloc(symtab, layout, object,
5933                                  data_shndx, output_section, gsym,
5934                                  reloc);
5935             }
5936           else
5937             {
5938               Reloc_section* rela_dyn
5939                 = target->rela_dyn_section(symtab, layout, is_ifunc);
5940               check_non_pic(object, r_type);
5941               rela_dyn->add_global(gsym, r_type, output_section, object,
5942                                    data_shndx, reloc.get_r_offset(),
5943                                    reloc.get_r_addend());
5944             }
5945         }
5946       break;
5947
5948     case elfcpp::R_POWERPC_REL14:
5949     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5950     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5951       if (!is_ifunc)
5952         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5953                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5954                             reloc.get_r_addend());
5955       break;
5956
5957     case elfcpp::R_POWERPC_REL16:
5958     case elfcpp::R_POWERPC_REL16_LO:
5959     case elfcpp::R_POWERPC_REL16_HI:
5960     case elfcpp::R_POWERPC_REL16_HA:
5961     case elfcpp::R_POWERPC_SECTOFF:
5962     case elfcpp::R_POWERPC_SECTOFF_LO:
5963     case elfcpp::R_POWERPC_SECTOFF_HI:
5964     case elfcpp::R_POWERPC_SECTOFF_HA:
5965     case elfcpp::R_PPC64_SECTOFF_DS:
5966     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5967     case elfcpp::R_POWERPC_TPREL16:
5968     case elfcpp::R_POWERPC_TPREL16_LO:
5969     case elfcpp::R_POWERPC_TPREL16_HI:
5970     case elfcpp::R_POWERPC_TPREL16_HA:
5971     case elfcpp::R_PPC64_TPREL16_DS:
5972     case elfcpp::R_PPC64_TPREL16_LO_DS:
5973     case elfcpp::R_PPC64_TPREL16_HIGH:
5974     case elfcpp::R_PPC64_TPREL16_HIGHA:
5975     case elfcpp::R_PPC64_TPREL16_HIGHER:
5976     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5977     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5978     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5979     case elfcpp::R_POWERPC_DTPREL16:
5980     case elfcpp::R_POWERPC_DTPREL16_LO:
5981     case elfcpp::R_POWERPC_DTPREL16_HI:
5982     case elfcpp::R_POWERPC_DTPREL16_HA:
5983     case elfcpp::R_PPC64_DTPREL16_DS:
5984     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5985     case elfcpp::R_PPC64_DTPREL16_HIGH:
5986     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5987     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5988     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5989     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5990     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5991     case elfcpp::R_PPC64_TLSGD:
5992     case elfcpp::R_PPC64_TLSLD:
5993     case elfcpp::R_PPC64_ADDR64_LOCAL:
5994       break;
5995
5996     case elfcpp::R_POWERPC_GOT16:
5997     case elfcpp::R_POWERPC_GOT16_LO:
5998     case elfcpp::R_POWERPC_GOT16_HI:
5999     case elfcpp::R_POWERPC_GOT16_HA:
6000     case elfcpp::R_PPC64_GOT16_DS:
6001     case elfcpp::R_PPC64_GOT16_LO_DS:
6002       {
6003         // The symbol requires a GOT entry.
6004         Output_data_got_powerpc<size, big_endian>* got;
6005
6006         got = target->got_section(symtab, layout);
6007         if (gsym->final_value_is_known())
6008           {
6009             if ((size == 32 && is_ifunc)
6010                 || (size == 64 && target->abiversion() >= 2))
6011               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6012             else
6013               got->add_global(gsym, GOT_TYPE_STANDARD);
6014           }
6015         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6016           {
6017             // If we are generating a shared object or a pie, this
6018             // symbol's GOT entry will be set by a dynamic relocation.
6019             unsigned int off = got->add_constant(0);
6020             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6021
6022             Reloc_section* rela_dyn
6023               = target->rela_dyn_section(symtab, layout, is_ifunc);
6024
6025             if (gsym->can_use_relative_reloc(false)
6026                 && !((size == 32
6027                       || target->abiversion() >= 2)
6028                      && gsym->visibility() == elfcpp::STV_PROTECTED
6029                      && parameters->options().shared()))
6030               {
6031                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6032                                        : elfcpp::R_POWERPC_RELATIVE);
6033                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6034               }
6035             else
6036               {
6037                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6038                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6039               }
6040           }
6041       }
6042       break;
6043
6044     case elfcpp::R_PPC64_TOC16:
6045     case elfcpp::R_PPC64_TOC16_LO:
6046     case elfcpp::R_PPC64_TOC16_HI:
6047     case elfcpp::R_PPC64_TOC16_HA:
6048     case elfcpp::R_PPC64_TOC16_DS:
6049     case elfcpp::R_PPC64_TOC16_LO_DS:
6050       // We need a GOT section.
6051       target->got_section(symtab, layout);
6052       break;
6053
6054     case elfcpp::R_POWERPC_GOT_TLSGD16:
6055     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6056     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6057     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6058       {
6059         const bool final = gsym->final_value_is_known();
6060         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6061         if (tls_type == tls::TLSOPT_NONE)
6062           {
6063             Output_data_got_powerpc<size, big_endian>* got
6064               = target->got_section(symtab, layout);
6065             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6066             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6067                                           elfcpp::R_POWERPC_DTPMOD,
6068                                           elfcpp::R_POWERPC_DTPREL);
6069           }
6070         else if (tls_type == tls::TLSOPT_TO_IE)
6071           {
6072             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6073               {
6074                 Output_data_got_powerpc<size, big_endian>* got
6075                   = target->got_section(symtab, layout);
6076                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6077                 if (gsym->is_undefined()
6078                     || gsym->is_from_dynobj())
6079                   {
6080                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6081                                              elfcpp::R_POWERPC_TPREL);
6082                   }
6083                 else
6084                   {
6085                     unsigned int off = got->add_constant(0);
6086                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6087                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6088                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6089                                                            got, off, 0);
6090                   }
6091               }
6092           }
6093         else if (tls_type == tls::TLSOPT_TO_LE)
6094           {
6095             // no GOT relocs needed for Local Exec.
6096           }
6097         else
6098           gold_unreachable();
6099       }
6100       break;
6101
6102     case elfcpp::R_POWERPC_GOT_TLSLD16:
6103     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6104     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6105     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6106       {
6107         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6108         if (tls_type == tls::TLSOPT_NONE)
6109           target->tlsld_got_offset(symtab, layout, object);
6110         else if (tls_type == tls::TLSOPT_TO_LE)
6111           {
6112             // no GOT relocs needed for Local Exec.
6113             if (parameters->options().emit_relocs())
6114               {
6115                 Output_section* os = layout->tls_segment()->first_section();
6116                 gold_assert(os != NULL);
6117                 os->set_needs_symtab_index();
6118               }
6119           }
6120         else
6121           gold_unreachable();
6122       }
6123       break;
6124
6125     case elfcpp::R_POWERPC_GOT_DTPREL16:
6126     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6127     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6128     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6129       {
6130         Output_data_got_powerpc<size, big_endian>* got
6131           = target->got_section(symtab, layout);
6132         if (!gsym->final_value_is_known()
6133             && (gsym->is_from_dynobj()
6134                 || gsym->is_undefined()
6135                 || gsym->is_preemptible()))
6136           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6137                                    target->rela_dyn_section(layout),
6138                                    elfcpp::R_POWERPC_DTPREL);
6139         else
6140           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6141       }
6142       break;
6143
6144     case elfcpp::R_POWERPC_GOT_TPREL16:
6145     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6146     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6147     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6148       {
6149         const bool final = gsym->final_value_is_known();
6150         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6151         if (tls_type == tls::TLSOPT_NONE)
6152           {
6153             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6154               {
6155                 Output_data_got_powerpc<size, big_endian>* got
6156                   = target->got_section(symtab, layout);
6157                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6158                 if (gsym->is_undefined()
6159                     || gsym->is_from_dynobj())
6160                   {
6161                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6162                                              elfcpp::R_POWERPC_TPREL);
6163                   }
6164                 else
6165                   {
6166                     unsigned int off = got->add_constant(0);
6167                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6168                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6169                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6170                                                            got, off, 0);
6171                   }
6172               }
6173           }
6174         else if (tls_type == tls::TLSOPT_TO_LE)
6175           {
6176             // no GOT relocs needed for Local Exec.
6177           }
6178         else
6179           gold_unreachable();
6180       }
6181       break;
6182
6183     default:
6184       unsupported_reloc_global(object, r_type, gsym);
6185       break;
6186     }
6187
6188   switch (r_type)
6189     {
6190     case elfcpp::R_POWERPC_GOT_TLSLD16:
6191     case elfcpp::R_POWERPC_GOT_TLSGD16:
6192     case elfcpp::R_POWERPC_GOT_TPREL16:
6193     case elfcpp::R_POWERPC_GOT_DTPREL16:
6194     case elfcpp::R_POWERPC_GOT16:
6195     case elfcpp::R_PPC64_GOT16_DS:
6196     case elfcpp::R_PPC64_TOC16:
6197     case elfcpp::R_PPC64_TOC16_DS:
6198       ppc_object->set_has_small_toc_reloc();
6199     default:
6200       break;
6201     }
6202 }
6203
6204 // Process relocations for gc.
