PPC gold doesn't check for overflow properly
[platform/upstream/binutils.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2014 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 inline bool
66 is_branch_reloc(unsigned int r_type);
67
68 template<int size, bool big_endian>
69 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
70 {
71 public:
72   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
73   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
74   typedef Unordered_map<Address, Section_refs> Access_from;
75
76   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
77                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
78     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
79       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
80       opd_ent_(), access_from_map_(), has14_(), stub_table_(),
81       e_flags_(ehdr.get_e_flags()), st_other_()
82   {
83     this->set_abiversion(0);
84   }
85
86   ~Powerpc_relobj()
87   { }
88
89   // Read the symbols then set up st_other vector.
90   void
91   do_read_symbols(Read_symbols_data*);
92
93   // The .got2 section shndx.
94   unsigned int
95   got2_shndx() const
96   {
97     if (size == 32)
98       return this->special_;
99     else
100       return 0;
101   }
102
103   // The .opd section shndx.
104   unsigned int
105   opd_shndx() const
106   {
107     if (size == 32)
108       return 0;
109     else
110       return this->special_;
111   }
112
113   // Init OPD entry arrays.
114   void
115   init_opd(size_t opd_size)
116   {
117     size_t count = this->opd_ent_ndx(opd_size);
118     this->opd_ent_.resize(count);
119   }
120
121   // Return section and offset of function entry for .opd + R_OFF.
122   unsigned int
123   get_opd_ent(Address r_off, Address* value = NULL) const
124   {
125     size_t ndx = this->opd_ent_ndx(r_off);
126     gold_assert(ndx < this->opd_ent_.size());
127     gold_assert(this->opd_ent_[ndx].shndx != 0);
128     if (value != NULL)
129       *value = this->opd_ent_[ndx].off;
130     return this->opd_ent_[ndx].shndx;
131   }
132
133   // Set section and offset of function entry for .opd + R_OFF.
134   void
135   set_opd_ent(Address r_off, unsigned int shndx, Address value)
136   {
137     size_t ndx = this->opd_ent_ndx(r_off);
138     gold_assert(ndx < this->opd_ent_.size());
139     this->opd_ent_[ndx].shndx = shndx;
140     this->opd_ent_[ndx].off = value;
141   }
142
143   // Return discard flag for .opd + R_OFF.
144   bool
145   get_opd_discard(Address r_off) const
146   {
147     size_t ndx = this->opd_ent_ndx(r_off);
148     gold_assert(ndx < this->opd_ent_.size());
149     return this->opd_ent_[ndx].discard;
150   }
151
152   // Set discard flag for .opd + R_OFF.
153   void
154   set_opd_discard(Address r_off)
155   {
156     size_t ndx = this->opd_ent_ndx(r_off);
157     gold_assert(ndx < this->opd_ent_.size());
158     this->opd_ent_[ndx].discard = true;
159   }
160
161   bool
162   opd_valid() const
163   { return this->opd_valid_; }
164
165   void
166   set_opd_valid()
167   { this->opd_valid_ = true; }
168
169   // Examine .rela.opd to build info about function entry points.
170   void
171   scan_opd_relocs(size_t reloc_count,
172                   const unsigned char* prelocs,
173                   const unsigned char* plocal_syms);
174
175   // Perform the Sized_relobj_file method, then set up opd info from
176   // .opd relocs.
177   void
178   do_read_relocs(Read_relocs_data*);
179
180   bool
181   do_find_special_sections(Read_symbols_data* sd);
182
183   // Adjust this local symbol value.  Return false if the symbol
184   // should be discarded from the output file.
185   bool
186   do_adjust_local_symbol(Symbol_value<size>* lv) const
187   {
188     if (size == 64 && this->opd_shndx() != 0)
189       {
190         bool is_ordinary;
191         if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
192           return true;
193         if (this->get_opd_discard(lv->input_value()))
194           return false;
195       }
196     return true;
197   }
198
199   Access_from*
200   access_from_map()
201   { return &this->access_from_map_; }
202
203   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
204   // section at DST_OFF.
205   void
206   add_reference(Object* src_obj,
207                 unsigned int src_indx,
208                 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
209   {
210     Section_id src_id(src_obj, src_indx);
211     this->access_from_map_[dst_off].insert(src_id);
212   }
213
214   // Add a reference to the code section specified by the .opd entry
215   // at DST_OFF
216   void
217   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218   {
219     size_t ndx = this->opd_ent_ndx(dst_off);
220     if (ndx >= this->opd_ent_.size())
221       this->opd_ent_.resize(ndx + 1);
222     this->opd_ent_[ndx].gc_mark = true;
223   }
224
225   void
226   process_gc_mark(Symbol_table* symtab)
227   {
228     for (size_t i = 0; i < this->opd_ent_.size(); i++)
229       if (this->opd_ent_[i].gc_mark)
230         {
231           unsigned int shndx = this->opd_ent_[i].shndx;
232           symtab->gc()->worklist().push(Section_id(this, shndx));
233         }
234   }
235
236   // Return offset in output GOT section that this object will use
237   // as a TOC pointer.  Won't be just a constant with multi-toc support.
238   Address
239   toc_base_offset() const
240   { return 0x8000; }
241
242   void
243   set_has_small_toc_reloc()
244   { has_small_toc_reloc_ = true; }
245
246   bool
247   has_small_toc_reloc() const
248   { return has_small_toc_reloc_; }
249
250   void
251   set_has_14bit_branch(unsigned int shndx)
252   {
253     if (shndx >= this->has14_.size())
254       this->has14_.resize(shndx + 1);
255     this->has14_[shndx] = true;
256   }
257
258   bool
259   has_14bit_branch(unsigned int shndx) const
260   { return shndx < this->has14_.size() && this->has14_[shndx];  }
261
262   void
263   set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
264   {
265     if (shndx >= this->stub_table_.size())
266       this->stub_table_.resize(shndx + 1);
267     this->stub_table_[shndx] = stub_table;
268   }
269
270   Stub_table<size, big_endian>*
271   stub_table(unsigned int shndx)
272   {
273     if (shndx < this->stub_table_.size())
274       return this->stub_table_[shndx];
275     return NULL;
276   }
277
278   int
279   abiversion() const
280   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
281
282   // Set ABI version for input and output
283   void
284   set_abiversion(int ver);
285
286   unsigned int
287   ppc64_local_entry_offset(const Symbol* sym) const
288   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
289
290   unsigned int
291   ppc64_local_entry_offset(unsigned int symndx) const
292   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
293
294 private:
295   struct Opd_ent
296   {
297     unsigned int shndx;
298     bool discard : 1;
299     bool gc_mark : 1;
300     Address off;
301   };
302
303   // Return index into opd_ent_ array for .opd entry at OFF.
304   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
305   // apart when the language doesn't use the last 8-byte word, the
306   // environment pointer.  Thus dividing the entry section offset by
307   // 16 will give an index into opd_ent_ that works for either layout
308   // of .opd.  (It leaves some elements of the vector unused when .opd
309   // entries are spaced 24 bytes apart, but we don't know the spacing
310   // until relocations are processed, and in any case it is possible
311   // for an object to have some entries spaced 16 bytes apart and
312   // others 24 bytes apart.)
313   size_t
314   opd_ent_ndx(size_t off) const
315   { return off >> 4;}
316
317   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
318   unsigned int special_;
319
320   // For 64-bit, whether this object uses small model relocs to access
321   // the toc.
322   bool has_small_toc_reloc_;
323
324   // Set at the start of gc_process_relocs, when we know opd_ent_
325   // vector is valid.  The flag could be made atomic and set in
326   // do_read_relocs with memory_order_release and then tested with
327   // memory_order_acquire, potentially resulting in fewer entries in
328   // access_from_map_.
329   bool opd_valid_;
330
331   // The first 8-byte word of an OPD entry gives the address of the
332   // entry point of the function.  Relocatable object files have a
333   // relocation on this word.  The following vector records the
334   // section and offset specified by these relocations.
335   std::vector<Opd_ent> opd_ent_;
336
337   // References made to this object's .opd section when running
338   // gc_process_relocs for another object, before the opd_ent_ vector
339   // is valid for this object.
340   Access_from access_from_map_;
341
342   // Whether input section has a 14-bit branch reloc.
343   std::vector<bool> has14_;
344
345   // The stub table to use for a given input section.
346   std::vector<Stub_table<size, big_endian>*> stub_table_;
347
348   // Header e_flags
349   elfcpp::Elf_Word e_flags_;
350
351   // ELF st_other field for local symbols.
352   std::vector<unsigned char> st_other_;
353 };
354
355 template<int size, bool big_endian>
356 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
357 {
358 public:
359   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
360
361   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
362                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
363     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
364       opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
365   {
366     this->set_abiversion(0);
367   }
368
369   ~Powerpc_dynobj()
370   { }
371
372   // Call Sized_dynobj::do_read_symbols to read the symbols then
373   // read .opd from a dynamic object, filling in opd_ent_ vector,
374   void
375   do_read_symbols(Read_symbols_data*);
376
377   // The .opd section shndx.
378   unsigned int
379   opd_shndx() const
380   {
381     return this->opd_shndx_;
382   }
383
384   // The .opd section address.
385   Address
386   opd_address() const
387   {
388     return this->opd_address_;
389   }
390
391   // Init OPD entry arrays.
392   void
393   init_opd(size_t opd_size)
394   {
395     size_t count = this->opd_ent_ndx(opd_size);
396     this->opd_ent_.resize(count);
397   }
398
399   // Return section and offset of function entry for .opd + R_OFF.
400   unsigned int
401   get_opd_ent(Address r_off, Address* value = NULL) const
402   {
403     size_t ndx = this->opd_ent_ndx(r_off);
404     gold_assert(ndx < this->opd_ent_.size());
405     gold_assert(this->opd_ent_[ndx].shndx != 0);
406     if (value != NULL)
407       *value = this->opd_ent_[ndx].off;
408     return this->opd_ent_[ndx].shndx;
409   }
410
411   // Set section and offset of function entry for .opd + R_OFF.
412   void
413   set_opd_ent(Address r_off, unsigned int shndx, Address value)
414   {
415     size_t ndx = this->opd_ent_ndx(r_off);
416     gold_assert(ndx < this->opd_ent_.size());
417     this->opd_ent_[ndx].shndx = shndx;
418     this->opd_ent_[ndx].off = value;
419   }
420
421   int
422   abiversion() const
423   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
424
425   // Set ABI version for input and output.
426   void
427   set_abiversion(int ver);
428
429 private:
430   // Used to specify extent of executable sections.
431   struct Sec_info
432   {
433     Sec_info(Address start_, Address len_, unsigned int shndx_)
434       : start(start_), len(len_), shndx(shndx_)
435     { }
436
437     bool
438     operator<(const Sec_info& that) const
439     { return this->start < that.start; }
440
441     Address start;
442     Address len;
443     unsigned int shndx;
444   };
445
446   struct Opd_ent
447   {
448     unsigned int shndx;
449     Address off;
450   };
451
452   // Return index into opd_ent_ array for .opd entry at OFF.
453   size_t
454   opd_ent_ndx(size_t off) const
455   { return off >> 4;}
456
457   // For 64-bit the .opd section shndx and address.
458   unsigned int opd_shndx_;
459   Address opd_address_;
460
461   // The first 8-byte word of an OPD entry gives the address of the
462   // entry point of the function.  Records the section and offset
463   // corresponding to the address.  Note that in dynamic objects,
464   // offset is *not* relative to the section.
465   std::vector<Opd_ent> opd_ent_;
466
467   // Header e_flags
468   elfcpp::Elf_Word e_flags_;
469 };
470
471 template<int size, bool big_endian>
472 class Target_powerpc : public Sized_target<size, big_endian>
473 {
474  public:
475   typedef
476     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
477   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
478   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
479   static const Address invalid_address = static_cast<Address>(0) - 1;
480   // Offset of tp and dtp pointers from start of TLS block.
481   static const Address tp_offset = 0x7000;
482   static const Address dtp_offset = 0x8000;
483
484   Target_powerpc()
485     : Sized_target<size, big_endian>(&powerpc_info),
486       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
487       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
488       tlsld_got_offset_(-1U),
489       stub_tables_(), branch_lookup_table_(), branch_info_(),
490       plt_thread_safe_(false)
491   {
492   }
493
494   // Process the relocations to determine unreferenced sections for
495   // garbage collection.
496   void
497   gc_process_relocs(Symbol_table* symtab,
498                     Layout* layout,
499                     Sized_relobj_file<size, big_endian>* object,
500                     unsigned int data_shndx,
501                     unsigned int sh_type,
502                     const unsigned char* prelocs,
503                     size_t reloc_count,
504                     Output_section* output_section,
505                     bool needs_special_offset_handling,
506                     size_t local_symbol_count,
507                     const unsigned char* plocal_symbols);
508
509   // Scan the relocations to look for symbol adjustments.
510   void
511   scan_relocs(Symbol_table* symtab,
512               Layout* layout,
513               Sized_relobj_file<size, big_endian>* object,
514               unsigned int data_shndx,
515               unsigned int sh_type,
516               const unsigned char* prelocs,
517               size_t reloc_count,
518               Output_section* output_section,
519               bool needs_special_offset_handling,
520               size_t local_symbol_count,
521               const unsigned char* plocal_symbols);
522
523   // Map input .toc section to output .got section.
524   const char*
525   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
526   {
527     if (size == 64 && strcmp(name, ".toc") == 0)
528       {
529         *plen = 4;
530         return ".got";
531       }
532     return NULL;
533   }
534
535   // Provide linker defined save/restore functions.
536   void
537   define_save_restore_funcs(Layout*, Symbol_table*);
538
539   // No stubs unless a final link.
540   bool
541   do_may_relax() const
542   { return !parameters->options().relocatable(); }
543
544   bool
545   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
546
547   void
548   do_plt_fde_location(const Output_data*, unsigned char*,
549                       uint64_t*, off_t*) const;
550
551   // Stash info about branches, for stub generation.
552   void
553   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
554               unsigned int data_shndx, Address r_offset,
555               unsigned int r_type, unsigned int r_sym, Address addend)
556   {
557     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
558     this->branch_info_.push_back(info);
559     if (r_type == elfcpp::R_POWERPC_REL14
560         || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
561         || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
562       ppc_object->set_has_14bit_branch(data_shndx);
563   }
564
565   Stub_table<size, big_endian>*
566   new_stub_table();
567
568   void
569   do_define_standard_symbols(Symbol_table*, Layout*);
570
571   // Finalize the sections.
572   void
573   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
574
575   // Return the value to use for a dynamic which requires special
576   // treatment.
577   uint64_t
578   do_dynsym_value(const Symbol*) const;
579
580   // Return the PLT address to use for a local symbol.
581   uint64_t
582   do_plt_address_for_local(const Relobj*, unsigned int) const;
583
584   // Return the PLT address to use for a global symbol.
585   uint64_t
586   do_plt_address_for_global(const Symbol*) const;
587
588   // Return the offset to use for the GOT_INDX'th got entry which is
589   // for a local tls symbol specified by OBJECT, SYMNDX.
590   int64_t
591   do_tls_offset_for_local(const Relobj* object,
592                           unsigned int symndx,
593                           unsigned int got_indx) const;
594
595   // Return the offset to use for the GOT_INDX'th got entry which is
596   // for global tls symbol GSYM.
597   int64_t
598   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
599
600   void
601   do_function_location(Symbol_location*) const;
602
603   bool
604   do_can_check_for_function_pointers() const
605   { return true; }
606
607   // Relocate a section.
608   void
609   relocate_section(const Relocate_info<size, big_endian>*,
610                    unsigned int sh_type,
611                    const unsigned char* prelocs,
612                    size_t reloc_count,
613                    Output_section* output_section,
614                    bool needs_special_offset_handling,
615                    unsigned char* view,
616                    Address view_address,
617                    section_size_type view_size,
618                    const Reloc_symbol_changes*);
619
620   // Scan the relocs during a relocatable link.
621   void
622   scan_relocatable_relocs(Symbol_table* symtab,
623                           Layout* layout,
624                           Sized_relobj_file<size, big_endian>* object,
625                           unsigned int data_shndx,
626                           unsigned int sh_type,
627                           const unsigned char* prelocs,
628                           size_t reloc_count,
629                           Output_section* output_section,
630                           bool needs_special_offset_handling,
631                           size_t local_symbol_count,
632                           const unsigned char* plocal_symbols,
633                           Relocatable_relocs*);
634
635   // Emit relocations for a section.
636   void
637   relocate_relocs(const Relocate_info<size, big_endian>*,
638                   unsigned int sh_type,
639                   const unsigned char* prelocs,
640                   size_t reloc_count,
641                   Output_section* output_section,
642                   typename elfcpp::Elf_types<size>::Elf_Off
643                     offset_in_output_section,
644                   const Relocatable_relocs*,
645                   unsigned char*,
646                   Address view_address,
647                   section_size_type,
648                   unsigned char* reloc_view,
649                   section_size_type reloc_view_size);
650
651   // Return whether SYM is defined by the ABI.
652   bool
653   do_is_defined_by_abi(const Symbol* sym) const
654   {
655     return strcmp(sym->name(), "__tls_get_addr") == 0;
656   }
657
658   // Return the size of the GOT section.
659   section_size_type
660   got_size() const
661   {
662     gold_assert(this->got_ != NULL);
663     return this->got_->data_size();
664   }
665
666   // Get the PLT section.
667   const Output_data_plt_powerpc<size, big_endian>*
668   plt_section() const
669   {
670     gold_assert(this->plt_ != NULL);
671     return this->plt_;
672   }
673
674   // Get the IPLT section.
675   const Output_data_plt_powerpc<size, big_endian>*
676   iplt_section() const
677   {
678     gold_assert(this->iplt_ != NULL);
679     return this->iplt_;
680   }
681
682   // Get the .glink section.
683   const Output_data_glink<size, big_endian>*
684   glink_section() const
685   {
686     gold_assert(this->glink_ != NULL);
687     return this->glink_;
688   }
689
690   Output_data_glink<size, big_endian>*
691   glink_section()
692   {
693     gold_assert(this->glink_ != NULL);
694     return this->glink_;
695   }
696
697   bool has_glink() const
698   { return this->glink_ != NULL; }
699
700   // Get the GOT section.
701   const Output_data_got_powerpc<size, big_endian>*
702   got_section() const
703   {
704     gold_assert(this->got_ != NULL);
705     return this->got_;
706   }
707
708   // Get the GOT section, creating it if necessary.
709   Output_data_got_powerpc<size, big_endian>*
710   got_section(Symbol_table*, Layout*);
711
712   Object*
713   do_make_elf_object(const std::string&, Input_file*, off_t,
714                      const elfcpp::Ehdr<size, big_endian>&);
715
716   // Return the number of entries in the GOT.
717   unsigned int
718   got_entry_count() const
719   {
720     if (this->got_ == NULL)
721       return 0;
722     return this->got_size() / (size / 8);
723   }
724
725   // Return the number of entries in the PLT.
726   unsigned int
727   plt_entry_count() const;
728
729   // Return the offset of the first non-reserved PLT entry.
730   unsigned int
731   first_plt_entry_offset() const
732   {
733     if (size == 32)
734       return 0;
735     if (this->abiversion() >= 2)
736       return 16;
737     return 24;
738   }
739
740   // Return the size of each PLT entry.
741   unsigned int
742   plt_entry_size() const
743   {
744     if (size == 32)
745       return 4;
746     if (this->abiversion() >= 2)
747       return 8;
748     return 24;
749   }
750
751   // Add any special sections for this symbol to the gc work list.
752   // For powerpc64, this adds the code section of a function
753   // descriptor.
754   void
755   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
756
757   // Handle target specific gc actions when adding a gc reference from
758   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
759   // and DST_OFF.  For powerpc64, this adds a referenc to the code
760   // section of a function descriptor.
761   void
762   do_gc_add_reference(Symbol_table* symtab,
763                       Object* src_obj,
764                       unsigned int src_shndx,
765                       Object* dst_obj,
766                       unsigned int dst_shndx,
767                       Address dst_off) const;
768
769   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
770   const Stub_tables&
771   stub_tables() const
772   { return this->stub_tables_; }
773
774   const Output_data_brlt_powerpc<size, big_endian>*
775   brlt_section() const
776   { return this->brlt_section_; }
777
778   void
779   add_branch_lookup_table(Address to)
780   {
781     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
782     this->branch_lookup_table_.insert(std::make_pair(to, off));
783   }
784
785   Address
786   find_branch_lookup_table(Address to)
787   {
788     typename Branch_lookup_table::const_iterator p
789       = this->branch_lookup_table_.find(to);
790     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
791   }
792
793   void
794   write_branch_lookup_table(unsigned char *oview)
795   {
796     for (typename Branch_lookup_table::const_iterator p
797            = this->branch_lookup_table_.begin();
798          p != this->branch_lookup_table_.end();
799          ++p)
800       {
801         elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
802       }
803   }
804
805   bool
806   plt_thread_safe() const
807   { return this->plt_thread_safe_; }
808
809   int
810   abiversion () const
811   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
812
813   void
814   set_abiversion (int ver)
815   {
816     elfcpp::Elf_Word flags = this->processor_specific_flags();
817     flags &= ~elfcpp::EF_PPC64_ABI;
818     flags |= ver & elfcpp::EF_PPC64_ABI;
819     this->set_processor_specific_flags(flags);
820   }
821
822   // Offset to to save stack slot
823   int
824   stk_toc () const
825   { return this->abiversion() < 2 ? 40 : 24; }
826
827  private:
828
829   class Track_tls
830   {
831   public:
832     enum Tls_get_addr
833     {
834       NOT_EXPECTED = 0,
835       EXPECTED = 1,
836       SKIP = 2,
837       NORMAL = 3
838     };
839
840     Track_tls()
841       : tls_get_addr_(NOT_EXPECTED),
842         relinfo_(NULL), relnum_(0), r_offset_(0)
843     { }
844
845     ~Track_tls()
846     {
847       if (this->tls_get_addr_ != NOT_EXPECTED)
848         this->missing();
849     }
850
851     void
852     missing(void)
853     {
854       if (this->relinfo_ != NULL)
855         gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
856                                _("missing expected __tls_get_addr call"));
857     }
858
859     void
860     expect_tls_get_addr_call(
861         const Relocate_info<size, big_endian>* relinfo,
862         size_t relnum,
863         Address r_offset)
864     {
865       this->tls_get_addr_ = EXPECTED;
866       this->relinfo_ = relinfo;
867       this->relnum_ = relnum;
868       this->r_offset_ = r_offset;
869     }
870
871     void
872     expect_tls_get_addr_call()
873     { this->tls_get_addr_ = EXPECTED; }
874
875     void
876     skip_next_tls_get_addr_call()
877     {this->tls_get_addr_ = SKIP; }
878
879     Tls_get_addr
880     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
881     {
882       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
883                            || r_type == elfcpp::R_PPC_PLTREL24)
884                           && gsym != NULL
885                           && strcmp(gsym->name(), "__tls_get_addr") == 0);
886       Tls_get_addr last_tls = this->tls_get_addr_;
887       this->tls_get_addr_ = NOT_EXPECTED;
888       if (is_tls_call && last_tls != EXPECTED)
889         return last_tls;
890       else if (!is_tls_call && last_tls != NOT_EXPECTED)
891         {
892           this->missing();
893           return EXPECTED;
894         }
895       return NORMAL;
896     }
897
898   private:
899     // What we're up to regarding calls to __tls_get_addr.
900     // On powerpc, the branch and link insn making a call to
901     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
902     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
903     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
904     // The marker relocation always comes first, and has the same
905     // symbol as the reloc on the insn setting up the __tls_get_addr
906     // argument.  This ties the arg setup insn with the call insn,
907     // allowing ld to safely optimize away the call.  We check that
908     // every call to __tls_get_addr has a marker relocation, and that
909     // every marker relocation is on a call to __tls_get_addr.
910     Tls_get_addr tls_get_addr_;
911     // Info about the last reloc for error message.
912     const Relocate_info<size, big_endian>* relinfo_;
913     size_t relnum_;
914     Address r_offset_;
915   };
916
917   // The class which scans relocations.
918   class Scan : protected Track_tls
919   {
920   public:
921     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
922
923     Scan()
924       : Track_tls(), issued_non_pic_error_(false)
925     { }
926
927     static inline int
928     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
929
930     inline void
931     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
932           Sized_relobj_file<size, big_endian>* object,
933           unsigned int data_shndx,
934           Output_section* output_section,
935           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
936           const elfcpp::Sym<size, big_endian>& lsym,
937           bool is_discarded);
938
939     inline void
940     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
941            Sized_relobj_file<size, big_endian>* object,
942            unsigned int data_shndx,
943            Output_section* output_section,
944            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
945            Symbol* gsym);
946
947     inline bool
948     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
949                                         Target_powerpc* ,
950                                         Sized_relobj_file<size, big_endian>* relobj,
951                                         unsigned int ,
952                                         Output_section* ,
953                                         const elfcpp::Rela<size, big_endian>& ,
954                                         unsigned int r_type,
955                                         const elfcpp::Sym<size, big_endian>&)
956     {
957       // PowerPC64 .opd is not folded, so any identical function text
958       // may be folded and we'll still keep function addresses distinct.
959       // That means no reloc is of concern here.
960       if (size == 64)
961         {
962           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
963             <Powerpc_relobj<size, big_endian>*>(relobj);
964           if (ppcobj->abiversion() == 1)
965             return false;
966         }
967       // For 32-bit and ELFv2, conservatively assume anything but calls to
968       // function code might be taking the address of the function.
969       return !is_branch_reloc(r_type);
970     }
971
972     inline bool
973     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
974                                          Target_powerpc* ,
975                                          Sized_relobj_file<size, big_endian>* relobj,
976                                          unsigned int ,
977                                          Output_section* ,
978                                          const elfcpp::Rela<size, big_endian>& ,
979                                          unsigned int r_type,
980                                          Symbol*)
981     {
982       // As above.
983       if (size == 64)
984         {
985           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
986             <Powerpc_relobj<size, big_endian>*>(relobj);
987           if (ppcobj->abiversion() == 1)
988             return false;
989         }
990       return !is_branch_reloc(r_type);
991     }
992
993     static bool
994     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
995                               Sized_relobj_file<size, big_endian>* object,
996                               unsigned int r_type, bool report_err);
997
998   private:
999     static void
1000     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1001                             unsigned int r_type);
1002
1003     static void
1004     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1005                              unsigned int r_type, Symbol*);
1006
1007     static void
1008     generate_tls_call(Symbol_table* symtab, Layout* layout,
1009                       Target_powerpc* target);
1010
1011     void
1012     check_non_pic(Relobj*, unsigned int r_type);
1013
1014     // Whether we have issued an error about a non-PIC compilation.
1015     bool issued_non_pic_error_;
1016   };
1017
1018   Address
1019   symval_for_branch(const Symbol_table* symtab, Address value,
1020                     const Sized_symbol<size>* gsym,
1021                     Powerpc_relobj<size, big_endian>* object,
1022                     unsigned int *dest_shndx);
1023
1024   // The class which implements relocation.
1025   class Relocate : protected Track_tls
1026   {
1027    public:
1028     // Use 'at' branch hints when true, 'y' when false.
1029     // FIXME maybe: set this with an option.
1030     static const bool is_isa_v2 = true;
1031
1032     Relocate()
1033       : Track_tls()
1034     { }
1035
1036     // Do a relocation.  Return false if the caller should not issue
1037     // any warnings about this relocation.
1038     inline bool
1039     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1040              Output_section*, size_t relnum,
1041              const elfcpp::Rela<size, big_endian>&,
1042              unsigned int r_type, const Sized_symbol<size>*,
1043              const Symbol_value<size>*,
1044              unsigned char*,
1045              typename elfcpp::Elf_types<size>::Elf_Addr,
1046              section_size_type);
1047   };
1048
1049   class Relocate_comdat_behavior
1050   {
1051    public:
1052     // Decide what the linker should do for relocations that refer to
1053     // discarded comdat sections.
1054     inline Comdat_behavior
1055     get(const char* name)
1056     {
1057       gold::Default_comdat_behavior default_behavior;
1058       Comdat_behavior ret = default_behavior.get(name);
1059       if (ret == CB_WARNING)
1060         {
1061           if (size == 32
1062               && (strcmp(name, ".fixup") == 0
1063                   || strcmp(name, ".got2") == 0))
1064             ret = CB_IGNORE;
1065           if (size == 64
1066               && (strcmp(name, ".opd") == 0
1067                   || strcmp(name, ".toc") == 0
1068                   || strcmp(name, ".toc1") == 0))
1069             ret = CB_IGNORE;
1070         }
1071       return ret;
1072     }
1073   };
1074
1075   // A class which returns the size required for a relocation type,
1076   // used while scanning relocs during a relocatable link.
1077   class Relocatable_size_for_reloc
1078   {
1079    public:
1080     unsigned int
1081     get_size_for_reloc(unsigned int, Relobj*)
1082     {
1083       gold_unreachable();
1084       return 0;
1085     }
1086   };
1087
1088   // Optimize the TLS relocation type based on what we know about the
1089   // symbol.  IS_FINAL is true if the final address of this symbol is
1090   // known at link time.
1091
1092   tls::Tls_optimization
1093   optimize_tls_gd(bool is_final)
1094   {
1095     // If we are generating a shared library, then we can't do anything
1096     // in the linker.
1097     if (parameters->options().shared())
1098       return tls::TLSOPT_NONE;
1099
1100     if (!is_final)
1101       return tls::TLSOPT_TO_IE;
1102     return tls::TLSOPT_TO_LE;
1103   }
1104
1105   tls::Tls_optimization
1106   optimize_tls_ld()
1107   {
1108     if (parameters->options().shared())
1109       return tls::TLSOPT_NONE;
1110
1111     return tls::TLSOPT_TO_LE;
1112   }
1113
1114   tls::Tls_optimization
1115   optimize_tls_ie(bool is_final)
1116   {
1117     if (!is_final || parameters->options().shared())
1118       return tls::TLSOPT_NONE;
1119
1120     return tls::TLSOPT_TO_LE;
1121   }
1122
1123   // Create glink.
1124   void
1125   make_glink_section(Layout*);
1126
1127   // Create the PLT section.
1128   void
1129   make_plt_section(Symbol_table*, Layout*);
1130
1131   void
1132   make_iplt_section(Symbol_table*, Layout*);
1133
1134   void
1135   make_brlt_section(Layout*);
1136
1137   // Create a PLT entry for a global symbol.
1138   void
1139   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1140
1141   // Create a PLT entry for a local IFUNC symbol.
1142   void
1143   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1144                              Sized_relobj_file<size, big_endian>*,
1145                              unsigned int);
1146
1147
1148   // Create a GOT entry for local dynamic __tls_get_addr.
1149   unsigned int
1150   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1151                    Sized_relobj_file<size, big_endian>* object);
1152
1153   unsigned int
1154   tlsld_got_offset() const
1155   {
1156     return this->tlsld_got_offset_;
1157   }
1158
1159   // Get the dynamic reloc section, creating it if necessary.
1160   Reloc_section*
1161   rela_dyn_section(Layout*);
1162
1163   // Similarly, but for ifunc symbols get the one for ifunc.
1164   Reloc_section*
1165   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1166
1167   // Copy a relocation against a global symbol.
1168   void
1169   copy_reloc(Symbol_table* symtab, Layout* layout,
1170              Sized_relobj_file<size, big_endian>* object,
1171              unsigned int shndx, Output_section* output_section,
1172              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1173   {
1174     this->copy_relocs_.copy_reloc(symtab, layout,
1175                                   symtab->get_sized_symbol<size>(sym),
1176                                   object, shndx, output_section,
1177                                   reloc, this->rela_dyn_section(layout));
1178   }
1179
1180   // Look over all the input sections, deciding where to place stubs.
1181   void
1182   group_sections(Layout*, const Task*);
1183
1184   // Sort output sections by address.
1185   struct Sort_sections
1186   {
1187     bool
1188     operator()(const Output_section* sec1, const Output_section* sec2)
1189     { return sec1->address() < sec2->address(); }
1190   };
1191
1192   class Branch_info
1193   {
1194    public:
1195     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1196                 unsigned int data_shndx,
1197                 Address r_offset,
1198                 unsigned int r_type,
1199                 unsigned int r_sym,
1200                 Address addend)
1201       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1202         r_type_(r_type), r_sym_(r_sym), addend_(addend)
1203     { }
1204
1205     ~Branch_info()
1206     { }
1207
1208     // If this branch needs a plt call stub, or a long branch stub, make one.
1209     void
1210     make_stub(Stub_table<size, big_endian>*,
1211               Stub_table<size, big_endian>*,
1212               Symbol_table*) const;
1213
1214    private:
1215     // The branch location..
1216     Powerpc_relobj<size, big_endian>* object_;
1217     unsigned int shndx_;
1218     Address offset_;
1219     // ..and the branch type and destination.
1220     unsigned int r_type_;
1221     unsigned int r_sym_;
1222     Address addend_;
1223   };
1224
1225   // Information about this specific target which we pass to the
1226   // general Target structure.
