Merge vk-gl-cts/opengl-cts-4.6.0 into vk-gl-cts/master
[platform/upstream/VK-GL-CTS.git] / external / vulkancts / modules / vulkan / spirv_assembly / vktSpvAsmInstructionTests.cpp
1 /*-------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2015 Google Inc.
6  * Copyright (c) 2016 The Khronos Group Inc.
7  *
8  * Licensed under the Apache License, Version 2.0 (the "License");
9  * you may not use this file except in compliance with the License.
10  * You may obtain a copy of the License at
11  *
12  *      http://www.apache.org/licenses/LICENSE-2.0
13  *
14  * Unless required by applicable law or agreed to in writing, software
15  * distributed under the License is distributed on an "AS IS" BASIS,
16  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17  * See the License for the specific language governing permissions and
18  * limitations under the License.
19  *
20  *//*!
21  * \file
22  * \brief SPIR-V Assembly Tests for Instructions (special opcode/operand)
23  *//*--------------------------------------------------------------------*/
24
25 #include "vktSpvAsmInstructionTests.hpp"
26
27 #include "tcuCommandLine.hpp"
28 #include "tcuFormatUtil.hpp"
29 #include "tcuFloat.hpp"
30 #include "tcuRGBA.hpp"
31 #include "tcuStringTemplate.hpp"
32 #include "tcuTestLog.hpp"
33 #include "tcuVectorUtil.hpp"
34 #include "tcuInterval.hpp"
35
36 #include "vkDefs.hpp"
37 #include "vkDeviceUtil.hpp"
38 #include "vkMemUtil.hpp"
39 #include "vkPlatform.hpp"
40 #include "vkPrograms.hpp"
41 #include "vkQueryUtil.hpp"
42 #include "vkRef.hpp"
43 #include "vkRefUtil.hpp"
44 #include "vkStrUtil.hpp"
45 #include "vkTypeUtil.hpp"
46
47 #include "deStringUtil.hpp"
48 #include "deUniquePtr.hpp"
49 #include "deMath.h"
50 #include "tcuStringTemplate.hpp"
51
52 #include "vktSpvAsm16bitStorageTests.hpp"
53 #include "vktSpvAsmUboMatrixPaddingTests.hpp"
54 #include "vktSpvAsmConditionalBranchTests.hpp"
55 #include "vktSpvAsmIndexingTests.hpp"
56 #include "vktSpvAsmComputeShaderCase.hpp"
57 #include "vktSpvAsmComputeShaderTestUtil.hpp"
58 #include "vktSpvAsmGraphicsShaderTestUtil.hpp"
59 #include "vktSpvAsmVariablePointersTests.hpp"
60 #include "vktTestCaseUtil.hpp"
61
62 #include <cmath>
63 #include <limits>
64 #include <map>
65 #include <string>
66 #include <sstream>
67 #include <utility>
68 #include <stack>
69
70 namespace vkt
71 {
72 namespace SpirVAssembly
73 {
74
75 namespace
76 {
77
78 using namespace vk;
79 using std::map;
80 using std::string;
81 using std::vector;
82 using tcu::IVec3;
83 using tcu::IVec4;
84 using tcu::RGBA;
85 using tcu::TestLog;
86 using tcu::TestStatus;
87 using tcu::Vec4;
88 using de::UniquePtr;
89 using tcu::StringTemplate;
90 using tcu::Vec4;
91
92 template<typename T>
93 static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, int offset = 0)
94 {
95         T* const typedPtr = (T*)dst;
96         for (int ndx = 0; ndx < numValues; ndx++)
97                 typedPtr[offset + ndx] = randomScalar<T>(rnd, minValue, maxValue);
98 }
99
100 // Filter is a function that returns true if a value should pass, false otherwise.
101 template<typename T, typename FilterT>
102 static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, FilterT filter, int offset = 0)
103 {
104         T* const typedPtr = (T*)dst;
105         T value;
106         for (int ndx = 0; ndx < numValues; ndx++)
107         {
108                 do
109                         value = randomScalar<T>(rnd, minValue, maxValue);
110                 while (!filter(value));
111
112                 typedPtr[offset + ndx] = value;
113         }
114 }
115
116 // Gets a 64-bit integer with a more logarithmic distribution
117 deInt64 randomInt64LogDistributed (de::Random& rnd)
118 {
119         deInt64 val = rnd.getUint64();
120         val &= (1ull << rnd.getInt(1, 63)) - 1;
121         if (rnd.getBool())
122                 val = -val;
123         return val;
124 }
125
126 static void fillRandomInt64sLogDistributed (de::Random& rnd, vector<deInt64>& dst, int numValues)
127 {
128         for (int ndx = 0; ndx < numValues; ndx++)
129                 dst[ndx] = randomInt64LogDistributed(rnd);
130 }
131
132 template<typename FilterT>
133 static void fillRandomInt64sLogDistributed (de::Random& rnd, vector<deInt64>& dst, int numValues, FilterT filter)
134 {
135         for (int ndx = 0; ndx < numValues; ndx++)
136         {
137                 deInt64 value;
138                 do {
139                         value = randomInt64LogDistributed(rnd);
140                 } while (!filter(value));
141                 dst[ndx] = value;
142         }
143 }
144
145 inline bool filterNonNegative (const deInt64 value)
146 {
147         return value >= 0;
148 }
149
150 inline bool filterPositive (const deInt64 value)
151 {
152         return value > 0;
153 }
154
155 inline bool filterNotZero (const deInt64 value)
156 {
157         return value != 0;
158 }
159
160 static void floorAll (vector<float>& values)
161 {
162         for (size_t i = 0; i < values.size(); i++)
163                 values[i] = deFloatFloor(values[i]);
164 }
165
166 static void floorAll (vector<Vec4>& values)
167 {
168         for (size_t i = 0; i < values.size(); i++)
169                 values[i] = floor(values[i]);
170 }
171
172 struct CaseParameter
173 {
174         const char*             name;
175         string                  param;
176
177         CaseParameter   (const char* case_, const string& param_) : name(case_), param(param_) {}
178 };
179
180 // Assembly code used for testing OpNop, OpConstant{Null|Composite}, Op[No]Line, OpSource[Continued], OpSourceExtension, OpUndef is based on GLSL source code:
181 //
182 // #version 430
183 //
184 // layout(std140, set = 0, binding = 0) readonly buffer Input {
185 //   float elements[];
186 // } input_data;
187 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
188 //   float elements[];
189 // } output_data;
190 //
191 // layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
192 //
193 // void main() {
194 //   uint x = gl_GlobalInvocationID.x;
195 //   output_data.elements[x] = -input_data.elements[x];
196 // }
197
198
199 static string getAsmForOpNopTest(bool useLiteralLocalSize, bool useSpecConstantWorkgroupSize) {
200         std::ostringstream out;
201         out << getComputeAsmShaderPreambleWithoutLocalSize();
202         if (useLiteralLocalSize) {
203                 out << "OpExecutionMode %main LocalSize 1 1 1\n";
204         }
205
206         out << "OpSource GLSL 430\n"
207                 "OpName %main           \"main\"\n"
208                 "OpName %id             \"gl_GlobalInvocationID\"\n"
209                 "OpDecorate %id BuiltIn GlobalInvocationId\n";
210
211         if (useSpecConstantWorkgroupSize) {
212                 out << "OpDecorate %spec_0 SpecId 100\n"
213                             "OpDecorate %spec_0 SpecId 100\n"
214                             "OpDecorate %spec_1 SpecId 101\n"
215                             "OpDecorate %spec_2 SpecId 102\n"
216                             "OpDecorate %gl_WorkGroupSize BuiltIn WorkgroupSize\n";
217         }
218
219         out << getComputeAsmInputOutputBufferTraits()
220                 << getComputeAsmCommonTypes()
221                 << getComputeAsmInputOutputBuffer()
222                 << "%id        = OpVariable %uvec3ptr Input\n"
223                 << "%zero      = OpConstant %i32 0\n";
224
225         if (useSpecConstantWorkgroupSize) {
226                 out << "%spec_0   = OpSpecConstant %u32 1\n"
227                 "%spec_1   = OpSpecConstant %u32 1\n"
228                 "%spec_2   = OpSpecConstant %u32 1\n"
229                 "%gl_WorkGroupSize = OpSpecConstantComposite %uvec3 %spec_0 %spec_1 %spec_2\n";
230         }
231
232         out << "%main      = OpFunction %void None %voidf\n"
233                 "%label     = OpLabel\n"
234                 "%idval     = OpLoad %uvec3 %id\n"
235                 "%x         = OpCompositeExtract %u32 %idval 0\n"
236
237                 "             OpNop\n" // Inside a function body
238
239                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
240                 "%inval     = OpLoad %f32 %inloc\n"
241                 "%neg       = OpFNegate %f32 %inval\n"
242                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
243                 "             OpStore %outloc %neg\n"
244                 "             OpReturn\n"
245                 "             OpFunctionEnd\n";
246     return out.str();
247 }
248
249 tcu::TestCaseGroup* createOpNopGroup (tcu::TestContext& testCtx)
250 {
251         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opnop", "Test the OpNop instruction"));
252         ComputeShaderSpec                               spec;
253         de::Random                                              rnd                             (deStringHash(group->getName()));
254         const int                                               numElements             = 100;
255         vector<float>                                   positiveFloats  (numElements, 0);
256         vector<float>                                   negativeFloats  (numElements, 0);
257
258         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
259
260         for (size_t ndx = 0; ndx < numElements; ++ndx)
261                 negativeFloats[ndx] = -positiveFloats[ndx];
262
263         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
264         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
265         spec.numWorkGroups = IVec3(numElements, 1, 1);
266
267     spec.assembly = getAsmForOpNopTest(true, false);
268         group->addChild(new SpvAsmComputeShaderCase(testCtx, "literal_localsize", "OpNop appearing at different places", spec));
269
270     spec.assembly = getAsmForOpNopTest(true, true);
271         group->addChild(new SpvAsmComputeShaderCase(testCtx, "literal_and_specid_localsize", "OpNop appearing at different places", spec));
272
273     spec.assembly = getAsmForOpNopTest(false, true);
274         group->addChild(new SpvAsmComputeShaderCase(testCtx, "specid_localsize", "OpNop appearing at different places", spec));
275
276         return group.release();
277 }
278
279 bool compareFUnord (const std::vector<BufferSp>& inputs, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog& log)
280 {
281         if (outputAllocs.size() != 1)
282                 return false;
283
284         vector<deUint8> input1Bytes;
285         vector<deUint8> input2Bytes;
286         vector<deUint8> expectedBytes;
287
288         inputs[0]->getBytes(input1Bytes);
289         inputs[1]->getBytes(input2Bytes);
290         expectedOutputs[0]->getBytes(expectedBytes);
291
292         const deInt32* const    expectedOutputAsInt             = reinterpret_cast<const deInt32* const>(&expectedBytes.front());
293         const deInt32* const    outputAsInt                             = static_cast<const deInt32* const>(outputAllocs[0]->getHostPtr());
294         const float* const              input1AsFloat                   = reinterpret_cast<const float* const>(&input1Bytes.front());
295         const float* const              input2AsFloat                   = reinterpret_cast<const float* const>(&input2Bytes.front());
296         bool returnValue                                                                = true;
297
298         for (size_t idx = 0; idx < expectedBytes.size() / sizeof(deInt32); ++idx)
299         {
300                 if (outputAsInt[idx] != expectedOutputAsInt[idx])
301                 {
302                         log << TestLog::Message << "ERROR: Sub-case failed. inputs: " << input1AsFloat[idx] << "," << input2AsFloat[idx] << " output: " << outputAsInt[idx]<< " expected output: " << expectedOutputAsInt[idx] << TestLog::EndMessage;
303                         returnValue = false;
304                 }
305         }
306         return returnValue;
307 }
308
309 typedef VkBool32 (*compareFuncType) (float, float);
310
311 struct OpFUnordCase
312 {
313         const char*             name;
314         const char*             opCode;
315         compareFuncType compareFunc;
316
317                                         OpFUnordCase                    (const char* _name, const char* _opCode, compareFuncType _compareFunc)
318                                                 : name                          (_name)
319                                                 , opCode                        (_opCode)
320                                                 , compareFunc           (_compareFunc) {}
321 };
322
323 #define ADD_OPFUNORD_CASE(NAME, OPCODE, OPERATOR) \
324 do { \
325     struct compare_##NAME { static VkBool32 compare(float x, float y) { return (x OPERATOR y) ? VK_TRUE : VK_FALSE; } }; \
326     cases.push_back(OpFUnordCase(#NAME, OPCODE, compare_##NAME::compare)); \
327 } while (deGetFalse())
328
329 tcu::TestCaseGroup* createOpFUnordGroup (tcu::TestContext& testCtx)
330 {
331         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opfunord", "Test the OpFUnord* opcodes"));
332         de::Random                                              rnd                             (deStringHash(group->getName()));
333         const int                                               numElements             = 100;
334         vector<OpFUnordCase>                    cases;
335
336         const StringTemplate                    shaderTemplate  (
337
338                 string(getComputeAsmShaderPreamble()) +
339
340                 "OpSource GLSL 430\n"
341                 "OpName %main           \"main\"\n"
342                 "OpName %id             \"gl_GlobalInvocationID\"\n"
343
344                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
345
346                 "OpDecorate %buf BufferBlock\n"
347                 "OpDecorate %buf2 BufferBlock\n"
348                 "OpDecorate %indata1 DescriptorSet 0\n"
349                 "OpDecorate %indata1 Binding 0\n"
350                 "OpDecorate %indata2 DescriptorSet 0\n"
351                 "OpDecorate %indata2 Binding 1\n"
352                 "OpDecorate %outdata DescriptorSet 0\n"
353                 "OpDecorate %outdata Binding 2\n"
354                 "OpDecorate %f32arr ArrayStride 4\n"
355                 "OpDecorate %i32arr ArrayStride 4\n"
356                 "OpMemberDecorate %buf 0 Offset 0\n"
357                 "OpMemberDecorate %buf2 0 Offset 0\n"
358
359                 + string(getComputeAsmCommonTypes()) +
360
361                 "%buf        = OpTypeStruct %f32arr\n"
362                 "%bufptr     = OpTypePointer Uniform %buf\n"
363                 "%indata1    = OpVariable %bufptr Uniform\n"
364                 "%indata2    = OpVariable %bufptr Uniform\n"
365
366                 "%buf2       = OpTypeStruct %i32arr\n"
367                 "%buf2ptr    = OpTypePointer Uniform %buf2\n"
368                 "%outdata    = OpVariable %buf2ptr Uniform\n"
369
370                 "%id        = OpVariable %uvec3ptr Input\n"
371                 "%zero      = OpConstant %i32 0\n"
372                 "%consti1   = OpConstant %i32 1\n"
373                 "%constf1   = OpConstant %f32 1.0\n"
374
375                 "%main      = OpFunction %void None %voidf\n"
376                 "%label     = OpLabel\n"
377                 "%idval     = OpLoad %uvec3 %id\n"
378                 "%x         = OpCompositeExtract %u32 %idval 0\n"
379
380                 "%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
381                 "%inval1    = OpLoad %f32 %inloc1\n"
382                 "%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
383                 "%inval2    = OpLoad %f32 %inloc2\n"
384                 "%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
385
386                 "%result    = ${OPCODE} %bool %inval1 %inval2\n"
387                 "%int_res   = OpSelect %i32 %result %consti1 %zero\n"
388                 "             OpStore %outloc %int_res\n"
389
390                 "             OpReturn\n"
391                 "             OpFunctionEnd\n");
392
393         ADD_OPFUNORD_CASE(equal, "OpFUnordEqual", ==);
394         ADD_OPFUNORD_CASE(less, "OpFUnordLessThan", <);
395         ADD_OPFUNORD_CASE(lessequal, "OpFUnordLessThanEqual", <=);
396         ADD_OPFUNORD_CASE(greater, "OpFUnordGreaterThan", >);
397         ADD_OPFUNORD_CASE(greaterequal, "OpFUnordGreaterThanEqual", >=);
398         ADD_OPFUNORD_CASE(notequal, "OpFUnordNotEqual", !=);
399
400         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
401         {
402                 map<string, string>                     specializations;
403                 ComputeShaderSpec                       spec;
404                 const float                                     NaN                             = std::numeric_limits<float>::quiet_NaN();
405                 vector<float>                           inputFloats1    (numElements, 0);
406                 vector<float>                           inputFloats2    (numElements, 0);
407                 vector<deInt32>                         expectedInts    (numElements, 0);
408
409                 specializations["OPCODE"]       = cases[caseNdx].opCode;
410                 spec.assembly                           = shaderTemplate.specialize(specializations);
411
412                 fillRandomScalars(rnd, 1.f, 100.f, &inputFloats1[0], numElements);
413                 for (size_t ndx = 0; ndx < numElements; ++ndx)
414                 {
415                         switch (ndx % 6)
416                         {
417                                 case 0:         inputFloats2[ndx] = inputFloats1[ndx] + 1.0f; break;
418                                 case 1:         inputFloats2[ndx] = inputFloats1[ndx] - 1.0f; break;
419                                 case 2:         inputFloats2[ndx] = inputFloats1[ndx]; break;
420                                 case 3:         inputFloats2[ndx] = NaN; break;
421                                 case 4:         inputFloats2[ndx] = inputFloats1[ndx];  inputFloats1[ndx] = NaN; break;
422                                 case 5:         inputFloats2[ndx] = NaN;                                inputFloats1[ndx] = NaN; break;
423                         }
424                         expectedInts[ndx] = tcu::Float32(inputFloats1[ndx]).isNaN() || tcu::Float32(inputFloats2[ndx]).isNaN() || cases[caseNdx].compareFunc(inputFloats1[ndx], inputFloats2[ndx]);
425                 }
426
427                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
428                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
429                 spec.outputs.push_back(BufferSp(new Int32Buffer(expectedInts)));
430                 spec.numWorkGroups = IVec3(numElements, 1, 1);
431                 spec.verifyIO = &compareFUnord;
432                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
433         }
434
435         return group.release();
436 }
437
438 struct OpAtomicCase
439 {
440         const char*             name;
441         const char*             assembly;
442         OpAtomicType    opAtomic;
443         deInt32                 numOutputElements;
444
445                                         OpAtomicCase                    (const char* _name, const char* _assembly, OpAtomicType _opAtomic, deInt32 _numOutputElements)
446                                                 : name                          (_name)
447                                                 , assembly                      (_assembly)
448                                                 , opAtomic                      (_opAtomic)
449                                                 , numOutputElements     (_numOutputElements) {}
450 };
451
452 tcu::TestCaseGroup* createOpAtomicGroup (tcu::TestContext& testCtx, bool useStorageBuffer)
453 {
454         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx,
455                                                                                                                                                                 useStorageBuffer ? "opatomic_storage_buffer" : "opatomic",
456                                                                                                                                                                 "Test the OpAtomic* opcodes"));
457         const int                                               numElements                     = 65535;
458         vector<OpAtomicCase>                    cases;
459
460         const StringTemplate                    shaderTemplate  (
461
462                 string("OpCapability Shader\n") +
463                 (useStorageBuffer ? "OpExtension \"SPV_KHR_storage_buffer_storage_class\"\n" : "") +
464                 "OpMemoryModel Logical GLSL450\n"
465                 "OpEntryPoint GLCompute %main \"main\" %id\n"
466                 "OpExecutionMode %main LocalSize 1 1 1\n" +
467
468                 "OpSource GLSL 430\n"
469                 "OpName %main           \"main\"\n"
470                 "OpName %id             \"gl_GlobalInvocationID\"\n"
471
472                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
473
474                 "OpDecorate %buf ${BLOCK_DECORATION}\n"
475                 "OpDecorate %indata DescriptorSet 0\n"
476                 "OpDecorate %indata Binding 0\n"
477                 "OpDecorate %i32arr ArrayStride 4\n"
478                 "OpMemberDecorate %buf 0 Offset 0\n"
479
480                 "OpDecorate %sumbuf ${BLOCK_DECORATION}\n"
481                 "OpDecorate %sum DescriptorSet 0\n"
482                 "OpDecorate %sum Binding 1\n"
483                 "OpMemberDecorate %sumbuf 0 Coherent\n"
484                 "OpMemberDecorate %sumbuf 0 Offset 0\n"
485
486                 + getComputeAsmCommonTypes("${BLOCK_POINTER_TYPE}") +
487
488                 "%buf       = OpTypeStruct %i32arr\n"
489                 "%bufptr    = OpTypePointer ${BLOCK_POINTER_TYPE} %buf\n"
490                 "%indata    = OpVariable %bufptr ${BLOCK_POINTER_TYPE}\n"
491
492                 "%sumbuf    = OpTypeStruct %i32arr\n"
493                 "%sumbufptr = OpTypePointer ${BLOCK_POINTER_TYPE} %sumbuf\n"
494                 "%sum       = OpVariable %sumbufptr ${BLOCK_POINTER_TYPE}\n"
495
496                 "%id        = OpVariable %uvec3ptr Input\n"
497                 "%minusone  = OpConstant %i32 -1\n"
498                 "%zero      = OpConstant %i32 0\n"
499                 "%one       = OpConstant %u32 1\n"
500                 "%two       = OpConstant %i32 2\n"
501
502                 "%main      = OpFunction %void None %voidf\n"
503                 "%label     = OpLabel\n"
504                 "%idval     = OpLoad %uvec3 %id\n"
505                 "%x         = OpCompositeExtract %u32 %idval 0\n"
506
507                 "%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
508                 "%inval     = OpLoad %i32 %inloc\n"
509
510                 "%outloc    = OpAccessChain %i32ptr %sum %zero ${INDEX}\n"
511                 "${INSTRUCTION}"
512
513                 "             OpReturn\n"
514                 "             OpFunctionEnd\n");
515
516         #define ADD_OPATOMIC_CASE(NAME, ASSEMBLY, OPATOMIC, NUM_OUTPUT_ELEMENTS) \
517         do { \
518                 DE_STATIC_ASSERT((NUM_OUTPUT_ELEMENTS) == 1 || (NUM_OUTPUT_ELEMENTS) == numElements); \
519                 cases.push_back(OpAtomicCase(#NAME, ASSEMBLY, OPATOMIC, NUM_OUTPUT_ELEMENTS)); \
520         } while (deGetFalse())
521         #define ADD_OPATOMIC_CASE_1(NAME, ASSEMBLY, OPATOMIC) ADD_OPATOMIC_CASE(NAME, ASSEMBLY, OPATOMIC, 1)
522         #define ADD_OPATOMIC_CASE_N(NAME, ASSEMBLY, OPATOMIC) ADD_OPATOMIC_CASE(NAME, ASSEMBLY, OPATOMIC, numElements)
523
524         ADD_OPATOMIC_CASE_1(iadd,       "%unused    = OpAtomicIAdd %i32 %outloc %one %zero %inval\n", OPATOMIC_IADD );
525         ADD_OPATOMIC_CASE_1(isub,       "%unused    = OpAtomicISub %i32 %outloc %one %zero %inval\n", OPATOMIC_ISUB );
526         ADD_OPATOMIC_CASE_1(iinc,       "%unused    = OpAtomicIIncrement %i32 %outloc %one %zero\n",  OPATOMIC_IINC );
527         ADD_OPATOMIC_CASE_1(idec,       "%unused    = OpAtomicIDecrement %i32 %outloc %one %zero\n",  OPATOMIC_IDEC );
528         ADD_OPATOMIC_CASE_N(load,       "%inval2    = OpAtomicLoad %i32 %inloc %zero %zero\n"
529                                                                 "             OpStore %outloc %inval2\n",  OPATOMIC_LOAD );
530         ADD_OPATOMIC_CASE_N(store,      "             OpAtomicStore %outloc %zero %zero %inval\n",  OPATOMIC_STORE );
531         ADD_OPATOMIC_CASE_N(compex, "%even      = OpSMod %i32 %inval %two\n"
532                                                                 "             OpStore %outloc %even\n"
533                                                                 "%unused    = OpAtomicCompareExchange %i32 %outloc %one %zero %zero %minusone %zero\n",  OPATOMIC_COMPEX );
534
535         #undef ADD_OPATOMIC_CASE
536         #undef ADD_OPATOMIC_CASE_1
537         #undef ADD_OPATOMIC_CASE_N
538
539         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
540         {
541                 map<string, string>                     specializations;
542                 ComputeShaderSpec                       spec;
543                 vector<deInt32>                         inputInts               (numElements, 0);
544                 vector<deInt32>                         expected                (cases[caseNdx].numOutputElements, -1);
545
546                 specializations["INDEX"]                                = (cases[caseNdx].numOutputElements == 1) ? "%zero" : "%x";
547                 specializations["INSTRUCTION"]                  = cases[caseNdx].assembly;
548                 specializations["BLOCK_DECORATION"]             = useStorageBuffer ? "Block" : "BufferBlock";
549                 specializations["BLOCK_POINTER_TYPE"]   = useStorageBuffer ? "StorageBuffer" : "Uniform";
550                 spec.assembly                                                   = shaderTemplate.specialize(specializations);
551
552                 if (useStorageBuffer)
553                         spec.extensions.push_back("VK_KHR_storage_buffer_storage_class");
554
555                 spec.inputs.push_back(BufferSp(new OpAtomicBuffer(numElements, cases[caseNdx].numOutputElements, cases[caseNdx].opAtomic, BUFFERTYPE_INPUT)));
556                 spec.outputs.push_back(BufferSp(new OpAtomicBuffer(numElements, cases[caseNdx].numOutputElements, cases[caseNdx].opAtomic, BUFFERTYPE_EXPECTED)));
557                 spec.numWorkGroups = IVec3(numElements, 1, 1);
558                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
559         }
560
561         return group.release();
562 }
563
564 tcu::TestCaseGroup* createOpLineGroup (tcu::TestContext& testCtx)
565 {
566         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opline", "Test the OpLine instruction"));
567         ComputeShaderSpec                               spec;
568         de::Random                                              rnd                             (deStringHash(group->getName()));
569         const int                                               numElements             = 100;
570         vector<float>                                   positiveFloats  (numElements, 0);
571         vector<float>                                   negativeFloats  (numElements, 0);
572
573         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
574
575         for (size_t ndx = 0; ndx < numElements; ++ndx)
576                 negativeFloats[ndx] = -positiveFloats[ndx];
577
578         spec.assembly =
579                 string(getComputeAsmShaderPreamble()) +
580
581                 "%fname1 = OpString \"negateInputs.comp\"\n"
582                 "%fname2 = OpString \"negateInputs\"\n"
583
584                 "OpSource GLSL 430\n"
585                 "OpName %main           \"main\"\n"
586                 "OpName %id             \"gl_GlobalInvocationID\"\n"
587
588                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
589
590                 + string(getComputeAsmInputOutputBufferTraits()) +
591
592                 "OpLine %fname1 0 0\n" // At the earliest possible position
593
594                 + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
595
596                 "OpLine %fname1 0 1\n" // Multiple OpLines in sequence
597                 "OpLine %fname2 1 0\n" // Different filenames
598                 "OpLine %fname1 1000 100000\n"
599
600                 "%id        = OpVariable %uvec3ptr Input\n"
601                 "%zero      = OpConstant %i32 0\n"
602
603                 "OpLine %fname1 1 1\n" // Before a function
604
605                 "%main      = OpFunction %void None %voidf\n"
606                 "%label     = OpLabel\n"
607
608                 "OpLine %fname1 1 1\n" // In a function
609
610                 "%idval     = OpLoad %uvec3 %id\n"
611                 "%x         = OpCompositeExtract %u32 %idval 0\n"
612                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
613                 "%inval     = OpLoad %f32 %inloc\n"
614                 "%neg       = OpFNegate %f32 %inval\n"
615                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
616                 "             OpStore %outloc %neg\n"
617                 "             OpReturn\n"
618                 "             OpFunctionEnd\n";
619         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
620         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
621         spec.numWorkGroups = IVec3(numElements, 1, 1);
622
623         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpLine appearing at different places", spec));
624
625         return group.release();
626 }
627
628 tcu::TestCaseGroup* createOpNoLineGroup (tcu::TestContext& testCtx)
629 {
630         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opnoline", "Test the OpNoLine instruction"));
631         ComputeShaderSpec                               spec;
632         de::Random                                              rnd                             (deStringHash(group->getName()));
633         const int                                               numElements             = 100;
634         vector<float>                                   positiveFloats  (numElements, 0);
635         vector<float>                                   negativeFloats  (numElements, 0);
636
637         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
638
639         for (size_t ndx = 0; ndx < numElements; ++ndx)
640                 negativeFloats[ndx] = -positiveFloats[ndx];
641
642         spec.assembly =
643                 string(getComputeAsmShaderPreamble()) +
644
645                 "%fname = OpString \"negateInputs.comp\"\n"
646
647                 "OpSource GLSL 430\n"
648                 "OpName %main           \"main\"\n"
649                 "OpName %id             \"gl_GlobalInvocationID\"\n"
650
651                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
652
653                 + string(getComputeAsmInputOutputBufferTraits()) +
654
655                 "OpNoLine\n" // At the earliest possible position, without preceding OpLine
656
657                 + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
658
659                 "OpLine %fname 0 1\n"
660                 "OpNoLine\n" // Immediately following a preceding OpLine
661
662                 "OpLine %fname 1000 1\n"
663
664                 "%id        = OpVariable %uvec3ptr Input\n"
665                 "%zero      = OpConstant %i32 0\n"
666
667                 "OpNoLine\n" // Contents after the previous OpLine
668
669                 "%main      = OpFunction %void None %voidf\n"
670                 "%label     = OpLabel\n"
671                 "%idval     = OpLoad %uvec3 %id\n"
672                 "%x         = OpCompositeExtract %u32 %idval 0\n"
673
674                 "OpNoLine\n" // Multiple OpNoLine
675                 "OpNoLine\n"
676                 "OpNoLine\n"
677
678                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
679                 "%inval     = OpLoad %f32 %inloc\n"
680                 "%neg       = OpFNegate %f32 %inval\n"
681                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
682                 "             OpStore %outloc %neg\n"
683                 "             OpReturn\n"
684                 "             OpFunctionEnd\n";
685         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
686         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
687         spec.numWorkGroups = IVec3(numElements, 1, 1);
688
689         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNoLine appearing at different places", spec));
690
691         return group.release();
692 }
693
694 // Compare instruction for the contraction compute case.
695 // Returns true if the output is what is expected from the test case.
696 bool compareNoContractCase(const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
697 {
698         if (outputAllocs.size() != 1)
699                 return false;
700
701         // Only size is needed because we are not comparing the exact values.
702         size_t byteSize = expectedOutputs[0]->getByteSize();
703
704         const float*    outputAsFloat   = static_cast<const float*>(outputAllocs[0]->getHostPtr());
705
706         for(size_t i = 0; i < byteSize / sizeof(float); ++i) {
707                 if (outputAsFloat[i] != 0.f &&
708                         outputAsFloat[i] != -ldexp(1, -24)) {
709                         return false;
710                 }
711         }
712
713         return true;
714 }
715
716 tcu::TestCaseGroup* createNoContractionGroup (tcu::TestContext& testCtx)
717 {
718         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
719         vector<CaseParameter>                   cases;
720         const int                                               numElements             = 100;
721         vector<float>                                   inputFloats1    (numElements, 0);
722         vector<float>                                   inputFloats2    (numElements, 0);
723         vector<float>                                   outputFloats    (numElements, 0);
724         const StringTemplate                    shaderTemplate  (
725                 string(getComputeAsmShaderPreamble()) +
726
727                 "OpName %main           \"main\"\n"
728                 "OpName %id             \"gl_GlobalInvocationID\"\n"
729
730                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
731
732                 "${DECORATION}\n"
733
734                 "OpDecorate %buf BufferBlock\n"
735                 "OpDecorate %indata1 DescriptorSet 0\n"
736                 "OpDecorate %indata1 Binding 0\n"
737                 "OpDecorate %indata2 DescriptorSet 0\n"
738                 "OpDecorate %indata2 Binding 1\n"
739                 "OpDecorate %outdata DescriptorSet 0\n"
740                 "OpDecorate %outdata Binding 2\n"
741                 "OpDecorate %f32arr ArrayStride 4\n"
742                 "OpMemberDecorate %buf 0 Offset 0\n"
743
744                 + string(getComputeAsmCommonTypes()) +
745
746                 "%buf        = OpTypeStruct %f32arr\n"
747                 "%bufptr     = OpTypePointer Uniform %buf\n"
748                 "%indata1    = OpVariable %bufptr Uniform\n"
749                 "%indata2    = OpVariable %bufptr Uniform\n"
750                 "%outdata    = OpVariable %bufptr Uniform\n"
751
752                 "%id         = OpVariable %uvec3ptr Input\n"
753                 "%zero       = OpConstant %i32 0\n"
754                 "%c_f_m1     = OpConstant %f32 -1.\n"
755
756                 "%main       = OpFunction %void None %voidf\n"
757                 "%label      = OpLabel\n"
758                 "%idval      = OpLoad %uvec3 %id\n"
759                 "%x          = OpCompositeExtract %u32 %idval 0\n"
760                 "%inloc1     = OpAccessChain %f32ptr %indata1 %zero %x\n"
761                 "%inval1     = OpLoad %f32 %inloc1\n"
762                 "%inloc2     = OpAccessChain %f32ptr %indata2 %zero %x\n"
763                 "%inval2     = OpLoad %f32 %inloc2\n"
764                 "%mul        = OpFMul %f32 %inval1 %inval2\n"
765                 "%add        = OpFAdd %f32 %mul %c_f_m1\n"
766                 "%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
767                 "              OpStore %outloc %add\n"
768                 "              OpReturn\n"
769                 "              OpFunctionEnd\n");
770
771         cases.push_back(CaseParameter("multiplication", "OpDecorate %mul NoContraction"));
772         cases.push_back(CaseParameter("addition",               "OpDecorate %add NoContraction"));
773         cases.push_back(CaseParameter("both",                   "OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"));
774
775         for (size_t ndx = 0; ndx < numElements; ++ndx)
776         {
777                 inputFloats1[ndx]       = 1.f + std::ldexp(1.f, -23); // 1 + 2^-23.
778                 inputFloats2[ndx]       = 1.f - std::ldexp(1.f, -23); // 1 - 2^-23.
779                 // Result for (1 + 2^-23) * (1 - 2^-23) - 1. With NoContraction, the multiplication will be
780                 // conducted separately and the result is rounded to 1, or 0x1.fffffcp-1
781                 // So the final result will be 0.f or 0x1p-24.
782                 // If the operation is combined into a precise fused multiply-add, then the result would be
783                 // 2^-46 (0xa8800000).
784                 outputFloats[ndx]       = 0.f;
785         }
786
787         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
788         {
789                 map<string, string>             specializations;
790                 ComputeShaderSpec               spec;
791
792                 specializations["DECORATION"] = cases[caseNdx].param;
793                 spec.assembly = shaderTemplate.specialize(specializations);
794                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
795                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
796                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
797                 spec.numWorkGroups = IVec3(numElements, 1, 1);
798                 // Check against the two possible answers based on rounding mode.
799                 spec.verifyIO = &compareNoContractCase;
800
801                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
802         }
803         return group.release();
804 }
805
806 bool compareFRem(const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
807 {
808         if (outputAllocs.size() != 1)
809                 return false;
810
811         vector<deUint8> expectedBytes;
812         expectedOutputs[0]->getBytes(expectedBytes);
813
814         const float*    expectedOutputAsFloat   = reinterpret_cast<const float*>(&expectedBytes.front());
815         const float*    outputAsFloat                   = static_cast<const float*>(outputAllocs[0]->getHostPtr());
816
817         for (size_t idx = 0; idx < expectedBytes.size() / sizeof(float); ++idx)
818         {
819                 const float f0 = expectedOutputAsFloat[idx];
820                 const float f1 = outputAsFloat[idx];
821                 // \todo relative error needs to be fairly high because FRem may be implemented as
822                 // (roughly) frac(a/b)*b, so LSB errors can be magnified. But this should be fine for now.
823                 if (deFloatAbs((f1 - f0) / f0) > 0.02)
824                         return false;
825         }
826
827         return true;
828 }
829
830 tcu::TestCaseGroup* createOpFRemGroup (tcu::TestContext& testCtx)
831 {
832         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opfrem", "Test the OpFRem instruction"));
833         ComputeShaderSpec                               spec;
834         de::Random                                              rnd                             (deStringHash(group->getName()));
835         const int                                               numElements             = 200;
836         vector<float>                                   inputFloats1    (numElements, 0);
837         vector<float>                                   inputFloats2    (numElements, 0);
838         vector<float>                                   outputFloats    (numElements, 0);
839
840         fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
841         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats2[0], numElements);
842
843         for (size_t ndx = 0; ndx < numElements; ++ndx)
844         {
845                 // Guard against divisors near zero.
846                 if (std::fabs(inputFloats2[ndx]) < 1e-3)
847                         inputFloats2[ndx] = 8.f;
848
849                 // The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
850                 outputFloats[ndx] = std::fmod(inputFloats1[ndx], inputFloats2[ndx]);
851         }
852
853         spec.assembly =
854                 string(getComputeAsmShaderPreamble()) +
855
856                 "OpName %main           \"main\"\n"
857                 "OpName %id             \"gl_GlobalInvocationID\"\n"
858
859                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
860
861                 "OpDecorate %buf BufferBlock\n"
862                 "OpDecorate %indata1 DescriptorSet 0\n"
863                 "OpDecorate %indata1 Binding 0\n"
864                 "OpDecorate %indata2 DescriptorSet 0\n"
865                 "OpDecorate %indata2 Binding 1\n"
866                 "OpDecorate %outdata DescriptorSet 0\n"
867                 "OpDecorate %outdata Binding 2\n"
868                 "OpDecorate %f32arr ArrayStride 4\n"
869                 "OpMemberDecorate %buf 0 Offset 0\n"
870
871                 + string(getComputeAsmCommonTypes()) +
872
873                 "%buf        = OpTypeStruct %f32arr\n"
874                 "%bufptr     = OpTypePointer Uniform %buf\n"
875                 "%indata1    = OpVariable %bufptr Uniform\n"
876                 "%indata2    = OpVariable %bufptr Uniform\n"
877                 "%outdata    = OpVariable %bufptr Uniform\n"
878
879                 "%id        = OpVariable %uvec3ptr Input\n"
880                 "%zero      = OpConstant %i32 0\n"
881
882                 "%main      = OpFunction %void None %voidf\n"
883                 "%label     = OpLabel\n"
884                 "%idval     = OpLoad %uvec3 %id\n"
885                 "%x         = OpCompositeExtract %u32 %idval 0\n"
886                 "%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
887                 "%inval1    = OpLoad %f32 %inloc1\n"
888                 "%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
889                 "%inval2    = OpLoad %f32 %inloc2\n"
890                 "%rem       = OpFRem %f32 %inval1 %inval2\n"
891                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
892                 "             OpStore %outloc %rem\n"
893                 "             OpReturn\n"
894                 "             OpFunctionEnd\n";
895
896         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
897         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
898         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
899         spec.numWorkGroups = IVec3(numElements, 1, 1);
900         spec.verifyIO = &compareFRem;
901
902         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
903
904         return group.release();
905 }
906
907 bool compareNMin (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
908 {
909         if (outputAllocs.size() != 1)
910                 return false;
911
912         const BufferSp&                 expectedOutput                  (expectedOutputs[0]);
913         std::vector<deUint8>    data;
914         expectedOutput->getBytes(data);
915
916         const float* const              expectedOutputAsFloat   = reinterpret_cast<const float*>(&data.front());
917         const float* const              outputAsFloat                   = static_cast<const float*>(outputAllocs[0]->getHostPtr());
918
919         for (size_t idx = 0; idx < expectedOutput->getByteSize() / sizeof(float); ++idx)
920         {
921                 const float f0 = expectedOutputAsFloat[idx];
922                 const float f1 = outputAsFloat[idx];
923
924                 // For NMin, we accept NaN as output if both inputs were NaN.
925                 // Otherwise the NaN is the wrong choise, as on architectures that
926                 // do not handle NaN, those are huge values.
927                 if (!(tcu::Float32(f1).isNaN() && tcu::Float32(f0).isNaN()) && deFloatAbs(f1 - f0) > 0.00001f)
928                         return false;
929         }
930
931         return true;
932 }
933
934 tcu::TestCaseGroup* createOpNMinGroup (tcu::TestContext& testCtx)
935 {
936         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opnmin", "Test the OpNMin instruction"));
937         ComputeShaderSpec                               spec;
938         de::Random                                              rnd                             (deStringHash(group->getName()));
939         const int                                               numElements             = 200;
940         vector<float>                                   inputFloats1    (numElements, 0);
941         vector<float>                                   inputFloats2    (numElements, 0);
942         vector<float>                                   outputFloats    (numElements, 0);
943
944         fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
945         fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats2[0], numElements);
946
947         // Make the first case a full-NAN case.
948         inputFloats1[0] = TCU_NAN;
949         inputFloats2[0] = TCU_NAN;
950
951         for (size_t ndx = 0; ndx < numElements; ++ndx)
952         {
953                 // By default, pick the smallest
954                 outputFloats[ndx] = std::min(inputFloats1[ndx], inputFloats2[ndx]);
955
956                 // Make half of the cases NaN cases
957                 if ((ndx & 1) == 0)
958                 {
959                         // Alternate between the NaN operand
960                         if ((ndx & 2) == 0)
961                         {
962                                 outputFloats[ndx] = inputFloats2[ndx];
963                                 inputFloats1[ndx] = TCU_NAN;
964                         }
965                         else
966                         {
967                                 outputFloats[ndx] = inputFloats1[ndx];
968                                 inputFloats2[ndx] = TCU_NAN;
969                         }
970                 }
971         }
972
973         spec.assembly =
974                 "OpCapability Shader\n"
975                 "%std450        = OpExtInstImport \"GLSL.std.450\"\n"
976                 "OpMemoryModel Logical GLSL450\n"
977                 "OpEntryPoint GLCompute %main \"main\" %id\n"
978                 "OpExecutionMode %main LocalSize 1 1 1\n"
979
980                 "OpName %main           \"main\"\n"
981                 "OpName %id             \"gl_GlobalInvocationID\"\n"
982
983                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
984
985                 "OpDecorate %buf BufferBlock\n"
986                 "OpDecorate %indata1 DescriptorSet 0\n"
987                 "OpDecorate %indata1 Binding 0\n"
988                 "OpDecorate %indata2 DescriptorSet 0\n"
989                 "OpDecorate %indata2 Binding 1\n"
990                 "OpDecorate %outdata DescriptorSet 0\n"
991                 "OpDecorate %outdata Binding 2\n"
992                 "OpDecorate %f32arr ArrayStride 4\n"
993                 "OpMemberDecorate %buf 0 Offset 0\n"
994
995                 + string(getComputeAsmCommonTypes()) +
996
997                 "%buf        = OpTypeStruct %f32arr\n"
998                 "%bufptr     = OpTypePointer Uniform %buf\n"
999                 "%indata1    = OpVariable %bufptr Uniform\n"
1000                 "%indata2    = OpVariable %bufptr Uniform\n"
1001                 "%outdata    = OpVariable %bufptr Uniform\n"
1002
1003                 "%id        = OpVariable %uvec3ptr Input\n"
1004                 "%zero      = OpConstant %i32 0\n"
1005
1006                 "%main      = OpFunction %void None %voidf\n"
1007                 "%label     = OpLabel\n"
1008                 "%idval     = OpLoad %uvec3 %id\n"
1009                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1010                 "%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
1011                 "%inval1    = OpLoad %f32 %inloc1\n"
1012                 "%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
1013                 "%inval2    = OpLoad %f32 %inloc2\n"
1014                 "%rem       = OpExtInst %f32 %std450 NMin %inval1 %inval2\n"
1015                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1016                 "             OpStore %outloc %rem\n"
1017                 "             OpReturn\n"
1018                 "             OpFunctionEnd\n";
1019
1020         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
1021         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1022         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1023         spec.numWorkGroups = IVec3(numElements, 1, 1);
1024         spec.verifyIO = &compareNMin;
1025
1026         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
1027
1028         return group.release();
1029 }
1030
1031 bool compareNMax (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
1032 {
1033         if (outputAllocs.size() != 1)
1034                 return false;
1035
1036         const BufferSp&                 expectedOutput                  = expectedOutputs[0];
1037         std::vector<deUint8>    data;
1038         expectedOutput->getBytes(data);
1039
1040         const float* const              expectedOutputAsFloat   = reinterpret_cast<const float*>(&data.front());
1041         const float* const              outputAsFloat                   = static_cast<const float*>(outputAllocs[0]->getHostPtr());
1042
1043         for (size_t idx = 0; idx < expectedOutput->getByteSize() / sizeof(float); ++idx)
1044         {
1045                 const float f0 = expectedOutputAsFloat[idx];
1046                 const float f1 = outputAsFloat[idx];
1047
1048                 // For NMax, NaN is considered acceptable result, since in
1049                 // architectures that do not handle NaNs, those are huge values.