6205
6206 template<int size, bool big_endian>
6207 void
6208 Target_powerpc<size, big_endian>::gc_process_relocs(
6209     Symbol_table* symtab,
6210     Layout* layout,
6211     Sized_relobj_file<size, big_endian>* object,
6212     unsigned int data_shndx,
6213     unsigned int,
6214     const unsigned char* prelocs,
6215     size_t reloc_count,
6216     Output_section* output_section,
6217     bool needs_special_offset_handling,
6218     size_t local_symbol_count,
6219     const unsigned char* plocal_symbols)
6220 {
6221   typedef Target_powerpc<size, big_endian> Powerpc;
6222   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6223   Powerpc_relobj<size, big_endian>* ppc_object
6224     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6225   if (size == 64)
6226     ppc_object->set_opd_valid();
6227   if (size == 64 && data_shndx == ppc_object->opd_shndx())
6228     {
6229       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6230       for (p = ppc_object->access_from_map()->begin();
6231            p != ppc_object->access_from_map()->end();
6232            ++p)
6233         {
6234           Address dst_off = p->first;
6235           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6236           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6237           for (s = p->second.begin(); s != p->second.end(); ++s)
6238             {
6239               Object* src_obj = s->first;
6240               unsigned int src_indx = s->second;
6241               symtab->gc()->add_reference(src_obj, src_indx,
6242                                           ppc_object, dst_indx);
6243             }
6244           p->second.clear();
6245         }
6246       ppc_object->access_from_map()->clear();
6247       ppc_object->process_gc_mark(symtab);
6248       // Don't look at .opd relocs as .opd will reference everything.
6249       return;
6250     }
6251
6252   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6253                           typename Target_powerpc::Relocatable_size_for_reloc>(
6254     symtab,
6255     layout,
6256     this,
6257     object,
6258     data_shndx,
6259     prelocs,
6260     reloc_count,
6261     output_section,
6262     needs_special_offset_handling,
6263     local_symbol_count,
6264     plocal_symbols);
6265 }
6266
6267 // Handle target specific gc actions when adding a gc reference from
6268 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6269 // and DST_OFF.  For powerpc64, this adds a referenc to the code
6270 // section of a function descriptor.
6271
6272 template<int size, bool big_endian>
6273 void
6274 Target_powerpc<size, big_endian>::do_gc_add_reference(
6275     Symbol_table* symtab,
6276     Object* src_obj,
6277     unsigned int src_shndx,
6278     Object* dst_obj,
6279     unsigned int dst_shndx,
6280     Address dst_off) const
6281 {
6282   if (size != 64 || dst_obj->is_dynamic())
6283     return;
6284
6285   Powerpc_relobj<size, big_endian>* ppc_object
6286     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6287   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6288     {
6289       if (ppc_object->opd_valid())
6290         {
6291           dst_shndx = ppc_object->get_opd_ent(dst_off);
6292           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6293         }
6294       else
6295         {
6296           // If we haven't run scan_opd_relocs, we must delay
6297           // processing this function descriptor reference.
6298           ppc_object->add_reference(src_obj, src_shndx, dst_off);
6299         }
6300     }
6301 }
6302
6303 // Add any special sections for this symbol to the gc work list.
6304 // For powerpc64, this adds the code section of a function
6305 // descriptor.
6306
6307 template<int size, bool big_endian>
6308 void
6309 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6310     Symbol_table* symtab,
6311     Symbol* sym) const
6312 {
6313   if (size == 64)
6314     {
6315       Powerpc_relobj<size, big_endian>* ppc_object
6316         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6317       bool is_ordinary;
6318       unsigned int shndx = sym->shndx(&is_ordinary);
6319       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6320         {
6321           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6322           Address dst_off = gsym->value();
6323           if (ppc_object->opd_valid())
6324             {
6325               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6326               symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6327             }
6328           else
6329             ppc_object->add_gc_mark(dst_off);
6330         }
6331     }
6332 }
6333
6334 // For a symbol location in .opd, set LOC to the location of the
6335 // function entry.
6336
6337 template<int size, bool big_endian>
6338 void
6339 Target_powerpc<size, big_endian>::do_function_location(
6340     Symbol_location* loc) const
6341 {
6342   if (size == 64 && loc->shndx != 0)
6343     {
6344       if (loc->object->is_dynamic())
6345         {
6346           Powerpc_dynobj<size, big_endian>* ppc_object
6347             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6348           if (loc->shndx == ppc_object->opd_shndx())
6349             {
6350               Address dest_off;
6351               Address off = loc->offset - ppc_object->opd_address();
6352               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6353               loc->offset = dest_off;
6354             }
6355         }
6356       else
6357         {
6358           const Powerpc_relobj<size, big_endian>* ppc_object
6359             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6360           if (loc->shndx == ppc_object->opd_shndx())
6361             {
6362               Address dest_off;
6363               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6364               loc->offset = dest_off;
6365             }
6366         }
6367     }
6368 }
6369
6370 // Scan relocations for a section.
6371
6372 template<int size, bool big_endian>
6373 void
6374 Target_powerpc<size, big_endian>::scan_relocs(
6375     Symbol_table* symtab,
6376     Layout* layout,
6377     Sized_relobj_file<size, big_endian>* object,
6378     unsigned int data_shndx,
6379     unsigned int sh_type,
6380     const unsigned char* prelocs,
6381     size_t reloc_count,
6382     Output_section* output_section,
6383     bool needs_special_offset_handling,
6384     size_t local_symbol_count,
6385     const unsigned char* plocal_symbols)
6386 {
6387   typedef Target_powerpc<size, big_endian> Powerpc;
6388   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6389
6390   if (sh_type == elfcpp::SHT_REL)
6391     {
6392       gold_error(_("%s: unsupported REL reloc section"),
6393                  object->name().c_str());
6394       return;
6395     }
6396
6397   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6398     symtab,
6399     layout,
6400     this,
6401     object,
6402     data_shndx,
6403     prelocs,
6404     reloc_count,
6405     output_section,
6406     needs_special_offset_handling,
6407     local_symbol_count,
6408     plocal_symbols);
6409 }
6410
6411 // Functor class for processing the global symbol table.
6412 // Removes symbols defined on discarded opd entries.
6413
6414 template<bool big_endian>
6415 class Global_symbol_visitor_opd
6416 {
6417  public:
6418   Global_symbol_visitor_opd()
6419   { }
6420
6421   void
6422   operator()(Sized_symbol<64>* sym)
6423   {
6424     if (sym->has_symtab_index()
6425         || sym->source() != Symbol::FROM_OBJECT
6426         || !sym->in_real_elf())
6427       return;
6428
6429     if (sym->object()->is_dynamic())
6430       return;
6431
6432     Powerpc_relobj<64, big_endian>* symobj
6433       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6434     if (symobj->opd_shndx() == 0)
6435       return;
6436
6437     bool is_ordinary;
6438     unsigned int shndx = sym->shndx(&is_ordinary);
6439     if (shndx == symobj->opd_shndx()
6440         && symobj->get_opd_discard(sym->value()))
6441       sym->set_symtab_index(-1U);
6442   }
6443 };
6444
6445 template<int size, bool big_endian>
6446 void
6447 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6448     Layout* layout,
6449     Symbol_table* symtab)
6450 {
6451   if (size == 64)
6452     {
6453       Output_data_save_res<64, big_endian>* savres
6454         = new Output_data_save_res<64, big_endian>(symtab);
6455       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6456                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6457                                       savres, ORDER_TEXT, false);
6458     }
6459 }
6460
6461 // Sort linker created .got section first (for the header), then input
6462 // sections belonging to files using small model code.
6463
6464 template<bool big_endian>
6465 class Sort_toc_sections
6466 {
6467  public:
6468   bool
6469   operator()(const Output_section::Input_section& is1,
6470              const Output_section::Input_section& is2) const
6471   {
6472     if (!is1.is_input_section() && is2.is_input_section())
6473       return true;
6474     bool small1
6475       = (is1.is_input_section()
6476          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6477              ->has_small_toc_reloc()));
6478     bool small2
6479       = (is2.is_input_section()
6480          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6481              ->has_small_toc_reloc()));
6482     return small1 && !small2;
6483   }
6484 };
6485
6486 // Finalize the sections.
6487
6488 template<int size, bool big_endian>
6489 void
6490 Target_powerpc<size, big_endian>::do_finalize_sections(
6491     Layout* layout,
6492     const Input_objects*,
6493     Symbol_table* symtab)
6494 {
6495   if (parameters->doing_static_link())
6496     {
6497       // At least some versions of glibc elf-init.o have a strong
6498       // reference to __rela_iplt marker syms.  A weak ref would be
6499       // better..
6500       if (this->iplt_ != NULL)
6501         {
6502           Reloc_section* rel = this->iplt_->rel_plt();
6503           symtab->define_in_output_data("__rela_iplt_start", NULL,
6504                                         Symbol_table::PREDEFINED, rel, 0, 0,
6505                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6506                                         elfcpp::STV_HIDDEN, 0, false, true);
6507           symtab->define_in_output_data("__rela_iplt_end", NULL,
6508                                         Symbol_table::PREDEFINED, rel, 0, 0,
6509                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6510                                         elfcpp::STV_HIDDEN, 0, true, true);
6511         }
6512       else
6513         {
6514           symtab->define_as_constant("__rela_iplt_start", NULL,
6515                                      Symbol_table::PREDEFINED, 0, 0,
6516                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6517                                      elfcpp::STV_HIDDEN, 0, true, false);
6518           symtab->define_as_constant("__rela_iplt_end", NULL,
6519                                      Symbol_table::PREDEFINED, 0, 0,
6520                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6521                                      elfcpp::STV_HIDDEN, 0, true, false);
6522         }
6523     }
6524
6525   if (size == 64)
6526     {
6527       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6528       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6529
6530       if (!parameters->options().relocatable())
6531         {
6532           this->define_save_restore_funcs(layout, symtab);
6533
6534           // Annoyingly, we need to make these sections now whether or
6535           // not we need them.  If we delay until do_relax then we
6536           // need to mess with the relaxation machinery checkpointing.