1227   static Target::Target_info powerpc_info;
1228
1229   // The types of GOT entries needed for this platform.
1230   // These values are exposed to the ABI in an incremental link.
1231   // Do not renumber existing values without changing the version
1232   // number of the .gnu_incremental_inputs section.
1233   enum Got_type
1234   {
1235     GOT_TYPE_STANDARD,
1236     GOT_TYPE_TLSGD,     // double entry for @got@tlsgd
1237     GOT_TYPE_DTPREL,    // entry for @got@dtprel
1238     GOT_TYPE_TPREL      // entry for @got@tprel
1239   };
1240
1241   // The GOT section.
1242   Output_data_got_powerpc<size, big_endian>* got_;
1243   // The PLT section.  This is a container for a table of addresses,
1244   // and their relocations.  Each address in the PLT has a dynamic
1245   // relocation (R_*_JMP_SLOT) and each address will have a
1246   // corresponding entry in .glink for lazy resolution of the PLT.
1247   // ppc32 initialises the PLT to point at the .glink entry, while
1248   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1249   // linker adds a stub that loads the PLT entry into ctr then
1250   // branches to ctr.  There may be more than one stub for each PLT
1251   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1252   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1253   Output_data_plt_powerpc<size, big_endian>* plt_;
1254   // The IPLT section.  Like plt_, this is a container for a table of
1255   // addresses and their relocations, specifically for STT_GNU_IFUNC
1256   // functions that resolve locally (STT_GNU_IFUNC functions that
1257   // don't resolve locally go in PLT).  Unlike plt_, these have no
1258   // entry in .glink for lazy resolution, and the relocation section
1259   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1260   // the relocation section may contain relocations against
1261   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1262   // relocation section will appear at the end of other dynamic
1263   // relocations, so that ld.so applies these relocations after other
1264   // dynamic relocations.  In a static executable, the relocation
1265   // section is emitted and marked with __rela_iplt_start and
1266   // __rela_iplt_end symbols.
1267   Output_data_plt_powerpc<size, big_endian>* iplt_;
1268   // Section holding long branch destinations.
1269   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1270   // The .glink section.
1271   Output_data_glink<size, big_endian>* glink_;
1272   // The dynamic reloc section.
1273   Reloc_section* rela_dyn_;
1274   // Relocs saved to avoid a COPY reloc.
1275   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1276   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1277   unsigned int tlsld_got_offset_;
1278
1279   Stub_tables stub_tables_;
1280   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1281   Branch_lookup_table branch_lookup_table_;
1282
1283   typedef std::vector<Branch_info> Branches;
1284   Branches branch_info_;
1285
1286   bool plt_thread_safe_;
1287 };
1288
1289 template<>
1290 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1291 {
1292   32,                   // size
1293   true,                 // is_big_endian
1294   elfcpp::EM_PPC,       // machine_code
1295   false,                // has_make_symbol
1296   false,                // has_resolve
1297   false,                // has_code_fill
1298   true,                 // is_default_stack_executable
1299   false,                // can_icf_inline_merge_sections
1300   '\0',                 // wrap_char
1301   "/usr/lib/ld.so.1",   // dynamic_linker
1302   0x10000000,           // default_text_segment_address
1303   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1304   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1305   false,                // isolate_execinstr
1306   0,                    // rosegment_gap
1307   elfcpp::SHN_UNDEF,    // small_common_shndx
1308   elfcpp::SHN_UNDEF,    // large_common_shndx
1309   0,                    // small_common_section_flags
1310   0,                    // large_common_section_flags
1311   NULL,                 // attributes_section
1312   NULL,                 // attributes_vendor
1313   "_start"              // entry_symbol_name
1314 };
1315
1316 template<>
1317 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1318 {
1319   32,                   // size
1320   false,                // is_big_endian
1321   elfcpp::EM_PPC,       // machine_code
1322   false,                // has_make_symbol
1323   false,                // has_resolve
1324   false,                // has_code_fill
1325   true,                 // is_default_stack_executable
1326   false,                // can_icf_inline_merge_sections
1327   '\0',                 // wrap_char
1328   "/usr/lib/ld.so.1",   // dynamic_linker
1329   0x10000000,           // default_text_segment_address
1330   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1331   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1332   false,                // isolate_execinstr
1333   0,                    // rosegment_gap
1334   elfcpp::SHN_UNDEF,    // small_common_shndx
1335   elfcpp::SHN_UNDEF,    // large_common_shndx
1336   0,                    // small_common_section_flags
1337   0,                    // large_common_section_flags
1338   NULL,                 // attributes_section
1339   NULL,                 // attributes_vendor
1340   "_start"              // entry_symbol_name
1341 };
1342
1343 template<>
1344 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1345 {
1346   64,                   // size
1347   true,                 // is_big_endian
1348   elfcpp::EM_PPC64,     // machine_code
1349   false,                // has_make_symbol
1350   false,                // has_resolve
1351   false,                // has_code_fill
1352   true,                 // is_default_stack_executable
1353   false,                // can_icf_inline_merge_sections
1354   '\0',                 // wrap_char
1355   "/usr/lib/ld.so.1",   // dynamic_linker
1356   0x10000000,           // default_text_segment_address
1357   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1358   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1359   false,                // isolate_execinstr
1360   0,                    // rosegment_gap
1361   elfcpp::SHN_UNDEF,    // small_common_shndx
1362   elfcpp::SHN_UNDEF,    // large_common_shndx
1363   0,                    // small_common_section_flags
1364   0,                    // large_common_section_flags
1365   NULL,                 // attributes_section
1366   NULL,                 // attributes_vendor
1367   "_start"              // entry_symbol_name
1368 };
1369
1370 template<>
1371 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1372 {
1373   64,                   // size
1374   false,                // is_big_endian
1375   elfcpp::EM_PPC64,     // machine_code
1376   false,                // has_make_symbol
1377   false,                // has_resolve
1378   false,                // has_code_fill
1379   true,                 // is_default_stack_executable
1380   false,                // can_icf_inline_merge_sections
1381   '\0',                 // wrap_char
1382   "/usr/lib/ld.so.1",   // dynamic_linker
1383   0x10000000,           // default_text_segment_address
1384   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
1385   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
1386   false,                // isolate_execinstr
1387   0,                    // rosegment_gap
1388   elfcpp::SHN_UNDEF,    // small_common_shndx
1389   elfcpp::SHN_UNDEF,    // large_common_shndx
1390   0,                    // small_common_section_flags
1391   0,                    // large_common_section_flags
1392   NULL,                 // attributes_section
1393   NULL,                 // attributes_vendor
1394   "_start"              // entry_symbol_name
1395 };
1396
1397 inline bool
1398 is_branch_reloc(unsigned int r_type)
1399 {
1400   return (r_type == elfcpp::R_POWERPC_REL24
1401           || r_type == elfcpp::R_PPC_PLTREL24
1402           || r_type == elfcpp::R_PPC_LOCAL24PC
1403           || r_type == elfcpp::R_POWERPC_REL14
1404           || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1405           || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1406           || r_type == elfcpp::R_POWERPC_ADDR24
1407           || r_type == elfcpp::R_POWERPC_ADDR14
1408           || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1409           || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1410 }
1411
1412 // If INSN is an opcode that may be used with an @tls operand, return
1413 // the transformed insn for TLS optimisation, otherwise return 0.  If
1414 // REG is non-zero only match an insn with RB or RA equal to REG.
1415 uint32_t
1416 at_tls_transform(uint32_t insn, unsigned int reg)
1417 {
1418   if ((insn & (0x3f << 26)) != 31 << 26)
1419     return 0;
1420
1421   unsigned int rtra;
1422   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1423     rtra = insn & ((1 << 26) - (1 << 16));
1424   else if (((insn >> 16) & 0x1f) == reg)
1425     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1426   else
1427     return 0;
1428
1429   if ((insn & (0x3ff << 1)) == 266 << 1)
1430     // add -> addi
1431     insn = 14 << 26;
1432   else if ((insn & (0x1f << 1)) == 23 << 1
1433            && ((insn & (0x1f << 6)) < 14 << 6
1434                || ((insn & (0x1f << 6)) >= 16 << 6
1435                    && (insn & (0x1f << 6)) < 24 << 6)))
1436     // load and store indexed -> dform
1437     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1438   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1439     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1440     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1441   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1442     // lwax -> lwa
1443     insn = (58 << 26) | 2;
1444   else
1445     return 0;
1446   insn |= rtra;
1447   return insn;
1448 }
1449
1450
1451 template<int size, bool big_endian>
1452 class Powerpc_relocate_functions
1453 {
1454 public:
1455   enum Overflow_check
1456   {
1457     CHECK_NONE,
1458     CHECK_SIGNED,
1459     CHECK_UNSIGNED,
1460     CHECK_BITFIELD,
1461     CHECK_LOW_INSN,
1462     CHECK_HIGH_INSN
1463   };
1464
1465   enum Status
1466   {
1467     STATUS_OK,
1468     STATUS_OVERFLOW
1469   };
1470
1471 private:
1472   typedef Powerpc_relocate_functions<size, big_endian> This;
1473   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1474
1475   template<int valsize>
1476   static inline bool
1477   has_overflow_signed(Address value)
1478   {
1479     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1480     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1481     limit <<= ((valsize - 1) >> 1);
1482     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1483     return value + limit > (limit << 1) - 1;
1484   }
1485
1486   template<int valsize>
1487   static inline bool
1488   has_overflow_unsigned(Address value)
1489   {
1490     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1491     limit <<= ((valsize - 1) >> 1);
1492     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1493     return value > (limit << 1) - 1;
1494   }
1495
1496   template<int valsize>
1497   static inline bool
1498   has_overflow_bitfield(Address value)
1499   {
1500     return (has_overflow_unsigned<valsize>(value)
1501             && has_overflow_signed<valsize>(value));
1502   }
1503
1504   template<int valsize>
1505   static inline Status
1506   overflowed(Address value, Overflow_check overflow)
1507   {
1508     if (overflow == CHECK_SIGNED)
1509       {
1510         if (has_overflow_signed<valsize>(value))
1511           return STATUS_OVERFLOW;
1512       }
1513     else if (overflow == CHECK_UNSIGNED)
1514       {
1515         if (has_overflow_unsigned<valsize>(value))
1516           return STATUS_OVERFLOW;
1517       }
1518     else if (overflow == CHECK_BITFIELD)
1519       {
1520         if (has_overflow_bitfield<valsize>(value))
1521           return STATUS_OVERFLOW;
1522       }
1523     return STATUS_OK;
1524   }
1525
1526   // Do a simple RELA relocation
1527   template<int fieldsize, int valsize>
1528   static inline Status
1529   rela(unsigned char* view, Address value, Overflow_check overflow)
1530   {
1531     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1532     Valtype* wv = reinterpret_cast<Valtype*>(view);
1533     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1534     return overflowed<valsize>(value, overflow);
1535   }
1536
1537   template<int fieldsize, int valsize>
1538   static inline Status
1539   rela(unsigned char* view,
1540        unsigned int right_shift,
1541        typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1542        Address value,
1543        Overflow_check overflow)
1544   {
1545     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1546     Valtype* wv = reinterpret_cast<Valtype*>(view);
1547     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1548     Valtype reloc = value >> right_shift;
1549     val &= ~dst_mask;
1550     reloc &= dst_mask;
1551     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1552     return overflowed<valsize>(value >> right_shift, overflow);
1553   }
1554
1555   // Do a simple RELA relocation, unaligned.
1556   template<int fieldsize, int valsize>
1557   static inline Status
1558   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1559   {
1560     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1561     return overflowed<valsize>(value, overflow);
1562   }
1563
1564   template<int fieldsize, int valsize>
1565   static inline Status
1566   rela_ua(unsigned char* view,
1567           unsigned int right_shift,
1568           typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1569           Address value,
1570           Overflow_check overflow)
1571   {
1572     typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1573       Valtype;
1574     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1575     Valtype reloc = value >> right_shift;
1576     val &= ~dst_mask;
1577     reloc &= dst_mask;
1578     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1579     return overflowed<valsize>(value >> right_shift, overflow);
1580   }
1581
1582 public:
1583   // R_PPC64_ADDR64: (Symbol + Addend)
1584   static inline void
1585   addr64(unsigned char* view, Address value)
1586   { This::template rela<64,64>(view, value, CHECK_NONE); }
1587
1588   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1589   static inline void
1590   addr64_u(unsigned char* view, Address value)
1591   { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1592
1593   // R_POWERPC_ADDR32: (Symbol + Addend)
1594   static inline Status
1595   addr32(unsigned char* view, Address value, Overflow_check overflow)
1596   { return This::template rela<32,32>(view, value, overflow); }
1597
1598   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1599   static inline Status
1600   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1601   { return This::template rela_ua<32,32>(view, value, overflow); }
1602
1603   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1604   static inline Status
1605   addr24(unsigned char* view, Address value, Overflow_check overflow)
1606   {
1607     Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1608                                              value, overflow);
1609     if (overflow != CHECK_NONE && (value & 3) != 0)
1610       stat = STATUS_OVERFLOW;
1611     return stat;
1612   }
1613
1614   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1615   static inline Status
1616   addr16(unsigned char* view, Address value, Overflow_check overflow)
1617   { return This::template rela<16,16>(view, value, overflow); }
1618
1619   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1620   static inline Status
1621   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1622   { return This::template rela_ua<16,16>(view, value, overflow); }
1623
1624   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1625   static inline Status
1626   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1627   {
1628     Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1629     if (overflow != CHECK_NONE && (value & 3) != 0)
1630       stat = STATUS_OVERFLOW;
1631     return stat;
1632   }
1633
1634   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1635   static inline void
1636   addr16_hi(unsigned char* view, Address value)
1637   { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1638
1639   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1640   static inline void
1641   addr16_ha(unsigned char* view, Address value)
1642   { This::addr16_hi(view, value + 0x8000); }
1643
1644   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1645   static inline void
1646   addr16_hi2(unsigned char* view, Address value)
1647   { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1648
1649   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1650   static inline void
1651   addr16_ha2(unsigned char* view, Address value)
1652   { This::addr16_hi2(view, value + 0x8000); }
1653
1654   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1655   static inline void
1656   addr16_hi3(unsigned char* view, Address value)
1657   { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1658
1659   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1660   static inline void
1661   addr16_ha3(unsigned char* view, Address value)
1662   { This::addr16_hi3(view, value + 0x8000); }
1663
1664   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1665   static inline Status
1666   addr14(unsigned char* view, Address value, Overflow_check overflow)
1667   {
1668     Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1669     if (overflow != CHECK_NONE && (value & 3) != 0)
1670       stat = STATUS_OVERFLOW;
1671     return stat;
1672   }
1673 };
1674
1675 // Set ABI version for input and output.
1676
1677 template<int size, bool big_endian>
1678 void
1679 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1680 {
1681   this->e_flags_ |= ver;
1682   if (this->abiversion() != 0)
1683     {
1684       Target_powerpc<size, big_endian>* target =
1685         static_cast<Target_powerpc<size, big_endian>*>(
1686            parameters->sized_target<size, big_endian>());
1687       if (target->abiversion() == 0)
1688         target->set_abiversion(this->abiversion());
1689       else if (target->abiversion() != this->abiversion())
1690         gold_error(_("%s: ABI version %d is not compatible "
1691                      "with ABI version %d output"),
1692                    this->name().c_str(),
1693                    this->abiversion(), target->abiversion());
1694
1695     }
1696 }
1697
1698 // Stash away the index of .got2 or .opd in a relocatable object, if
1699 // such a section exists.
1700
1701 template<int size, bool big_endian>
1702 bool
1703 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1704     Read_symbols_data* sd)
1705 {
1706   const unsigned char* const pshdrs = sd->section_headers->data();
1707   const unsigned char* namesu = sd->section_names->data();
1708   const char* names = reinterpret_cast<const char*>(namesu);
1709   section_size_type names_size = sd->section_names_size;
1710   const unsigned char* s;
1711
1712   s = this->template find_shdr<size, big_endian>(pshdrs,
1713                                                  size == 32 ? ".got2" : ".opd",
1714                                                  names, names_size, NULL);
1715   if (s != NULL)
1716     {
1717       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1718       this->special_ = ndx;
1719       if (size == 64)
1720         {
1721           if (this->abiversion() == 0)
1722             this->set_abiversion(1);
1723           else if (this->abiversion() > 1)
1724             gold_error(_("%s: .opd invalid in abiv%d"),
1725                        this->name().c_str(), this->abiversion());
1726         }
1727     }
1728   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1729 }
1730
1731 // Examine .rela.opd to build info about function entry points.
1732
1733 template<int size, bool big_endian>
1734 void
1735 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1736     size_t reloc_count,
1737     const unsigned char* prelocs,
1738     const unsigned char* plocal_syms)
1739 {
1740   if (size == 64)
1741     {
1742       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1743         Reltype;
1744       const int reloc_size
1745         = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1746       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1747       Address expected_off = 0;
1748       bool regular = true;
1749       unsigned int opd_ent_size = 0;
1750
1751       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1752         {
1753           Reltype reloc(prelocs);
1754           typename elfcpp::Elf_types<size>::Elf_WXword r_info
1755             = reloc.get_r_info();
1756           unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1757           if (r_type == elfcpp::R_PPC64_ADDR64)
1758             {
1759               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1760               typename elfcpp::Elf_types<size>::Elf_Addr value;
1761               bool is_ordinary;
1762               unsigned int shndx;
1763               if (r_sym < this->local_symbol_count())
1764                 {
1765                   typename elfcpp::Sym<size, big_endian>
1766                     lsym(plocal_syms + r_sym * sym_size);
1767                   shndx = lsym.get_st_shndx();
1768                   shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1769                   value = lsym.get_st_value();
1770                 }
1771               else
1772                 shndx = this->symbol_section_and_value(r_sym, &value,
1773                                                        &is_ordinary);
1774               this->set_opd_ent(reloc.get_r_offset(), shndx,
1775                                 value + reloc.get_r_addend());
1776               if (i == 2)
1777                 {
1778                   expected_off = reloc.get_r_offset();
1779                   opd_ent_size = expected_off;
1780                 }
1781               else if (expected_off != reloc.get_r_offset())
1782                 regular = false;
1783               expected_off += opd_ent_size;
1784             }
1785           else if (r_type == elfcpp::R_PPC64_TOC)
1786             {
1787               if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1788                 regular = false;
1789             }
1790           else
1791             {
1792               gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1793                            this->name().c_str(), r_type);
1794               regular = false;
1795             }
1796         }
1797       if (reloc_count <= 2)
1798         opd_ent_size = this->section_size(this->opd_shndx());
1799       if (opd_ent_size != 24 && opd_ent_size != 16)
1800         regular = false;
1801       if (!regular)
1802         {
1803           gold_warning(_("%s: .opd is not a regular array of opd entries"),
1804                        this->name().c_str());
1805           opd_ent_size = 0;
1806         }
1807     }
1808 }
1809
1810 template<int size, bool big_endian>
1811 void
1812 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1813 {
1814   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1815   if (size == 64)
1816     {
1817       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1818            p != rd->relocs.end();
1819            ++p)
1820         {
1821           if (p->data_shndx == this->opd_shndx())
1822             {
1823               uint64_t opd_size = this->section_size(this->opd_shndx());
1824               gold_assert(opd_size == static_cast<size_t>(opd_size));
1825               if (opd_size != 0)
1826                 {
1827                   this->init_opd(opd_size);
1828                   this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1829                                         rd->local_symbols->data());
1830                 }
1831               break;
1832             }
1833         }
1834     }
1835 }
1836
1837 // Read the symbols then set up st_other vector.
1838
1839 template<int size, bool big_endian>
1840 void
1841 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1842 {
1843   this->base_read_symbols(sd);
1844   if (size == 64)
1845     {
1846       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1847       const unsigned char* const pshdrs = sd->section_headers->data();
1848       const unsigned int loccount = this->do_local_symbol_count();
1849       if (loccount != 0)
1850         {
1851           this->st_other_.resize(loccount);
1852           const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1853           off_t locsize = loccount * sym_size;
1854           const unsigned int symtab_shndx = this->symtab_shndx();
1855           const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1856           typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1857           const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1858                                                       locsize, true, false);
1859           psyms += sym_size;
1860           for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1861             {
1862               elfcpp::Sym<size, big_endian> sym(psyms);
1863               unsigned char st_other = sym.get_st_other();
1864               this->st_other_[i] = st_other;
1865               if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1866                 {
1867                   if (this->abiversion() == 0)
1868                     this->set_abiversion(2);
1869                   else if (this->abiversion() < 2)
1870                     gold_error(_("%s: local symbol %d has invalid st_other"
1871                                  " for ABI version 1"),
1872                                this->name().c_str(), i);
1873                 }
1874             }
1875         }
1876     }
1877 }
1878
1879 template<int size, bool big_endian>
1880 void
1881 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1882 {
1883   this->e_flags_ |= ver;
1884   if (this->abiversion() != 0)
1885     {
1886       Target_powerpc<size, big_endian>* target =
1887         static_cast<Target_powerpc<size, big_endian>*>(
1888           parameters->sized_target<size, big_endian>());
1889       if (target->abiversion() == 0)
1890         target->set_abiversion(this->abiversion());
1891       else if (target->abiversion() != this->abiversion())
1892         gold_error(_("%s: ABI version %d is not compatible "
1893                      "with ABI version %d output"),
1894                    this->name().c_str(),
1895                    this->abiversion(), target->abiversion());
1896
1897     }
1898 }
1899
1900 // Call Sized_dynobj::base_read_symbols to read the symbols then
1901 // read .opd from a dynamic object, filling in opd_ent_ vector,
1902
1903 template<int size, bool big_endian>
1904 void
1905 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1906 {
1907   this->base_read_symbols(sd);
1908   if (size == 64)
1909     {
1910       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1911       const unsigned char* const pshdrs = sd->section_headers->data();
1912       const unsigned char* namesu = sd->section_names->data();
1913       const char* names = reinterpret_cast<const char*>(namesu);
1914       const unsigned char* s = NULL;
1915       const unsigned char* opd;
1916       section_size_type opd_size;
1917
1918       // Find and read .opd section.
1919       while (1)
1920         {
1921           s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1922                                                          sd->section_names_size,
1923                                                          s);
1924           if (s == NULL)
1925             return;
1926
1927           typename elfcpp::Shdr<size, big_endian> shdr(s);
1928           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1929               && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1930             {
1931               if (this->abiversion() == 0)
1932                 this->set_abiversion(1);
1933               else if (this->abiversion() > 1)
1934                 gold_error(_("%s: .opd invalid in abiv%d"),
1935                            this->name().c_str(), this->abiversion());
1936
1937               this->opd_shndx_ = (s - pshdrs) / shdr_size;
1938               this->opd_address_ = shdr.get_sh_addr();
1939               opd_size = convert_to_section_size_type(shdr.get_sh_size());
1940               opd = this->get_view(shdr.get_sh_offset(), opd_size,
1941                                    true, false);
1942               break;
1943             }
1944         }
1945
1946       // Build set of executable sections.
1947       // Using a set is probably overkill.  There is likely to be only
1948       // a few executable sections, typically .init, .text and .fini,
1949       // and they are generally grouped together.
1950       typedef std::set<Sec_info> Exec_sections;
1951       Exec_sections exec_sections;
1952       s = pshdrs;
1953       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1954         {
1955           typename elfcpp::Shdr<size, big_endian> shdr(s);
1956           if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1957               && ((shdr.get_sh_flags()
1958                    & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1959                   == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1960               && shdr.get_sh_size() != 0)
1961             {
1962               exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1963                                             shdr.get_sh_size(), i));
1964             }
1965         }
1966       if (exec_sections.empty())
1967         return;
1968
1969       // Look over the OPD entries.  This is complicated by the fact
1970       // that some binaries will use two-word entries while others
1971       // will use the standard three-word entries.  In most cases
1972       // the third word (the environment pointer for languages like
1973       // Pascal) is unused and will be zero.  If the third word is
1974       // used it should not be pointing into executable sections,
1975       // I think.
1976       this->init_opd(opd_size);
1977       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
1978         {
1979           typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1980           const Valtype* valp = reinterpret_cast<const Valtype*>(p);
1981           Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
1982           if (val == 0)
1983             // Chances are that this is the third word of an OPD entry.
1984             continue;
1985           typename Exec_sections::const_iterator e
1986             = exec_sections.upper_bound(Sec_info(val, 0, 0));
1987           if (e != exec_sections.begin())
1988             {
1989               --e;
1990               if (e->start <= val && val < e->start + e->len)
1991                 {
1992                   // We have an address in an executable section.
1993                   // VAL ought to be the function entry, set it up.
1994                   this->set_opd_ent(p - opd, e->shndx, val);
1995                   // Skip second word of OPD entry, the TOC pointer.
1996                   p += 8;
1997                 }
1998             }
1999           // If we didn't match any executable sections, we likely
2000           // have a non-zero third word in the OPD entry.
2001         }
2002     }
2003 }
2004
2005 // Set up some symbols.
2006
2007 template<int size, bool big_endian>
2008 void
2009 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2010     Symbol_table* symtab,
2011     Layout* layout)
2012 {
2013   if (size == 32)
2014     {
2015       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2016       // undefined when scanning relocs (and thus requires
2017       // non-relative dynamic relocs).  The proper value will be
2018       // updated later.
2019       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2020       if (gotsym != NULL && gotsym->is_undefined())
2021         {
2022           Target_powerpc<size, big_endian>* target =
2023             static_cast<Target_powerpc<size, big_endian>*>(
2024                 parameters->sized_target<size, big_endian>());
2025           Output_data_got_powerpc<size, big_endian>* got
2026             = target->got_section(symtab, layout);
2027           symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2028                                         Symbol_table::PREDEFINED,
2029                                         got, 0, 0,
2030                                         elfcpp::STT_OBJECT,
2031                                         elfcpp::STB_LOCAL,
2032                                         elfcpp::STV_HIDDEN, 0,
2033                                         false, false);
2034         }
2035
2036       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2037       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2038       if (sdasym != NULL && sdasym->is_undefined())
2039         {
2040           Output_data_space* sdata = new Output_data_space(4, "** sdata");
2041           Output_section* os
2042             = layout->add_output_section_data(".sdata", 0,
2043                                               elfcpp::SHF_ALLOC
2044                                               | elfcpp::SHF_WRITE,
2045                                               sdata, ORDER_SMALL_DATA, false);
2046           symtab->define_in_output_data("_SDA_BASE_", NULL,
2047                                         Symbol_table::PREDEFINED,
2048                                         os, 32768, 0, elfcpp::STT_OBJECT,
2049                                         elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2050                                         0, false, false);
2051         }
2052     }
2053   else
2054     {
2055       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2056       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2057       if (gotsym != NULL && gotsym->is_undefined())
2058         {
2059           Target_powerpc<size, big_endian>* target =
2060             static_cast<Target_powerpc<size, big_endian>*>(
2061                 parameters->sized_target<size, big_endian>());
2062           Output_data_got_powerpc<size, big_endian>* got
2063             = target->got_section(symtab, layout);
2064           symtab->define_in_output_data(".TOC.", NULL,
2065                                         Symbol_table::PREDEFINED,
2066                                         got, 0x8000, 0,
2067                                         elfcpp::STT_OBJECT,
2068                                         elfcpp::STB_LOCAL,
2069                                         elfcpp::STV_HIDDEN, 0,
2070                                         false, false);
2071         }
2072     }
2073 }
2074
2075 // Set up PowerPC target specific relobj.
2076
2077 template<int size, bool big_endian>
2078 Object*
2079 Target_powerpc<size, big_endian>::do_make_elf_object(
2080     const std::string& name,
2081     Input_file* input_file,
2082     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2083 {
2084   int et = ehdr.get_e_type();
2085   // ET_EXEC files are valid input for --just-symbols/-R,
2086   // and we treat them as relocatable objects.
2087   if (et == elfcpp::ET_REL
2088       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2089     {
2090       Powerpc_relobj<size, big_endian>* obj =
2091         new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2092       obj->setup();
2093       return obj;
2094     }
2095   else if (et == elfcpp::ET_DYN)
2096     {
2097       Powerpc_dynobj<size, big_endian>* obj =
2098         new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2099       obj->setup();
2100       return obj;
2101     }
2102   else
2103     {
2104       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2105       return NULL;
2106     }
2107 }
2108
2109 template<int size, bool big_endian>
2110 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2111 {
2112 public:
2113   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2114   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2115
2116   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2117     : Output_data_got<size, big_endian>(),
2118       symtab_(symtab), layout_(layout),
2119       header_ent_cnt_(size == 32 ? 3 : 1),
2120       header_index_(size == 32 ? 0x2000 : 0)
2121   { }
2122
2123   // Override all the Output_data_got methods we use so as to first call
2124   // reserve_ent().
2125   bool
2126   add_global(Symbol* gsym, unsigned int got_type)
2127   {
2128     this->reserve_ent();
2129     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2130   }
2131
2132   bool
2133   add_global_plt(Symbol* gsym, unsigned int got_type)
2134   {
2135     this->reserve_ent();
2136     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2137   }
2138
2139   bool
2140   add_global_tls(Symbol* gsym, unsigned int got_type)
2141   { return this->add_global_plt(gsym, got_type); }
2142
2143   void
2144   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2145                       Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2146   {
2147     this->reserve_ent();
2148     Output_data_got<size, big_endian>::
2149       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2150   }
2151
2152   void
2153   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2154                            Output_data_reloc_generic* rel_dyn,
2155                            unsigned int r_type_1, unsigned int r_type_2)
2156   {
2157     this->reserve_ent(2);
2158     Output_data_got<size, big_endian>::
2159       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2160   }
2161
2162   bool
2163   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2164   {
2165     this->reserve_ent();
2166     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2167                                                         got_type);
2168   }
2169
2170   bool
2171   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2172   {
2173     this->reserve_ent();
2174     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2175                                                             got_type);
2176   }
2177
2178   bool
2179   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2180   { return this->add_local_plt(object, sym_index, got_type); }
2181
2182   void
2183   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2184                      unsigned int got_type,
2185                      Output_data_reloc_generic* rel_dyn,
2186                      unsigned int r_type)
2187   {
2188     this->reserve_ent(2);
2189     Output_data_got<size, big_endian>::
2190       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2191   }
2192
2193   unsigned int
2194   add_constant(Valtype constant)
2195   {
2196     this->reserve_ent();
2197     return Output_data_got<size, big_endian>::add_constant(constant);
2198   }
2199
2200   unsigned int
2201   add_constant_pair(Valtype c1, Valtype c2)
2202   {
2203     this->reserve_ent(2);
2204     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2205   }
2206
2207   // Offset of _GLOBAL_OFFSET_TABLE_.
2208   unsigned int
2209   g_o_t() const
2210   {
2211     return this->got_offset(this->header_index_);
2212   }
2213
2214   // Offset of base used to access the GOT/TOC.
2215   // The got/toc pointer reg will be set to this value.
2216   Valtype
2217   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2218   {
2219     if (size == 32)
2220       return this->g_o_t();
2221     else
2222       return (this->output_section()->address()
2223               + object->toc_base_offset()
2224               - this->address());
2225   }
2226
2227   // Ensure our GOT has a header.
2228   void
2229   set_final_data_size()
2230   {
2231     if (this->header_ent_cnt_ != 0)
2232       this->make_header();
2233     Output_data_got<size, big_endian>::set_final_data_size();
2234   }
2235
2236   // First word of GOT header needs some values that are not
2237   // handled by Output_data_got so poke them in here.
2238   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2239   void
2240   do_write(Output_file* of)
2241   {
2242     Valtype val = 0;
2243     if (size == 32 && this->layout_->dynamic_data() != NULL)
2244       val = this->layout_->dynamic_section()->address();
2245     if (size == 64)
2246       val = this->output_section()->address() + 0x8000;
2247     this->replace_constant(this->header_index_, val);
2248     Output_data_got<size, big_endian>::do_write(of);
2249   }
2250
2251 private:
2252   void
2253   reserve_ent(unsigned int cnt = 1)
2254   {
2255     if (this->header_ent_cnt_ == 0)
2256       return;
2257     if (this->num_entries() + cnt > this->header_index_)
2258       this->make_header();
2259   }
2260
2261   void
2262   make_header()
2263   {
2264     this->header_ent_cnt_ = 0;
2265     this->header_index_ = this->num_entries();
2266     if (size == 32)
2267       {
2268         Output_data_got<size, big_endian>::add_constant(0);
2269         Output_data_got<size, big_endian>::add_constant(0);
2270         Output_data_got<size, big_endian>::add_constant(0);
2271
2272         // Define _GLOBAL_OFFSET_TABLE_ at the header
2273         Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2274         if (gotsym != NULL)
2275           {
2276             Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2277             sym->set_value(this->g_o_t());
2278           }
2279         else
2280           this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2281                                                Symbol_table::PREDEFINED,
2282                                                this, this->g_o_t(), 0,
2283                                                elfcpp::STT_OBJECT,
2284                                                elfcpp::STB_LOCAL,
2285                                                elfcpp::STV_HIDDEN, 0,
2286                                                false, false);
2287       }
2288     else
2289       Output_data_got<size, big_endian>::add_constant(0);
2290   }
2291
2292   // Stashed pointers.