1050                 if (!tcu::Float32(f1).isNaN() && deFloatAbs(f1 - f0) > 0.00001f)
1051                         return false;
1052         }
1053
1054         return true;
1055 }
1056
1057 tcu::TestCaseGroup* createOpNMaxGroup (tcu::TestContext& testCtx)
1058 {
1059         de::MovePtr<tcu::TestCaseGroup> group(new tcu::TestCaseGroup(testCtx, "opnmax", "Test the OpNMax instruction"));
1060         ComputeShaderSpec                               spec;
1061         de::Random                                              rnd                             (deStringHash(group->getName()));
1062         const int                                               numElements             = 200;
1063         vector<float>                                   inputFloats1    (numElements, 0);
1064         vector<float>                                   inputFloats2    (numElements, 0);
1065         vector<float>                                   outputFloats    (numElements, 0);
1066
1067         fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
1068         fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats2[0], numElements);
1069
1070         // Make the first case a full-NAN case.
1071         inputFloats1[0] = TCU_NAN;
1072         inputFloats2[0] = TCU_NAN;
1073
1074         for (size_t ndx = 0; ndx < numElements; ++ndx)
1075         {
1076                 // By default, pick the biggest
1077                 outputFloats[ndx] = std::max(inputFloats1[ndx], inputFloats2[ndx]);
1078
1079                 // Make half of the cases NaN cases
1080                 if ((ndx & 1) == 0)
1081                 {
1082                         // Alternate between the NaN operand
1083                         if ((ndx & 2) == 0)
1084                         {
1085                                 outputFloats[ndx] = inputFloats2[ndx];
1086                                 inputFloats1[ndx] = TCU_NAN;
1087                         }
1088                         else
1089                         {
1090                                 outputFloats[ndx] = inputFloats1[ndx];
1091                                 inputFloats2[ndx] = TCU_NAN;
1092                         }
1093                 }
1094         }
1095
1096         spec.assembly =
1097                 "OpCapability Shader\n"
1098                 "%std450        = OpExtInstImport \"GLSL.std.450\"\n"
1099                 "OpMemoryModel Logical GLSL450\n"
1100                 "OpEntryPoint GLCompute %main \"main\" %id\n"
1101                 "OpExecutionMode %main LocalSize 1 1 1\n"
1102
1103                 "OpName %main           \"main\"\n"
1104                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1105
1106                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1107
1108                 "OpDecorate %buf BufferBlock\n"
1109                 "OpDecorate %indata1 DescriptorSet 0\n"
1110                 "OpDecorate %indata1 Binding 0\n"
1111                 "OpDecorate %indata2 DescriptorSet 0\n"
1112                 "OpDecorate %indata2 Binding 1\n"
1113                 "OpDecorate %outdata DescriptorSet 0\n"
1114                 "OpDecorate %outdata Binding 2\n"
1115                 "OpDecorate %f32arr ArrayStride 4\n"
1116                 "OpMemberDecorate %buf 0 Offset 0\n"
1117
1118                 + string(getComputeAsmCommonTypes()) +
1119
1120                 "%buf        = OpTypeStruct %f32arr\n"
1121                 "%bufptr     = OpTypePointer Uniform %buf\n"
1122                 "%indata1    = OpVariable %bufptr Uniform\n"
1123                 "%indata2    = OpVariable %bufptr Uniform\n"
1124                 "%outdata    = OpVariable %bufptr Uniform\n"
1125
1126                 "%id        = OpVariable %uvec3ptr Input\n"
1127                 "%zero      = OpConstant %i32 0\n"
1128
1129                 "%main      = OpFunction %void None %voidf\n"
1130                 "%label     = OpLabel\n"
1131                 "%idval     = OpLoad %uvec3 %id\n"
1132                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1133                 "%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
1134                 "%inval1    = OpLoad %f32 %inloc1\n"
1135                 "%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
1136                 "%inval2    = OpLoad %f32 %inloc2\n"
1137                 "%rem       = OpExtInst %f32 %std450 NMax %inval1 %inval2\n"
1138                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1139                 "             OpStore %outloc %rem\n"
1140                 "             OpReturn\n"
1141                 "             OpFunctionEnd\n";
1142
1143         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
1144         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1145         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1146         spec.numWorkGroups = IVec3(numElements, 1, 1);
1147         spec.verifyIO = &compareNMax;
1148
1149         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
1150
1151         return group.release();
1152 }
1153
1154 bool compareNClamp (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
1155 {
1156         if (outputAllocs.size() != 1)
1157                 return false;
1158
1159         const BufferSp&                 expectedOutput                  = expectedOutputs[0];
1160         std::vector<deUint8>    data;
1161         expectedOutput->getBytes(data);
1162
1163         const float* const              expectedOutputAsFloat   = reinterpret_cast<const float*>(&data.front());
1164         const float* const              outputAsFloat                   = static_cast<const float*>(outputAllocs[0]->getHostPtr());
1165
1166         for (size_t idx = 0; idx < expectedOutput->getByteSize() / sizeof(float) / 2; ++idx)
1167         {
1168                 const float e0 = expectedOutputAsFloat[idx * 2];
1169                 const float e1 = expectedOutputAsFloat[idx * 2 + 1];
1170                 const float res = outputAsFloat[idx];
1171
1172                 // For NClamp, we have two possible outcomes based on
1173                 // whether NaNs are handled or not.
1174                 // If either min or max value is NaN, the result is undefined,
1175                 // so this test doesn't stress those. If the clamped value is
1176                 // NaN, and NaNs are handled, the result is min; if NaNs are not
1177                 // handled, they are big values that result in max.
1178                 // If all three parameters are NaN, the result should be NaN.
1179                 if (!((tcu::Float32(e0).isNaN() && tcu::Float32(res).isNaN()) ||
1180                          (deFloatAbs(e0 - res) < 0.00001f) ||
1181                          (deFloatAbs(e1 - res) < 0.00001f)))
1182                         return false;
1183         }
1184
1185         return true;
1186 }
1187
1188 tcu::TestCaseGroup* createOpNClampGroup (tcu::TestContext& testCtx)
1189 {
1190         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opnclamp", "Test the OpNClamp instruction"));
1191         ComputeShaderSpec                               spec;
1192         de::Random                                              rnd                             (deStringHash(group->getName()));
1193         const int                                               numElements             = 200;
1194         vector<float>                                   inputFloats1    (numElements, 0);
1195         vector<float>                                   inputFloats2    (numElements, 0);
1196         vector<float>                                   inputFloats3    (numElements, 0);
1197         vector<float>                                   outputFloats    (numElements * 2, 0);
1198
1199         fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
1200         fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats2[0], numElements);
1201         fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats3[0], numElements);
1202
1203         for (size_t ndx = 0; ndx < numElements; ++ndx)
1204         {
1205                 // Results are only defined if max value is bigger than min value.
1206                 if (inputFloats2[ndx] > inputFloats3[ndx])
1207                 {
1208                         float t = inputFloats2[ndx];
1209                         inputFloats2[ndx] = inputFloats3[ndx];
1210                         inputFloats3[ndx] = t;
1211                 }
1212
1213                 // By default, do the clamp, setting both possible answers
1214                 float defaultRes = std::min(std::max(inputFloats1[ndx], inputFloats2[ndx]), inputFloats3[ndx]);
1215
1216                 float maxResA = std::max(inputFloats1[ndx], inputFloats2[ndx]);
1217                 float maxResB = maxResA;
1218
1219                 // Alternate between the NaN cases
1220                 if (ndx & 1)
1221                 {
1222                         inputFloats1[ndx] = TCU_NAN;
1223                         // If NaN is handled, the result should be same as the clamp minimum.
1224                         // If NaN is not handled, the result should clamp to the clamp maximum.
1225                         maxResA = inputFloats2[ndx];
1226                         maxResB = inputFloats3[ndx];
1227                 }
1228                 else
1229                 {
1230                         // Not a NaN case - only one legal result.
1231                         maxResA = defaultRes;
1232                         maxResB = defaultRes;
1233                 }
1234
1235                 outputFloats[ndx * 2] = maxResA;
1236                 outputFloats[ndx * 2 + 1] = maxResB;
1237         }
1238
1239         // Make the first case a full-NAN case.
1240         inputFloats1[0] = TCU_NAN;
1241         inputFloats2[0] = TCU_NAN;
1242         inputFloats3[0] = TCU_NAN;
1243         outputFloats[0] = TCU_NAN;
1244         outputFloats[1] = TCU_NAN;
1245
1246         spec.assembly =
1247                 "OpCapability Shader\n"
1248                 "%std450        = OpExtInstImport \"GLSL.std.450\"\n"
1249                 "OpMemoryModel Logical GLSL450\n"
1250                 "OpEntryPoint GLCompute %main \"main\" %id\n"
1251                 "OpExecutionMode %main LocalSize 1 1 1\n"
1252
1253                 "OpName %main           \"main\"\n"
1254                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1255
1256                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1257
1258                 "OpDecorate %buf BufferBlock\n"
1259                 "OpDecorate %indata1 DescriptorSet 0\n"
1260                 "OpDecorate %indata1 Binding 0\n"
1261                 "OpDecorate %indata2 DescriptorSet 0\n"
1262                 "OpDecorate %indata2 Binding 1\n"
1263                 "OpDecorate %indata3 DescriptorSet 0\n"
1264                 "OpDecorate %indata3 Binding 2\n"
1265                 "OpDecorate %outdata DescriptorSet 0\n"
1266                 "OpDecorate %outdata Binding 3\n"
1267                 "OpDecorate %f32arr ArrayStride 4\n"
1268                 "OpMemberDecorate %buf 0 Offset 0\n"
1269
1270                 + string(getComputeAsmCommonTypes()) +
1271
1272                 "%buf        = OpTypeStruct %f32arr\n"
1273                 "%bufptr     = OpTypePointer Uniform %buf\n"
1274                 "%indata1    = OpVariable %bufptr Uniform\n"
1275                 "%indata2    = OpVariable %bufptr Uniform\n"
1276                 "%indata3    = OpVariable %bufptr Uniform\n"
1277                 "%outdata    = OpVariable %bufptr Uniform\n"
1278
1279                 "%id        = OpVariable %uvec3ptr Input\n"
1280                 "%zero      = OpConstant %i32 0\n"
1281
1282                 "%main      = OpFunction %void None %voidf\n"
1283                 "%label     = OpLabel\n"
1284                 "%idval     = OpLoad %uvec3 %id\n"
1285                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1286                 "%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
1287                 "%inval1    = OpLoad %f32 %inloc1\n"
1288                 "%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
1289                 "%inval2    = OpLoad %f32 %inloc2\n"
1290                 "%inloc3    = OpAccessChain %f32ptr %indata3 %zero %x\n"
1291                 "%inval3    = OpLoad %f32 %inloc3\n"
1292                 "%rem       = OpExtInst %f32 %std450 NClamp %inval1 %inval2 %inval3\n"
1293                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1294                 "             OpStore %outloc %rem\n"
1295                 "             OpReturn\n"
1296                 "             OpFunctionEnd\n";
1297
1298         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
1299         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1300         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
1301         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1302         spec.numWorkGroups = IVec3(numElements, 1, 1);
1303         spec.verifyIO = &compareNClamp;
1304
1305         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
1306
1307         return group.release();
1308 }
1309
1310 tcu::TestCaseGroup* createOpSRemComputeGroup (tcu::TestContext& testCtx, qpTestResult negFailResult)
1311 {
1312         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opsrem", "Test the OpSRem instruction"));
1313         de::Random                                              rnd                             (deStringHash(group->getName()));
1314         const int                                               numElements             = 200;
1315
1316         const struct CaseParams
1317         {
1318                 const char*             name;
1319                 const char*             failMessage;            // customized status message
1320                 qpTestResult    failResult;                     // override status on failure
1321                 int                             op1Min, op1Max;         // operand ranges
1322                 int                             op2Min, op2Max;
1323         } cases[] =
1324         {
1325                 { "positive",   "Output doesn't match with expected",                           QP_TEST_RESULT_FAIL,    0,              65536,  0,              100 },
1326                 { "all",                "Inconsistent results, but within specification",       negFailResult,                  -65536, 65536,  -100,   100 },  // see below
1327         };
1328         // If either operand is negative the result is undefined. Some implementations may still return correct values.
1329
1330         for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(cases); ++caseNdx)
1331         {
1332                 const CaseParams&       params          = cases[caseNdx];
1333                 ComputeShaderSpec       spec;
1334                 vector<deInt32>         inputInts1      (numElements, 0);
1335                 vector<deInt32>         inputInts2      (numElements, 0);
1336                 vector<deInt32>         outputInts      (numElements, 0);
1337
1338                 fillRandomScalars(rnd, params.op1Min, params.op1Max, &inputInts1[0], numElements);
1339                 fillRandomScalars(rnd, params.op2Min, params.op2Max, &inputInts2[0], numElements, filterNotZero);
1340
1341                 for (int ndx = 0; ndx < numElements; ++ndx)
1342                 {
1343                         // The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
1344                         outputInts[ndx] = inputInts1[ndx] % inputInts2[ndx];
1345                 }
1346
1347                 spec.assembly =
1348                         string(getComputeAsmShaderPreamble()) +
1349
1350                         "OpName %main           \"main\"\n"
1351                         "OpName %id             \"gl_GlobalInvocationID\"\n"
1352
1353                         "OpDecorate %id BuiltIn GlobalInvocationId\n"
1354
1355                         "OpDecorate %buf BufferBlock\n"
1356                         "OpDecorate %indata1 DescriptorSet 0\n"
1357                         "OpDecorate %indata1 Binding 0\n"
1358                         "OpDecorate %indata2 DescriptorSet 0\n"
1359                         "OpDecorate %indata2 Binding 1\n"
1360                         "OpDecorate %outdata DescriptorSet 0\n"
1361                         "OpDecorate %outdata Binding 2\n"
1362                         "OpDecorate %i32arr ArrayStride 4\n"
1363                         "OpMemberDecorate %buf 0 Offset 0\n"
1364
1365                         + string(getComputeAsmCommonTypes()) +
1366
1367                         "%buf        = OpTypeStruct %i32arr\n"
1368                         "%bufptr     = OpTypePointer Uniform %buf\n"
1369                         "%indata1    = OpVariable %bufptr Uniform\n"
1370                         "%indata2    = OpVariable %bufptr Uniform\n"
1371                         "%outdata    = OpVariable %bufptr Uniform\n"
1372
1373                         "%id        = OpVariable %uvec3ptr Input\n"
1374                         "%zero      = OpConstant %i32 0\n"
1375
1376                         "%main      = OpFunction %void None %voidf\n"
1377                         "%label     = OpLabel\n"
1378                         "%idval     = OpLoad %uvec3 %id\n"
1379                         "%x         = OpCompositeExtract %u32 %idval 0\n"
1380                         "%inloc1    = OpAccessChain %i32ptr %indata1 %zero %x\n"
1381                         "%inval1    = OpLoad %i32 %inloc1\n"
1382                         "%inloc2    = OpAccessChain %i32ptr %indata2 %zero %x\n"
1383                         "%inval2    = OpLoad %i32 %inloc2\n"
1384                         "%rem       = OpSRem %i32 %inval1 %inval2\n"
1385                         "%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1386                         "             OpStore %outloc %rem\n"
1387                         "             OpReturn\n"
1388                         "             OpFunctionEnd\n";
1389
1390                 spec.inputs.push_back   (BufferSp(new Int32Buffer(inputInts1)));
1391                 spec.inputs.push_back   (BufferSp(new Int32Buffer(inputInts2)));
1392                 spec.outputs.push_back  (BufferSp(new Int32Buffer(outputInts)));
1393                 spec.numWorkGroups              = IVec3(numElements, 1, 1);
1394                 spec.failResult                 = params.failResult;
1395                 spec.failMessage                = params.failMessage;
1396
1397                 group->addChild(new SpvAsmComputeShaderCase(testCtx, params.name, "", spec));
1398         }
1399
1400         return group.release();
1401 }
1402
1403 tcu::TestCaseGroup* createOpSRemComputeGroup64 (tcu::TestContext& testCtx, qpTestResult negFailResult)
1404 {
1405         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opsrem64", "Test the 64-bit OpSRem instruction"));
1406         de::Random                                              rnd                             (deStringHash(group->getName()));
1407         const int                                               numElements             = 200;
1408
1409         const struct CaseParams
1410         {
1411                 const char*             name;
1412                 const char*             failMessage;            // customized status message
1413                 qpTestResult    failResult;                     // override status on failure
1414                 bool                    positive;
1415         } cases[] =
1416         {
1417                 { "positive",   "Output doesn't match with expected",                           QP_TEST_RESULT_FAIL,    true },
1418                 { "all",                "Inconsistent results, but within specification",       negFailResult,                  false },        // see below
1419         };
1420         // If either operand is negative the result is undefined. Some implementations may still return correct values.
1421
1422         for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(cases); ++caseNdx)
1423         {
1424                 const CaseParams&       params          = cases[caseNdx];
1425                 ComputeShaderSpec       spec;
1426                 vector<deInt64>         inputInts1      (numElements, 0);
1427                 vector<deInt64>         inputInts2      (numElements, 0);
1428                 vector<deInt64>         outputInts      (numElements, 0);
1429
1430                 if (params.positive)
1431                 {
1432                         fillRandomInt64sLogDistributed(rnd, inputInts1, numElements, filterNonNegative);
1433                         fillRandomInt64sLogDistributed(rnd, inputInts2, numElements, filterPositive);
1434                 }
1435                 else
1436                 {
1437                         fillRandomInt64sLogDistributed(rnd, inputInts1, numElements);
1438                         fillRandomInt64sLogDistributed(rnd, inputInts2, numElements, filterNotZero);
1439                 }
1440
1441                 for (int ndx = 0; ndx < numElements; ++ndx)
1442                 {
1443                         // The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
1444                         outputInts[ndx] = inputInts1[ndx] % inputInts2[ndx];
1445                 }
1446
1447                 spec.assembly =
1448                         "OpCapability Int64\n"
1449
1450                         + string(getComputeAsmShaderPreamble()) +
1451
1452                         "OpName %main           \"main\"\n"
1453                         "OpName %id             \"gl_GlobalInvocationID\"\n"
1454
1455                         "OpDecorate %id BuiltIn GlobalInvocationId\n"
1456
1457                         "OpDecorate %buf BufferBlock\n"
1458                         "OpDecorate %indata1 DescriptorSet 0\n"
1459                         "OpDecorate %indata1 Binding 0\n"
1460                         "OpDecorate %indata2 DescriptorSet 0\n"
1461                         "OpDecorate %indata2 Binding 1\n"
1462                         "OpDecorate %outdata DescriptorSet 0\n"
1463                         "OpDecorate %outdata Binding 2\n"
1464                         "OpDecorate %i64arr ArrayStride 8\n"
1465                         "OpMemberDecorate %buf 0 Offset 0\n"
1466
1467                         + string(getComputeAsmCommonTypes())
1468                         + string(getComputeAsmCommonInt64Types()) +
1469
1470                         "%buf        = OpTypeStruct %i64arr\n"
1471                         "%bufptr     = OpTypePointer Uniform %buf\n"
1472                         "%indata1    = OpVariable %bufptr Uniform\n"
1473                         "%indata2    = OpVariable %bufptr Uniform\n"
1474                         "%outdata    = OpVariable %bufptr Uniform\n"
1475
1476                         "%id        = OpVariable %uvec3ptr Input\n"
1477                         "%zero      = OpConstant %i64 0\n"
1478
1479                         "%main      = OpFunction %void None %voidf\n"
1480                         "%label     = OpLabel\n"
1481                         "%idval     = OpLoad %uvec3 %id\n"
1482                         "%x         = OpCompositeExtract %u32 %idval 0\n"
1483                         "%inloc1    = OpAccessChain %i64ptr %indata1 %zero %x\n"
1484                         "%inval1    = OpLoad %i64 %inloc1\n"
1485                         "%inloc2    = OpAccessChain %i64ptr %indata2 %zero %x\n"
1486                         "%inval2    = OpLoad %i64 %inloc2\n"
1487                         "%rem       = OpSRem %i64 %inval1 %inval2\n"
1488                         "%outloc    = OpAccessChain %i64ptr %outdata %zero %x\n"
1489                         "             OpStore %outloc %rem\n"
1490                         "             OpReturn\n"
1491                         "             OpFunctionEnd\n";
1492
1493                 spec.inputs.push_back   (BufferSp(new Int64Buffer(inputInts1)));
1494                 spec.inputs.push_back   (BufferSp(new Int64Buffer(inputInts2)));
1495                 spec.outputs.push_back  (BufferSp(new Int64Buffer(outputInts)));
1496                 spec.numWorkGroups              = IVec3(numElements, 1, 1);
1497                 spec.failResult                 = params.failResult;
1498                 spec.failMessage                = params.failMessage;
1499
1500                 group->addChild(new SpvAsmComputeShaderCase(testCtx, params.name, "", spec, COMPUTE_TEST_USES_INT64));
1501         }
1502
1503         return group.release();
1504 }
1505
1506 tcu::TestCaseGroup* createOpSModComputeGroup (tcu::TestContext& testCtx, qpTestResult negFailResult)
1507 {
1508         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opsmod", "Test the OpSMod instruction"));
1509         de::Random                                              rnd                             (deStringHash(group->getName()));
1510         const int                                               numElements             = 200;
1511
1512         const struct CaseParams
1513         {
1514                 const char*             name;
1515                 const char*             failMessage;            // customized status message
1516                 qpTestResult    failResult;                     // override status on failure
1517                 int                             op1Min, op1Max;         // operand ranges
1518                 int                             op2Min, op2Max;
1519         } cases[] =
1520         {
1521                 { "positive",   "Output doesn't match with expected",                           QP_TEST_RESULT_FAIL,    0,              65536,  0,              100 },
1522                 { "all",                "Inconsistent results, but within specification",       negFailResult,                  -65536, 65536,  -100,   100 },  // see below
1523         };
1524         // If either operand is negative the result is undefined. Some implementations may still return correct values.
1525
1526         for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(cases); ++caseNdx)
1527         {
1528                 const CaseParams&       params          = cases[caseNdx];
1529
1530                 ComputeShaderSpec       spec;
1531                 vector<deInt32>         inputInts1      (numElements, 0);
1532                 vector<deInt32>         inputInts2      (numElements, 0);
1533                 vector<deInt32>         outputInts      (numElements, 0);
1534
1535                 fillRandomScalars(rnd, params.op1Min, params.op1Max, &inputInts1[0], numElements);
1536                 fillRandomScalars(rnd, params.op2Min, params.op2Max, &inputInts2[0], numElements, filterNotZero);
1537
1538                 for (int ndx = 0; ndx < numElements; ++ndx)
1539                 {
1540                         deInt32 rem = inputInts1[ndx] % inputInts2[ndx];
1541                         if (rem == 0)
1542                         {
1543                                 outputInts[ndx] = 0;
1544                         }
1545                         else if ((inputInts1[ndx] >= 0) == (inputInts2[ndx] >= 0))
1546                         {
1547                                 // They have the same sign
1548                                 outputInts[ndx] = rem;
1549                         }
1550                         else
1551                         {
1552                                 // They have opposite sign.  The remainder operation takes the
1553                                 // sign inputInts1[ndx] but OpSMod is supposed to take ths sign
1554                                 // of inputInts2[ndx].  Adding inputInts2[ndx] will ensure that
1555                                 // the result has the correct sign and that it is still
1556                                 // congruent to inputInts1[ndx] modulo inputInts2[ndx]
1557                                 //
1558                                 // See also http://mathforum.org/library/drmath/view/52343.html
1559                                 outputInts[ndx] = rem + inputInts2[ndx];
1560                         }
1561                 }
1562
1563                 spec.assembly =
1564                         string(getComputeAsmShaderPreamble()) +
1565
1566                         "OpName %main           \"main\"\n"
1567                         "OpName %id             \"gl_GlobalInvocationID\"\n"
1568
1569                         "OpDecorate %id BuiltIn GlobalInvocationId\n"
1570
1571                         "OpDecorate %buf BufferBlock\n"
1572                         "OpDecorate %indata1 DescriptorSet 0\n"
1573                         "OpDecorate %indata1 Binding 0\n"
1574                         "OpDecorate %indata2 DescriptorSet 0\n"
1575                         "OpDecorate %indata2 Binding 1\n"
1576                         "OpDecorate %outdata DescriptorSet 0\n"
1577                         "OpDecorate %outdata Binding 2\n"
1578                         "OpDecorate %i32arr ArrayStride 4\n"
1579                         "OpMemberDecorate %buf 0 Offset 0\n"
1580
1581                         + string(getComputeAsmCommonTypes()) +
1582
1583                         "%buf        = OpTypeStruct %i32arr\n"
1584                         "%bufptr     = OpTypePointer Uniform %buf\n"
1585                         "%indata1    = OpVariable %bufptr Uniform\n"
1586                         "%indata2    = OpVariable %bufptr Uniform\n"
1587                         "%outdata    = OpVariable %bufptr Uniform\n"
1588
1589                         "%id        = OpVariable %uvec3ptr Input\n"
1590                         "%zero      = OpConstant %i32 0\n"
1591
1592                         "%main      = OpFunction %void None %voidf\n"
1593                         "%label     = OpLabel\n"
1594                         "%idval     = OpLoad %uvec3 %id\n"
1595                         "%x         = OpCompositeExtract %u32 %idval 0\n"
1596                         "%inloc1    = OpAccessChain %i32ptr %indata1 %zero %x\n"
1597                         "%inval1    = OpLoad %i32 %inloc1\n"
1598                         "%inloc2    = OpAccessChain %i32ptr %indata2 %zero %x\n"
1599                         "%inval2    = OpLoad %i32 %inloc2\n"
1600                         "%rem       = OpSMod %i32 %inval1 %inval2\n"
1601                         "%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1602                         "             OpStore %outloc %rem\n"
1603                         "             OpReturn\n"
1604                         "             OpFunctionEnd\n";
1605
1606                 spec.inputs.push_back   (BufferSp(new Int32Buffer(inputInts1)));
1607                 spec.inputs.push_back   (BufferSp(new Int32Buffer(inputInts2)));
1608                 spec.outputs.push_back  (BufferSp(new Int32Buffer(outputInts)));
1609                 spec.numWorkGroups              = IVec3(numElements, 1, 1);
1610                 spec.failResult                 = params.failResult;
1611                 spec.failMessage                = params.failMessage;
1612
1613                 group->addChild(new SpvAsmComputeShaderCase(testCtx, params.name, "", spec));
1614         }
1615
1616         return group.release();
1617 }
1618
1619 tcu::TestCaseGroup* createOpSModComputeGroup64 (tcu::TestContext& testCtx, qpTestResult negFailResult)
1620 {
1621         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opsmod64", "Test the OpSMod instruction"));
1622         de::Random                                              rnd                             (deStringHash(group->getName()));
1623         const int                                               numElements             = 200;
1624
1625         const struct CaseParams
1626         {
1627                 const char*             name;
1628                 const char*             failMessage;            // customized status message
1629                 qpTestResult    failResult;                     // override status on failure
1630                 bool                    positive;
1631         } cases[] =
1632         {
1633                 { "positive",   "Output doesn't match with expected",                           QP_TEST_RESULT_FAIL,    true },
1634                 { "all",                "Inconsistent results, but within specification",       negFailResult,                  false },        // see below
1635         };
1636         // If either operand is negative the result is undefined. Some implementations may still return correct values.
1637
1638         for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(cases); ++caseNdx)
1639         {
1640                 const CaseParams&       params          = cases[caseNdx];
1641
1642                 ComputeShaderSpec       spec;
1643                 vector<deInt64>         inputInts1      (numElements, 0);
1644                 vector<deInt64>         inputInts2      (numElements, 0);
1645                 vector<deInt64>         outputInts      (numElements, 0);
1646
1647
1648                 if (params.positive)
1649                 {
1650                         fillRandomInt64sLogDistributed(rnd, inputInts1, numElements, filterNonNegative);
1651                         fillRandomInt64sLogDistributed(rnd, inputInts2, numElements, filterPositive);
1652                 }
1653                 else
1654                 {
1655                         fillRandomInt64sLogDistributed(rnd, inputInts1, numElements);
1656                         fillRandomInt64sLogDistributed(rnd, inputInts2, numElements, filterNotZero);
1657                 }
1658
1659                 for (int ndx = 0; ndx < numElements; ++ndx)
1660                 {
1661                         deInt64 rem = inputInts1[ndx] % inputInts2[ndx];
1662                         if (rem == 0)
1663                         {
1664                                 outputInts[ndx] = 0;
1665                         }
1666                         else if ((inputInts1[ndx] >= 0) == (inputInts2[ndx] >= 0))
1667                         {
1668                                 // They have the same sign
1669                                 outputInts[ndx] = rem;
1670                         }
1671                         else
1672                         {
1673                                 // They have opposite sign.  The remainder operation takes the
1674                                 // sign inputInts1[ndx] but OpSMod is supposed to take ths sign
1675                                 // of inputInts2[ndx].  Adding inputInts2[ndx] will ensure that
1676                                 // the result has the correct sign and that it is still
1677                                 // congruent to inputInts1[ndx] modulo inputInts2[ndx]
1678                                 //
1679                                 // See also http://mathforum.org/library/drmath/view/52343.html
1680                                 outputInts[ndx] = rem + inputInts2[ndx];
1681                         }
1682                 }
1683
1684                 spec.assembly =
1685                         "OpCapability Int64\n"
1686
1687                         + string(getComputeAsmShaderPreamble()) +
1688
1689                         "OpName %main           \"main\"\n"
1690                         "OpName %id             \"gl_GlobalInvocationID\"\n"
1691
1692                         "OpDecorate %id BuiltIn GlobalInvocationId\n"
1693
1694                         "OpDecorate %buf BufferBlock\n"
1695                         "OpDecorate %indata1 DescriptorSet 0\n"
1696                         "OpDecorate %indata1 Binding 0\n"
1697                         "OpDecorate %indata2 DescriptorSet 0\n"
1698                         "OpDecorate %indata2 Binding 1\n"
1699                         "OpDecorate %outdata DescriptorSet 0\n"
1700                         "OpDecorate %outdata Binding 2\n"
1701                         "OpDecorate %i64arr ArrayStride 8\n"
1702                         "OpMemberDecorate %buf 0 Offset 0\n"
1703
1704                         + string(getComputeAsmCommonTypes())
1705                         + string(getComputeAsmCommonInt64Types()) +
1706
1707                         "%buf        = OpTypeStruct %i64arr\n"
1708                         "%bufptr     = OpTypePointer Uniform %buf\n"
1709                         "%indata1    = OpVariable %bufptr Uniform\n"
1710                         "%indata2    = OpVariable %bufptr Uniform\n"
1711                         "%outdata    = OpVariable %bufptr Uniform\n"
1712
1713                         "%id        = OpVariable %uvec3ptr Input\n"
1714                         "%zero      = OpConstant %i64 0\n"
1715
1716                         "%main      = OpFunction %void None %voidf\n"
1717                         "%label     = OpLabel\n"
1718                         "%idval     = OpLoad %uvec3 %id\n"
1719                         "%x         = OpCompositeExtract %u32 %idval 0\n"
1720                         "%inloc1    = OpAccessChain %i64ptr %indata1 %zero %x\n"
1721                         "%inval1    = OpLoad %i64 %inloc1\n"
1722                         "%inloc2    = OpAccessChain %i64ptr %indata2 %zero %x\n"
1723                         "%inval2    = OpLoad %i64 %inloc2\n"
1724                         "%rem       = OpSMod %i64 %inval1 %inval2\n"
1725                         "%outloc    = OpAccessChain %i64ptr %outdata %zero %x\n"
1726                         "             OpStore %outloc %rem\n"
1727                         "             OpReturn\n"
1728                         "             OpFunctionEnd\n";
1729
1730                 spec.inputs.push_back   (BufferSp(new Int64Buffer(inputInts1)));
1731                 spec.inputs.push_back   (BufferSp(new Int64Buffer(inputInts2)));
1732                 spec.outputs.push_back  (BufferSp(new Int64Buffer(outputInts)));
1733                 spec.numWorkGroups              = IVec3(numElements, 1, 1);
1734                 spec.failResult                 = params.failResult;
1735                 spec.failMessage                = params.failMessage;
1736
1737                 group->addChild(new SpvAsmComputeShaderCase(testCtx, params.name, "", spec, COMPUTE_TEST_USES_INT64));
1738         }
1739
1740         return group.release();
1741 }
1742
1743 // Copy contents in the input buffer to the output buffer.
1744 tcu::TestCaseGroup* createOpCopyMemoryGroup (tcu::TestContext& testCtx)
1745 {
1746         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opcopymemory", "Test the OpCopyMemory instruction"));
1747         de::Random                                              rnd                             (deStringHash(group->getName()));
1748         const int                                               numElements             = 100;
1749
1750         // The following case adds vec4(0., 0.5, 1.5, 2.5) to each of the elements in the input buffer and writes output to the output buffer.
1751         ComputeShaderSpec                               spec1;
1752         vector<Vec4>                                    inputFloats1    (numElements);
1753         vector<Vec4>                                    outputFloats1   (numElements);
1754
1755         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats1[0], numElements * 4);
1756
1757         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
1758         floorAll(inputFloats1);
1759
1760         for (size_t ndx = 0; ndx < numElements; ++ndx)
1761                 outputFloats1[ndx] = inputFloats1[ndx] + Vec4(0.f, 0.5f, 1.5f, 2.5f);
1762
1763         spec1.assembly =
1764                 string(getComputeAsmShaderPreamble()) +
1765
1766                 "OpName %main           \"main\"\n"
1767                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1768
1769                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1770                 "OpDecorate %vec4arr ArrayStride 16\n"
1771
1772                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
1773
1774                 "%vec4       = OpTypeVector %f32 4\n"
1775                 "%vec4ptr_u  = OpTypePointer Uniform %vec4\n"
1776                 "%vec4ptr_f  = OpTypePointer Function %vec4\n"
1777                 "%vec4arr    = OpTypeRuntimeArray %vec4\n"
1778                 "%buf        = OpTypeStruct %vec4arr\n"
1779                 "%bufptr     = OpTypePointer Uniform %buf\n"
1780                 "%indata     = OpVariable %bufptr Uniform\n"
1781                 "%outdata    = OpVariable %bufptr Uniform\n"
1782
1783                 "%id         = OpVariable %uvec3ptr Input\n"
1784                 "%zero       = OpConstant %i32 0\n"
1785                 "%c_f_0      = OpConstant %f32 0.\n"
1786                 "%c_f_0_5    = OpConstant %f32 0.5\n"
1787                 "%c_f_1_5    = OpConstant %f32 1.5\n"
1788                 "%c_f_2_5    = OpConstant %f32 2.5\n"
1789                 "%c_vec4     = OpConstantComposite %vec4 %c_f_0 %c_f_0_5 %c_f_1_5 %c_f_2_5\n"
1790
1791                 "%main       = OpFunction %void None %voidf\n"
1792                 "%label      = OpLabel\n"
1793                 "%v_vec4     = OpVariable %vec4ptr_f Function\n"
1794                 "%idval      = OpLoad %uvec3 %id\n"
1795                 "%x          = OpCompositeExtract %u32 %idval 0\n"
1796                 "%inloc      = OpAccessChain %vec4ptr_u %indata %zero %x\n"
1797                 "%outloc     = OpAccessChain %vec4ptr_u %outdata %zero %x\n"
1798                 "              OpCopyMemory %v_vec4 %inloc\n"
1799                 "%v_vec4_val = OpLoad %vec4 %v_vec4\n"
1800                 "%add        = OpFAdd %vec4 %v_vec4_val %c_vec4\n"
1801                 "              OpStore %outloc %add\n"
1802                 "              OpReturn\n"
1803                 "              OpFunctionEnd\n";
1804
1805         spec1.inputs.push_back(BufferSp(new Vec4Buffer(inputFloats1)));
1806         spec1.outputs.push_back(BufferSp(new Vec4Buffer(outputFloats1)));
1807         spec1.numWorkGroups = IVec3(numElements, 1, 1);
1808
1809         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector", "OpCopyMemory elements of vector type", spec1));
1810
1811         // The following case copies a float[100] variable from the input buffer to the output buffer.
1812         ComputeShaderSpec                               spec2;
1813         vector<float>                                   inputFloats2    (numElements);
1814         vector<float>                                   outputFloats2   (numElements);
1815
1816         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats2[0], numElements);
1817
1818         for (size_t ndx = 0; ndx < numElements; ++ndx)
1819                 outputFloats2[ndx] = inputFloats2[ndx];
1820
1821         spec2.assembly =
1822                 string(getComputeAsmShaderPreamble()) +
1823
1824                 "OpName %main           \"main\"\n"
1825                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1826
1827                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1828                 "OpDecorate %f32arr100 ArrayStride 4\n"
1829
1830                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
1831
1832                 "%hundred        = OpConstant %u32 100\n"
1833                 "%f32arr100      = OpTypeArray %f32 %hundred\n"
1834                 "%f32arr100ptr_f = OpTypePointer Function %f32arr100\n"
1835                 "%f32arr100ptr_u = OpTypePointer Uniform %f32arr100\n"
1836                 "%buf            = OpTypeStruct %f32arr100\n"
1837                 "%bufptr         = OpTypePointer Uniform %buf\n"
1838                 "%indata         = OpVariable %bufptr Uniform\n"
1839                 "%outdata        = OpVariable %bufptr Uniform\n"
1840
1841                 "%id             = OpVariable %uvec3ptr Input\n"
1842                 "%zero           = OpConstant %i32 0\n"
1843
1844                 "%main           = OpFunction %void None %voidf\n"
1845                 "%label          = OpLabel\n"
1846                 "%var            = OpVariable %f32arr100ptr_f Function\n"
1847                 "%inarr          = OpAccessChain %f32arr100ptr_u %indata %zero\n"
1848                 "%outarr         = OpAccessChain %f32arr100ptr_u %outdata %zero\n"
1849                 "                  OpCopyMemory %var %inarr\n"
1850                 "                  OpCopyMemory %outarr %var\n"
1851                 "                  OpReturn\n"
1852                 "                  OpFunctionEnd\n";
1853
1854         spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1855         spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1856         spec2.numWorkGroups = IVec3(1, 1, 1);
1857
1858         group->addChild(new SpvAsmComputeShaderCase(testCtx, "array", "OpCopyMemory elements of array type", spec2));
1859
1860         // The following case copies a struct{vec4, vec4, vec4, vec4} variable from the input buffer to the output buffer.
1861         ComputeShaderSpec                               spec3;
1862         vector<float>                                   inputFloats3    (16);
1863         vector<float>                                   outputFloats3   (16);
1864
1865         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats3[0], 16);
1866
1867         for (size_t ndx = 0; ndx < 16; ++ndx)
1868                 outputFloats3[ndx] = inputFloats3[ndx];
1869
1870         spec3.assembly =
1871                 string(getComputeAsmShaderPreamble()) +
1872
1873                 "OpName %main           \"main\"\n"
1874                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1875
1876                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1877                 "OpMemberDecorate %buf 0 Offset 0\n"
1878                 "OpMemberDecorate %buf 1 Offset 16\n"
1879                 "OpMemberDecorate %buf 2 Offset 32\n"
1880                 "OpMemberDecorate %buf 3 Offset 48\n"
1881
1882                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
1883
1884                 "%vec4      = OpTypeVector %f32 4\n"
1885                 "%buf       = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
1886                 "%bufptr    = OpTypePointer Uniform %buf\n"
1887                 "%indata    = OpVariable %bufptr Uniform\n"
1888                 "%outdata   = OpVariable %bufptr Uniform\n"
1889                 "%vec4stptr = OpTypePointer Function %buf\n"
1890
1891                 "%id        = OpVariable %uvec3ptr Input\n"
1892                 "%zero      = OpConstant %i32 0\n"
1893
1894                 "%main      = OpFunction %void None %voidf\n"
1895                 "%label     = OpLabel\n"
1896                 "%var       = OpVariable %vec4stptr Function\n"
1897                 "             OpCopyMemory %var %indata\n"
1898                 "             OpCopyMemory %outdata %var\n"
1899                 "             OpReturn\n"
1900                 "             OpFunctionEnd\n";
1901
1902         spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
1903         spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
1904         spec3.numWorkGroups = IVec3(1, 1, 1);
1905
1906         group->addChild(new SpvAsmComputeShaderCase(testCtx, "struct", "OpCopyMemory elements of struct type", spec3));
1907
1908         // The following case negates multiple float variables from the input buffer and stores the results to the output buffer.
1909         ComputeShaderSpec                               spec4;
1910         vector<float>                                   inputFloats4    (numElements);
1911         vector<float>                                   outputFloats4   (numElements);
1912
1913         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats4[0], numElements);
1914
1915         for (size_t ndx = 0; ndx < numElements; ++ndx)
1916                 outputFloats4[ndx] = -inputFloats4[ndx];
1917
1918         spec4.assembly =
1919                 string(getComputeAsmShaderPreamble()) +
1920
1921                 "OpName %main           \"main\"\n"
1922                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1923
1924                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1925
1926                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
1927
1928                 "%f32ptr_f  = OpTypePointer Function %f32\n"
1929                 "%id        = OpVariable %uvec3ptr Input\n"
1930                 "%zero      = OpConstant %i32 0\n"
1931
1932                 "%main      = OpFunction %void None %voidf\n"
1933                 "%label     = OpLabel\n"
1934                 "%var       = OpVariable %f32ptr_f Function\n"
1935                 "%idval     = OpLoad %uvec3 %id\n"
1936                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1937                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1938                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1939                 "             OpCopyMemory %var %inloc\n"
1940                 "%val       = OpLoad %f32 %var\n"
1941                 "%neg       = OpFNegate %f32 %val\n"
1942                 "             OpStore %outloc %neg\n"
1943                 "             OpReturn\n"
1944                 "             OpFunctionEnd\n";
1945
1946         spec4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
1947         spec4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats4)));
1948         spec4.numWorkGroups = IVec3(numElements, 1, 1);
1949
1950         group->addChild(new SpvAsmComputeShaderCase(testCtx, "float", "OpCopyMemory elements of float type", spec4));
1951
1952         return group.release();
1953 }
1954
1955 tcu::TestCaseGroup* createOpCopyObjectGroup (tcu::TestContext& testCtx)
1956 {
1957         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opcopyobject", "Test the OpCopyObject instruction"));
1958         ComputeShaderSpec                               spec;
1959         de::Random                                              rnd                             (deStringHash(group->getName()));
1960         const int                                               numElements             = 100;
1961         vector<float>                                   inputFloats             (numElements, 0);
1962         vector<float>                                   outputFloats    (numElements, 0);
1963
1964         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
1965
1966         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
1967         floorAll(inputFloats);
1968
1969         for (size_t ndx = 0; ndx < numElements; ++ndx)
1970                 outputFloats[ndx] = inputFloats[ndx] + 7.5f;
1971
1972         spec.assembly =
1973                 string(getComputeAsmShaderPreamble()) +
1974
1975                 "OpName %main           \"main\"\n"
1976                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1977
1978                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1979
1980                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
1981
1982                 "%fmat     = OpTypeMatrix %fvec3 3\n"
1983                 "%three    = OpConstant %u32 3\n"
1984                 "%farr     = OpTypeArray %f32 %three\n"
1985                 "%fst      = OpTypeStruct %f32 %f32\n"
1986
1987                 + string(getComputeAsmInputOutputBuffer()) +
1988
1989                 "%id            = OpVariable %uvec3ptr Input\n"
1990                 "%zero          = OpConstant %i32 0\n"
1991                 "%c_f           = OpConstant %f32 1.5\n"
1992                 "%c_fvec3       = OpConstantComposite %fvec3 %c_f %c_f %c_f\n"
1993                 "%c_fmat        = OpConstantComposite %fmat %c_fvec3 %c_fvec3 %c_fvec3\n"
1994                 "%c_farr        = OpConstantComposite %farr %c_f %c_f %c_f\n"
1995                 "%c_fst         = OpConstantComposite %fst %c_f %c_f\n"
1996
1997                 "%main          = OpFunction %void None %voidf\n"
1998                 "%label         = OpLabel\n"
1999                 "%c_f_copy      = OpCopyObject %f32   %c_f\n"
2000                 "%c_fvec3_copy  = OpCopyObject %fvec3 %c_fvec3\n"
2001                 "%c_fmat_copy   = OpCopyObject %fmat  %c_fmat\n"
2002                 "%c_farr_copy   = OpCopyObject %farr  %c_farr\n"
2003                 "%c_fst_copy    = OpCopyObject %fst   %c_fst\n"
2004                 "%fvec3_elem    = OpCompositeExtract %f32 %c_fvec3_copy 0\n"
2005                 "%fmat_elem     = OpCompositeExtract %f32 %c_fmat_copy 1 2\n"
2006                 "%farr_elem     = OpCompositeExtract %f32 %c_farr_copy 2\n"
2007                 "%fst_elem      = OpCompositeExtract %f32 %c_fst_copy 1\n"
2008                 // Add up. 1.5 * 5 = 7.5.