6537           this->got_section(symtab, layout);
6538           this->make_brlt_section(layout);
6539
6540           if (parameters->options().toc_sort())
6541             {
6542               Output_section* os = this->got_->output_section();
6543               if (os != NULL && os->input_sections().size() > 1)
6544                 std::stable_sort(os->input_sections().begin(),
6545                                  os->input_sections().end(),
6546                                  Sort_toc_sections<big_endian>());
6547             }
6548         }
6549     }
6550
6551   // Fill in some more dynamic tags.
6552   Output_data_dynamic* odyn = layout->dynamic_data();
6553   if (odyn != NULL)
6554     {
6555       const Reloc_section* rel_plt = (this->plt_ == NULL
6556                                       ? NULL
6557                                       : this->plt_->rel_plt());
6558       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6559                                       this->rela_dyn_, true, size == 32);
6560
6561       if (size == 32)
6562         {
6563           if (this->got_ != NULL)
6564             {
6565               this->got_->finalize_data_size();
6566               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6567                                             this->got_, this->got_->g_o_t());
6568             }
6569         }
6570       else
6571         {
6572           if (this->glink_ != NULL)
6573             {
6574               this->glink_->finalize_data_size();
6575               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6576                                             this->glink_,
6577                                             (this->glink_->pltresolve_size
6578                                              - 32));
6579             }
6580         }
6581     }
6582
6583   // Emit any relocs we saved in an attempt to avoid generating COPY
6584   // relocs.
6585   if (this->copy_relocs_.any_saved_relocs())
6586     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6587 }
6588
6589 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6590 // reloc.
6591
6592 static bool
6593 ok_lo_toc_insn(uint32_t insn)
6594 {
6595   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6596           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6597           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6598           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6599           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6600           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6601           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6602           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6603           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6604           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6605           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6606           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6607           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6608           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6609           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6610               && (insn & 3) != 1)
6611           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6612               && ((insn & 3) == 0 || (insn & 3) == 3))
6613           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6614 }
6615
6616 // Return the value to use for a branch relocation.
6617
6618 template<int size, bool big_endian>
6619 typename Target_powerpc<size, big_endian>::Address
6620 Target_powerpc<size, big_endian>::symval_for_branch(
6621     const Symbol_table* symtab,
6622     Address value,
6623     const Sized_symbol<size>* gsym,
6624     Powerpc_relobj<size, big_endian>* object,
6625     unsigned int *dest_shndx)
6626 {
6627   if (size == 32 || this->abiversion() >= 2)
6628     gold_unreachable();
6629   *dest_shndx = 0;
6630
6631   // If the symbol is defined in an opd section, ie. is a function
6632   // descriptor, use the function descriptor code entry address
6633   Powerpc_relobj<size, big_endian>* symobj = object;
6634   if (gsym != NULL
6635       && gsym->source() != Symbol::FROM_OBJECT)
6636     return value;
6637   if (gsym != NULL)
6638     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6639   unsigned int shndx = symobj->opd_shndx();
6640   if (shndx == 0)
6641     return value;
6642   Address opd_addr = symobj->get_output_section_offset(shndx);
6643   if (opd_addr == invalid_address)
6644     return value;
6645   opd_addr += symobj->output_section_address(shndx);
6646   if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
6647     {
6648       Address sec_off;
6649       *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
6650       if (symtab->is_section_folded(symobj, *dest_shndx))
6651         {
6652           Section_id folded
6653             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6654           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6655           *dest_shndx = folded.second;
6656         }
6657       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6658       gold_assert(sec_addr != invalid_address);
6659       sec_addr += symobj->output_section(*dest_shndx)->address();
6660       value = sec_addr + sec_off;
6661     }
6662   return value;
6663 }
6664
6665 // Perform a relocation.
6666
6667 template<int size, bool big_endian>
6668 inline bool
6669 Target_powerpc<size, big_endian>::Relocate::relocate(
6670     const Relocate_info<size, big_endian>* relinfo,
6671     Target_powerpc* target,
6672     Output_section* os,
6673     size_t relnum,
6674     const elfcpp::Rela<size, big_endian>& rela,
6675     unsigned int r_type,
6676     const Sized_symbol<size>* gsym,
6677     const Symbol_value<size>* psymval,
6678     unsigned char* view,
6679     Address address,
6680     section_size_type view_size)
6681 {
6682   if (view == NULL)
6683     return true;
6684
6685   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6686     {
6687     case Track_tls::NOT_EXPECTED:
6688       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6689                              _("__tls_get_addr call lacks marker reloc"));
6690       break;
6691     case Track_tls::EXPECTED:
6692       // We have already complained.
6693       break;
6694     case Track_tls::SKIP:
6695       return true;
6696     case Track_tls::NORMAL:
6697       break;
6698     }
6699
6700   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6701   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6702   Powerpc_relobj<size, big_endian>* const object
6703     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6704   Address value = 0;
6705   bool has_plt_value = false;
6706   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6707   if ((gsym != NULL
6708        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6709        : object->local_has_plt_offset(r_sym))
6710       && (!psymval->is_ifunc_symbol()
6711           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
6712     {
6713       if (size == 64
6714           && gsym != NULL
6715           && target->abiversion() >= 2
6716           && !parameters->options().output_is_position_independent()
6717           && !is_branch_reloc(r_type))
6718         {
6719           unsigned int off = target->glink_section()->find_global_entry(gsym);
6720           gold_assert(off != (unsigned int)-1);
6721           value = target->glink_section()->global_entry_address() + off;
6722         }
6723       else
6724         {
6725           Stub_table<size, big_endian>* stub_table
6726             = object->stub_table(relinfo->data_shndx);
6727           if (stub_table == NULL)
6728             {
6729               // This is a ref from a data section to an ifunc symbol.
6730               if (target->stub_tables().size() != 0)
6731                 stub_table = target->stub_tables()[0];
6732             }
6733           gold_assert(stub_table != NULL);
6734           Address off;
6735           if (gsym != NULL)
6736             off = stub_table->find_plt_call_entry(object, gsym, r_type,
6737                                                   rela.get_r_addend());
6738           else
6739             off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6740                                                   rela.get_r_addend());
6741           gold_assert(off != invalid_address);
6742           value = stub_table->stub_address() + off;
6743         }
6744       has_plt_value = true;
6745     }
6746
6747   if (r_type == elfcpp::R_POWERPC_GOT16
6748       || r_type == elfcpp::R_POWERPC_GOT16_LO
6749       || r_type == elfcpp::R_POWERPC_GOT16_HI
6750       || r_type == elfcpp::R_POWERPC_GOT16_HA
6751       || r_type == elfcpp::R_PPC64_GOT16_DS
6752       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6753     {
6754       if (gsym != NULL)
6755         {
6756           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6757           value = gsym->got_offset(GOT_TYPE_STANDARD);
6758         }
6759       else
6760         {
6761           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6762           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6763           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6764         }
6765       value -= target->got_section()->got_base_offset(object);
6766     }
6767   else if (r_type == elfcpp::R_PPC64_TOC)
6768     {
6769       value = (target->got_section()->output_section()->address()
6770                + object->toc_base_offset());
6771     }
6772   else if (gsym != NULL
6773            && (r_type == elfcpp::R_POWERPC_REL24
6774                || r_type == elfcpp::R_PPC_PLTREL24)
6775            && has_plt_value)
6776     {
6777       if (size == 64)
6778         {
6779           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6780           Valtype* wv = reinterpret_cast<Valtype*>(view);
6781           bool can_plt_call = false;
6782           if (rela.get_r_offset() + 8 <= view_size)
6783             {
6784               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6785               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6786               if ((insn & 1) != 0
6787                   && (insn2 == nop
6788                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6789                 {
6790                   elfcpp::Swap<32, big_endian>::
6791                     writeval(wv + 1, ld_2_1 + target->stk_toc());
6792                   can_plt_call = true;
6793                 }
6794             }
6795           if (!can_plt_call)
6796             {
6797               // If we don't have a branch and link followed by a nop,
6798               // we can't go via the plt because there is no place to
6799               // put a toc restoring instruction.
6800               // Unless we know we won't be returning.
6801               if (strcmp(gsym->name(), "__libc_start_main") == 0)
6802                 can_plt_call = true;
6803             }
6804           if (!can_plt_call)
6805             {
6806               // g++ as of 20130507 emits self-calls without a
6807               // following nop.  This is arguably wrong since we have
6808               // conflicting information.  On the one hand a global
6809               // symbol and on the other a local call sequence, but
6810               // don't error for this special case.
6811               // It isn't possible to cheaply verify we have exactly
6812               // such a call.  Allow all calls to the same section.