2293   Symbol_table* symtab_;
2294   Layout* layout_;
2295
2296   // GOT header size.
2297   unsigned int header_ent_cnt_;
2298   // GOT header index.
2299   unsigned int header_index_;
2300 };
2301
2302 // Get the GOT section, creating it if necessary.
2303
2304 template<int size, bool big_endian>
2305 Output_data_got_powerpc<size, big_endian>*
2306 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2307                                               Layout* layout)
2308 {
2309   if (this->got_ == NULL)
2310     {
2311       gold_assert(symtab != NULL && layout != NULL);
2312
2313       this->got_
2314         = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2315
2316       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2317                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2318                                       this->got_, ORDER_DATA, false);
2319     }
2320
2321   return this->got_;
2322 }
2323
2324 // Get the dynamic reloc section, creating it if necessary.
2325
2326 template<int size, bool big_endian>
2327 typename Target_powerpc<size, big_endian>::Reloc_section*
2328 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2329 {
2330   if (this->rela_dyn_ == NULL)
2331     {
2332       gold_assert(layout != NULL);
2333       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2334       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2335                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2336                                       ORDER_DYNAMIC_RELOCS, false);
2337     }
2338   return this->rela_dyn_;
2339 }
2340
2341 // Similarly, but for ifunc symbols get the one for ifunc.
2342
2343 template<int size, bool big_endian>
2344 typename Target_powerpc<size, big_endian>::Reloc_section*
2345 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2346                                                    Layout* layout,
2347                                                    bool for_ifunc)
2348 {
2349   if (!for_ifunc)
2350     return this->rela_dyn_section(layout);
2351
2352   if (this->iplt_ == NULL)
2353     this->make_iplt_section(symtab, layout);
2354   return this->iplt_->rel_plt();
2355 }
2356
2357 class Stub_control
2358 {
2359  public:
2360   // Determine the stub group size.  The group size is the absolute
2361   // value of the parameter --stub-group-size.  If --stub-group-size
2362   // is passed a negative value, we restrict stubs to be always before
2363   // the stubbed branches.
2364   Stub_control(int32_t size)
2365     : state_(NO_GROUP), stub_group_size_(abs(size)),
2366       stub14_group_size_(abs(size) >> 10),
2367       stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
2368       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2369   {
2370     if (stub_group_size_ == 1)
2371       {
2372         // Default values.
2373         if (stubs_always_before_branch_)
2374           {
2375             stub_group_size_ = 0x1e00000;
2376             stub14_group_size_ = 0x7800;
2377           }
2378         else
2379           {
2380             stub_group_size_ = 0x1c00000;
2381             stub14_group_size_ = 0x7000;
2382           }
2383         suppress_size_errors_ = true;
2384       }
2385   }
2386
2387   // Return true iff input section can be handled by current stub
2388   // group.
2389   bool
2390   can_add_to_stub_group(Output_section* o,
2391                         const Output_section::Input_section* i,
2392                         bool has14);
2393
2394   const Output_section::Input_section*
2395   owner()
2396   { return owner_; }
2397
2398   Output_section*
2399   output_section()
2400   { return output_section_; }
2401
2402  private:
2403   typedef enum
2404   {
2405     NO_GROUP,
2406     FINDING_STUB_SECTION,
2407     HAS_STUB_SECTION
2408   } State;
2409
2410   State state_;
2411   uint32_t stub_group_size_;
2412   uint32_t stub14_group_size_;
2413   bool stubs_always_before_branch_;
2414   bool suppress_size_errors_;
2415   uint64_t group_end_addr_;
2416   const Output_section::Input_section* owner_;
2417   Output_section* output_section_;
2418 };
2419
2420 // Return true iff input section can be handled by current stub
2421 // group.
2422
2423 bool
2424 Stub_control::can_add_to_stub_group(Output_section* o,
2425                                     const Output_section::Input_section* i,
2426                                     bool has14)
2427 {
2428   uint32_t group_size
2429     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2430   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2431   uint64_t this_size;
2432   uint64_t start_addr = o->address();
2433
2434   if (whole_sec)
2435     // .init and .fini sections are pasted together to form a single
2436     // function.  We can't be adding stubs in the middle of the function.
2437     this_size = o->data_size();
2438   else
2439     {
2440       start_addr += i->relobj()->output_section_offset(i->shndx());
2441       this_size = i->data_size();
2442     }
2443   uint64_t end_addr = start_addr + this_size;
2444   bool toobig = this_size > group_size;
2445
2446   if (toobig && !this->suppress_size_errors_)
2447     gold_warning(_("%s:%s exceeds group size"),
2448                  i->relobj()->name().c_str(),
2449                  i->relobj()->section_name(i->shndx()).c_str());
2450
2451   if (this->state_ != HAS_STUB_SECTION
2452       && (!whole_sec || this->output_section_ != o)
2453       && (this->state_ == NO_GROUP
2454           || this->group_end_addr_ - end_addr < group_size))
2455     {
2456       this->owner_ = i;
2457       this->output_section_ = o;
2458     }
2459
2460   if (this->state_ == NO_GROUP)
2461     {
2462       this->state_ = FINDING_STUB_SECTION;
2463       this->group_end_addr_ = end_addr;
2464     }
2465   else if (this->group_end_addr_ - start_addr < group_size)
2466     ;
2467   // Adding this section would make the group larger than GROUP_SIZE.
2468   else if (this->state_ == FINDING_STUB_SECTION
2469            && !this->stubs_always_before_branch_
2470            && !toobig)
2471     {
2472       // But wait, there's more!  Input sections up to GROUP_SIZE
2473       // bytes before the stub table can be handled by it too.
2474       this->state_ = HAS_STUB_SECTION;
2475       this->group_end_addr_ = end_addr;
2476     }
2477   else
2478     {
2479       this->state_ = NO_GROUP;
2480       return false;
2481     }
2482   return true;
2483 }
2484
2485 // Look over all the input sections, deciding where to place stubs.
2486
2487 template<int size, bool big_endian>
2488 void
2489 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2490                                                  const Task*)
2491 {
2492   Stub_control stub_control(parameters->options().stub_group_size());
2493
2494   // Group input sections and insert stub table
2495   Stub_table<size, big_endian>* stub_table = NULL;
2496   Layout::Section_list section_list;
2497   layout->get_executable_sections(&section_list);
2498   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2499   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2500        o != section_list.rend();
2501        ++o)
2502     {
2503       typedef Output_section::Input_section_list Input_section_list;
2504       for (Input_section_list::const_reverse_iterator i
2505              = (*o)->input_sections().rbegin();
2506            i != (*o)->input_sections().rend();
2507            ++i)
2508         {
2509           if (i->is_input_section())
2510             {
2511               Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2512                 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2513               bool has14 = ppcobj->has_14bit_branch(i->shndx());
2514               if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2515                 {
2516                   stub_table->init(stub_control.owner(),
2517                                    stub_control.output_section());
2518                   stub_table = NULL;
2519                 }
2520               if (stub_table == NULL)
2521                 stub_table = this->new_stub_table();
2522               ppcobj->set_stub_table(i->shndx(), stub_table);
2523             }
2524         }
2525     }
2526   if (stub_table != NULL)
2527     {
2528       const Output_section::Input_section* i = stub_control.owner();
2529       if (!i->is_input_section())
2530         {
2531           // Corner case.  A new stub group was made for the first
2532           // section (last one looked at here) for some reason, but
2533           // the first section is already being used as the owner for
2534           // a stub table for following sections.  Force it into that
2535           // stub group.
2536           gold_assert(this->stub_tables_.size() >= 2);
2537           this->stub_tables_.pop_back();
2538           delete stub_table;
2539           Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2540             <Powerpc_relobj<size, big_endian>*>(i->relobj());
2541           ppcobj->set_stub_table(i->shndx(), this->stub_tables_.back());
2542         }
2543       else
2544         stub_table->init(i, stub_control.output_section());
2545     }
2546 }
2547
2548 // If this branch needs a plt call stub, or a long branch stub, make one.
2549
2550 template<int size, bool big_endian>
2551 void
2552 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2553     Stub_table<size, big_endian>* stub_table,
2554     Stub_table<size, big_endian>* ifunc_stub_table,
2555     Symbol_table* symtab) const
2556 {
2557   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2558   if (sym != NULL && sym->is_forwarder())
2559     sym = symtab->resolve_forwards(sym);
2560   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2561   Target_powerpc<size, big_endian>* target =
2562     static_cast<Target_powerpc<size, big_endian>*>(
2563       parameters->sized_target<size, big_endian>());
2564   if (gsym != NULL
2565       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2566       : this->object_->local_has_plt_offset(this->r_sym_))
2567     {
2568       if (size == 64
2569           && gsym != NULL
2570           && target->abiversion() >= 2
2571           && !parameters->options().output_is_position_independent()
2572           && !is_branch_reloc(this->r_type_))
2573         target->glink_section()->add_global_entry(gsym);
2574       else
2575         {
2576           if (stub_table == NULL)
2577             stub_table = this->object_->stub_table(this->shndx_);
2578           if (stub_table == NULL)
2579             {
2580               // This is a ref from a data section to an ifunc symbol.
2581               stub_table = ifunc_stub_table;
2582             }
2583           gold_assert(stub_table != NULL);
2584           if (gsym != NULL)
2585             stub_table->add_plt_call_entry(this->object_, gsym,
2586                                            this->r_type_, this->addend_);
2587           else
2588             stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2589                                            this->r_type_, this->addend_);
2590         }
2591     }
2592   else
2593     {
2594       unsigned long max_branch_offset;
2595       if (this->r_type_ == elfcpp::R_POWERPC_REL14
2596           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2597           || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2598         max_branch_offset = 1 << 15;
2599       else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2600                || this->r_type_ == elfcpp::R_PPC_PLTREL24
2601                || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2602         max_branch_offset = 1 << 25;
2603       else
2604         return;
2605       Address from = this->object_->get_output_section_offset(this->shndx_);
2606       gold_assert(from != invalid_address);
2607       from += (this->object_->output_section(this->shndx_)->address()
2608                + this->offset_);
2609       Address to;
2610       if (gsym != NULL)
2611         {
2612           switch (gsym->source())
2613             {
2614             case Symbol::FROM_OBJECT:
2615               {
2616                 Object* symobj = gsym->object();
2617                 if (symobj->is_dynamic()
2618                     || symobj->pluginobj() != NULL)
2619                   return;
2620                 bool is_ordinary;
2621                 unsigned int shndx = gsym->shndx(&is_ordinary);
2622                 if (shndx == elfcpp::SHN_UNDEF)
2623                   return;
2624               }
2625               break;
2626
2627             case Symbol::IS_UNDEFINED:
2628               return;
2629
2630             default:
2631               break;
2632             }
2633           Symbol_table::Compute_final_value_status status;
2634           to = symtab->compute_final_value<size>(gsym, &status);
2635           if (status != Symbol_table::CFVS_OK)
2636             return;
2637           if (size == 64)
2638             to += this->object_->ppc64_local_entry_offset(gsym);
2639         }
2640       else
2641         {
2642           const Symbol_value<size>* psymval
2643             = this->object_->local_symbol(this->r_sym_);
2644           Symbol_value<size> symval;
2645           typedef Sized_relobj_file<size, big_endian> ObjType;
2646           typename ObjType::Compute_final_local_value_status status
2647             = this->object_->compute_final_local_value(this->r_sym_, psymval,
2648                                                        &symval, symtab);
2649           if (status != ObjType::CFLV_OK
2650               || !symval.has_output_value())
2651             return;
2652           to = symval.value(this->object_, 0);
2653           if (size == 64)
2654             to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2655         }
2656       to += this->addend_;
2657       if (stub_table == NULL)
2658         stub_table = this->object_->stub_table(this->shndx_);
2659       if (size == 64 && target->abiversion() < 2)
2660         {
2661           unsigned int dest_shndx;
2662           to = target->symval_for_branch(symtab, to, gsym,
2663                                          this->object_, &dest_shndx);
2664         }
2665       Address delta = to - from;
2666       if (delta + max_branch_offset >= 2 * max_branch_offset)
2667         {
2668           if (stub_table == NULL)
2669             {
2670               gold_warning(_("%s:%s: branch in non-executable section,"
2671                              " no long branch stub for you"),
2672                            this->object_->name().c_str(),
2673                            this->object_->section_name(this->shndx_).c_str());
2674               return;
2675             }
2676           stub_table->add_long_branch_entry(this->object_, to);
2677         }
2678     }
2679 }
2680
2681 // Relaxation hook.  This is where we do stub generation.
2682
2683 template<int size, bool big_endian>
2684 bool
2685 Target_powerpc<size, big_endian>::do_relax(int pass,
2686                                            const Input_objects*,
2687                                            Symbol_table* symtab,
2688                                            Layout* layout,
2689                                            const Task* task)
2690 {
2691   unsigned int prev_brlt_size = 0;
2692   if (pass == 1)
2693     {
2694       bool thread_safe
2695         = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2696       if (size == 64
2697           && this->abiversion() < 2
2698           && !thread_safe
2699           && !parameters->options().user_set_plt_thread_safe())
2700         {
2701           static const char* const thread_starter[] =
2702             {
2703               "pthread_create",
2704               /* libstdc++ */
2705               "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2706               /* librt */
2707               "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2708               "mq_notify", "create_timer",
2709               /* libanl */
2710               "getaddrinfo_a",
2711               /* libgomp */
2712               "GOMP_parallel",
2713               "GOMP_parallel_start",
2714               "GOMP_parallel_loop_static",
2715               "GOMP_parallel_loop_static_start",
2716               "GOMP_parallel_loop_dynamic",
2717               "GOMP_parallel_loop_dynamic_start",
2718               "GOMP_parallel_loop_guided",
2719               "GOMP_parallel_loop_guided_start",
2720               "GOMP_parallel_loop_runtime",
2721               "GOMP_parallel_loop_runtime_start",
2722               "GOMP_parallel_sections",
2723               "GOMP_parallel_sections_start",
2724               /* libgo */
2725               "__go_go",
2726             };
2727
2728           if (parameters->options().shared())
2729             thread_safe = true;
2730           else
2731             {
2732               for (unsigned int i = 0;
2733                    i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2734                    i++)
2735                 {
2736                   Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2737                   thread_safe = (sym != NULL
2738                                  && sym->in_reg()
2739                                  && sym->in_real_elf());
2740                   if (thread_safe)
2741                     break;
2742                 }
2743             }
2744         }
2745       this->plt_thread_safe_ = thread_safe;
2746       this->group_sections(layout, task);
2747     }
2748
2749   // We need address of stub tables valid for make_stub.
2750   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2751        p != this->stub_tables_.end();
2752        ++p)
2753     {
2754       const Powerpc_relobj<size, big_endian>* object
2755         = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2756       Address off = object->get_output_section_offset((*p)->shndx());
2757       gold_assert(off != invalid_address);
2758       Output_section* os = (*p)->output_section();
2759       (*p)->set_address_and_size(os, off);
2760     }
2761
2762   if (pass != 1)
2763     {
2764       // Clear plt call stubs, long branch stubs and branch lookup table.
2765       prev_brlt_size = this->branch_lookup_table_.size();
2766       this->branch_lookup_table_.clear();
2767       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2768            p != this->stub_tables_.end();
2769            ++p)
2770         {
2771           (*p)->clear_stubs();
2772         }
2773     }
2774
2775   // Build all the stubs.
2776   Stub_table<size, big_endian>* ifunc_stub_table
2777     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2778   Stub_table<size, big_endian>* one_stub_table
2779     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2780   for (typename Branches::const_iterator b = this->branch_info_.begin();
2781        b != this->branch_info_.end();
2782        b++)
2783     {
2784       b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2785     }
2786
2787   // Did anything change size?
2788   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2789   bool again = num_huge_branches != prev_brlt_size;
2790   if (size == 64 && num_huge_branches != 0)
2791     this->make_brlt_section(layout);
2792   if (size == 64 && again)
2793     this->brlt_section_->set_current_size(num_huge_branches);
2794
2795   typedef Unordered_set<Output_section*> Output_sections;
2796   Output_sections os_need_update;
2797   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2798        p != this->stub_tables_.end();
2799        ++p)
2800     {
2801       if ((*p)->size_update())
2802         {
2803           again = true;
2804           (*p)->add_eh_frame(layout);
2805           os_need_update.insert((*p)->output_section());
2806         }
2807     }
2808
2809   // Set output section offsets for all input sections in an output
2810   // section that just changed size.  Anything past the stubs will
2811   // need updating.
2812   for (typename Output_sections::iterator p = os_need_update.begin();
2813        p != os_need_update.end();
2814        p++)
2815     {
2816       Output_section* os = *p;
2817       Address off = 0;
2818       typedef Output_section::Input_section_list Input_section_list;
2819       for (Input_section_list::const_iterator i = os->input_sections().begin();
2820            i != os->input_sections().end();
2821            ++i)
2822         {
2823           off = align_address(off, i->addralign());
2824           if (i->is_input_section() || i->is_relaxed_input_section())
2825             i->relobj()->set_section_offset(i->shndx(), off);
2826           if (i->is_relaxed_input_section())
2827             {
2828               Stub_table<size, big_endian>* stub_table
2829                 = static_cast<Stub_table<size, big_endian>*>(
2830                     i->relaxed_input_section());
2831               off += stub_table->set_address_and_size(os, off);
2832             }
2833           else
2834             off += i->data_size();
2835         }
2836       // If .branch_lt is part of this output section, then we have
2837       // just done the offset adjustment.
2838       os->clear_section_offsets_need_adjustment();
2839     }
2840
2841   if (size == 64
2842       && !again
2843       && num_huge_branches != 0
2844       && parameters->options().output_is_position_independent())
2845     {
2846       // Fill in the BRLT relocs.
2847       this->brlt_section_->reset_brlt_sizes();
2848       for (typename Branch_lookup_table::const_iterator p
2849              = this->branch_lookup_table_.begin();
2850            p != this->branch_lookup_table_.end();
2851            ++p)
2852         {
2853           this->brlt_section_->add_reloc(p->first, p->second);
2854         }
2855       this->brlt_section_->finalize_brlt_sizes();
2856     }
2857   return again;
2858 }
2859
2860 template<int size, bool big_endian>
2861 void
2862 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2863                                                       unsigned char* oview,
2864                                                       uint64_t* paddress,
2865                                                       off_t* plen) const
2866 {
2867   uint64_t address = plt->address();
2868   off_t len = plt->data_size();
2869
2870   if (plt == this->glink_)
2871     {
2872       // See Output_data_glink::do_write() for glink contents.
2873       if (len == 0)
2874         {
2875           gold_assert(parameters->doing_static_link());
2876           // Static linking may need stubs, to support ifunc and long
2877           // branches.  We need to create an output section for
2878           // .eh_frame early in the link process, to have a place to
2879           // attach stub .eh_frame info.  We also need to have
2880           // registered a CIE that matches the stub CIE.  Both of
2881           // these requirements are satisfied by creating an FDE and
2882           // CIE for .glink, even though static linking will leave
2883           // .glink zero length.
2884           // ??? Hopefully generating an FDE with a zero address range
2885           // won't confuse anything that consumes .eh_frame info.
2886         }
2887       else if (size == 64)
2888         {
2889           // There is one word before __glink_PLTresolve
2890           address += 8;
2891           len -= 8;
2892         }
2893       else if (parameters->options().output_is_position_independent())
2894         {
2895           // There are two FDEs for a position independent glink.
2896           // The first covers the branch table, the second
2897           // __glink_PLTresolve at the end of glink.
2898           off_t resolve_size = this->glink_->pltresolve_size;
2899           if (oview[9] == elfcpp::DW_CFA_nop)
2900             len -= resolve_size;
2901           else
2902             {
2903               address += len - resolve_size;
2904               len = resolve_size;
2905             }
2906         }
2907     }
2908   else
2909     {
2910       // Must be a stub table.
2911       const Stub_table<size, big_endian>* stub_table
2912         = static_cast<const Stub_table<size, big_endian>*>(plt);
2913       uint64_t stub_address = stub_table->stub_address();
2914       len -= stub_address - address;
2915       address = stub_address;
2916     }
2917
2918   *paddress = address;
2919   *plen = len;
2920 }
2921
2922 // A class to handle the PLT data.
2923
2924 template<int size, bool big_endian>
2925 class Output_data_plt_powerpc : public Output_section_data_build
2926 {
2927  public:
2928   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2929                             size, big_endian> Reloc_section;
2930
2931   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2932                           Reloc_section* plt_rel,
2933                           const char* name)
2934     : Output_section_data_build(size == 32 ? 4 : 8),
2935       rel_(plt_rel),
2936       targ_(targ),
2937       name_(name)
2938   { }
2939
2940   // Add an entry to the PLT.
2941   void
2942   add_entry(Symbol*);
2943
2944   void
2945   add_ifunc_entry(Symbol*);
2946
2947   void
2948   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2949
2950   // Return the .rela.plt section data.
2951   Reloc_section*
2952   rel_plt() const
2953   {
2954     return this->rel_;
2955   }
2956
2957   // Return the number of PLT entries.
2958   unsigned int
2959   entry_count() const
2960   {
2961     if (this->current_data_size() == 0)
2962       return 0;
2963     return ((this->current_data_size() - this->first_plt_entry_offset())
2964             / this->plt_entry_size());
2965   }
2966
2967  protected:
2968   void
2969   do_adjust_output_section(Output_section* os)
2970   {
2971     os->set_entsize(0);
2972   }
2973
2974   // Write to a map file.
2975   void
2976   do_print_to_mapfile(Mapfile* mapfile) const
2977   { mapfile->print_output_data(this, this->name_); }
2978
2979  private:
2980   // Return the offset of the first non-reserved PLT entry.
2981   unsigned int
2982   first_plt_entry_offset() const
2983   {
2984     // IPLT has no reserved entry.
2985     if (this->name_[3] == 'I')
2986       return 0;
2987     return this->targ_->first_plt_entry_offset();
2988   }
2989
2990   // Return the size of each PLT entry.
2991   unsigned int
2992   plt_entry_size() const
2993   {
2994     return this->targ_->plt_entry_size();
2995   }
2996
2997   // Write out the PLT data.
2998   void
2999   do_write(Output_file*);
3000
3001   // The reloc section.
3002   Reloc_section* rel_;
3003   // Allows access to .glink for do_write.
3004   Target_powerpc<size, big_endian>* targ_;
3005   // What to report in map file.
3006   const char *name_;
3007 };
3008
3009 // Add an entry to the PLT.
3010
3011 template<int size, bool big_endian>
3012 void
3013 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3014 {
3015   if (!gsym->has_plt_offset())
3016     {
3017       section_size_type off = this->current_data_size();
3018       if (off == 0)
3019         off += this->first_plt_entry_offset();
3020       gsym->set_plt_offset(off);
3021       gsym->set_needs_dynsym_entry();
3022       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3023       this->rel_->add_global(gsym, dynrel, this, off, 0);
3024       off += this->plt_entry_size();
3025       this->set_current_data_size(off);
3026     }
3027 }
3028
3029 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3030
3031 template<int size, bool big_endian>
3032 void
3033 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3034 {
3035   if (!gsym->has_plt_offset())
3036     {
3037       section_size_type off = this->current_data_size();
3038       gsym->set_plt_offset(off);
3039       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3040       if (size == 64 && this->targ_->abiversion() < 2)
3041         dynrel = elfcpp::R_PPC64_JMP_IREL;
3042       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3043       off += this->plt_entry_size();
3044       this->set_current_data_size(off);
3045     }
3046 }
3047
3048 // Add an entry for a local ifunc symbol to the IPLT.
3049
3050 template<int size, bool big_endian>
3051 void
3052 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3053     Sized_relobj_file<size, big_endian>* relobj,
3054     unsigned int local_sym_index)
3055 {
3056   if (!relobj->local_has_plt_offset(local_sym_index))
3057     {
3058       section_size_type off = this->current_data_size();
3059       relobj->set_local_plt_offset(local_sym_index, off);
3060       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3061       if (size == 64 && this->targ_->abiversion() < 2)
3062         dynrel = elfcpp::R_PPC64_JMP_IREL;
3063       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3064                                               this, off, 0);
3065       off += this->plt_entry_size();
3066       this->set_current_data_size(off);
3067     }
3068 }
3069
3070 static const uint32_t add_0_11_11       = 0x7c0b5a14;
3071 static const uint32_t add_2_2_11        = 0x7c425a14;
3072 static const uint32_t add_3_3_2         = 0x7c631214;
3073 static const uint32_t add_3_3_13        = 0x7c636a14;
3074 static const uint32_t add_11_0_11       = 0x7d605a14;
3075 static const uint32_t add_11_2_11       = 0x7d625a14;
3076 static const uint32_t add_11_11_2       = 0x7d6b1214;
3077 static const uint32_t addi_0_12         = 0x380c0000;
3078 static const uint32_t addi_2_2          = 0x38420000;
3079 static const uint32_t addi_3_3          = 0x38630000;
3080 static const uint32_t addi_11_11        = 0x396b0000;
3081 static const uint32_t addi_12_12        = 0x398c0000;
3082 static const uint32_t addis_0_2         = 0x3c020000;
3083 static const uint32_t addis_0_13        = 0x3c0d0000;
3084 static const uint32_t addis_3_2         = 0x3c620000;
3085 static const uint32_t addis_3_13        = 0x3c6d0000;
3086 static const uint32_t addis_11_2        = 0x3d620000;
3087 static const uint32_t addis_11_11       = 0x3d6b0000;
3088 static const uint32_t addis_11_30       = 0x3d7e0000;
3089 static const uint32_t addis_12_2        = 0x3d820000;
3090 static const uint32_t addis_12_12       = 0x3d8c0000;
3091 static const uint32_t b                 = 0x48000000;
3092 static const uint32_t bcl_20_31         = 0x429f0005;
3093 static const uint32_t bctr              = 0x4e800420;
3094 static const uint32_t blr               = 0x4e800020;
3095 static const uint32_t bnectr_p4         = 0x4ce20420;
3096 static const uint32_t cmpldi_2_0        = 0x28220000;
3097 static const uint32_t cror_15_15_15     = 0x4def7b82;
3098 static const uint32_t cror_31_31_31     = 0x4ffffb82;
3099 static const uint32_t ld_0_1            = 0xe8010000;
3100 static const uint32_t ld_0_12           = 0xe80c0000;
3101 static const uint32_t ld_2_1            = 0xe8410000;
3102 static const uint32_t ld_2_2            = 0xe8420000;
3103 static const uint32_t ld_2_11           = 0xe84b0000;
3104 static const uint32_t ld_11_2           = 0xe9620000;
3105 static const uint32_t ld_11_11          = 0xe96b0000;
3106 static const uint32_t ld_12_2           = 0xe9820000;
3107 static const uint32_t ld_12_11          = 0xe98b0000;
3108 static const uint32_t ld_12_12          = 0xe98c0000;
3109 static const uint32_t lfd_0_1           = 0xc8010000;
3110 static const uint32_t li_0_0            = 0x38000000;
3111 static const uint32_t li_12_0           = 0x39800000;
3112 static const uint32_t lis_0_0           = 0x3c000000;
3113 static const uint32_t lis_11            = 0x3d600000;
3114 static const uint32_t lis_12            = 0x3d800000;
3115 static const uint32_t lvx_0_12_0        = 0x7c0c00ce;
3116 static const uint32_t lwz_0_12          = 0x800c0000;
3117 static const uint32_t lwz_11_11         = 0x816b0000;
3118 static const uint32_t lwz_11_30         = 0x817e0000;
3119 static const uint32_t lwz_12_12         = 0x818c0000;
3120 static const uint32_t lwzu_0_12         = 0x840c0000;
3121 static const uint32_t mflr_0            = 0x7c0802a6;
3122 static const uint32_t mflr_11           = 0x7d6802a6;
3123 static const uint32_t mflr_12           = 0x7d8802a6;
3124 static const uint32_t mtctr_0           = 0x7c0903a6;
3125 static const uint32_t mtctr_11          = 0x7d6903a6;
3126 static const uint32_t mtctr_12          = 0x7d8903a6;
3127 static const uint32_t mtlr_0            = 0x7c0803a6;
3128 static const uint32_t mtlr_12           = 0x7d8803a6;
3129 static const uint32_t nop               = 0x60000000;
3130 static const uint32_t ori_0_0_0         = 0x60000000;
3131 static const uint32_t srdi_0_0_2        = 0x7800f082;
3132 static const uint32_t std_0_1           = 0xf8010000;
3133 static const uint32_t std_0_12          = 0xf80c0000;
3134 static const uint32_t std_2_1           = 0xf8410000;
3135 static const uint32_t stfd_0_1          = 0xd8010000;
3136 static const uint32_t stvx_0_12_0       = 0x7c0c01ce;
3137 static const uint32_t sub_11_11_12      = 0x7d6c5850;
3138 static const uint32_t sub_12_12_11      = 0x7d8b6050;
3139 static const uint32_t xor_2_12_12       = 0x7d826278;
3140 static const uint32_t xor_11_12_12      = 0x7d8b6278;
3141
3142 // Write out the PLT.
3143
3144 template<int size, bool big_endian>
3145 void
3146 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3147 {
3148   if (size == 32 && this->name_[3] != 'I')
3149     {
3150       const section_size_type offset = this->offset();
3151       const section_size_type oview_size
3152         = convert_to_section_size_type(this->data_size());
3153       unsigned char* const oview = of->get_output_view(offset, oview_size);
3154       unsigned char* pov = oview;
3155       unsigned char* endpov = oview + oview_size;
3156
3157       // The address of the .glink branch table
3158       const Output_data_glink<size, big_endian>* glink
3159         = this->targ_->glink_section();
3160       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3161
3162       while (pov < endpov)
3163         {
3164           elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3165           pov += 4;
3166           branch_tab += 4;
3167         }
3168
3169       of->write_output_view(offset, oview_size, oview);
3170     }
3171 }
3172
3173 // Create the PLT section.
3174
3175 template<int size, bool big_endian>
3176 void
3177 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3178                                                    Layout* layout)
3179 {
3180   if (this->plt_ == NULL)
3181     {
3182       if (this->got_ == NULL)
3183         this->got_section(symtab, layout);
3184
3185       if (this->glink_ == NULL)
3186         make_glink_section(layout);
3187
3188       // Ensure that .rela.dyn always appears before .rela.plt  This is
3189       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3190       // needs to include .rela.plt in its range.
3191       this->rela_dyn_section(layout);
3192
3193       Reloc_section* plt_rel = new Reloc_section(false);
3194       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3195                                       elfcpp::SHF_ALLOC, plt_rel,
3196                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3197       this->plt_
3198         = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3199                                                         "** PLT");
3200       layout->add_output_section_data(".plt",
3201                                       (size == 32
3202                                        ? elfcpp::SHT_PROGBITS
3203                                        : elfcpp::SHT_NOBITS),
3204                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3205                                       this->plt_,
3206                                       (size == 32
3207                                        ? ORDER_SMALL_DATA
3208                                        : ORDER_SMALL_BSS),
3209                                       false);
3210     }
3211 }
3212
3213 // Create the IPLT section.
3214
3215 template<int size, bool big_endian>
3216 void
3217 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3218                                                     Layout* layout)
3219 {
3220   if (this->iplt_ == NULL)
3221     {
3222       this->make_plt_section(symtab, layout);
3223
3224       Reloc_section* iplt_rel = new Reloc_section(false);
3225       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3226       this->iplt_
3227         = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3228                                                         "** IPLT");
3229       this->plt_->output_section()->add_output_section_data(this->iplt_);
3230     }
3231 }
3232
3233 // A section for huge long branch addresses, similar to plt section.
3234
3235 template<int size, bool big_endian>
3236 class Output_data_brlt_powerpc : public Output_section_data_build
3237 {
3238  public:
3239   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3240   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3241                             size, big_endian> Reloc_section;
3242
3243   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3244                            Reloc_section* brlt_rel)
3245     : Output_section_data_build(size == 32 ? 4 : 8),
3246       rel_(brlt_rel),
3247       targ_(targ)
3248   { }
3249
3250   void
3251   reset_brlt_sizes()
3252   {
3253     this->reset_data_size();
3254     this->rel_->reset_data_size();
3255   }
3256
3257   void
3258   finalize_brlt_sizes()
3259   {
3260     this->finalize_data_size();
3261     this->rel_->finalize_data_size();
3262   }
3263
3264   // Add a reloc for an entry in the BRLT.
3265   void
3266   add_reloc(Address to, unsigned int off)
3267   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3268
3269   // Update section and reloc section size.
3270   void
3271   set_current_size(unsigned int num_branches)
3272   {
3273     this->reset_address_and_file_offset();
3274     this->set_current_data_size(num_branches * 16);
3275     this->finalize_data_size();
3276     Output_section* os = this->output_section();
3277     os->set_section_offsets_need_adjustment();
3278     if (this->rel_ != NULL)
3279       {
3280         unsigned int reloc_size
3281           = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3282         this->rel_->reset_address_and_file_offset();
3283         this->rel_->set_current_data_size(num_branches * reloc_size);
3284         this->rel_->finalize_data_size();
3285         Output_section* os = this->rel_->output_section();
3286         os->set_section_offsets_need_adjustment();
3287       }
3288   }
3289
3290  protected:
3291   void
3292   do_adjust_output_section(Output_section* os)
3293   {
3294     os->set_entsize(0);
3295   }
3296
3297   // Write to a map file.