2009                 "%add1          = OpFAdd %f32 %c_f_copy %fvec3_elem\n"
2010                 "%add2          = OpFAdd %f32 %add1     %fmat_elem\n"
2011                 "%add3          = OpFAdd %f32 %add2     %farr_elem\n"
2012                 "%add4          = OpFAdd %f32 %add3     %fst_elem\n"
2013
2014                 "%idval         = OpLoad %uvec3 %id\n"
2015                 "%x             = OpCompositeExtract %u32 %idval 0\n"
2016                 "%inloc         = OpAccessChain %f32ptr %indata %zero %x\n"
2017                 "%outloc        = OpAccessChain %f32ptr %outdata %zero %x\n"
2018                 "%inval         = OpLoad %f32 %inloc\n"
2019                 "%add           = OpFAdd %f32 %add4 %inval\n"
2020                 "                 OpStore %outloc %add\n"
2021                 "                 OpReturn\n"
2022                 "                 OpFunctionEnd\n";
2023         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2024         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2025         spec.numWorkGroups = IVec3(numElements, 1, 1);
2026
2027         group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "OpCopyObject on different types", spec));
2028
2029         return group.release();
2030 }
2031 // Assembly code used for testing OpUnreachable is based on GLSL source code:
2032 //
2033 // #version 430
2034 //
2035 // layout(std140, set = 0, binding = 0) readonly buffer Input {
2036 //   float elements[];
2037 // } input_data;
2038 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
2039 //   float elements[];
2040 // } output_data;
2041 //
2042 // void not_called_func() {
2043 //   // place OpUnreachable here
2044 // }
2045 //
2046 // uint modulo4(uint val) {
2047 //   switch (val % uint(4)) {
2048 //     case 0:  return 3;
2049 //     case 1:  return 2;
2050 //     case 2:  return 1;
2051 //     case 3:  return 0;
2052 //     default: return 100; // place OpUnreachable here
2053 //   }
2054 // }
2055 //
2056 // uint const5() {
2057 //   return 5;
2058 //   // place OpUnreachable here
2059 // }
2060 //
2061 // void main() {
2062 //   uint x = gl_GlobalInvocationID.x;
2063 //   if (const5() > modulo4(1000)) {
2064 //     output_data.elements[x] = -input_data.elements[x];
2065 //   } else {
2066 //     // place OpUnreachable here
2067 //     output_data.elements[x] = input_data.elements[x];
2068 //   }
2069 // }
2070
2071 tcu::TestCaseGroup* createOpUnreachableGroup (tcu::TestContext& testCtx)
2072 {
2073         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opunreachable", "Test the OpUnreachable instruction"));
2074         ComputeShaderSpec                               spec;
2075         de::Random                                              rnd                             (deStringHash(group->getName()));
2076         const int                                               numElements             = 100;
2077         vector<float>                                   positiveFloats  (numElements, 0);
2078         vector<float>                                   negativeFloats  (numElements, 0);
2079
2080         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2081
2082         for (size_t ndx = 0; ndx < numElements; ++ndx)
2083                 negativeFloats[ndx] = -positiveFloats[ndx];
2084
2085         spec.assembly =
2086                 string(getComputeAsmShaderPreamble()) +
2087
2088                 "OpSource GLSL 430\n"
2089                 "OpName %main            \"main\"\n"
2090                 "OpName %func_not_called_func \"not_called_func(\"\n"
2091                 "OpName %func_modulo4         \"modulo4(u1;\"\n"
2092                 "OpName %func_const5          \"const5(\"\n"
2093                 "OpName %id                   \"gl_GlobalInvocationID\"\n"
2094
2095                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2096
2097                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
2098
2099                 "%u32ptr    = OpTypePointer Function %u32\n"
2100                 "%uintfuint = OpTypeFunction %u32 %u32ptr\n"
2101                 "%unitf     = OpTypeFunction %u32\n"
2102
2103                 "%id        = OpVariable %uvec3ptr Input\n"
2104                 "%zero      = OpConstant %u32 0\n"
2105                 "%one       = OpConstant %u32 1\n"
2106                 "%two       = OpConstant %u32 2\n"
2107                 "%three     = OpConstant %u32 3\n"
2108                 "%four      = OpConstant %u32 4\n"
2109                 "%five      = OpConstant %u32 5\n"
2110                 "%hundred   = OpConstant %u32 100\n"
2111                 "%thousand  = OpConstant %u32 1000\n"
2112
2113                 + string(getComputeAsmInputOutputBuffer()) +
2114
2115                 // Main()
2116                 "%main   = OpFunction %void None %voidf\n"
2117                 "%main_entry  = OpLabel\n"
2118                 "%v_thousand  = OpVariable %u32ptr Function %thousand\n"
2119                 "%idval       = OpLoad %uvec3 %id\n"
2120                 "%x           = OpCompositeExtract %u32 %idval 0\n"
2121                 "%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
2122                 "%inval       = OpLoad %f32 %inloc\n"
2123                 "%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
2124                 "%ret_const5  = OpFunctionCall %u32 %func_const5\n"
2125                 "%ret_modulo4 = OpFunctionCall %u32 %func_modulo4 %v_thousand\n"
2126                 "%cmp_gt      = OpUGreaterThan %bool %ret_const5 %ret_modulo4\n"
2127                 "               OpSelectionMerge %if_end None\n"
2128                 "               OpBranchConditional %cmp_gt %if_true %if_false\n"
2129                 "%if_true     = OpLabel\n"
2130                 "%negate      = OpFNegate %f32 %inval\n"
2131                 "               OpStore %outloc %negate\n"
2132                 "               OpBranch %if_end\n"
2133                 "%if_false    = OpLabel\n"
2134                 "               OpUnreachable\n" // Unreachable else branch for if statement
2135                 "%if_end      = OpLabel\n"
2136                 "               OpReturn\n"
2137                 "               OpFunctionEnd\n"
2138
2139                 // not_called_function()
2140                 "%func_not_called_func  = OpFunction %void None %voidf\n"
2141                 "%not_called_func_entry = OpLabel\n"
2142                 "                         OpUnreachable\n" // Unreachable entry block in not called static function
2143                 "                         OpFunctionEnd\n"
2144
2145                 // modulo4()
2146                 "%func_modulo4  = OpFunction %u32 None %uintfuint\n"
2147                 "%valptr        = OpFunctionParameter %u32ptr\n"
2148                 "%modulo4_entry = OpLabel\n"
2149                 "%val           = OpLoad %u32 %valptr\n"
2150                 "%modulo        = OpUMod %u32 %val %four\n"
2151                 "                 OpSelectionMerge %switch_merge None\n"
2152                 "                 OpSwitch %modulo %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
2153                 "%case0         = OpLabel\n"
2154                 "                 OpReturnValue %three\n"
2155                 "%case1         = OpLabel\n"
2156                 "                 OpReturnValue %two\n"
2157                 "%case2         = OpLabel\n"
2158                 "                 OpReturnValue %one\n"
2159                 "%case3         = OpLabel\n"
2160                 "                 OpReturnValue %zero\n"
2161                 "%default       = OpLabel\n"
2162                 "                 OpUnreachable\n" // Unreachable default case for switch statement
2163                 "%switch_merge  = OpLabel\n"
2164                 "                 OpUnreachable\n" // Unreachable merge block for switch statement
2165                 "                 OpFunctionEnd\n"
2166
2167                 // const5()
2168                 "%func_const5  = OpFunction %u32 None %unitf\n"
2169                 "%const5_entry = OpLabel\n"
2170                 "                OpReturnValue %five\n"
2171                 "%unreachable  = OpLabel\n"
2172                 "                OpUnreachable\n" // Unreachable block in function
2173                 "                OpFunctionEnd\n";
2174         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2175         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2176         spec.numWorkGroups = IVec3(numElements, 1, 1);
2177
2178         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpUnreachable appearing at different places", spec));
2179
2180         return group.release();
2181 }
2182
2183 // Assembly code used for testing decoration group is based on GLSL source code:
2184 //
2185 // #version 430
2186 //
2187 // layout(std140, set = 0, binding = 0) readonly buffer Input0 {
2188 //   float elements[];
2189 // } input_data0;
2190 // layout(std140, set = 0, binding = 1) readonly buffer Input1 {
2191 //   float elements[];
2192 // } input_data1;
2193 // layout(std140, set = 0, binding = 2) readonly buffer Input2 {
2194 //   float elements[];
2195 // } input_data2;
2196 // layout(std140, set = 0, binding = 3) readonly buffer Input3 {
2197 //   float elements[];
2198 // } input_data3;
2199 // layout(std140, set = 0, binding = 4) readonly buffer Input4 {
2200 //   float elements[];
2201 // } input_data4;
2202 // layout(std140, set = 0, binding = 5) writeonly buffer Output {
2203 //   float elements[];
2204 // } output_data;
2205 //
2206 // void main() {
2207 //   uint x = gl_GlobalInvocationID.x;
2208 //   output_data.elements[x] = input_data0.elements[x] + input_data1.elements[x] + input_data2.elements[x] + input_data3.elements[x] + input_data4.elements[x];
2209 // }
2210 tcu::TestCaseGroup* createDecorationGroupGroup (tcu::TestContext& testCtx)
2211 {
2212         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "decoration_group", "Test the OpDecorationGroup & OpGroupDecorate instruction"));
2213         ComputeShaderSpec                               spec;
2214         de::Random                                              rnd                             (deStringHash(group->getName()));
2215         const int                                               numElements             = 100;
2216         vector<float>                                   inputFloats0    (numElements, 0);
2217         vector<float>                                   inputFloats1    (numElements, 0);
2218         vector<float>                                   inputFloats2    (numElements, 0);
2219         vector<float>                                   inputFloats3    (numElements, 0);
2220         vector<float>                                   inputFloats4    (numElements, 0);
2221         vector<float>                                   outputFloats    (numElements, 0);
2222
2223         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats0[0], numElements);
2224         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats1[0], numElements);
2225         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats2[0], numElements);
2226         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats3[0], numElements);
2227         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats4[0], numElements);
2228
2229         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
2230         floorAll(inputFloats0);
2231         floorAll(inputFloats1);
2232         floorAll(inputFloats2);
2233         floorAll(inputFloats3);
2234         floorAll(inputFloats4);
2235
2236         for (size_t ndx = 0; ndx < numElements; ++ndx)
2237                 outputFloats[ndx] = inputFloats0[ndx] + inputFloats1[ndx] + inputFloats2[ndx] + inputFloats3[ndx] + inputFloats4[ndx];
2238
2239         spec.assembly =
2240                 string(getComputeAsmShaderPreamble()) +
2241
2242                 "OpSource GLSL 430\n"
2243                 "OpName %main \"main\"\n"
2244                 "OpName %id \"gl_GlobalInvocationID\"\n"
2245
2246                 // Not using group decoration on variable.
2247                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2248                 // Not using group decoration on type.
2249                 "OpDecorate %f32arr ArrayStride 4\n"
2250
2251                 "OpDecorate %groups BufferBlock\n"
2252                 "OpDecorate %groupm Offset 0\n"
2253                 "%groups = OpDecorationGroup\n"
2254                 "%groupm = OpDecorationGroup\n"
2255
2256                 // Group decoration on multiple structs.
2257                 "OpGroupDecorate %groups %outbuf %inbuf0 %inbuf1 %inbuf2 %inbuf3 %inbuf4\n"
2258                 // Group decoration on multiple struct members.
2259                 "OpGroupMemberDecorate %groupm %outbuf 0 %inbuf0 0 %inbuf1 0 %inbuf2 0 %inbuf3 0 %inbuf4 0\n"
2260
2261                 "OpDecorate %group1 DescriptorSet 0\n"
2262                 "OpDecorate %group3 DescriptorSet 0\n"
2263                 "OpDecorate %group3 NonWritable\n"
2264                 "OpDecorate %group3 Restrict\n"
2265                 "%group0 = OpDecorationGroup\n"
2266                 "%group1 = OpDecorationGroup\n"
2267                 "%group3 = OpDecorationGroup\n"
2268
2269                 // Applying the same decoration group multiple times.
2270                 "OpGroupDecorate %group1 %outdata\n"
2271                 "OpGroupDecorate %group1 %outdata\n"
2272                 "OpGroupDecorate %group1 %outdata\n"
2273                 "OpDecorate %outdata DescriptorSet 0\n"
2274                 "OpDecorate %outdata Binding 5\n"
2275                 // Applying decoration group containing nothing.
2276                 "OpGroupDecorate %group0 %indata0\n"
2277                 "OpDecorate %indata0 DescriptorSet 0\n"
2278                 "OpDecorate %indata0 Binding 0\n"
2279                 // Applying decoration group containing one decoration.
2280                 "OpGroupDecorate %group1 %indata1\n"
2281                 "OpDecorate %indata1 Binding 1\n"
2282                 // Applying decoration group containing multiple decorations.
2283                 "OpGroupDecorate %group3 %indata2 %indata3\n"
2284                 "OpDecorate %indata2 Binding 2\n"
2285                 "OpDecorate %indata3 Binding 3\n"
2286                 // Applying multiple decoration groups (with overlapping).
2287                 "OpGroupDecorate %group0 %indata4\n"
2288                 "OpGroupDecorate %group1 %indata4\n"
2289                 "OpGroupDecorate %group3 %indata4\n"
2290                 "OpDecorate %indata4 Binding 4\n"
2291
2292                 + string(getComputeAsmCommonTypes()) +
2293
2294                 "%id   = OpVariable %uvec3ptr Input\n"
2295                 "%zero = OpConstant %i32 0\n"
2296
2297                 "%outbuf    = OpTypeStruct %f32arr\n"
2298                 "%outbufptr = OpTypePointer Uniform %outbuf\n"
2299                 "%outdata   = OpVariable %outbufptr Uniform\n"
2300                 "%inbuf0    = OpTypeStruct %f32arr\n"
2301                 "%inbuf0ptr = OpTypePointer Uniform %inbuf0\n"
2302                 "%indata0   = OpVariable %inbuf0ptr Uniform\n"
2303                 "%inbuf1    = OpTypeStruct %f32arr\n"
2304                 "%inbuf1ptr = OpTypePointer Uniform %inbuf1\n"
2305                 "%indata1   = OpVariable %inbuf1ptr Uniform\n"
2306                 "%inbuf2    = OpTypeStruct %f32arr\n"
2307                 "%inbuf2ptr = OpTypePointer Uniform %inbuf2\n"
2308                 "%indata2   = OpVariable %inbuf2ptr Uniform\n"
2309                 "%inbuf3    = OpTypeStruct %f32arr\n"
2310                 "%inbuf3ptr = OpTypePointer Uniform %inbuf3\n"
2311                 "%indata3   = OpVariable %inbuf3ptr Uniform\n"
2312                 "%inbuf4    = OpTypeStruct %f32arr\n"
2313                 "%inbufptr  = OpTypePointer Uniform %inbuf4\n"
2314                 "%indata4   = OpVariable %inbufptr Uniform\n"
2315
2316                 "%main   = OpFunction %void None %voidf\n"
2317                 "%label  = OpLabel\n"
2318                 "%idval  = OpLoad %uvec3 %id\n"
2319                 "%x      = OpCompositeExtract %u32 %idval 0\n"
2320                 "%inloc0 = OpAccessChain %f32ptr %indata0 %zero %x\n"
2321                 "%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
2322                 "%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
2323                 "%inloc3 = OpAccessChain %f32ptr %indata3 %zero %x\n"
2324                 "%inloc4 = OpAccessChain %f32ptr %indata4 %zero %x\n"
2325                 "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
2326                 "%inval0 = OpLoad %f32 %inloc0\n"
2327                 "%inval1 = OpLoad %f32 %inloc1\n"
2328                 "%inval2 = OpLoad %f32 %inloc2\n"
2329                 "%inval3 = OpLoad %f32 %inloc3\n"
2330                 "%inval4 = OpLoad %f32 %inloc4\n"
2331                 "%add0   = OpFAdd %f32 %inval0 %inval1\n"
2332                 "%add1   = OpFAdd %f32 %add0 %inval2\n"
2333                 "%add2   = OpFAdd %f32 %add1 %inval3\n"
2334                 "%add    = OpFAdd %f32 %add2 %inval4\n"
2335                 "          OpStore %outloc %add\n"
2336                 "          OpReturn\n"
2337                 "          OpFunctionEnd\n";
2338         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats0)));
2339         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
2340         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
2341         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
2342         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
2343         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2344         spec.numWorkGroups = IVec3(numElements, 1, 1);
2345
2346         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "decoration group cases", spec));
2347
2348         return group.release();
2349 }
2350
2351 struct SpecConstantTwoIntCase
2352 {
2353         const char*             caseName;
2354         const char*             scDefinition0;
2355         const char*             scDefinition1;
2356         const char*             scResultType;
2357         const char*             scOperation;
2358         deInt32                 scActualValue0;
2359         deInt32                 scActualValue1;
2360         const char*             resultOperation;
2361         vector<deInt32> expectedOutput;
2362
2363                                         SpecConstantTwoIntCase (const char* name,
2364                                                                                         const char* definition0,
2365                                                                                         const char* definition1,
2366                                                                                         const char* resultType,
2367                                                                                         const char* operation,
2368                                                                                         deInt32 value0,
2369                                                                                         deInt32 value1,
2370                                                                                         const char* resultOp,
2371                                                                                         const vector<deInt32>& output)
2372                                                 : caseName                      (name)
2373                                                 , scDefinition0         (definition0)
2374                                                 , scDefinition1         (definition1)
2375                                                 , scResultType          (resultType)
2376                                                 , scOperation           (operation)
2377                                                 , scActualValue0        (value0)
2378                                                 , scActualValue1        (value1)
2379                                                 , resultOperation       (resultOp)
2380                                                 , expectedOutput        (output) {}
2381 };
2382
2383 tcu::TestCaseGroup* createSpecConstantGroup (tcu::TestContext& testCtx)
2384 {
2385         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
2386         vector<SpecConstantTwoIntCase>  cases;
2387         de::Random                                              rnd                             (deStringHash(group->getName()));
2388         const int                                               numElements             = 100;
2389         vector<deInt32>                                 inputInts               (numElements, 0);
2390         vector<deInt32>                                 outputInts1             (numElements, 0);
2391         vector<deInt32>                                 outputInts2             (numElements, 0);
2392         vector<deInt32>                                 outputInts3             (numElements, 0);
2393         vector<deInt32>                                 outputInts4             (numElements, 0);
2394         const StringTemplate                    shaderTemplate  (
2395                 string(getComputeAsmShaderPreamble()) +
2396
2397                 "OpName %main           \"main\"\n"
2398                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2399
2400                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2401                 "OpDecorate %sc_0  SpecId 0\n"
2402                 "OpDecorate %sc_1  SpecId 1\n"
2403                 "OpDecorate %i32arr ArrayStride 4\n"
2404
2405                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
2406
2407                 "%buf     = OpTypeStruct %i32arr\n"
2408                 "%bufptr  = OpTypePointer Uniform %buf\n"
2409                 "%indata    = OpVariable %bufptr Uniform\n"
2410                 "%outdata   = OpVariable %bufptr Uniform\n"
2411
2412                 "%id        = OpVariable %uvec3ptr Input\n"
2413                 "%zero      = OpConstant %i32 0\n"
2414
2415                 "%sc_0      = OpSpecConstant${SC_DEF0}\n"
2416                 "%sc_1      = OpSpecConstant${SC_DEF1}\n"
2417                 "%sc_final  = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n"
2418
2419                 "%main      = OpFunction %void None %voidf\n"
2420                 "%label     = OpLabel\n"
2421                 "%idval     = OpLoad %uvec3 %id\n"
2422                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2423                 "%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
2424                 "%inval     = OpLoad %i32 %inloc\n"
2425                 "%final     = ${GEN_RESULT}\n"
2426                 "%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
2427                 "             OpStore %outloc %final\n"
2428                 "             OpReturn\n"
2429                 "             OpFunctionEnd\n");
2430
2431         fillRandomScalars(rnd, -65536, 65536, &inputInts[0], numElements);
2432
2433         for (size_t ndx = 0; ndx < numElements; ++ndx)
2434         {
2435                 outputInts1[ndx] = inputInts[ndx] + 42;
2436                 outputInts2[ndx] = inputInts[ndx];
2437                 outputInts3[ndx] = inputInts[ndx] - 11200;
2438                 outputInts4[ndx] = inputInts[ndx] + 1;
2439         }
2440
2441         const char addScToInput[]               = "OpIAdd %i32 %inval %sc_final";
2442         const char selectTrueUsingSc[]  = "OpSelect %i32 %sc_final %inval %zero";
2443         const char selectFalseUsingSc[] = "OpSelect %i32 %sc_final %zero %inval";
2444
2445         cases.push_back(SpecConstantTwoIntCase("iadd",                                  " %i32 0",              " %i32 0",              "%i32",         "IAdd                 %sc_0 %sc_1",                     62,             -20,    addScToInput,           outputInts1));
2446         cases.push_back(SpecConstantTwoIntCase("isub",                                  " %i32 0",              " %i32 0",              "%i32",         "ISub                 %sc_0 %sc_1",                     100,    58,             addScToInput,           outputInts1));
2447         cases.push_back(SpecConstantTwoIntCase("imul",                                  " %i32 0",              " %i32 0",              "%i32",         "IMul                 %sc_0 %sc_1",                     -2,             -21,    addScToInput,           outputInts1));
2448         cases.push_back(SpecConstantTwoIntCase("sdiv",                                  " %i32 0",              " %i32 0",              "%i32",         "SDiv                 %sc_0 %sc_1",                     -126,   -3,             addScToInput,           outputInts1));
2449         cases.push_back(SpecConstantTwoIntCase("udiv",                                  " %i32 0",              " %i32 0",              "%i32",         "UDiv                 %sc_0 %sc_1",                     126,    3,              addScToInput,           outputInts1));
2450         cases.push_back(SpecConstantTwoIntCase("srem",                                  " %i32 0",              " %i32 0",              "%i32",         "SRem                 %sc_0 %sc_1",                     7,              3,              addScToInput,           outputInts4));
2451         cases.push_back(SpecConstantTwoIntCase("smod",                                  " %i32 0",              " %i32 0",              "%i32",         "SMod                 %sc_0 %sc_1",                     7,              3,              addScToInput,           outputInts4));
2452         cases.push_back(SpecConstantTwoIntCase("umod",                                  " %i32 0",              " %i32 0",              "%i32",         "UMod                 %sc_0 %sc_1",                     342,    50,             addScToInput,           outputInts1));
2453         cases.push_back(SpecConstantTwoIntCase("bitwiseand",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseAnd           %sc_0 %sc_1",                     42,             63,             addScToInput,           outputInts1));
2454         cases.push_back(SpecConstantTwoIntCase("bitwiseor",                             " %i32 0",              " %i32 0",              "%i32",         "BitwiseOr            %sc_0 %sc_1",                     34,             8,              addScToInput,           outputInts1));
2455         cases.push_back(SpecConstantTwoIntCase("bitwisexor",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseXor           %sc_0 %sc_1",                     18,             56,             addScToInput,           outputInts1));
2456         cases.push_back(SpecConstantTwoIntCase("shiftrightlogical",             " %i32 0",              " %i32 0",              "%i32",         "ShiftRightLogical    %sc_0 %sc_1",                     168,    2,              addScToInput,           outputInts1));
2457         cases.push_back(SpecConstantTwoIntCase("shiftrightarithmetic",  " %i32 0",              " %i32 0",              "%i32",         "ShiftRightArithmetic %sc_0 %sc_1",                     168,    2,              addScToInput,           outputInts1));
2458         cases.push_back(SpecConstantTwoIntCase("shiftleftlogical",              " %i32 0",              " %i32 0",              "%i32",         "ShiftLeftLogical     %sc_0 %sc_1",                     21,             1,              addScToInput,           outputInts1));
2459         cases.push_back(SpecConstantTwoIntCase("slessthan",                             " %i32 0",              " %i32 0",              "%bool",        "SLessThan            %sc_0 %sc_1",                     -20,    -10,    selectTrueUsingSc,      outputInts2));
2460         cases.push_back(SpecConstantTwoIntCase("ulessthan",                             " %i32 0",              " %i32 0",              "%bool",        "ULessThan            %sc_0 %sc_1",                     10,             20,             selectTrueUsingSc,      outputInts2));
2461         cases.push_back(SpecConstantTwoIntCase("sgreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "SGreaterThan         %sc_0 %sc_1",                     -1000,  50,             selectFalseUsingSc,     outputInts2));
2462         cases.push_back(SpecConstantTwoIntCase("ugreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "UGreaterThan         %sc_0 %sc_1",                     10,             5,              selectTrueUsingSc,      outputInts2));
2463         cases.push_back(SpecConstantTwoIntCase("slessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "SLessThanEqual       %sc_0 %sc_1",                     -10,    -10,    selectTrueUsingSc,      outputInts2));
2464         cases.push_back(SpecConstantTwoIntCase("ulessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "ULessThanEqual       %sc_0 %sc_1",                     50,             100,    selectTrueUsingSc,      outputInts2));
2465         cases.push_back(SpecConstantTwoIntCase("sgreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "SGreaterThanEqual    %sc_0 %sc_1",                     -1000,  50,             selectFalseUsingSc,     outputInts2));
2466         cases.push_back(SpecConstantTwoIntCase("ugreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "UGreaterThanEqual    %sc_0 %sc_1",                     10,             10,             selectTrueUsingSc,      outputInts2));
2467         cases.push_back(SpecConstantTwoIntCase("iequal",                                " %i32 0",              " %i32 0",              "%bool",        "IEqual               %sc_0 %sc_1",                     42,             24,             selectFalseUsingSc,     outputInts2));
2468         cases.push_back(SpecConstantTwoIntCase("logicaland",                    "True %bool",   "True %bool",   "%bool",        "LogicalAnd           %sc_0 %sc_1",                     0,              1,              selectFalseUsingSc,     outputInts2));
2469         cases.push_back(SpecConstantTwoIntCase("logicalor",                             "False %bool",  "False %bool",  "%bool",        "LogicalOr            %sc_0 %sc_1",                     1,              0,              selectTrueUsingSc,      outputInts2));
2470         cases.push_back(SpecConstantTwoIntCase("logicalequal",                  "True %bool",   "True %bool",   "%bool",        "LogicalEqual         %sc_0 %sc_1",                     0,              1,              selectFalseUsingSc,     outputInts2));
2471         cases.push_back(SpecConstantTwoIntCase("logicalnotequal",               "False %bool",  "False %bool",  "%bool",        "LogicalNotEqual      %sc_0 %sc_1",                     1,              0,              selectTrueUsingSc,      outputInts2));
2472         cases.push_back(SpecConstantTwoIntCase("snegate",                               " %i32 0",              " %i32 0",              "%i32",         "SNegate              %sc_0",                           -42,    0,              addScToInput,           outputInts1));
2473         cases.push_back(SpecConstantTwoIntCase("not",                                   " %i32 0",              " %i32 0",              "%i32",         "Not                  %sc_0",                           -43,    0,              addScToInput,           outputInts1));
2474         cases.push_back(SpecConstantTwoIntCase("logicalnot",                    "False %bool",  "False %bool",  "%bool",        "LogicalNot           %sc_0",                           1,              0,              selectFalseUsingSc,     outputInts2));
2475         cases.push_back(SpecConstantTwoIntCase("select",                                "False %bool",  " %i32 0",              "%i32",         "Select               %sc_0 %sc_1 %zero",       1,              42,             addScToInput,           outputInts1));
2476         // OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
2477
2478         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2479         {
2480                 map<string, string>             specializations;
2481                 ComputeShaderSpec               spec;
2482
2483                 specializations["SC_DEF0"]                      = cases[caseNdx].scDefinition0;
2484                 specializations["SC_DEF1"]                      = cases[caseNdx].scDefinition1;
2485                 specializations["SC_RESULT_TYPE"]       = cases[caseNdx].scResultType;
2486                 specializations["SC_OP"]                        = cases[caseNdx].scOperation;
2487                 specializations["GEN_RESULT"]           = cases[caseNdx].resultOperation;
2488
2489                 spec.assembly = shaderTemplate.specialize(specializations);
2490                 spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
2491                 spec.outputs.push_back(BufferSp(new Int32Buffer(cases[caseNdx].expectedOutput)));
2492                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2493                 spec.specConstants.push_back(cases[caseNdx].scActualValue0);
2494                 spec.specConstants.push_back(cases[caseNdx].scActualValue1);
2495
2496                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].caseName, cases[caseNdx].caseName, spec));
2497         }
2498
2499         ComputeShaderSpec                               spec;
2500
2501         spec.assembly =
2502                 string(getComputeAsmShaderPreamble()) +
2503
2504                 "OpName %main           \"main\"\n"
2505                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2506
2507                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2508                 "OpDecorate %sc_0  SpecId 0\n"
2509                 "OpDecorate %sc_1  SpecId 1\n"
2510                 "OpDecorate %sc_2  SpecId 2\n"
2511                 "OpDecorate %i32arr ArrayStride 4\n"
2512
2513                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
2514
2515                 "%ivec3       = OpTypeVector %i32 3\n"
2516                 "%buf         = OpTypeStruct %i32arr\n"
2517                 "%bufptr      = OpTypePointer Uniform %buf\n"
2518                 "%indata      = OpVariable %bufptr Uniform\n"
2519                 "%outdata     = OpVariable %bufptr Uniform\n"
2520
2521                 "%id          = OpVariable %uvec3ptr Input\n"
2522                 "%zero        = OpConstant %i32 0\n"
2523                 "%ivec3_0     = OpConstantComposite %ivec3 %zero %zero %zero\n"
2524                 "%vec3_undef  = OpUndef %ivec3\n"
2525
2526                 "%sc_0        = OpSpecConstant %i32 0\n"
2527                 "%sc_1        = OpSpecConstant %i32 0\n"
2528                 "%sc_2        = OpSpecConstant %i32 0\n"
2529                 "%sc_vec3_0   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_0        %ivec3_0     0\n"                                                 // (sc_0, 0, 0)
2530                 "%sc_vec3_1   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_1        %ivec3_0     1\n"                                                 // (0, sc_1, 0)
2531                 "%sc_vec3_2   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_2        %ivec3_0     2\n"                                                 // (0, 0, sc_2)
2532                 "%sc_vec3_0_s = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_0   %vec3_undef  0          0xFFFFFFFF 2\n"   // (sc_0, ???,  0)
2533                 "%sc_vec3_1_s = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_1   %vec3_undef  0xFFFFFFFF 1          0\n"   // (???,  sc_1, 0)
2534                 "%sc_vec3_2_s = OpSpecConstantOp %ivec3 VectorShuffle    %vec3_undef  %sc_vec3_2   5          0xFFFFFFFF 5\n"   // (sc_2, ???,  sc_2)
2535                 "%sc_vec3_01  = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_0_s %sc_vec3_1_s 1 0 4\n"                                             // (0,    sc_0, sc_1)
2536                 "%sc_vec3_012 = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_01  %sc_vec3_2_s 5 1 2\n"                                             // (sc_2, sc_0, sc_1)
2537                 "%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012              0\n"                                                 // sc_2
2538                 "%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012              1\n"                                                 // sc_0
2539                 "%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012              2\n"                                                 // sc_1
2540                 "%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"                                                              // (sc_2 - sc_0)
2541                 "%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n"                                                              // (sc_2 - sc_0) * sc_1
2542
2543                 "%main      = OpFunction %void None %voidf\n"
2544                 "%label     = OpLabel\n"
2545                 "%idval     = OpLoad %uvec3 %id\n"
2546                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2547                 "%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
2548                 "%inval     = OpLoad %i32 %inloc\n"
2549                 "%final     = OpIAdd %i32 %inval %sc_final\n"
2550                 "%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
2551                 "             OpStore %outloc %final\n"
2552                 "             OpReturn\n"
2553                 "             OpFunctionEnd\n";
2554         spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
2555         spec.outputs.push_back(BufferSp(new Int32Buffer(outputInts3)));
2556         spec.numWorkGroups = IVec3(numElements, 1, 1);
2557         spec.specConstants.push_back(123);
2558         spec.specConstants.push_back(56);
2559         spec.specConstants.push_back(-77);
2560
2561         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector_related", "VectorShuffle, CompositeExtract, & CompositeInsert", spec));
2562
2563         return group.release();
2564 }
2565
2566 void createOpPhiVartypeTests (de::MovePtr<tcu::TestCaseGroup>& group, tcu::TestContext& testCtx)
2567 {
2568         ComputeShaderSpec       specInt;
2569         ComputeShaderSpec       specFloat;
2570         ComputeShaderSpec       specVec3;
2571         ComputeShaderSpec       specMat4;
2572         ComputeShaderSpec       specArray;
2573         ComputeShaderSpec       specStruct;
2574         de::Random                      rnd                             (deStringHash(group->getName()));
2575         const int                       numElements             = 100;
2576         vector<float>           inputFloats             (numElements, 0);
2577         vector<float>           outputFloats    (numElements, 0);
2578
2579         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats[0], numElements);
2580
2581         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
2582         floorAll(inputFloats);
2583
2584         for (size_t ndx = 0; ndx < numElements; ++ndx)
2585         {
2586                 // Just check if the value is positive or not
2587                 outputFloats[ndx] = (inputFloats[ndx] > 0) ? 1.0f : -1.0f;
2588         }
2589
2590         // All of the tests are of the form:
2591         //
2592         // testtype r
2593         //
2594         // if (inputdata > 0)
2595         //   r = 1
2596         // else
2597         //   r = -1
2598         //
2599         // return (float)r
2600
2601         specFloat.assembly =
2602                 string(getComputeAsmShaderPreamble()) +
2603
2604                 "OpSource GLSL 430\n"
2605                 "OpName %main \"main\"\n"
2606                 "OpName %id \"gl_GlobalInvocationID\"\n"
2607
2608                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2609
2610                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
2611
2612                 "%id = OpVariable %uvec3ptr Input\n"
2613                 "%zero       = OpConstant %i32 0\n"
2614                 "%float_0    = OpConstant %f32 0.0\n"
2615                 "%float_1    = OpConstant %f32 1.0\n"
2616                 "%float_n1   = OpConstant %f32 -1.0\n"
2617
2618                 "%main     = OpFunction %void None %voidf\n"
2619                 "%entry    = OpLabel\n"
2620                 "%idval    = OpLoad %uvec3 %id\n"
2621                 "%x        = OpCompositeExtract %u32 %idval 0\n"
2622                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
2623                 "%inval    = OpLoad %f32 %inloc\n"
2624
2625                 "%comp     = OpFOrdGreaterThan %bool %inval %float_0\n"
2626                 "            OpSelectionMerge %cm None\n"
2627                 "            OpBranchConditional %comp %tb %fb\n"
2628                 "%tb       = OpLabel\n"
2629                 "            OpBranch %cm\n"
2630                 "%fb       = OpLabel\n"
2631                 "            OpBranch %cm\n"
2632                 "%cm       = OpLabel\n"
2633                 "%res      = OpPhi %f32 %float_1 %tb %float_n1 %fb\n"
2634
2635                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
2636                 "            OpStore %outloc %res\n"
2637                 "            OpReturn\n"
2638
2639                 "            OpFunctionEnd\n";
2640         specFloat.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2641         specFloat.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2642         specFloat.numWorkGroups = IVec3(numElements, 1, 1);
2643
2644         specMat4.assembly =
2645                 string(getComputeAsmShaderPreamble()) +
2646
2647                 "OpSource GLSL 430\n"
2648                 "OpName %main \"main\"\n"
2649                 "OpName %id \"gl_GlobalInvocationID\"\n"
2650
2651                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2652
2653                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
2654
2655                 "%id = OpVariable %uvec3ptr Input\n"
2656                 "%v4f32      = OpTypeVector %f32 4\n"
2657                 "%mat4v4f32  = OpTypeMatrix %v4f32 4\n"
2658                 "%zero       = OpConstant %i32 0\n"
2659                 "%float_0    = OpConstant %f32 0.0\n"
2660                 "%float_1    = OpConstant %f32 1.0\n"
2661                 "%float_n1   = OpConstant %f32 -1.0\n"
2662                 "%m11        = OpConstantComposite %v4f32 %float_1 %float_0 %float_0 %float_0\n"
2663                 "%m12        = OpConstantComposite %v4f32 %float_0 %float_1 %float_0 %float_0\n"
2664                 "%m13        = OpConstantComposite %v4f32 %float_0 %float_0 %float_1 %float_0\n"
2665                 "%m14        = OpConstantComposite %v4f32 %float_0 %float_0 %float_0 %float_1\n"
2666                 "%m1         = OpConstantComposite %mat4v4f32 %m11 %m12 %m13 %m14\n"
2667                 "%m21        = OpConstantComposite %v4f32 %float_n1 %float_0 %float_0 %float_0\n"
2668                 "%m22        = OpConstantComposite %v4f32 %float_0 %float_n1 %float_0 %float_0\n"
2669                 "%m23        = OpConstantComposite %v4f32 %float_0 %float_0 %float_n1 %float_0\n"
2670                 "%m24        = OpConstantComposite %v4f32 %float_0 %float_0 %float_0 %float_n1\n"
2671                 "%m2         = OpConstantComposite %mat4v4f32 %m21 %m22 %m23 %m24\n"
2672
2673                 "%main     = OpFunction %void None %voidf\n"
2674                 "%entry    = OpLabel\n"
2675                 "%idval    = OpLoad %uvec3 %id\n"
2676                 "%x        = OpCompositeExtract %u32 %idval 0\n"
2677                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
2678                 "%inval    = OpLoad %f32 %inloc\n"
2679
2680                 "%comp     = OpFOrdGreaterThan %bool %inval %float_0\n"
2681                 "            OpSelectionMerge %cm None\n"
2682                 "            OpBranchConditional %comp %tb %fb\n"
2683                 "%tb       = OpLabel\n"
2684                 "            OpBranch %cm\n"
2685                 "%fb       = OpLabel\n"
2686                 "            OpBranch %cm\n"
2687                 "%cm       = OpLabel\n"
2688                 "%mres     = OpPhi %mat4v4f32 %m1 %tb %m2 %fb\n"
2689                 "%res      = OpCompositeExtract %f32 %mres 2 2\n"
2690
2691                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
2692                 "            OpStore %outloc %res\n"
2693                 "            OpReturn\n"
2694
2695                 "            OpFunctionEnd\n";
2696         specMat4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2697         specMat4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2698         specMat4.numWorkGroups = IVec3(numElements, 1, 1);
2699
2700         specVec3.assembly =
2701                 string(getComputeAsmShaderPreamble()) +
2702
2703                 "OpSource GLSL 430\n"
2704                 "OpName %main \"main\"\n"
2705                 "OpName %id \"gl_GlobalInvocationID\"\n"
2706
2707                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2708
2709                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
2710
2711                 "%id = OpVariable %uvec3ptr Input\n"
2712                 "%v3f32      = OpTypeVector %f32 3\n"
2713                 "%zero       = OpConstant %i32 0\n"
2714                 "%float_0    = OpConstant %f32 0.0\n"
2715                 "%float_1    = OpConstant %f32 1.0\n"
2716                 "%float_n1   = OpConstant %f32 -1.0\n"
2717                 "%v1         = OpConstantComposite %v3f32 %float_1 %float_1 %float_1\n"
2718                 "%v2         = OpConstantComposite %v3f32 %float_n1 %float_n1 %float_n1\n"
2719
2720                 "%main     = OpFunction %void None %voidf\n"
2721                 "%entry    = OpLabel\n"
2722                 "%idval    = OpLoad %uvec3 %id\n"
2723                 "%x        = OpCompositeExtract %u32 %idval 0\n"
2724                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
2725                 "%inval    = OpLoad %f32 %inloc\n"
2726
2727                 "%comp     = OpFOrdGreaterThan %bool %inval %float_0\n"
2728                 "            OpSelectionMerge %cm None\n"
2729                 "            OpBranchConditional %comp %tb %fb\n"
2730                 "%tb       = OpLabel\n"
2731                 "            OpBranch %cm\n"
2732                 "%fb       = OpLabel\n"
2733                 "            OpBranch %cm\n"
2734                 "%cm       = OpLabel\n"
2735                 "%vres     = OpPhi %v3f32 %v1 %tb %v2 %fb\n"
2736                 "%res      = OpCompositeExtract %f32 %vres 2\n"
2737
2738                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
2739                 "            OpStore %outloc %res\n"
2740                 "            OpReturn\n"
2741
2742                 "            OpFunctionEnd\n";
2743         specVec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2744         specVec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2745         specVec3.numWorkGroups = IVec3(numElements, 1, 1);
2746
2747         specInt.assembly =
2748                 string(getComputeAsmShaderPreamble()) +
2749
2750                 "OpSource GLSL 430\n"
2751                 "OpName %main \"main\"\n"
2752                 "OpName %id \"gl_GlobalInvocationID\"\n"
2753
2754                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2755
2756                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
2757
2758                 "%id = OpVariable %uvec3ptr Input\n"
2759                 "%zero       = OpConstant %i32 0\n"
2760                 "%float_0    = OpConstant %f32 0.0\n"
2761                 "%i1         = OpConstant %i32 1\n"
2762                 "%i2         = OpConstant %i32 -1\n"
2763
2764                 "%main     = OpFunction %void None %voidf\n"
2765                 "%entry    = OpLabel\n"
2766                 "%idval    = OpLoad %uvec3 %id\n"
2767                 "%x        = OpCompositeExtract %u32 %idval 0\n"
2768                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
2769                 "%inval    = OpLoad %f32 %inloc\n"
2770
2771                 "%comp     = OpFOrdGreaterThan %bool %inval %float_0\n"
2772                 "            OpSelectionMerge %cm None\n"
2773                 "            OpBranchConditional %comp %tb %fb\n"
2774                 "%tb       = OpLabel\n"
2775                 "            OpBranch %cm\n"
2776                 "%fb       = OpLabel\n"
2777                 "            OpBranch %cm\n"
2778                 "%cm       = OpLabel\n"
2779                 "%ires     = OpPhi %i32 %i1 %tb %i2 %fb\n"
2780                 "%res      = OpConvertSToF %f32 %ires\n"
2781
2782                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
2783                 "            OpStore %outloc %res\n"
2784                 "            OpReturn\n"
2785
2786                 "            OpFunctionEnd\n";
2787         specInt.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2788         specInt.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2789         specInt.numWorkGroups = IVec3(numElements, 1, 1);
2790
2791         specArray.assembly =
2792                 string(getComputeAsmShaderPreamble()) +
2793
2794                 "OpSource GLSL 430\n"
2795                 "OpName %main \"main\"\n"
2796                 "OpName %id \"gl_GlobalInvocationID\"\n"
2797
2798                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2799
2800                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
2801
2802                 "%id = OpVariable %uvec3ptr Input\n"
2803                 "%zero       = OpConstant %i32 0\n"
2804                 "%u7         = OpConstant %u32 7\n"
2805                 "%float_0    = OpConstant %f32 0.0\n"
2806                 "%float_1    = OpConstant %f32 1.0\n"
2807                 "%float_n1   = OpConstant %f32 -1.0\n"
2808                 "%f32a7      = OpTypeArray %f32 %u7\n"
2809                 "%a1         = OpConstantComposite %f32a7 %float_1 %float_1 %float_1 %float_1 %float_1 %float_1 %float_1\n"
2810                 "%a2         = OpConstantComposite %f32a7 %float_n1 %float_n1 %float_n1 %float_n1 %float_n1 %float_n1 %float_n1\n"
2811                 "%main     = OpFunction %void None %voidf\n"
2812                 "%entry    = OpLabel\n"
2813                 "%idval    = OpLoad %uvec3 %id\n"
2814                 "%x        = OpCompositeExtract %u32 %idval 0\n"
2815                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
2816                 "%inval    = OpLoad %f32 %inloc\n"
2817
2818                 "%comp     = OpFOrdGreaterThan %bool %inval %float_0\n"
2819                 "            OpSelectionMerge %cm None\n"
2820                 "            OpBranchConditional %comp %tb %fb\n"
2821                 "%tb       = OpLabel\n"
2822                 "            OpBranch %cm\n"
2823                 "%fb       = OpLabel\n"
2824                 "            OpBranch %cm\n"
2825                 "%cm       = OpLabel\n"
2826                 "%ares     = OpPhi %f32a7 %a1 %tb %a2 %fb\n"
2827                 "%res      = OpCompositeExtract %f32 %ares 5\n"
2828
2829                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
2830                 "            OpStore %outloc %res\n"
2831                 "            OpReturn\n"
2832
2833                 "            OpFunctionEnd\n";
2834         specArray.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2835         specArray.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2836         specArray.numWorkGroups = IVec3(numElements, 1, 1);
2837
2838         specStruct.assembly =
2839                 string(getComputeAsmShaderPreamble()) +
2840
2841                 "OpSource GLSL 430\n"
2842                 "OpName %main \"main\"\n"
2843                 "OpName %id \"gl_GlobalInvocationID\"\n"
2844
2845                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2846
2847                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
2848
2849                 "%id = OpVariable %uvec3ptr Input\n"
2850                 "%v3f32      = OpTypeVector %f32 3\n"
2851                 "%zero       = OpConstant %i32 0\n"
2852                 "%float_0    = OpConstant %f32 0.0\n"
2853                 "%float_1    = OpConstant %f32 1.0\n"
2854                 "%float_n1   = OpConstant %f32 -1.0\n"
2855
2856                 "%v2f32      = OpTypeVector %f32 2\n"
2857                 "%Data2      = OpTypeStruct %f32 %v2f32\n"
2858                 "%Data       = OpTypeStruct %Data2 %f32\n"
2859
2860                 "%in1a       = OpConstantComposite %v2f32 %float_1 %float_1\n"
2861                 "%in1b       = OpConstantComposite %Data2 %float_1 %in1a\n"
2862                 "%s1         = OpConstantComposite %Data %in1b %float_1\n"
2863                 "%in2a       = OpConstantComposite %v2f32 %float_n1 %float_n1\n"
2864                 "%in2b       = OpConstantComposite %Data2 %float_n1 %in2a\n"
2865                 "%s2         = OpConstantComposite %Data %in2b %float_n1\n"
2866
2867                 "%main     = OpFunction %void None %voidf\n"
2868                 "%entry    = OpLabel\n"
2869                 "%idval    = OpLoad %uvec3 %id\n"
2870                 "%x        = OpCompositeExtract %u32 %idval 0\n"
2871                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
2872                 "%inval    = OpLoad %f32 %inloc\n"
2873
2874                 "%comp     = OpFOrdGreaterThan %bool %inval %float_0\n"
2875                 "            OpSelectionMerge %cm None\n"
2876                 "            OpBranchConditional %comp %tb %fb\n"
2877                 "%tb       = OpLabel\n"
2878                 "            OpBranch %cm\n"
2879                 "%fb       = OpLabel\n"
2880                 "            OpBranch %cm\n"
2881                 "%cm       = OpLabel\n"
2882                 "%sres     = OpPhi %Data %s1 %tb %s2 %fb\n"
2883                 "%res      = OpCompositeExtract %f32 %sres 0 0\n"
2884
2885                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
2886                 "            OpStore %outloc %res\n"
2887                 "            OpReturn\n"
2888
2889                 "            OpFunctionEnd\n";
2890         specStruct.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2891         specStruct.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2892         specStruct.numWorkGroups = IVec3(numElements, 1, 1);
2893
2894         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vartype_int", "OpPhi with int variables", specInt));
2895         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vartype_float", "OpPhi with float variables", specFloat));
2896         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vartype_vec3", "OpPhi with vec3 variables", specVec3));
2897         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vartype_mat4", "OpPhi with mat4 variables", specMat4));
2898         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vartype_array", "OpPhi with array variables", specArray));
2899         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vartype_struct", "OpPhi with struct variables", specStruct));
2900 }
2901
2902 string generateConstantDefinitions (int count)
2903 {
2904         std::ostringstream      r;
2905         for (int i = 0; i < count; i++)
2906                 r << "%cf" << (i * 10 + 5) << " = OpConstant %f32 " <<(i * 10 + 5) << ".0\n";
2907         r << "\n";
2908         return r.str();
2909 }
2910
2911 string generateSwitchCases (int count)
2912 {
2913         std::ostringstream      r;
2914         for (int i = 0; i < count; i++)
2915                 r << " " << i << " %case" << i;
2916         r << "\n";
2917         return r.str();
2918 }
2919
2920 string generateSwitchTargets (int count)
2921 {
2922         std::ostringstream      r;
2923         for (int i = 0; i < count; i++)
2924                 r << "%case" << i << " = OpLabel\n            OpBranch %phi\n";
2925         r << "\n";
2926         return r.str();
2927 }
2928
2929 string generateOpPhiParams (int count)
2930 {
2931         std::ostringstream      r;
2932         for (int i = 0; i < count; i++)
2933                 r << " %cf" << (i * 10 + 5) << " %case" << i;
2934         r << "\n";
2935         return r.str();
2936 }
2937
2938 string generateIntWidth (int value)
2939 {
2940         std::ostringstream      r;
2941         r << value;
2942         return r.str();
2943 }
2944
2945 // Expand input string by injecting "ABC" between the input
2946 // string characters. The acc/add/treshold parameters are used
2947 // to skip some of the injections to make the result less
2948 // uniform (and a lot shorter).