6813               bool ok = false;
6814               Address code = value;
6815               if (gsym->source() == Symbol::FROM_OBJECT
6816                   && gsym->object() == object)
6817                 {
6818                   unsigned int dest_shndx = 0;
6819                   if (target->abiversion() < 2)
6820                     {
6821                       Address addend = rela.get_r_addend();
6822                       Address opdent = psymval->value(object, addend);
6823                       code = target->symval_for_branch(relinfo->symtab,
6824                                                        opdent, gsym, object,
6825                                                        &dest_shndx);
6826                     }
6827                   bool is_ordinary;
6828                   if (dest_shndx == 0)
6829                     dest_shndx = gsym->shndx(&is_ordinary);
6830                   ok = dest_shndx == relinfo->data_shndx;
6831                 }
6832               if (!ok)
6833                 {
6834                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6835                                          _("call lacks nop, can't restore toc; "
6836                                            "recompile with -fPIC"));
6837                   value = code;
6838                 }
6839             }
6840         }
6841     }
6842   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6843            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6844            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6845            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6846     {
6847       // First instruction of a global dynamic sequence, arg setup insn.
6848       const bool final = gsym == NULL || gsym->final_value_is_known();
6849       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6850       enum Got_type got_type = GOT_TYPE_STANDARD;
6851       if (tls_type == tls::TLSOPT_NONE)
6852         got_type = GOT_TYPE_TLSGD;
6853       else if (tls_type == tls::TLSOPT_TO_IE)
6854         got_type = GOT_TYPE_TPREL;
6855       if (got_type != GOT_TYPE_STANDARD)
6856         {
6857           if (gsym != NULL)
6858             {
6859               gold_assert(gsym->has_got_offset(got_type));
6860               value = gsym->got_offset(got_type);
6861             }
6862           else
6863             {
6864               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6865               gold_assert(object->local_has_got_offset(r_sym, got_type));
6866               value = object->local_got_offset(r_sym, got_type);
6867             }
6868           value -= target->got_section()->got_base_offset(object);
6869         }
6870       if (tls_type == tls::TLSOPT_TO_IE)
6871         {
6872           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6873               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6874             {
6875               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6876               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6877               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6878               if (size == 32)
6879                 insn |= 32 << 26; // lwz
6880               else
6881                 insn |= 58 << 26; // ld
6882               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6883             }
6884           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6885                      - elfcpp::R_POWERPC_GOT_TLSGD16);
6886         }
6887       else if (tls_type == tls::TLSOPT_TO_LE)
6888         {
6889           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6890               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6891             {
6892               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6893               Insn insn = addis_3_13;
6894               if (size == 32)
6895                 insn = addis_3_2;
6896               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6897               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6898               value = psymval->value(object, rela.get_r_addend());
6899             }
6900           else
6901             {
6902               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6903               Insn insn = nop;
6904               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6905               r_type = elfcpp::R_POWERPC_NONE;
6906             }
6907         }
6908     }
6909   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6910            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6911            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6912            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6913     {
6914       // First instruction of a local dynamic sequence, arg setup insn.
6915       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6916       if (tls_type == tls::TLSOPT_NONE)
6917         {
6918           value = target->tlsld_got_offset();
6919           value -= target->got_section()->got_base_offset(object);
6920         }
6921       else
6922         {
6923           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6924           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6925               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6926             {
6927               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6928               Insn insn = addis_3_13;
6929               if (size == 32)
6930                 insn = addis_3_2;
6931               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6932               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6933               value = dtp_offset;
6934             }
6935           else
6936             {
6937               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6938               Insn insn = nop;
6939               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6940               r_type = elfcpp::R_POWERPC_NONE;
6941             }
6942         }
6943     }
6944   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6945            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6946            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6947            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6948     {
6949       // Accesses relative to a local dynamic sequence address,
6950       // no optimisation here.
6951       if (gsym != NULL)
6952         {
6953           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6954           value = gsym->got_offset(GOT_TYPE_DTPREL);
6955         }
6956       else
6957         {
6958           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6959           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6960           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6961         }
6962       value -= target->got_section()->got_base_offset(object);
6963     }
6964   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6965            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6966            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6967            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6968     {
6969       // First instruction of initial exec sequence.
6970       const bool final = gsym == NULL || gsym->final_value_is_known();
6971       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6972       if (tls_type == tls::TLSOPT_NONE)
6973         {
6974           if (gsym != NULL)
6975             {
6976               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
6977               value = gsym->got_offset(GOT_TYPE_TPREL);
6978             }
6979           else
6980             {
6981               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6982               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
6983               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
6984             }
6985           value -= target->got_section()->got_base_offset(object);
6986         }
6987       else
6988         {
6989           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6990           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6991               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6992             {
6993               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6994               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6995               insn &= (1 << 26) - (1 << 21); // extract rt from ld
6996               if (size == 32)
6997                 insn |= addis_0_2;
6998               else
6999                 insn |= addis_0_13;
7000               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7001               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7002               value = psymval->value(object, rela.get_r_addend());
7003             }
7004           else
7005             {
7006               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7007               Insn insn = nop;
7008               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7009               r_type = elfcpp::R_POWERPC_NONE;
7010             }
7011         }
7012     }
7013   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7014            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7015     {
7016       // Second instruction of a global dynamic sequence,
7017       // the __tls_get_addr call
7018       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7019       const bool final = gsym == NULL || gsym->final_value_is_known();
7020       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7021       if (tls_type != tls::TLSOPT_NONE)
7022         {
7023           if (tls_type == tls::TLSOPT_TO_IE)
7024             {
7025               Insn* iview = reinterpret_cast<Insn*>(view);
7026               Insn insn = add_3_3_13;
7027               if (size == 32)
7028                 insn = add_3_3_2;
7029               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7030               r_type = elfcpp::R_POWERPC_NONE;
7031             }
7032           else
7033             {
7034               Insn* iview = reinterpret_cast<Insn*>(view);
7035               Insn insn = addi_3_3;
7036               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7037               r_type = elfcpp::R_POWERPC_TPREL16_LO;
7038               view += 2 * big_endian;
7039               value = psymval->value(object, rela.get_r_addend());
7040             }
7041           this->skip_next_tls_get_addr_call();
7042         }
7043     }
7044   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7045            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7046     {
7047       // Second instruction of a local dynamic sequence,
7048       // the __tls_get_addr call
7049       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7050       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7051       if (tls_type == tls::TLSOPT_TO_LE)
7052         {
7053           Insn* iview = reinterpret_cast<Insn*>(view);
7054           Insn insn = addi_3_3;
7055           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7056           this->skip_next_tls_get_addr_call();
7057           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7058           view += 2 * big_endian;
7059           value = dtp_offset;
7060         }
7061     }
7062   else if (r_type == elfcpp::R_POWERPC_TLS)
7063     {
7064       // Second instruction of an initial exec sequence
7065       const bool final = gsym == NULL || gsym->final_value_is_known();
7066       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7067       if (tls_type == tls::TLSOPT_TO_LE)
7068         {
7069           Insn* iview = reinterpret_cast<Insn*>(view);
7070           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7071           unsigned int reg = size == 32 ? 2 : 13;
7072           insn = at_tls_transform(insn, reg);
7073           gold_assert(insn != 0);
7074           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7075           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7076           view += 2 * big_endian;
7077           value = psymval->value(object, rela.get_r_addend());
7078         }
7079     }
7080   else if (!has_plt_value)
7081     {
7082       Address addend = 0;
7083       unsigned int dest_shndx;
7084       if (r_type != elfcpp::R_PPC_PLTREL24)
7085         addend = rela.get_r_addend();
7086       value = psymval->value(object, addend);
7087       if (size == 64 && is_branch_reloc(r_type))
7088         {
7089           if (target->abiversion() >= 2)
7090             {
7091               if (gsym != NULL)
7092                 value += object->ppc64_local_entry_offset(gsym);
7093               else
7094                 value += object->ppc64_local_entry_offset(r_sym);
7095             }
7096           else
7097             value = target->symval_for_branch(relinfo->symtab, value,
7098                                               gsym, object, &dest_shndx);
7099         }
7100       unsigned int max_branch_offset = 0;
7101       if (r_type == elfcpp::R_POWERPC_REL24
7102           || r_type == elfcpp::R_PPC_PLTREL24
7103           || r_type == elfcpp::R_PPC_LOCAL24PC)
7104         max_branch_offset = 1 << 25;
7105       else if (r_type == elfcpp::R_POWERPC_REL14
7106                || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
7107                || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
7108         max_branch_offset = 1 << 15;
7109       if (max_branch_offset != 0
7110           && value - address + max_branch_offset >= 2 * max_branch_offset)
7111         {
7112           Stub_table<size, big_endian>* stub_table
7113             = object->stub_table(relinfo->data_shndx);
7114           if (stub_table != NULL)
7115             {
7116               Address off = stub_table->find_long_branch_entry(object, value);
7117               if (off != invalid_address)
7118                 value = (stub_table->stub_address() + stub_table->plt_size()
7119                          + off);
7120             }
7121         }
7122     }
7123
7124   switch (r_type)
7125     {
7126     case elfcpp::R_PPC64_REL64:
7127     case elfcpp::R_POWERPC_REL32:
7128     case elfcpp::R_POWERPC_REL24:
7129     case elfcpp::R_PPC_PLTREL24:
7130     case elfcpp::R_PPC_LOCAL24PC:
7131     case elfcpp::R_POWERPC_REL16:
7132     case elfcpp::R_POWERPC_REL16_LO:
7133     case elfcpp::R_POWERPC_REL16_HI:
7134     case elfcpp::R_POWERPC_REL16_HA:
7135     case elfcpp::R_POWERPC_REL14:
7136     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7137     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7138       value -= address;
7139       break;
7140
7141     case elfcpp::R_PPC64_TOC16:
7142     case elfcpp::R_PPC64_TOC16_LO:
7143     case elfcpp::R_PPC64_TOC16_HI:
7144     case elfcpp::R_PPC64_TOC16_HA:
7145     case elfcpp::R_PPC64_TOC16_DS:
7146     case elfcpp::R_PPC64_TOC16_LO_DS:
7147       // Subtract the TOC base address.