3298   void
3299   do_print_to_mapfile(Mapfile* mapfile) const
3300   { mapfile->print_output_data(this, "** BRLT"); }
3301
3302  private:
3303   // Write out the BRLT data.
3304   void
3305   do_write(Output_file*);
3306
3307   // The reloc section.
3308   Reloc_section* rel_;
3309   Target_powerpc<size, big_endian>* targ_;
3310 };
3311
3312 // Make the branch lookup table section.
3313
3314 template<int size, bool big_endian>
3315 void
3316 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3317 {
3318   if (size == 64 && this->brlt_section_ == NULL)
3319     {
3320       Reloc_section* brlt_rel = NULL;
3321       bool is_pic = parameters->options().output_is_position_independent();
3322       if (is_pic)
3323         {
3324           // When PIC we can't fill in .branch_lt (like .plt it can be
3325           // a bss style section) but must initialise at runtime via
3326           // dynamic relocats.
3327           this->rela_dyn_section(layout);
3328           brlt_rel = new Reloc_section(false);
3329           this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3330         }
3331       this->brlt_section_
3332         = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3333       if (this->plt_ && is_pic)
3334         this->plt_->output_section()
3335           ->add_output_section_data(this->brlt_section_);
3336       else
3337         layout->add_output_section_data(".branch_lt",
3338                                         (is_pic ? elfcpp::SHT_NOBITS
3339                                          : elfcpp::SHT_PROGBITS),
3340                                         elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3341                                         this->brlt_section_,
3342                                         (is_pic ? ORDER_SMALL_BSS
3343                                          : ORDER_SMALL_DATA),
3344                                         false);
3345     }
3346 }
3347
3348 // Write out .branch_lt when non-PIC.
3349
3350 template<int size, bool big_endian>
3351 void
3352 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3353 {
3354   if (size == 64 && !parameters->options().output_is_position_independent())
3355     {
3356       const section_size_type offset = this->offset();
3357       const section_size_type oview_size
3358         = convert_to_section_size_type(this->data_size());
3359       unsigned char* const oview = of->get_output_view(offset, oview_size);
3360
3361       this->targ_->write_branch_lookup_table(oview);
3362       of->write_output_view(offset, oview_size, oview);
3363     }
3364 }
3365
3366 static inline uint32_t
3367 l(uint32_t a)
3368 {
3369   return a & 0xffff;
3370 }
3371
3372 static inline uint32_t
3373 hi(uint32_t a)
3374 {
3375   return l(a >> 16);
3376 }
3377
3378 static inline uint32_t
3379 ha(uint32_t a)
3380 {
3381   return hi(a + 0x8000);
3382 }
3383
3384 template<int size>
3385 struct Eh_cie
3386 {
3387   static const unsigned char eh_frame_cie[12];
3388 };
3389
3390 template<int size>
3391 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3392 {
3393   1,                                    // CIE version.
3394   'z', 'R', 0,                          // Augmentation string.
3395   4,                                    // Code alignment.
3396   0x80 - size / 8 ,                     // Data alignment.
3397   65,                                   // RA reg.
3398   1,                                    // Augmentation size.
3399   (elfcpp::DW_EH_PE_pcrel
3400    | elfcpp::DW_EH_PE_sdata4),          // FDE encoding.
3401   elfcpp::DW_CFA_def_cfa, 1, 0          // def_cfa: r1 offset 0.
3402 };
3403
3404 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3405 static const unsigned char glink_eh_frame_fde_64v1[] =
3406 {
3407   0, 0, 0, 0,                           // Replaced with offset to .glink.
3408   0, 0, 0, 0,                           // Replaced with size of .glink.
3409   0,                                    // Augmentation size.
3410   elfcpp::DW_CFA_advance_loc + 1,
3411   elfcpp::DW_CFA_register, 65, 12,
3412   elfcpp::DW_CFA_advance_loc + 4,
3413   elfcpp::DW_CFA_restore_extended, 65
3414 };
3415
3416 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3417 static const unsigned char glink_eh_frame_fde_64v2[] =
3418 {
3419   0, 0, 0, 0,                           // Replaced with offset to .glink.
3420   0, 0, 0, 0,                           // Replaced with size of .glink.
3421   0,                                    // Augmentation size.
3422   elfcpp::DW_CFA_advance_loc + 1,
3423   elfcpp::DW_CFA_register, 65, 0,
3424   elfcpp::DW_CFA_advance_loc + 4,
3425   elfcpp::DW_CFA_restore_extended, 65
3426 };
3427
3428 // Describe __glink_PLTresolve use of LR, 32-bit version.
3429 static const unsigned char glink_eh_frame_fde_32[] =
3430 {
3431   0, 0, 0, 0,                           // Replaced with offset to .glink.
3432   0, 0, 0, 0,                           // Replaced with size of .glink.
3433   0,                                    // Augmentation size.
3434   elfcpp::DW_CFA_advance_loc + 2,
3435   elfcpp::DW_CFA_register, 65, 0,
3436   elfcpp::DW_CFA_advance_loc + 4,
3437   elfcpp::DW_CFA_restore_extended, 65
3438 };
3439
3440 static const unsigned char default_fde[] =
3441 {
3442   0, 0, 0, 0,                           // Replaced with offset to stubs.
3443   0, 0, 0, 0,                           // Replaced with size of stubs.
3444   0,                                    // Augmentation size.
3445   elfcpp::DW_CFA_nop,                   // Pad.
3446   elfcpp::DW_CFA_nop,
3447   elfcpp::DW_CFA_nop
3448 };
3449
3450 template<bool big_endian>
3451 static inline void
3452 write_insn(unsigned char* p, uint32_t v)
3453 {
3454   elfcpp::Swap<32, big_endian>::writeval(p, v);
3455 }
3456
3457 // Stub_table holds information about plt and long branch stubs.
3458 // Stubs are built in an area following some input section determined
3459 // by group_sections().  This input section is converted to a relaxed
3460 // input section allowing it to be resized to accommodate the stubs
3461
3462 template<int size, bool big_endian>
3463 class Stub_table : public Output_relaxed_input_section
3464 {
3465  public:
3466   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3467   static const Address invalid_address = static_cast<Address>(0) - 1;
3468
3469   Stub_table(Target_powerpc<size, big_endian>* targ)
3470     : Output_relaxed_input_section(NULL, 0, 0),
3471       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3472       orig_data_size_(0), plt_size_(0), last_plt_size_(0),
3473       branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3474   { }
3475
3476   // Delayed Output_relaxed_input_section init.
3477   void
3478   init(const Output_section::Input_section*, Output_section*);
3479
3480   // Add a plt call stub.
3481   void
3482   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3483                      const Symbol*,
3484                      unsigned int,
3485                      Address);
3486
3487   void
3488   add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3489                      unsigned int,
3490                      unsigned int,
3491                      Address);
3492
3493   // Find a given plt call stub.
3494   Address
3495   find_plt_call_entry(const Symbol*) const;
3496
3497   Address
3498   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3499                       unsigned int) const;
3500
3501   Address
3502   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3503                       const Symbol*,
3504                       unsigned int,
3505                       Address) const;
3506
3507   Address
3508   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3509                       unsigned int,
3510                       unsigned int,
3511                       Address) const;
3512
3513   // Add a long branch stub.
3514   void
3515   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
3516
3517   Address
3518   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3519                          Address) const;
3520
3521   void
3522   clear_stubs()
3523   {
3524     this->plt_call_stubs_.clear();
3525     this->plt_size_ = 0;
3526     this->long_branch_stubs_.clear();
3527     this->branch_size_ = 0;
3528   }
3529
3530   Address
3531   set_address_and_size(const Output_section* os, Address off)
3532   {
3533     Address start_off = off;
3534     off += this->orig_data_size_;
3535     Address my_size = this->plt_size_ + this->branch_size_;
3536     if (my_size != 0)
3537       off = align_address(off, this->stub_align());
3538     // Include original section size and alignment padding in size
3539     my_size += off - start_off;
3540     this->reset_address_and_file_offset();
3541     this->set_current_data_size(my_size);
3542     this->set_address_and_file_offset(os->address() + start_off,
3543                                       os->offset() + start_off);
3544     return my_size;
3545   }
3546
3547   Address
3548   stub_address() const
3549   {
3550     return align_address(this->address() + this->orig_data_size_,
3551                          this->stub_align());
3552   }
3553
3554   Address
3555   stub_offset() const
3556   {
3557     return align_address(this->offset() + this->orig_data_size_,
3558                          this->stub_align());
3559   }
3560
3561   section_size_type
3562   plt_size() const
3563   { return this->plt_size_; }
3564
3565   bool
3566   size_update()
3567   {
3568     Output_section* os = this->output_section();
3569     if (os->addralign() < this->stub_align())
3570       {
3571         os->set_addralign(this->stub_align());
3572         // FIXME: get rid of the insane checkpointing.
3573         // We can't increase alignment of the input section to which
3574         // stubs are attached;  The input section may be .init which
3575         // is pasted together with other .init sections to form a
3576         // function.  Aligning might insert zero padding resulting in
3577         // sigill.  However we do need to increase alignment of the
3578         // output section so that the align_address() on offset in
3579         // set_address_and_size() adds the same padding as the
3580         // align_address() on address in stub_address().
3581         // What's more, we need this alignment for the layout done in
3582         // relaxation_loop_body() so that the output section starts at
3583         // a suitably aligned address.
3584         os->checkpoint_set_addralign(this->stub_align());
3585       }
3586     if (this->last_plt_size_ != this->plt_size_
3587         || this->last_branch_size_ != this->branch_size_)
3588       {
3589         this->last_plt_size_ = this->plt_size_;
3590         this->last_branch_size_ = this->branch_size_;
3591         return true;
3592       }
3593     return false;
3594   }
3595
3596   // Add .eh_frame info for this stub section.  Unlike other linker
3597   // generated .eh_frame this is added late in the link, because we
3598   // only want the .eh_frame info if this particular stub section is
3599   // non-empty.
3600   void
3601   add_eh_frame(Layout* layout)
3602   {
3603     if (!this->eh_frame_added_)
3604       {
3605         if (!parameters->options().ld_generated_unwind_info())
3606           return;
3607
3608         // Since we add stub .eh_frame info late, it must be placed
3609         // after all other linker generated .eh_frame info so that
3610         // merge mapping need not be updated for input sections.
3611         // There is no provision to use a different CIE to that used
3612         // by .glink.
3613         if (!this->targ_->has_glink())
3614           return;
3615
3616         layout->add_eh_frame_for_plt(this,
3617                                      Eh_cie<size>::eh_frame_cie,
3618                                      sizeof (Eh_cie<size>::eh_frame_cie),
3619                                      default_fde,
3620                                      sizeof (default_fde));
3621         this->eh_frame_added_ = true;
3622       }
3623   }
3624
3625   Target_powerpc<size, big_endian>*
3626   targ() const
3627   { return targ_; }
3628
3629  private:
3630   class Plt_stub_ent;
3631   class Plt_stub_ent_hash;
3632   typedef Unordered_map<Plt_stub_ent, unsigned int,
3633                         Plt_stub_ent_hash> Plt_stub_entries;
3634
3635   // Alignment of stub section.
3636   unsigned int
3637   stub_align() const
3638   {
3639     if (size == 32)
3640       return 16;
3641     unsigned int min_align = 32;
3642     unsigned int user_align = 1 << parameters->options().plt_align();
3643     return std::max(user_align, min_align);
3644   }
3645
3646   // Return the plt offset for the given call stub.
3647   Address
3648   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3649   {
3650     const Symbol* gsym = p->first.sym_;
3651     if (gsym != NULL)
3652       {
3653         *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3654                     && gsym->can_use_relative_reloc(false));
3655         return gsym->plt_offset();
3656       }
3657     else
3658       {
3659         *is_iplt = true;
3660         const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3661         unsigned int local_sym_index = p->first.locsym_;
3662         return relobj->local_plt_offset(local_sym_index);
3663       }
3664   }
3665
3666   // Size of a given plt call stub.
3667   unsigned int
3668   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3669   {
3670     if (size == 32)
3671       return 16;
3672
3673     bool is_iplt;
3674     Address plt_addr = this->plt_off(p, &is_iplt);
3675     if (is_iplt)
3676       plt_addr += this->targ_->iplt_section()->address();
3677     else
3678       plt_addr += this->targ_->plt_section()->address();
3679     Address got_addr = this->targ_->got_section()->output_section()->address();
3680     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3681       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3682     got_addr += ppcobj->toc_base_offset();
3683     Address off = plt_addr - got_addr;
3684     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3685     if (this->targ_->abiversion() < 2)
3686       {
3687         bool static_chain = parameters->options().plt_static_chain();
3688         bool thread_safe = this->targ_->plt_thread_safe();
3689         bytes += (4
3690                   + 4 * static_chain
3691                   + 8 * thread_safe
3692                   + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3693       }
3694     unsigned int align = 1 << parameters->options().plt_align();
3695     if (align > 1)
3696       bytes = (bytes + align - 1) & -align;
3697     return bytes;
3698   }
3699
3700   // Return long branch stub size.
3701   unsigned int
3702   branch_stub_size(Address to)
3703   {
3704     Address loc
3705       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3706     if (to - loc + (1 << 25) < 2 << 25)
3707       return 4;
3708     if (size == 64 || !parameters->options().output_is_position_independent())
3709       return 16;
3710     return 32;
3711   }
3712
3713   // Write out stubs.
3714   void
3715   do_write(Output_file*);
3716
3717   // Plt call stub keys.
3718   class Plt_stub_ent
3719   {
3720   public:
3721     Plt_stub_ent(const Symbol* sym)
3722       : sym_(sym), object_(0), addend_(0), locsym_(0)
3723     { }
3724
3725     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3726                  unsigned int locsym_index)
3727       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3728     { }
3729
3730     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3731                  const Symbol* sym,
3732                  unsigned int r_type,
3733                  Address addend)
3734       : sym_(sym), object_(0), addend_(0), locsym_(0)
3735     {
3736       if (size != 32)
3737         this->addend_ = addend;
3738       else if (parameters->options().output_is_position_independent()
3739                && r_type == elfcpp::R_PPC_PLTREL24)
3740         {
3741           this->addend_ = addend;
3742           if (this->addend_ >= 32768)
3743             this->object_ = object;
3744         }
3745     }
3746
3747     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3748                  unsigned int locsym_index,
3749                  unsigned int r_type,
3750                  Address addend)
3751       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3752     {
3753       if (size != 32)
3754         this->addend_ = addend;
3755       else if (parameters->options().output_is_position_independent()
3756                && r_type == elfcpp::R_PPC_PLTREL24)
3757         this->addend_ = addend;
3758     }
3759
3760     bool operator==(const Plt_stub_ent& that) const
3761     {
3762       return (this->sym_ == that.sym_
3763               && this->object_ == that.object_
3764               && this->addend_ == that.addend_
3765               && this->locsym_ == that.locsym_);
3766     }
3767
3768     const Symbol* sym_;
3769     const Sized_relobj_file<size, big_endian>* object_;
3770     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3771     unsigned int locsym_;
3772   };
3773
3774   class Plt_stub_ent_hash
3775   {
3776   public:
3777     size_t operator()(const Plt_stub_ent& ent) const
3778     {
3779       return (reinterpret_cast<uintptr_t>(ent.sym_)
3780               ^ reinterpret_cast<uintptr_t>(ent.object_)
3781               ^ ent.addend_
3782               ^ ent.locsym_);
3783     }
3784   };
3785
3786   // Long branch stub keys.
3787   class Branch_stub_ent
3788   {
3789   public:
3790     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3791       : dest_(to), toc_base_off_(0)
3792     {
3793       if (size == 64)
3794         toc_base_off_ = obj->toc_base_offset();
3795     }
3796
3797     bool operator==(const Branch_stub_ent& that) const
3798     {
3799       return (this->dest_ == that.dest_
3800               && (size == 32
3801                   || this->toc_base_off_ == that.toc_base_off_));
3802     }
3803
3804     Address dest_;
3805     unsigned int toc_base_off_;
3806   };
3807
3808   class Branch_stub_ent_hash
3809   {
3810   public:
3811     size_t operator()(const Branch_stub_ent& ent) const
3812     { return ent.dest_ ^ ent.toc_base_off_; }
3813   };
3814
3815   // In a sane world this would be a global.
3816   Target_powerpc<size, big_endian>* targ_;
3817   // Map sym/object/addend to stub offset.
3818   Plt_stub_entries plt_call_stubs_;
3819   // Map destination address to stub offset.
3820   typedef Unordered_map<Branch_stub_ent, unsigned int,
3821                         Branch_stub_ent_hash> Branch_stub_entries;
3822   Branch_stub_entries long_branch_stubs_;
3823   // size of input section
3824   section_size_type orig_data_size_;
3825   // size of stubs
3826   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3827   // Whether .eh_frame info has been created for this stub section.
3828   bool eh_frame_added_;
3829 };
3830
3831 // Make a new stub table, and record.
3832
3833 template<int size, bool big_endian>
3834 Stub_table<size, big_endian>*
3835 Target_powerpc<size, big_endian>::new_stub_table()
3836 {
3837   Stub_table<size, big_endian>* stub_table
3838     = new Stub_table<size, big_endian>(this);
3839   this->stub_tables_.push_back(stub_table);
3840   return stub_table;
3841 }
3842
3843 // Delayed stub table initialisation, because we create the stub table
3844 // before we know to which section it will be attached.
3845
3846 template<int size, bool big_endian>
3847 void
3848 Stub_table<size, big_endian>::init(
3849     const Output_section::Input_section* owner,
3850     Output_section* output_section)
3851 {
3852   this->set_relobj(owner->relobj());
3853   this->set_shndx(owner->shndx());
3854   this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3855   this->set_output_section(output_section);
3856   this->orig_data_size_ = owner->current_data_size();
3857
3858   std::vector<Output_relaxed_input_section*> new_relaxed;
3859   new_relaxed.push_back(this);
3860   output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3861 }
3862
3863 // Add a plt call stub, if we do not already have one for this
3864 // sym/object/addend combo.
3865
3866 template<int size, bool big_endian>
3867 void
3868 Stub_table<size, big_endian>::add_plt_call_entry(
3869     const Sized_relobj_file<size, big_endian>* object,
3870     const Symbol* gsym,
3871     unsigned int r_type,
3872     Address addend)
3873 {
3874   Plt_stub_ent ent(object, gsym, r_type, addend);
3875   unsigned int off = this->plt_size_;
3876   std::pair<typename Plt_stub_entries::iterator, bool> p
3877     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3878   if (p.second)
3879     this->plt_size_ = off + this->plt_call_size(p.first);
3880 }
3881
3882 template<int size, bool big_endian>
3883 void
3884 Stub_table<size, big_endian>::add_plt_call_entry(
3885     const Sized_relobj_file<size, big_endian>* object,
3886     unsigned int locsym_index,
3887     unsigned int r_type,
3888     Address addend)
3889 {
3890   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3891   unsigned int off = this->plt_size_;
3892   std::pair<typename Plt_stub_entries::iterator, bool> p
3893     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3894   if (p.second)
3895     this->plt_size_ = off + this->plt_call_size(p.first);
3896 }
3897
3898 // Find a plt call stub.
3899
3900 template<int size, bool big_endian>
3901 typename Stub_table<size, big_endian>::Address
3902 Stub_table<size, big_endian>::find_plt_call_entry(
3903     const Sized_relobj_file<size, big_endian>* object,
3904     const Symbol* gsym,
3905     unsigned int r_type,
3906     Address addend) const
3907 {
3908   Plt_stub_ent ent(object, gsym, r_type, addend);
3909   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3910   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3911 }
3912
3913 template<int size, bool big_endian>
3914 typename Stub_table<size, big_endian>::Address
3915 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3916 {
3917   Plt_stub_ent ent(gsym);
3918   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3919   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3920 }
3921
3922 template<int size, bool big_endian>
3923 typename Stub_table<size, big_endian>::Address
3924 Stub_table<size, big_endian>::find_plt_call_entry(
3925     const Sized_relobj_file<size, big_endian>* object,
3926     unsigned int locsym_index,
3927     unsigned int r_type,
3928     Address addend) const
3929 {
3930   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3931   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3932   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3933 }
3934
3935 template<int size, bool big_endian>
3936 typename Stub_table<size, big_endian>::Address
3937 Stub_table<size, big_endian>::find_plt_call_entry(
3938     const Sized_relobj_file<size, big_endian>* object,
3939     unsigned int locsym_index) const
3940 {
3941   Plt_stub_ent ent(object, locsym_index);
3942   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3943   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3944 }
3945
3946 // Add a long branch stub if we don't already have one to given
3947 // destination.
3948
3949 template<int size, bool big_endian>
3950 void
3951 Stub_table<size, big_endian>::add_long_branch_entry(
3952     const Powerpc_relobj<size, big_endian>* object,
3953     Address to)
3954 {
3955   Branch_stub_ent ent(object, to);
3956   Address off = this->branch_size_;
3957   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3958     {
3959       unsigned int stub_size = this->branch_stub_size(to);
3960       this->branch_size_ = off + stub_size;
3961       if (size == 64 && stub_size != 4)
3962         this->targ_->add_branch_lookup_table(to);
3963     }
3964 }
3965
3966 // Find long branch stub.
3967
3968 template<int size, bool big_endian>
3969 typename Stub_table<size, big_endian>::Address
3970 Stub_table<size, big_endian>::find_long_branch_entry(
3971     const Powerpc_relobj<size, big_endian>* object,
3972     Address to) const
3973 {
3974   Branch_stub_ent ent(object, to);
3975   typename Branch_stub_entries::const_iterator p
3976     = this->long_branch_stubs_.find(ent);
3977   return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3978 }
3979
3980 // A class to handle .glink.
3981
3982 template<int size, bool big_endian>
3983 class Output_data_glink : public Output_section_data
3984 {
3985  public:
3986   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3987   static const Address invalid_address = static_cast<Address>(0) - 1;
3988   static const int pltresolve_size = 16*4;
3989
3990   Output_data_glink(Target_powerpc<size, big_endian>* targ)
3991     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
3992       end_branch_table_(), ge_size_(0)
3993   { }
3994
3995   void
3996   add_eh_frame(Layout* layout);
3997
3998   void
3999   add_global_entry(const Symbol*);
4000
4001   Address
4002   find_global_entry(const Symbol*) const;
4003
4004   Address
4005   global_entry_address() const
4006   {
4007     gold_assert(this->is_data_size_valid());
4008     unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4009     return this->address() + global_entry_off;
4010   }
4011
4012  protected:
4013   // Write to a map file.
4014   void
4015   do_print_to_mapfile(Mapfile* mapfile) const
4016   { mapfile->print_output_data(this, _("** glink")); }
4017
4018  private:
4019   void
4020   set_final_data_size();
4021
4022   // Write out .glink
4023   void
4024   do_write(Output_file*);
4025
4026   // Allows access to .got and .plt for do_write.
4027   Target_powerpc<size, big_endian>* targ_;
4028
4029   // Map sym to stub offset.
4030   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4031   Global_entry_stub_entries global_entry_stubs_;
4032
4033   unsigned int end_branch_table_, ge_size_;
4034 };
4035
4036 template<int size, bool big_endian>
4037 void
4038 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4039 {
4040   if (!parameters->options().ld_generated_unwind_info())
4041     return;
4042
4043   if (size == 64)
4044     {
4045       if (this->targ_->abiversion() < 2)
4046         layout->add_eh_frame_for_plt(this,
4047                                      Eh_cie<64>::eh_frame_cie,
4048                                      sizeof (Eh_cie<64>::eh_frame_cie),
4049                                      glink_eh_frame_fde_64v1,
4050                                      sizeof (glink_eh_frame_fde_64v1));
4051       else
4052         layout->add_eh_frame_for_plt(this,
4053                                      Eh_cie<64>::eh_frame_cie,
4054                                      sizeof (Eh_cie<64>::eh_frame_cie),
4055                                      glink_eh_frame_fde_64v2,
4056                                      sizeof (glink_eh_frame_fde_64v2));
4057     }
4058   else
4059     {
4060       // 32-bit .glink can use the default since the CIE return
4061       // address reg, LR, is valid.
4062       layout->add_eh_frame_for_plt(this,
4063                                    Eh_cie<32>::eh_frame_cie,
4064                                    sizeof (Eh_cie<32>::eh_frame_cie),
4065                                    default_fde,
4066                                    sizeof (default_fde));
4067       // Except where LR is used in a PIC __glink_PLTresolve.
4068       if (parameters->options().output_is_position_independent())
4069         layout->add_eh_frame_for_plt(this,
4070                                      Eh_cie<32>::eh_frame_cie,
4071                                      sizeof (Eh_cie<32>::eh_frame_cie),
4072                                      glink_eh_frame_fde_32,
4073                                      sizeof (glink_eh_frame_fde_32));
4074     }
4075 }
4076
4077 template<int size, bool big_endian>
4078 void
4079 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4080 {
4081   std::pair<typename Global_entry_stub_entries::iterator, bool> p
4082     = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4083   if (p.second)
4084     this->ge_size_ += 16;
4085 }
4086
4087 template<int size, bool big_endian>
4088 typename Output_data_glink<size, big_endian>::Address
4089 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4090 {
4091   typename Global_entry_stub_entries::const_iterator p
4092     = this->global_entry_stubs_.find(gsym);
4093   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4094 }
4095
4096 template<int size, bool big_endian>
4097 void
4098 Output_data_glink<size, big_endian>::set_final_data_size()
4099 {
4100   unsigned int count = this->targ_->plt_entry_count();
4101   section_size_type total = 0;
4102
4103   if (count != 0)
4104     {
4105       if (size == 32)
4106         {
4107           // space for branch table
4108           total += 4 * (count - 1);
4109
4110           total += -total & 15;
4111           total += this->pltresolve_size;
4112         }
4113       else
4114         {
4115           total += this->pltresolve_size;
4116
4117           // space for branch table
4118           total += 4 * count;
4119           if (this->targ_->abiversion() < 2)
4120             {
4121               total += 4 * count;
4122               if (count > 0x8000)
4123                 total += 4 * (count - 0x8000);
4124             }
4125         }
4126     }
4127   this->end_branch_table_ = total;
4128   total = (total + 15) & -16;
4129   total += this->ge_size_;
4130
4131   this->set_data_size(total);
4132 }
4133
4134 // Write out plt and long branch stub code.
4135
4136 template<int size, bool big_endian>
4137 void
4138 Stub_table<size, big_endian>::do_write(Output_file* of)
4139 {
4140   if (this->plt_call_stubs_.empty()
4141       && this->long_branch_stubs_.empty())
4142     return;
4143
4144   const section_size_type start_off = this->offset();
4145   const section_size_type off = this->stub_offset();
4146   const section_size_type oview_size =
4147     convert_to_section_size_type(this->data_size() - (off - start_off));
4148   unsigned char* const oview = of->get_output_view(off, oview_size);
4149   unsigned char* p;
4150
4151   if (size == 64)
4152     {
4153       const Output_data_got_powerpc<size, big_endian>* got
4154         = this->targ_->got_section();
4155       Address got_os_addr = got->output_section()->address();
4156
4157       if (!this->plt_call_stubs_.empty())
4158         {
4159           // The base address of the .plt section.
4160           Address plt_base = this->targ_->plt_section()->address();
4161           Address iplt_base = invalid_address;
4162
4163           // Write out plt call stubs.
4164           typename Plt_stub_entries::const_iterator cs;
4165           for (cs = this->plt_call_stubs_.begin();
4166                cs != this->plt_call_stubs_.end();
4167                ++cs)
4168             {
4169               bool is_iplt;
4170               Address pltoff = this->plt_off(cs, &is_iplt);
4171               Address plt_addr = pltoff;
4172               if (is_iplt)
4173                 {
4174                   if (iplt_base == invalid_address)
4175                     iplt_base = this->targ_->iplt_section()->address();
4176                   plt_addr += iplt_base;
4177                 }
4178               else
4179                 plt_addr += plt_base;
4180               const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4181                 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4182               Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4183               Address off = plt_addr - got_addr;
4184
4185               if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4186                 gold_error(_("%s: linkage table error against `%s'"),
4187                            cs->first.object_->name().c_str(),
4188                            cs->first.sym_->demangled_name().c_str());
4189
4190               bool plt_load_toc = this->targ_->abiversion() < 2;
4191               bool static_chain
4192                 = plt_load_toc && parameters->options().plt_static_chain();
4193               bool thread_safe
4194                 = plt_load_toc && this->targ_->plt_thread_safe();
4195               bool use_fake_dep = false;
4196               Address cmp_branch_off = 0;
4197               if (thread_safe)
4198                 {
4199                   unsigned int pltindex
4200                     = ((pltoff - this->targ_->first_plt_entry_offset())
4201                        / this->targ_->plt_entry_size());
4202                   Address glinkoff
4203                     = (this->targ_->glink_section()->pltresolve_size
4204                        + pltindex * 8);
4205                   if (pltindex > 32768)
4206                     glinkoff += (pltindex - 32768) * 4;
4207                   Address to
4208                     = this->targ_->glink_section()->address() + glinkoff;
4209                   Address from
4210                     = (this->stub_address() + cs->second + 24
4211                        + 4 * (ha(off) != 0)
4212                        + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4213                        + 4 * static_chain);
4214                   cmp_branch_off = to - from;
4215                   use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4216                 }
4217
4218               p = oview + cs->second;
4219               if (ha(off) != 0)
4220                 {
4221                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4222                   p += 4;
4223                   if (plt_load_toc)
4224                     {
4225                       write_insn<big_endian>(p, addis_11_2 + ha(off));
4226                       p += 4;
4227                       write_insn<big_endian>(p, ld_12_11 + l(off));
4228                       p += 4;
4229                     }
4230                   else
4231                     {
4232                       write_insn<big_endian>(p, addis_12_2 + ha(off));
4233                       p += 4;
4234                       write_insn<big_endian>(p, ld_12_12 + l(off));
4235                       p += 4;
4236                     }
4237                   if (plt_load_toc
4238                       && ha(off + 8 + 8 * static_chain) != ha(off))
4239                     {
4240                       write_insn<big_endian>(p, addi_11_11 + l(off));
4241                       p += 4;
4242                       off = 0;
4243                     }
4244                   write_insn<big_endian>(p, mtctr_12);
4245                   p += 4;
4246                   if (plt_load_toc)
4247                     {
4248                       if (use_fake_dep)
4249                         {
4250                           write_insn<big_endian>(p, xor_2_12_12);
4251                           p += 4;
4252                           write_insn<big_endian>(p, add_11_11_2);
4253                           p += 4;
4254                         }
4255                       write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4256                       p += 4;
4257                       if (static_chain)
4258                         {
4259                           write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4260                           p += 4;
4261                         }
4262                     }
4263                 }
4264               else
4265                 {
4266                   write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4267                   p += 4;
4268                   write_insn<big_endian>(p, ld_12_2 + l(off));
4269                   p += 4;
4270                   if (plt_load_toc
4271                       && ha(off + 8 + 8 * static_chain) != ha(off))
4272                     {
4273                       write_insn<big_endian>(p, addi_2_2 + l(off));
4274                       p += 4;
4275                       off = 0;
4276                     }
4277                   write_insn<big_endian>(p, mtctr_12);
4278                   p += 4;
4279                   if (plt_load_toc)
4280                     {
4281                       if (use_fake_dep)
4282                         {
4283                           write_insn<big_endian>(p, xor_11_12_12);
4284                           p += 4;
4285                           write_insn<big_endian>(p, add_2_2_11);
4286                           p += 4;
4287                         }
4288                       if (static_chain)
4289                         {
4290                           write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4291                           p += 4;
4292                         }
4293                       write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4294                       p += 4;
4295                     }
4296                 }
4297               if (thread_safe && !use_fake_dep)
4298                 {
4299                   write_insn<big_endian>(p, cmpldi_2_0);
4300                   p += 4;
4301                   write_insn<big_endian>(p, bnectr_p4);
4302                   p += 4;
4303                   write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4304                 }
4305               else
4306                 write_insn<big_endian>(p, bctr);
4307             }
4308         }
4309
4310       // Write out long branch stubs.