2949 string expandOpPhiCase5 (const string& s, int &acc, int add, int treshold)
2950 {
2951         std::ostringstream      res;
2952         const char*                     p = s.c_str();
2953
2954         while (*p)
2955         {
2956                 res << *p;
2957                 acc += add;
2958                 if (acc > treshold)
2959                 {
2960                         acc -= treshold;
2961                         res << "ABC";
2962                 }
2963                 p++;
2964         }
2965         return res.str();
2966 }
2967
2968 // Calculate expected result based on the code string
2969 float calcOpPhiCase5 (float val, const string& s)
2970 {
2971         const char*             p               = s.c_str();
2972         float                   x[8];
2973         bool                    b[8];
2974         const float             tv[8]   = { 0.5f, 1.5f, 3.5f, 7.5f, 15.5f, 31.5f, 63.5f, 127.5f };
2975         const float             v               = deFloatAbs(val);
2976         float                   res             = 0;
2977         int                             depth   = -1;
2978         int                             skip    = 0;
2979
2980         for (int i = 7; i >= 0; --i)
2981                 x[i] = std::fmod((float)v, (float)(2 << i));
2982         for (int i = 7; i >= 0; --i)
2983                 b[i] = x[i] > tv[i];
2984
2985         while (*p)
2986         {
2987                 if (*p == 'A')
2988                 {
2989                         depth++;
2990                         if (skip == 0 && b[depth])
2991                         {
2992                                 res++;
2993                         }
2994                         else
2995                                 skip++;
2996                 }
2997                 if (*p == 'B')
2998                 {
2999                         if (skip)
3000                                 skip--;
3001                         if (b[depth] || skip)
3002                                 skip++;
3003                 }
3004                 if (*p == 'C')
3005                 {
3006                         depth--;
3007                         if (skip)
3008                                 skip--;
3009                 }
3010                 p++;
3011         }
3012         return res;
3013 }
3014
3015 // In the code string, the letters represent the following:
3016 //
3017 // A:
3018 //     if (certain bit is set)
3019 //     {
3020 //       result++;
3021 //
3022 // B:
3023 //     } else {
3024 //
3025 // C:
3026 //     }
3027 //
3028 // examples:
3029 // AABCBC leads to if(){r++;if(){r++;}else{}}else{}
3030 // ABABCC leads to if(){r++;}else{if(){r++;}else{}}
3031 // ABCABC leads to if(){r++;}else{}if(){r++;}else{}
3032 //
3033 // Code generation gets a bit complicated due to the else-branches,
3034 // which do not generate new values. Thus, the generator needs to
3035 // keep track of the previous variable change seen by the else
3036 // branch.
3037 string generateOpPhiCase5 (const string& s)
3038 {
3039         std::stack<int>                         idStack;
3040         std::stack<std::string>         value;
3041         std::stack<std::string>         valueLabel;
3042         std::stack<std::string>         mergeLeft;
3043         std::stack<std::string>         mergeRight;
3044         std::ostringstream                      res;
3045         const char*                                     p                       = s.c_str();
3046         int                                                     depth           = -1;
3047         int                                                     currId          = 0;
3048         int                                                     iter            = 0;
3049
3050         idStack.push(-1);
3051         value.push("%f32_0");
3052         valueLabel.push("%f32_0 %entry");
3053
3054         while (*p)
3055         {
3056                 if (*p == 'A')
3057                 {
3058                         depth++;
3059                         currId = iter;
3060                         idStack.push(currId);
3061                         res << "\tOpSelectionMerge %m" << currId << " None\n";
3062                         res << "\tOpBranchConditional %b" << depth << " %t" << currId << " %f" << currId << "\n";
3063                         res << "%t" << currId << " = OpLabel\n";
3064                         res << "%rt" << currId << " = OpFAdd %f32 " << value.top() << " %f32_1\n";
3065                         std::ostringstream tag;
3066                         tag << "%rt" << currId;
3067                         value.push(tag.str());
3068                         tag << " %t" << currId;
3069                         valueLabel.push(tag.str());
3070                 }
3071
3072                 if (*p == 'B')
3073                 {
3074                         mergeLeft.push(valueLabel.top());
3075                         value.pop();
3076                         valueLabel.pop();
3077                         res << "\tOpBranch %m" << currId << "\n";
3078                         res << "%f" << currId << " = OpLabel\n";
3079                         std::ostringstream tag;
3080                         tag << value.top() << " %f" << currId;
3081                         valueLabel.pop();
3082                         valueLabel.push(tag.str());
3083                 }
3084
3085                 if (*p == 'C')
3086                 {
3087                         mergeRight.push(valueLabel.top());
3088                         res << "\tOpBranch %m" << currId << "\n";
3089                         res << "%m" << currId << " = OpLabel\n";
3090                         if (*(p + 1) == 0)
3091                                 res << "%res"; // last result goes to %res
3092                         else
3093                                 res << "%rm" << currId;
3094                         res << " = OpPhi %f32  " << mergeLeft.top() << "  " << mergeRight.top() << "\n";
3095                         std::ostringstream tag;
3096                         tag << "%rm" << currId;
3097                         value.pop();
3098                         value.push(tag.str());
3099                         tag << " %m" << currId;
3100                         valueLabel.pop();
3101                         valueLabel.push(tag.str());
3102                         mergeLeft.pop();
3103                         mergeRight.pop();
3104                         depth--;
3105                         idStack.pop();
3106                         currId = idStack.top();
3107                 }
3108                 p++;
3109                 iter++;
3110         }
3111         return res.str();
3112 }
3113
3114 tcu::TestCaseGroup* createOpPhiGroup (tcu::TestContext& testCtx)
3115 {
3116         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
3117         ComputeShaderSpec                               spec1;
3118         ComputeShaderSpec                               spec2;
3119         ComputeShaderSpec                               spec3;
3120         ComputeShaderSpec                               spec4;
3121         ComputeShaderSpec                               spec5;
3122         de::Random                                              rnd                             (deStringHash(group->getName()));
3123         const int                                               numElements             = 100;
3124         vector<float>                                   inputFloats             (numElements, 0);
3125         vector<float>                                   outputFloats1   (numElements, 0);
3126         vector<float>                                   outputFloats2   (numElements, 0);
3127         vector<float>                                   outputFloats3   (numElements, 0);
3128         vector<float>                                   outputFloats4   (numElements, 0);
3129         vector<float>                                   outputFloats5   (numElements, 0);
3130         std::string                                             codestring              = "ABC";
3131         const int                                               test4Width              = 1024;
3132
3133         // Build case 5 code string. Each iteration makes the hierarchy more complicated.
3134         // 9 iterations with (7, 24) parameters makes the hierarchy 8 deep with about 1500 lines of
3135         // shader code.
3136         for (int i = 0, acc = 0; i < 9; i++)
3137                 codestring = expandOpPhiCase5(codestring, acc, 7, 24);
3138
3139         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats[0], numElements);
3140
3141         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
3142         floorAll(inputFloats);
3143
3144         for (size_t ndx = 0; ndx < numElements; ++ndx)
3145         {
3146                 switch (ndx % 3)
3147                 {
3148                         case 0:         outputFloats1[ndx] = inputFloats[ndx] + 5.5f;   break;
3149                         case 1:         outputFloats1[ndx] = inputFloats[ndx] + 20.5f;  break;
3150                         case 2:         outputFloats1[ndx] = inputFloats[ndx] + 1.75f;  break;
3151                         default:        break;
3152                 }
3153                 outputFloats2[ndx] = inputFloats[ndx] + 6.5f * 3;
3154                 outputFloats3[ndx] = 8.5f - inputFloats[ndx];
3155
3156                 int index4 = (int)deFloor(deAbs((float)ndx * inputFloats[ndx]));
3157                 outputFloats4[ndx] = (float)(index4 % test4Width) * 10.0f + 5.0f;
3158
3159                 outputFloats5[ndx] = calcOpPhiCase5(inputFloats[ndx], codestring);
3160         }
3161
3162         spec1.assembly =
3163                 string(getComputeAsmShaderPreamble()) +
3164
3165                 "OpSource GLSL 430\n"
3166                 "OpName %main \"main\"\n"
3167                 "OpName %id \"gl_GlobalInvocationID\"\n"
3168
3169                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3170
3171                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3172
3173                 "%id = OpVariable %uvec3ptr Input\n"
3174                 "%zero       = OpConstant %i32 0\n"
3175                 "%three      = OpConstant %u32 3\n"
3176                 "%constf5p5  = OpConstant %f32 5.5\n"
3177                 "%constf20p5 = OpConstant %f32 20.5\n"
3178                 "%constf1p75 = OpConstant %f32 1.75\n"
3179                 "%constf8p5  = OpConstant %f32 8.5\n"
3180                 "%constf6p5  = OpConstant %f32 6.5\n"
3181
3182                 "%main     = OpFunction %void None %voidf\n"
3183                 "%entry    = OpLabel\n"
3184                 "%idval    = OpLoad %uvec3 %id\n"
3185                 "%x        = OpCompositeExtract %u32 %idval 0\n"
3186                 "%selector = OpUMod %u32 %x %three\n"
3187                 "            OpSelectionMerge %phi None\n"
3188                 "            OpSwitch %selector %default 0 %case0 1 %case1 2 %case2\n"
3189
3190                 // Case 1 before OpPhi.
3191                 "%case1    = OpLabel\n"
3192                 "            OpBranch %phi\n"
3193
3194                 "%default  = OpLabel\n"
3195                 "            OpUnreachable\n"
3196
3197                 "%phi      = OpLabel\n"
3198                 "%operand  = OpPhi %f32   %constf1p75 %case2   %constf20p5 %case1   %constf5p5 %case0\n" // not in the order of blocks
3199                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
3200                 "%inval    = OpLoad %f32 %inloc\n"
3201                 "%add      = OpFAdd %f32 %inval %operand\n"
3202                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
3203                 "            OpStore %outloc %add\n"
3204                 "            OpReturn\n"
3205
3206                 // Case 0 after OpPhi.
3207                 "%case0    = OpLabel\n"
3208                 "            OpBranch %phi\n"
3209
3210
3211                 // Case 2 after OpPhi.
3212                 "%case2    = OpLabel\n"
3213                 "            OpBranch %phi\n"
3214
3215                 "            OpFunctionEnd\n";
3216         spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3217         spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
3218         spec1.numWorkGroups = IVec3(numElements, 1, 1);
3219
3220         group->addChild(new SpvAsmComputeShaderCase(testCtx, "block", "out-of-order and unreachable blocks for OpPhi", spec1));
3221
3222         spec2.assembly =
3223                 string(getComputeAsmShaderPreamble()) +
3224
3225                 "OpName %main \"main\"\n"
3226                 "OpName %id \"gl_GlobalInvocationID\"\n"
3227
3228                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3229
3230                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3231
3232                 "%id         = OpVariable %uvec3ptr Input\n"
3233                 "%zero       = OpConstant %i32 0\n"
3234                 "%one        = OpConstant %i32 1\n"
3235                 "%three      = OpConstant %i32 3\n"
3236                 "%constf6p5  = OpConstant %f32 6.5\n"
3237
3238                 "%main       = OpFunction %void None %voidf\n"
3239                 "%entry      = OpLabel\n"
3240                 "%idval      = OpLoad %uvec3 %id\n"
3241                 "%x          = OpCompositeExtract %u32 %idval 0\n"
3242                 "%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
3243                 "%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
3244                 "%inval      = OpLoad %f32 %inloc\n"
3245                 "              OpBranch %phi\n"
3246
3247                 "%phi        = OpLabel\n"
3248                 "%step       = OpPhi %i32 %zero  %entry %step_next  %phi\n"
3249                 "%accum      = OpPhi %f32 %inval %entry %accum_next %phi\n"
3250                 "%step_next  = OpIAdd %i32 %step %one\n"
3251                 "%accum_next = OpFAdd %f32 %accum %constf6p5\n"
3252                 "%still_loop = OpSLessThan %bool %step %three\n"
3253                 "              OpLoopMerge %exit %phi None\n"
3254                 "              OpBranchConditional %still_loop %phi %exit\n"
3255
3256                 "%exit       = OpLabel\n"
3257                 "              OpStore %outloc %accum\n"
3258                 "              OpReturn\n"
3259                 "              OpFunctionEnd\n";
3260         spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3261         spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
3262         spec2.numWorkGroups = IVec3(numElements, 1, 1);
3263
3264         group->addChild(new SpvAsmComputeShaderCase(testCtx, "induction", "The usual way induction variables are handled in LLVM IR", spec2));
3265
3266         spec3.assembly =
3267                 string(getComputeAsmShaderPreamble()) +
3268
3269                 "OpName %main \"main\"\n"
3270                 "OpName %id \"gl_GlobalInvocationID\"\n"
3271
3272                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3273
3274                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3275
3276                 "%f32ptr_f   = OpTypePointer Function %f32\n"
3277                 "%id         = OpVariable %uvec3ptr Input\n"
3278                 "%true       = OpConstantTrue %bool\n"
3279                 "%false      = OpConstantFalse %bool\n"
3280                 "%zero       = OpConstant %i32 0\n"
3281                 "%constf8p5  = OpConstant %f32 8.5\n"
3282
3283                 "%main       = OpFunction %void None %voidf\n"
3284                 "%entry      = OpLabel\n"
3285                 "%b          = OpVariable %f32ptr_f Function %constf8p5\n"
3286                 "%idval      = OpLoad %uvec3 %id\n"
3287                 "%x          = OpCompositeExtract %u32 %idval 0\n"
3288                 "%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
3289                 "%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
3290                 "%a_init     = OpLoad %f32 %inloc\n"
3291                 "%b_init     = OpLoad %f32 %b\n"
3292                 "              OpBranch %phi\n"
3293
3294                 "%phi        = OpLabel\n"
3295                 "%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
3296                 "%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
3297                 "%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
3298                 "              OpLoopMerge %exit %phi None\n"
3299                 "              OpBranchConditional %still_loop %phi %exit\n"
3300
3301                 "%exit       = OpLabel\n"
3302                 "%sub        = OpFSub %f32 %a_next %b_next\n"
3303                 "              OpStore %outloc %sub\n"
3304                 "              OpReturn\n"
3305                 "              OpFunctionEnd\n";
3306         spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3307         spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
3308         spec3.numWorkGroups = IVec3(numElements, 1, 1);
3309
3310         group->addChild(new SpvAsmComputeShaderCase(testCtx, "swap", "Swap the values of two variables using OpPhi", spec3));
3311
3312         spec4.assembly =
3313                 "OpCapability Shader\n"
3314                 "%ext = OpExtInstImport \"GLSL.std.450\"\n"
3315                 "OpMemoryModel Logical GLSL450\n"
3316                 "OpEntryPoint GLCompute %main \"main\" %id\n"
3317                 "OpExecutionMode %main LocalSize 1 1 1\n"
3318
3319                 "OpSource GLSL 430\n"
3320                 "OpName %main \"main\"\n"
3321                 "OpName %id \"gl_GlobalInvocationID\"\n"
3322
3323                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3324
3325                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3326
3327                 "%id       = OpVariable %uvec3ptr Input\n"
3328                 "%zero     = OpConstant %i32 0\n"
3329                 "%cimod    = OpConstant %u32 " + generateIntWidth(test4Width) + "\n"
3330
3331                 + generateConstantDefinitions(test4Width) +
3332
3333                 "%main     = OpFunction %void None %voidf\n"
3334                 "%entry    = OpLabel\n"
3335                 "%idval    = OpLoad %uvec3 %id\n"
3336                 "%x        = OpCompositeExtract %u32 %idval 0\n"
3337                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
3338                 "%inval    = OpLoad %f32 %inloc\n"
3339                 "%xf       = OpConvertUToF %f32 %x\n"
3340                 "%xm       = OpFMul %f32 %xf %inval\n"
3341                 "%xa       = OpExtInst %f32 %ext FAbs %xm\n"
3342                 "%xi       = OpConvertFToU %u32 %xa\n"
3343                 "%selector = OpUMod %u32 %xi %cimod\n"
3344                 "            OpSelectionMerge %phi None\n"
3345                 "            OpSwitch %selector %default "
3346
3347                 + generateSwitchCases(test4Width) +
3348
3349                 "%default  = OpLabel\n"
3350                 "            OpUnreachable\n"
3351
3352                 + generateSwitchTargets(test4Width) +
3353
3354                 "%phi      = OpLabel\n"
3355                 "%result   = OpPhi %f32"
3356
3357                 + generateOpPhiParams(test4Width) +
3358
3359                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
3360                 "            OpStore %outloc %result\n"
3361                 "            OpReturn\n"
3362
3363                 "            OpFunctionEnd\n";
3364         spec4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3365         spec4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats4)));
3366         spec4.numWorkGroups = IVec3(numElements, 1, 1);
3367
3368         group->addChild(new SpvAsmComputeShaderCase(testCtx, "wide", "OpPhi with a lot of parameters", spec4));
3369
3370         spec5.assembly =
3371                 "OpCapability Shader\n"
3372                 "%ext      = OpExtInstImport \"GLSL.std.450\"\n"
3373                 "OpMemoryModel Logical GLSL450\n"
3374                 "OpEntryPoint GLCompute %main \"main\" %id\n"
3375                 "OpExecutionMode %main LocalSize 1 1 1\n"
3376                 "%code     = OpString \"" + codestring + "\"\n"
3377
3378                 "OpSource GLSL 430\n"
3379                 "OpName %main \"main\"\n"
3380                 "OpName %id \"gl_GlobalInvocationID\"\n"
3381
3382                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3383
3384                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3385
3386                 "%id       = OpVariable %uvec3ptr Input\n"
3387                 "%zero     = OpConstant %i32 0\n"
3388                 "%f32_0    = OpConstant %f32 0.0\n"
3389                 "%f32_0_5  = OpConstant %f32 0.5\n"
3390                 "%f32_1    = OpConstant %f32 1.0\n"
3391                 "%f32_1_5  = OpConstant %f32 1.5\n"
3392                 "%f32_2    = OpConstant %f32 2.0\n"
3393                 "%f32_3_5  = OpConstant %f32 3.5\n"
3394                 "%f32_4    = OpConstant %f32 4.0\n"
3395                 "%f32_7_5  = OpConstant %f32 7.5\n"
3396                 "%f32_8    = OpConstant %f32 8.0\n"
3397                 "%f32_15_5 = OpConstant %f32 15.5\n"
3398                 "%f32_16   = OpConstant %f32 16.0\n"
3399                 "%f32_31_5 = OpConstant %f32 31.5\n"
3400                 "%f32_32   = OpConstant %f32 32.0\n"
3401                 "%f32_63_5 = OpConstant %f32 63.5\n"
3402                 "%f32_64   = OpConstant %f32 64.0\n"
3403                 "%f32_127_5 = OpConstant %f32 127.5\n"
3404                 "%f32_128  = OpConstant %f32 128.0\n"
3405                 "%f32_256  = OpConstant %f32 256.0\n"
3406
3407                 "%main     = OpFunction %void None %voidf\n"
3408                 "%entry    = OpLabel\n"
3409                 "%idval    = OpLoad %uvec3 %id\n"
3410                 "%x        = OpCompositeExtract %u32 %idval 0\n"
3411                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
3412                 "%inval    = OpLoad %f32 %inloc\n"
3413
3414                 "%xabs     = OpExtInst %f32 %ext FAbs %inval\n"
3415                 "%x8       = OpFMod %f32 %xabs %f32_256\n"
3416                 "%x7       = OpFMod %f32 %xabs %f32_128\n"
3417                 "%x6       = OpFMod %f32 %xabs %f32_64\n"
3418                 "%x5       = OpFMod %f32 %xabs %f32_32\n"
3419                 "%x4       = OpFMod %f32 %xabs %f32_16\n"
3420                 "%x3       = OpFMod %f32 %xabs %f32_8\n"
3421                 "%x2       = OpFMod %f32 %xabs %f32_4\n"
3422                 "%x1       = OpFMod %f32 %xabs %f32_2\n"
3423
3424                 "%b7       = OpFOrdGreaterThanEqual %bool %x8 %f32_127_5\n"
3425                 "%b6       = OpFOrdGreaterThanEqual %bool %x7 %f32_63_5\n"
3426                 "%b5       = OpFOrdGreaterThanEqual %bool %x6 %f32_31_5\n"
3427                 "%b4       = OpFOrdGreaterThanEqual %bool %x5 %f32_15_5\n"
3428                 "%b3       = OpFOrdGreaterThanEqual %bool %x4 %f32_7_5\n"
3429                 "%b2       = OpFOrdGreaterThanEqual %bool %x3 %f32_3_5\n"
3430                 "%b1       = OpFOrdGreaterThanEqual %bool %x2 %f32_1_5\n"
3431                 "%b0       = OpFOrdGreaterThanEqual %bool %x1 %f32_0_5\n"
3432
3433                 + generateOpPhiCase5(codestring) +
3434
3435                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
3436                 "            OpStore %outloc %res\n"
3437                 "            OpReturn\n"
3438
3439                 "            OpFunctionEnd\n";
3440         spec5.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3441         spec5.outputs.push_back(BufferSp(new Float32Buffer(outputFloats5)));
3442         spec5.numWorkGroups = IVec3(numElements, 1, 1);
3443
3444         group->addChild(new SpvAsmComputeShaderCase(testCtx, "nested", "Stress OpPhi with a lot of nesting", spec5));
3445
3446         createOpPhiVartypeTests(group, testCtx);
3447
3448         return group.release();
3449 }
3450
3451 // Assembly code used for testing block order is based on GLSL source code:
3452 //
3453 // #version 430
3454 //
3455 // layout(std140, set = 0, binding = 0) readonly buffer Input {
3456 //   float elements[];
3457 // } input_data;
3458 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
3459 //   float elements[];
3460 // } output_data;
3461 //
3462 // void main() {
3463 //   uint x = gl_GlobalInvocationID.x;
3464 //   output_data.elements[x] = input_data.elements[x];
3465 //   if (x > uint(50)) {
3466 //     switch (x % uint(3)) {
3467 //       case 0: output_data.elements[x] += 1.5f; break;
3468 //       case 1: output_data.elements[x] += 42.f; break;
3469 //       case 2: output_data.elements[x] -= 27.f; break;
3470 //       default: break;
3471 //     }
3472 //   } else {
3473 //     output_data.elements[x] = -input_data.elements[x];
3474 //   }
3475 // }
3476 tcu::TestCaseGroup* createBlockOrderGroup (tcu::TestContext& testCtx)
3477 {
3478         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "block_order", "Test block orders"));
3479         ComputeShaderSpec                               spec;
3480         de::Random                                              rnd                             (deStringHash(group->getName()));
3481         const int                                               numElements             = 100;
3482         vector<float>                                   inputFloats             (numElements, 0);
3483         vector<float>                                   outputFloats    (numElements, 0);
3484
3485         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3486
3487         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
3488         floorAll(inputFloats);
3489
3490         for (size_t ndx = 0; ndx <= 50; ++ndx)
3491                 outputFloats[ndx] = -inputFloats[ndx];
3492
3493         for (size_t ndx = 51; ndx < numElements; ++ndx)
3494         {
3495                 switch (ndx % 3)
3496                 {
3497                         case 0:         outputFloats[ndx] = inputFloats[ndx] + 1.5f; break;
3498                         case 1:         outputFloats[ndx] = inputFloats[ndx] + 42.f; break;
3499                         case 2:         outputFloats[ndx] = inputFloats[ndx] - 27.f; break;
3500                         default:        break;
3501                 }
3502         }
3503
3504         spec.assembly =
3505                 string(getComputeAsmShaderPreamble()) +
3506
3507                 "OpSource GLSL 430\n"
3508                 "OpName %main \"main\"\n"
3509                 "OpName %id \"gl_GlobalInvocationID\"\n"
3510
3511                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3512
3513                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
3514
3515                 "%u32ptr       = OpTypePointer Function %u32\n"
3516                 "%u32ptr_input = OpTypePointer Input %u32\n"
3517
3518                 + string(getComputeAsmInputOutputBuffer()) +
3519
3520                 "%id        = OpVariable %uvec3ptr Input\n"
3521                 "%zero      = OpConstant %i32 0\n"
3522                 "%const3    = OpConstant %u32 3\n"
3523                 "%const50   = OpConstant %u32 50\n"
3524                 "%constf1p5 = OpConstant %f32 1.5\n"
3525                 "%constf27  = OpConstant %f32 27.0\n"
3526                 "%constf42  = OpConstant %f32 42.0\n"
3527
3528                 "%main = OpFunction %void None %voidf\n"
3529
3530                 // entry block.
3531                 "%entry    = OpLabel\n"
3532
3533                 // Create a temporary variable to hold the value of gl_GlobalInvocationID.x.
3534                 "%xvar     = OpVariable %u32ptr Function\n"
3535                 "%xptr     = OpAccessChain %u32ptr_input %id %zero\n"
3536                 "%x        = OpLoad %u32 %xptr\n"
3537                 "            OpStore %xvar %x\n"
3538
3539                 "%cmp      = OpUGreaterThan %bool %x %const50\n"
3540                 "            OpSelectionMerge %if_merge None\n"
3541                 "            OpBranchConditional %cmp %if_true %if_false\n"
3542
3543                 // False branch for if-statement: placed in the middle of switch cases and before true branch.
3544                 "%if_false = OpLabel\n"
3545                 "%x_f      = OpLoad %u32 %xvar\n"
3546                 "%inloc_f  = OpAccessChain %f32ptr %indata %zero %x_f\n"
3547                 "%inval_f  = OpLoad %f32 %inloc_f\n"
3548                 "%negate   = OpFNegate %f32 %inval_f\n"
3549                 "%outloc_f = OpAccessChain %f32ptr %outdata %zero %x_f\n"
3550                 "            OpStore %outloc_f %negate\n"
3551                 "            OpBranch %if_merge\n"
3552
3553                 // Merge block for if-statement: placed in the middle of true and false branch.
3554                 "%if_merge = OpLabel\n"
3555                 "            OpReturn\n"
3556
3557                 // True branch for if-statement: placed in the middle of swtich cases and after the false branch.
3558                 "%if_true  = OpLabel\n"
3559                 "%xval_t   = OpLoad %u32 %xvar\n"
3560                 "%mod      = OpUMod %u32 %xval_t %const3\n"
3561                 "            OpSelectionMerge %switch_merge None\n"
3562                 "            OpSwitch %mod %default 0 %case0 1 %case1 2 %case2\n"
3563
3564                 // Merge block for switch-statement: placed before the case
3565                 // bodies.  But it must follow OpSwitch which dominates it.
3566                 "%switch_merge = OpLabel\n"
3567                 "                OpBranch %if_merge\n"
3568
3569                 // Case 1 for switch-statement: placed before case 0.
3570                 // It must follow the OpSwitch that dominates it.
3571                 "%case1    = OpLabel\n"
3572                 "%x_1      = OpLoad %u32 %xvar\n"
3573                 "%inloc_1  = OpAccessChain %f32ptr %indata %zero %x_1\n"
3574                 "%inval_1  = OpLoad %f32 %inloc_1\n"
3575                 "%addf42   = OpFAdd %f32 %inval_1 %constf42\n"
3576                 "%outloc_1 = OpAccessChain %f32ptr %outdata %zero %x_1\n"
3577                 "            OpStore %outloc_1 %addf42\n"
3578                 "            OpBranch %switch_merge\n"
3579
3580                 // Case 2 for switch-statement.
3581                 "%case2    = OpLabel\n"
3582                 "%x_2      = OpLoad %u32 %xvar\n"
3583                 "%inloc_2  = OpAccessChain %f32ptr %indata %zero %x_2\n"
3584                 "%inval_2  = OpLoad %f32 %inloc_2\n"
3585                 "%subf27   = OpFSub %f32 %inval_2 %constf27\n"
3586                 "%outloc_2 = OpAccessChain %f32ptr %outdata %zero %x_2\n"
3587                 "            OpStore %outloc_2 %subf27\n"
3588                 "            OpBranch %switch_merge\n"
3589
3590                 // Default case for switch-statement: placed in the middle of normal cases.
3591                 "%default = OpLabel\n"
3592                 "           OpBranch %switch_merge\n"
3593
3594                 // Case 0 for switch-statement: out of order.
3595                 "%case0    = OpLabel\n"
3596                 "%x_0      = OpLoad %u32 %xvar\n"
3597                 "%inloc_0  = OpAccessChain %f32ptr %indata %zero %x_0\n"
3598                 "%inval_0  = OpLoad %f32 %inloc_0\n"
3599                 "%addf1p5  = OpFAdd %f32 %inval_0 %constf1p5\n"
3600                 "%outloc_0 = OpAccessChain %f32ptr %outdata %zero %x_0\n"
3601                 "            OpStore %outloc_0 %addf1p5\n"
3602                 "            OpBranch %switch_merge\n"
3603
3604                 "            OpFunctionEnd\n";
3605         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3606         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3607         spec.numWorkGroups = IVec3(numElements, 1, 1);
3608
3609         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "various out-of-order blocks", spec));
3610
3611         return group.release();
3612 }
3613
3614 tcu::TestCaseGroup* createMultipleShaderGroup (tcu::TestContext& testCtx)
3615 {
3616         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "multiple_shaders", "Test multiple shaders in the same module"));
3617         ComputeShaderSpec                               spec1;
3618         ComputeShaderSpec                               spec2;
3619         de::Random                                              rnd                             (deStringHash(group->getName()));
3620         const int                                               numElements             = 100;
3621         vector<float>                                   inputFloats             (numElements, 0);
3622         vector<float>                                   outputFloats1   (numElements, 0);
3623         vector<float>                                   outputFloats2   (numElements, 0);
3624         fillRandomScalars(rnd, -500.f, 500.f, &inputFloats[0], numElements);
3625
3626         for (size_t ndx = 0; ndx < numElements; ++ndx)
3627         {
3628                 outputFloats1[ndx] = inputFloats[ndx] + inputFloats[ndx];
3629                 outputFloats2[ndx] = -inputFloats[ndx];
3630         }
3631
3632         const string assembly(
3633                 "OpCapability Shader\n"
3634                 "OpCapability ClipDistance\n"
3635                 "OpMemoryModel Logical GLSL450\n"
3636                 "OpEntryPoint GLCompute %comp_main1 \"entrypoint1\" %id\n"
3637                 "OpEntryPoint GLCompute %comp_main2 \"entrypoint2\" %id\n"
3638                 // A module cannot have two OpEntryPoint instructions with the same Execution Model and the same Name string.
3639                 "OpEntryPoint Vertex    %vert_main  \"entrypoint2\" %vert_builtins %vertexIndex %instanceIndex\n"
3640                 "OpExecutionMode %comp_main1 LocalSize 1 1 1\n"
3641                 "OpExecutionMode %comp_main2 LocalSize 1 1 1\n"
3642
3643                 "OpName %comp_main1              \"entrypoint1\"\n"
3644                 "OpName %comp_main2              \"entrypoint2\"\n"
3645                 "OpName %vert_main               \"entrypoint2\"\n"
3646                 "OpName %id                      \"gl_GlobalInvocationID\"\n"
3647                 "OpName %vert_builtin_st         \"gl_PerVertex\"\n"
3648                 "OpName %vertexIndex             \"gl_VertexIndex\"\n"
3649                 "OpName %instanceIndex           \"gl_InstanceIndex\"\n"
3650                 "OpMemberName %vert_builtin_st 0 \"gl_Position\"\n"
3651                 "OpMemberName %vert_builtin_st 1 \"gl_PointSize\"\n"
3652                 "OpMemberName %vert_builtin_st 2 \"gl_ClipDistance\"\n"
3653
3654                 "OpDecorate %id                      BuiltIn GlobalInvocationId\n"
3655                 "OpDecorate %vertexIndex             BuiltIn VertexIndex\n"
3656                 "OpDecorate %instanceIndex           BuiltIn InstanceIndex\n"
3657                 "OpDecorate %vert_builtin_st         Block\n"
3658                 "OpMemberDecorate %vert_builtin_st 0 BuiltIn Position\n"
3659                 "OpMemberDecorate %vert_builtin_st 1 BuiltIn PointSize\n"
3660                 "OpMemberDecorate %vert_builtin_st 2 BuiltIn ClipDistance\n"
3661
3662                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3663
3664                 "%zero       = OpConstant %i32 0\n"
3665                 "%one        = OpConstant %u32 1\n"
3666                 "%c_f32_1    = OpConstant %f32 1\n"
3667
3668                 "%i32inputptr         = OpTypePointer Input %i32\n"
3669                 "%vec4                = OpTypeVector %f32 4\n"
3670                 "%vec4ptr             = OpTypePointer Output %vec4\n"
3671                 "%f32arr1             = OpTypeArray %f32 %one\n"
3672                 "%vert_builtin_st     = OpTypeStruct %vec4 %f32 %f32arr1\n"
3673                 "%vert_builtin_st_ptr = OpTypePointer Output %vert_builtin_st\n"
3674                 "%vert_builtins       = OpVariable %vert_builtin_st_ptr Output\n"
3675
3676                 "%id         = OpVariable %uvec3ptr Input\n"
3677                 "%vertexIndex = OpVariable %i32inputptr Input\n"
3678                 "%instanceIndex = OpVariable %i32inputptr Input\n"
3679                 "%c_vec4_1   = OpConstantComposite %vec4 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
3680
3681                 // gl_Position = vec4(1.);
3682                 "%vert_main  = OpFunction %void None %voidf\n"
3683                 "%vert_entry = OpLabel\n"
3684                 "%position   = OpAccessChain %vec4ptr %vert_builtins %zero\n"
3685                 "              OpStore %position %c_vec4_1\n"
3686                 "              OpReturn\n"
3687                 "              OpFunctionEnd\n"
3688
3689                 // Double inputs.
3690                 "%comp_main1  = OpFunction %void None %voidf\n"
3691                 "%comp1_entry = OpLabel\n"
3692                 "%idval1      = OpLoad %uvec3 %id\n"
3693                 "%x1          = OpCompositeExtract %u32 %idval1 0\n"
3694                 "%inloc1      = OpAccessChain %f32ptr %indata %zero %x1\n"
3695                 "%inval1      = OpLoad %f32 %inloc1\n"
3696                 "%add         = OpFAdd %f32 %inval1 %inval1\n"
3697                 "%outloc1     = OpAccessChain %f32ptr %outdata %zero %x1\n"
3698                 "               OpStore %outloc1 %add\n"
3699                 "               OpReturn\n"
3700                 "               OpFunctionEnd\n"
3701
3702                 // Negate inputs.
3703                 "%comp_main2  = OpFunction %void None %voidf\n"
3704                 "%comp2_entry = OpLabel\n"
3705                 "%idval2      = OpLoad %uvec3 %id\n"
3706                 "%x2          = OpCompositeExtract %u32 %idval2 0\n"
3707                 "%inloc2      = OpAccessChain %f32ptr %indata %zero %x2\n"
3708                 "%inval2      = OpLoad %f32 %inloc2\n"
3709                 "%neg         = OpFNegate %f32 %inval2\n"
3710                 "%outloc2     = OpAccessChain %f32ptr %outdata %zero %x2\n"
3711                 "               OpStore %outloc2 %neg\n"
3712                 "               OpReturn\n"
3713                 "               OpFunctionEnd\n");
3714
3715         spec1.assembly = assembly;
3716         spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3717         spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
3718         spec1.numWorkGroups = IVec3(numElements, 1, 1);
3719         spec1.entryPoint = "entrypoint1";
3720
3721         spec2.assembly = assembly;
3722         spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3723         spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
3724         spec2.numWorkGroups = IVec3(numElements, 1, 1);
3725         spec2.entryPoint = "entrypoint2";
3726
3727         group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader1", "multiple shaders in the same module", spec1));
3728         group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader2", "multiple shaders in the same module", spec2));
3729
3730         return group.release();
3731 }
3732
3733 inline std::string makeLongUTF8String (size_t num4ByteChars)
3734 {
3735         // An example of a longest valid UTF-8 character.  Be explicit about the
3736         // character type because Microsoft compilers can otherwise interpret the
3737         // character string as being over wide (16-bit) characters. Ideally, we
3738         // would just use a C++11 UTF-8 string literal, but we want to support older
3739         // Microsoft compilers.