7148       value -= (target->got_section()->output_section()->address()
7149                 + object->toc_base_offset());
7150       break;
7151
7152     case elfcpp::R_POWERPC_SECTOFF:
7153     case elfcpp::R_POWERPC_SECTOFF_LO:
7154     case elfcpp::R_POWERPC_SECTOFF_HI:
7155     case elfcpp::R_POWERPC_SECTOFF_HA:
7156     case elfcpp::R_PPC64_SECTOFF_DS:
7157     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7158       if (os != NULL)
7159         value -= os->address();
7160       break;
7161
7162     case elfcpp::R_PPC64_TPREL16_DS:
7163     case elfcpp::R_PPC64_TPREL16_LO_DS:
7164     case elfcpp::R_PPC64_TPREL16_HIGH:
7165     case elfcpp::R_PPC64_TPREL16_HIGHA:
7166       if (size != 64)
7167         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7168         break;
7169     case elfcpp::R_POWERPC_TPREL16:
7170     case elfcpp::R_POWERPC_TPREL16_LO:
7171     case elfcpp::R_POWERPC_TPREL16_HI:
7172     case elfcpp::R_POWERPC_TPREL16_HA:
7173     case elfcpp::R_POWERPC_TPREL:
7174     case elfcpp::R_PPC64_TPREL16_HIGHER:
7175     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7176     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7177     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7178       // tls symbol values are relative to tls_segment()->vaddr()
7179       value -= tp_offset;
7180       break;
7181
7182     case elfcpp::R_PPC64_DTPREL16_DS:
7183     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7184     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7185     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7186     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7187     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7188       if (size != 64)
7189         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7190         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7191         break;
7192     case elfcpp::R_POWERPC_DTPREL16:
7193     case elfcpp::R_POWERPC_DTPREL16_LO:
7194     case elfcpp::R_POWERPC_DTPREL16_HI:
7195     case elfcpp::R_POWERPC_DTPREL16_HA:
7196     case elfcpp::R_POWERPC_DTPREL:
7197     case elfcpp::R_PPC64_DTPREL16_HIGH:
7198     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7199       // tls symbol values are relative to tls_segment()->vaddr()
7200       value -= dtp_offset;
7201       break;
7202
7203     case elfcpp::R_PPC64_ADDR64_LOCAL:
7204       if (gsym != NULL)
7205         value += object->ppc64_local_entry_offset(gsym);
7206       else
7207         value += object->ppc64_local_entry_offset(r_sym);
7208       break;
7209
7210     default:
7211       break;
7212     }
7213
7214   Insn branch_bit = 0;
7215   switch (r_type)
7216     {
7217     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7218     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7219       branch_bit = 1 << 21;
7220     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7221     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7222       {
7223         Insn* iview = reinterpret_cast<Insn*>(view);
7224         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7225         insn &= ~(1 << 21);
7226         insn |= branch_bit;
7227         if (this->is_isa_v2)
7228           {
7229             // Set 'a' bit.  This is 0b00010 in BO field for branch
7230             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7231             // for branch on CTR insns (BO == 1a00t or 1a01t).
7232             if ((insn & (0x14 << 21)) == (0x04 << 21))
7233               insn |= 0x02 << 21;
7234             else if ((insn & (0x14 << 21)) == (0x10 << 21))
7235               insn |= 0x08 << 21;
7236             else
7237               break;
7238           }
7239         else
7240           {
7241             // Invert 'y' bit if not the default.
7242             if (static_cast<Signed_address>(value) < 0)
7243               insn ^= 1 << 21;
7244           }
7245         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7246       }
7247       break;
7248
7249     default:
7250       break;
7251     }
7252
7253   if (size == 64)
7254     {
7255       // Multi-instruction sequences that access the TOC can be
7256       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7257       // to             nop;           addi rb,r2,x;
7258       switch (r_type)
7259         {
7260         default:
7261           break;
7262
7263         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7264         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7265         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7266         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7267         case elfcpp::R_POWERPC_GOT16_HA:
7268         case elfcpp::R_PPC64_TOC16_HA:
7269           if (parameters->options().toc_optimize())
7270             {
7271               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7272               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7273               if ((insn & ((0x3f << 26) | 0x1f << 16))
7274                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7275                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7276                                        _("toc optimization is not supported "
7277                                          "for %#08x instruction"), insn);
7278               else if (value + 0x8000 < 0x10000)
7279                 {
7280                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7281                   return true;
7282                 }
7283             }
7284           break;
7285
7286         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7287         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7288         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7289         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7290         case elfcpp::R_POWERPC_GOT16_LO:
7291         case elfcpp::R_PPC64_GOT16_LO_DS:
7292         case elfcpp::R_PPC64_TOC16_LO:
7293         case elfcpp::R_PPC64_TOC16_LO_DS:
7294           if (parameters->options().toc_optimize())
7295             {
7296               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7297               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7298               if (!ok_lo_toc_insn(insn))
7299                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7300                                        _("toc optimization is not supported "
7301                                          "for %#08x instruction"), insn);
7302               else if (value + 0x8000 < 0x10000)
7303                 {
7304                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7305                     {
7306                       // Transform addic to addi when we change reg.
7307                       insn &= ~((0x3f << 26) | (0x1f << 16));
7308                       insn |= (14u << 26) | (2 << 16);
7309                     }
7310                   else
7311                     {
7312                       insn &= ~(0x1f << 16);
7313                       insn |= 2 << 16;
7314                     }
7315                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7316                 }
7317             }
7318           break;
7319         }
7320     }
7321
7322   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7323   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7324   switch (r_type)
7325     {
7326     case elfcpp::R_POWERPC_ADDR32:
7327     case elfcpp::R_POWERPC_UADDR32:
7328       if (size == 64)
7329         overflow = Reloc::CHECK_BITFIELD;
7330       break;
7331
7332     case elfcpp::R_POWERPC_REL32:
7333       if (size == 64)
7334         overflow = Reloc::CHECK_SIGNED;
7335       break;
7336
7337     case elfcpp::R_POWERPC_UADDR16:
7338       overflow = Reloc::CHECK_BITFIELD;
7339       break;
7340
7341     case elfcpp::R_POWERPC_ADDR16:
7342       // We really should have three separate relocations,
7343       // one for 16-bit data, one for insns with 16-bit signed fields,
7344       // and one for insns with 16-bit unsigned fields.
7345       overflow = Reloc::CHECK_BITFIELD;
7346       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7347         overflow = Reloc::CHECK_LOW_INSN;
7348       break;
7349
7350     case elfcpp::R_POWERPC_ADDR16_HI:
7351     case elfcpp::R_POWERPC_ADDR16_HA:
7352     case elfcpp::R_POWERPC_GOT16_HI:
7353     case elfcpp::R_POWERPC_GOT16_HA:
7354     case elfcpp::R_POWERPC_PLT16_HI:
7355     case elfcpp::R_POWERPC_PLT16_HA:
7356     case elfcpp::R_POWERPC_SECTOFF_HI:
7357     case elfcpp::R_POWERPC_SECTOFF_HA:
7358     case elfcpp::R_PPC64_TOC16_HI:
7359     case elfcpp::R_PPC64_TOC16_HA:
7360     case elfcpp::R_PPC64_PLTGOT16_HI:
7361     case elfcpp::R_PPC64_PLTGOT16_HA:
7362     case elfcpp::R_POWERPC_TPREL16_HI:
7363     case elfcpp::R_POWERPC_TPREL16_HA:
7364     case elfcpp::R_POWERPC_DTPREL16_HI:
7365     case elfcpp::R_POWERPC_DTPREL16_HA:
7366     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7367     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7368     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7369     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7370     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7371     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7372     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7373     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7374     case elfcpp::R_POWERPC_REL16_HI:
7375     case elfcpp::R_POWERPC_REL16_HA:
7376       if (size != 32)
7377         overflow = Reloc::CHECK_HIGH_INSN;
7378       break;
7379
7380     case elfcpp::R_POWERPC_REL16:
7381     case elfcpp::R_PPC64_TOC16:
7382     case elfcpp::R_POWERPC_GOT16:
7383     case elfcpp::R_POWERPC_SECTOFF:
7384     case elfcpp::R_POWERPC_TPREL16:
7385     case elfcpp::R_POWERPC_DTPREL16:
7386     case elfcpp::R_POWERPC_GOT_TLSGD16:
7387     case elfcpp::R_POWERPC_GOT_TLSLD16:
7388     case elfcpp::R_POWERPC_GOT_TPREL16:
7389     case elfcpp::R_POWERPC_GOT_DTPREL16:
7390       overflow = Reloc::CHECK_LOW_INSN;
7391       break;
7392
7393     case elfcpp::R_POWERPC_ADDR24:
7394     case elfcpp::R_POWERPC_ADDR14:
7395     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7396     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7397     case elfcpp::R_PPC64_ADDR16_DS:
7398     case elfcpp::R_POWERPC_REL24:
7399     case elfcpp::R_PPC_PLTREL24:
7400     case elfcpp::R_PPC_LOCAL24PC:
7401     case elfcpp::R_PPC64_TPREL16_DS:
7402     case elfcpp::R_PPC64_DTPREL16_DS:
7403     case elfcpp::R_PPC64_TOC16_DS:
7404     case elfcpp::R_PPC64_GOT16_DS:
7405     case elfcpp::R_PPC64_SECTOFF_DS:
7406     case elfcpp::R_POWERPC_REL14:
7407     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7408     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7409       overflow = Reloc::CHECK_SIGNED;
7410       break;
7411     }
7412
7413   if (overflow == Reloc::CHECK_LOW_INSN
7414       || overflow == Reloc::CHECK_HIGH_INSN)
7415     {
7416       Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7417       Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7418
7419       overflow = Reloc::CHECK_SIGNED;
7420       if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7421         overflow = Reloc::CHECK_BITFIELD;
7422       else if (overflow == Reloc::CHECK_LOW_INSN
7423                ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7424                   || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7425                   || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7426                : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7427                   || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7428                   || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7429         overflow = Reloc::CHECK_UNSIGNED;
7430     }
7431
7432   typename Powerpc_relocate_functions<size, big_endian>::Status status
7433     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7434   switch (r_type)
7435     {
7436     case elfcpp::R_POWERPC_NONE:
7437     case elfcpp::R_POWERPC_TLS:
7438     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7439     case elfcpp::R_POWERPC_GNU_VTENTRY:
7440       break;
7441
7442     case elfcpp::R_PPC64_ADDR64:
7443     case elfcpp::R_PPC64_REL64:
7444     case elfcpp::R_PPC64_TOC:
7445     case elfcpp::R_PPC64_ADDR64_LOCAL:
7446       Reloc::addr64(view, value);
7447       break;
7448
7449     case elfcpp::R_POWERPC_TPREL:
7450     case elfcpp::R_POWERPC_DTPREL:
7451       if (size == 64)
7452         Reloc::addr64(view, value);
7453       else
7454         status = Reloc::addr32(view, value, overflow);
7455       break;
7456
7457     case elfcpp::R_PPC64_UADDR64:
7458       Reloc::addr64_u(view, value);
7459       break;
7460
7461     case elfcpp::R_POWERPC_ADDR32:
7462       status = Reloc::addr32(view, value, overflow);
7463       break;
7464
7465     case elfcpp::R_POWERPC_REL32:
7466     case elfcpp::R_POWERPC_UADDR32:
7467       status = Reloc::addr32_u(view, value, overflow);
7468       break;
7469
7470     case elfcpp::R_POWERPC_ADDR24:
7471     case elfcpp::R_POWERPC_REL24:
7472     case elfcpp::R_PPC_PLTREL24:
7473     case elfcpp::R_PPC_LOCAL24PC:
7474       status = Reloc::addr24(view, value, overflow);
7475       break;
7476
7477     case elfcpp::R_POWERPC_GOT_DTPREL16:
7478     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7479       if (size == 64)
7480         {
7481           status = Reloc::addr16_ds(view, value, overflow);
7482           break;
7483         }
7484     case elfcpp::R_POWERPC_ADDR16:
7485     case elfcpp::R_POWERPC_REL16:
7486     case elfcpp::R_PPC64_TOC16:
7487     case elfcpp::R_POWERPC_GOT16:
7488     case elfcpp::R_POWERPC_SECTOFF:
7489     case elfcpp::R_POWERPC_TPREL16:
7490     case elfcpp::R_POWERPC_DTPREL16:
7491     case elfcpp::R_POWERPC_GOT_TLSGD16:
7492     case elfcpp::R_POWERPC_GOT_TLSLD16:
7493     case elfcpp::R_POWERPC_GOT_TPREL16:
7494     case elfcpp::R_POWERPC_ADDR16_LO:
7495     case elfcpp::R_POWERPC_REL16_LO:
7496     case elfcpp::R_PPC64_TOC16_LO:
7497     case elfcpp::R_POWERPC_GOT16_LO:
7498     case elfcpp::R_POWERPC_SECTOFF_LO:
7499     case elfcpp::R_POWERPC_TPREL16_LO:
7500     case elfcpp::R_POWERPC_DTPREL16_LO:
7501     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7502     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7503     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7504       status = Reloc::addr16(view, value, overflow);
7505       break;
7506
7507     case elfcpp::R_POWERPC_UADDR16:
7508       status = Reloc::addr16_u(view, value, overflow);
7509       break;
7510
7511     case elfcpp::R_PPC64_ADDR16_HIGH:
7512     case elfcpp::R_PPC64_TPREL16_HIGH:
7513     case elfcpp::R_PPC64_DTPREL16_HIGH:
7514       if (size == 32)
7515         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7516         goto unsupp;
7517     case elfcpp::R_POWERPC_ADDR16_HI:
7518     case elfcpp::R_POWERPC_REL16_HI:
7519     case elfcpp::R_PPC64_TOC16_HI:
7520     case elfcpp::R_POWERPC_GOT16_HI:
7521     case elfcpp::R_POWERPC_SECTOFF_HI:
7522     case elfcpp::R_POWERPC_TPREL16_HI:
7523     case elfcpp::R_POWERPC_DTPREL16_HI:
7524     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7525     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7526     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7527     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7528       Reloc::addr16_hi(view, value);
7529       break;
7530
7531     case elfcpp::R_PPC64_ADDR16_HIGHA:
7532     case elfcpp::R_PPC64_TPREL16_HIGHA:
7533     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7534       if (size == 32)
7535         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7536         goto unsupp;
7537     case elfcpp::R_POWERPC_ADDR16_HA:
7538     case elfcpp::R_POWERPC_REL16_HA:
7539     case elfcpp::R_PPC64_TOC16_HA:
7540     case elfcpp::R_POWERPC_GOT16_HA:
7541     case elfcpp::R_POWERPC_SECTOFF_HA:
7542     case elfcpp::R_POWERPC_TPREL16_HA:
7543     case elfcpp::R_POWERPC_DTPREL16_HA:
7544     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7545     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7546     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7547     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7548       Reloc::addr16_ha(view, value);
7549       break;
7550
7551     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7552       if (size == 32)
7553         // R_PPC_EMB_NADDR16_LO
7554         goto unsupp;
7555     case elfcpp::R_PPC64_ADDR16_HIGHER:
7556     case elfcpp::R_PPC64_TPREL16_HIGHER:
7557       Reloc::addr16_hi2(view, value);
7558       break;
7559
7560     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7561       if (size == 32)
7562         // R_PPC_EMB_NADDR16_HI
7563         goto unsupp;
7564     case elfcpp::R_PPC64_ADDR16_HIGHERA:
7565     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7566       Reloc::addr16_ha2(view, value);
7567       break;
7568
7569     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7570       if (size == 32)
7571         // R_PPC_EMB_NADDR16_HA
7572         goto unsupp;
7573     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7574     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7575       Reloc::addr16_hi3(view, value);
7576       break;
7577
7578     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7579       if (size == 32)
7580         // R_PPC_EMB_SDAI16
7581         goto unsupp;
7582     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7583     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7584       Reloc::addr16_ha3(view, value);
7585       break;
7586
7587     case elfcpp::R_PPC64_DTPREL16_DS:
7588     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7589       if (size == 32)
7590         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7591         goto unsupp;
7592     case elfcpp::R_PPC64_TPREL16_DS:
7593     case elfcpp::R_PPC64_TPREL16_LO_DS:
7594       if (size == 32)
7595         // R_PPC_TLSGD, R_PPC_TLSLD
7596         break;
7597     case elfcpp::R_PPC64_ADDR16_DS:
7598     case elfcpp::R_PPC64_ADDR16_LO_DS:
7599     case elfcpp::R_PPC64_TOC16_DS:
7600     case elfcpp::R_PPC64_TOC16_LO_DS:
7601     case elfcpp::R_PPC64_GOT16_DS:
7602     case elfcpp::R_PPC64_GOT16_LO_DS:
7603     case elfcpp::R_PPC64_SECTOFF_DS:
7604     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7605       status = Reloc::addr16_ds(view, value, overflow);
7606       break;
7607
7608     case elfcpp::R_POWERPC_ADDR14:
7609     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7610     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7611     case elfcpp::R_POWERPC_REL14:
7612     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7613     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7614       status = Reloc::addr14(view, value, overflow);
7615       break;
7616
7617     case elfcpp::R_POWERPC_COPY:
7618     case elfcpp::R_POWERPC_GLOB_DAT:
7619     case elfcpp::R_POWERPC_JMP_SLOT:
7620     case elfcpp::R_POWERPC_RELATIVE:
7621     case elfcpp::R_POWERPC_DTPMOD:
7622     case elfcpp::R_PPC64_JMP_IREL:
7623     case elfcpp::R_POWERPC_IRELATIVE:
7624       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7625                              _("unexpected reloc %u in object file"),
7626                              r_type);
7627       break;
7628
7629     case elfcpp::R_PPC_EMB_SDA21:
7630       if (size == 32)
7631         goto unsupp;
7632       else
7633         {
7634           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
7635         }
7636       break;
7637
7638     case elfcpp::R_PPC_EMB_SDA2I16:
7639     case elfcpp::R_PPC_EMB_SDA2REL:
7640       if (size == 32)
7641         goto unsupp;
7642       // R_PPC64_TLSGD, R_PPC64_TLSLD
7643       break;
7644
7645     case elfcpp::R_POWERPC_PLT32:
7646     case elfcpp::R_POWERPC_PLTREL32:
7647     case elfcpp::R_POWERPC_PLT16_LO:
7648     case elfcpp::R_POWERPC_PLT16_HI:
7649     case elfcpp::R_POWERPC_PLT16_HA:
7650     case elfcpp::R_PPC_SDAREL16:
7651     case elfcpp::R_POWERPC_ADDR30:
7652     case elfcpp::R_PPC64_PLT64:
7653     case elfcpp::R_PPC64_PLTREL64:
7654     case elfcpp::R_PPC64_PLTGOT16:
7655     case elfcpp::R_PPC64_PLTGOT16_LO:
7656     case elfcpp::R_PPC64_PLTGOT16_HI:
7657     case elfcpp::R_PPC64_PLTGOT16_HA:
7658     case elfcpp::R_PPC64_PLT16_LO_DS:
7659     case elfcpp::R_PPC64_PLTGOT16_DS:
7660     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7661     case elfcpp::R_PPC_EMB_RELSDA:
7662     case elfcpp::R_PPC_TOC16:
7663     default:
7664     unsupp:
7665       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7666                              _("unsupported reloc %u"),
7667                              r_type);
7668       break;
7669     }
7670   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
7671     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7672                            _("relocation overflow"));
7673
7674   return true;
7675 }
7676
7677 // Relocate section data.