4311       typename Branch_stub_entries::const_iterator bs;
4312       for (bs = this->long_branch_stubs_.begin();
4313            bs != this->long_branch_stubs_.end();
4314            ++bs)
4315         {
4316           p = oview + this->plt_size_ + bs->second;
4317           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4318           Address delta = bs->first.dest_ - loc;
4319           if (delta + (1 << 25) < 2 << 25)
4320             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4321           else
4322             {
4323               Address brlt_addr
4324                 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4325               gold_assert(brlt_addr != invalid_address);
4326               brlt_addr += this->targ_->brlt_section()->address();
4327               Address got_addr = got_os_addr + bs->first.toc_base_off_;
4328               Address brltoff = brlt_addr - got_addr;
4329               if (ha(brltoff) == 0)
4330                 {
4331                   write_insn<big_endian>(p, ld_12_2 + l(brltoff)),      p += 4;
4332                 }
4333               else
4334                 {
4335                   write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),  p += 4;
4336                   write_insn<big_endian>(p, ld_12_12 + l(brltoff)),     p += 4;
4337                 }
4338               write_insn<big_endian>(p, mtctr_12),                      p += 4;
4339               write_insn<big_endian>(p, bctr);
4340             }
4341         }
4342     }
4343   else
4344     {
4345       if (!this->plt_call_stubs_.empty())
4346         {
4347           // The base address of the .plt section.
4348           Address plt_base = this->targ_->plt_section()->address();
4349           Address iplt_base = invalid_address;
4350           // The address of _GLOBAL_OFFSET_TABLE_.
4351           Address g_o_t = invalid_address;
4352
4353           // Write out plt call stubs.
4354           typename Plt_stub_entries::const_iterator cs;
4355           for (cs = this->plt_call_stubs_.begin();
4356                cs != this->plt_call_stubs_.end();
4357                ++cs)
4358             {
4359               bool is_iplt;
4360               Address plt_addr = this->plt_off(cs, &is_iplt);
4361               if (is_iplt)
4362                 {
4363                   if (iplt_base == invalid_address)
4364                     iplt_base = this->targ_->iplt_section()->address();
4365                   plt_addr += iplt_base;
4366                 }
4367               else
4368                 plt_addr += plt_base;
4369
4370               p = oview + cs->second;
4371               if (parameters->options().output_is_position_independent())
4372                 {
4373                   Address got_addr;
4374                   const Powerpc_relobj<size, big_endian>* ppcobj
4375                     = (static_cast<const Powerpc_relobj<size, big_endian>*>
4376                        (cs->first.object_));
4377                   if (ppcobj != NULL && cs->first.addend_ >= 32768)
4378                     {
4379                       unsigned int got2 = ppcobj->got2_shndx();
4380                       got_addr = ppcobj->get_output_section_offset(got2);
4381                       gold_assert(got_addr != invalid_address);
4382                       got_addr += (ppcobj->output_section(got2)->address()
4383                                    + cs->first.addend_);
4384                     }
4385                   else
4386                     {
4387                       if (g_o_t == invalid_address)
4388                         {
4389                           const Output_data_got_powerpc<size, big_endian>* got
4390                             = this->targ_->got_section();
4391                           g_o_t = got->address() + got->g_o_t();
4392                         }
4393                       got_addr = g_o_t;
4394                     }
4395
4396                   Address off = plt_addr - got_addr;
4397                   if (ha(off) == 0)
4398                     {
4399                       write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4400                       write_insn<big_endian>(p +  4, mtctr_11);
4401                       write_insn<big_endian>(p +  8, bctr);
4402                     }
4403                   else
4404                     {
4405                       write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4406                       write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4407                       write_insn<big_endian>(p +  8, mtctr_11);
4408                       write_insn<big_endian>(p + 12, bctr);
4409                     }
4410                 }
4411               else
4412                 {
4413                   write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4414                   write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4415                   write_insn<big_endian>(p +  8, mtctr_11);
4416                   write_insn<big_endian>(p + 12, bctr);
4417                 }
4418             }
4419         }
4420
4421       // Write out long branch stubs.
4422       typename Branch_stub_entries::const_iterator bs;
4423       for (bs = this->long_branch_stubs_.begin();
4424            bs != this->long_branch_stubs_.end();
4425            ++bs)
4426         {
4427           p = oview + this->plt_size_ + bs->second;
4428           Address loc = this->stub_address() + this->plt_size_ + bs->second;
4429           Address delta = bs->first.dest_ - loc;
4430           if (delta + (1 << 25) < 2 << 25)
4431             write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4432           else if (!parameters->options().output_is_position_independent())
4433             {
4434               write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4435               write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4436               write_insn<big_endian>(p +  8, mtctr_12);
4437               write_insn<big_endian>(p + 12, bctr);
4438             }
4439           else
4440             {
4441               delta -= 8;
4442               write_insn<big_endian>(p +  0, mflr_0);
4443               write_insn<big_endian>(p +  4, bcl_20_31);
4444               write_insn<big_endian>(p +  8, mflr_12);
4445               write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4446               write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4447               write_insn<big_endian>(p + 20, mtlr_0);
4448               write_insn<big_endian>(p + 24, mtctr_12);
4449               write_insn<big_endian>(p + 28, bctr);
4450             }
4451         }
4452     }
4453 }
4454
4455 // Write out .glink.
4456
4457 template<int size, bool big_endian>
4458 void
4459 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4460 {
4461   const section_size_type off = this->offset();
4462   const section_size_type oview_size =
4463     convert_to_section_size_type(this->data_size());
4464   unsigned char* const oview = of->get_output_view(off, oview_size);
4465   unsigned char* p;
4466
4467   // The base address of the .plt section.
4468   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4469   Address plt_base = this->targ_->plt_section()->address();
4470
4471   if (size == 64)
4472     {
4473       if (this->end_branch_table_ != 0)
4474         {
4475           // Write pltresolve stub.
4476           p = oview;
4477           Address after_bcl = this->address() + 16;
4478           Address pltoff = plt_base - after_bcl;
4479
4480           elfcpp::Swap<64, big_endian>::writeval(p, pltoff),    p += 8;
4481
4482           if (this->targ_->abiversion() < 2)
4483             {
4484               write_insn<big_endian>(p, mflr_12),               p += 4;
4485               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4486               write_insn<big_endian>(p, mflr_11),               p += 4;
4487               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4488               write_insn<big_endian>(p, mtlr_12),               p += 4;
4489               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4490               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4491               write_insn<big_endian>(p, ld_2_11 + 8),           p += 4;
4492               write_insn<big_endian>(p, mtctr_12),              p += 4;
4493               write_insn<big_endian>(p, ld_11_11 + 16),         p += 4;
4494             }
4495           else
4496             {
4497               write_insn<big_endian>(p, mflr_0),                p += 4;
4498               write_insn<big_endian>(p, bcl_20_31),             p += 4;
4499               write_insn<big_endian>(p, mflr_11),               p += 4;
4500               write_insn<big_endian>(p, ld_2_11 + l(-16)),      p += 4;
4501               write_insn<big_endian>(p, mtlr_0),                p += 4;
4502               write_insn<big_endian>(p, sub_12_12_11),          p += 4;
4503               write_insn<big_endian>(p, add_11_2_11),           p += 4;
4504               write_insn<big_endian>(p, addi_0_12 + l(-48)),    p += 4;
4505               write_insn<big_endian>(p, ld_12_11 + 0),          p += 4;
4506               write_insn<big_endian>(p, srdi_0_0_2),            p += 4;
4507               write_insn<big_endian>(p, mtctr_12),              p += 4;
4508               write_insn<big_endian>(p, ld_11_11 + 8),          p += 4;
4509             }
4510           write_insn<big_endian>(p, bctr),                      p += 4;
4511           while (p < oview + this->pltresolve_size)
4512             write_insn<big_endian>(p, nop), p += 4;
4513
4514           // Write lazy link call stubs.
4515           uint32_t indx = 0;
4516           while (p < oview + this->end_branch_table_)
4517             {
4518               if (this->targ_->abiversion() < 2)
4519                 {
4520                   if (indx < 0x8000)
4521                     {
4522                       write_insn<big_endian>(p, li_0_0 + indx),         p += 4;
4523                     }
4524                   else
4525                     {
4526                       write_insn<big_endian>(p, lis_0_0 + hi(indx)),    p += 4;
4527                       write_insn<big_endian>(p, ori_0_0_0 + l(indx)),   p += 4;
4528                     }
4529                 }
4530               uint32_t branch_off = 8 - (p - oview);
4531               write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),  p += 4;
4532               indx++;
4533             }
4534         }
4535
4536       Address plt_base = this->targ_->plt_section()->address();
4537       Address iplt_base = invalid_address;
4538       unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4539       Address global_entry_base = this->address() + global_entry_off;
4540       typename Global_entry_stub_entries::const_iterator ge;
4541       for (ge = this->global_entry_stubs_.begin();
4542            ge != this->global_entry_stubs_.end();
4543            ++ge)
4544         {
4545           p = oview + global_entry_off + ge->second;
4546           Address plt_addr = ge->first->plt_offset();
4547           if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4548               && ge->first->can_use_relative_reloc(false))
4549             {
4550               if (iplt_base == invalid_address)
4551                 iplt_base = this->targ_->iplt_section()->address();
4552               plt_addr += iplt_base;
4553             }
4554           else
4555             plt_addr += plt_base;
4556           Address my_addr = global_entry_base + ge->second;
4557           Address off = plt_addr - my_addr;
4558
4559           if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4560             gold_error(_("%s: linkage table error against `%s'"),
4561                        ge->first->object()->name().c_str(),
4562                        ge->first->demangled_name().c_str());
4563
4564           write_insn<big_endian>(p, addis_12_12 + ha(off)),     p += 4;
4565           write_insn<big_endian>(p, ld_12_12 + l(off)),         p += 4;
4566           write_insn<big_endian>(p, mtctr_12),                  p += 4;
4567           write_insn<big_endian>(p, bctr);
4568         }
4569     }
4570   else
4571     {
4572       const Output_data_got_powerpc<size, big_endian>* got
4573         = this->targ_->got_section();
4574       // The address of _GLOBAL_OFFSET_TABLE_.
4575       Address g_o_t = got->address() + got->g_o_t();
4576
4577       // Write out pltresolve branch table.
4578       p = oview;
4579       unsigned int the_end = oview_size - this->pltresolve_size;
4580       unsigned char* end_p = oview + the_end;
4581       while (p < end_p - 8 * 4)
4582         write_insn<big_endian>(p, b + end_p - p), p += 4;
4583       while (p < end_p)
4584         write_insn<big_endian>(p, nop), p += 4;
4585
4586       // Write out pltresolve call stub.
4587       if (parameters->options().output_is_position_independent())
4588         {
4589           Address res0_off = 0;
4590           Address after_bcl_off = the_end + 12;
4591           Address bcl_res0 = after_bcl_off - res0_off;
4592
4593           write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4594           write_insn<big_endian>(p +  4, mflr_0);
4595           write_insn<big_endian>(p +  8, bcl_20_31);
4596           write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4597           write_insn<big_endian>(p + 16, mflr_12);
4598           write_insn<big_endian>(p + 20, mtlr_0);
4599           write_insn<big_endian>(p + 24, sub_11_11_12);
4600
4601           Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4602
4603           write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4604           if (ha(got_bcl) == ha(got_bcl + 4))
4605             {
4606               write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4607               write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4608             }
4609           else
4610             {
4611               write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4612               write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4613             }
4614           write_insn<big_endian>(p + 40, mtctr_0);
4615           write_insn<big_endian>(p + 44, add_0_11_11);
4616           write_insn<big_endian>(p + 48, add_11_0_11);
4617           write_insn<big_endian>(p + 52, bctr);
4618           write_insn<big_endian>(p + 56, nop);
4619           write_insn<big_endian>(p + 60, nop);
4620         }
4621       else
4622         {
4623           Address res0 = this->address();
4624
4625           write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4626           write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4627           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4628             write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4629           else
4630             write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4631           write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4632           write_insn<big_endian>(p + 16, mtctr_0);
4633           write_insn<big_endian>(p + 20, add_0_11_11);
4634           if (ha(g_o_t + 4) == ha(g_o_t + 8))
4635             write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4636           else
4637             write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4638           write_insn<big_endian>(p + 28, add_11_0_11);
4639           write_insn<big_endian>(p + 32, bctr);
4640           write_insn<big_endian>(p + 36, nop);
4641           write_insn<big_endian>(p + 40, nop);
4642           write_insn<big_endian>(p + 44, nop);
4643           write_insn<big_endian>(p + 48, nop);
4644           write_insn<big_endian>(p + 52, nop);
4645           write_insn<big_endian>(p + 56, nop);
4646           write_insn<big_endian>(p + 60, nop);
4647         }
4648       p += 64;
4649     }
4650
4651   of->write_output_view(off, oview_size, oview);
4652 }
4653
4654
4655 // A class to handle linker generated save/restore functions.
4656
4657 template<int size, bool big_endian>
4658 class Output_data_save_res : public Output_section_data_build
4659 {
4660  public:
4661   Output_data_save_res(Symbol_table* symtab);
4662
4663  protected:
4664   // Write to a map file.
4665   void
4666   do_print_to_mapfile(Mapfile* mapfile) const
4667   { mapfile->print_output_data(this, _("** save/restore")); }
4668
4669   void
4670   do_write(Output_file*);
4671
4672  private:
4673   // The maximum size of save/restore contents.
4674   static const unsigned int savres_max = 218*4;
4675
4676   void
4677   savres_define(Symbol_table* symtab,
4678                 const char *name,
4679                 unsigned int lo, unsigned int hi,
4680                 unsigned char* write_ent(unsigned char*, int),
4681                 unsigned char* write_tail(unsigned char*, int));
4682
4683   unsigned char *contents_;
4684 };
4685
4686 template<bool big_endian>
4687 static unsigned char*
4688 savegpr0(unsigned char* p, int r)
4689 {
4690   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4691   write_insn<big_endian>(p, insn);
4692   return p + 4;
4693 }
4694
4695 template<bool big_endian>
4696 static unsigned char*
4697 savegpr0_tail(unsigned char* p, int r)
4698 {
4699   p = savegpr0<big_endian>(p, r);
4700   uint32_t insn = std_0_1 + 16;
4701   write_insn<big_endian>(p, insn);
4702   p = p + 4;
4703   write_insn<big_endian>(p, blr);
4704   return p + 4;
4705 }
4706
4707 template<bool big_endian>
4708 static unsigned char*
4709 restgpr0(unsigned char* p, int r)
4710 {
4711   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4712   write_insn<big_endian>(p, insn);
4713   return p + 4;
4714 }
4715
4716 template<bool big_endian>
4717 static unsigned char*
4718 restgpr0_tail(unsigned char* p, int r)
4719 {
4720   uint32_t insn = ld_0_1 + 16;
4721   write_insn<big_endian>(p, insn);
4722   p = p + 4;
4723   p = restgpr0<big_endian>(p, r);
4724   write_insn<big_endian>(p, mtlr_0);
4725   p = p + 4;
4726   if (r == 29)
4727     {
4728       p = restgpr0<big_endian>(p, 30);
4729       p = restgpr0<big_endian>(p, 31);
4730     }
4731   write_insn<big_endian>(p, blr);
4732   return p + 4;
4733 }
4734
4735 template<bool big_endian>
4736 static unsigned char*
4737 savegpr1(unsigned char* p, int r)
4738 {
4739   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4740   write_insn<big_endian>(p, insn);
4741   return p + 4;
4742 }
4743
4744 template<bool big_endian>
4745 static unsigned char*
4746 savegpr1_tail(unsigned char* p, int r)
4747 {
4748   p = savegpr1<big_endian>(p, r);
4749   write_insn<big_endian>(p, blr);
4750   return p + 4;
4751 }
4752
4753 template<bool big_endian>
4754 static unsigned char*
4755 restgpr1(unsigned char* p, int r)
4756 {
4757   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4758   write_insn<big_endian>(p, insn);
4759   return p + 4;
4760 }
4761
4762 template<bool big_endian>
4763 static unsigned char*
4764 restgpr1_tail(unsigned char* p, int r)
4765 {
4766   p = restgpr1<big_endian>(p, r);
4767   write_insn<big_endian>(p, blr);
4768   return p + 4;
4769 }
4770
4771 template<bool big_endian>
4772 static unsigned char*
4773 savefpr(unsigned char* p, int r)
4774 {
4775   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4776   write_insn<big_endian>(p, insn);
4777   return p + 4;
4778 }
4779
4780 template<bool big_endian>
4781 static unsigned char*
4782 savefpr0_tail(unsigned char* p, int r)
4783 {
4784   p = savefpr<big_endian>(p, r);
4785   write_insn<big_endian>(p, std_0_1 + 16);
4786   p = p + 4;
4787   write_insn<big_endian>(p, blr);
4788   return p + 4;
4789 }
4790
4791 template<bool big_endian>
4792 static unsigned char*
4793 restfpr(unsigned char* p, int r)
4794 {
4795   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4796   write_insn<big_endian>(p, insn);
4797   return p + 4;
4798 }
4799
4800 template<bool big_endian>
4801 static unsigned char*
4802 restfpr0_tail(unsigned char* p, int r)
4803 {
4804   write_insn<big_endian>(p, ld_0_1 + 16);
4805   p = p + 4;
4806   p = restfpr<big_endian>(p, r);
4807   write_insn<big_endian>(p, mtlr_0);
4808   p = p + 4;
4809   if (r == 29)
4810     {
4811       p = restfpr<big_endian>(p, 30);
4812       p = restfpr<big_endian>(p, 31);
4813     }
4814   write_insn<big_endian>(p, blr);
4815   return p + 4;
4816 }
4817
4818 template<bool big_endian>
4819 static unsigned char*
4820 savefpr1_tail(unsigned char* p, int r)
4821 {
4822   p = savefpr<big_endian>(p, r);
4823   write_insn<big_endian>(p, blr);
4824   return p + 4;
4825 }
4826
4827 template<bool big_endian>
4828 static unsigned char*
4829 restfpr1_tail(unsigned char* p, int r)
4830 {
4831   p = restfpr<big_endian>(p, r);
4832   write_insn<big_endian>(p, blr);
4833   return p + 4;
4834 }
4835
4836 template<bool big_endian>
4837 static unsigned char*
4838 savevr(unsigned char* p, int r)
4839 {
4840   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4841   write_insn<big_endian>(p, insn);
4842   p = p + 4;
4843   insn = stvx_0_12_0 + (r << 21);
4844   write_insn<big_endian>(p, insn);
4845   return p + 4;
4846 }
4847
4848 template<bool big_endian>
4849 static unsigned char*
4850 savevr_tail(unsigned char* p, int r)
4851 {
4852   p = savevr<big_endian>(p, r);
4853   write_insn<big_endian>(p, blr);
4854   return p + 4;
4855 }
4856
4857 template<bool big_endian>
4858 static unsigned char*
4859 restvr(unsigned char* p, int r)
4860 {
4861   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4862   write_insn<big_endian>(p, insn);
4863   p = p + 4;
4864   insn = lvx_0_12_0 + (r << 21);
4865   write_insn<big_endian>(p, insn);
4866   return p + 4;
4867 }
4868
4869 template<bool big_endian>
4870 static unsigned char*
4871 restvr_tail(unsigned char* p, int r)
4872 {
4873   p = restvr<big_endian>(p, r);
4874   write_insn<big_endian>(p, blr);
4875   return p + 4;
4876 }
4877
4878
4879 template<int size, bool big_endian>
4880 Output_data_save_res<size, big_endian>::Output_data_save_res(
4881     Symbol_table* symtab)
4882   : Output_section_data_build(4),
4883     contents_(NULL)
4884 {
4885   this->savres_define(symtab,
4886                       "_savegpr0_", 14, 31,
4887                       savegpr0<big_endian>, savegpr0_tail<big_endian>);
4888   this->savres_define(symtab,
4889                       "_restgpr0_", 14, 29,
4890                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4891   this->savres_define(symtab,
4892                       "_restgpr0_", 30, 31,
4893                       restgpr0<big_endian>, restgpr0_tail<big_endian>);
4894   this->savres_define(symtab,
4895                       "_savegpr1_", 14, 31,
4896                       savegpr1<big_endian>, savegpr1_tail<big_endian>);
4897   this->savres_define(symtab,
4898                       "_restgpr1_", 14, 31,
4899                       restgpr1<big_endian>, restgpr1_tail<big_endian>);
4900   this->savres_define(symtab,
4901                       "_savefpr_", 14, 31,
4902                       savefpr<big_endian>, savefpr0_tail<big_endian>);
4903   this->savres_define(symtab,
4904                       "_restfpr_", 14, 29,
4905                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4906   this->savres_define(symtab,
4907                       "_restfpr_", 30, 31,
4908                       restfpr<big_endian>, restfpr0_tail<big_endian>);
4909   this->savres_define(symtab,
4910                       "._savef", 14, 31,
4911                       savefpr<big_endian>, savefpr1_tail<big_endian>);
4912   this->savres_define(symtab,
4913                       "._restf", 14, 31,
4914                       restfpr<big_endian>, restfpr1_tail<big_endian>);
4915   this->savres_define(symtab,
4916                       "_savevr_", 20, 31,
4917                       savevr<big_endian>, savevr_tail<big_endian>);
4918   this->savres_define(symtab,
4919                       "_restvr_", 20, 31,
4920                       restvr<big_endian>, restvr_tail<big_endian>);
4921 }
4922
4923 template<int size, bool big_endian>
4924 void
4925 Output_data_save_res<size, big_endian>::savres_define(
4926     Symbol_table* symtab,
4927     const char *name,
4928     unsigned int lo, unsigned int hi,
4929     unsigned char* write_ent(unsigned char*, int),
4930     unsigned char* write_tail(unsigned char*, int))
4931 {
4932   size_t len = strlen(name);
4933   bool writing = false;
4934   char sym[16];
4935
4936   memcpy(sym, name, len);
4937   sym[len + 2] = 0;
4938
4939   for (unsigned int i = lo; i <= hi; i++)
4940     {
4941       sym[len + 0] = i / 10 + '0';
4942       sym[len + 1] = i % 10 + '0';
4943       Symbol* gsym = symtab->lookup(sym);
4944       bool refd = gsym != NULL && gsym->is_undefined();
4945       writing = writing || refd;
4946       if (writing)
4947         {
4948           if (this->contents_ == NULL)
4949             this->contents_ = new unsigned char[this->savres_max];
4950
4951           section_size_type value = this->current_data_size();
4952           unsigned char* p = this->contents_ + value;
4953           if (i != hi)
4954             p = write_ent(p, i);
4955           else
4956             p = write_tail(p, i);
4957           section_size_type cur_size = p - this->contents_;
4958           this->set_current_data_size(cur_size);
4959           if (refd)
4960             symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4961                                           this, value, cur_size - value,
4962                                           elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4963                                           elfcpp::STV_HIDDEN, 0, false, false);
4964         }
4965     }
4966 }
4967
4968 // Write out save/restore.
4969
4970 template<int size, bool big_endian>
4971 void
4972 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4973 {
4974   const section_size_type off = this->offset();
4975   const section_size_type oview_size =
4976     convert_to_section_size_type(this->data_size());
4977   unsigned char* const oview = of->get_output_view(off, oview_size);
4978   memcpy(oview, this->contents_, oview_size);
4979   of->write_output_view(off, oview_size, oview);
4980 }
4981
4982
4983 // Create the glink section.
4984
4985 template<int size, bool big_endian>
4986 void
4987 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4988 {
4989   if (this->glink_ == NULL)
4990     {
4991       this->glink_ = new Output_data_glink<size, big_endian>(this);
4992       this->glink_->add_eh_frame(layout);
4993       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4994                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4995                                       this->glink_, ORDER_TEXT, false);
4996     }
4997 }
4998
4999 // Create a PLT entry for a global symbol.
5000
5001 template<int size, bool big_endian>
5002 void
5003 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5004                                                  Layout* layout,
5005                                                  Symbol* gsym)
5006 {
5007   if (gsym->type() == elfcpp::STT_GNU_IFUNC
5008       && gsym->can_use_relative_reloc(false))
5009     {
5010       if (this->iplt_ == NULL)
5011         this->make_iplt_section(symtab, layout);
5012       this->iplt_->add_ifunc_entry(gsym);
5013     }
5014   else
5015     {
5016       if (this->plt_ == NULL)
5017         this->make_plt_section(symtab, layout);
5018       this->plt_->add_entry(gsym);
5019     }
5020 }
5021
5022 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5023
5024 template<int size, bool big_endian>
5025 void
5026 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5027     Symbol_table* symtab,
5028     Layout* layout,
5029     Sized_relobj_file<size, big_endian>* relobj,
5030     unsigned int r_sym)
5031 {
5032   if (this->iplt_ == NULL)
5033     this->make_iplt_section(symtab, layout);
5034   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5035 }
5036
5037 // Return the number of entries in the PLT.
5038
5039 template<int size, bool big_endian>
5040 unsigned int
5041 Target_powerpc<size, big_endian>::plt_entry_count() const
5042 {
5043   if (this->plt_ == NULL)
5044     return 0;
5045   return this->plt_->entry_count();
5046 }
5047
5048 // Create a GOT entry for local dynamic __tls_get_addr calls.
5049
5050 template<int size, bool big_endian>
5051 unsigned int
5052 Target_powerpc<size, big_endian>::tlsld_got_offset(
5053     Symbol_table* symtab,
5054     Layout* layout,
5055     Sized_relobj_file<size, big_endian>* object)
5056 {
5057   if (this->tlsld_got_offset_ == -1U)
5058     {
5059       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5060       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5061       Output_data_got_powerpc<size, big_endian>* got
5062         = this->got_section(symtab, layout);
5063       unsigned int got_offset = got->add_constant_pair(0, 0);
5064       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5065                           got_offset, 0);
5066       this->tlsld_got_offset_ = got_offset;
5067     }
5068   return this->tlsld_got_offset_;
5069 }
5070
5071 // Get the Reference_flags for a particular relocation.
5072
5073 template<int size, bool big_endian>
5074 int
5075 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5076     unsigned int r_type,
5077     const Target_powerpc* target)
5078 {
5079   int ref = 0;
5080
5081   switch (r_type)
5082     {
5083     case elfcpp::R_POWERPC_NONE:
5084     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5085     case elfcpp::R_POWERPC_GNU_VTENTRY:
5086     case elfcpp::R_PPC64_TOC:
5087       // No symbol reference.
5088       break;
5089
5090     case elfcpp::R_PPC64_ADDR64:
5091     case elfcpp::R_PPC64_UADDR64:
5092     case elfcpp::R_POWERPC_ADDR32:
5093     case elfcpp::R_POWERPC_UADDR32:
5094     case elfcpp::R_POWERPC_ADDR16:
5095     case elfcpp::R_POWERPC_UADDR16:
5096     case elfcpp::R_POWERPC_ADDR16_LO:
5097     case elfcpp::R_POWERPC_ADDR16_HI:
5098     case elfcpp::R_POWERPC_ADDR16_HA:
5099       ref = Symbol::ABSOLUTE_REF;
5100       break;
5101
5102     case elfcpp::R_POWERPC_ADDR24:
5103     case elfcpp::R_POWERPC_ADDR14:
5104     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5105     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5106       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5107       break;
5108
5109     case elfcpp::R_PPC64_REL64:
5110     case elfcpp::R_POWERPC_REL32:
5111     case elfcpp::R_PPC_LOCAL24PC:
5112     case elfcpp::R_POWERPC_REL16:
5113     case elfcpp::R_POWERPC_REL16_LO:
5114     case elfcpp::R_POWERPC_REL16_HI:
5115     case elfcpp::R_POWERPC_REL16_HA:
5116       ref = Symbol::RELATIVE_REF;
5117       break;
5118
5119     case elfcpp::R_POWERPC_REL24:
5120     case elfcpp::R_PPC_PLTREL24:
5121     case elfcpp::R_POWERPC_REL14:
5122     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5123     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5124       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5125       break;
5126
5127     case elfcpp::R_POWERPC_GOT16:
5128     case elfcpp::R_POWERPC_GOT16_LO:
5129     case elfcpp::R_POWERPC_GOT16_HI:
5130     case elfcpp::R_POWERPC_GOT16_HA:
5131     case elfcpp::R_PPC64_GOT16_DS:
5132     case elfcpp::R_PPC64_GOT16_LO_DS:
5133     case elfcpp::R_PPC64_TOC16:
5134     case elfcpp::R_PPC64_TOC16_LO:
5135     case elfcpp::R_PPC64_TOC16_HI:
5136     case elfcpp::R_PPC64_TOC16_HA:
5137     case elfcpp::R_PPC64_TOC16_DS:
5138     case elfcpp::R_PPC64_TOC16_LO_DS:
5139       // Absolute in GOT.
5140       ref = Symbol::ABSOLUTE_REF;
5141       break;
5142
5143     case elfcpp::R_POWERPC_GOT_TPREL16:
5144     case elfcpp::R_POWERPC_TLS:
5145       ref = Symbol::TLS_REF;
5146       break;
5147
5148     case elfcpp::R_POWERPC_COPY:
5149     case elfcpp::R_POWERPC_GLOB_DAT:
5150     case elfcpp::R_POWERPC_JMP_SLOT:
5151     case elfcpp::R_POWERPC_RELATIVE:
5152     case elfcpp::R_POWERPC_DTPMOD:
5153     default:
5154       // Not expected.  We will give an error later.
5155       break;
5156     }
5157
5158   if (size == 64 && target->abiversion() < 2)
5159     ref |= Symbol::FUNC_DESC_ABI;
5160   return ref;
5161 }
5162
5163 // Report an unsupported relocation against a local symbol.
5164
5165 template<int size, bool big_endian>
5166 void
5167 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5168     Sized_relobj_file<size, big_endian>* object,
5169     unsigned int r_type)
5170 {
5171   gold_error(_("%s: unsupported reloc %u against local symbol"),
5172              object->name().c_str(), r_type);
5173 }
5174
5175 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5176 // dynamic linker does not support it, issue an error.
5177
5178 template<int size, bool big_endian>
5179 void
5180 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5181                                                       unsigned int r_type)
5182 {
5183   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5184
5185   // These are the relocation types supported by glibc for both 32-bit
5186   // and 64-bit powerpc.
5187   switch (r_type)
5188     {
5189     case elfcpp::R_POWERPC_NONE:
5190     case elfcpp::R_POWERPC_RELATIVE:
5191     case elfcpp::R_POWERPC_GLOB_DAT:
5192     case elfcpp::R_POWERPC_DTPMOD:
5193     case elfcpp::R_POWERPC_DTPREL:
5194     case elfcpp::R_POWERPC_TPREL:
5195     case elfcpp::R_POWERPC_JMP_SLOT:
5196     case elfcpp::R_POWERPC_COPY:
5197     case elfcpp::R_POWERPC_IRELATIVE:
5198     case elfcpp::R_POWERPC_ADDR32:
5199     case elfcpp::R_POWERPC_UADDR32:
5200     case elfcpp::R_POWERPC_ADDR24:
5201     case elfcpp::R_POWERPC_ADDR16:
5202     case elfcpp::R_POWERPC_UADDR16:
5203     case elfcpp::R_POWERPC_ADDR16_LO:
5204     case elfcpp::R_POWERPC_ADDR16_HI:
5205     case elfcpp::R_POWERPC_ADDR16_HA:
5206     case elfcpp::R_POWERPC_ADDR14:
5207     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5208     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5209     case elfcpp::R_POWERPC_REL32:
5210     case elfcpp::R_POWERPC_REL24:
5211     case elfcpp::R_POWERPC_TPREL16:
5212     case elfcpp::R_POWERPC_TPREL16_LO:
5213     case elfcpp::R_POWERPC_TPREL16_HI:
5214     case elfcpp::R_POWERPC_TPREL16_HA:
5215       return;
5216
5217     default:
5218       break;
5219     }
5220
5221   if (size == 64)
5222     {
5223       switch (r_type)
5224         {
5225           // These are the relocation types supported only on 64-bit.
5226         case elfcpp::R_PPC64_ADDR64:
5227         case elfcpp::R_PPC64_UADDR64:
5228         case elfcpp::R_PPC64_JMP_IREL:
5229         case elfcpp::R_PPC64_ADDR16_DS:
5230         case elfcpp::R_PPC64_ADDR16_LO_DS:
5231         case elfcpp::R_PPC64_ADDR16_HIGH:
5232         case elfcpp::R_PPC64_ADDR16_HIGHA:
5233         case elfcpp::R_PPC64_ADDR16_HIGHER:
5234         case elfcpp::R_PPC64_ADDR16_HIGHEST:
5235         case elfcpp::R_PPC64_ADDR16_HIGHERA:
5236         case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5237         case elfcpp::R_PPC64_REL64:
5238         case elfcpp::R_POWERPC_ADDR30:
5239         case elfcpp::R_PPC64_TPREL16_DS:
5240         case elfcpp::R_PPC64_TPREL16_LO_DS:
5241         case elfcpp::R_PPC64_TPREL16_HIGH:
5242         case elfcpp::R_PPC64_TPREL16_HIGHA:
5243         case elfcpp::R_PPC64_TPREL16_HIGHER:
5244         case elfcpp::R_PPC64_TPREL16_HIGHEST:
5245         case elfcpp::R_PPC64_TPREL16_HIGHERA:
5246         case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5247           return;
5248
5249         default:
5250           break;
5251         }
5252     }
5253   else
5254     {
5255       switch (r_type)
5256         {
5257           // These are the relocation types supported only on 32-bit.
5258           // ??? glibc ld.so doesn't need to support these.