3740         const std::basic_string<char> earthAfrica("\xF0\x9F\x8C\x8D");
3741         std::string longString;
3742         longString.reserve(num4ByteChars * 4);
3743         for (size_t count = 0; count < num4ByteChars; count++)
3744         {
3745                 longString += earthAfrica;
3746         }
3747         return longString;
3748 }
3749
3750 tcu::TestCaseGroup* createOpSourceGroup (tcu::TestContext& testCtx)
3751 {
3752         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opsource", "Tests the OpSource & OpSourceContinued instruction"));
3753         vector<CaseParameter>                   cases;
3754         de::Random                                              rnd                             (deStringHash(group->getName()));
3755         const int                                               numElements             = 100;
3756         vector<float>                                   positiveFloats  (numElements, 0);
3757         vector<float>                                   negativeFloats  (numElements, 0);
3758         const StringTemplate                    shaderTemplate  (
3759                 "OpCapability Shader\n"
3760                 "OpMemoryModel Logical GLSL450\n"
3761
3762                 "OpEntryPoint GLCompute %main \"main\" %id\n"
3763                 "OpExecutionMode %main LocalSize 1 1 1\n"
3764
3765                 "${SOURCE}\n"
3766
3767                 "OpName %main           \"main\"\n"
3768                 "OpName %id             \"gl_GlobalInvocationID\"\n"
3769
3770                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3771
3772                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3773
3774                 "%id        = OpVariable %uvec3ptr Input\n"
3775                 "%zero      = OpConstant %i32 0\n"
3776
3777                 "%main      = OpFunction %void None %voidf\n"
3778                 "%label     = OpLabel\n"
3779                 "%idval     = OpLoad %uvec3 %id\n"
3780                 "%x         = OpCompositeExtract %u32 %idval 0\n"
3781                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
3782                 "%inval     = OpLoad %f32 %inloc\n"
3783                 "%neg       = OpFNegate %f32 %inval\n"
3784                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3785                 "             OpStore %outloc %neg\n"
3786                 "             OpReturn\n"
3787                 "             OpFunctionEnd\n");
3788
3789         cases.push_back(CaseParameter("unknown_source",                                                 "OpSource Unknown 0"));
3790         cases.push_back(CaseParameter("wrong_source",                                                   "OpSource OpenCL_C 210"));
3791         cases.push_back(CaseParameter("normal_filename",                                                "%fname = OpString \"filename\"\n"
3792                                                                                                                                                         "OpSource GLSL 430 %fname"));
3793         cases.push_back(CaseParameter("empty_filename",                                                 "%fname = OpString \"\"\n"
3794                                                                                                                                                         "OpSource GLSL 430 %fname"));
3795         cases.push_back(CaseParameter("normal_source_code",                                             "%fname = OpString \"filename\"\n"
3796                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\""));
3797         cases.push_back(CaseParameter("empty_source_code",                                              "%fname = OpString \"filename\"\n"
3798                                                                                                                                                         "OpSource GLSL 430 %fname \"\""));
3799         cases.push_back(CaseParameter("long_source_code",                                               "%fname = OpString \"filename\"\n"
3800                                                                                                                                                         "OpSource GLSL 430 %fname \"" + makeLongUTF8String(65530) + "ccc\"")); // word count: 65535
3801         cases.push_back(CaseParameter("utf8_source_code",                                               "%fname = OpString \"filename\"\n"
3802                                                                                                                                                         "OpSource GLSL 430 %fname \"\xE2\x98\x82\xE2\x98\x85\"")); // umbrella & black star symbol
3803         cases.push_back(CaseParameter("normal_sourcecontinued",                                 "%fname = OpString \"filename\"\n"
3804                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvo\"\n"
3805                                                                                                                                                         "OpSourceContinued \"id main() {}\""));
3806         cases.push_back(CaseParameter("empty_sourcecontinued",                                  "%fname = OpString \"filename\"\n"
3807                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
3808                                                                                                                                                         "OpSourceContinued \"\""));
3809         cases.push_back(CaseParameter("long_sourcecontinued",                                   "%fname = OpString \"filename\"\n"
3810                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
3811                                                                                                                                                         "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\"")); // word count: 65535
3812         cases.push_back(CaseParameter("utf8_sourcecontinued",                                   "%fname = OpString \"filename\"\n"
3813                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
3814                                                                                                                                                         "OpSourceContinued \"\xE2\x98\x8E\xE2\x9A\x91\"")); // white telephone & black flag symbol
3815         cases.push_back(CaseParameter("multi_sourcecontinued",                                  "%fname = OpString \"filename\"\n"
3816                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\n\"\n"
3817                                                                                                                                                         "OpSourceContinued \"void\"\n"
3818                                                                                                                                                         "OpSourceContinued \"main()\"\n"
3819                                                                                                                                                         "OpSourceContinued \"{}\""));
3820         cases.push_back(CaseParameter("empty_source_before_sourcecontinued",    "%fname = OpString \"filename\"\n"
3821                                                                                                                                                         "OpSource GLSL 430 %fname \"\"\n"
3822                                                                                                                                                         "OpSourceContinued \"#version 430\nvoid main() {}\""));
3823
3824         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
3825
3826         for (size_t ndx = 0; ndx < numElements; ++ndx)
3827                 negativeFloats[ndx] = -positiveFloats[ndx];
3828
3829         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3830         {
3831                 map<string, string>             specializations;
3832                 ComputeShaderSpec               spec;
3833
3834                 specializations["SOURCE"] = cases[caseNdx].param;
3835                 spec.assembly = shaderTemplate.specialize(specializations);
3836                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
3837                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
3838                 spec.numWorkGroups = IVec3(numElements, 1, 1);
3839
3840                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3841         }
3842
3843         return group.release();
3844 }
3845
3846 tcu::TestCaseGroup* createOpSourceExtensionGroup (tcu::TestContext& testCtx)
3847 {
3848         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opsourceextension", "Tests the OpSource instruction"));
3849         vector<CaseParameter>                   cases;
3850         de::Random                                              rnd                             (deStringHash(group->getName()));
3851         const int                                               numElements             = 100;
3852         vector<float>                                   inputFloats             (numElements, 0);
3853         vector<float>                                   outputFloats    (numElements, 0);
3854         const StringTemplate                    shaderTemplate  (
3855                 string(getComputeAsmShaderPreamble()) +
3856
3857                 "OpSourceExtension \"${EXTENSION}\"\n"
3858
3859                 "OpName %main           \"main\"\n"
3860                 "OpName %id             \"gl_GlobalInvocationID\"\n"
3861
3862                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3863
3864                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3865
3866                 "%id        = OpVariable %uvec3ptr Input\n"
3867                 "%zero      = OpConstant %i32 0\n"
3868
3869                 "%main      = OpFunction %void None %voidf\n"
3870                 "%label     = OpLabel\n"
3871                 "%idval     = OpLoad %uvec3 %id\n"
3872                 "%x         = OpCompositeExtract %u32 %idval 0\n"
3873                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
3874                 "%inval     = OpLoad %f32 %inloc\n"
3875                 "%neg       = OpFNegate %f32 %inval\n"
3876                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3877                 "             OpStore %outloc %neg\n"
3878                 "             OpReturn\n"
3879                 "             OpFunctionEnd\n");
3880
3881         cases.push_back(CaseParameter("empty_extension",        ""));
3882         cases.push_back(CaseParameter("real_extension",         "GL_ARB_texture_rectangle"));
3883         cases.push_back(CaseParameter("fake_extension",         "GL_ARB_im_the_ultimate_extension"));
3884         cases.push_back(CaseParameter("utf8_extension",         "GL_ARB_\xE2\x98\x82\xE2\x98\x85"));
3885         cases.push_back(CaseParameter("long_extension",         makeLongUTF8String(65533) + "ccc")); // word count: 65535
3886
3887         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
3888
3889         for (size_t ndx = 0; ndx < numElements; ++ndx)
3890                 outputFloats[ndx] = -inputFloats[ndx];
3891
3892         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3893         {
3894                 map<string, string>             specializations;
3895                 ComputeShaderSpec               spec;
3896
3897                 specializations["EXTENSION"] = cases[caseNdx].param;
3898                 spec.assembly = shaderTemplate.specialize(specializations);
3899                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3900                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3901                 spec.numWorkGroups = IVec3(numElements, 1, 1);
3902
3903                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3904         }
3905
3906         return group.release();
3907 }
3908
3909 // Checks that a compute shader can generate a constant null value of various types, without exercising a computation on it.
3910 tcu::TestCaseGroup* createOpConstantNullGroup (tcu::TestContext& testCtx)
3911 {
3912         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opconstantnull", "Tests the OpConstantNull instruction"));
3913         vector<CaseParameter>                   cases;
3914         de::Random                                              rnd                             (deStringHash(group->getName()));
3915         const int                                               numElements             = 100;
3916         vector<float>                                   positiveFloats  (numElements, 0);
3917         vector<float>                                   negativeFloats  (numElements, 0);
3918         const StringTemplate                    shaderTemplate  (
3919                 string(getComputeAsmShaderPreamble()) +
3920
3921                 "OpSource GLSL 430\n"
3922                 "OpName %main           \"main\"\n"
3923                 "OpName %id             \"gl_GlobalInvocationID\"\n"
3924
3925                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3926
3927                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
3928                 "%uvec2     = OpTypeVector %u32 2\n"
3929                 "%bvec3     = OpTypeVector %bool 3\n"
3930                 "%fvec4     = OpTypeVector %f32 4\n"
3931                 "%fmat33    = OpTypeMatrix %fvec3 3\n"
3932                 "%const100  = OpConstant %u32 100\n"
3933                 "%uarr100   = OpTypeArray %i32 %const100\n"
3934                 "%struct    = OpTypeStruct %f32 %i32 %u32\n"
3935                 "%pointer   = OpTypePointer Function %i32\n"
3936                 + string(getComputeAsmInputOutputBuffer()) +
3937
3938                 "%null      = OpConstantNull ${TYPE}\n"
3939
3940                 "%id        = OpVariable %uvec3ptr Input\n"
3941                 "%zero      = OpConstant %i32 0\n"
3942
3943                 "%main      = OpFunction %void None %voidf\n"
3944                 "%label     = OpLabel\n"
3945                 "%idval     = OpLoad %uvec3 %id\n"
3946                 "%x         = OpCompositeExtract %u32 %idval 0\n"
3947                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
3948                 "%inval     = OpLoad %f32 %inloc\n"
3949                 "%neg       = OpFNegate %f32 %inval\n"
3950                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3951                 "             OpStore %outloc %neg\n"
3952                 "             OpReturn\n"
3953                 "             OpFunctionEnd\n");
3954
3955         cases.push_back(CaseParameter("bool",                   "%bool"));
3956         cases.push_back(CaseParameter("sint32",                 "%i32"));
3957         cases.push_back(CaseParameter("uint32",                 "%u32"));
3958         cases.push_back(CaseParameter("float32",                "%f32"));
3959         cases.push_back(CaseParameter("vec4float32",    "%fvec4"));
3960         cases.push_back(CaseParameter("vec3bool",               "%bvec3"));
3961         cases.push_back(CaseParameter("vec2uint32",             "%uvec2"));
3962         cases.push_back(CaseParameter("matrix",                 "%fmat33"));
3963         cases.push_back(CaseParameter("array",                  "%uarr100"));
3964         cases.push_back(CaseParameter("struct",                 "%struct"));
3965         cases.push_back(CaseParameter("pointer",                "%pointer"));
3966
3967         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
3968
3969         for (size_t ndx = 0; ndx < numElements; ++ndx)
3970                 negativeFloats[ndx] = -positiveFloats[ndx];
3971
3972         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3973         {
3974                 map<string, string>             specializations;
3975                 ComputeShaderSpec               spec;
3976
3977                 specializations["TYPE"] = cases[caseNdx].param;
3978                 spec.assembly = shaderTemplate.specialize(specializations);
3979                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
3980                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
3981                 spec.numWorkGroups = IVec3(numElements, 1, 1);
3982
3983                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3984         }
3985
3986         return group.release();
3987 }
3988
3989 // Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
3990 tcu::TestCaseGroup* createOpConstantCompositeGroup (tcu::TestContext& testCtx)
3991 {
3992         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "Tests the OpConstantComposite instruction"));
3993         vector<CaseParameter>                   cases;
3994         de::Random                                              rnd                             (deStringHash(group->getName()));
3995         const int                                               numElements             = 100;
3996         vector<float>                                   positiveFloats  (numElements, 0);
3997         vector<float>                                   negativeFloats  (numElements, 0);
3998         const StringTemplate                    shaderTemplate  (
3999                 string(getComputeAsmShaderPreamble()) +
4000
4001                 "OpSource GLSL 430\n"
4002                 "OpName %main           \"main\"\n"
4003                 "OpName %id             \"gl_GlobalInvocationID\"\n"
4004
4005                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
4006
4007                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
4008
4009                 "%id        = OpVariable %uvec3ptr Input\n"
4010                 "%zero      = OpConstant %i32 0\n"
4011
4012                 "${CONSTANT}\n"
4013
4014                 "%main      = OpFunction %void None %voidf\n"
4015                 "%label     = OpLabel\n"
4016                 "%idval     = OpLoad %uvec3 %id\n"
4017                 "%x         = OpCompositeExtract %u32 %idval 0\n"
4018                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
4019                 "%inval     = OpLoad %f32 %inloc\n"
4020                 "%neg       = OpFNegate %f32 %inval\n"
4021                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
4022                 "             OpStore %outloc %neg\n"
4023                 "             OpReturn\n"
4024                 "             OpFunctionEnd\n");
4025
4026         cases.push_back(CaseParameter("vector",                 "%five = OpConstant %u32 5\n"
4027                                                                                                         "%const = OpConstantComposite %uvec3 %five %zero %five"));
4028         cases.push_back(CaseParameter("matrix",                 "%m3fvec3 = OpTypeMatrix %fvec3 3\n"
4029                                                                                                         "%ten = OpConstant %f32 10.\n"
4030                                                                                                         "%fzero = OpConstant %f32 0.\n"
4031                                                                                                         "%vec = OpConstantComposite %fvec3 %ten %fzero %ten\n"
4032                                                                                                         "%mat = OpConstantComposite %m3fvec3 %vec %vec %vec"));
4033         cases.push_back(CaseParameter("struct",                 "%m2vec3 = OpTypeMatrix %fvec3 2\n"
4034                                                                                                         "%struct = OpTypeStruct %i32 %f32 %fvec3 %m2vec3\n"
4035                                                                                                         "%fzero = OpConstant %f32 0.\n"
4036                                                                                                         "%one = OpConstant %f32 1.\n"
4037                                                                                                         "%point5 = OpConstant %f32 0.5\n"
4038                                                                                                         "%vec = OpConstantComposite %fvec3 %one %one %fzero\n"
4039                                                                                                         "%mat = OpConstantComposite %m2vec3 %vec %vec\n"
4040                                                                                                         "%const = OpConstantComposite %struct %zero %point5 %vec %mat"));
4041         cases.push_back(CaseParameter("nested_struct",  "%st1 = OpTypeStruct %u32 %f32\n"
4042                                                                                                         "%st2 = OpTypeStruct %i32 %i32\n"
4043                                                                                                         "%struct = OpTypeStruct %st1 %st2\n"
4044                                                                                                         "%point5 = OpConstant %f32 0.5\n"
4045                                                                                                         "%one = OpConstant %u32 1\n"
4046                                                                                                         "%ten = OpConstant %i32 10\n"
4047                                                                                                         "%st1val = OpConstantComposite %st1 %one %point5\n"
4048                                                                                                         "%st2val = OpConstantComposite %st2 %ten %ten\n"
4049                                                                                                         "%const = OpConstantComposite %struct %st1val %st2val"));
4050
4051         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
4052
4053         for (size_t ndx = 0; ndx < numElements; ++ndx)
4054                 negativeFloats[ndx] = -positiveFloats[ndx];
4055
4056         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
4057         {
4058                 map<string, string>             specializations;
4059                 ComputeShaderSpec               spec;
4060
4061                 specializations["CONSTANT"] = cases[caseNdx].param;
4062                 spec.assembly = shaderTemplate.specialize(specializations);
4063                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
4064                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
4065                 spec.numWorkGroups = IVec3(numElements, 1, 1);
4066
4067                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
4068         }
4069
4070         return group.release();
4071 }
4072
4073 // Creates a floating point number with the given exponent, and significand
4074 // bits set. It can only create normalized numbers. Only the least significant
4075 // 24 bits of the significand will be examined. The final bit of the
4076 // significand will also be ignored. This allows alignment to be written
4077 // similarly to C99 hex-floats.
4078 // For example if you wanted to write 0x1.7f34p-12 you would call
4079 // constructNormalizedFloat(-12, 0x7f3400)
4080 float constructNormalizedFloat (deInt32 exponent, deUint32 significand)
4081 {
4082         float f = 1.0f;
4083
4084         for (deInt32 idx = 0; idx < 23; ++idx)
4085         {
4086                 f += ((significand & 0x800000) == 0) ? 0.f : std::ldexp(1.0f, -(idx + 1));
4087                 significand <<= 1;
4088         }
4089
4090         return std::ldexp(f, exponent);
4091 }
4092
4093 // Compare instruction for the OpQuantizeF16 compute exact case.
4094 // Returns true if the output is what is expected from the test case.
4095 bool compareOpQuantizeF16ComputeExactCase (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
4096 {
4097         if (outputAllocs.size() != 1)
4098                 return false;
4099
4100         // Only size is needed because we cannot compare Nans.
4101         size_t byteSize = expectedOutputs[0]->getByteSize();
4102
4103         const float*    outputAsFloat   = static_cast<const float*>(outputAllocs[0]->getHostPtr());
4104
4105         if (byteSize != 4*sizeof(float)) {
4106                 return false;
4107         }
4108
4109         if (*outputAsFloat != constructNormalizedFloat(8, 0x304000) &&
4110                 *outputAsFloat != constructNormalizedFloat(8, 0x300000)) {
4111                 return false;
4112         }
4113         outputAsFloat++;
4114
4115         if (*outputAsFloat != -constructNormalizedFloat(-7, 0x600000) &&
4116                 *outputAsFloat != -constructNormalizedFloat(-7, 0x604000)) {
4117                 return false;
4118         }
4119         outputAsFloat++;
4120
4121         if (*outputAsFloat != constructNormalizedFloat(2, 0x01C000) &&
4122                 *outputAsFloat != constructNormalizedFloat(2, 0x020000)) {
4123                 return false;
4124         }
4125         outputAsFloat++;
4126
4127         if (*outputAsFloat != constructNormalizedFloat(1, 0xFFC000) &&
4128                 *outputAsFloat != constructNormalizedFloat(2, 0x000000)) {
4129                 return false;
4130         }
4131
4132         return true;
4133 }
4134
4135 // Checks that every output from a test-case is a float NaN.
4136 bool compareNan (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
4137 {
4138         if (outputAllocs.size() != 1)
4139                 return false;
4140
4141         // Only size is needed because we cannot compare Nans.
4142         size_t byteSize = expectedOutputs[0]->getByteSize();
4143
4144         const float* const      output_as_float = static_cast<const float* const>(outputAllocs[0]->getHostPtr());
4145
4146         for (size_t idx = 0; idx < byteSize / sizeof(float); ++idx)
4147         {
4148                 if (!deFloatIsNaN(output_as_float[idx]))
4149                 {
4150                         return false;
4151                 }
4152         }
4153
4154         return true;
4155 }
4156
4157 // Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
4158 tcu::TestCaseGroup* createOpQuantizeToF16Group (tcu::TestContext& testCtx)
4159 {
4160         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opquantize", "Tests the OpQuantizeToF16 instruction"));
4161
4162         const std::string shader (
4163                 string(getComputeAsmShaderPreamble()) +
4164
4165                 "OpSource GLSL 430\n"
4166                 "OpName %main           \"main\"\n"
4167                 "OpName %id             \"gl_GlobalInvocationID\"\n"
4168
4169                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
4170
4171                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
4172
4173                 "%id        = OpVariable %uvec3ptr Input\n"
4174                 "%zero      = OpConstant %i32 0\n"
4175
4176                 "%main      = OpFunction %void None %voidf\n"
4177                 "%label     = OpLabel\n"
4178                 "%idval     = OpLoad %uvec3 %id\n"
4179                 "%x         = OpCompositeExtract %u32 %idval 0\n"
4180                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
4181                 "%inval     = OpLoad %f32 %inloc\n"
4182                 "%quant     = OpQuantizeToF16 %f32 %inval\n"
4183                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
4184                 "             OpStore %outloc %quant\n"
4185                 "             OpReturn\n"
4186                 "             OpFunctionEnd\n");
4187
4188         {
4189                 ComputeShaderSpec       spec;
4190                 const deUint32          numElements             = 100;
4191                 vector<float>           infinities;
4192                 vector<float>           results;
4193
4194                 infinities.reserve(numElements);
4195                 results.reserve(numElements);
4196
4197                 for (size_t idx = 0; idx < numElements; ++idx)
4198                 {
4199                         switch(idx % 4)
4200                         {
4201                                 case 0:
4202                                         infinities.push_back(std::numeric_limits<float>::infinity());
4203                                         results.push_back(std::numeric_limits<float>::infinity());
4204                                         break;
4205                                 case 1:
4206                                         infinities.push_back(-std::numeric_limits<float>::infinity());
4207                                         results.push_back(-std::numeric_limits<float>::infinity());
4208                                         break;
4209                                 case 2:
4210                                         infinities.push_back(std::ldexp(1.0f, 16));
4211                                         results.push_back(std::numeric_limits<float>::infinity());
4212                                         break;
4213                                 case 3:
4214                                         infinities.push_back(std::ldexp(-1.0f, 32));
4215                                         results.push_back(-std::numeric_limits<float>::infinity());
4216                                         break;
4217                         }
4218                 }
4219
4220                 spec.assembly = shader;
4221                 spec.inputs.push_back(BufferSp(new Float32Buffer(infinities)));
4222                 spec.outputs.push_back(BufferSp(new Float32Buffer(results)));
4223                 spec.numWorkGroups = IVec3(numElements, 1, 1);
4224
4225                 group->addChild(new SpvAsmComputeShaderCase(
4226                         testCtx, "infinities", "Check that infinities propagated and created", spec));
4227         }
4228
4229         {
4230                 ComputeShaderSpec       spec;
4231                 vector<float>           nans;
4232                 const deUint32          numElements             = 100;
4233
4234                 nans.reserve(numElements);
4235
4236                 for (size_t idx = 0; idx < numElements; ++idx)
4237                 {
4238                         if (idx % 2 == 0)
4239                         {
4240                                 nans.push_back(std::numeric_limits<float>::quiet_NaN());
4241                         }
4242                         else
4243                         {
4244                                 nans.push_back(-std::numeric_limits<float>::quiet_NaN());
4245                         }
4246                 }
4247
4248                 spec.assembly = shader;
4249                 spec.inputs.push_back(BufferSp(new Float32Buffer(nans)));
4250                 spec.outputs.push_back(BufferSp(new Float32Buffer(nans)));
4251                 spec.numWorkGroups = IVec3(numElements, 1, 1);
4252                 spec.verifyIO = &compareNan;
4253
4254                 group->addChild(new SpvAsmComputeShaderCase(
4255                         testCtx, "propagated_nans", "Check that nans are propagated", spec));
4256         }
4257
4258         {
4259                 ComputeShaderSpec       spec;
4260                 vector<float>           small;
4261                 vector<float>           zeros;
4262                 const deUint32          numElements             = 100;
4263
4264                 small.reserve(numElements);
4265                 zeros.reserve(numElements);
4266
4267                 for (size_t idx = 0; idx < numElements; ++idx)
4268                 {
4269                         switch(idx % 6)
4270                         {
4271                                 case 0:
4272                                         small.push_back(0.f);
4273                                         zeros.push_back(0.f);
4274                                         break;
4275                                 case 1:
4276                                         small.push_back(-0.f);
4277                                         zeros.push_back(-0.f);
4278                                         break;
4279                                 case 2:
4280                                         small.push_back(std::ldexp(1.0f, -16));
4281                                         zeros.push_back(0.f);
4282                                         break;
4283                                 case 3:
4284                                         small.push_back(std::ldexp(-1.0f, -32));
4285                                         zeros.push_back(-0.f);
4286                                         break;
4287                                 case 4:
4288                                         small.push_back(std::ldexp(1.0f, -127));
4289                                         zeros.push_back(0.f);
4290                                         break;
4291                                 case 5:
4292                                         small.push_back(-std::ldexp(1.0f, -128));
4293                                         zeros.push_back(-0.f);
4294                                         break;
4295                         }
4296                 }
4297
4298                 spec.assembly = shader;
4299                 spec.inputs.push_back(BufferSp(new Float32Buffer(small)));
4300                 spec.outputs.push_back(BufferSp(new Float32Buffer(zeros)));
4301                 spec.numWorkGroups = IVec3(numElements, 1, 1);
4302
4303                 group->addChild(new SpvAsmComputeShaderCase(
4304                         testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
4305         }
4306
4307         {
4308                 ComputeShaderSpec       spec;
4309                 vector<float>           exact;
4310                 const deUint32          numElements             = 200;
4311
4312                 exact.reserve(numElements);
4313
4314                 for (size_t idx = 0; idx < numElements; ++idx)
4315                         exact.push_back(static_cast<float>(static_cast<int>(idx) - 100));
4316
4317                 spec.assembly = shader;
4318                 spec.inputs.push_back(BufferSp(new Float32Buffer(exact)));
4319                 spec.outputs.push_back(BufferSp(new Float32Buffer(exact)));
4320                 spec.numWorkGroups = IVec3(numElements, 1, 1);
4321
4322                 group->addChild(new SpvAsmComputeShaderCase(
4323                         testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
4324         }
4325
4326         {
4327                 ComputeShaderSpec       spec;
4328                 vector<float>           inputs;
4329                 const deUint32          numElements             = 4;
4330
4331                 inputs.push_back(constructNormalizedFloat(8,    0x300300));
4332                 inputs.push_back(-constructNormalizedFloat(-7,  0x600800));
4333                 inputs.push_back(constructNormalizedFloat(2,    0x01E000));
4334                 inputs.push_back(constructNormalizedFloat(1,    0xFFE000));
4335
4336                 spec.assembly = shader;
4337                 spec.verifyIO = &compareOpQuantizeF16ComputeExactCase;
4338                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
4339                 spec.outputs.push_back(BufferSp(new Float32Buffer(inputs)));
4340                 spec.numWorkGroups = IVec3(numElements, 1, 1);
4341
4342                 group->addChild(new SpvAsmComputeShaderCase(
4343                         testCtx, "rounded", "Check that are rounded when needed", spec));
4344         }
4345
4346         return group.release();
4347 }
4348
4349 tcu::TestCaseGroup* createSpecConstantOpQuantizeToF16Group (tcu::TestContext& testCtx)
4350 {
4351         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opspecconstantop_opquantize", "Tests the OpQuantizeToF16 opcode for the OpSpecConstantOp instruction"));
4352
4353         const std::string shader (
4354                 string(getComputeAsmShaderPreamble()) +
4355
4356                 "OpName %main           \"main\"\n"
4357                 "OpName %id             \"gl_GlobalInvocationID\"\n"
4358
4359                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
4360
4361                 "OpDecorate %sc_0  SpecId 0\n"
4362                 "OpDecorate %sc_1  SpecId 1\n"
4363                 "OpDecorate %sc_2  SpecId 2\n"
4364                 "OpDecorate %sc_3  SpecId 3\n"
4365                 "OpDecorate %sc_4  SpecId 4\n"
4366                 "OpDecorate %sc_5  SpecId 5\n"
4367
4368                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
4369
4370                 "%id        = OpVariable %uvec3ptr Input\n"
4371                 "%zero      = OpConstant %i32 0\n"
4372                 "%c_u32_6   = OpConstant %u32 6\n"
4373
4374                 "%sc_0      = OpSpecConstant %f32 0.\n"
4375                 "%sc_1      = OpSpecConstant %f32 0.\n"
4376                 "%sc_2      = OpSpecConstant %f32 0.\n"
4377                 "%sc_3      = OpSpecConstant %f32 0.\n"
4378                 "%sc_4      = OpSpecConstant %f32 0.\n"
4379                 "%sc_5      = OpSpecConstant %f32 0.\n"
4380
4381                 "%sc_0_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_0\n"
4382                 "%sc_1_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_1\n"
4383                 "%sc_2_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_2\n"
4384                 "%sc_3_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_3\n"
4385                 "%sc_4_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_4\n"
4386                 "%sc_5_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_5\n"
4387
4388                 "%main      = OpFunction %void None %voidf\n"
4389                 "%label     = OpLabel\n"
4390                 "%idval     = OpLoad %uvec3 %id\n"
4391                 "%x         = OpCompositeExtract %u32 %idval 0\n"
4392                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
4393                 "%selector  = OpUMod %u32 %x %c_u32_6\n"
4394                 "            OpSelectionMerge %exit None\n"
4395                 "            OpSwitch %selector %exit 0 %case0 1 %case1 2 %case2 3 %case3 4 %case4 5 %case5\n"
4396
4397                 "%case0     = OpLabel\n"
4398                 "             OpStore %outloc %sc_0_quant\n"
4399                 "             OpBranch %exit\n"
4400
4401                 "%case1     = OpLabel\n"
4402                 "             OpStore %outloc %sc_1_quant\n"
4403                 "             OpBranch %exit\n"
4404
4405                 "%case2     = OpLabel\n"
4406                 "             OpStore %outloc %sc_2_quant\n"
4407                 "             OpBranch %exit\n"
4408
4409                 "%case3     = OpLabel\n"
4410                 "             OpStore %outloc %sc_3_quant\n"
4411                 "             OpBranch %exit\n"
4412
4413                 "%case4     = OpLabel\n"
4414                 "             OpStore %outloc %sc_4_quant\n"
4415                 "             OpBranch %exit\n"
4416
4417                 "%case5     = OpLabel\n"
4418                 "             OpStore %outloc %sc_5_quant\n"
4419                 "             OpBranch %exit\n"
4420
4421                 "%exit      = OpLabel\n"
4422                 "             OpReturn\n"
4423
4424                 "             OpFunctionEnd\n");
4425
4426         {
4427                 ComputeShaderSpec       spec;
4428                 const deUint8           numCases        = 4;
4429                 vector<float>           inputs          (numCases, 0.f);
4430                 vector<float>           outputs;
4431
4432                 spec.assembly           = shader;
4433                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
4434
4435                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::numeric_limits<float>::infinity()));
4436                 spec.specConstants.push_back(bitwiseCast<deUint32>(-std::numeric_limits<float>::infinity()));
4437                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, 16)));
4438                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, 32)));
4439
4440                 outputs.push_back(std::numeric_limits<float>::infinity());
4441                 outputs.push_back(-std::numeric_limits<float>::infinity());
4442                 outputs.push_back(std::numeric_limits<float>::infinity());
4443                 outputs.push_back(-std::numeric_limits<float>::infinity());
4444
4445                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
4446                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
4447
4448                 group->addChild(new SpvAsmComputeShaderCase(
4449                         testCtx, "infinities", "Check that infinities propagated and created", spec));
4450         }
4451
4452         {
4453                 ComputeShaderSpec       spec;
4454                 const deUint8           numCases        = 2;
4455                 vector<float>           inputs          (numCases, 0.f);
4456                 vector<float>           outputs;
4457
4458                 spec.assembly           = shader;
4459                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
4460                 spec.verifyIO           = &compareNan;
4461
4462                 outputs.push_back(std::numeric_limits<float>::quiet_NaN());
4463                 outputs.push_back(-std::numeric_limits<float>::quiet_NaN());
4464
4465                 for (deUint8 idx = 0; idx < numCases; ++idx)
4466                         spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
4467
4468                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
4469                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
4470
4471                 group->addChild(new SpvAsmComputeShaderCase(
4472                         testCtx, "propagated_nans", "Check that nans are propagated", spec));
4473         }
4474
4475         {
4476                 ComputeShaderSpec       spec;
4477                 const deUint8           numCases        = 6;
4478                 vector<float>           inputs          (numCases, 0.f);
4479                 vector<float>           outputs;
4480
4481                 spec.assembly           = shader;
4482                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
4483
4484                 spec.specConstants.push_back(bitwiseCast<deUint32>(0.f));
4485                 spec.specConstants.push_back(bitwiseCast<deUint32>(-0.f));
4486                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -16)));
4487                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, -32)));
4488                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -127)));
4489                 spec.specConstants.push_back(bitwiseCast<deUint32>(-std::ldexp(1.0f, -128)));
4490
4491                 outputs.push_back(0.f);
4492                 outputs.push_back(-0.f);
4493                 outputs.push_back(0.f);
4494                 outputs.push_back(-0.f);
4495                 outputs.push_back(0.f);
4496                 outputs.push_back(-0.f);
4497
4498                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
4499                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
4500
4501                 group->addChild(new SpvAsmComputeShaderCase(
4502                         testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
4503         }
4504
4505         {
4506                 ComputeShaderSpec       spec;
4507                 const deUint8           numCases        = 6;
4508                 vector<float>           inputs          (numCases, 0.f);
4509                 vector<float>           outputs;
4510
4511                 spec.assembly           = shader;
4512                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
4513
4514                 for (deUint8 idx = 0; idx < 6; ++idx)
4515                 {
4516                         const float f = static_cast<float>(idx * 10 - 30) / 4.f;
4517                         spec.specConstants.push_back(bitwiseCast<deUint32>(f));
4518                         outputs.push_back(f);
4519                 }
4520
4521                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
4522                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
4523
4524                 group->addChild(new SpvAsmComputeShaderCase(
4525                         testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
4526         }
4527
4528         {
4529                 ComputeShaderSpec       spec;
4530                 const deUint8           numCases        = 4;
4531                 vector<float>           inputs          (numCases, 0.f);
4532                 vector<float>           outputs;
4533
4534                 spec.assembly           = shader;
4535                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
4536                 spec.verifyIO           = &compareOpQuantizeF16ComputeExactCase;
4537
4538                 outputs.push_back(constructNormalizedFloat(8, 0x300300));
4539                 outputs.push_back(-constructNormalizedFloat(-7, 0x600800));
4540                 outputs.push_back(constructNormalizedFloat(2, 0x01E000));
4541                 outputs.push_back(constructNormalizedFloat(1, 0xFFE000));
4542
4543                 for (deUint8 idx = 0; idx < numCases; ++idx)
4544                         spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
4545
4546                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
4547                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
4548
4549                 group->addChild(new SpvAsmComputeShaderCase(
4550                         testCtx, "rounded", "Check that are rounded when needed", spec));
4551         }
4552
4553         return group.release();
4554 }
4555
4556 // Checks that constant null/composite values can be used in computation.
4557 tcu::TestCaseGroup* createOpConstantUsageGroup (tcu::TestContext& testCtx)
4558 {
4559         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opconstantnullcomposite", "Spotcheck the OpConstantNull & OpConstantComposite instruction"));
4560         ComputeShaderSpec                               spec;
4561         de::Random                                              rnd                             (deStringHash(group->getName()));
4562         const int                                               numElements             = 100;
4563         vector<float>                                   positiveFloats  (numElements, 0);
4564         vector<float>                                   negativeFloats  (numElements, 0);
4565
4566         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
4567
4568         for (size_t ndx = 0; ndx < numElements; ++ndx)
4569                 negativeFloats[ndx] = -positiveFloats[ndx];
4570
4571         spec.assembly =
4572                 "OpCapability Shader\n"
4573                 "%std450 = OpExtInstImport \"GLSL.std.450\"\n"
4574                 "OpMemoryModel Logical GLSL450\n"
4575                 "OpEntryPoint GLCompute %main \"main\" %id\n"
4576                 "OpExecutionMode %main LocalSize 1 1 1\n"
4577
4578                 "OpSource GLSL 430\n"
4579                 "OpName %main           \"main\"\n"
4580                 "OpName %id             \"gl_GlobalInvocationID\"\n"
4581
4582                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
4583
4584                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
4585
4586                 "%fmat      = OpTypeMatrix %fvec3 3\n"
4587                 "%ten       = OpConstant %u32 10\n"
4588                 "%f32arr10  = OpTypeArray %f32 %ten\n"
4589                 "%fst       = OpTypeStruct %f32 %f32\n"
4590
4591                 + string(getComputeAsmInputOutputBuffer()) +
4592
4593                 "%id        = OpVariable %uvec3ptr Input\n"
4594                 "%zero      = OpConstant %i32 0\n"
4595
4596                 // Create a bunch of null values
4597                 "%unull     = OpConstantNull %u32\n"
4598                 "%fnull     = OpConstantNull %f32\n"
4599                 "%vnull     = OpConstantNull %fvec3\n"
4600                 "%mnull     = OpConstantNull %fmat\n"
4601                 "%anull     = OpConstantNull %f32arr10\n"
4602                 "%snull     = OpConstantComposite %fst %fnull %fnull\n"
4603
4604                 "%main      = OpFunction %void None %voidf\n"
4605                 "%label     = OpLabel\n"
4606                 "%idval     = OpLoad %uvec3 %id\n"
4607                 "%x         = OpCompositeExtract %u32 %idval 0\n"
4608                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
4609                 "%inval     = OpLoad %f32 %inloc\n"
4610                 "%neg       = OpFNegate %f32 %inval\n"
4611
4612                 // Get the abs() of (a certain element of) those null values
4613                 "%unull_cov = OpConvertUToF %f32 %unull\n"
4614                 "%unull_abs = OpExtInst %f32 %std450 FAbs %unull_cov\n"
4615                 "%fnull_abs = OpExtInst %f32 %std450 FAbs %fnull\n"
4616                 "%vnull_0   = OpCompositeExtract %f32 %vnull 0\n"
4617                 "%vnull_abs = OpExtInst %f32 %std450 FAbs %vnull_0\n"
4618                 "%mnull_12  = OpCompositeExtract %f32 %mnull 1 2\n"
4619                 "%mnull_abs = OpExtInst %f32 %std450 FAbs %mnull_12\n"
4620                 "%anull_3   = OpCompositeExtract %f32 %anull 3\n"
4621                 "%anull_abs = OpExtInst %f32 %std450 FAbs %anull_3\n"
4622                 "%snull_1   = OpCompositeExtract %f32 %snull 1\n"
4623                 "%snull_abs = OpExtInst %f32 %std450 FAbs %snull_1\n"
4624
4625                 // Add them all
4626                 "%add1      = OpFAdd %f32 %neg  %unull_abs\n"
4627                 "%add2      = OpFAdd %f32 %add1 %fnull_abs\n"
4628                 "%add3      = OpFAdd %f32 %add2 %vnull_abs\n"
4629                 "%add4      = OpFAdd %f32 %add3 %mnull_abs\n"
4630                 "%add5      = OpFAdd %f32 %add4 %anull_abs\n"
4631                 "%final     = OpFAdd %f32 %add5 %snull_abs\n"
4632
4633                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
4634                 "             OpStore %outloc %final\n" // write to output
4635                 "             OpReturn\n"
4636                 "             OpFunctionEnd\n";
4637         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
4638         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
4639         spec.numWorkGroups = IVec3(numElements, 1, 1);
4640
4641         group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "Check that values constructed via OpConstantNull & OpConstantComposite can be used", spec));
4642
4643         return group.release();
4644 }
4645
4646 // Assembly code used for testing loop control is based on GLSL source code:
4647 // #version 430
4648 //
4649 // layout(std140, set = 0, binding = 0) readonly buffer Input {
4650 //   float elements[];
4651 // } input_data;
4652 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
4653 //   float elements[];
4654 // } output_data;
4655 //
4656 // void main() {
4657 //   uint x = gl_GlobalInvocationID.x;
4658 //   output_data.elements[x] = input_data.elements[x];
4659 //   for (uint i = 0; i < 4; ++i)
4660 //     output_data.elements[x] += 1.f;
4661 // }
4662 tcu::TestCaseGroup* createLoopControlGroup (tcu::TestContext& testCtx)
4663 {
4664         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "loop_control", "Tests loop control cases"));
4665         vector<CaseParameter>                   cases;
4666         de::Random                                              rnd                             (deStringHash(group->getName()));
4667         const int                                               numElements             = 100;
4668         vector<float>                                   inputFloats             (numElements, 0);
4669         vector<float>                                   outputFloats    (numElements, 0);
4670         const StringTemplate                    shaderTemplate  (
4671                 string(getComputeAsmShaderPreamble()) +
4672
4673                 "OpSource GLSL 430\n"
4674                 "OpName %main \"main\"\n"
4675                 "OpName %id \"gl_GlobalInvocationID\"\n"
4676
4677                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
4678
4679                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
4680
4681                 "%u32ptr      = OpTypePointer Function %u32\n"
4682
4683                 "%id          = OpVariable %uvec3ptr Input\n"
4684                 "%zero        = OpConstant %i32 0\n"
4685                 "%uzero       = OpConstant %u32 0\n"
4686                 "%one         = OpConstant %i32 1\n"
4687                 "%constf1     = OpConstant %f32 1.0\n"
4688                 "%four        = OpConstant %u32 4\n"
4689
4690                 "%main        = OpFunction %void None %voidf\n"
4691                 "%entry       = OpLabel\n"
4692                 "%i           = OpVariable %u32ptr Function\n"
4693                 "               OpStore %i %uzero\n"
4694
4695                 "%idval       = OpLoad %uvec3 %id\n"
4696                 "%x           = OpCompositeExtract %u32 %idval 0\n"
4697                 "%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
4698                 "%inval       = OpLoad %f32 %inloc\n"
4699                 "%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
4700                 "               OpStore %outloc %inval\n"
4701                 "               OpBranch %loop_entry\n"
4702
4703                 "%loop_entry  = OpLabel\n"
4704                 "%i_val       = OpLoad %u32 %i\n"
4705                 "%cmp_lt      = OpULessThan %bool %i_val %four\n"
4706                 "               OpLoopMerge %loop_merge %loop_body ${CONTROL}\n"
4707                 "               OpBranchConditional %cmp_lt %loop_body %loop_merge\n"
4708                 "%loop_body   = OpLabel\n"
4709                 "%outval      = OpLoad %f32 %outloc\n"
4710                 "%addf1       = OpFAdd %f32 %outval %constf1\n"
4711                 "               OpStore %outloc %addf1\n"
4712                 "%new_i       = OpIAdd %u32 %i_val %one\n"
4713                 "               OpStore %i %new_i\n"
4714                 "               OpBranch %loop_entry\n"
4715                 "%loop_merge  = OpLabel\n"
4716                 "               OpReturn\n"
4717                 "               OpFunctionEnd\n");
4718
4719         cases.push_back(CaseParameter("none",                           "None"));
4720         cases.push_back(CaseParameter("unroll",                         "Unroll"));
4721         cases.push_back(CaseParameter("dont_unroll",            "DontUnroll"));
4722         cases.push_back(CaseParameter("unroll_dont_unroll",     "Unroll|DontUnroll"));
4723
4724         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
4725
4726         for (size_t ndx = 0; ndx < numElements; ++ndx)
4727                 outputFloats[ndx] = inputFloats[ndx] + 4.f;
4728
4729         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
4730         {
4731                 map<string, string>             specializations;
4732                 ComputeShaderSpec               spec;
4733
4734                 specializations["CONTROL"] = cases[caseNdx].param;
4735                 spec.assembly = shaderTemplate.specialize(specializations);
4736                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
4737                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
4738                 spec.numWorkGroups = IVec3(numElements, 1, 1);
4739
4740                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
4741         }
4742
4743         return group.release();
4744 }
4745
4746 // Assembly code used for testing selection control is based on GLSL source code:
4747 // #version 430
4748 //
4749 // layout(std140, set = 0, binding = 0) readonly buffer Input {
4750 //   float elements[];
4751 // } input_data;
4752 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
4753 //   float elements[];
4754 // } output_data;
4755 //
4756 // void main() {
4757 //   uint x = gl_GlobalInvocationID.x;
4758 //   float val = input_data.elements[x];
4759 //   if (val > 10.f)
4760 //     output_data.elements[x] = val + 1.f;
4761 //   else
4762 //     output_data.elements[x] = val - 1.f;
4763 // }
4764 tcu::TestCaseGroup* createSelectionControlGroup (tcu::TestContext& testCtx)
4765 {
4766         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "selection_control", "Tests selection control cases"));
4767         vector<CaseParameter>                   cases;
4768         de::Random                                              rnd                             (deStringHash(group->getName()));
4769         const int                                               numElements             = 100;
4770         vector<float>                                   inputFloats             (numElements, 0);
4771         vector<float>                                   outputFloats    (numElements, 0);
4772         const StringTemplate                    shaderTemplate  (
4773                 string(getComputeAsmShaderPreamble()) +
4774
4775                 "OpSource GLSL 430\n"
4776                 "OpName %main \"main\"\n"
4777                 "OpName %id \"gl_GlobalInvocationID\"\n"
4778
4779                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
4780
4781                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
4782
4783                 "%id       = OpVariable %uvec3ptr Input\n"
4784                 "%zero     = OpConstant %i32 0\n"
4785                 "%constf1  = OpConstant %f32 1.0\n"
4786                 "%constf10 = OpConstant %f32 10.0\n"
4787
4788                 "%main     = OpFunction %void None %voidf\n"
4789                 "%entry    = OpLabel\n"
4790                 "%idval    = OpLoad %uvec3 %id\n"
4791                 "%x        = OpCompositeExtract %u32 %idval 0\n"
4792                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
4793                 "%inval    = OpLoad %f32 %inloc\n"
4794                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
4795                 "%cmp_gt   = OpFOrdGreaterThan %bool %inval %constf10\n"
4796
4797                 "            OpSelectionMerge %if_end ${CONTROL}\n"
4798                 "            OpBranchConditional %cmp_gt %if_true %if_false\n"
4799                 "%if_true  = OpLabel\n"
4800                 "%addf1    = OpFAdd %f32 %inval %constf1\n"
4801                 "            OpStore %outloc %addf1\n"
4802                 "            OpBranch %if_end\n"
4803                 "%if_false = OpLabel\n"
4804                 "%subf1    = OpFSub %f32 %inval %constf1\n"
4805                 "            OpStore %outloc %subf1\n"
4806                 "            OpBranch %if_end\n"
4807                 "%if_end   = OpLabel\n"
4808                 "            OpReturn\n"
4809                 "            OpFunctionEnd\n");
4810
4811         cases.push_back(CaseParameter("none",                                   "None"));
4812         cases.push_back(CaseParameter("flatten",                                "Flatten"));
4813         cases.push_back(CaseParameter("dont_flatten",                   "DontFlatten"));
4814         cases.push_back(CaseParameter("flatten_dont_flatten",   "DontFlatten|Flatten"));
4815
4816         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
4817
4818         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
4819         floorAll(inputFloats);
4820
4821         for (size_t ndx = 0; ndx < numElements; ++ndx)
4822                 outputFloats[ndx] = inputFloats[ndx] + (inputFloats[ndx] > 10.f ? 1.f : -1.f);
4823
4824         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
4825         {
4826                 map<string, string>             specializations;
4827                 ComputeShaderSpec               spec;
4828
4829                 specializations["CONTROL"] = cases[caseNdx].param;
4830                 spec.assembly = shaderTemplate.specialize(specializations);
4831                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
4832                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
4833                 spec.numWorkGroups = IVec3(numElements, 1, 1);
4834
4835                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
4836         }
4837
4838         return group.release();
4839 }
4840
4841 // Assembly code used for testing function control is based on GLSL source code:
4842 //
4843 // #version 430
4844 //
4845 // layout(std140, set = 0, binding = 0) readonly buffer Input {
4846 //   float elements[];
4847 // } input_data;
4848 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
4849 //   float elements[];
4850 // } output_data;
4851 //
4852 // float const10() { return 10.f; }
4853 //
4854 // void main() {
4855 //   uint x = gl_GlobalInvocationID.x;
4856 //   output_data.elements[x] = input_data.elements[x] + const10();
4857 // }
4858 tcu::TestCaseGroup* createFunctionControlGroup (tcu::TestContext& testCtx)
4859 {
4860         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "function_control", "Tests function control cases"));
4861         vector<CaseParameter>                   cases;
4862         de::Random                                              rnd                             (deStringHash(group->getName()));
4863         const int                                               numElements             = 100;
4864         vector<float>                                   inputFloats             (numElements, 0);
4865         vector<float>                                   outputFloats    (numElements, 0);
4866         const StringTemplate                    shaderTemplate  (
4867                 string(getComputeAsmShaderPreamble()) +
4868
4869                 "OpSource GLSL 430\n"
4870                 "OpName %main \"main\"\n"
4871                 "OpName %func_const10 \"const10(\"\n"
4872                 "OpName %id \"gl_GlobalInvocationID\"\n"
4873
4874                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
4875
4876                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
4877
4878                 "%f32f = OpTypeFunction %f32\n"
4879                 "%id = OpVariable %uvec3ptr Input\n"
4880                 "%zero = OpConstant %i32 0\n"
4881                 "%constf10 = OpConstant %f32 10.0\n"
4882
4883                 "%main         = OpFunction %void None %voidf\n"
4884                 "%entry        = OpLabel\n"
4885                 "%idval        = OpLoad %uvec3 %id\n"
4886                 "%x            = OpCompositeExtract %u32 %idval 0\n"
4887                 "%inloc        = OpAccessChain %f32ptr %indata %zero %x\n"
4888                 "%inval        = OpLoad %f32 %inloc\n"
4889                 "%ret_10       = OpFunctionCall %f32 %func_const10\n"
4890                 "%fadd         = OpFAdd %f32 %inval %ret_10\n"
4891                 "%outloc       = OpAccessChain %f32ptr %outdata %zero %x\n"
4892                 "                OpStore %outloc %fadd\n"
4893                 "                OpReturn\n"
4894                 "                OpFunctionEnd\n"
4895
4896                 "%func_const10 = OpFunction %f32 ${CONTROL} %f32f\n"
4897                 "%label        = OpLabel\n"
4898                 "                OpReturnValue %constf10\n"
4899                 "                OpFunctionEnd\n");
4900
4901         cases.push_back(CaseParameter("none",                                           "None"));
4902         cases.push_back(CaseParameter("inline",                                         "Inline"));
4903         cases.push_back(CaseParameter("dont_inline",                            "DontInline"));
4904         cases.push_back(CaseParameter("pure",                                           "Pure"));
4905         cases.push_back(CaseParameter("const",                                          "Const"));
4906         cases.push_back(CaseParameter("inline_pure",                            "Inline|Pure"));
4907         cases.push_back(CaseParameter("const_dont_inline",                      "Const|DontInline"));
4908         cases.push_back(CaseParameter("inline_dont_inline",                     "Inline|DontInline"));
4909         cases.push_back(CaseParameter("pure_inline_dont_inline",        "Pure|Inline|DontInline"));
4910
4911         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
4912
4913         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
4914         floorAll(inputFloats);
4915
4916         for (size_t ndx = 0; ndx < numElements; ++ndx)
4917                 outputFloats[ndx] = inputFloats[ndx] + 10.f;
4918
4919         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
4920         {
4921                 map<string, string>             specializations;
4922                 ComputeShaderSpec               spec;
4923
4924                 specializations["CONTROL"] = cases[caseNdx].param;
4925                 spec.assembly = shaderTemplate.specialize(specializations);
4926                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
4927                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
4928                 spec.numWorkGroups = IVec3(numElements, 1, 1);
4929
4930                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
4931         }
4932
4933         return group.release();
4934 }
4935
4936 tcu::TestCaseGroup* createMemoryAccessGroup (tcu::TestContext& testCtx)
4937 {
4938         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "memory_access", "Tests memory access cases"));
4939         vector<CaseParameter>                   cases;
4940         de::Random                                              rnd                             (deStringHash(group->getName()));
4941         const int                                               numElements             = 100;
4942         vector<float>                                   inputFloats             (numElements, 0);
4943         vector<float>                                   outputFloats    (numElements, 0);
4944         const StringTemplate                    shaderTemplate  (
4945                 string(getComputeAsmShaderPreamble()) +
4946
4947                 "OpSource GLSL 430\n"
4948                 "OpName %main           \"main\"\n"
4949                 "OpName %id             \"gl_GlobalInvocationID\"\n"
4950
4951                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
4952
4953                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
4954
4955                 "%f32ptr_f  = OpTypePointer Function %f32\n"
4956
4957                 "%id        = OpVariable %uvec3ptr Input\n"
4958                 "%zero      = OpConstant %i32 0\n"
4959                 "%four      = OpConstant %i32 4\n"
4960
4961                 "%main      = OpFunction %void None %voidf\n"
4962                 "%label     = OpLabel\n"
4963                 "%copy      = OpVariable %f32ptr_f Function\n"
4964                 "%idval     = OpLoad %uvec3 %id ${ACCESS}\n"
4965                 "%x         = OpCompositeExtract %u32 %idval 0\n"
4966                 "%inloc     = OpAccessChain %f32ptr %indata  %zero %x\n"
4967                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
4968                 "             OpCopyMemory %copy %inloc ${ACCESS}\n"
4969                 "%val1      = OpLoad %f32 %copy\n"
4970                 "%val2      = OpLoad %f32 %inloc\n"
4971                 "%add       = OpFAdd %f32 %val1 %val2\n"
4972                 "             OpStore %outloc %add ${ACCESS}\n"
4973                 "             OpReturn\n"
4974                 "             OpFunctionEnd\n");
4975
4976         cases.push_back(CaseParameter("null",                                   ""));
4977         cases.push_back(CaseParameter("none",                                   "None"));
4978         cases.push_back(CaseParameter("volatile",                               "Volatile"));
4979         cases.push_back(CaseParameter("aligned",                                "Aligned 4"));
4980         cases.push_back(CaseParameter("nontemporal",                    "Nontemporal"));
4981         cases.push_back(CaseParameter("aligned_nontemporal",    "Aligned|Nontemporal 4"));
4982         cases.push_back(CaseParameter("aligned_volatile",               "Volatile|Aligned 4"));
4983
4984         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
4985
4986         for (size_t ndx = 0; ndx < numElements; ++ndx)
4987                 outputFloats[ndx] = inputFloats[ndx] + inputFloats[ndx];
4988
4989         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
4990         {
4991                 map<string, string>             specializations;
4992                 ComputeShaderSpec               spec;
4993
4994                 specializations["ACCESS"] = cases[caseNdx].param;
4995                 spec.assembly = shaderTemplate.specialize(specializations);
4996                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
4997                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
4998                 spec.numWorkGroups = IVec3(numElements, 1, 1);
4999
5000                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
5001         }
5002
5003         return group.release();
5004 }
5005
5006 // Checks that we can get undefined values for various types, without exercising a computation with it.