7678
7679 template<int size, bool big_endian>
7680 void
7681 Target_powerpc<size, big_endian>::relocate_section(
7682     const Relocate_info<size, big_endian>* relinfo,
7683     unsigned int sh_type,
7684     const unsigned char* prelocs,
7685     size_t reloc_count,
7686     Output_section* output_section,
7687     bool needs_special_offset_handling,
7688     unsigned char* view,
7689     Address address,
7690     section_size_type view_size,
7691     const Reloc_symbol_changes* reloc_symbol_changes)
7692 {
7693   typedef Target_powerpc<size, big_endian> Powerpc;
7694   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7695   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7696     Powerpc_comdat_behavior;
7697
7698   gold_assert(sh_type == elfcpp::SHT_RELA);
7699
7700   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7701                          Powerpc_relocate, Powerpc_comdat_behavior>(
7702     relinfo,
7703     this,
7704     prelocs,
7705     reloc_count,
7706     output_section,
7707     needs_special_offset_handling,
7708     view,
7709     address,
7710     view_size,
7711     reloc_symbol_changes);
7712 }
7713
7714 class Powerpc_scan_relocatable_reloc
7715 {
7716 public:
7717   // Return the strategy to use for a local symbol which is not a
7718   // section symbol, given the relocation type.
7719   inline Relocatable_relocs::Reloc_strategy
7720   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7721   {
7722     if (r_type == 0 && r_sym == 0)
7723       return Relocatable_relocs::RELOC_DISCARD;
7724     return Relocatable_relocs::RELOC_COPY;
7725   }
7726
7727   // Return the strategy to use for a local symbol which is a section
7728   // symbol, given the relocation type.
7729   inline Relocatable_relocs::Reloc_strategy
7730   local_section_strategy(unsigned int, Relobj*)
7731   {
7732     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7733   }
7734
7735   // Return the strategy to use for a global symbol, given the
7736   // relocation type, the object, and the symbol index.
7737   inline Relocatable_relocs::Reloc_strategy
7738   global_strategy(unsigned int r_type, Relobj*, unsigned int)
7739   {
7740     if (r_type == elfcpp::R_PPC_PLTREL24)
7741       return Relocatable_relocs::RELOC_SPECIAL;
7742     return Relocatable_relocs::RELOC_COPY;
7743   }
7744 };
7745
7746 // Scan the relocs during a relocatable link.
7747
7748 template<int size, bool big_endian>
7749 void
7750 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7751     Symbol_table* symtab,
7752     Layout* layout,
7753     Sized_relobj_file<size, big_endian>* object,
7754     unsigned int data_shndx,
7755     unsigned int sh_type,
7756     const unsigned char* prelocs,
7757     size_t reloc_count,
7758     Output_section* output_section,
7759     bool needs_special_offset_handling,
7760     size_t local_symbol_count,
7761     const unsigned char* plocal_symbols,
7762     Relocatable_relocs* rr)
7763 {
7764   gold_assert(sh_type == elfcpp::SHT_RELA);
7765
7766   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7767                                 Powerpc_scan_relocatable_reloc>(
7768     symtab,
7769     layout,
7770     object,
7771     data_shndx,
7772     prelocs,
7773     reloc_count,
7774     output_section,
7775     needs_special_offset_handling,
7776     local_symbol_count,
7777     plocal_symbols,
7778     rr);
7779 }
7780
7781 // Emit relocations for a section.
7782 // This is a modified version of the function by the same name in
7783 // target-reloc.h.  Using relocate_special_relocatable for
7784 // R_PPC_PLTREL24 would require duplication of the entire body of the
7785 // loop, so we may as well duplicate the whole thing.
7786
7787 template<int size, bool big_endian>
7788 void
7789 Target_powerpc<size, big_endian>::relocate_relocs(
7790     const Relocate_info<size, big_endian>* relinfo,
7791     unsigned int sh_type,
7792     const unsigned char* prelocs,
7793     size_t reloc_count,
7794     Output_section* output_section,
7795     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7796     const Relocatable_relocs* rr,
7797     unsigned char*,
7798     Address view_address,
7799     section_size_type,
7800     unsigned char* reloc_view,
7801     section_size_type reloc_view_size)
7802 {
7803   gold_assert(sh_type == elfcpp::SHT_RELA);
7804
7805   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7806     Reltype;
7807   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7808     Reltype_write;
7809   const int reloc_size
7810     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7811
7812   Powerpc_relobj<size, big_endian>* const object
7813     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7814   const unsigned int local_count = object->local_symbol_count();
7815   unsigned int got2_shndx = object->got2_shndx();
7816   Address got2_addend = 0;
7817   if (got2_shndx != 0)
7818     {
7819       got2_addend = object->get_output_section_offset(got2_shndx);
7820       gold_assert(got2_addend != invalid_address);
7821     }
7822
7823   unsigned char* pwrite = reloc_view;
7824   bool zap_next = false;
7825   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7826     {
7827       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7828       if (strategy == Relocatable_relocs::RELOC_DISCARD)
7829         continue;
7830
7831       Reltype reloc(prelocs);
7832       Reltype_write reloc_write(pwrite);
7833
7834       Address offset = reloc.get_r_offset();
7835       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7836       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7837       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7838       const unsigned int orig_r_sym = r_sym;
7839       typename elfcpp::Elf_types<size>::Elf_Swxword addend
7840         = reloc.get_r_addend();
7841       const Symbol* gsym = NULL;
7842
7843       if (zap_next)
7844         {
7845           // We could arrange to discard these and other relocs for
7846           // tls optimised sequences in the strategy methods, but for
7847           // now do as BFD ld does.
7848           r_type = elfcpp::R_POWERPC_NONE;
7849           zap_next = false;
7850         }
7851
7852       // Get the new symbol index.
7853       if (r_sym < local_count)
7854         {
7855           switch (strategy)
7856             {
7857             case Relocatable_relocs::RELOC_COPY:
7858             case Relocatable_relocs::RELOC_SPECIAL:
7859               if (r_sym != 0)
7860                 {
7861                   r_sym = object->symtab_index(r_sym);
7862                   gold_assert(r_sym != -1U);
7863                 }
7864               break;
7865
7866             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7867               {
7868                 // We are adjusting a section symbol.  We need to find
7869                 // the symbol table index of the section symbol for
7870                 // the output section corresponding to input section
7871                 // in which this symbol is defined.
7872                 gold_assert(r_sym < local_count);
7873                 bool is_ordinary;
7874                 unsigned int shndx =
7875                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
7876                 gold_assert(is_ordinary);
7877                 Output_section* os = object->output_section(shndx);
7878                 gold_assert(os != NULL);
7879                 gold_assert(os->needs_symtab_index());
7880                 r_sym = os->symtab_index();
7881               }
7882               break;
7883
7884             default:
7885               gold_unreachable();
7886             }
7887         }
7888       else
7889         {
7890           gsym = object->global_symbol(r_sym);
7891           gold_assert(gsym != NULL);
7892           if (gsym->is_forwarder())
7893             gsym = relinfo->symtab->resolve_forwards(gsym);
7894
7895           gold_assert(gsym->has_symtab_index());
7896           r_sym = gsym->symtab_index();
7897         }
7898
7899       // Get the new offset--the location in the output section where
7900       // this relocation should be applied.
7901       if (static_cast<Address>(offset_in_output_section) != invalid_address)
7902         offset += offset_in_output_section;
7903       else
7904         {
7905           section_offset_type sot_offset =
7906             convert_types<section_offset_type, Address>(offset);
7907           section_offset_type new_sot_offset =
7908             output_section->output_offset(object, relinfo->data_shndx,
7909                                           sot_offset);
7910           gold_assert(new_sot_offset != -1);
7911           offset = new_sot_offset;
7912         }
7913
7914       // In an object file, r_offset is an offset within the section.
7915       // In an executable or dynamic object, generated by
7916       // --emit-relocs, r_offset is an absolute address.
7917       if (!parameters->options().relocatable())
7918         {
7919           offset += view_address;
7920           if (static_cast<Address>(offset_in_output_section) != invalid_address)
7921             offset -= offset_in_output_section;
7922         }
7923
7924       // Handle the reloc addend based on the strategy.
7925       if (strategy == Relocatable_relocs::RELOC_COPY)
7926         ;
7927       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7928         {
7929           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7930           addend = psymval->value(object, addend);
7931         }
7932       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7933         {
7934           if (addend >= 32768)
7935             addend += got2_addend;
7936         }
7937       else
7938         gold_unreachable();
7939
7940       if (!parameters->options().relocatable())
7941         {
7942           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7943               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7944               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7945               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7946             {
7947               // First instruction of a global dynamic sequence,
7948               // arg setup insn.