5259         case elfcpp::R_POWERPC_DTPREL16:
5260         case elfcpp::R_POWERPC_DTPREL16_LO:
5261         case elfcpp::R_POWERPC_DTPREL16_HI:
5262         case elfcpp::R_POWERPC_DTPREL16_HA:
5263           return;
5264
5265         default:
5266           break;
5267         }
5268     }
5269
5270   // This prevents us from issuing more than one error per reloc
5271   // section.  But we can still wind up issuing more than one
5272   // error per object file.
5273   if (this->issued_non_pic_error_)
5274     return;
5275   gold_assert(parameters->options().output_is_position_independent());
5276   object->error(_("requires unsupported dynamic reloc; "
5277                   "recompile with -fPIC"));
5278   this->issued_non_pic_error_ = true;
5279   return;
5280 }
5281
5282 // Return whether we need to make a PLT entry for a relocation of the
5283 // given type against a STT_GNU_IFUNC symbol.
5284
5285 template<int size, bool big_endian>
5286 bool
5287 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5288      Target_powerpc<size, big_endian>* target,
5289      Sized_relobj_file<size, big_endian>* object,
5290      unsigned int r_type,
5291      bool report_err)
5292 {
5293   // In non-pic code any reference will resolve to the plt call stub
5294   // for the ifunc symbol.
5295   if ((size == 32 || target->abiversion() >= 2)
5296       && !parameters->options().output_is_position_independent())
5297     return true;
5298
5299   switch (r_type)
5300     {
5301     // Word size refs from data sections are OK, but don't need a PLT entry.
5302     case elfcpp::R_POWERPC_ADDR32:
5303     case elfcpp::R_POWERPC_UADDR32:
5304       if (size == 32)
5305         return false;
5306       break;
5307
5308     case elfcpp::R_PPC64_ADDR64:
5309     case elfcpp::R_PPC64_UADDR64:
5310       if (size == 64)
5311         return false;
5312       break;
5313
5314     // GOT refs are good, but also don't need a PLT entry.
5315     case elfcpp::R_POWERPC_GOT16:
5316     case elfcpp::R_POWERPC_GOT16_LO:
5317     case elfcpp::R_POWERPC_GOT16_HI:
5318     case elfcpp::R_POWERPC_GOT16_HA:
5319     case elfcpp::R_PPC64_GOT16_DS:
5320     case elfcpp::R_PPC64_GOT16_LO_DS:
5321       return false;
5322
5323     // Function calls are good, and these do need a PLT entry.
5324     case elfcpp::R_POWERPC_ADDR24:
5325     case elfcpp::R_POWERPC_ADDR14:
5326     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5327     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5328     case elfcpp::R_POWERPC_REL24:
5329     case elfcpp::R_PPC_PLTREL24:
5330     case elfcpp::R_POWERPC_REL14:
5331     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5332     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5333       return true;
5334
5335     default:
5336       break;
5337     }
5338
5339   // Anything else is a problem.
5340   // If we are building a static executable, the libc startup function
5341   // responsible for applying indirect function relocations is going
5342   // to complain about the reloc type.
5343   // If we are building a dynamic executable, we will have a text
5344   // relocation.  The dynamic loader will set the text segment
5345   // writable and non-executable to apply text relocations.  So we'll
5346   // segfault when trying to run the indirection function to resolve
5347   // the reloc.
5348   if (report_err)
5349     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5350                object->name().c_str(), r_type);
5351   return false;
5352 }
5353
5354 // Scan a relocation for a local symbol.
5355
5356 template<int size, bool big_endian>
5357 inline void
5358 Target_powerpc<size, big_endian>::Scan::local(
5359     Symbol_table* symtab,
5360     Layout* layout,
5361     Target_powerpc<size, big_endian>* target,
5362     Sized_relobj_file<size, big_endian>* object,
5363     unsigned int data_shndx,
5364     Output_section* output_section,
5365     const elfcpp::Rela<size, big_endian>& reloc,
5366     unsigned int r_type,
5367     const elfcpp::Sym<size, big_endian>& lsym,
5368     bool is_discarded)
5369 {
5370   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5371
5372   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5373       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5374     {
5375       this->expect_tls_get_addr_call();
5376       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5377       if (tls_type != tls::TLSOPT_NONE)
5378         this->skip_next_tls_get_addr_call();
5379     }
5380   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5381            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5382     {
5383       this->expect_tls_get_addr_call();
5384       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5385       if (tls_type != tls::TLSOPT_NONE)
5386         this->skip_next_tls_get_addr_call();
5387     }
5388
5389   Powerpc_relobj<size, big_endian>* ppc_object
5390     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5391
5392   if (is_discarded)
5393     {
5394       if (size == 64
5395           && data_shndx == ppc_object->opd_shndx()
5396           && r_type == elfcpp::R_PPC64_ADDR64)
5397         ppc_object->set_opd_discard(reloc.get_r_offset());
5398       return;
5399     }
5400
5401   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5402   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5403   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5404     {
5405       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5406       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5407                           r_type, r_sym, reloc.get_r_addend());
5408       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5409     }
5410
5411   switch (r_type)
5412     {
5413     case elfcpp::R_POWERPC_NONE:
5414     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5415     case elfcpp::R_POWERPC_GNU_VTENTRY:
5416     case elfcpp::R_PPC64_TOCSAVE:
5417     case elfcpp::R_POWERPC_TLS:
5418       break;
5419
5420     case elfcpp::R_PPC64_TOC:
5421       {
5422         Output_data_got_powerpc<size, big_endian>* got
5423           = target->got_section(symtab, layout);
5424         if (parameters->options().output_is_position_independent())
5425           {
5426             Address off = reloc.get_r_offset();
5427             if (size == 64
5428                 && target->abiversion() < 2
5429                 && data_shndx == ppc_object->opd_shndx()
5430                 && ppc_object->get_opd_discard(off - 8))
5431               break;
5432
5433             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5434             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5435             rela_dyn->add_output_section_relative(got->output_section(),
5436                                                   elfcpp::R_POWERPC_RELATIVE,
5437                                                   output_section,
5438                                                   object, data_shndx, off,
5439                                                   symobj->toc_base_offset());
5440           }
5441       }
5442       break;
5443
5444     case elfcpp::R_PPC64_ADDR64:
5445     case elfcpp::R_PPC64_UADDR64:
5446     case elfcpp::R_POWERPC_ADDR32:
5447     case elfcpp::R_POWERPC_UADDR32:
5448     case elfcpp::R_POWERPC_ADDR24:
5449     case elfcpp::R_POWERPC_ADDR16:
5450     case elfcpp::R_POWERPC_ADDR16_LO:
5451     case elfcpp::R_POWERPC_ADDR16_HI:
5452     case elfcpp::R_POWERPC_ADDR16_HA:
5453     case elfcpp::R_POWERPC_UADDR16:
5454     case elfcpp::R_PPC64_ADDR16_HIGH:
5455     case elfcpp::R_PPC64_ADDR16_HIGHA:
5456     case elfcpp::R_PPC64_ADDR16_HIGHER:
5457     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5458     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5459     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5460     case elfcpp::R_PPC64_ADDR16_DS:
5461     case elfcpp::R_PPC64_ADDR16_LO_DS:
5462     case elfcpp::R_POWERPC_ADDR14:
5463     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5464     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5465       // If building a shared library (or a position-independent
5466       // executable), we need to create a dynamic relocation for
5467       // this location.
5468       if (parameters->options().output_is_position_independent()
5469           || (size == 64 && is_ifunc && target->abiversion() < 2))
5470         {
5471           Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5472                                                              is_ifunc);
5473           if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5474               || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5475             {
5476               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5477               unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5478                                      : elfcpp::R_POWERPC_RELATIVE);
5479               rela_dyn->add_local_relative(object, r_sym, dynrel,
5480                                            output_section, data_shndx,
5481                                            reloc.get_r_offset(),
5482                                            reloc.get_r_addend(), false);
5483             }
5484           else
5485             {
5486               check_non_pic(object, r_type);
5487               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5488               rela_dyn->add_local(object, r_sym, r_type, output_section,
5489                                   data_shndx, reloc.get_r_offset(),
5490                                   reloc.get_r_addend());
5491             }
5492         }
5493       break;
5494
5495     case elfcpp::R_POWERPC_REL24:
5496     case elfcpp::R_PPC_PLTREL24:
5497     case elfcpp::R_PPC_LOCAL24PC:
5498     case elfcpp::R_POWERPC_REL14:
5499     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5500     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5501       if (!is_ifunc)
5502         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5503                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5504                             reloc.get_r_addend());
5505       break;
5506
5507     case elfcpp::R_PPC64_REL64:
5508     case elfcpp::R_POWERPC_REL32:
5509     case elfcpp::R_POWERPC_REL16:
5510     case elfcpp::R_POWERPC_REL16_LO:
5511     case elfcpp::R_POWERPC_REL16_HI:
5512     case elfcpp::R_POWERPC_REL16_HA:
5513     case elfcpp::R_POWERPC_SECTOFF:
5514     case elfcpp::R_POWERPC_SECTOFF_LO:
5515     case elfcpp::R_POWERPC_SECTOFF_HI:
5516     case elfcpp::R_POWERPC_SECTOFF_HA:
5517     case elfcpp::R_PPC64_SECTOFF_DS:
5518     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5519     case elfcpp::R_POWERPC_TPREL16:
5520     case elfcpp::R_POWERPC_TPREL16_LO:
5521     case elfcpp::R_POWERPC_TPREL16_HI:
5522     case elfcpp::R_POWERPC_TPREL16_HA:
5523     case elfcpp::R_PPC64_TPREL16_DS:
5524     case elfcpp::R_PPC64_TPREL16_LO_DS:
5525     case elfcpp::R_PPC64_TPREL16_HIGH:
5526     case elfcpp::R_PPC64_TPREL16_HIGHA:
5527     case elfcpp::R_PPC64_TPREL16_HIGHER:
5528     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5529     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5530     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5531     case elfcpp::R_POWERPC_DTPREL16:
5532     case elfcpp::R_POWERPC_DTPREL16_LO:
5533     case elfcpp::R_POWERPC_DTPREL16_HI:
5534     case elfcpp::R_POWERPC_DTPREL16_HA:
5535     case elfcpp::R_PPC64_DTPREL16_DS:
5536     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5537     case elfcpp::R_PPC64_DTPREL16_HIGH:
5538     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5539     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5540     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5541     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5542     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5543     case elfcpp::R_PPC64_TLSGD:
5544     case elfcpp::R_PPC64_TLSLD:
5545     case elfcpp::R_PPC64_ADDR64_LOCAL:
5546       break;
5547
5548     case elfcpp::R_POWERPC_GOT16:
5549     case elfcpp::R_POWERPC_GOT16_LO:
5550     case elfcpp::R_POWERPC_GOT16_HI:
5551     case elfcpp::R_POWERPC_GOT16_HA:
5552     case elfcpp::R_PPC64_GOT16_DS:
5553     case elfcpp::R_PPC64_GOT16_LO_DS:
5554       {
5555         // The symbol requires a GOT entry.
5556         Output_data_got_powerpc<size, big_endian>* got
5557           = target->got_section(symtab, layout);
5558         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5559
5560         if (!parameters->options().output_is_position_independent())
5561           {
5562             if ((size == 32 && is_ifunc)
5563                 || (size == 64 && target->abiversion() >= 2))
5564               got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5565             else
5566               got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5567           }
5568         else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5569           {
5570             // If we are generating a shared object or a pie, this
5571             // symbol's GOT entry will be set by a dynamic relocation.
5572             unsigned int off;
5573             off = got->add_constant(0);
5574             object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5575
5576             Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5577                                                                is_ifunc);
5578             unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5579                                    : elfcpp::R_POWERPC_RELATIVE);
5580             rela_dyn->add_local_relative(object, r_sym, dynrel,
5581                                          got, off, 0, false);
5582           }
5583       }
5584       break;
5585
5586     case elfcpp::R_PPC64_TOC16:
5587     case elfcpp::R_PPC64_TOC16_LO:
5588     case elfcpp::R_PPC64_TOC16_HI:
5589     case elfcpp::R_PPC64_TOC16_HA:
5590     case elfcpp::R_PPC64_TOC16_DS:
5591     case elfcpp::R_PPC64_TOC16_LO_DS:
5592       // We need a GOT section.
5593       target->got_section(symtab, layout);
5594       break;
5595
5596     case elfcpp::R_POWERPC_GOT_TLSGD16:
5597     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5598     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5599     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5600       {
5601         const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5602         if (tls_type == tls::TLSOPT_NONE)
5603           {
5604             Output_data_got_powerpc<size, big_endian>* got
5605               = target->got_section(symtab, layout);
5606             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5607             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5608             got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5609                                     rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5610           }
5611         else if (tls_type == tls::TLSOPT_TO_LE)
5612           {
5613             // no GOT relocs needed for Local Exec.
5614           }
5615         else
5616           gold_unreachable();
5617       }
5618       break;
5619
5620     case elfcpp::R_POWERPC_GOT_TLSLD16:
5621     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5622     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5623     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5624       {
5625         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5626         if (tls_type == tls::TLSOPT_NONE)
5627           target->tlsld_got_offset(symtab, layout, object);
5628         else if (tls_type == tls::TLSOPT_TO_LE)
5629           {
5630             // no GOT relocs needed for Local Exec.
5631             if (parameters->options().emit_relocs())
5632               {
5633                 Output_section* os = layout->tls_segment()->first_section();
5634                 gold_assert(os != NULL);
5635                 os->set_needs_symtab_index();
5636               }
5637           }
5638         else
5639           gold_unreachable();
5640       }
5641       break;
5642
5643     case elfcpp::R_POWERPC_GOT_DTPREL16:
5644     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5645     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5646     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5647       {
5648         Output_data_got_powerpc<size, big_endian>* got
5649           = target->got_section(symtab, layout);
5650         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5651         got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5652       }
5653       break;
5654
5655     case elfcpp::R_POWERPC_GOT_TPREL16:
5656     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5657     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5658     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5659       {
5660         const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5661         if (tls_type == tls::TLSOPT_NONE)
5662           {
5663             unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5664             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5665               {
5666                 Output_data_got_powerpc<size, big_endian>* got
5667                   = target->got_section(symtab, layout);
5668                 unsigned int off = got->add_constant(0);
5669                 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5670
5671                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5672                 rela_dyn->add_symbolless_local_addend(object, r_sym,
5673                                                       elfcpp::R_POWERPC_TPREL,
5674                                                       got, off, 0);
5675               }
5676           }
5677         else if (tls_type == tls::TLSOPT_TO_LE)
5678           {
5679             // no GOT relocs needed for Local Exec.
5680           }
5681         else
5682           gold_unreachable();
5683       }
5684       break;
5685
5686     default:
5687       unsupported_reloc_local(object, r_type);
5688       break;
5689     }
5690
5691   switch (r_type)
5692     {
5693     case elfcpp::R_POWERPC_GOT_TLSLD16:
5694     case elfcpp::R_POWERPC_GOT_TLSGD16:
5695     case elfcpp::R_POWERPC_GOT_TPREL16:
5696     case elfcpp::R_POWERPC_GOT_DTPREL16:
5697     case elfcpp::R_POWERPC_GOT16:
5698     case elfcpp::R_PPC64_GOT16_DS:
5699     case elfcpp::R_PPC64_TOC16:
5700     case elfcpp::R_PPC64_TOC16_DS:
5701       ppc_object->set_has_small_toc_reloc();
5702     default:
5703       break;
5704     }
5705 }
5706
5707 // Report an unsupported relocation against a global symbol.
5708
5709 template<int size, bool big_endian>
5710 void
5711 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5712     Sized_relobj_file<size, big_endian>* object,
5713     unsigned int r_type,
5714     Symbol* gsym)
5715 {
5716   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5717              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5718 }
5719
5720 // Scan a relocation for a global symbol.
5721
5722 template<int size, bool big_endian>
5723 inline void
5724 Target_powerpc<size, big_endian>::Scan::global(
5725     Symbol_table* symtab,
5726     Layout* layout,
5727     Target_powerpc<size, big_endian>* target,
5728     Sized_relobj_file<size, big_endian>* object,
5729     unsigned int data_shndx,
5730     Output_section* output_section,
5731     const elfcpp::Rela<size, big_endian>& reloc,
5732     unsigned int r_type,
5733     Symbol* gsym)
5734 {
5735   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5736     return;
5737
5738   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5739       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5740     {
5741       this->expect_tls_get_addr_call();
5742       const bool final = gsym->final_value_is_known();
5743       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5744       if (tls_type != tls::TLSOPT_NONE)
5745         this->skip_next_tls_get_addr_call();
5746     }
5747   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5748            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5749     {
5750       this->expect_tls_get_addr_call();
5751       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5752       if (tls_type != tls::TLSOPT_NONE)
5753         this->skip_next_tls_get_addr_call();
5754     }
5755
5756   Powerpc_relobj<size, big_endian>* ppc_object
5757     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5758
5759   // A STT_GNU_IFUNC symbol may require a PLT entry.
5760   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5761   bool pushed_ifunc = false;
5762   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5763     {
5764       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5765                           r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5766                           reloc.get_r_addend());
5767       target->make_plt_entry(symtab, layout, gsym);
5768       pushed_ifunc = true;
5769     }
5770
5771   switch (r_type)
5772     {
5773     case elfcpp::R_POWERPC_NONE:
5774     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5775     case elfcpp::R_POWERPC_GNU_VTENTRY:
5776     case elfcpp::R_PPC_LOCAL24PC:
5777     case elfcpp::R_POWERPC_TLS:
5778       break;
5779
5780     case elfcpp::R_PPC64_TOC:
5781       {
5782         Output_data_got_powerpc<size, big_endian>* got
5783           = target->got_section(symtab, layout);
5784         if (parameters->options().output_is_position_independent())
5785           {
5786             Address off = reloc.get_r_offset();
5787             if (size == 64
5788                 && data_shndx == ppc_object->opd_shndx()
5789                 && ppc_object->get_opd_discard(off - 8))
5790               break;
5791
5792             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5793             Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5794             if (data_shndx != ppc_object->opd_shndx())
5795               symobj = static_cast
5796                 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5797             rela_dyn->add_output_section_relative(got->output_section(),
5798                                                   elfcpp::R_POWERPC_RELATIVE,
5799                                                   output_section,
5800                                                   object, data_shndx, off,
5801                                                   symobj->toc_base_offset());
5802           }
5803       }
5804       break;
5805
5806     case elfcpp::R_PPC64_ADDR64:
5807       if (size == 64
5808           && target->abiversion() < 2
5809           && data_shndx == ppc_object->opd_shndx()
5810           && (gsym->is_defined_in_discarded_section()
5811               || gsym->object() != object))
5812         {
5813           ppc_object->set_opd_discard(reloc.get_r_offset());
5814           break;
5815         }
5816       // Fall thru
5817     case elfcpp::R_PPC64_UADDR64:
5818     case elfcpp::R_POWERPC_ADDR32:
5819     case elfcpp::R_POWERPC_UADDR32:
5820     case elfcpp::R_POWERPC_ADDR24:
5821     case elfcpp::R_POWERPC_ADDR16:
5822     case elfcpp::R_POWERPC_ADDR16_LO:
5823     case elfcpp::R_POWERPC_ADDR16_HI:
5824     case elfcpp::R_POWERPC_ADDR16_HA:
5825     case elfcpp::R_POWERPC_UADDR16:
5826     case elfcpp::R_PPC64_ADDR16_HIGH:
5827     case elfcpp::R_PPC64_ADDR16_HIGHA:
5828     case elfcpp::R_PPC64_ADDR16_HIGHER:
5829     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5830     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5831     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5832     case elfcpp::R_PPC64_ADDR16_DS:
5833     case elfcpp::R_PPC64_ADDR16_LO_DS:
5834     case elfcpp::R_POWERPC_ADDR14:
5835     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5836     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5837       {
5838         // Make a PLT entry if necessary.
5839         if (gsym->needs_plt_entry())
5840           {
5841             // Since this is not a PC-relative relocation, we may be
5842             // taking the address of a function. In that case we need to
5843             // set the entry in the dynamic symbol table to the address of
5844             // the PLT call stub.
5845             bool need_ifunc_plt = false;
5846             if ((size == 32 || target->abiversion() >= 2)
5847                 && gsym->is_from_dynobj()
5848                 && !parameters->options().output_is_position_independent())
5849               {
5850                 gsym->set_needs_dynsym_value();
5851                 need_ifunc_plt = true;
5852               }
5853             if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
5854               {
5855                 target->push_branch(ppc_object, data_shndx,
5856                                     reloc.get_r_offset(), r_type,
5857                                     elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5858                                     reloc.get_r_addend());
5859                 target->make_plt_entry(symtab, layout, gsym);
5860               }
5861           }
5862         // Make a dynamic relocation if necessary.
5863         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5864             || (size == 64 && is_ifunc && target->abiversion() < 2))
5865           {
5866             if (!parameters->options().output_is_position_independent()
5867                 && gsym->may_need_copy_reloc())
5868               {
5869                 target->copy_reloc(symtab, layout, object,
5870                                    data_shndx, output_section, gsym, reloc);
5871               }
5872             else if ((((size == 32
5873                         && r_type == elfcpp::R_POWERPC_ADDR32)
5874                        || (size == 64
5875                            && r_type == elfcpp::R_PPC64_ADDR64
5876                            && target->abiversion() >= 2))
5877                       && gsym->can_use_relative_reloc(false)
5878                       && !(gsym->visibility() == elfcpp::STV_PROTECTED
5879                            && parameters->options().shared()))
5880                      || (size == 64
5881                          && r_type == elfcpp::R_PPC64_ADDR64
5882                          && target->abiversion() < 2
5883                          && (gsym->can_use_relative_reloc(false)
5884                              || data_shndx == ppc_object->opd_shndx())))
5885               {
5886                 Reloc_section* rela_dyn
5887                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5888                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5889                                        : elfcpp::R_POWERPC_RELATIVE);
5890                 rela_dyn->add_symbolless_global_addend(
5891                     gsym, dynrel, output_section, object, data_shndx,
5892                     reloc.get_r_offset(), reloc.get_r_addend());
5893               }
5894             else
5895               {
5896                 Reloc_section* rela_dyn
5897                   = target->rela_dyn_section(symtab, layout, is_ifunc);
5898                 check_non_pic(object, r_type);
5899                 rela_dyn->add_global(gsym, r_type, output_section,
5900                                      object, data_shndx,
5901                                      reloc.get_r_offset(),
5902                                      reloc.get_r_addend());
5903               }
5904           }
5905       }
5906       break;
5907
5908     case elfcpp::R_PPC_PLTREL24:
5909     case elfcpp::R_POWERPC_REL24:
5910       if (!is_ifunc)
5911         {
5912           target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5913                               r_type,
5914                               elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5915                               reloc.get_r_addend());
5916           if (gsym->needs_plt_entry()
5917               || (!gsym->final_value_is_known()
5918                   && (gsym->is_undefined()
5919                       || gsym->is_from_dynobj()
5920                       || gsym->is_preemptible())))
5921             target->make_plt_entry(symtab, layout, gsym);
5922         }
5923       // Fall thru
5924
5925     case elfcpp::R_PPC64_REL64:
5926     case elfcpp::R_POWERPC_REL32:
5927       // Make a dynamic relocation if necessary.
5928       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
5929         {
5930           if (!parameters->options().output_is_position_independent()
5931               && gsym->may_need_copy_reloc())
5932             {
5933               target->copy_reloc(symtab, layout, object,
5934                                  data_shndx, output_section, gsym,
5935                                  reloc);
5936             }
5937           else
5938             {
5939               Reloc_section* rela_dyn
5940                 = target->rela_dyn_section(symtab, layout, is_ifunc);
5941               check_non_pic(object, r_type);
5942               rela_dyn->add_global(gsym, r_type, output_section, object,
5943                                    data_shndx, reloc.get_r_offset(),
5944                                    reloc.get_r_addend());
5945             }
5946         }
5947       break;
5948
5949     case elfcpp::R_POWERPC_REL14:
5950     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5951     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5952       if (!is_ifunc)
5953         target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5954                             r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5955                             reloc.get_r_addend());
5956       break;
5957
5958     case elfcpp::R_POWERPC_REL16:
5959     case elfcpp::R_POWERPC_REL16_LO:
5960     case elfcpp::R_POWERPC_REL16_HI:
5961     case elfcpp::R_POWERPC_REL16_HA:
5962     case elfcpp::R_POWERPC_SECTOFF:
5963     case elfcpp::R_POWERPC_SECTOFF_LO:
5964     case elfcpp::R_POWERPC_SECTOFF_HI:
5965     case elfcpp::R_POWERPC_SECTOFF_HA:
5966     case elfcpp::R_PPC64_SECTOFF_DS:
5967     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5968     case elfcpp::R_POWERPC_TPREL16:
5969     case elfcpp::R_POWERPC_TPREL16_LO:
5970     case elfcpp::R_POWERPC_TPREL16_HI:
5971     case elfcpp::R_POWERPC_TPREL16_HA:
5972     case elfcpp::R_PPC64_TPREL16_DS:
5973     case elfcpp::R_PPC64_TPREL16_LO_DS:
5974     case elfcpp::R_PPC64_TPREL16_HIGH:
5975     case elfcpp::R_PPC64_TPREL16_HIGHA:
5976     case elfcpp::R_PPC64_TPREL16_HIGHER:
5977     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5978     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5979     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5980     case elfcpp::R_POWERPC_DTPREL16:
5981     case elfcpp::R_POWERPC_DTPREL16_LO:
5982     case elfcpp::R_POWERPC_DTPREL16_HI:
5983     case elfcpp::R_POWERPC_DTPREL16_HA:
5984     case elfcpp::R_PPC64_DTPREL16_DS:
5985     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5986     case elfcpp::R_PPC64_DTPREL16_HIGH:
5987     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5988     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5989     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5990     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5991     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5992     case elfcpp::R_PPC64_TLSGD:
5993     case elfcpp::R_PPC64_TLSLD:
5994     case elfcpp::R_PPC64_ADDR64_LOCAL:
5995       break;
5996
5997     case elfcpp::R_POWERPC_GOT16:
5998     case elfcpp::R_POWERPC_GOT16_LO:
5999     case elfcpp::R_POWERPC_GOT16_HI:
6000     case elfcpp::R_POWERPC_GOT16_HA:
6001     case elfcpp::R_PPC64_GOT16_DS:
6002     case elfcpp::R_PPC64_GOT16_LO_DS:
6003       {
6004         // The symbol requires a GOT entry.
6005         Output_data_got_powerpc<size, big_endian>* got;
6006
6007         got = target->got_section(symtab, layout);
6008         if (gsym->final_value_is_known())
6009           {
6010             if ((size == 32 && is_ifunc)
6011                 || (size == 64 && target->abiversion() >= 2))
6012               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6013             else
6014               got->add_global(gsym, GOT_TYPE_STANDARD);
6015           }
6016         else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6017           {
6018             // If we are generating a shared object or a pie, this
6019             // symbol's GOT entry will be set by a dynamic relocation.
6020             unsigned int off = got->add_constant(0);
6021             gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6022
6023             Reloc_section* rela_dyn
6024               = target->rela_dyn_section(symtab, layout, is_ifunc);
6025
6026             if (gsym->can_use_relative_reloc(false)
6027                 && !((size == 32
6028                       || target->abiversion() >= 2)
6029                      && gsym->visibility() == elfcpp::STV_PROTECTED
6030                      && parameters->options().shared()))
6031               {
6032                 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6033                                        : elfcpp::R_POWERPC_RELATIVE);
6034                 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6035               }
6036             else
6037               {
6038                 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6039                 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6040               }
6041           }
6042       }
6043       break;
6044
6045     case elfcpp::R_PPC64_TOC16:
6046     case elfcpp::R_PPC64_TOC16_LO:
6047     case elfcpp::R_PPC64_TOC16_HI:
6048     case elfcpp::R_PPC64_TOC16_HA:
6049     case elfcpp::R_PPC64_TOC16_DS:
6050     case elfcpp::R_PPC64_TOC16_LO_DS:
6051       // We need a GOT section.
6052       target->got_section(symtab, layout);
6053       break;
6054
6055     case elfcpp::R_POWERPC_GOT_TLSGD16:
6056     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6057     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6058     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6059       {
6060         const bool final = gsym->final_value_is_known();
6061         const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6062         if (tls_type == tls::TLSOPT_NONE)
6063           {
6064             Output_data_got_powerpc<size, big_endian>* got
6065               = target->got_section(symtab, layout);
6066             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6067             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6068                                           elfcpp::R_POWERPC_DTPMOD,
6069                                           elfcpp::R_POWERPC_DTPREL);
6070           }
6071         else if (tls_type == tls::TLSOPT_TO_IE)
6072           {
6073             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6074               {
6075                 Output_data_got_powerpc<size, big_endian>* got
6076                   = target->got_section(symtab, layout);
6077                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6078                 if (gsym->is_undefined()
6079                     || gsym->is_from_dynobj())
6080                   {
6081                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6082                                              elfcpp::R_POWERPC_TPREL);
6083                   }
6084                 else
6085                   {
6086                     unsigned int off = got->add_constant(0);
6087                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6088                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6089                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6090                                                            got, off, 0);
6091                   }
6092               }
6093           }
6094         else if (tls_type == tls::TLSOPT_TO_LE)
6095           {
6096             // no GOT relocs needed for Local Exec.
6097           }
6098         else
6099           gold_unreachable();
6100       }
6101       break;
6102
6103     case elfcpp::R_POWERPC_GOT_TLSLD16:
6104     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6105     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6106     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6107       {
6108         const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6109         if (tls_type == tls::TLSOPT_NONE)
6110           target->tlsld_got_offset(symtab, layout, object);
6111         else if (tls_type == tls::TLSOPT_TO_LE)
6112           {
6113             // no GOT relocs needed for Local Exec.
6114             if (parameters->options().emit_relocs())
6115               {
6116                 Output_section* os = layout->tls_segment()->first_section();
6117                 gold_assert(os != NULL);
6118                 os->set_needs_symtab_index();
6119               }
6120           }
6121         else
6122           gold_unreachable();
6123       }
6124       break;
6125
6126     case elfcpp::R_POWERPC_GOT_DTPREL16:
6127     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6128     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6129     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6130       {
6131         Output_data_got_powerpc<size, big_endian>* got
6132           = target->got_section(symtab, layout);
6133         if (!gsym->final_value_is_known()
6134             && (gsym->is_from_dynobj()
6135                 || gsym->is_undefined()
6136                 || gsym->is_preemptible()))
6137           got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6138                                    target->rela_dyn_section(layout),
6139                                    elfcpp::R_POWERPC_DTPREL);
6140         else
6141           got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6142       }
6143       break;
6144
6145     case elfcpp::R_POWERPC_GOT_TPREL16:
6146     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6147     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6148     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6149       {
6150         const bool final = gsym->final_value_is_known();
6151         const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6152         if (tls_type == tls::TLSOPT_NONE)
6153           {
6154             if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6155               {
6156                 Output_data_got_powerpc<size, big_endian>* got
6157                   = target->got_section(symtab, layout);
6158                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6159                 if (gsym->is_undefined()
6160                     || gsym->is_from_dynobj())
6161                   {
6162                     got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6163                                              elfcpp::R_POWERPC_TPREL);
6164                   }
6165                 else
6166                   {
6167                     unsigned int off = got->add_constant(0);
6168                     gsym->set_got_offset(GOT_TYPE_TPREL, off);
6169                     unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6170                     rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6171                                                            got, off, 0);
6172                   }
6173               }
6174           }
6175         else if (tls_type == tls::TLSOPT_TO_LE)
6176           {
6177             // no GOT relocs needed for Local Exec.
6178           }
6179         else
6180           gold_unreachable();
6181       }
6182       break;
6183
6184     default:
6185       unsupported_reloc_global(object, r_type, gsym);
6186       break;
6187     }
6188
6189   switch (r_type)
6190     {
6191     case elfcpp::R_POWERPC_GOT_TLSLD16:
6192     case elfcpp::R_POWERPC_GOT_TLSGD16:
6193     case elfcpp::R_POWERPC_GOT_TPREL16:
6194     case elfcpp::R_POWERPC_GOT_DTPREL16:
6195     case elfcpp::R_POWERPC_GOT16:
6196     case elfcpp::R_PPC64_GOT16_DS:
6197     case elfcpp::R_PPC64_TOC16:
6198     case elfcpp::R_PPC64_TOC16_DS:
6199       ppc_object->set_has_small_toc_reloc();
6200     default:
6201       break;
6202     }
6203 }
6204
6205 // Process relocations for gc.