5007 tcu::TestCaseGroup* createOpUndefGroup (tcu::TestContext& testCtx)
5008 {
5009         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opundef", "Tests the OpUndef instruction"));
5010         vector<CaseParameter>                   cases;
5011         de::Random                                              rnd                             (deStringHash(group->getName()));
5012         const int                                               numElements             = 100;
5013         vector<float>                                   positiveFloats  (numElements, 0);
5014         vector<float>                                   negativeFloats  (numElements, 0);
5015         const StringTemplate                    shaderTemplate  (
5016                 string(getComputeAsmShaderPreamble()) +
5017
5018                 "OpSource GLSL 430\n"
5019                 "OpName %main           \"main\"\n"
5020                 "OpName %id             \"gl_GlobalInvocationID\"\n"
5021
5022                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
5023
5024                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
5025                 "%uvec2     = OpTypeVector %u32 2\n"
5026                 "%fvec4     = OpTypeVector %f32 4\n"
5027                 "%fmat33    = OpTypeMatrix %fvec3 3\n"
5028                 "%image     = OpTypeImage %f32 2D 0 0 0 1 Unknown\n"
5029                 "%sampler   = OpTypeSampler\n"
5030                 "%simage    = OpTypeSampledImage %image\n"
5031                 "%const100  = OpConstant %u32 100\n"
5032                 "%uarr100   = OpTypeArray %i32 %const100\n"
5033                 "%struct    = OpTypeStruct %f32 %i32 %u32\n"
5034                 "%pointer   = OpTypePointer Function %i32\n"
5035                 + string(getComputeAsmInputOutputBuffer()) +
5036
5037                 "%id        = OpVariable %uvec3ptr Input\n"
5038                 "%zero      = OpConstant %i32 0\n"
5039
5040                 "%main      = OpFunction %void None %voidf\n"
5041                 "%label     = OpLabel\n"
5042
5043                 "%undef     = OpUndef ${TYPE}\n"
5044
5045                 "%idval     = OpLoad %uvec3 %id\n"
5046                 "%x         = OpCompositeExtract %u32 %idval 0\n"
5047
5048                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
5049                 "%inval     = OpLoad %f32 %inloc\n"
5050                 "%neg       = OpFNegate %f32 %inval\n"
5051                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
5052                 "             OpStore %outloc %neg\n"
5053                 "             OpReturn\n"
5054                 "             OpFunctionEnd\n");
5055
5056         cases.push_back(CaseParameter("bool",                   "%bool"));
5057         cases.push_back(CaseParameter("sint32",                 "%i32"));
5058         cases.push_back(CaseParameter("uint32",                 "%u32"));
5059         cases.push_back(CaseParameter("float32",                "%f32"));
5060         cases.push_back(CaseParameter("vec4float32",    "%fvec4"));
5061         cases.push_back(CaseParameter("vec2uint32",             "%uvec2"));
5062         cases.push_back(CaseParameter("matrix",                 "%fmat33"));
5063         cases.push_back(CaseParameter("image",                  "%image"));
5064         cases.push_back(CaseParameter("sampler",                "%sampler"));
5065         cases.push_back(CaseParameter("sampledimage",   "%simage"));
5066         cases.push_back(CaseParameter("array",                  "%uarr100"));
5067         cases.push_back(CaseParameter("runtimearray",   "%f32arr"));
5068         cases.push_back(CaseParameter("struct",                 "%struct"));
5069         cases.push_back(CaseParameter("pointer",                "%pointer"));
5070
5071         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
5072
5073         for (size_t ndx = 0; ndx < numElements; ++ndx)
5074                 negativeFloats[ndx] = -positiveFloats[ndx];
5075
5076         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
5077         {
5078                 map<string, string>             specializations;
5079                 ComputeShaderSpec               spec;
5080
5081                 specializations["TYPE"] = cases[caseNdx].param;
5082                 spec.assembly = shaderTemplate.specialize(specializations);
5083                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
5084                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
5085                 spec.numWorkGroups = IVec3(numElements, 1, 1);
5086
5087                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
5088         }
5089
5090                 return group.release();
5091 }
5092
5093 } // anonymous
5094
5095 tcu::TestCaseGroup* createOpSourceTests (tcu::TestContext& testCtx)
5096 {
5097         struct NameCodePair { string name, code; };
5098         RGBA                                                    defaultColors[4];
5099         de::MovePtr<tcu::TestCaseGroup> opSourceTests                   (new tcu::TestCaseGroup(testCtx, "opsource", "OpSource instruction"));
5100         const std::string                               opsourceGLSLWithFile    = "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile ";
5101         map<string, string>                             fragments                               = passthruFragments();
5102         const NameCodePair                              tests[]                                 =
5103         {
5104                 {"unknown", "OpSource Unknown 321"},
5105                 {"essl", "OpSource ESSL 310"},
5106                 {"glsl", "OpSource GLSL 450"},
5107                 {"opencl_cpp", "OpSource OpenCL_CPP 120"},
5108                 {"opencl_c", "OpSource OpenCL_C 120"},
5109                 {"multiple", "OpSource GLSL 450\nOpSource GLSL 450"},
5110                 {"file", opsourceGLSLWithFile},
5111                 {"source", opsourceGLSLWithFile + "\"void main(){}\""},
5112                 // Longest possible source string: SPIR-V limits instructions to 65535
5113                 // words, of which the first 4 are opsourceGLSLWithFile; the rest will
5114                 // contain 65530 UTF8 characters (one word each) plus one last word
5115                 // containing 3 ASCII characters and \0.
5116                 {"longsource", opsourceGLSLWithFile + '"' + makeLongUTF8String(65530) + "ccc" + '"'}
5117         };
5118
5119         getDefaultColors(defaultColors);
5120         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5121         {
5122                 fragments["debug"] = tests[testNdx].code;
5123                 createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5124         }
5125
5126         return opSourceTests.release();
5127 }
5128
5129 tcu::TestCaseGroup* createOpSourceContinuedTests (tcu::TestContext& testCtx)
5130 {
5131         struct NameCodePair { string name, code; };
5132         RGBA                                                            defaultColors[4];
5133         de::MovePtr<tcu::TestCaseGroup>         opSourceTests           (new tcu::TestCaseGroup(testCtx, "opsourcecontinued", "OpSourceContinued instruction"));
5134         map<string, string>                                     fragments                       = passthruFragments();
5135         const std::string                                       opsource                        = "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile \"void main(){}\"\n";
5136         const NameCodePair                                      tests[]                         =
5137         {
5138                 {"empty", opsource + "OpSourceContinued \"\""},
5139                 {"short", opsource + "OpSourceContinued \"abcde\""},
5140                 {"multiple", opsource + "OpSourceContinued \"abcde\"\nOpSourceContinued \"fghij\""},
5141                 // Longest possible source string: SPIR-V limits instructions to 65535
5142                 // words, of which the first one is OpSourceContinued/length; the rest
5143                 // will contain 65533 UTF8 characters (one word each) plus one last word
5144                 // containing 3 ASCII characters and \0.
5145                 {"long", opsource + "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\""}
5146         };
5147
5148         getDefaultColors(defaultColors);
5149         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
5150         {
5151                 fragments["debug"] = tests[testNdx].code;
5152                 createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
5153         }
5154
5155         return opSourceTests.release();
5156 }
5157
5158 tcu::TestCaseGroup* createOpNoLineTests(tcu::TestContext& testCtx)
5159 {
5160         RGBA                                                             defaultColors[4];
5161         de::MovePtr<tcu::TestCaseGroup>          opLineTests             (new tcu::TestCaseGroup(testCtx, "opnoline", "OpNoLine instruction"));
5162         map<string, string>                                      fragments;
5163         getDefaultColors(defaultColors);
5164         fragments["debug"]                      =
5165                 "%name = OpString \"name\"\n";
5166
5167         fragments["pre_main"]   =
5168                 "OpNoLine\n"
5169                 "OpNoLine\n"
5170                 "OpLine %name 1 1\n"
5171                 "OpNoLine\n"
5172                 "OpLine %name 1 1\n"
5173                 "OpLine %name 1 1\n"
5174                 "%second_function = OpFunction %v4f32 None %v4f32_function\n"
5175                 "OpNoLine\n"
5176                 "OpLine %name 1 1\n"
5177                 "OpNoLine\n"
5178                 "OpLine %name 1 1\n"
5179                 "OpLine %name 1 1\n"
5180                 "%second_param1 = OpFunctionParameter %v4f32\n"
5181                 "OpNoLine\n"
5182                 "OpNoLine\n"
5183                 "%label_secondfunction = OpLabel\n"
5184                 "OpNoLine\n"
5185                 "OpReturnValue %second_param1\n"
5186                 "OpFunctionEnd\n"
5187                 "OpNoLine\n"
5188                 "OpNoLine\n";
5189
5190         fragments["testfun"]            =
5191                 // A %test_code function that returns its argument unchanged.
5192                 "OpNoLine\n"
5193                 "OpNoLine\n"
5194                 "OpLine %name 1 1\n"
5195                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5196                 "OpNoLine\n"
5197                 "%param1 = OpFunctionParameter %v4f32\n"
5198                 "OpNoLine\n"
5199                 "OpNoLine\n"
5200                 "%label_testfun = OpLabel\n"
5201                 "OpNoLine\n"
5202                 "%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5203                 "OpReturnValue %val1\n"
5204                 "OpFunctionEnd\n"
5205                 "OpLine %name 1 1\n"
5206                 "OpNoLine\n";
5207
5208         createTestsForAllStages("opnoline", defaultColors, defaultColors, fragments, opLineTests.get());
5209
5210         return opLineTests.release();
5211 }
5212
5213
5214 tcu::TestCaseGroup* createOpLineTests(tcu::TestContext& testCtx)
5215 {
5216         RGBA                                                                                                    defaultColors[4];
5217         de::MovePtr<tcu::TestCaseGroup>                                                 opLineTests                     (new tcu::TestCaseGroup(testCtx, "opline", "OpLine instruction"));
5218         map<string, string>                                                                             fragments;
5219         std::vector<std::pair<std::string, std::string> >               problemStrings;
5220
5221         problemStrings.push_back(std::make_pair<std::string, std::string>("empty_name", ""));
5222         problemStrings.push_back(std::make_pair<std::string, std::string>("short_name", "short_name"));
5223         problemStrings.push_back(std::make_pair<std::string, std::string>("long_name", makeLongUTF8String(65530) + "ccc"));
5224         getDefaultColors(defaultColors);
5225
5226         fragments["debug"]                      =
5227                 "%other_name = OpString \"other_name\"\n";
5228
5229         fragments["pre_main"]   =
5230                 "OpLine %file_name 32 0\n"
5231                 "OpLine %file_name 32 32\n"
5232                 "OpLine %file_name 32 40\n"
5233                 "OpLine %other_name 32 40\n"
5234                 "OpLine %other_name 0 100\n"
5235                 "OpLine %other_name 0 4294967295\n"
5236                 "OpLine %other_name 4294967295 0\n"
5237                 "OpLine %other_name 32 40\n"
5238                 "OpLine %file_name 0 0\n"
5239                 "%second_function = OpFunction %v4f32 None %v4f32_function\n"
5240                 "OpLine %file_name 1 0\n"
5241                 "%second_param1 = OpFunctionParameter %v4f32\n"
5242                 "OpLine %file_name 1 3\n"
5243                 "OpLine %file_name 1 2\n"
5244                 "%label_secondfunction = OpLabel\n"
5245                 "OpLine %file_name 0 2\n"
5246                 "OpReturnValue %second_param1\n"
5247                 "OpFunctionEnd\n"
5248                 "OpLine %file_name 0 2\n"
5249                 "OpLine %file_name 0 2\n";
5250
5251         fragments["testfun"]            =
5252                 // A %test_code function that returns its argument unchanged.
5253                 "OpLine %file_name 1 0\n"
5254                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5255                 "OpLine %file_name 16 330\n"
5256                 "%param1 = OpFunctionParameter %v4f32\n"
5257                 "OpLine %file_name 14 442\n"
5258                 "%label_testfun = OpLabel\n"
5259                 "OpLine %file_name 11 1024\n"
5260                 "%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
5261                 "OpLine %file_name 2 97\n"
5262                 "OpReturnValue %val1\n"
5263                 "OpFunctionEnd\n"
5264                 "OpLine %file_name 5 32\n";
5265
5266         for (size_t i = 0; i < problemStrings.size(); ++i)
5267         {
5268                 map<string, string> testFragments = fragments;
5269                 testFragments["debug"] += "%file_name = OpString \"" + problemStrings[i].second + "\"\n";
5270                 createTestsForAllStages(string("opline") + "_" + problemStrings[i].first, defaultColors, defaultColors, testFragments, opLineTests.get());
5271         }
5272
5273         return opLineTests.release();
5274 }
5275
5276 tcu::TestCaseGroup* createOpConstantNullTests(tcu::TestContext& testCtx)
5277 {
5278         de::MovePtr<tcu::TestCaseGroup> opConstantNullTests             (new tcu::TestCaseGroup(testCtx, "opconstantnull", "OpConstantNull instruction"));
5279         RGBA                                                    colors[4];
5280
5281
5282         const char                                              functionStart[] =
5283                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5284                 "%param1 = OpFunctionParameter %v4f32\n"
5285                 "%lbl    = OpLabel\n";
5286
5287         const char                                              functionEnd[]   =
5288                 "OpReturnValue %transformed_param\n"
5289                 "OpFunctionEnd\n";
5290
5291         struct NameConstantsCode
5292         {
5293                 string name;
5294                 string constants;
5295                 string code;
5296         };
5297
5298         NameConstantsCode tests[] =
5299         {
5300                 {
5301                         "vec4",
5302                         "%cnull = OpConstantNull %v4f32\n",
5303                         "%transformed_param = OpFAdd %v4f32 %param1 %cnull\n"
5304                 },
5305                 {
5306                         "float",
5307                         "%cnull = OpConstantNull %f32\n",
5308                         "%vp = OpVariable %fp_v4f32 Function\n"
5309                         "%v  = OpLoad %v4f32 %vp\n"
5310                         "%v0 = OpVectorInsertDynamic %v4f32 %v %cnull %c_i32_0\n"
5311                         "%v1 = OpVectorInsertDynamic %v4f32 %v0 %cnull %c_i32_1\n"
5312                         "%v2 = OpVectorInsertDynamic %v4f32 %v1 %cnull %c_i32_2\n"
5313                         "%v3 = OpVectorInsertDynamic %v4f32 %v2 %cnull %c_i32_3\n"
5314                         "%transformed_param = OpFAdd %v4f32 %param1 %v3\n"
5315                 },
5316                 {
5317                         "bool",
5318                         "%cnull             = OpConstantNull %bool\n",
5319                         "%v                 = OpVariable %fp_v4f32 Function\n"
5320                         "                     OpStore %v %param1\n"
5321                         "                     OpSelectionMerge %false_label None\n"
5322                         "                     OpBranchConditional %cnull %true_label %false_label\n"
5323                         "%true_label        = OpLabel\n"
5324                         "                     OpStore %v %c_v4f32_0_5_0_5_0_5_0_5\n"
5325                         "                     OpBranch %false_label\n"
5326                         "%false_label       = OpLabel\n"
5327                         "%transformed_param = OpLoad %v4f32 %v\n"
5328                 },
5329                 {
5330                         "i32",
5331                         "%cnull             = OpConstantNull %i32\n",
5332                         "%v                 = OpVariable %fp_v4f32 Function %c_v4f32_0_5_0_5_0_5_0_5\n"
5333                         "%b                 = OpIEqual %bool %cnull %c_i32_0\n"
5334                         "                     OpSelectionMerge %false_label None\n"
5335                         "                     OpBranchConditional %b %true_label %false_label\n"
5336                         "%true_label        = OpLabel\n"
5337                         "                     OpStore %v %param1\n"
5338                         "                     OpBranch %false_label\n"
5339                         "%false_label       = OpLabel\n"
5340                         "%transformed_param = OpLoad %v4f32 %v\n"
5341                 },
5342                 {
5343                         "struct",
5344                         "%stype             = OpTypeStruct %f32 %v4f32\n"
5345                         "%fp_stype          = OpTypePointer Function %stype\n"
5346                         "%cnull             = OpConstantNull %stype\n",
5347                         "%v                 = OpVariable %fp_stype Function %cnull\n"
5348                         "%f                 = OpAccessChain %fp_v4f32 %v %c_i32_1\n"
5349                         "%f_val             = OpLoad %v4f32 %f\n"
5350                         "%transformed_param = OpFAdd %v4f32 %param1 %f_val\n"
5351                 },
5352                 {
5353                         "array",
5354                         "%a4_v4f32          = OpTypeArray %v4f32 %c_u32_4\n"
5355                         "%fp_a4_v4f32       = OpTypePointer Function %a4_v4f32\n"
5356                         "%cnull             = OpConstantNull %a4_v4f32\n",
5357                         "%v                 = OpVariable %fp_a4_v4f32 Function %cnull\n"
5358                         "%f                 = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5359                         "%f1                = OpAccessChain %fp_v4f32 %v %c_u32_1\n"
5360                         "%f2                = OpAccessChain %fp_v4f32 %v %c_u32_2\n"
5361                         "%f3                = OpAccessChain %fp_v4f32 %v %c_u32_3\n"
5362                         "%f_val             = OpLoad %v4f32 %f\n"
5363                         "%f1_val            = OpLoad %v4f32 %f1\n"
5364                         "%f2_val            = OpLoad %v4f32 %f2\n"
5365                         "%f3_val            = OpLoad %v4f32 %f3\n"
5366                         "%t0                = OpFAdd %v4f32 %param1 %f_val\n"
5367                         "%t1                = OpFAdd %v4f32 %t0 %f1_val\n"
5368                         "%t2                = OpFAdd %v4f32 %t1 %f2_val\n"
5369                         "%transformed_param = OpFAdd %v4f32 %t2 %f3_val\n"
5370                 },
5371                 {
5372                         "matrix",
5373                         "%mat4x4_f32        = OpTypeMatrix %v4f32 4\n"
5374                         "%cnull             = OpConstantNull %mat4x4_f32\n",
5375                         // Our null matrix * any vector should result in a zero vector.
5376                         "%v                 = OpVectorTimesMatrix %v4f32 %param1 %cnull\n"
5377                         "%transformed_param = OpFAdd %v4f32 %param1 %v\n"
5378                 }
5379         };
5380
5381         getHalfColorsFullAlpha(colors);
5382
5383         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5384         {
5385                 map<string, string> fragments;
5386                 fragments["pre_main"] = tests[testNdx].constants;
5387                 fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5388                 createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, opConstantNullTests.get());
5389         }
5390         return opConstantNullTests.release();
5391 }
5392 tcu::TestCaseGroup* createOpConstantCompositeTests(tcu::TestContext& testCtx)
5393 {
5394         de::MovePtr<tcu::TestCaseGroup> opConstantCompositeTests                (new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "OpConstantComposite instruction"));
5395         RGBA                                                    inputColors[4];
5396         RGBA                                                    outputColors[4];
5397
5398
5399         const char                                              functionStart[]  =
5400                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5401                 "%param1 = OpFunctionParameter %v4f32\n"
5402                 "%lbl    = OpLabel\n";
5403
5404         const char                                              functionEnd[]           =
5405                 "OpReturnValue %transformed_param\n"
5406                 "OpFunctionEnd\n";
5407
5408         struct NameConstantsCode
5409         {
5410                 string name;
5411                 string constants;
5412                 string code;
5413         };
5414
5415         NameConstantsCode tests[] =
5416         {
5417                 {
5418                         "vec4",
5419
5420                         "%cval              = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0\n",
5421                         "%transformed_param = OpFAdd %v4f32 %param1 %cval\n"
5422                 },
5423                 {
5424                         "struct",
5425
5426                         "%stype             = OpTypeStruct %v4f32 %f32\n"
5427                         "%fp_stype          = OpTypePointer Function %stype\n"
5428                         "%f32_n_1           = OpConstant %f32 -1.0\n"
5429                         "%f32_1_5           = OpConstant %f32 !0x3fc00000\n" // +1.5
5430                         "%cvec              = OpConstantComposite %v4f32 %f32_1_5 %f32_1_5 %f32_1_5 %c_f32_1\n"
5431                         "%cval              = OpConstantComposite %stype %cvec %f32_n_1\n",
5432
5433                         "%v                 = OpVariable %fp_stype Function %cval\n"
5434                         "%vec_ptr           = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
5435                         "%f32_ptr           = OpAccessChain %fp_f32 %v %c_u32_1\n"
5436                         "%vec_val           = OpLoad %v4f32 %vec_ptr\n"
5437                         "%f32_val           = OpLoad %f32 %f32_ptr\n"
5438                         "%tmp1              = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_1 %f32_val\n" // vec4(-1)
5439                         "%tmp2              = OpFAdd %v4f32 %tmp1 %param1\n" // param1 + vec4(-1)
5440                         "%transformed_param = OpFAdd %v4f32 %tmp2 %vec_val\n" // param1 + vec4(-1) + vec4(1.5, 1.5, 1.5, 1.0)
5441                 },
5442                 {
5443                         // [1|0|0|0.5] [x] = x + 0.5
5444                         // [0|1|0|0.5] [y] = y + 0.5
5445                         // [0|0|1|0.5] [z] = z + 0.5
5446                         // [0|0|0|1  ] [1] = 1
5447                         "matrix",
5448
5449                         "%mat4x4_f32          = OpTypeMatrix %v4f32 4\n"
5450                     "%v4f32_1_0_0_0       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_0\n"
5451                     "%v4f32_0_1_0_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_1 %c_f32_0 %c_f32_0\n"
5452                     "%v4f32_0_0_1_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_1 %c_f32_0\n"
5453                     "%v4f32_0_5_0_5_0_5_1 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_1\n"
5454                         "%cval                = OpConstantComposite %mat4x4_f32 %v4f32_1_0_0_0 %v4f32_0_1_0_0 %v4f32_0_0_1_0 %v4f32_0_5_0_5_0_5_1\n",
5455
5456                         "%transformed_param   = OpMatrixTimesVector %v4f32 %cval %param1\n"
5457                 },
5458                 {
5459                         "array",
5460
5461                         "%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5462                         "%fp_a4f32            = OpTypePointer Function %a4f32\n"
5463                         "%f32_n_1             = OpConstant %f32 -1.0\n"
5464                         "%f32_1_5             = OpConstant %f32 !0x3fc00000\n" // +1.5
5465                         "%carr                = OpConstantComposite %a4f32 %c_f32_0 %f32_n_1 %f32_1_5 %c_f32_0\n",
5466
5467                         "%v                   = OpVariable %fp_a4f32 Function %carr\n"
5468                         "%f                   = OpAccessChain %fp_f32 %v %c_u32_0\n"
5469                         "%f1                  = OpAccessChain %fp_f32 %v %c_u32_1\n"
5470                         "%f2                  = OpAccessChain %fp_f32 %v %c_u32_2\n"
5471                         "%f3                  = OpAccessChain %fp_f32 %v %c_u32_3\n"
5472                         "%f_val               = OpLoad %f32 %f\n"
5473                         "%f1_val              = OpLoad %f32 %f1\n"
5474                         "%f2_val              = OpLoad %f32 %f2\n"
5475                         "%f3_val              = OpLoad %f32 %f3\n"
5476                         "%ftot1               = OpFAdd %f32 %f_val %f1_val\n"
5477                         "%ftot2               = OpFAdd %f32 %ftot1 %f2_val\n"
5478                         "%ftot3               = OpFAdd %f32 %ftot2 %f3_val\n"  // 0 - 1 + 1.5 + 0
5479                         "%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %ftot3\n"
5480                         "%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5481                 },
5482                 {
5483                         //
5484                         // [
5485                         //   {
5486                         //      0.0,
5487                         //      [ 1.0, 1.0, 1.0, 1.0]
5488                         //   },
5489                         //   {
5490                         //      1.0,
5491                         //      [ 0.0, 0.5, 0.0, 0.0]
5492                         //   }, //     ^^^
5493                         //   {
5494                         //      0.0,
5495                         //      [ 1.0, 1.0, 1.0, 1.0]
5496                         //   }
5497                         // ]
5498                         "array_of_struct_of_array",
5499
5500                         "%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
5501                         "%fp_a4f32            = OpTypePointer Function %a4f32\n"
5502                         "%stype               = OpTypeStruct %f32 %a4f32\n"
5503                         "%a3stype             = OpTypeArray %stype %c_u32_3\n"
5504                         "%fp_a3stype          = OpTypePointer Function %a3stype\n"
5505                         "%ca4f32_0            = OpConstantComposite %a4f32 %c_f32_0 %c_f32_0_5 %c_f32_0 %c_f32_0\n"
5506                         "%ca4f32_1            = OpConstantComposite %a4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
5507                         "%cstype1             = OpConstantComposite %stype %c_f32_0 %ca4f32_1\n"
5508                         "%cstype2             = OpConstantComposite %stype %c_f32_1 %ca4f32_0\n"
5509                         "%carr                = OpConstantComposite %a3stype %cstype1 %cstype2 %cstype1",
5510
5511                         "%v                   = OpVariable %fp_a3stype Function %carr\n"
5512                         "%f                   = OpAccessChain %fp_f32 %v %c_u32_1 %c_u32_1 %c_u32_1\n"
5513                         "%f_l                 = OpLoad %f32 %f\n"
5514                         "%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %f_l\n"
5515                         "%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
5516                 }
5517         };
5518
5519         getHalfColorsFullAlpha(inputColors);
5520         outputColors[0] = RGBA(255, 255, 255, 255);
5521         outputColors[1] = RGBA(255, 127, 127, 255);
5522         outputColors[2] = RGBA(127, 255, 127, 255);
5523         outputColors[3] = RGBA(127, 127, 255, 255);
5524
5525         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
5526         {
5527                 map<string, string> fragments;
5528                 fragments["pre_main"] = tests[testNdx].constants;
5529                 fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
5530                 createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, opConstantCompositeTests.get());
5531         }
5532         return opConstantCompositeTests.release();
5533 }
5534
5535 tcu::TestCaseGroup* createSelectionBlockOrderTests(tcu::TestContext& testCtx)
5536 {
5537         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "selection_block_order", "Out-of-order blocks for selection"));
5538         RGBA                                                    inputColors[4];
5539         RGBA                                                    outputColors[4];
5540         map<string, string>                             fragments;
5541
5542         // vec4 test_code(vec4 param) {
5543         //   vec4 result = param;
5544         //   for (int i = 0; i < 4; ++i) {
5545         //     if (i == 0) result[i] = 0.;
5546         //     else        result[i] = 1. - result[i];
5547         //   }
5548         //   return result;
5549         // }
5550         const char                                              function[]                      =
5551                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5552                 "%param1    = OpFunctionParameter %v4f32\n"
5553                 "%lbl       = OpLabel\n"
5554                 "%iptr      = OpVariable %fp_i32 Function\n"
5555                 "%result    = OpVariable %fp_v4f32 Function\n"
5556                 "             OpStore %iptr %c_i32_0\n"
5557                 "             OpStore %result %param1\n"
5558                 "             OpBranch %loop\n"
5559
5560                 // Loop entry block.
5561                 "%loop      = OpLabel\n"
5562                 "%ival      = OpLoad %i32 %iptr\n"
5563                 "%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5564                 "             OpLoopMerge %exit %if_entry None\n"
5565                 "             OpBranchConditional %lt_4 %if_entry %exit\n"
5566
5567                 // Merge block for loop.
5568                 "%exit      = OpLabel\n"
5569                 "%ret       = OpLoad %v4f32 %result\n"
5570                 "             OpReturnValue %ret\n"
5571
5572                 // If-statement entry block.
5573                 "%if_entry  = OpLabel\n"
5574                 "%loc       = OpAccessChain %fp_f32 %result %ival\n"
5575                 "%eq_0      = OpIEqual %bool %ival %c_i32_0\n"
5576                 "             OpSelectionMerge %if_exit None\n"
5577                 "             OpBranchConditional %eq_0 %if_true %if_false\n"
5578
5579                 // False branch for if-statement.
5580                 "%if_false  = OpLabel\n"
5581                 "%val       = OpLoad %f32 %loc\n"
5582                 "%sub       = OpFSub %f32 %c_f32_1 %val\n"
5583                 "             OpStore %loc %sub\n"
5584                 "             OpBranch %if_exit\n"
5585
5586                 // Merge block for if-statement.
5587                 "%if_exit   = OpLabel\n"
5588                 "%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
5589                 "             OpStore %iptr %ival_next\n"
5590                 "             OpBranch %loop\n"
5591
5592                 // True branch for if-statement.
5593                 "%if_true   = OpLabel\n"
5594                 "             OpStore %loc %c_f32_0\n"
5595                 "             OpBranch %if_exit\n"
5596
5597                 "             OpFunctionEnd\n";
5598
5599         fragments["testfun"]    = function;
5600
5601         inputColors[0]                  = RGBA(127, 127, 127, 0);
5602         inputColors[1]                  = RGBA(127, 0,   0,   0);
5603         inputColors[2]                  = RGBA(0,   127, 0,   0);
5604         inputColors[3]                  = RGBA(0,   0,   127, 0);
5605
5606         outputColors[0]                 = RGBA(0, 128, 128, 255);
5607         outputColors[1]                 = RGBA(0, 255, 255, 255);
5608         outputColors[2]                 = RGBA(0, 128, 255, 255);
5609         outputColors[3]                 = RGBA(0, 255, 128, 255);
5610
5611         createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
5612
5613         return group.release();
5614 }
5615
5616 tcu::TestCaseGroup* createSwitchBlockOrderTests(tcu::TestContext& testCtx)
5617 {
5618         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "switch_block_order", "Out-of-order blocks for switch"));
5619         RGBA                                                    inputColors[4];
5620         RGBA                                                    outputColors[4];
5621         map<string, string>                             fragments;
5622
5623         const char                                              typesAndConstants[]     =
5624                 "%c_f32_p2  = OpConstant %f32 0.2\n"
5625                 "%c_f32_p4  = OpConstant %f32 0.4\n"
5626                 "%c_f32_p6  = OpConstant %f32 0.6\n"
5627                 "%c_f32_p8  = OpConstant %f32 0.8\n";
5628
5629         // vec4 test_code(vec4 param) {
5630         //   vec4 result = param;
5631         //   for (int i = 0; i < 4; ++i) {
5632         //     switch (i) {
5633         //       case 0: result[i] += .2; break;
5634         //       case 1: result[i] += .6; break;
5635         //       case 2: result[i] += .4; break;
5636         //       case 3: result[i] += .8; break;
5637         //       default: break; // unreachable
5638         //     }
5639         //   }
5640         //   return result;
5641         // }
5642         const char                                              function[]                      =
5643                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5644                 "%param1    = OpFunctionParameter %v4f32\n"
5645                 "%lbl       = OpLabel\n"
5646                 "%iptr      = OpVariable %fp_i32 Function\n"
5647                 "%result    = OpVariable %fp_v4f32 Function\n"
5648                 "             OpStore %iptr %c_i32_0\n"
5649                 "             OpStore %result %param1\n"
5650                 "             OpBranch %loop\n"
5651
5652                 // Loop entry block.
5653                 "%loop      = OpLabel\n"
5654                 "%ival      = OpLoad %i32 %iptr\n"
5655                 "%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
5656                 "             OpLoopMerge %exit %switch_exit None\n"
5657                 "             OpBranchConditional %lt_4 %switch_entry %exit\n"
5658
5659                 // Merge block for loop.
5660                 "%exit      = OpLabel\n"
5661                 "%ret       = OpLoad %v4f32 %result\n"
5662                 "             OpReturnValue %ret\n"
5663
5664                 // Switch-statement entry block.
5665                 "%switch_entry   = OpLabel\n"
5666                 "%loc            = OpAccessChain %fp_f32 %result %ival\n"
5667                 "%val            = OpLoad %f32 %loc\n"
5668                 "                  OpSelectionMerge %switch_exit None\n"
5669                 "                  OpSwitch %ival %switch_default 0 %case0 1 %case1 2 %case2 3 %case3\n"
5670
5671                 "%case2          = OpLabel\n"
5672                 "%addp4          = OpFAdd %f32 %val %c_f32_p4\n"
5673                 "                  OpStore %loc %addp4\n"
5674                 "                  OpBranch %switch_exit\n"
5675
5676                 "%switch_default = OpLabel\n"
5677                 "                  OpUnreachable\n"
5678
5679                 "%case3          = OpLabel\n"
5680                 "%addp8          = OpFAdd %f32 %val %c_f32_p8\n"
5681                 "                  OpStore %loc %addp8\n"
5682                 "                  OpBranch %switch_exit\n"
5683
5684                 "%case0          = OpLabel\n"
5685                 "%addp2          = OpFAdd %f32 %val %c_f32_p2\n"
5686                 "                  OpStore %loc %addp2\n"
5687                 "                  OpBranch %switch_exit\n"
5688
5689                 // Merge block for switch-statement.