7949               const bool final = gsym == NULL || gsym->final_value_is_known();
7950               switch (this->optimize_tls_gd(final))
7951                 {
7952                 case tls::TLSOPT_TO_IE:
7953                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7954                              - elfcpp::R_POWERPC_GOT_TLSGD16);
7955                   break;
7956                 case tls::TLSOPT_TO_LE:
7957                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7958                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7959                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7960                   else
7961                     {
7962                       r_type = elfcpp::R_POWERPC_NONE;
7963                       offset -= 2 * big_endian;
7964                     }
7965                   break;
7966                 default:
7967                   break;
7968                 }
7969             }
7970           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7971                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7972                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7973                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7974             {
7975               // First instruction of a local dynamic sequence,
7976               // arg setup insn.
7977               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7978                 {
7979                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7980                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7981                     {
7982                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
7983                       const Output_section* os = relinfo->layout->tls_segment()
7984                         ->first_section();
7985                       gold_assert(os != NULL);
7986                       gold_assert(os->needs_symtab_index());
7987                       r_sym = os->symtab_index();
7988                       addend = dtp_offset;
7989                     }
7990                   else
7991                     {
7992                       r_type = elfcpp::R_POWERPC_NONE;
7993                       offset -= 2 * big_endian;
7994                     }
7995                 }
7996             }
7997           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7998                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7999                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8000                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8001             {
8002               // First instruction of initial exec sequence.
8003               const bool final = gsym == NULL || gsym->final_value_is_known();
8004               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8005                 {
8006                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8007                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8008                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8009                   else
8010                     {
8011                       r_type = elfcpp::R_POWERPC_NONE;
8012                       offset -= 2 * big_endian;
8013                     }
8014                 }
8015             }
8016           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8017                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8018             {
8019               // Second instruction of a global dynamic sequence,
8020               // the __tls_get_addr call
8021               const bool final = gsym == NULL || gsym->final_value_is_known();
8022               switch (this->optimize_tls_gd(final))
8023                 {
8024                 case tls::TLSOPT_TO_IE:
8025                   r_type = elfcpp::R_POWERPC_NONE;
8026                   zap_next = true;
8027                   break;
8028                 case tls::TLSOPT_TO_LE:
8029                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8030                   offset += 2 * big_endian;
8031                   zap_next = true;
8032                   break;
8033                 default:
8034                   break;
8035                 }
8036             }
8037           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8038                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8039             {
8040               // Second instruction of a local dynamic sequence,
8041               // the __tls_get_addr call
8042               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8043                 {
8044                   const Output_section* os = relinfo->layout->tls_segment()
8045                     ->first_section();
8046                   gold_assert(os != NULL);
8047                   gold_assert(os->needs_symtab_index());
8048                   r_sym = os->symtab_index();
8049                   addend = dtp_offset;
8050                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8051                   offset += 2 * big_endian;
8052                   zap_next = true;
8053                 }
8054             }
8055           else if (r_type == elfcpp::R_POWERPC_TLS)
8056             {
8057               // Second instruction of an initial exec sequence
8058               const bool final = gsym == NULL || gsym->final_value_is_known();
8059               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8060                 {
8061                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8062                   offset += 2 * big_endian;
8063                 }
8064             }
8065         }
8066
8067       reloc_write.put_r_offset(offset);
8068       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8069       reloc_write.put_r_addend(addend);
8070
8071       pwrite += reloc_size;
8072     }
8073
8074   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8075               == reloc_view_size);
8076 }
8077
8078 // Return the value to use for a dynamic symbol which requires special
8079 // treatment.  This is how we support equality comparisons of function
8080 // pointers across shared library boundaries, as described in the
8081 // processor specific ABI supplement.
8082
8083 template<int size, bool big_endian>
8084 uint64_t
8085 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8086 {
8087   if (size == 32)
8088     {
8089       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8090       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8091            p != this->stub_tables_.end();
8092            ++p)
8093         {
8094           Address off = (*p)->find_plt_call_entry(gsym);
8095           if (off != invalid_address)
8096             return (*p)->stub_address() + off;
8097         }
8098     }
8099   else if (this->abiversion() >= 2)
8100     {
8101       unsigned int off = this->glink_section()->find_global_entry(gsym);
8102       if (off != (unsigned int)-1)
8103         return this->glink_section()->global_entry_address() + off;
8104     }
8105   gold_unreachable();
8106 }
8107
8108 // Return the PLT address to use for a local symbol.
8109 template<int size, bool big_endian>
8110 uint64_t
8111 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8112     const Relobj* object,
8113     unsigned int symndx) const
8114 {
8115   if (size == 32)
8116     {
8117       const Sized_relobj<size, big_endian>* relobj
8118         = static_cast<const Sized_relobj<size, big_endian>*>(object);
8119       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8120            p != this->stub_tables_.end();
8121            ++p)
8122         {
8123           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8124                                                   symndx);
8125           if (off != invalid_address)
8126             return (*p)->stub_address() + off;
8127         }
8128     }
8129   gold_unreachable();
8130 }
8131
8132 // Return the PLT address to use for a global symbol.
8133 template<int size, bool big_endian>
8134 uint64_t
8135 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8136     const Symbol* gsym) const
8137 {
8138   if (size == 32)
8139     {
8140       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8141            p != this->stub_tables_.end();
8142            ++p)
8143         {
8144           Address off = (*p)->find_plt_call_entry(gsym);
8145           if (off != invalid_address)
8146             return (*p)->stub_address() + off;
8147         }
8148     }
8149   else if (this->abiversion() >= 2)
8150     {
8151       unsigned int off = this->glink_section()->find_global_entry(gsym);
8152       if (off != (unsigned int)-1)
8153         return this->glink_section()->global_entry_address() + off;
8154     }
8155   gold_unreachable();
8156 }
8157
8158 // Return the offset to use for the GOT_INDX'th got entry which is
8159 // for a local tls symbol specified by OBJECT, SYMNDX.
8160 template<int size, bool big_endian>
8161 int64_t
8162 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8163     const Relobj* object,
8164     unsigned int symndx,
8165     unsigned int got_indx) const
8166 {
8167   const Powerpc_relobj<size, big_endian>* ppc_object
8168     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8169   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8170     {
8171       for (Got_type got_type = GOT_TYPE_TLSGD;
8172            got_type <= GOT_TYPE_TPREL;
8173            got_type = Got_type(got_type + 1))
8174         if (ppc_object->local_has_got_offset(symndx, got_type))
8175           {
8176             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8177             if (got_type == GOT_TYPE_TLSGD)
8178               off += size / 8;
8179             if (off == got_indx * (size / 8))
8180               {
8181                 if (got_type == GOT_TYPE_TPREL)
8182                   return -tp_offset;
8183                 else
8184                   return -dtp_offset;
8185               }
8186           }
8187     }
8188   gold_unreachable();
8189 }
8190
8191 // Return the offset to use for the GOT_INDX'th got entry which is
8192 // for global tls symbol GSYM.
8193 template<int size, bool big_endian>
8194 int64_t
8195 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8196     Symbol* gsym,
8197     unsigned int got_indx) const
8198 {
8199   if (gsym->type() == elfcpp::STT_TLS)
8200     {
8201       for (Got_type got_type = GOT_TYPE_TLSGD;
8202            got_type <= GOT_TYPE_TPREL;
8203            got_type = Got_type(got_type + 1))
8204         if (gsym->has_got_offset(got_type))
8205           {
8206             unsigned int off = gsym->got_offset(got_type);
8207             if (got_type == GOT_TYPE_TLSGD)
8208               off += size / 8;
8209             if (off == got_indx * (size / 8))
8210               {
8211                 if (got_type == GOT_TYPE_TPREL)
8212                   return -tp_offset;
8213                 else
8214                   return -dtp_offset;
8215               }
8216           }
8217     }
8218   gold_unreachable();
8219 }
8220
8221 // The selector for powerpc object files.
8222
8223 template<int size, bool big_endian>
8224 class Target_selector_powerpc : public Target_selector
8225 {
8226 public:
8227   Target_selector_powerpc()
8228     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8229                       size, big_endian,
8230                       (size == 64
8231                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8232                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8233                       (size == 64
8234                        ? (big_endian ? "elf64ppc" : "elf64lppc")
8235                        : (big_endian ? "elf32ppc" : "elf32lppc")))
8236   { }
8237
8238   virtual Target*
8239   do_instantiate_target()
8240   { return new Target_powerpc<size, big_endian>(); }
8241 };
8242
8243 Target_selector_powerpc<32, true> target_selector_ppc32;
8244 Target_selector_powerpc<32, false> target_selector_ppc32le;
8245 Target_selector_powerpc<64, true> target_selector_ppc64;
8246 Target_selector_powerpc<64, false> target_selector_ppc64le;
8247
8248 // Instantiate these constants for -O0
8249 template<int size, bool big_endian>
8250 const int Output_data_glink<size, big_endian>::pltresolve_size;
8251 template<int size, bool big_endian>
8252 const typename Output_data_glink<size, big_endian>::Address
8253   Output_data_glink<size, big_endian>::invalid_address;
8254 template<int size, bool big_endian>
8255 const typename Stub_table<size, big_endian>::Address
8256   Stub_table<size, big_endian>::invalid_address;
8257 template<int size, bool big_endian>
8258 const typename Target_powerpc<size, big_endian>::Address
8259   Target_powerpc<size, big_endian>::invalid_address;
8260
8261 } // End anonymous namespace.