6206
6207 template<int size, bool big_endian>
6208 void
6209 Target_powerpc<size, big_endian>::gc_process_relocs(
6210     Symbol_table* symtab,
6211     Layout* layout,
6212     Sized_relobj_file<size, big_endian>* object,
6213     unsigned int data_shndx,
6214     unsigned int,
6215     const unsigned char* prelocs,
6216     size_t reloc_count,
6217     Output_section* output_section,
6218     bool needs_special_offset_handling,
6219     size_t local_symbol_count,
6220     const unsigned char* plocal_symbols)
6221 {
6222   typedef Target_powerpc<size, big_endian> Powerpc;
6223   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6224   Powerpc_relobj<size, big_endian>* ppc_object
6225     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6226   if (size == 64)
6227     ppc_object->set_opd_valid();
6228   if (size == 64 && data_shndx == ppc_object->opd_shndx())
6229     {
6230       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6231       for (p = ppc_object->access_from_map()->begin();
6232            p != ppc_object->access_from_map()->end();
6233            ++p)
6234         {
6235           Address dst_off = p->first;
6236           unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6237           typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6238           for (s = p->second.begin(); s != p->second.end(); ++s)
6239             {
6240               Object* src_obj = s->first;
6241               unsigned int src_indx = s->second;
6242               symtab->gc()->add_reference(src_obj, src_indx,
6243                                           ppc_object, dst_indx);
6244             }
6245           p->second.clear();
6246         }
6247       ppc_object->access_from_map()->clear();
6248       ppc_object->process_gc_mark(symtab);
6249       // Don't look at .opd relocs as .opd will reference everything.
6250       return;
6251     }
6252
6253   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6254                           typename Target_powerpc::Relocatable_size_for_reloc>(
6255     symtab,
6256     layout,
6257     this,
6258     object,
6259     data_shndx,
6260     prelocs,
6261     reloc_count,
6262     output_section,
6263     needs_special_offset_handling,
6264     local_symbol_count,
6265     plocal_symbols);
6266 }
6267
6268 // Handle target specific gc actions when adding a gc reference from
6269 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6270 // and DST_OFF.  For powerpc64, this adds a referenc to the code
6271 // section of a function descriptor.
6272
6273 template<int size, bool big_endian>
6274 void
6275 Target_powerpc<size, big_endian>::do_gc_add_reference(
6276     Symbol_table* symtab,
6277     Object* src_obj,
6278     unsigned int src_shndx,
6279     Object* dst_obj,
6280     unsigned int dst_shndx,
6281     Address dst_off) const
6282 {
6283   if (size != 64 || dst_obj->is_dynamic())
6284     return;
6285
6286   Powerpc_relobj<size, big_endian>* ppc_object
6287     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6288   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6289     {
6290       if (ppc_object->opd_valid())
6291         {
6292           dst_shndx = ppc_object->get_opd_ent(dst_off);
6293           symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6294         }
6295       else
6296         {
6297           // If we haven't run scan_opd_relocs, we must delay
6298           // processing this function descriptor reference.
6299           ppc_object->add_reference(src_obj, src_shndx, dst_off);
6300         }
6301     }
6302 }
6303
6304 // Add any special sections for this symbol to the gc work list.
6305 // For powerpc64, this adds the code section of a function
6306 // descriptor.
6307
6308 template<int size, bool big_endian>
6309 void
6310 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6311     Symbol_table* symtab,
6312     Symbol* sym) const
6313 {
6314   if (size == 64)
6315     {
6316       Powerpc_relobj<size, big_endian>* ppc_object
6317         = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6318       bool is_ordinary;
6319       unsigned int shndx = sym->shndx(&is_ordinary);
6320       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6321         {
6322           Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6323           Address dst_off = gsym->value();
6324           if (ppc_object->opd_valid())
6325             {
6326               unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6327               symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6328             }
6329           else
6330             ppc_object->add_gc_mark(dst_off);
6331         }
6332     }
6333 }
6334
6335 // For a symbol location in .opd, set LOC to the location of the
6336 // function entry.
6337
6338 template<int size, bool big_endian>
6339 void
6340 Target_powerpc<size, big_endian>::do_function_location(
6341     Symbol_location* loc) const
6342 {
6343   if (size == 64 && loc->shndx != 0)
6344     {
6345       if (loc->object->is_dynamic())
6346         {
6347           Powerpc_dynobj<size, big_endian>* ppc_object
6348             = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6349           if (loc->shndx == ppc_object->opd_shndx())
6350             {
6351               Address dest_off;
6352               Address off = loc->offset - ppc_object->opd_address();
6353               loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6354               loc->offset = dest_off;
6355             }
6356         }
6357       else
6358         {
6359           const Powerpc_relobj<size, big_endian>* ppc_object
6360             = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6361           if (loc->shndx == ppc_object->opd_shndx())
6362             {
6363               Address dest_off;
6364               loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6365               loc->offset = dest_off;
6366             }
6367         }
6368     }
6369 }
6370
6371 // Scan relocations for a section.
6372
6373 template<int size, bool big_endian>
6374 void
6375 Target_powerpc<size, big_endian>::scan_relocs(
6376     Symbol_table* symtab,
6377     Layout* layout,
6378     Sized_relobj_file<size, big_endian>* object,
6379     unsigned int data_shndx,
6380     unsigned int sh_type,
6381     const unsigned char* prelocs,
6382     size_t reloc_count,
6383     Output_section* output_section,
6384     bool needs_special_offset_handling,
6385     size_t local_symbol_count,
6386     const unsigned char* plocal_symbols)
6387 {
6388   typedef Target_powerpc<size, big_endian> Powerpc;
6389   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6390
6391   if (sh_type == elfcpp::SHT_REL)
6392     {
6393       gold_error(_("%s: unsupported REL reloc section"),
6394                  object->name().c_str());
6395       return;
6396     }
6397
6398   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6399     symtab,
6400     layout,
6401     this,
6402     object,
6403     data_shndx,
6404     prelocs,
6405     reloc_count,
6406     output_section,
6407     needs_special_offset_handling,
6408     local_symbol_count,
6409     plocal_symbols);
6410 }
6411
6412 // Functor class for processing the global symbol table.
6413 // Removes symbols defined on discarded opd entries.
6414
6415 template<bool big_endian>
6416 class Global_symbol_visitor_opd
6417 {
6418  public:
6419   Global_symbol_visitor_opd()
6420   { }
6421
6422   void
6423   operator()(Sized_symbol<64>* sym)
6424   {
6425     if (sym->has_symtab_index()
6426         || sym->source() != Symbol::FROM_OBJECT
6427         || !sym->in_real_elf())
6428       return;
6429
6430     if (sym->object()->is_dynamic())
6431       return;
6432
6433     Powerpc_relobj<64, big_endian>* symobj
6434       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6435     if (symobj->opd_shndx() == 0)
6436       return;
6437
6438     bool is_ordinary;
6439     unsigned int shndx = sym->shndx(&is_ordinary);
6440     if (shndx == symobj->opd_shndx()
6441         && symobj->get_opd_discard(sym->value()))
6442       sym->set_symtab_index(-1U);
6443   }
6444 };
6445
6446 template<int size, bool big_endian>
6447 void
6448 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6449     Layout* layout,
6450     Symbol_table* symtab)
6451 {
6452   if (size == 64)
6453     {
6454       Output_data_save_res<64, big_endian>* savres
6455         = new Output_data_save_res<64, big_endian>(symtab);
6456       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6457                                       elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6458                                       savres, ORDER_TEXT, false);
6459     }
6460 }
6461
6462 // Sort linker created .got section first (for the header), then input
6463 // sections belonging to files using small model code.
6464
6465 template<bool big_endian>
6466 class Sort_toc_sections
6467 {
6468  public:
6469   bool
6470   operator()(const Output_section::Input_section& is1,
6471              const Output_section::Input_section& is2) const
6472   {
6473     if (!is1.is_input_section() && is2.is_input_section())
6474       return true;
6475     bool small1
6476       = (is1.is_input_section()
6477          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6478              ->has_small_toc_reloc()));
6479     bool small2
6480       = (is2.is_input_section()
6481          && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6482              ->has_small_toc_reloc()));
6483     return small1 && !small2;
6484   }
6485 };
6486
6487 // Finalize the sections.
6488
6489 template<int size, bool big_endian>
6490 void
6491 Target_powerpc<size, big_endian>::do_finalize_sections(
6492     Layout* layout,
6493     const Input_objects*,
6494     Symbol_table* symtab)
6495 {
6496   if (parameters->doing_static_link())
6497     {
6498       // At least some versions of glibc elf-init.o have a strong
6499       // reference to __rela_iplt marker syms.  A weak ref would be
6500       // better..
6501       if (this->iplt_ != NULL)
6502         {
6503           Reloc_section* rel = this->iplt_->rel_plt();
6504           symtab->define_in_output_data("__rela_iplt_start", NULL,
6505                                         Symbol_table::PREDEFINED, rel, 0, 0,
6506                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6507                                         elfcpp::STV_HIDDEN, 0, false, true);
6508           symtab->define_in_output_data("__rela_iplt_end", NULL,
6509                                         Symbol_table::PREDEFINED, rel, 0, 0,
6510                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6511                                         elfcpp::STV_HIDDEN, 0, true, true);
6512         }
6513       else
6514         {
6515           symtab->define_as_constant("__rela_iplt_start", NULL,
6516                                      Symbol_table::PREDEFINED, 0, 0,
6517                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6518                                      elfcpp::STV_HIDDEN, 0, true, false);
6519           symtab->define_as_constant("__rela_iplt_end", NULL,
6520                                      Symbol_table::PREDEFINED, 0, 0,
6521                                      elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6522                                      elfcpp::STV_HIDDEN, 0, true, false);
6523         }
6524     }
6525
6526   if (size == 64)
6527     {
6528       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6529       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6530
6531       if (!parameters->options().relocatable())
6532         {
6533           this->define_save_restore_funcs(layout, symtab);
6534
6535           // Annoyingly, we need to make these sections now whether or
6536           // not we need them.  If we delay until do_relax then we
6537           // need to mess with the relaxation machinery checkpointing.
6538           this->got_section(symtab, layout);
6539           this->make_brlt_section(layout);
6540
6541           if (parameters->options().toc_sort())
6542             {
6543               Output_section* os = this->got_->output_section();
6544               if (os != NULL && os->input_sections().size() > 1)
6545                 std::stable_sort(os->input_sections().begin(),
6546                                  os->input_sections().end(),
6547                                  Sort_toc_sections<big_endian>());
6548             }
6549         }
6550     }
6551
6552   // Fill in some more dynamic tags.
6553   Output_data_dynamic* odyn = layout->dynamic_data();
6554   if (odyn != NULL)
6555     {
6556       const Reloc_section* rel_plt = (this->plt_ == NULL
6557                                       ? NULL
6558                                       : this->plt_->rel_plt());
6559       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6560                                       this->rela_dyn_, true, size == 32);
6561
6562       if (size == 32)
6563         {
6564           if (this->got_ != NULL)
6565             {
6566               this->got_->finalize_data_size();
6567               odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6568                                             this->got_, this->got_->g_o_t());
6569             }
6570         }
6571       else
6572         {
6573           if (this->glink_ != NULL)
6574             {
6575               this->glink_->finalize_data_size();
6576               odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6577                                             this->glink_,
6578                                             (this->glink_->pltresolve_size
6579                                              - 32));
6580             }
6581         }
6582     }
6583
6584   // Emit any relocs we saved in an attempt to avoid generating COPY
6585   // relocs.
6586   if (this->copy_relocs_.any_saved_relocs())
6587     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6588 }
6589
6590 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6591 // reloc.
6592
6593 static bool
6594 ok_lo_toc_insn(uint32_t insn)
6595 {
6596   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6597           || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6598           || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6599           || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6600           || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6601           || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6602           || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6603           || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6604           || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6605           || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6606           || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6607           || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6608           || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6609           || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6610           || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6611               && (insn & 3) != 1)
6612           || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6613               && ((insn & 3) == 0 || (insn & 3) == 3))
6614           || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6615 }
6616
6617 // Return the value to use for a branch relocation.
6618
6619 template<int size, bool big_endian>
6620 typename Target_powerpc<size, big_endian>::Address
6621 Target_powerpc<size, big_endian>::symval_for_branch(
6622     const Symbol_table* symtab,
6623     Address value,
6624     const Sized_symbol<size>* gsym,
6625     Powerpc_relobj<size, big_endian>* object,
6626     unsigned int *dest_shndx)
6627 {
6628   if (size == 32 || this->abiversion() >= 2)
6629     gold_unreachable();
6630   *dest_shndx = 0;
6631
6632   // If the symbol is defined in an opd section, ie. is a function
6633   // descriptor, use the function descriptor code entry address
6634   Powerpc_relobj<size, big_endian>* symobj = object;
6635   if (gsym != NULL
6636       && gsym->source() != Symbol::FROM_OBJECT)
6637     return value;
6638   if (gsym != NULL)
6639     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6640   unsigned int shndx = symobj->opd_shndx();
6641   if (shndx == 0)
6642     return value;
6643   Address opd_addr = symobj->get_output_section_offset(shndx);
6644   if (opd_addr == invalid_address)
6645     return value;
6646   opd_addr += symobj->output_section_address(shndx);
6647   if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
6648     {
6649       Address sec_off;
6650       *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
6651       if (symtab->is_section_folded(symobj, *dest_shndx))
6652         {
6653           Section_id folded
6654             = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6655           symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6656           *dest_shndx = folded.second;
6657         }
6658       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6659       gold_assert(sec_addr != invalid_address);
6660       sec_addr += symobj->output_section(*dest_shndx)->address();
6661       value = sec_addr + sec_off;
6662     }
6663   return value;
6664 }
6665
6666 // Perform a relocation.
6667
6668 template<int size, bool big_endian>
6669 inline bool
6670 Target_powerpc<size, big_endian>::Relocate::relocate(
6671     const Relocate_info<size, big_endian>* relinfo,
6672     Target_powerpc* target,
6673     Output_section* os,
6674     size_t relnum,
6675     const elfcpp::Rela<size, big_endian>& rela,
6676     unsigned int r_type,
6677     const Sized_symbol<size>* gsym,
6678     const Symbol_value<size>* psymval,
6679     unsigned char* view,
6680     Address address,
6681     section_size_type view_size)
6682 {
6683   if (view == NULL)
6684     return true;
6685
6686   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6687     {
6688     case Track_tls::NOT_EXPECTED:
6689       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6690                              _("__tls_get_addr call lacks marker reloc"));
6691       break;
6692     case Track_tls::EXPECTED:
6693       // We have already complained.
6694       break;
6695     case Track_tls::SKIP:
6696       return true;
6697     case Track_tls::NORMAL:
6698       break;
6699     }
6700
6701   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6702   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6703   Powerpc_relobj<size, big_endian>* const object
6704     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6705   Address value = 0;
6706   bool has_stub_value = false;
6707   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6708   if ((gsym != NULL
6709        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6710        : object->local_has_plt_offset(r_sym))
6711       && (!psymval->is_ifunc_symbol()
6712           || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
6713     {
6714       if (size == 64
6715           && gsym != NULL
6716           && target->abiversion() >= 2
6717           && !parameters->options().output_is_position_independent()
6718           && !is_branch_reloc(r_type))
6719         {
6720           unsigned int off = target->glink_section()->find_global_entry(gsym);
6721           gold_assert(off != (unsigned int)-1);
6722           value = target->glink_section()->global_entry_address() + off;
6723         }
6724       else
6725         {
6726           Stub_table<size, big_endian>* stub_table
6727             = object->stub_table(relinfo->data_shndx);
6728           if (stub_table == NULL)
6729             {
6730               // This is a ref from a data section to an ifunc symbol.
6731               if (target->stub_tables().size() != 0)
6732                 stub_table = target->stub_tables()[0];
6733             }
6734           gold_assert(stub_table != NULL);
6735           Address off;
6736           if (gsym != NULL)
6737             off = stub_table->find_plt_call_entry(object, gsym, r_type,
6738                                                   rela.get_r_addend());
6739           else
6740             off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6741                                                   rela.get_r_addend());
6742           gold_assert(off != invalid_address);
6743           value = stub_table->stub_address() + off;
6744         }
6745       has_stub_value = true;
6746     }
6747
6748   if (r_type == elfcpp::R_POWERPC_GOT16
6749       || r_type == elfcpp::R_POWERPC_GOT16_LO
6750       || r_type == elfcpp::R_POWERPC_GOT16_HI
6751       || r_type == elfcpp::R_POWERPC_GOT16_HA
6752       || r_type == elfcpp::R_PPC64_GOT16_DS
6753       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6754     {
6755       if (gsym != NULL)
6756         {
6757           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6758           value = gsym->got_offset(GOT_TYPE_STANDARD);
6759         }
6760       else
6761         {
6762           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6763           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6764           value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6765         }
6766       value -= target->got_section()->got_base_offset(object);
6767     }
6768   else if (r_type == elfcpp::R_PPC64_TOC)
6769     {
6770       value = (target->got_section()->output_section()->address()
6771                + object->toc_base_offset());
6772     }
6773   else if (gsym != NULL
6774            && (r_type == elfcpp::R_POWERPC_REL24
6775                || r_type == elfcpp::R_PPC_PLTREL24)
6776            && has_stub_value)
6777     {
6778       if (size == 64)
6779         {
6780           typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6781           Valtype* wv = reinterpret_cast<Valtype*>(view);
6782           bool can_plt_call = false;
6783           if (rela.get_r_offset() + 8 <= view_size)
6784             {
6785               Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6786               Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6787               if ((insn & 1) != 0
6788                   && (insn2 == nop
6789                       || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6790                 {
6791                   elfcpp::Swap<32, big_endian>::
6792                     writeval(wv + 1, ld_2_1 + target->stk_toc());
6793                   can_plt_call = true;
6794                 }
6795             }
6796           if (!can_plt_call)
6797             {
6798               // If we don't have a branch and link followed by a nop,
6799               // we can't go via the plt because there is no place to
6800               // put a toc restoring instruction.
6801               // Unless we know we won't be returning.
6802               if (strcmp(gsym->name(), "__libc_start_main") == 0)
6803                 can_plt_call = true;
6804             }
6805           if (!can_plt_call)
6806             {
6807               // g++ as of 20130507 emits self-calls without a
6808               // following nop.  This is arguably wrong since we have
6809               // conflicting information.  On the one hand a global
6810               // symbol and on the other a local call sequence, but
6811               // don't error for this special case.
6812               // It isn't possible to cheaply verify we have exactly
6813               // such a call.  Allow all calls to the same section.
6814               bool ok = false;
6815               Address code = value;
6816               if (gsym->source() == Symbol::FROM_OBJECT
6817                   && gsym->object() == object)
6818                 {
6819                   unsigned int dest_shndx = 0;
6820                   if (target->abiversion() < 2)
6821                     {
6822                       Address addend = rela.get_r_addend();
6823                       Address opdent = psymval->value(object, addend);
6824                       code = target->symval_for_branch(relinfo->symtab,
6825                                                        opdent, gsym, object,
6826                                                        &dest_shndx);
6827                     }
6828                   bool is_ordinary;
6829                   if (dest_shndx == 0)
6830                     dest_shndx = gsym->shndx(&is_ordinary);
6831                   ok = dest_shndx == relinfo->data_shndx;
6832                 }
6833               if (!ok)
6834                 {
6835                   gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6836                                          _("call lacks nop, can't restore toc; "
6837                                            "recompile with -fPIC"));
6838                   value = code;
6839                 }
6840             }
6841         }
6842     }
6843   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6844            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6845            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6846            || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6847     {
6848       // First instruction of a global dynamic sequence, arg setup insn.
6849       const bool final = gsym == NULL || gsym->final_value_is_known();
6850       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6851       enum Got_type got_type = GOT_TYPE_STANDARD;
6852       if (tls_type == tls::TLSOPT_NONE)
6853         got_type = GOT_TYPE_TLSGD;
6854       else if (tls_type == tls::TLSOPT_TO_IE)
6855         got_type = GOT_TYPE_TPREL;
6856       if (got_type != GOT_TYPE_STANDARD)
6857         {
6858           if (gsym != NULL)
6859             {
6860               gold_assert(gsym->has_got_offset(got_type));
6861               value = gsym->got_offset(got_type);
6862             }
6863           else
6864             {
6865               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6866               gold_assert(object->local_has_got_offset(r_sym, got_type));
6867               value = object->local_got_offset(r_sym, got_type);
6868             }
6869           value -= target->got_section()->got_base_offset(object);
6870         }
6871       if (tls_type == tls::TLSOPT_TO_IE)
6872         {
6873           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6874               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6875             {
6876               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6877               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6878               insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6879               if (size == 32)
6880                 insn |= 32 << 26; // lwz
6881               else
6882                 insn |= 58 << 26; // ld
6883               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6884             }
6885           r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6886                      - elfcpp::R_POWERPC_GOT_TLSGD16);
6887         }
6888       else if (tls_type == tls::TLSOPT_TO_LE)
6889         {
6890           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6891               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6892             {
6893               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6894               Insn insn = addis_3_13;
6895               if (size == 32)
6896                 insn = addis_3_2;
6897               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6898               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6899               value = psymval->value(object, rela.get_r_addend());
6900             }
6901           else
6902             {
6903               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6904               Insn insn = nop;
6905               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6906               r_type = elfcpp::R_POWERPC_NONE;
6907             }
6908         }
6909     }
6910   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6911            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6912            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6913            || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6914     {
6915       // First instruction of a local dynamic sequence, arg setup insn.
6916       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6917       if (tls_type == tls::TLSOPT_NONE)
6918         {
6919           value = target->tlsld_got_offset();
6920           value -= target->got_section()->got_base_offset(object);
6921         }
6922       else
6923         {
6924           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6925           if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6926               || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6927             {
6928               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6929               Insn insn = addis_3_13;
6930               if (size == 32)
6931                 insn = addis_3_2;
6932               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6933               r_type = elfcpp::R_POWERPC_TPREL16_HA;
6934               value = dtp_offset;
6935             }
6936           else
6937             {
6938               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6939               Insn insn = nop;
6940               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6941               r_type = elfcpp::R_POWERPC_NONE;
6942             }
6943         }
6944     }
6945   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6946            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6947            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6948            || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6949     {
6950       // Accesses relative to a local dynamic sequence address,
6951       // no optimisation here.
6952       if (gsym != NULL)
6953         {
6954           gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6955           value = gsym->got_offset(GOT_TYPE_DTPREL);
6956         }
6957       else
6958         {
6959           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6960           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6961           value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6962         }
6963       value -= target->got_section()->got_base_offset(object);
6964     }
6965   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6966            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6967            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6968            || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6969     {
6970       // First instruction of initial exec sequence.
6971       const bool final = gsym == NULL || gsym->final_value_is_known();
6972       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6973       if (tls_type == tls::TLSOPT_NONE)
6974         {
6975           if (gsym != NULL)
6976             {
6977               gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
6978               value = gsym->got_offset(GOT_TYPE_TPREL);
6979             }
6980           else
6981             {
6982               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6983               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
6984               value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
6985             }
6986           value -= target->got_section()->got_base_offset(object);
6987         }
6988       else
6989         {
6990           gold_assert(tls_type == tls::TLSOPT_TO_LE);
6991           if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6992               || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6993             {
6994               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6995               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6996               insn &= (1 << 26) - (1 << 21); // extract rt from ld
6997               if (size == 32)
6998                 insn |= addis_0_2;
6999               else
7000                 insn |= addis_0_13;
7001               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7002               r_type = elfcpp::R_POWERPC_TPREL16_HA;
7003               value = psymval->value(object, rela.get_r_addend());
7004             }
7005           else
7006             {
7007               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7008               Insn insn = nop;
7009               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7010               r_type = elfcpp::R_POWERPC_NONE;
7011             }
7012         }
7013     }
7014   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7015            || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7016     {
7017       // Second instruction of a global dynamic sequence,
7018       // the __tls_get_addr call
7019       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7020       const bool final = gsym == NULL || gsym->final_value_is_known();
7021       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7022       if (tls_type != tls::TLSOPT_NONE)
7023         {
7024           if (tls_type == tls::TLSOPT_TO_IE)
7025             {
7026               Insn* iview = reinterpret_cast<Insn*>(view);
7027               Insn insn = add_3_3_13;
7028               if (size == 32)
7029                 insn = add_3_3_2;
7030               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7031               r_type = elfcpp::R_POWERPC_NONE;
7032             }
7033           else
7034             {
7035               Insn* iview = reinterpret_cast<Insn*>(view);
7036               Insn insn = addi_3_3;
7037               elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7038               r_type = elfcpp::R_POWERPC_TPREL16_LO;
7039               view += 2 * big_endian;
7040               value = psymval->value(object, rela.get_r_addend());
7041             }
7042           this->skip_next_tls_get_addr_call();
7043         }
7044     }
7045   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7046            || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7047     {
7048       // Second instruction of a local dynamic sequence,
7049       // the __tls_get_addr call
7050       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7051       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7052       if (tls_type == tls::TLSOPT_TO_LE)
7053         {
7054           Insn* iview = reinterpret_cast<Insn*>(view);
7055           Insn insn = addi_3_3;
7056           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7057           this->skip_next_tls_get_addr_call();
7058           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7059           view += 2 * big_endian;
7060           value = dtp_offset;
7061         }
7062     }
7063   else if (r_type == elfcpp::R_POWERPC_TLS)
7064     {
7065       // Second instruction of an initial exec sequence
7066       const bool final = gsym == NULL || gsym->final_value_is_known();
7067       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7068       if (tls_type == tls::TLSOPT_TO_LE)
7069         {
7070           Insn* iview = reinterpret_cast<Insn*>(view);
7071           Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7072           unsigned int reg = size == 32 ? 2 : 13;
7073           insn = at_tls_transform(insn, reg);
7074           gold_assert(insn != 0);
7075           elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7076           r_type = elfcpp::R_POWERPC_TPREL16_LO;
7077           view += 2 * big_endian;
7078           value = psymval->value(object, rela.get_r_addend());
7079         }
7080     }
7081   else if (!has_stub_value)
7082     {
7083       Address addend = 0;
7084       unsigned int dest_shndx;
7085       if (r_type != elfcpp::R_PPC_PLTREL24)
7086         addend = rela.get_r_addend();
7087       value = psymval->value(object, addend);
7088       if (size == 64 && is_branch_reloc(r_type))
7089         {
7090           if (target->abiversion() >= 2)
7091             {
7092               if (gsym != NULL)
7093                 value += object->ppc64_local_entry_offset(gsym);
7094               else
7095                 value += object->ppc64_local_entry_offset(r_sym);
7096             }
7097           else
7098             value = target->symval_for_branch(relinfo->symtab, value,
7099                                               gsym, object, &dest_shndx);
7100         }
7101       unsigned int max_branch_offset = 0;
7102       if (r_type == elfcpp::R_POWERPC_REL24
7103           || r_type == elfcpp::R_PPC_PLTREL24
7104           || r_type == elfcpp::R_PPC_LOCAL24PC)
7105         max_branch_offset = 1 << 25;
7106       else if (r_type == elfcpp::R_POWERPC_REL14
7107                || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
7108                || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
7109         max_branch_offset = 1 << 15;
7110       if (max_branch_offset != 0
7111           && value - address + max_branch_offset >= 2 * max_branch_offset)
7112         {
7113           Stub_table<size, big_endian>* stub_table
7114             = object->stub_table(relinfo->data_shndx);
7115           if (stub_table != NULL)
7116             {
7117               Address off = stub_table->find_long_branch_entry(object, value);
7118               if (off != invalid_address)
7119                 {
7120                   value = (stub_table->stub_address() + stub_table->plt_size()
7121                            + off);
7122                   has_stub_value = true;
7123                 }
7124             }
7125         }
7126     }
7127
7128   switch (r_type)
7129     {
7130     case elfcpp::R_PPC64_REL64:
7131     case elfcpp::R_POWERPC_REL32:
7132     case elfcpp::R_POWERPC_REL24:
7133     case elfcpp::R_PPC_PLTREL24:
7134     case elfcpp::R_PPC_LOCAL24PC:
7135     case elfcpp::R_POWERPC_REL16:
7136     case elfcpp::R_POWERPC_REL16_LO:
7137     case elfcpp::R_POWERPC_REL16_HI:
7138     case elfcpp::R_POWERPC_REL16_HA:
7139     case elfcpp::R_POWERPC_REL14:
7140     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7141     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7142       value -= address;
7143       break;
7144
7145     case elfcpp::R_PPC64_TOC16:
7146     case elfcpp::R_PPC64_TOC16_LO:
7147     case elfcpp::R_PPC64_TOC16_HI:
7148     case elfcpp::R_PPC64_TOC16_HA:
7149     case elfcpp::R_PPC64_TOC16_DS:
7150     case elfcpp::R_PPC64_TOC16_LO_DS:
7151       // Subtract the TOC base address.
7152       value -= (target->got_section()->output_section()->address()
7153                 + object->toc_base_offset());
7154       break;
7155
7156     case elfcpp::R_POWERPC_SECTOFF:
7157     case elfcpp::R_POWERPC_SECTOFF_LO:
7158     case elfcpp::R_POWERPC_SECTOFF_HI:
7159     case elfcpp::R_POWERPC_SECTOFF_HA:
7160     case elfcpp::R_PPC64_SECTOFF_DS:
7161     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7162       if (os != NULL)
7163         value -= os->address();
7164       break;
7165
7166     case elfcpp::R_PPC64_TPREL16_DS:
7167     case elfcpp::R_PPC64_TPREL16_LO_DS:
7168     case elfcpp::R_PPC64_TPREL16_HIGH:
7169     case elfcpp::R_PPC64_TPREL16_HIGHA:
7170       if (size != 64)
7171         // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7172         break;
7173     case elfcpp::R_POWERPC_TPREL16:
7174     case elfcpp::R_POWERPC_TPREL16_LO:
7175     case elfcpp::R_POWERPC_TPREL16_HI:
7176     case elfcpp::R_POWERPC_TPREL16_HA:
7177     case elfcpp::R_POWERPC_TPREL:
7178     case elfcpp::R_PPC64_TPREL16_HIGHER:
7179     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7180     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7181     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7182       // tls symbol values are relative to tls_segment()->vaddr()
7183       value -= tp_offset;
7184       break;
7185
7186     case elfcpp::R_PPC64_DTPREL16_DS:
7187     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7188     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7189     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7190     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7191     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7192       if (size != 64)
7193         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7194         // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7195         break;
7196     case elfcpp::R_POWERPC_DTPREL16:
7197     case elfcpp::R_POWERPC_DTPREL16_LO:
7198     case elfcpp::R_POWERPC_DTPREL16_HI:
7199     case elfcpp::R_POWERPC_DTPREL16_HA:
7200     case elfcpp::R_POWERPC_DTPREL:
7201     case elfcpp::R_PPC64_DTPREL16_HIGH:
7202     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7203       // tls symbol values are relative to tls_segment()->vaddr()
7204       value -= dtp_offset;
7205       break;
7206
7207     case elfcpp::R_PPC64_ADDR64_LOCAL:
7208       if (gsym != NULL)
7209         value += object->ppc64_local_entry_offset(gsym);
7210       else
7211         value += object->ppc64_local_entry_offset(r_sym);
7212       break;
7213
7214     default:
7215       break;
7216     }
7217
7218   Insn branch_bit = 0;
7219   switch (r_type)
7220     {
7221     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7222     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7223       branch_bit = 1 << 21;
7224     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7225     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7226       {
7227         Insn* iview = reinterpret_cast<Insn*>(view);
7228         Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7229         insn &= ~(1 << 21);
7230         insn |= branch_bit;
7231         if (this->is_isa_v2)
7232           {
7233             // Set 'a' bit.  This is 0b00010 in BO field for branch
7234             // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7235             // for branch on CTR insns (BO == 1a00t or 1a01t).
7236             if ((insn & (0x14 << 21)) == (0x04 << 21))
7237               insn |= 0x02 << 21;
7238             else if ((insn & (0x14 << 21)) == (0x10 << 21))
7239               insn |= 0x08 << 21;
7240             else
7241               break;
7242           }
7243         else
7244           {
7245             // Invert 'y' bit if not the default.
7246             if (static_cast<Signed_address>(value) < 0)
7247               insn ^= 1 << 21;
7248           }
7249         elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7250       }
7251       break;
7252
7253     default:
7254       break;
7255     }
7256
7257   if (size == 64)
7258     {
7259       // Multi-instruction sequences that access the TOC can be
7260       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7261       // to             nop;           addi rb,r2,x;
7262       switch (r_type)
7263         {
7264         default:
7265           break;
7266
7267         case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7268         case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7269         case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7270         case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7271         case elfcpp::R_POWERPC_GOT16_HA:
7272         case elfcpp::R_PPC64_TOC16_HA:
7273           if (parameters->options().toc_optimize())
7274             {
7275               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7276               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7277               if ((insn & ((0x3f << 26) | 0x1f << 16))
7278                   != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7279                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7280                                        _("toc optimization is not supported "
7281                                          "for %#08x instruction"), insn);
7282               else if (value + 0x8000 < 0x10000)
7283                 {
7284                   elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7285                   return true;
7286                 }
7287             }
7288           break;
7289
7290         case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7291         case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7292         case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7293         case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7294         case elfcpp::R_POWERPC_GOT16_LO:
7295         case elfcpp::R_PPC64_GOT16_LO_DS:
7296         case elfcpp::R_PPC64_TOC16_LO:
7297         case elfcpp::R_PPC64_TOC16_LO_DS:
7298           if (parameters->options().toc_optimize())
7299             {
7300               Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7301               Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7302               if (!ok_lo_toc_insn(insn))
7303                 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7304                                        _("toc optimization is not supported "
7305                                          "for %#08x instruction"), insn);
7306               else if (value + 0x8000 < 0x10000)
7307                 {
7308                   if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7309                     {
7310                       // Transform addic to addi when we change reg.