5690                 "%switch_exit    = OpLabel\n"
5691                 "%ival_next      = OpIAdd %i32 %ival %c_i32_1\n"
5692                 "                  OpStore %iptr %ival_next\n"
5693                 "                  OpBranch %loop\n"
5694
5695                 "%case1          = OpLabel\n"
5696                 "%addp6          = OpFAdd %f32 %val %c_f32_p6\n"
5697                 "                  OpStore %loc %addp6\n"
5698                 "                  OpBranch %switch_exit\n"
5699
5700                 "                  OpFunctionEnd\n";
5701
5702         fragments["pre_main"]   = typesAndConstants;
5703         fragments["testfun"]    = function;
5704
5705         inputColors[0]                  = RGBA(127, 27,  127, 51);
5706         inputColors[1]                  = RGBA(127, 0,   0,   51);
5707         inputColors[2]                  = RGBA(0,   27,  0,   51);
5708         inputColors[3]                  = RGBA(0,   0,   127, 51);
5709
5710         outputColors[0]                 = RGBA(178, 180, 229, 255);
5711         outputColors[1]                 = RGBA(178, 153, 102, 255);
5712         outputColors[2]                 = RGBA(51,  180, 102, 255);
5713         outputColors[3]                 = RGBA(51,  153, 229, 255);
5714
5715         createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
5716
5717         return group.release();
5718 }
5719
5720 tcu::TestCaseGroup* createDecorationGroupTests(tcu::TestContext& testCtx)
5721 {
5722         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "decoration_group", "Decoration group tests"));
5723         RGBA                                                    inputColors[4];
5724         RGBA                                                    outputColors[4];
5725         map<string, string>                             fragments;
5726
5727         const char                                              decorations[]           =
5728                 "OpDecorate %array_group         ArrayStride 4\n"
5729                 "OpDecorate %struct_member_group Offset 0\n"
5730                 "%array_group         = OpDecorationGroup\n"
5731                 "%struct_member_group = OpDecorationGroup\n"
5732
5733                 "OpDecorate %group1 RelaxedPrecision\n"
5734                 "OpDecorate %group3 RelaxedPrecision\n"
5735                 "OpDecorate %group3 Invariant\n"
5736                 "OpDecorate %group3 Restrict\n"
5737                 "%group0 = OpDecorationGroup\n"
5738                 "%group1 = OpDecorationGroup\n"
5739                 "%group3 = OpDecorationGroup\n";
5740
5741         const char                                              typesAndConstants[]     =
5742                 "%a3f32     = OpTypeArray %f32 %c_u32_3\n"
5743                 "%struct1   = OpTypeStruct %a3f32\n"
5744                 "%struct2   = OpTypeStruct %a3f32\n"
5745                 "%fp_struct1 = OpTypePointer Function %struct1\n"
5746                 "%fp_struct2 = OpTypePointer Function %struct2\n"
5747                 "%c_f32_2    = OpConstant %f32 2.\n"
5748                 "%c_f32_n2   = OpConstant %f32 -2.\n"
5749
5750                 "%c_a3f32_1 = OpConstantComposite %a3f32 %c_f32_1 %c_f32_2 %c_f32_1\n"
5751                 "%c_a3f32_2 = OpConstantComposite %a3f32 %c_f32_n1 %c_f32_n2 %c_f32_n1\n"
5752                 "%c_struct1 = OpConstantComposite %struct1 %c_a3f32_1\n"
5753                 "%c_struct2 = OpConstantComposite %struct2 %c_a3f32_2\n";
5754
5755         const char                                              function[]                      =
5756                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5757                 "%param     = OpFunctionParameter %v4f32\n"
5758                 "%entry     = OpLabel\n"
5759                 "%result    = OpVariable %fp_v4f32 Function\n"
5760                 "%v_struct1 = OpVariable %fp_struct1 Function\n"
5761                 "%v_struct2 = OpVariable %fp_struct2 Function\n"
5762                 "             OpStore %result %param\n"
5763                 "             OpStore %v_struct1 %c_struct1\n"
5764                 "             OpStore %v_struct2 %c_struct2\n"
5765                 "%ptr1      = OpAccessChain %fp_f32 %v_struct1 %c_i32_0 %c_i32_2\n"
5766                 "%val1      = OpLoad %f32 %ptr1\n"
5767                 "%ptr2      = OpAccessChain %fp_f32 %v_struct2 %c_i32_0 %c_i32_2\n"
5768                 "%val2      = OpLoad %f32 %ptr2\n"
5769                 "%addvalues = OpFAdd %f32 %val1 %val2\n"
5770                 "%ptr       = OpAccessChain %fp_f32 %result %c_i32_1\n"
5771                 "%val       = OpLoad %f32 %ptr\n"
5772                 "%addresult = OpFAdd %f32 %addvalues %val\n"
5773                 "             OpStore %ptr %addresult\n"
5774                 "%ret       = OpLoad %v4f32 %result\n"
5775                 "             OpReturnValue %ret\n"
5776                 "             OpFunctionEnd\n";
5777
5778         struct CaseNameDecoration
5779         {
5780                 string name;
5781                 string decoration;
5782         };
5783
5784         CaseNameDecoration tests[] =
5785         {
5786                 {
5787                         "same_decoration_group_on_multiple_types",
5788                         "OpGroupMemberDecorate %struct_member_group %struct1 0 %struct2 0\n"
5789                 },
5790                 {
5791                         "empty_decoration_group",
5792                         "OpGroupDecorate %group0      %a3f32\n"
5793                         "OpGroupDecorate %group0      %result\n"
5794                 },
5795                 {
5796                         "one_element_decoration_group",
5797                         "OpGroupDecorate %array_group %a3f32\n"
5798                 },
5799                 {
5800                         "multiple_elements_decoration_group",
5801                         "OpGroupDecorate %group3      %v_struct1\n"
5802                 },
5803                 {
5804                         "multiple_decoration_groups_on_same_variable",
5805                         "OpGroupDecorate %group0      %v_struct2\n"
5806                         "OpGroupDecorate %group1      %v_struct2\n"
5807                         "OpGroupDecorate %group3      %v_struct2\n"
5808                 },
5809                 {
5810                         "same_decoration_group_multiple_times",
5811                         "OpGroupDecorate %group1      %addvalues\n"
5812                         "OpGroupDecorate %group1      %addvalues\n"
5813                         "OpGroupDecorate %group1      %addvalues\n"
5814                 },
5815
5816         };
5817
5818         getHalfColorsFullAlpha(inputColors);
5819         getHalfColorsFullAlpha(outputColors);
5820
5821         for (size_t idx = 0; idx < (sizeof(tests) / sizeof(tests[0])); ++idx)
5822         {
5823                 fragments["decoration"] = decorations + tests[idx].decoration;
5824                 fragments["pre_main"]   = typesAndConstants;
5825                 fragments["testfun"]    = function;
5826
5827                 createTestsForAllStages(tests[idx].name, inputColors, outputColors, fragments, group.get());
5828         }
5829
5830         return group.release();
5831 }
5832
5833 struct SpecConstantTwoIntGraphicsCase
5834 {
5835         const char*             caseName;
5836         const char*             scDefinition0;
5837         const char*             scDefinition1;
5838         const char*             scResultType;
5839         const char*             scOperation;
5840         deInt32                 scActualValue0;
5841         deInt32                 scActualValue1;
5842         const char*             resultOperation;
5843         RGBA                    expectedColors[4];
5844
5845                                         SpecConstantTwoIntGraphicsCase (const char* name,
5846                                                                                         const char* definition0,
5847                                                                                         const char* definition1,
5848                                                                                         const char* resultType,
5849                                                                                         const char* operation,
5850                                                                                         deInt32         value0,
5851                                                                                         deInt32         value1,
5852                                                                                         const char* resultOp,
5853                                                                                         const RGBA      (&output)[4])
5854                                                 : caseName                      (name)
5855                                                 , scDefinition0         (definition0)
5856                                                 , scDefinition1         (definition1)
5857                                                 , scResultType          (resultType)
5858                                                 , scOperation           (operation)
5859                                                 , scActualValue0        (value0)
5860                                                 , scActualValue1        (value1)
5861                                                 , resultOperation       (resultOp)
5862         {
5863                 expectedColors[0] = output[0];
5864                 expectedColors[1] = output[1];
5865                 expectedColors[2] = output[2];
5866                 expectedColors[3] = output[3];
5867         }
5868 };
5869
5870 tcu::TestCaseGroup* createSpecConstantTests (tcu::TestContext& testCtx)
5871 {
5872         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
5873         vector<SpecConstantTwoIntGraphicsCase>  cases;
5874         RGBA                                                    inputColors[4];
5875         RGBA                                                    outputColors0[4];
5876         RGBA                                                    outputColors1[4];
5877         RGBA                                                    outputColors2[4];
5878
5879         const char      decorations1[]                  =
5880                 "OpDecorate %sc_0  SpecId 0\n"
5881                 "OpDecorate %sc_1  SpecId 1\n";
5882
5883         const char      typesAndConstants1[]    =
5884                 "%sc_0      = OpSpecConstant${SC_DEF0}\n"
5885                 "%sc_1      = OpSpecConstant${SC_DEF1}\n"
5886                 "%sc_op     = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n";
5887
5888         const char      function1[]                             =
5889                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5890                 "%param     = OpFunctionParameter %v4f32\n"
5891                 "%label     = OpLabel\n"
5892                 "%result    = OpVariable %fp_v4f32 Function\n"
5893                 "             OpStore %result %param\n"
5894                 "%gen       = ${GEN_RESULT}\n"
5895                 "%index     = OpIAdd %i32 %gen %c_i32_1\n"
5896                 "%loc       = OpAccessChain %fp_f32 %result %index\n"
5897                 "%val       = OpLoad %f32 %loc\n"
5898                 "%add       = OpFAdd %f32 %val %c_f32_0_5\n"
5899                 "             OpStore %loc %add\n"
5900                 "%ret       = OpLoad %v4f32 %result\n"
5901                 "             OpReturnValue %ret\n"
5902                 "             OpFunctionEnd\n";
5903
5904         inputColors[0] = RGBA(127, 127, 127, 255);
5905         inputColors[1] = RGBA(127, 0,   0,   255);
5906         inputColors[2] = RGBA(0,   127, 0,   255);
5907         inputColors[3] = RGBA(0,   0,   127, 255);
5908
5909         // Derived from inputColors[x] by adding 128 to inputColors[x][0].
5910         outputColors0[0] = RGBA(255, 127, 127, 255);
5911         outputColors0[1] = RGBA(255, 0,   0,   255);
5912         outputColors0[2] = RGBA(128, 127, 0,   255);
5913         outputColors0[3] = RGBA(128, 0,   127, 255);
5914
5915         // Derived from inputColors[x] by adding 128 to inputColors[x][1].
5916         outputColors1[0] = RGBA(127, 255, 127, 255);
5917         outputColors1[1] = RGBA(127, 128, 0,   255);
5918         outputColors1[2] = RGBA(0,   255, 0,   255);
5919         outputColors1[3] = RGBA(0,   128, 127, 255);
5920
5921         // Derived from inputColors[x] by adding 128 to inputColors[x][2].
5922         outputColors2[0] = RGBA(127, 127, 255, 255);
5923         outputColors2[1] = RGBA(127, 0,   128, 255);
5924         outputColors2[2] = RGBA(0,   127, 128, 255);
5925         outputColors2[3] = RGBA(0,   0,   255, 255);
5926
5927         const char addZeroToSc[]                = "OpIAdd %i32 %c_i32_0 %sc_op";
5928         const char selectTrueUsingSc[]  = "OpSelect %i32 %sc_op %c_i32_1 %c_i32_0";
5929         const char selectFalseUsingSc[] = "OpSelect %i32 %sc_op %c_i32_0 %c_i32_1";
5930
5931         cases.push_back(SpecConstantTwoIntGraphicsCase("iadd",                                  " %i32 0",              " %i32 0",              "%i32",         "IAdd                 %sc_0 %sc_1",                             19,             -20,    addZeroToSc,            outputColors0));
5932         cases.push_back(SpecConstantTwoIntGraphicsCase("isub",                                  " %i32 0",              " %i32 0",              "%i32",         "ISub                 %sc_0 %sc_1",                             19,             20,             addZeroToSc,            outputColors0));
5933         cases.push_back(SpecConstantTwoIntGraphicsCase("imul",                                  " %i32 0",              " %i32 0",              "%i32",         "IMul                 %sc_0 %sc_1",                             -1,             -1,             addZeroToSc,            outputColors2));
5934         cases.push_back(SpecConstantTwoIntGraphicsCase("sdiv",                                  " %i32 0",              " %i32 0",              "%i32",         "SDiv                 %sc_0 %sc_1",                             -126,   126,    addZeroToSc,            outputColors0));
5935         cases.push_back(SpecConstantTwoIntGraphicsCase("udiv",                                  " %i32 0",              " %i32 0",              "%i32",         "UDiv                 %sc_0 %sc_1",                             126,    126,    addZeroToSc,            outputColors2));
5936         cases.push_back(SpecConstantTwoIntGraphicsCase("srem",                                  " %i32 0",              " %i32 0",              "%i32",         "SRem                 %sc_0 %sc_1",                             3,              2,              addZeroToSc,            outputColors2));
5937         cases.push_back(SpecConstantTwoIntGraphicsCase("smod",                                  " %i32 0",              " %i32 0",              "%i32",         "SMod                 %sc_0 %sc_1",                             3,              2,              addZeroToSc,            outputColors2));
5938         cases.push_back(SpecConstantTwoIntGraphicsCase("umod",                                  " %i32 0",              " %i32 0",              "%i32",         "UMod                 %sc_0 %sc_1",                             1001,   500,    addZeroToSc,            outputColors2));
5939         cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseand",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseAnd           %sc_0 %sc_1",                             0x33,   0x0d,   addZeroToSc,            outputColors2));
5940         cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseor",                             " %i32 0",              " %i32 0",              "%i32",         "BitwiseOr            %sc_0 %sc_1",                             0,              1,              addZeroToSc,            outputColors2));
5941         cases.push_back(SpecConstantTwoIntGraphicsCase("bitwisexor",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseXor           %sc_0 %sc_1",                             0x2e,   0x2f,   addZeroToSc,            outputColors2));
5942         cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightlogical",             " %i32 0",              " %i32 0",              "%i32",         "ShiftRightLogical    %sc_0 %sc_1",                             2,              1,              addZeroToSc,            outputColors2));
5943         cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightarithmetic",  " %i32 0",              " %i32 0",              "%i32",         "ShiftRightArithmetic %sc_0 %sc_1",                             -4,             2,              addZeroToSc,            outputColors0));
5944         cases.push_back(SpecConstantTwoIntGraphicsCase("shiftleftlogical",              " %i32 0",              " %i32 0",              "%i32",         "ShiftLeftLogical     %sc_0 %sc_1",                             1,              0,              addZeroToSc,            outputColors2));
5945         cases.push_back(SpecConstantTwoIntGraphicsCase("slessthan",                             " %i32 0",              " %i32 0",              "%bool",        "SLessThan            %sc_0 %sc_1",                             -20,    -10,    selectTrueUsingSc,      outputColors2));
5946         cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthan",                             " %i32 0",              " %i32 0",              "%bool",        "ULessThan            %sc_0 %sc_1",                             10,             20,             selectTrueUsingSc,      outputColors2));
5947         cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "SGreaterThan         %sc_0 %sc_1",                             -1000,  50,             selectFalseUsingSc,     outputColors2));
5948         cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "UGreaterThan         %sc_0 %sc_1",                             10,             5,              selectTrueUsingSc,      outputColors2));
5949         cases.push_back(SpecConstantTwoIntGraphicsCase("slessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "SLessThanEqual       %sc_0 %sc_1",                             -10,    -10,    selectTrueUsingSc,      outputColors2));
5950         cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "ULessThanEqual       %sc_0 %sc_1",                             50,             100,    selectTrueUsingSc,      outputColors2));
5951         cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "SGreaterThanEqual    %sc_0 %sc_1",                             -1000,  50,             selectFalseUsingSc,     outputColors2));
5952         cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "UGreaterThanEqual    %sc_0 %sc_1",                             10,             10,             selectTrueUsingSc,      outputColors2));
5953         cases.push_back(SpecConstantTwoIntGraphicsCase("iequal",                                " %i32 0",              " %i32 0",              "%bool",        "IEqual               %sc_0 %sc_1",                             42,             24,             selectFalseUsingSc,     outputColors2));
5954         cases.push_back(SpecConstantTwoIntGraphicsCase("logicaland",                    "True %bool",   "True %bool",   "%bool",        "LogicalAnd           %sc_0 %sc_1",                             0,              1,              selectFalseUsingSc,     outputColors2));
5955         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalor",                             "False %bool",  "False %bool",  "%bool",        "LogicalOr            %sc_0 %sc_1",                             1,              0,              selectTrueUsingSc,      outputColors2));
5956         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalequal",                  "True %bool",   "True %bool",   "%bool",        "LogicalEqual         %sc_0 %sc_1",                             0,              1,              selectFalseUsingSc,     outputColors2));
5957         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnotequal",               "False %bool",  "False %bool",  "%bool",        "LogicalNotEqual      %sc_0 %sc_1",                             1,              0,              selectTrueUsingSc,      outputColors2));
5958         cases.push_back(SpecConstantTwoIntGraphicsCase("snegate",                               " %i32 0",              " %i32 0",              "%i32",         "SNegate              %sc_0",                                   -1,             0,              addZeroToSc,            outputColors2));
5959         cases.push_back(SpecConstantTwoIntGraphicsCase("not",                                   " %i32 0",              " %i32 0",              "%i32",         "Not                  %sc_0",                                   -2,             0,              addZeroToSc,            outputColors2));
5960         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnot",                    "False %bool",  "False %bool",  "%bool",        "LogicalNot           %sc_0",                                   1,              0,              selectFalseUsingSc,     outputColors2));
5961         cases.push_back(SpecConstantTwoIntGraphicsCase("select",                                "False %bool",  " %i32 0",              "%i32",         "Select               %sc_0 %sc_1 %c_i32_0",    1,              1,              addZeroToSc,            outputColors2));
5962         // OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
5963         // \todo[2015-12-1 antiagainst] OpQuantizeToF16
5964
5965         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
5966         {
5967                 map<string, string>     specializations;
5968                 map<string, string>     fragments;
5969                 vector<deInt32>         specConstants;
5970
5971                 specializations["SC_DEF0"]                      = cases[caseNdx].scDefinition0;
5972                 specializations["SC_DEF1"]                      = cases[caseNdx].scDefinition1;
5973                 specializations["SC_RESULT_TYPE"]       = cases[caseNdx].scResultType;
5974                 specializations["SC_OP"]                        = cases[caseNdx].scOperation;
5975                 specializations["GEN_RESULT"]           = cases[caseNdx].resultOperation;
5976
5977                 fragments["decoration"]                         = tcu::StringTemplate(decorations1).specialize(specializations);
5978                 fragments["pre_main"]                           = tcu::StringTemplate(typesAndConstants1).specialize(specializations);
5979                 fragments["testfun"]                            = tcu::StringTemplate(function1).specialize(specializations);
5980
5981                 specConstants.push_back(cases[caseNdx].scActualValue0);
5982                 specConstants.push_back(cases[caseNdx].scActualValue1);
5983
5984                 createTestsForAllStages(cases[caseNdx].caseName, inputColors, cases[caseNdx].expectedColors, fragments, specConstants, group.get());
5985         }
5986
5987         const char      decorations2[]                  =
5988                 "OpDecorate %sc_0  SpecId 0\n"
5989                 "OpDecorate %sc_1  SpecId 1\n"
5990                 "OpDecorate %sc_2  SpecId 2\n";
5991
5992         const char      typesAndConstants2[]    =
5993                 "%v3i32       = OpTypeVector %i32 3\n"
5994                 "%vec3_0      = OpConstantComposite %v3i32 %c_i32_0 %c_i32_0 %c_i32_0\n"
5995                 "%vec3_undef  = OpUndef %v3i32\n"
5996
5997                 "%sc_0        = OpSpecConstant %i32 0\n"
5998                 "%sc_1        = OpSpecConstant %i32 0\n"
5999                 "%sc_2        = OpSpecConstant %i32 0\n"
6000                 "%sc_vec3_0   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_0        %vec3_0      0\n"                                                 // (sc_0, 0,    0)
6001                 "%sc_vec3_1   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_1        %vec3_0      1\n"                                                 // (0,    sc_1, 0)
6002                 "%sc_vec3_2   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_2        %vec3_0      2\n"                                                 // (0,    0,    sc_2)
6003                 "%sc_vec3_0_s = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_0   %vec3_undef  0          0xFFFFFFFF 2\n"   // (sc_0, ???,  0)
6004                 "%sc_vec3_1_s = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_1   %vec3_undef  0xFFFFFFFF 1          0\n"   // (???,  sc_1, 0)
6005                 "%sc_vec3_2_s = OpSpecConstantOp %v3i32 VectorShuffle    %vec3_undef  %sc_vec3_2   5          0xFFFFFFFF 5\n"   // (sc_2, ???,  sc_2)
6006                 "%sc_vec3_01  = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_0_s %sc_vec3_1_s 1 0 4\n"                                             // (0,    sc_0, sc_1)
6007                 "%sc_vec3_012 = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_01  %sc_vec3_2_s 5 1 2\n"                                             // (sc_2, sc_0, sc_1)
6008                 "%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012              0\n"                                                 // sc_2
6009                 "%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012              1\n"                                                 // sc_0
6010                 "%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012              2\n"                                                 // sc_1
6011                 "%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"                                                              // (sc_2 - sc_0)
6012                 "%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n";                                                             // (sc_2 - sc_0) * sc_1
6013
6014         const char      function2[]                             =
6015                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6016                 "%param     = OpFunctionParameter %v4f32\n"
6017                 "%label     = OpLabel\n"
6018                 "%result    = OpVariable %fp_v4f32 Function\n"
6019                 "             OpStore %result %param\n"
6020                 "%loc       = OpAccessChain %fp_f32 %result %sc_final\n"
6021                 "%val       = OpLoad %f32 %loc\n"
6022                 "%add       = OpFAdd %f32 %val %c_f32_0_5\n"
6023                 "             OpStore %loc %add\n"
6024                 "%ret       = OpLoad %v4f32 %result\n"
6025                 "             OpReturnValue %ret\n"
6026                 "             OpFunctionEnd\n";
6027
6028         map<string, string>     fragments;
6029         vector<deInt32>         specConstants;
6030
6031         fragments["decoration"] = decorations2;
6032         fragments["pre_main"]   = typesAndConstants2;
6033         fragments["testfun"]    = function2;
6034
6035         specConstants.push_back(56789);
6036         specConstants.push_back(-2);
6037         specConstants.push_back(56788);
6038
6039         createTestsForAllStages("vector_related", inputColors, outputColors2, fragments, specConstants, group.get());
6040
6041         return group.release();
6042 }
6043
6044 tcu::TestCaseGroup* createOpPhiTests(tcu::TestContext& testCtx)
6045 {
6046         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
6047         RGBA                                                    inputColors[4];
6048         RGBA                                                    outputColors1[4];
6049         RGBA                                                    outputColors2[4];
6050         RGBA                                                    outputColors3[4];
6051         map<string, string>                             fragments1;
6052         map<string, string>                             fragments2;
6053         map<string, string>                             fragments3;
6054
6055         const char      typesAndConstants1[]    =
6056                 "%c_f32_p2  = OpConstant %f32 0.2\n"
6057                 "%c_f32_p4  = OpConstant %f32 0.4\n"
6058                 "%c_f32_p5  = OpConstant %f32 0.5\n"
6059                 "%c_f32_p8  = OpConstant %f32 0.8\n";
6060
6061         // vec4 test_code(vec4 param) {
6062         //   vec4 result = param;
6063         //   for (int i = 0; i < 4; ++i) {
6064         //     float operand;
6065         //     switch (i) {
6066         //       case 0: operand = .2; break;
6067         //       case 1: operand = .5; break;
6068         //       case 2: operand = .4; break;
6069         //       case 3: operand = .0; break;
6070         //       default: break; // unreachable
6071         //     }
6072         //     result[i] += operand;
6073         //   }
6074         //   return result;
6075         // }
6076         const char      function1[]                             =
6077                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6078                 "%param1    = OpFunctionParameter %v4f32\n"
6079                 "%lbl       = OpLabel\n"
6080                 "%iptr      = OpVariable %fp_i32 Function\n"
6081                 "%result    = OpVariable %fp_v4f32 Function\n"
6082                 "             OpStore %iptr %c_i32_0\n"
6083                 "             OpStore %result %param1\n"
6084                 "             OpBranch %loop\n"
6085
6086                 "%loop      = OpLabel\n"
6087                 "%ival      = OpLoad %i32 %iptr\n"
6088                 "%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
6089                 "             OpLoopMerge %exit %phi None\n"
6090                 "             OpBranchConditional %lt_4 %entry %exit\n"
6091
6092                 "%entry     = OpLabel\n"
6093                 "%loc       = OpAccessChain %fp_f32 %result %ival\n"
6094                 "%val       = OpLoad %f32 %loc\n"
6095                 "             OpSelectionMerge %phi None\n"
6096                 "             OpSwitch %ival %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
6097
6098                 "%case0     = OpLabel\n"
6099                 "             OpBranch %phi\n"
6100                 "%case1     = OpLabel\n"
6101                 "             OpBranch %phi\n"
6102                 "%case2     = OpLabel\n"
6103                 "             OpBranch %phi\n"
6104                 "%case3     = OpLabel\n"
6105                 "             OpBranch %phi\n"
6106
6107                 "%default   = OpLabel\n"
6108                 "             OpUnreachable\n"
6109
6110                 "%phi       = OpLabel\n"
6111                 "%operand   = OpPhi %f32 %c_f32_p4 %case2 %c_f32_p5 %case1 %c_f32_p2 %case0 %c_f32_0 %case3\n" // not in the order of blocks
6112                 "%add       = OpFAdd %f32 %val %operand\n"
6113                 "             OpStore %loc %add\n"
6114                 "%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
6115                 "             OpStore %iptr %ival_next\n"
6116                 "             OpBranch %loop\n"
6117
6118                 "%exit      = OpLabel\n"
6119                 "%ret       = OpLoad %v4f32 %result\n"
6120                 "             OpReturnValue %ret\n"
6121
6122                 "             OpFunctionEnd\n";
6123
6124         fragments1["pre_main"]  = typesAndConstants1;
6125         fragments1["testfun"]   = function1;
6126
6127         getHalfColorsFullAlpha(inputColors);
6128
6129         outputColors1[0]                = RGBA(178, 255, 229, 255);
6130         outputColors1[1]                = RGBA(178, 127, 102, 255);
6131         outputColors1[2]                = RGBA(51,  255, 102, 255);
6132         outputColors1[3]                = RGBA(51,  127, 229, 255);
6133
6134         createTestsForAllStages("out_of_order", inputColors, outputColors1, fragments1, group.get());
6135
6136         const char      typesAndConstants2[]    =
6137                 "%c_f32_p2  = OpConstant %f32 0.2\n";
6138
6139         // Add .4 to the second element of the given parameter.
6140         const char      function2[]                             =
6141                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6142                 "%param     = OpFunctionParameter %v4f32\n"
6143                 "%entry     = OpLabel\n"
6144                 "%result    = OpVariable %fp_v4f32 Function\n"
6145                 "             OpStore %result %param\n"
6146                 "%loc       = OpAccessChain %fp_f32 %result %c_i32_1\n"
6147                 "%val       = OpLoad %f32 %loc\n"
6148                 "             OpBranch %phi\n"
6149
6150                 "%phi        = OpLabel\n"
6151                 "%step       = OpPhi %i32 %c_i32_0  %entry %step_next  %phi\n"
6152                 "%accum      = OpPhi %f32 %val      %entry %accum_next %phi\n"
6153                 "%step_next  = OpIAdd %i32 %step  %c_i32_1\n"
6154                 "%accum_next = OpFAdd %f32 %accum %c_f32_p2\n"
6155                 "%still_loop = OpSLessThan %bool %step %c_i32_2\n"
6156                 "              OpLoopMerge %exit %phi None\n"
6157                 "              OpBranchConditional %still_loop %phi %exit\n"
6158
6159                 "%exit       = OpLabel\n"
6160                 "              OpStore %loc %accum\n"
6161                 "%ret        = OpLoad %v4f32 %result\n"
6162                 "              OpReturnValue %ret\n"
6163
6164                 "              OpFunctionEnd\n";
6165
6166         fragments2["pre_main"]  = typesAndConstants2;
6167         fragments2["testfun"]   = function2;
6168
6169         outputColors2[0]                        = RGBA(127, 229, 127, 255);
6170         outputColors2[1]                        = RGBA(127, 102, 0,   255);
6171         outputColors2[2]                        = RGBA(0,   229, 0,   255);
6172         outputColors2[3]                        = RGBA(0,   102, 127, 255);
6173
6174         createTestsForAllStages("induction", inputColors, outputColors2, fragments2, group.get());
6175
6176         const char      typesAndConstants3[]    =
6177                 "%true      = OpConstantTrue %bool\n"
6178                 "%false     = OpConstantFalse %bool\n"
6179                 "%c_f32_p2  = OpConstant %f32 0.2\n";
6180
6181         // Swap the second and the third element of the given parameter.
6182         const char      function3[]                             =
6183                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6184                 "%param     = OpFunctionParameter %v4f32\n"
6185                 "%entry     = OpLabel\n"
6186                 "%result    = OpVariable %fp_v4f32 Function\n"
6187                 "             OpStore %result %param\n"
6188                 "%a_loc     = OpAccessChain %fp_f32 %result %c_i32_1\n"
6189                 "%a_init    = OpLoad %f32 %a_loc\n"
6190                 "%b_loc     = OpAccessChain %fp_f32 %result %c_i32_2\n"
6191                 "%b_init    = OpLoad %f32 %b_loc\n"
6192                 "             OpBranch %phi\n"
6193
6194                 "%phi        = OpLabel\n"
6195                 "%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
6196                 "%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
6197                 "%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
6198                 "              OpLoopMerge %exit %phi None\n"
6199                 "              OpBranchConditional %still_loop %phi %exit\n"
6200
6201                 "%exit       = OpLabel\n"
6202                 "              OpStore %a_loc %a_next\n"
6203                 "              OpStore %b_loc %b_next\n"
6204                 "%ret        = OpLoad %v4f32 %result\n"
6205                 "              OpReturnValue %ret\n"
6206
6207                 "              OpFunctionEnd\n";
6208
6209         fragments3["pre_main"]  = typesAndConstants3;
6210         fragments3["testfun"]   = function3;
6211
6212         outputColors3[0]                        = RGBA(127, 127, 127, 255);
6213         outputColors3[1]                        = RGBA(127, 0,   0,   255);
6214         outputColors3[2]                        = RGBA(0,   0,   127, 255);
6215         outputColors3[3]                        = RGBA(0,   127, 0,   255);
6216
6217         createTestsForAllStages("swap", inputColors, outputColors3, fragments3, group.get());
6218
6219         return group.release();
6220 }
6221
6222 tcu::TestCaseGroup* createNoContractionTests(tcu::TestContext& testCtx)
6223 {
6224         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
6225         RGBA                                                    inputColors[4];
6226         RGBA                                                    outputColors[4];
6227
6228         // With NoContraction, (1 + 2^-23) * (1 - 2^-23) - 1 should be conducted as a multiplication and an addition separately.
6229         // For the multiplication, the result is 1 - 2^-46, which is out of the precision range for 32-bit float. (32-bit float
6230         // only have 23-bit fraction.) So it will be rounded to 1. Or 0x1.fffffc. Then the final result is 0 or -0x1p-24.
6231         // On the contrary, the result will be 2^-46, which is a normalized number perfectly representable as 32-bit float.
6232         const char                                              constantsAndTypes[]      =
6233                 "%c_vec4_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_0 %c_f32_1\n"
6234                 "%c_vec4_1       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
6235                 "%c_f32_1pl2_23  = OpConstant %f32 0x1.000002p+0\n" // 1 + 2^-23
6236                 "%c_f32_1mi2_23  = OpConstant %f32 0x1.fffffcp-1\n" // 1 - 2^-23
6237                 "%c_f32_n1pn24   = OpConstant %f32 -0x1p-24\n"
6238                 ;
6239
6240         const char                                              function[]       =
6241                 "%test_code      = OpFunction %v4f32 None %v4f32_function\n"
6242                 "%param          = OpFunctionParameter %v4f32\n"
6243                 "%label          = OpLabel\n"
6244                 "%var1           = OpVariable %fp_f32 Function %c_f32_1pl2_23\n"
6245                 "%var2           = OpVariable %fp_f32 Function\n"
6246                 "%red            = OpCompositeExtract %f32 %param 0\n"
6247                 "%plus_red       = OpFAdd %f32 %c_f32_1mi2_23 %red\n"
6248                 "                  OpStore %var2 %plus_red\n"
6249                 "%val1           = OpLoad %f32 %var1\n"
6250                 "%val2           = OpLoad %f32 %var2\n"
6251                 "%mul            = OpFMul %f32 %val1 %val2\n"
6252                 "%add            = OpFAdd %f32 %mul %c_f32_n1\n"
6253                 "%is0            = OpFOrdEqual %bool %add %c_f32_0\n"
6254                 "%isn1n24         = OpFOrdEqual %bool %add %c_f32_n1pn24\n"
6255                 "%success        = OpLogicalOr %bool %is0 %isn1n24\n"
6256                 "%v4success      = OpCompositeConstruct %v4bool %success %success %success %success\n"
6257                 "%ret            = OpSelect %v4f32 %v4success %c_vec4_0 %c_vec4_1\n"
6258                 "                  OpReturnValue %ret\n"
6259                 "                  OpFunctionEnd\n";
6260
6261         struct CaseNameDecoration
6262         {
6263                 string name;
6264                 string decoration;
6265         };
6266
6267
6268         CaseNameDecoration tests[] = {
6269                 {"multiplication",      "OpDecorate %mul NoContraction"},
6270                 {"addition",            "OpDecorate %add NoContraction"},
6271                 {"both",                        "OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"},
6272         };
6273
6274         getHalfColorsFullAlpha(inputColors);
6275
6276         for (deUint8 idx = 0; idx < 4; ++idx)
6277         {
6278                 inputColors[idx].setRed(0);
6279                 outputColors[idx] = RGBA(0, 0, 0, 255);
6280         }
6281
6282         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(CaseNameDecoration); ++testNdx)
6283         {
6284                 map<string, string> fragments;
6285
6286                 fragments["decoration"] = tests[testNdx].decoration;
6287                 fragments["pre_main"] = constantsAndTypes;
6288                 fragments["testfun"] = function;
6289
6290                 createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, group.get());
6291         }
6292
6293         return group.release();
6294 }
6295
6296 tcu::TestCaseGroup* createMemoryAccessTests(tcu::TestContext& testCtx)
6297 {
6298         de::MovePtr<tcu::TestCaseGroup> memoryAccessTests (new tcu::TestCaseGroup(testCtx, "opmemoryaccess", "Memory Semantics"));
6299         RGBA                                                    colors[4];
6300
6301         const char                                              constantsAndTypes[]      =
6302                 "%c_a2f32_1         = OpConstantComposite %a2f32 %c_f32_1 %c_f32_1\n"
6303                 "%fp_a2f32          = OpTypePointer Function %a2f32\n"
6304                 "%stype             = OpTypeStruct  %v4f32 %a2f32 %f32\n"
6305                 "%fp_stype          = OpTypePointer Function %stype\n";
6306
6307         const char                                              function[]       =
6308                 "%test_code         = OpFunction %v4f32 None %v4f32_function\n"
6309                 "%param1            = OpFunctionParameter %v4f32\n"
6310                 "%lbl               = OpLabel\n"
6311                 "%v1                = OpVariable %fp_v4f32 Function\n"
6312                 "%v2                = OpVariable %fp_a2f32 Function\n"
6313                 "%v3                = OpVariable %fp_f32 Function\n"
6314                 "%v                 = OpVariable %fp_stype Function\n"
6315                 "%vv                = OpVariable %fp_stype Function\n"
6316                 "%vvv               = OpVariable %fp_f32 Function\n"
6317
6318                 "                     OpStore %v1 %c_v4f32_1_1_1_1\n"
6319                 "                     OpStore %v2 %c_a2f32_1\n"
6320                 "                     OpStore %v3 %c_f32_1\n"
6321
6322                 "%p_v4f32          = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
6323                 "%p_a2f32          = OpAccessChain %fp_a2f32 %v %c_u32_1\n"
6324                 "%p_f32            = OpAccessChain %fp_f32 %v %c_u32_2\n"
6325                 "%v1_v             = OpLoad %v4f32 %v1 ${access_type}\n"
6326                 "%v2_v             = OpLoad %a2f32 %v2 ${access_type}\n"
6327                 "%v3_v             = OpLoad %f32 %v3 ${access_type}\n"
6328
6329                 "                    OpStore %p_v4f32 %v1_v ${access_type}\n"
6330                 "                    OpStore %p_a2f32 %v2_v ${access_type}\n"
6331                 "                    OpStore %p_f32 %v3_v ${access_type}\n"
6332
6333                 "                    OpCopyMemory %vv %v ${access_type}\n"
6334                 "                    OpCopyMemory %vvv %p_f32 ${access_type}\n"
6335
6336                 "%p_f32_2          = OpAccessChain %fp_f32 %vv %c_u32_2\n"
6337                 "%v_f32_2          = OpLoad %f32 %p_f32_2\n"
6338                 "%v_f32_3          = OpLoad %f32 %vvv\n"
6339
6340                 "%ret1             = OpVectorTimesScalar %v4f32 %param1 %v_f32_2\n"
6341                 "%ret2             = OpVectorTimesScalar %v4f32 %ret1 %v_f32_3\n"
6342                 "                    OpReturnValue %ret2\n"
6343                 "                    OpFunctionEnd\n";
6344
6345         struct NameMemoryAccess
6346         {
6347                 string name;
6348                 string accessType;
6349         };
6350
6351
6352         NameMemoryAccess tests[] =
6353         {
6354                 { "none", "" },
6355                 { "volatile", "Volatile" },
6356                 { "aligned",  "Aligned 1" },
6357                 { "volatile_aligned",  "Volatile|Aligned 1" },
6358                 { "nontemporal_aligned",  "Nontemporal|Aligned 1" },
6359                 { "volatile_nontemporal",  "Volatile|Nontemporal" },
6360                 { "volatile_nontermporal_aligned",  "Volatile|Nontemporal|Aligned 1" },
6361         };
6362
6363         getHalfColorsFullAlpha(colors);
6364
6365         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameMemoryAccess); ++testNdx)
6366         {
6367                 map<string, string> fragments;
6368                 map<string, string> memoryAccess;
6369                 memoryAccess["access_type"] = tests[testNdx].accessType;
6370
6371                 fragments["pre_main"] = constantsAndTypes;
6372                 fragments["testfun"] = tcu::StringTemplate(function).specialize(memoryAccess);
6373                 createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, memoryAccessTests.get());
6374         }
6375         return memoryAccessTests.release();
6376 }
6377 tcu::TestCaseGroup* createOpUndefTests(tcu::TestContext& testCtx)
6378 {
6379         de::MovePtr<tcu::TestCaseGroup>         opUndefTests             (new tcu::TestCaseGroup(testCtx, "opundef", "Test OpUndef"));
6380         RGBA                                                            defaultColors[4];
6381         map<string, string>                                     fragments;
6382         getDefaultColors(defaultColors);
6383
6384         // First, simple cases that don't do anything with the OpUndef result.
6385         struct NameCodePair { string name, decl, type; };
6386         const NameCodePair tests[] =
6387         {
6388                 {"bool", "", "%bool"},
6389                 {"vec2uint32", "", "%v2u32"},
6390                 {"image", "%type = OpTypeImage %f32 2D 0 0 0 1 Unknown", "%type"},
6391                 {"sampler", "%type = OpTypeSampler", "%type"},
6392                 {"sampledimage", "%img = OpTypeImage %f32 2D 0 0 0 1 Unknown\n" "%type = OpTypeSampledImage %img", "%type"},
6393                 {"pointer", "", "%fp_i32"},
6394                 {"runtimearray", "%type = OpTypeRuntimeArray %f32", "%type"},
6395                 {"array", "%c_u32_100 = OpConstant %u32 100\n" "%type = OpTypeArray %i32 %c_u32_100", "%type"},
6396                 {"struct", "%type = OpTypeStruct %f32 %i32 %u32", "%type"}};
6397         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
6398         {
6399                 fragments["undef_type"] = tests[testNdx].type;
6400                 fragments["testfun"] = StringTemplate(
6401                         "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6402                         "%param1 = OpFunctionParameter %v4f32\n"
6403                         "%label_testfun = OpLabel\n"
6404                         "%undef = OpUndef ${undef_type}\n"
6405                         "OpReturnValue %param1\n"
6406                         "OpFunctionEnd\n").specialize(fragments);
6407                 fragments["pre_main"] = tests[testNdx].decl;
6408                 createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opUndefTests.get());
6409         }
6410         fragments.clear();
6411
6412         fragments["testfun"] =
6413                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6414                 "%param1 = OpFunctionParameter %v4f32\n"
6415                 "%label_testfun = OpLabel\n"
6416                 "%undef = OpUndef %f32\n"
6417                 "%zero = OpFMul %f32 %undef %c_f32_0\n"
6418                 "%is_nan = OpIsNan %bool %zero\n" //OpUndef may result in NaN which may turn %zero into Nan.
6419                 "%actually_zero = OpSelect %f32 %is_nan %c_f32_0 %zero\n"
6420                 "%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6421                 "%b = OpFAdd %f32 %a %actually_zero\n"
6422                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %b %c_i32_0\n"
6423                 "OpReturnValue %ret\n"
6424                 "OpFunctionEnd\n"
6425                 ;
6426         createTestsForAllStages("float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6427
6428         fragments["testfun"] =
6429                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6430                 "%param1 = OpFunctionParameter %v4f32\n"
6431                 "%label_testfun = OpLabel\n"
6432                 "%undef = OpUndef %i32\n"
6433                 "%zero = OpIMul %i32 %undef %c_i32_0\n"
6434                 "%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6435                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6436                 "OpReturnValue %ret\n"
6437                 "OpFunctionEnd\n"
6438                 ;
6439         createTestsForAllStages("sint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6440
6441         fragments["testfun"] =
6442                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6443                 "%param1 = OpFunctionParameter %v4f32\n"
6444                 "%label_testfun = OpLabel\n"
6445                 "%undef = OpUndef %u32\n"
6446                 "%zero = OpIMul %u32 %undef %c_i32_0\n"
6447                 "%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
6448                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
6449                 "OpReturnValue %ret\n"
6450                 "OpFunctionEnd\n"
6451                 ;
6452         createTestsForAllStages("uint32", defaultColors, defaultColors, fragments, opUndefTests.get());
6453
6454         fragments["testfun"] =
6455                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6456                 "%param1 = OpFunctionParameter %v4f32\n"
6457                 "%label_testfun = OpLabel\n"
6458                 "%undef = OpUndef %v4f32\n"
6459                 "%vzero = OpVectorTimesScalar %v4f32 %undef %c_f32_0\n"
6460                 "%zero_0 = OpVectorExtractDynamic %f32 %vzero %c_i32_0\n"
6461                 "%zero_1 = OpVectorExtractDynamic %f32 %vzero %c_i32_1\n"
6462                 "%zero_2 = OpVectorExtractDynamic %f32 %vzero %c_i32_2\n"
6463                 "%zero_3 = OpVectorExtractDynamic %f32 %vzero %c_i32_3\n"
6464                 "%is_nan_0 = OpIsNan %bool %zero_0\n"
6465                 "%is_nan_1 = OpIsNan %bool %zero_1\n"
6466                 "%is_nan_2 = OpIsNan %bool %zero_2\n"
6467                 "%is_nan_3 = OpIsNan %bool %zero_3\n"
6468                 "%actually_zero_0 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_0\n"
6469                 "%actually_zero_1 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_1\n"
6470                 "%actually_zero_2 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_2\n"
6471                 "%actually_zero_3 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_3\n"
6472                 "%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6473                 "%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6474                 "%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6475                 "%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6476                 "%sum_0 = OpFAdd %f32 %param1_0 %actually_zero_0\n"
6477                 "%sum_1 = OpFAdd %f32 %param1_1 %actually_zero_1\n"
6478                 "%sum_2 = OpFAdd %f32 %param1_2 %actually_zero_2\n"
6479                 "%sum_3 = OpFAdd %f32 %param1_3 %actually_zero_3\n"
6480                 "%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6481                 "%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6482                 "%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6483                 "%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6484                 "OpReturnValue %ret\n"
6485                 "OpFunctionEnd\n"
6486                 ;
6487         createTestsForAllStages("vec4float32", defaultColors, defaultColors, fragments, opUndefTests.get());
6488
6489         fragments["pre_main"] =
6490                 "%m2x2f32 = OpTypeMatrix %v2f32 2\n";
6491         fragments["testfun"] =
6492                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6493                 "%param1 = OpFunctionParameter %v4f32\n"
6494                 "%label_testfun = OpLabel\n"
6495                 "%undef = OpUndef %m2x2f32\n"
6496                 "%mzero = OpMatrixTimesScalar %m2x2f32 %undef %c_f32_0\n"
6497                 "%zero_0 = OpCompositeExtract %f32 %mzero 0 0\n"
6498                 "%zero_1 = OpCompositeExtract %f32 %mzero 0 1\n"
6499                 "%zero_2 = OpCompositeExtract %f32 %mzero 1 0\n"
6500                 "%zero_3 = OpCompositeExtract %f32 %mzero 1 1\n"
6501                 "%is_nan_0 = OpIsNan %bool %zero_0\n"
6502                 "%is_nan_1 = OpIsNan %bool %zero_1\n"
6503                 "%is_nan_2 = OpIsNan %bool %zero_2\n"
6504                 "%is_nan_3 = OpIsNan %bool %zero_3\n"
6505                 "%actually_zero_0 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_0\n"
6506                 "%actually_zero_1 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_1\n"
6507                 "%actually_zero_2 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_2\n"
6508                 "%actually_zero_3 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_3\n"
6509                 "%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6510                 "%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
6511                 "%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
6512                 "%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
6513                 "%sum_0 = OpFAdd %f32 %param1_0 %actually_zero_0\n"
6514                 "%sum_1 = OpFAdd %f32 %param1_1 %actually_zero_1\n"
6515                 "%sum_2 = OpFAdd %f32 %param1_2 %actually_zero_2\n"
6516                 "%sum_3 = OpFAdd %f32 %param1_3 %actually_zero_3\n"
6517                 "%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
6518                 "%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
6519                 "%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
6520                 "%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
6521                 "OpReturnValue %ret\n"
6522                 "OpFunctionEnd\n"
6523                 ;
6524         createTestsForAllStages("matrix", defaultColors, defaultColors, fragments, opUndefTests.get());
6525
6526         return opUndefTests.release();
6527 }
6528
6529 void createOpQuantizeSingleOptionTests(tcu::TestCaseGroup* testCtx)
6530 {
6531         const RGBA              inputColors[4]          =
6532         {
6533                 RGBA(0,         0,              0,              255),
6534                 RGBA(0,         0,              255,    255),
6535                 RGBA(0,         255,    0,              255),
6536                 RGBA(0,         255,    255,    255)
6537         };
6538
6539         const RGBA              expectedColors[4]       =
6540         {
6541                 RGBA(255,        0,              0,              255),
6542                 RGBA(255,        0,              0,              255),
6543                 RGBA(255,        0,              0,              255),
6544                 RGBA(255,        0,              0,              255)
6545         };
6546
6547         const struct SingleFP16Possibility
6548         {
6549                 const char* name;
6550                 const char* constant;  // Value to assign to %test_constant.