7311                       insn &= ~((0x3f << 26) | (0x1f << 16));
7312                       insn |= (14u << 26) | (2 << 16);
7313                     }
7314                   else
7315                     {
7316                       insn &= ~(0x1f << 16);
7317                       insn |= 2 << 16;
7318                     }
7319                   elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7320                 }
7321             }
7322           break;
7323         }
7324     }
7325
7326   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7327   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7328   switch (r_type)
7329     {
7330     case elfcpp::R_POWERPC_ADDR32:
7331     case elfcpp::R_POWERPC_UADDR32:
7332       if (size == 64)
7333         overflow = Reloc::CHECK_BITFIELD;
7334       break;
7335
7336     case elfcpp::R_POWERPC_REL32:
7337       if (size == 64)
7338         overflow = Reloc::CHECK_SIGNED;
7339       break;
7340
7341     case elfcpp::R_POWERPC_UADDR16:
7342       overflow = Reloc::CHECK_BITFIELD;
7343       break;
7344
7345     case elfcpp::R_POWERPC_ADDR16:
7346       // We really should have three separate relocations,
7347       // one for 16-bit data, one for insns with 16-bit signed fields,
7348       // and one for insns with 16-bit unsigned fields.
7349       overflow = Reloc::CHECK_BITFIELD;
7350       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7351         overflow = Reloc::CHECK_LOW_INSN;
7352       break;
7353
7354     case elfcpp::R_POWERPC_ADDR16_HI:
7355     case elfcpp::R_POWERPC_ADDR16_HA:
7356     case elfcpp::R_POWERPC_GOT16_HI:
7357     case elfcpp::R_POWERPC_GOT16_HA:
7358     case elfcpp::R_POWERPC_PLT16_HI:
7359     case elfcpp::R_POWERPC_PLT16_HA:
7360     case elfcpp::R_POWERPC_SECTOFF_HI:
7361     case elfcpp::R_POWERPC_SECTOFF_HA:
7362     case elfcpp::R_PPC64_TOC16_HI:
7363     case elfcpp::R_PPC64_TOC16_HA:
7364     case elfcpp::R_PPC64_PLTGOT16_HI:
7365     case elfcpp::R_PPC64_PLTGOT16_HA:
7366     case elfcpp::R_POWERPC_TPREL16_HI:
7367     case elfcpp::R_POWERPC_TPREL16_HA:
7368     case elfcpp::R_POWERPC_DTPREL16_HI:
7369     case elfcpp::R_POWERPC_DTPREL16_HA:
7370     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7371     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7372     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7373     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7374     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7375     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7376     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7377     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7378     case elfcpp::R_POWERPC_REL16_HI:
7379     case elfcpp::R_POWERPC_REL16_HA:
7380       if (size != 32)
7381         overflow = Reloc::CHECK_HIGH_INSN;
7382       break;
7383
7384     case elfcpp::R_POWERPC_REL16:
7385     case elfcpp::R_PPC64_TOC16:
7386     case elfcpp::R_POWERPC_GOT16:
7387     case elfcpp::R_POWERPC_SECTOFF:
7388     case elfcpp::R_POWERPC_TPREL16:
7389     case elfcpp::R_POWERPC_DTPREL16:
7390     case elfcpp::R_POWERPC_GOT_TLSGD16:
7391     case elfcpp::R_POWERPC_GOT_TLSLD16:
7392     case elfcpp::R_POWERPC_GOT_TPREL16:
7393     case elfcpp::R_POWERPC_GOT_DTPREL16:
7394       overflow = Reloc::CHECK_LOW_INSN;
7395       break;
7396
7397     case elfcpp::R_POWERPC_ADDR24:
7398     case elfcpp::R_POWERPC_ADDR14:
7399     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7400     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7401     case elfcpp::R_PPC64_ADDR16_DS:
7402     case elfcpp::R_POWERPC_REL24:
7403     case elfcpp::R_PPC_PLTREL24:
7404     case elfcpp::R_PPC_LOCAL24PC:
7405     case elfcpp::R_PPC64_TPREL16_DS:
7406     case elfcpp::R_PPC64_DTPREL16_DS:
7407     case elfcpp::R_PPC64_TOC16_DS:
7408     case elfcpp::R_PPC64_GOT16_DS:
7409     case elfcpp::R_PPC64_SECTOFF_DS:
7410     case elfcpp::R_POWERPC_REL14:
7411     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7412     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7413       overflow = Reloc::CHECK_SIGNED;
7414       break;
7415     }
7416
7417   if (overflow == Reloc::CHECK_LOW_INSN
7418       || overflow == Reloc::CHECK_HIGH_INSN)
7419     {
7420       Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7421       Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7422
7423       overflow = Reloc::CHECK_SIGNED;
7424       if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7425         overflow = Reloc::CHECK_BITFIELD;
7426       else if (overflow == Reloc::CHECK_LOW_INSN
7427                ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7428                   || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7429                   || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7430                : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7431                   || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7432                   || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7433         overflow = Reloc::CHECK_UNSIGNED;
7434     }
7435
7436   typename Powerpc_relocate_functions<size, big_endian>::Status status
7437     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7438   switch (r_type)
7439     {
7440     case elfcpp::R_POWERPC_NONE:
7441     case elfcpp::R_POWERPC_TLS:
7442     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7443     case elfcpp::R_POWERPC_GNU_VTENTRY:
7444       break;
7445
7446     case elfcpp::R_PPC64_ADDR64:
7447     case elfcpp::R_PPC64_REL64:
7448     case elfcpp::R_PPC64_TOC:
7449     case elfcpp::R_PPC64_ADDR64_LOCAL:
7450       Reloc::addr64(view, value);
7451       break;
7452
7453     case elfcpp::R_POWERPC_TPREL:
7454     case elfcpp::R_POWERPC_DTPREL:
7455       if (size == 64)
7456         Reloc::addr64(view, value);
7457       else
7458         status = Reloc::addr32(view, value, overflow);
7459       break;
7460
7461     case elfcpp::R_PPC64_UADDR64:
7462       Reloc::addr64_u(view, value);
7463       break;
7464
7465     case elfcpp::R_POWERPC_ADDR32:
7466       status = Reloc::addr32(view, value, overflow);
7467       break;
7468
7469     case elfcpp::R_POWERPC_REL32:
7470     case elfcpp::R_POWERPC_UADDR32:
7471       status = Reloc::addr32_u(view, value, overflow);
7472       break;
7473
7474     case elfcpp::R_POWERPC_ADDR24:
7475     case elfcpp::R_POWERPC_REL24:
7476     case elfcpp::R_PPC_PLTREL24:
7477     case elfcpp::R_PPC_LOCAL24PC:
7478       status = Reloc::addr24(view, value, overflow);
7479       break;
7480
7481     case elfcpp::R_POWERPC_GOT_DTPREL16:
7482     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7483       if (size == 64)
7484         {
7485           status = Reloc::addr16_ds(view, value, overflow);
7486           break;
7487         }
7488     case elfcpp::R_POWERPC_ADDR16:
7489     case elfcpp::R_POWERPC_REL16:
7490     case elfcpp::R_PPC64_TOC16:
7491     case elfcpp::R_POWERPC_GOT16:
7492     case elfcpp::R_POWERPC_SECTOFF:
7493     case elfcpp::R_POWERPC_TPREL16:
7494     case elfcpp::R_POWERPC_DTPREL16:
7495     case elfcpp::R_POWERPC_GOT_TLSGD16:
7496     case elfcpp::R_POWERPC_GOT_TLSLD16:
7497     case elfcpp::R_POWERPC_GOT_TPREL16:
7498     case elfcpp::R_POWERPC_ADDR16_LO:
7499     case elfcpp::R_POWERPC_REL16_LO:
7500     case elfcpp::R_PPC64_TOC16_LO:
7501     case elfcpp::R_POWERPC_GOT16_LO:
7502     case elfcpp::R_POWERPC_SECTOFF_LO:
7503     case elfcpp::R_POWERPC_TPREL16_LO:
7504     case elfcpp::R_POWERPC_DTPREL16_LO:
7505     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7506     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7507     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7508       status = Reloc::addr16(view, value, overflow);
7509       break;
7510
7511     case elfcpp::R_POWERPC_UADDR16:
7512       status = Reloc::addr16_u(view, value, overflow);
7513       break;
7514
7515     case elfcpp::R_PPC64_ADDR16_HIGH:
7516     case elfcpp::R_PPC64_TPREL16_HIGH:
7517     case elfcpp::R_PPC64_DTPREL16_HIGH:
7518       if (size == 32)
7519         // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7520         goto unsupp;
7521     case elfcpp::R_POWERPC_ADDR16_HI:
7522     case elfcpp::R_POWERPC_REL16_HI:
7523     case elfcpp::R_PPC64_TOC16_HI:
7524     case elfcpp::R_POWERPC_GOT16_HI:
7525     case elfcpp::R_POWERPC_SECTOFF_HI:
7526     case elfcpp::R_POWERPC_TPREL16_HI:
7527     case elfcpp::R_POWERPC_DTPREL16_HI:
7528     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7529     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7530     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7531     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7532       Reloc::addr16_hi(view, value);
7533       break;
7534
7535     case elfcpp::R_PPC64_ADDR16_HIGHA:
7536     case elfcpp::R_PPC64_TPREL16_HIGHA:
7537     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7538       if (size == 32)
7539         // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7540         goto unsupp;
7541     case elfcpp::R_POWERPC_ADDR16_HA:
7542     case elfcpp::R_POWERPC_REL16_HA:
7543     case elfcpp::R_PPC64_TOC16_HA:
7544     case elfcpp::R_POWERPC_GOT16_HA:
7545     case elfcpp::R_POWERPC_SECTOFF_HA:
7546     case elfcpp::R_POWERPC_TPREL16_HA:
7547     case elfcpp::R_POWERPC_DTPREL16_HA:
7548     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7549     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7550     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7551     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7552       Reloc::addr16_ha(view, value);
7553       break;
7554
7555     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7556       if (size == 32)
7557         // R_PPC_EMB_NADDR16_LO
7558         goto unsupp;
7559     case elfcpp::R_PPC64_ADDR16_HIGHER:
7560     case elfcpp::R_PPC64_TPREL16_HIGHER:
7561       Reloc::addr16_hi2(view, value);
7562       break;
7563
7564     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7565       if (size == 32)
7566         // R_PPC_EMB_NADDR16_HI
7567         goto unsupp;
7568     case elfcpp::R_PPC64_ADDR16_HIGHERA:
7569     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7570       Reloc::addr16_ha2(view, value);
7571       break;
7572
7573     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7574       if (size == 32)
7575         // R_PPC_EMB_NADDR16_HA
7576         goto unsupp;
7577     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7578     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7579       Reloc::addr16_hi3(view, value);
7580       break;
7581
7582     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7583       if (size == 32)
7584         // R_PPC_EMB_SDAI16
7585         goto unsupp;
7586     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7587     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7588       Reloc::addr16_ha3(view, value);
7589       break;
7590
7591     case elfcpp::R_PPC64_DTPREL16_DS:
7592     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7593       if (size == 32)
7594         // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7595         goto unsupp;
7596     case elfcpp::R_PPC64_TPREL16_DS:
7597     case elfcpp::R_PPC64_TPREL16_LO_DS:
7598       if (size == 32)
7599         // R_PPC_TLSGD, R_PPC_TLSLD
7600         break;
7601     case elfcpp::R_PPC64_ADDR16_DS:
7602     case elfcpp::R_PPC64_ADDR16_LO_DS:
7603     case elfcpp::R_PPC64_TOC16_DS:
7604     case elfcpp::R_PPC64_TOC16_LO_DS:
7605     case elfcpp::R_PPC64_GOT16_DS:
7606     case elfcpp::R_PPC64_GOT16_LO_DS:
7607     case elfcpp::R_PPC64_SECTOFF_DS:
7608     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7609       status = Reloc::addr16_ds(view, value, overflow);
7610       break;
7611
7612     case elfcpp::R_POWERPC_ADDR14:
7613     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7614     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7615     case elfcpp::R_POWERPC_REL14:
7616     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7617     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7618       status = Reloc::addr14(view, value, overflow);
7619       break;
7620
7621     case elfcpp::R_POWERPC_COPY:
7622     case elfcpp::R_POWERPC_GLOB_DAT:
7623     case elfcpp::R_POWERPC_JMP_SLOT:
7624     case elfcpp::R_POWERPC_RELATIVE:
7625     case elfcpp::R_POWERPC_DTPMOD:
7626     case elfcpp::R_PPC64_JMP_IREL:
7627     case elfcpp::R_POWERPC_IRELATIVE:
7628       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7629                              _("unexpected reloc %u in object file"),
7630                              r_type);
7631       break;
7632
7633     case elfcpp::R_PPC_EMB_SDA21:
7634       if (size == 32)
7635         goto unsupp;
7636       else
7637         {
7638           // R_PPC64_TOCSAVE.  For the time being this can be ignored.
7639         }
7640       break;
7641
7642     case elfcpp::R_PPC_EMB_SDA2I16:
7643     case elfcpp::R_PPC_EMB_SDA2REL:
7644       if (size == 32)
7645         goto unsupp;
7646       // R_PPC64_TLSGD, R_PPC64_TLSLD
7647       break;
7648
7649     case elfcpp::R_POWERPC_PLT32:
7650     case elfcpp::R_POWERPC_PLTREL32:
7651     case elfcpp::R_POWERPC_PLT16_LO:
7652     case elfcpp::R_POWERPC_PLT16_HI:
7653     case elfcpp::R_POWERPC_PLT16_HA:
7654     case elfcpp::R_PPC_SDAREL16:
7655     case elfcpp::R_POWERPC_ADDR30:
7656     case elfcpp::R_PPC64_PLT64:
7657     case elfcpp::R_PPC64_PLTREL64:
7658     case elfcpp::R_PPC64_PLTGOT16:
7659     case elfcpp::R_PPC64_PLTGOT16_LO:
7660     case elfcpp::R_PPC64_PLTGOT16_HI:
7661     case elfcpp::R_PPC64_PLTGOT16_HA:
7662     case elfcpp::R_PPC64_PLT16_LO_DS:
7663     case elfcpp::R_PPC64_PLTGOT16_DS:
7664     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7665     case elfcpp::R_PPC_EMB_RELSDA:
7666     case elfcpp::R_PPC_TOC16:
7667     default:
7668     unsupp:
7669       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7670                              _("unsupported reloc %u"),
7671                              r_type);
7672       break;
7673     }
7674   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
7675       && (has_stub_value
7676           || !(gsym != NULL
7677                && gsym->is_weak_undefined()
7678                && is_branch_reloc(r_type))))
7679     {
7680       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7681                              _("relocation overflow"));
7682       if (has_stub_value)
7683         gold_info(_("try relinking with a smaller --stub-group-size"));
7684     }
7685
7686   return true;
7687 }
7688
7689 // Relocate section data.
7690
7691 template<int size, bool big_endian>
7692 void
7693 Target_powerpc<size, big_endian>::relocate_section(
7694     const Relocate_info<size, big_endian>* relinfo,
7695     unsigned int sh_type,
7696     const unsigned char* prelocs,
7697     size_t reloc_count,
7698     Output_section* output_section,
7699     bool needs_special_offset_handling,
7700     unsigned char* view,
7701     Address address,
7702     section_size_type view_size,
7703     const Reloc_symbol_changes* reloc_symbol_changes)
7704 {
7705   typedef Target_powerpc<size, big_endian> Powerpc;
7706   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7707   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7708     Powerpc_comdat_behavior;
7709
7710   gold_assert(sh_type == elfcpp::SHT_RELA);
7711
7712   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7713                          Powerpc_relocate, Powerpc_comdat_behavior>(
7714     relinfo,
7715     this,
7716     prelocs,
7717     reloc_count,
7718     output_section,
7719     needs_special_offset_handling,
7720     view,
7721     address,
7722     view_size,
7723     reloc_symbol_changes);
7724 }
7725
7726 class Powerpc_scan_relocatable_reloc
7727 {
7728 public:
7729   // Return the strategy to use for a local symbol which is not a
7730   // section symbol, given the relocation type.
7731   inline Relocatable_relocs::Reloc_strategy
7732   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7733   {
7734     if (r_type == 0 && r_sym == 0)
7735       return Relocatable_relocs::RELOC_DISCARD;
7736     return Relocatable_relocs::RELOC_COPY;
7737   }
7738
7739   // Return the strategy to use for a local symbol which is a section
7740   // symbol, given the relocation type.
7741   inline Relocatable_relocs::Reloc_strategy
7742   local_section_strategy(unsigned int, Relobj*)
7743   {
7744     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7745   }
7746
7747   // Return the strategy to use for a global symbol, given the
7748   // relocation type, the object, and the symbol index.
7749   inline Relocatable_relocs::Reloc_strategy
7750   global_strategy(unsigned int r_type, Relobj*, unsigned int)
7751   {
7752     if (r_type == elfcpp::R_PPC_PLTREL24)
7753       return Relocatable_relocs::RELOC_SPECIAL;
7754     return Relocatable_relocs::RELOC_COPY;
7755   }
7756 };
7757
7758 // Scan the relocs during a relocatable link.
7759
7760 template<int size, bool big_endian>
7761 void
7762 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7763     Symbol_table* symtab,
7764     Layout* layout,
7765     Sized_relobj_file<size, big_endian>* object,
7766     unsigned int data_shndx,
7767     unsigned int sh_type,
7768     const unsigned char* prelocs,
7769     size_t reloc_count,
7770     Output_section* output_section,
7771     bool needs_special_offset_handling,
7772     size_t local_symbol_count,
7773     const unsigned char* plocal_symbols,
7774     Relocatable_relocs* rr)
7775 {
7776   gold_assert(sh_type == elfcpp::SHT_RELA);
7777
7778   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7779                                 Powerpc_scan_relocatable_reloc>(
7780     symtab,
7781     layout,
7782     object,
7783     data_shndx,
7784     prelocs,
7785     reloc_count,
7786     output_section,
7787     needs_special_offset_handling,
7788     local_symbol_count,
7789     plocal_symbols,
7790     rr);
7791 }
7792
7793 // Emit relocations for a section.
7794 // This is a modified version of the function by the same name in
7795 // target-reloc.h.  Using relocate_special_relocatable for
7796 // R_PPC_PLTREL24 would require duplication of the entire body of the
7797 // loop, so we may as well duplicate the whole thing.
7798
7799 template<int size, bool big_endian>
7800 void
7801 Target_powerpc<size, big_endian>::relocate_relocs(
7802     const Relocate_info<size, big_endian>* relinfo,
7803     unsigned int sh_type,
7804     const unsigned char* prelocs,
7805     size_t reloc_count,
7806     Output_section* output_section,
7807     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7808     const Relocatable_relocs* rr,
7809     unsigned char*,
7810     Address view_address,
7811     section_size_type,
7812     unsigned char* reloc_view,
7813     section_size_type reloc_view_size)
7814 {
7815   gold_assert(sh_type == elfcpp::SHT_RELA);
7816
7817   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7818     Reltype;
7819   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7820     Reltype_write;
7821   const int reloc_size
7822     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7823
7824   Powerpc_relobj<size, big_endian>* const object
7825     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7826   const unsigned int local_count = object->local_symbol_count();
7827   unsigned int got2_shndx = object->got2_shndx();
7828   Address got2_addend = 0;
7829   if (got2_shndx != 0)
7830     {
7831       got2_addend = object->get_output_section_offset(got2_shndx);
7832       gold_assert(got2_addend != invalid_address);
7833     }
7834
7835   unsigned char* pwrite = reloc_view;
7836   bool zap_next = false;
7837   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7838     {
7839       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7840       if (strategy == Relocatable_relocs::RELOC_DISCARD)
7841         continue;
7842
7843       Reltype reloc(prelocs);
7844       Reltype_write reloc_write(pwrite);
7845
7846       Address offset = reloc.get_r_offset();
7847       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7848       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7849       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7850       const unsigned int orig_r_sym = r_sym;
7851       typename elfcpp::Elf_types<size>::Elf_Swxword addend
7852         = reloc.get_r_addend();
7853       const Symbol* gsym = NULL;
7854
7855       if (zap_next)
7856         {
7857           // We could arrange to discard these and other relocs for
7858           // tls optimised sequences in the strategy methods, but for
7859           // now do as BFD ld does.
7860           r_type = elfcpp::R_POWERPC_NONE;
7861           zap_next = false;
7862         }
7863
7864       // Get the new symbol index.
7865       if (r_sym < local_count)
7866         {
7867           switch (strategy)
7868             {
7869             case Relocatable_relocs::RELOC_COPY:
7870             case Relocatable_relocs::RELOC_SPECIAL:
7871               if (r_sym != 0)
7872                 {
7873                   r_sym = object->symtab_index(r_sym);
7874                   gold_assert(r_sym != -1U);
7875                 }
7876               break;
7877
7878             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7879               {
7880                 // We are adjusting a section symbol.  We need to find
7881                 // the symbol table index of the section symbol for
7882                 // the output section corresponding to input section
7883                 // in which this symbol is defined.
7884                 gold_assert(r_sym < local_count);
7885                 bool is_ordinary;
7886                 unsigned int shndx =
7887                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
7888                 gold_assert(is_ordinary);
7889                 Output_section* os = object->output_section(shndx);
7890                 gold_assert(os != NULL);
7891                 gold_assert(os->needs_symtab_index());
7892                 r_sym = os->symtab_index();
7893               }
7894               break;
7895
7896             default:
7897               gold_unreachable();
7898             }
7899         }
7900       else
7901         {
7902           gsym = object->global_symbol(r_sym);
7903           gold_assert(gsym != NULL);
7904           if (gsym->is_forwarder())
7905             gsym = relinfo->symtab->resolve_forwards(gsym);
7906
7907           gold_assert(gsym->has_symtab_index());
7908           r_sym = gsym->symtab_index();
7909         }
7910
7911       // Get the new offset--the location in the output section where
7912       // this relocation should be applied.
7913       if (static_cast<Address>(offset_in_output_section) != invalid_address)
7914         offset += offset_in_output_section;
7915       else
7916         {
7917           section_offset_type sot_offset =
7918             convert_types<section_offset_type, Address>(offset);
7919           section_offset_type new_sot_offset =
7920             output_section->output_offset(object, relinfo->data_shndx,
7921                                           sot_offset);
7922           gold_assert(new_sot_offset != -1);
7923           offset = new_sot_offset;
7924         }
7925
7926       // In an object file, r_offset is an offset within the section.
7927       // In an executable or dynamic object, generated by
7928       // --emit-relocs, r_offset is an absolute address.
7929       if (!parameters->options().relocatable())
7930         {
7931           offset += view_address;
7932           if (static_cast<Address>(offset_in_output_section) != invalid_address)
7933             offset -= offset_in_output_section;
7934         }
7935
7936       // Handle the reloc addend based on the strategy.
7937       if (strategy == Relocatable_relocs::RELOC_COPY)
7938         ;
7939       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7940         {
7941           const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7942           addend = psymval->value(object, addend);
7943         }
7944       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7945         {
7946           if (addend >= 32768)
7947             addend += got2_addend;
7948         }
7949       else
7950         gold_unreachable();
7951
7952       if (!parameters->options().relocatable())
7953         {
7954           if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7955               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7956               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7957               || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7958             {
7959               // First instruction of a global dynamic sequence,
7960               // arg setup insn.
7961               const bool final = gsym == NULL || gsym->final_value_is_known();
7962               switch (this->optimize_tls_gd(final))
7963                 {
7964                 case tls::TLSOPT_TO_IE:
7965                   r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7966                              - elfcpp::R_POWERPC_GOT_TLSGD16);
7967                   break;
7968                 case tls::TLSOPT_TO_LE:
7969                   if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7970                       || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7971                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
7972                   else
7973                     {
7974                       r_type = elfcpp::R_POWERPC_NONE;
7975                       offset -= 2 * big_endian;
7976                     }
7977                   break;
7978                 default:
7979                   break;
7980                 }
7981             }
7982           else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7983                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7984                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7985                    || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7986             {
7987               // First instruction of a local dynamic sequence,
7988               // arg setup insn.
7989               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7990                 {
7991                   if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7992                       || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7993                     {
7994                       r_type = elfcpp::R_POWERPC_TPREL16_HA;
7995                       const Output_section* os = relinfo->layout->tls_segment()
7996                         ->first_section();
7997                       gold_assert(os != NULL);
7998                       gold_assert(os->needs_symtab_index());
7999                       r_sym = os->symtab_index();
8000                       addend = dtp_offset;
8001                     }
8002                   else
8003                     {
8004                       r_type = elfcpp::R_POWERPC_NONE;
8005                       offset -= 2 * big_endian;
8006                     }
8007                 }
8008             }
8009           else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8010                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8011                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8012                    || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8013             {
8014               // First instruction of initial exec sequence.
8015               const bool final = gsym == NULL || gsym->final_value_is_known();
8016               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8017                 {
8018                   if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8019                       || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8020                     r_type = elfcpp::R_POWERPC_TPREL16_HA;
8021                   else
8022                     {
8023                       r_type = elfcpp::R_POWERPC_NONE;
8024                       offset -= 2 * big_endian;
8025                     }
8026                 }
8027             }
8028           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8029                    || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8030             {
8031               // Second instruction of a global dynamic sequence,
8032               // the __tls_get_addr call
8033               const bool final = gsym == NULL || gsym->final_value_is_known();
8034               switch (this->optimize_tls_gd(final))
8035                 {
8036                 case tls::TLSOPT_TO_IE:
8037                   r_type = elfcpp::R_POWERPC_NONE;
8038                   zap_next = true;
8039                   break;
8040                 case tls::TLSOPT_TO_LE:
8041                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8042                   offset += 2 * big_endian;
8043                   zap_next = true;
8044                   break;
8045                 default:
8046                   break;
8047                 }
8048             }
8049           else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8050                    || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8051             {
8052               // Second instruction of a local dynamic sequence,
8053               // the __tls_get_addr call
8054               if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8055                 {
8056                   const Output_section* os = relinfo->layout->tls_segment()
8057                     ->first_section();
8058                   gold_assert(os != NULL);
8059                   gold_assert(os->needs_symtab_index());
8060                   r_sym = os->symtab_index();
8061                   addend = dtp_offset;
8062                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8063                   offset += 2 * big_endian;
8064                   zap_next = true;
8065                 }
8066             }
8067           else if (r_type == elfcpp::R_POWERPC_TLS)
8068             {
8069               // Second instruction of an initial exec sequence
8070               const bool final = gsym == NULL || gsym->final_value_is_known();
8071               if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8072                 {
8073                   r_type = elfcpp::R_POWERPC_TPREL16_LO;
8074                   offset += 2 * big_endian;
8075                 }
8076             }
8077         }
8078
8079       reloc_write.put_r_offset(offset);
8080       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8081       reloc_write.put_r_addend(addend);
8082
8083       pwrite += reloc_size;
8084     }
8085
8086   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8087               == reloc_view_size);
8088 }
8089
8090 // Return the value to use for a dynamic symbol which requires special
8091 // treatment.  This is how we support equality comparisons of function
8092 // pointers across shared library boundaries, as described in the
8093 // processor specific ABI supplement.
8094
8095 template<int size, bool big_endian>
8096 uint64_t
8097 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8098 {
8099   if (size == 32)
8100     {
8101       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8102       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8103            p != this->stub_tables_.end();
8104            ++p)
8105         {
8106           Address off = (*p)->find_plt_call_entry(gsym);
8107           if (off != invalid_address)
8108             return (*p)->stub_address() + off;
8109         }
8110     }
8111   else if (this->abiversion() >= 2)
8112     {
8113       unsigned int off = this->glink_section()->find_global_entry(gsym);
8114       if (off != (unsigned int)-1)
8115         return this->glink_section()->global_entry_address() + off;
8116     }
8117   gold_unreachable();
8118 }
8119
8120 // Return the PLT address to use for a local symbol.
8121 template<int size, bool big_endian>
8122 uint64_t
8123 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8124     const Relobj* object,
8125     unsigned int symndx) const
8126 {
8127   if (size == 32)
8128     {
8129       const Sized_relobj<size, big_endian>* relobj
8130         = static_cast<const Sized_relobj<size, big_endian>*>(object);
8131       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8132            p != this->stub_tables_.end();
8133            ++p)
8134         {
8135           Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8136                                                   symndx);
8137           if (off != invalid_address)
8138             return (*p)->stub_address() + off;
8139         }
8140     }
8141   gold_unreachable();
8142 }
8143
8144 // Return the PLT address to use for a global symbol.
8145 template<int size, bool big_endian>
8146 uint64_t
8147 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8148     const Symbol* gsym) const
8149 {
8150   if (size == 32)
8151     {
8152       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8153            p != this->stub_tables_.end();
8154            ++p)
8155         {
8156           Address off = (*p)->find_plt_call_entry(gsym);
8157           if (off != invalid_address)
8158             return (*p)->stub_address() + off;
8159         }
8160     }
8161   else if (this->abiversion() >= 2)
8162     {
8163       unsigned int off = this->glink_section()->find_global_entry(gsym);
8164       if (off != (unsigned int)-1)
8165         return this->glink_section()->global_entry_address() + off;
8166     }
8167   gold_unreachable();
8168 }
8169
8170 // Return the offset to use for the GOT_INDX'th got entry which is
8171 // for a local tls symbol specified by OBJECT, SYMNDX.
8172 template<int size, bool big_endian>
8173 int64_t
8174 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8175     const Relobj* object,
8176     unsigned int symndx,
8177     unsigned int got_indx) const
8178 {
8179   const Powerpc_relobj<size, big_endian>* ppc_object
8180     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8181   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8182     {
8183       for (Got_type got_type = GOT_TYPE_TLSGD;
8184            got_type <= GOT_TYPE_TPREL;
8185            got_type = Got_type(got_type + 1))
8186         if (ppc_object->local_has_got_offset(symndx, got_type))
8187           {
8188             unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8189             if (got_type == GOT_TYPE_TLSGD)
8190               off += size / 8;
8191             if (off == got_indx * (size / 8))
8192               {
8193                 if (got_type == GOT_TYPE_TPREL)
8194                   return -tp_offset;
8195                 else
8196                   return -dtp_offset;
8197               }
8198           }
8199     }
8200   gold_unreachable();
8201 }
8202
8203 // Return the offset to use for the GOT_INDX'th got entry which is
8204 // for global tls symbol GSYM.
8205 template<int size, bool big_endian>
8206 int64_t
8207 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8208     Symbol* gsym,
8209     unsigned int got_indx) const
8210 {
8211   if (gsym->type() == elfcpp::STT_TLS)
8212     {
8213       for (Got_type got_type = GOT_TYPE_TLSGD;
8214            got_type <= GOT_TYPE_TPREL;
8215            got_type = Got_type(got_type + 1))
8216         if (gsym->has_got_offset(got_type))
8217           {
8218             unsigned int off = gsym->got_offset(got_type);
8219             if (got_type == GOT_TYPE_TLSGD)
8220               off += size / 8;
8221             if (off == got_indx * (size / 8))
8222               {
8223                 if (got_type == GOT_TYPE_TPREL)
8224                   return -tp_offset;
8225                 else
8226                   return -dtp_offset;
8227               }
8228           }
8229     }
8230   gold_unreachable();
8231 }
8232
8233 // The selector for powerpc object files.
8234
8235 template<int size, bool big_endian>
8236 class Target_selector_powerpc : public Target_selector
8237 {
8238 public:
8239   Target_selector_powerpc()
8240     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8241                       size, big_endian,
8242                       (size == 64
8243                        ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8244                        : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8245                       (size == 64
8246                        ? (big_endian ? "elf64ppc" : "elf64lppc")
8247                        : (big_endian ? "elf32ppc" : "elf32lppc")))
8248   { }
8249
8250   virtual Target*
8251   do_instantiate_target()
8252   { return new Target_powerpc<size, big_endian>(); }
8253 };
8254
8255 Target_selector_powerpc<32, true> target_selector_ppc32;
8256 Target_selector_powerpc<32, false> target_selector_ppc32le;
8257 Target_selector_powerpc<64, true> target_selector_ppc64;
8258 Target_selector_powerpc<64, false> target_selector_ppc64le;
8259
8260 // Instantiate these constants for -O0
8261 template<int size, bool big_endian>
8262 const int Output_data_glink<size, big_endian>::pltresolve_size;
8263 template<int size, bool big_endian>
8264 const typename Output_data_glink<size, big_endian>::Address
8265   Output_data_glink<size, big_endian>::invalid_address;
8266 template<int size, bool big_endian>
8267 const typename Stub_table<size, big_endian>::Address
8268   Stub_table<size, big_endian>::invalid_address;
8269 template<int size, bool big_endian>
8270 const typename Target_powerpc<size, big_endian>::Address
8271   Target_powerpc<size, big_endian>::invalid_address;
8272
8273 } // End anonymous namespace.