6551                 float           valueAsFloat;
6552                 const char* condition; // Must assign to %cond an expression that evaluates to true after %c = OpQuantizeToF16(%test_constant + 0).
6553         }                               tests[]                         =
6554         {
6555                 {
6556                         "negative",
6557                         "-0x1.3p1\n",
6558                         -constructNormalizedFloat(1, 0x300000),
6559                         "%cond = OpFOrdEqual %bool %c %test_constant\n"
6560                 }, // -19
6561                 {
6562                         "positive",
6563                         "0x1.0p7\n",
6564                         constructNormalizedFloat(7, 0x000000),
6565                         "%cond = OpFOrdEqual %bool %c %test_constant\n"
6566                 },  // +128
6567                 // SPIR-V requires that OpQuantizeToF16 flushes
6568                 // any numbers that would end up denormalized in F16 to zero.
6569                 {
6570                         "denorm",
6571                         "0x0.0006p-126\n",
6572                         std::ldexp(1.5f, -140),
6573                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6574                 },  // denorm
6575                 {
6576                         "negative_denorm",
6577                         "-0x0.0006p-126\n",
6578                         -std::ldexp(1.5f, -140),
6579                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6580                 }, // -denorm
6581                 {
6582                         "too_small",
6583                         "0x1.0p-16\n",
6584                         std::ldexp(1.0f, -16),
6585                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6586                 },     // too small positive
6587                 {
6588                         "negative_too_small",
6589                         "-0x1.0p-32\n",
6590                         -std::ldexp(1.0f, -32),
6591                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
6592                 },      // too small negative
6593                 {
6594                         "negative_inf",
6595                         "-0x1.0p128\n",
6596                         -std::ldexp(1.0f, 128),
6597
6598                         "%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6599                         "%inf = OpIsInf %bool %c\n"
6600                         "%cond = OpLogicalAnd %bool %gz %inf\n"
6601                 },     // -inf to -inf
6602                 {
6603                         "inf",
6604                         "0x1.0p128\n",
6605                         std::ldexp(1.0f, 128),
6606
6607                         "%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6608                         "%inf = OpIsInf %bool %c\n"
6609                         "%cond = OpLogicalAnd %bool %gz %inf\n"
6610                 },     // +inf to +inf
6611                 {
6612                         "round_to_negative_inf",
6613                         "-0x1.0p32\n",
6614                         -std::ldexp(1.0f, 32),
6615
6616                         "%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
6617                         "%inf = OpIsInf %bool %c\n"
6618                         "%cond = OpLogicalAnd %bool %gz %inf\n"
6619                 },     // round to -inf
6620                 {
6621                         "round_to_inf",
6622                         "0x1.0p16\n",
6623                         std::ldexp(1.0f, 16),
6624
6625                         "%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
6626                         "%inf = OpIsInf %bool %c\n"
6627                         "%cond = OpLogicalAnd %bool %gz %inf\n"
6628                 },     // round to +inf
6629                 {
6630                         "nan",
6631                         "0x1.1p128\n",
6632                         std::numeric_limits<float>::quiet_NaN(),
6633
6634                         // Test for any NaN value, as NaNs are not preserved
6635                         "%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
6636                         "%cond = OpIsNan %bool %direct_quant\n"
6637                 }, // nan
6638                 {
6639                         "negative_nan",
6640                         "-0x1.0001p128\n",
6641                         std::numeric_limits<float>::quiet_NaN(),
6642
6643                         // Test for any NaN value, as NaNs are not preserved
6644                         "%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
6645                         "%cond = OpIsNan %bool %direct_quant\n"
6646                 } // -nan
6647         };
6648         const char*             constants                       =
6649                 "%test_constant = OpConstant %f32 ";  // The value will be test.constant.
6650
6651         StringTemplate  function                        (
6652                 "%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6653                 "%param1        = OpFunctionParameter %v4f32\n"
6654                 "%label_testfun = OpLabel\n"
6655                 "%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6656                 "%b             = OpFAdd %f32 %test_constant %a\n"
6657                 "%c             = OpQuantizeToF16 %f32 %b\n"
6658                 "${condition}\n"
6659                 "%v4cond        = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
6660                 "%retval        = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1\n"
6661                 "                 OpReturnValue %retval\n"
6662                 "OpFunctionEnd\n"
6663         );
6664
6665         const char*             specDecorations         = "OpDecorate %test_constant SpecId 0\n";
6666         const char*             specConstants           =
6667                         "%test_constant = OpSpecConstant %f32 0.\n"
6668                         "%c             = OpSpecConstantOp %f32 QuantizeToF16 %test_constant\n";
6669
6670         StringTemplate  specConstantFunction(
6671                 "%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6672                 "%param1        = OpFunctionParameter %v4f32\n"
6673                 "%label_testfun = OpLabel\n"
6674                 "${condition}\n"
6675                 "%v4cond        = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
6676                 "%retval        = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1\n"
6677                 "                 OpReturnValue %retval\n"
6678                 "OpFunctionEnd\n"
6679         );
6680
6681         for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6682         {
6683                 map<string, string>                                                             codeSpecialization;
6684                 map<string, string>                                                             fragments;
6685                 codeSpecialization["condition"]                                 = tests[idx].condition;
6686                 fragments["testfun"]                                                    = function.specialize(codeSpecialization);
6687                 fragments["pre_main"]                                                   = string(constants) + tests[idx].constant + "\n";
6688                 createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
6689         }
6690
6691         for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
6692         {
6693                 map<string, string>                                                             codeSpecialization;
6694                 map<string, string>                                                             fragments;
6695                 vector<deInt32>                                                                 passConstants;
6696                 deInt32                                                                                 specConstant;
6697
6698                 codeSpecialization["condition"]                                 = tests[idx].condition;
6699                 fragments["testfun"]                                                    = specConstantFunction.specialize(codeSpecialization);
6700                 fragments["decoration"]                                                 = specDecorations;
6701                 fragments["pre_main"]                                                   = specConstants;
6702
6703                 memcpy(&specConstant, &tests[idx].valueAsFloat, sizeof(float));
6704                 passConstants.push_back(specConstant);
6705
6706                 createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
6707         }
6708 }
6709
6710 void createOpQuantizeTwoPossibilityTests(tcu::TestCaseGroup* testCtx)
6711 {
6712         RGBA inputColors[4] =  {
6713                 RGBA(0,         0,              0,              255),
6714                 RGBA(0,         0,              255,    255),
6715                 RGBA(0,         255,    0,              255),
6716                 RGBA(0,         255,    255,    255)
6717         };
6718
6719         RGBA expectedColors[4] =
6720         {
6721                 RGBA(255,        0,              0,              255),
6722                 RGBA(255,        0,              0,              255),
6723                 RGBA(255,        0,              0,              255),
6724                 RGBA(255,        0,              0,              255)
6725         };
6726
6727         struct DualFP16Possibility
6728         {
6729                 const char* name;
6730                 const char* input;
6731                 float           inputAsFloat;
6732                 const char* possibleOutput1;
6733                 const char* possibleOutput2;
6734         } tests[] = {
6735                 {
6736                         "positive_round_up_or_round_down",
6737                         "0x1.3003p8",
6738                         constructNormalizedFloat(8, 0x300300),
6739                         "0x1.304p8",
6740                         "0x1.3p8"
6741                 },
6742                 {
6743                         "negative_round_up_or_round_down",
6744                         "-0x1.6008p-7",
6745                         -constructNormalizedFloat(-7, 0x600800),
6746                         "-0x1.6p-7",
6747                         "-0x1.604p-7"
6748                 },
6749                 {
6750                         "carry_bit",
6751                         "0x1.01ep2",
6752                         constructNormalizedFloat(2, 0x01e000),
6753                         "0x1.01cp2",
6754                         "0x1.02p2"
6755                 },
6756                 {
6757                         "carry_to_exponent",
6758                         "0x1.ffep1",
6759                         constructNormalizedFloat(1, 0xffe000),
6760                         "0x1.ffcp1",
6761                         "0x1.0p2"
6762                 },
6763         };
6764         StringTemplate constants (
6765                 "%input_const = OpConstant %f32 ${input}\n"
6766                 "%possible_solution1 = OpConstant %f32 ${output1}\n"
6767                 "%possible_solution2 = OpConstant %f32 ${output2}\n"
6768                 );
6769
6770         StringTemplate specConstants (
6771                 "%input_const = OpSpecConstant %f32 0.\n"
6772                 "%possible_solution1 = OpConstant %f32 ${output1}\n"
6773                 "%possible_solution2 = OpConstant %f32 ${output2}\n"
6774         );
6775
6776         const char* specDecorations = "OpDecorate %input_const  SpecId 0\n";
6777
6778         const char* function  =
6779                 "%test_code     = OpFunction %v4f32 None %v4f32_function\n"
6780                 "%param1        = OpFunctionParameter %v4f32\n"
6781                 "%label_testfun = OpLabel\n"
6782                 "%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6783                 // For the purposes of this test we assume that 0.f will always get
6784                 // faithfully passed through the pipeline stages.
6785                 "%b             = OpFAdd %f32 %input_const %a\n"
6786                 "%c             = OpQuantizeToF16 %f32 %b\n"
6787                 "%eq_1          = OpFOrdEqual %bool %c %possible_solution1\n"
6788                 "%eq_2          = OpFOrdEqual %bool %c %possible_solution2\n"
6789                 "%cond          = OpLogicalOr %bool %eq_1 %eq_2\n"
6790                 "%v4cond        = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
6791                 "%retval        = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1"
6792                 "                 OpReturnValue %retval\n"
6793                 "OpFunctionEnd\n";
6794
6795         for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
6796                 map<string, string>                                                                     fragments;
6797                 map<string, string>                                                                     constantSpecialization;
6798
6799                 constantSpecialization["input"]                                         = tests[idx].input;
6800                 constantSpecialization["output1"]                                       = tests[idx].possibleOutput1;
6801                 constantSpecialization["output2"]                                       = tests[idx].possibleOutput2;
6802                 fragments["testfun"]                                                            = function;
6803                 fragments["pre_main"]                                                           = constants.specialize(constantSpecialization);
6804                 createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
6805         }
6806
6807         for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
6808                 map<string, string>                                                                     fragments;
6809                 map<string, string>                                                                     constantSpecialization;
6810                 vector<deInt32>                                                                         passConstants;
6811                 deInt32                                                                                         specConstant;
6812
6813                 constantSpecialization["output1"]                                       = tests[idx].possibleOutput1;
6814                 constantSpecialization["output2"]                                       = tests[idx].possibleOutput2;
6815                 fragments["testfun"]                                                            = function;
6816                 fragments["decoration"]                                                         = specDecorations;
6817                 fragments["pre_main"]                                                           = specConstants.specialize(constantSpecialization);
6818
6819                 memcpy(&specConstant, &tests[idx].inputAsFloat, sizeof(float));
6820                 passConstants.push_back(specConstant);
6821
6822                 createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
6823         }
6824 }
6825
6826 tcu::TestCaseGroup* createOpQuantizeTests(tcu::TestContext& testCtx)
6827 {
6828         de::MovePtr<tcu::TestCaseGroup> opQuantizeTests (new tcu::TestCaseGroup(testCtx, "opquantize", "Test OpQuantizeToF16"));
6829         createOpQuantizeSingleOptionTests(opQuantizeTests.get());
6830         createOpQuantizeTwoPossibilityTests(opQuantizeTests.get());
6831         return opQuantizeTests.release();
6832 }
6833
6834 struct ShaderPermutation
6835 {
6836         deUint8 vertexPermutation;
6837         deUint8 geometryPermutation;
6838         deUint8 tesscPermutation;
6839         deUint8 tessePermutation;
6840         deUint8 fragmentPermutation;
6841 };
6842
6843 ShaderPermutation getShaderPermutation(deUint8 inputValue)
6844 {
6845         ShaderPermutation       permutation =
6846         {
6847                 static_cast<deUint8>(inputValue & 0x10? 1u: 0u),
6848                 static_cast<deUint8>(inputValue & 0x08? 1u: 0u),
6849                 static_cast<deUint8>(inputValue & 0x04? 1u: 0u),
6850                 static_cast<deUint8>(inputValue & 0x02? 1u: 0u),
6851                 static_cast<deUint8>(inputValue & 0x01? 1u: 0u)
6852         };
6853         return permutation;
6854 }
6855
6856 tcu::TestCaseGroup* createModuleTests(tcu::TestContext& testCtx)
6857 {
6858         RGBA                                                            defaultColors[4];
6859         RGBA                                                            invertedColors[4];
6860         de::MovePtr<tcu::TestCaseGroup>         moduleTests                     (new tcu::TestCaseGroup(testCtx, "module", "Multiple entry points into shaders"));
6861
6862         const ShaderElement                                     combinedPipeline[]      =
6863         {
6864                 ShaderElement("module", "main", VK_SHADER_STAGE_VERTEX_BIT),
6865                 ShaderElement("module", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
6866                 ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
6867                 ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
6868                 ShaderElement("module", "main", VK_SHADER_STAGE_FRAGMENT_BIT)
6869         };
6870
6871         getDefaultColors(defaultColors);
6872         getInvertedDefaultColors(invertedColors);
6873         addFunctionCaseWithPrograms<InstanceContext>(
6874                         moduleTests.get(), "same_module", "", createCombinedModule, runAndVerifyDefaultPipeline,
6875                         createInstanceContext(combinedPipeline, map<string, string>()));
6876
6877         const char* numbers[] =
6878         {
6879                 "1", "2"
6880         };
6881
6882         for (deInt8 idx = 0; idx < 32; ++idx)
6883         {
6884                 ShaderPermutation                       permutation             = getShaderPermutation(idx);
6885                 string                                          name                    = string("vert") + numbers[permutation.vertexPermutation] + "_geom" + numbers[permutation.geometryPermutation] + "_tessc" + numbers[permutation.tesscPermutation] + "_tesse" + numbers[permutation.tessePermutation] + "_frag" + numbers[permutation.fragmentPermutation];
6886                 const ShaderElement                     pipeline[]              =
6887                 {
6888                         ShaderElement("vert",   string("vert") +        numbers[permutation.vertexPermutation],         VK_SHADER_STAGE_VERTEX_BIT),
6889                         ShaderElement("geom",   string("geom") +        numbers[permutation.geometryPermutation],       VK_SHADER_STAGE_GEOMETRY_BIT),
6890                         ShaderElement("tessc",  string("tessc") +       numbers[permutation.tesscPermutation],          VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
6891                         ShaderElement("tesse",  string("tesse") +       numbers[permutation.tessePermutation],          VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
6892                         ShaderElement("frag",   string("frag") +        numbers[permutation.fragmentPermutation],       VK_SHADER_STAGE_FRAGMENT_BIT)
6893                 };
6894
6895                 // If there are an even number of swaps, then it should be no-op.
6896                 // If there are an odd number, the color should be flipped.
6897                 if ((permutation.vertexPermutation + permutation.geometryPermutation + permutation.tesscPermutation + permutation.tessePermutation + permutation.fragmentPermutation) % 2 == 0)
6898                 {
6899                         addFunctionCaseWithPrograms<InstanceContext>(
6900                                         moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline,
6901                                         createInstanceContext(pipeline, defaultColors, defaultColors, map<string, string>()));
6902                 }
6903                 else
6904                 {
6905                         addFunctionCaseWithPrograms<InstanceContext>(
6906                                         moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline,
6907                                         createInstanceContext(pipeline, defaultColors, invertedColors, map<string, string>()));
6908                 }
6909         }
6910         return moduleTests.release();
6911 }
6912
6913 tcu::TestCaseGroup* createLoopTests(tcu::TestContext& testCtx)
6914 {
6915         de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "loop", "Looping control flow"));
6916         RGBA defaultColors[4];
6917         getDefaultColors(defaultColors);
6918         map<string, string> fragments;
6919         fragments["pre_main"] =
6920                 "%c_f32_5 = OpConstant %f32 5.\n";
6921
6922         // A loop with a single block. The Continue Target is the loop block
6923         // itself. In SPIR-V terms, the "loop construct" contains no blocks at all
6924         // -- the "continue construct" forms the entire loop.
6925         fragments["testfun"] =
6926                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6927                 "%param1 = OpFunctionParameter %v4f32\n"
6928
6929                 "%entry = OpLabel\n"
6930                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6931                 "OpBranch %loop\n"
6932
6933                 ";adds and subtracts 1.0 to %val in alternate iterations\n"
6934                 "%loop = OpLabel\n"
6935                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
6936                 "%delta = OpPhi %f32 %c_f32_1 %entry %minus_delta %loop\n"
6937                 "%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
6938                 "%val = OpFAdd %f32 %val1 %delta\n"
6939                 "%minus_delta = OpFSub %f32 %c_f32_0 %delta\n"
6940                 "%count__ = OpISub %i32 %count %c_i32_1\n"
6941                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
6942                 "OpLoopMerge %exit %loop None\n"
6943                 "OpBranchConditional %again %loop %exit\n"
6944
6945                 "%exit = OpLabel\n"
6946                 "%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
6947                 "OpReturnValue %result\n"
6948
6949                 "OpFunctionEnd\n"
6950                 ;
6951         createTestsForAllStages("single_block", defaultColors, defaultColors, fragments, testGroup.get());
6952
6953         // Body comprised of multiple basic blocks.
6954         const StringTemplate multiBlock(
6955                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6956                 "%param1 = OpFunctionParameter %v4f32\n"
6957
6958                 "%entry = OpLabel\n"
6959                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6960                 "OpBranch %loop\n"
6961
6962                 ";adds and subtracts 1.0 to %val in alternate iterations\n"
6963                 "%loop = OpLabel\n"
6964                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %gather\n"
6965                 "%delta = OpPhi %f32 %c_f32_1 %entry %delta_next %gather\n"
6966                 "%val1 = OpPhi %f32 %val0 %entry %val %gather\n"
6967                 // There are several possibilities for the Continue Target below.  Each
6968                 // will be specialized into a separate test case.
6969                 "OpLoopMerge %exit ${continue_target} None\n"
6970                 "OpBranch %if\n"
6971
6972                 "%if = OpLabel\n"
6973                 ";delta_next = (delta > 0) ? -1 : 1;\n"
6974                 "%gt0 = OpFOrdGreaterThan %bool %delta %c_f32_0\n"
6975                 "OpSelectionMerge %gather DontFlatten\n"
6976                 "OpBranchConditional %gt0 %even %odd ;tells us if %count is even or odd\n"
6977
6978                 "%odd = OpLabel\n"
6979                 "OpBranch %gather\n"
6980
6981                 "%even = OpLabel\n"
6982                 "OpBranch %gather\n"
6983
6984                 "%gather = OpLabel\n"
6985                 "%delta_next = OpPhi %f32 %c_f32_n1 %even %c_f32_1 %odd\n"
6986                 "%val = OpFAdd %f32 %val1 %delta\n"
6987                 "%count__ = OpISub %i32 %count %c_i32_1\n"
6988                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
6989                 "OpBranchConditional %again %loop %exit\n"
6990
6991                 "%exit = OpLabel\n"
6992                 "%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
6993                 "OpReturnValue %result\n"
6994
6995                 "OpFunctionEnd\n");
6996
6997         map<string, string> continue_target;
6998
6999         // The Continue Target is the loop block itself.
7000         continue_target["continue_target"] = "%loop";
7001         fragments["testfun"] = multiBlock.specialize(continue_target);
7002         createTestsForAllStages("multi_block_continue_construct", defaultColors, defaultColors, fragments, testGroup.get());
7003
7004         // The Continue Target is at the end of the loop.
7005         continue_target["continue_target"] = "%gather";
7006         fragments["testfun"] = multiBlock.specialize(continue_target);
7007         createTestsForAllStages("multi_block_loop_construct", defaultColors, defaultColors, fragments, testGroup.get());
7008
7009         // A loop with continue statement.
7010         fragments["testfun"] =
7011                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7012                 "%param1 = OpFunctionParameter %v4f32\n"
7013
7014                 "%entry = OpLabel\n"
7015                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7016                 "OpBranch %loop\n"
7017
7018                 ";adds 4, 3, and 1 to %val0 (skips 2)\n"
7019                 "%loop = OpLabel\n"
7020                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7021                 "%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
7022                 "OpLoopMerge %exit %continue None\n"
7023                 "OpBranch %if\n"
7024
7025                 "%if = OpLabel\n"
7026                 ";skip if %count==2\n"
7027                 "%eq2 = OpIEqual %bool %count %c_i32_2\n"
7028                 "OpSelectionMerge %continue DontFlatten\n"
7029                 "OpBranchConditional %eq2 %continue %body\n"
7030
7031                 "%body = OpLabel\n"
7032                 "%fcount = OpConvertSToF %f32 %count\n"
7033                 "%val2 = OpFAdd %f32 %val1 %fcount\n"
7034                 "OpBranch %continue\n"
7035
7036                 "%continue = OpLabel\n"
7037                 "%val = OpPhi %f32 %val2 %body %val1 %if\n"
7038                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7039                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7040                 "OpBranchConditional %again %loop %exit\n"
7041
7042                 "%exit = OpLabel\n"
7043                 "%same = OpFSub %f32 %val %c_f32_8\n"
7044                 "%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7045                 "OpReturnValue %result\n"
7046                 "OpFunctionEnd\n";
7047         createTestsForAllStages("continue", defaultColors, defaultColors, fragments, testGroup.get());
7048
7049         // A loop with break.
7050         fragments["testfun"] =
7051                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7052                 "%param1 = OpFunctionParameter %v4f32\n"
7053
7054                 "%entry = OpLabel\n"
7055                 ";param1 components are between 0 and 1, so dot product is 4 or less\n"
7056                 "%dot = OpDot %f32 %param1 %param1\n"
7057                 "%div = OpFDiv %f32 %dot %c_f32_5\n"
7058                 "%zero = OpConvertFToU %u32 %div\n"
7059                 "%two = OpIAdd %i32 %zero %c_i32_2\n"
7060                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7061                 "OpBranch %loop\n"
7062
7063                 ";adds 4 and 3 to %val0 (exits early)\n"
7064                 "%loop = OpLabel\n"
7065                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7066                 "%val1 = OpPhi %f32 %val0 %entry %val2 %continue\n"
7067                 "OpLoopMerge %exit %continue None\n"
7068                 "OpBranch %if\n"
7069
7070                 "%if = OpLabel\n"
7071                 ";end loop if %count==%two\n"
7072                 "%above2 = OpSGreaterThan %bool %count %two\n"
7073                 "OpSelectionMerge %continue DontFlatten\n"
7074                 "OpBranchConditional %above2 %body %exit\n"
7075
7076                 "%body = OpLabel\n"
7077                 "%fcount = OpConvertSToF %f32 %count\n"
7078                 "%val2 = OpFAdd %f32 %val1 %fcount\n"
7079                 "OpBranch %continue\n"
7080
7081                 "%continue = OpLabel\n"
7082                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7083                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7084                 "OpBranchConditional %again %loop %exit\n"
7085
7086                 "%exit = OpLabel\n"
7087                 "%val_post = OpPhi %f32 %val2 %continue %val1 %if\n"
7088                 "%same = OpFSub %f32 %val_post %c_f32_7\n"
7089                 "%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7090                 "OpReturnValue %result\n"
7091                 "OpFunctionEnd\n";
7092         createTestsForAllStages("break", defaultColors, defaultColors, fragments, testGroup.get());
7093
7094         // A loop with return.
7095         fragments["testfun"] =
7096                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7097                 "%param1 = OpFunctionParameter %v4f32\n"
7098
7099                 "%entry = OpLabel\n"
7100                 ";param1 components are between 0 and 1, so dot product is 4 or less\n"
7101                 "%dot = OpDot %f32 %param1 %param1\n"
7102                 "%div = OpFDiv %f32 %dot %c_f32_5\n"
7103                 "%zero = OpConvertFToU %u32 %div\n"
7104                 "%two = OpIAdd %i32 %zero %c_i32_2\n"
7105                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7106                 "OpBranch %loop\n"
7107
7108                 ";returns early without modifying %param1\n"
7109                 "%loop = OpLabel\n"
7110                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
7111                 "%val1 = OpPhi %f32 %val0 %entry %val2 %continue\n"
7112                 "OpLoopMerge %exit %continue None\n"
7113                 "OpBranch %if\n"
7114
7115                 "%if = OpLabel\n"
7116                 ";return if %count==%two\n"
7117                 "%above2 = OpSGreaterThan %bool %count %two\n"
7118                 "OpSelectionMerge %continue DontFlatten\n"
7119                 "OpBranchConditional %above2 %body %early_exit\n"
7120
7121                 "%early_exit = OpLabel\n"
7122                 "OpReturnValue %param1\n"
7123
7124                 "%body = OpLabel\n"
7125                 "%fcount = OpConvertSToF %f32 %count\n"
7126                 "%val2 = OpFAdd %f32 %val1 %fcount\n"
7127                 "OpBranch %continue\n"
7128
7129                 "%continue = OpLabel\n"
7130                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7131                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7132                 "OpBranchConditional %again %loop %exit\n"
7133
7134                 "%exit = OpLabel\n"
7135                 ";should never get here, so return an incorrect result\n"
7136                 "%result = OpVectorInsertDynamic %v4f32 %param1 %val2 %c_i32_0\n"
7137                 "OpReturnValue %result\n"
7138                 "OpFunctionEnd\n";
7139         createTestsForAllStages("return", defaultColors, defaultColors, fragments, testGroup.get());
7140
7141         return testGroup.release();
7142 }
7143
7144 // A collection of tests putting OpControlBarrier in places GLSL forbids but SPIR-V allows.
7145 tcu::TestCaseGroup* createBarrierTests(tcu::TestContext& testCtx)
7146 {
7147         de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "barrier", "OpControlBarrier"));
7148         map<string, string> fragments;
7149
7150         // A barrier inside a function body.
7151         fragments["pre_main"] =
7152                 "%Workgroup = OpConstant %i32 2\n"
7153                 "%SequentiallyConsistent = OpConstant %i32 0x10\n";
7154         fragments["testfun"] =
7155                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7156                 "%param1 = OpFunctionParameter %v4f32\n"
7157                 "%label_testfun = OpLabel\n"
7158                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7159                 "OpReturnValue %param1\n"
7160                 "OpFunctionEnd\n";
7161         addTessCtrlTest(testGroup.get(), "in_function", fragments);
7162
7163         // Common setup code for the following tests.
7164         fragments["pre_main"] =
7165                 "%Workgroup = OpConstant %i32 2\n"
7166                 "%SequentiallyConsistent = OpConstant %i32 0x10\n"
7167                 "%c_f32_5 = OpConstant %f32 5.\n";
7168         const string setupPercentZero =  // Begins %test_code function with code that sets %zero to 0u but cannot be optimized away.
7169                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7170                 "%param1 = OpFunctionParameter %v4f32\n"
7171                 "%entry = OpLabel\n"
7172                 ";param1 components are between 0 and 1, so dot product is 4 or less\n"
7173                 "%dot = OpDot %f32 %param1 %param1\n"
7174                 "%div = OpFDiv %f32 %dot %c_f32_5\n"
7175                 "%zero = OpConvertFToU %u32 %div\n";
7176
7177         // Barriers inside OpSwitch branches.
7178         fragments["testfun"] =
7179                 setupPercentZero +
7180                 "OpSelectionMerge %switch_exit None\n"
7181                 "OpSwitch %zero %switch_default 0 %case0 1 %case1 ;should always go to %case0\n"
7182
7183                 "%case1 = OpLabel\n"
7184                 ";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7185                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7186                 "%wrong_branch_alert1 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7187                 "OpBranch %switch_exit\n"
7188
7189                 "%switch_default = OpLabel\n"
7190                 "%wrong_branch_alert2 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7191                 ";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7192                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7193                 "OpBranch %switch_exit\n"
7194
7195                 "%case0 = OpLabel\n"
7196                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7197                 "OpBranch %switch_exit\n"
7198
7199                 "%switch_exit = OpLabel\n"
7200                 "%ret = OpPhi %v4f32 %param1 %case0 %wrong_branch_alert1 %case1 %wrong_branch_alert2 %switch_default\n"
7201                 "OpReturnValue %ret\n"
7202                 "OpFunctionEnd\n";
7203         addTessCtrlTest(testGroup.get(), "in_switch", fragments);
7204
7205         // Barriers inside if-then-else.
7206         fragments["testfun"] =
7207                 setupPercentZero +
7208                 "%eq0 = OpIEqual %bool %zero %c_u32_0\n"
7209                 "OpSelectionMerge %exit DontFlatten\n"
7210                 "OpBranchConditional %eq0 %then %else\n"
7211
7212                 "%else = OpLabel\n"
7213                 ";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
7214                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7215                 "%wrong_branch_alert = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
7216                 "OpBranch %exit\n"
7217
7218                 "%then = OpLabel\n"
7219                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7220                 "OpBranch %exit\n"
7221
7222                 "%exit = OpLabel\n"
7223                 "%ret = OpPhi %v4f32 %param1 %then %wrong_branch_alert %else\n"
7224                 "OpReturnValue %ret\n"
7225                 "OpFunctionEnd\n";
7226         addTessCtrlTest(testGroup.get(), "in_if", fragments);
7227
7228         // A barrier after control-flow reconvergence, tempting the compiler to attempt something like this:
7229         // http://lists.llvm.org/pipermail/llvm-dev/2009-October/026317.html.
7230         fragments["testfun"] =
7231                 setupPercentZero +
7232                 "%thread_id = OpLoad %i32 %BP_gl_InvocationID\n"
7233                 "%thread0 = OpIEqual %bool %thread_id %c_i32_0\n"
7234                 "OpSelectionMerge %exit DontFlatten\n"
7235                 "OpBranchConditional %thread0 %then %else\n"
7236
7237                 "%else = OpLabel\n"
7238                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7239                 "OpBranch %exit\n"
7240
7241                 "%then = OpLabel\n"
7242                 "%val1 = OpVectorExtractDynamic %f32 %param1 %zero\n"
7243                 "OpBranch %exit\n"
7244
7245                 "%exit = OpLabel\n"
7246                 "%val = OpPhi %f32 %val0 %else %val1 %then\n"
7247                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7248                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %val %zero\n"
7249                 "OpReturnValue %ret\n"
7250                 "OpFunctionEnd\n";
7251         addTessCtrlTest(testGroup.get(), "after_divergent_if", fragments);
7252
7253         // A barrier inside a loop.
7254         fragments["pre_main"] =
7255                 "%Workgroup = OpConstant %i32 2\n"
7256                 "%SequentiallyConsistent = OpConstant %i32 0x10\n"
7257                 "%c_f32_10 = OpConstant %f32 10.\n";
7258         fragments["testfun"] =
7259                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7260                 "%param1 = OpFunctionParameter %v4f32\n"
7261                 "%entry = OpLabel\n"
7262                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
7263                 "OpBranch %loop\n"
7264
7265                 ";adds 4, 3, 2, and 1 to %val0\n"
7266                 "%loop = OpLabel\n"
7267                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
7268                 "%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
7269                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
7270                 "%fcount = OpConvertSToF %f32 %count\n"
7271                 "%val = OpFAdd %f32 %val1 %fcount\n"
7272                 "%count__ = OpISub %i32 %count %c_i32_1\n"
7273                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
7274                 "OpLoopMerge %exit %loop None\n"
7275                 "OpBranchConditional %again %loop %exit\n"
7276
7277                 "%exit = OpLabel\n"
7278                 "%same = OpFSub %f32 %val %c_f32_10\n"
7279                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
7280                 "OpReturnValue %ret\n"
7281                 "OpFunctionEnd\n";
7282         addTessCtrlTest(testGroup.get(), "in_loop", fragments);
7283
7284         return testGroup.release();
7285 }
7286
7287 // Test for the OpFRem instruction.
7288 tcu::TestCaseGroup* createFRemTests(tcu::TestContext& testCtx)
7289 {
7290         de::MovePtr<tcu::TestCaseGroup>         testGroup(new tcu::TestCaseGroup(testCtx, "frem", "OpFRem"));
7291         map<string, string>                                     fragments;
7292         RGBA                                                            inputColors[4];
7293         RGBA                                                            outputColors[4];
7294
7295         fragments["pre_main"]                            =
7296                 "%c_f32_3 = OpConstant %f32 3.0\n"
7297                 "%c_f32_n3 = OpConstant %f32 -3.0\n"
7298                 "%c_f32_4 = OpConstant %f32 4.0\n"
7299                 "%c_f32_p75 = OpConstant %f32 0.75\n"
7300                 "%c_v4f32_p75_p75_p75_p75 = OpConstantComposite %v4f32 %c_f32_p75 %c_f32_p75 %c_f32_p75 %c_f32_p75 \n"
7301                 "%c_v4f32_4_4_4_4 = OpConstantComposite %v4f32 %c_f32_4 %c_f32_4 %c_f32_4 %c_f32_4\n"
7302                 "%c_v4f32_3_n3_3_n3 = OpConstantComposite %v4f32 %c_f32_3 %c_f32_n3 %c_f32_3 %c_f32_n3\n";
7303
7304         // The test does the following.
7305         // vec4 result = (param1 * 8.0) - 4.0;
7306         // return (frem(result.x,3) + 0.75, frem(result.y, -3) + 0.75, 0, 1)
7307         fragments["testfun"]                             =
7308                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7309                 "%param1 = OpFunctionParameter %v4f32\n"
7310                 "%label_testfun = OpLabel\n"
7311                 "%v_times_8 = OpVectorTimesScalar %v4f32 %param1 %c_f32_8\n"
7312                 "%minus_4 = OpFSub %v4f32 %v_times_8 %c_v4f32_4_4_4_4\n"
7313                 "%frem = OpFRem %v4f32 %minus_4 %c_v4f32_3_n3_3_n3\n"
7314                 "%added = OpFAdd %v4f32 %frem %c_v4f32_p75_p75_p75_p75\n"
7315                 "%xyz_1 = OpVectorInsertDynamic %v4f32 %added %c_f32_1 %c_i32_3\n"
7316                 "%xy_0_1 = OpVectorInsertDynamic %v4f32 %xyz_1 %c_f32_0 %c_i32_2\n"
7317                 "OpReturnValue %xy_0_1\n"
7318                 "OpFunctionEnd\n";
7319
7320
7321         inputColors[0]          = RGBA(16,      16,             0, 255);
7322         inputColors[1]          = RGBA(232, 232,        0, 255);
7323         inputColors[2]          = RGBA(232, 16,         0, 255);
7324         inputColors[3]          = RGBA(16,      232,    0, 255);
7325
7326         outputColors[0]         = RGBA(64,      64,             0, 255);
7327         outputColors[1]         = RGBA(255, 255,        0, 255);
7328         outputColors[2]         = RGBA(255, 64,         0, 255);
7329         outputColors[3]         = RGBA(64,      255,    0, 255);
7330
7331         createTestsForAllStages("frem", inputColors, outputColors, fragments, testGroup.get());
7332         return testGroup.release();
7333 }
7334
7335 // Test for the OpSRem instruction.
7336 tcu::TestCaseGroup* createOpSRemGraphicsTests(tcu::TestContext& testCtx, qpTestResult negFailResult)
7337 {
7338         de::MovePtr<tcu::TestCaseGroup>         testGroup(new tcu::TestCaseGroup(testCtx, "srem", "OpSRem"));
7339         map<string, string>                                     fragments;
7340
7341         fragments["pre_main"]                            =
7342                 "%c_f32_255 = OpConstant %f32 255.0\n"
7343                 "%c_i32_128 = OpConstant %i32 128\n"
7344                 "%c_i32_255 = OpConstant %i32 255\n"
7345                 "%c_v4f32_255 = OpConstantComposite %v4f32 %c_f32_255 %c_f32_255 %c_f32_255 %c_f32_255 \n"
7346                 "%c_v4f32_0_5 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 \n"
7347                 "%c_v4i32_128 = OpConstantComposite %v4i32 %c_i32_128 %c_i32_128 %c_i32_128 %c_i32_128 \n";
7348
7349         // The test does the following.
7350         // ivec4 ints = int(param1 * 255.0 + 0.5) - 128;
7351         // ivec4 result = ivec4(srem(ints.x, ints.y), srem(ints.y, ints.z), srem(ints.z, ints.x), 255);
7352         // return float(result + 128) / 255.0;
7353         fragments["testfun"]                             =
7354                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7355                 "%param1 = OpFunctionParameter %v4f32\n"
7356                 "%label_testfun = OpLabel\n"
7357                 "%div255 = OpFMul %v4f32 %param1 %c_v4f32_255\n"
7358                 "%add0_5 = OpFAdd %v4f32 %div255 %c_v4f32_0_5\n"
7359                 "%uints_in = OpConvertFToS %v4i32 %add0_5\n"
7360                 "%ints_in = OpISub %v4i32 %uints_in %c_v4i32_128\n"
7361                 "%x_in = OpCompositeExtract %i32 %ints_in 0\n"
7362                 "%y_in = OpCompositeExtract %i32 %ints_in 1\n"
7363                 "%z_in = OpCompositeExtract %i32 %ints_in 2\n"
7364                 "%x_out = OpSRem %i32 %x_in %y_in\n"
7365                 "%y_out = OpSRem %i32 %y_in %z_in\n"
7366                 "%z_out = OpSRem %i32 %z_in %x_in\n"
7367                 "%ints_out = OpCompositeConstruct %v4i32 %x_out %y_out %z_out %c_i32_255\n"
7368                 "%ints_offset = OpIAdd %v4i32 %ints_out %c_v4i32_128\n"
7369                 "%f_ints_offset = OpConvertSToF %v4f32 %ints_offset\n"
7370                 "%float_out = OpFDiv %v4f32 %f_ints_offset %c_v4f32_255\n"
7371                 "OpReturnValue %float_out\n"
7372                 "OpFunctionEnd\n";
7373
7374         const struct CaseParams
7375         {
7376                 const char*             name;
7377                 const char*             failMessageTemplate;    // customized status message
7378                 qpTestResult    failResult;                             // override status on failure
7379                 int                             operands[4][3];                 // four (x, y, z) vectors of operands
7380                 int                             results[4][3];                  // four (x, y, z) vectors of results
7381         } cases[] =
7382         {
7383                 {
7384                         "positive",
7385                         "${reason}",
7386                         QP_TEST_RESULT_FAIL,
7387                         { { 5, 12, 17 }, { 5, 5, 7 }, { 75, 8, 81 }, { 25, 60, 100 } },                 // operands
7388                         { { 5, 12,  2 }, { 0, 5, 2 }, {  3, 8,  6 }, { 25, 60,   0 } },                 // results
7389                 },
7390                 {
7391                         "all",
7392                         "Inconsistent results, but within specification: ${reason}",
7393                         negFailResult,                                                                                                                  // negative operands, not required by the spec
7394                         { { 5, 12, -17 }, { -5, -5, 7 }, { 75, 8, -81 }, { 25, -60, 100 } },    // operands
7395                         { { 5, 12,  -2 }, {  0, -5, 2 }, {  3, 8,  -6 }, { 25, -60,   0 } },    // results
7396                 },
7397         };
7398         // If either operand is negative the result is undefined. Some implementations may still return correct values.
7399
7400         for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(cases); ++caseNdx)
7401         {
7402                 const CaseParams&       params                  = cases[caseNdx];
7403                 RGBA                            inputColors[4];
7404                 RGBA                            outputColors[4];
7405
7406                 for (int i = 0; i < 4; ++i)
7407                 {
7408                         inputColors [i] = RGBA(params.operands[i][0] + 128, params.operands[i][1] + 128, params.operands[i][2] + 128, 255);
7409                         outputColors[i] = RGBA(params.results [i][0] + 128, params.results [i][1] + 128, params.results [i][2] + 128, 255);
7410                 }
7411
7412                 createTestsForAllStages(params.name, inputColors, outputColors, fragments, testGroup.get(), params.failResult, params.failMessageTemplate);
7413         }
7414
7415         return testGroup.release();
7416 }
7417
7418 // Test for the OpSMod instruction.
7419 tcu::TestCaseGroup* createOpSModGraphicsTests(tcu::TestContext& testCtx, qpTestResult negFailResult)
7420 {
7421         de::MovePtr<tcu::TestCaseGroup>         testGroup(new tcu::TestCaseGroup(testCtx, "smod", "OpSMod"));
7422         map<string, string>                                     fragments;
7423
7424         fragments["pre_main"]                            =
7425                 "%c_f32_255 = OpConstant %f32 255.0\n"
7426                 "%c_i32_128 = OpConstant %i32 128\n"
7427                 "%c_i32_255 = OpConstant %i32 255\n"
7428                 "%c_v4f32_255 = OpConstantComposite %v4f32 %c_f32_255 %c_f32_255 %c_f32_255 %c_f32_255 \n"
7429                 "%c_v4f32_0_5 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 \n"
7430                 "%c_v4i32_128 = OpConstantComposite %v4i32 %c_i32_128 %c_i32_128 %c_i32_128 %c_i32_128 \n";
7431
7432         // The test does the following.
7433         // ivec4 ints = int(param1 * 255.0 + 0.5) - 128;
7434         // ivec4 result = ivec4(smod(ints.x, ints.y), smod(ints.y, ints.z), smod(ints.z, ints.x), 255);
7435         // return float(result + 128) / 255.0;
7436         fragments["testfun"]                             =
7437                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
7438                 "%param1 = OpFunctionParameter %v4f32\n"
7439                 "%label_testfun = OpLabel\n"
7440                 "%div255 = OpFMul %v4f32 %param1 %c_v4f32_255\n"
7441                 "%add0_5 = OpFAdd %v4f32 %div255 %c_v4f32_0_5\n"
7442                 "%uints_in = OpConvertFToS %v4i32 %add0_5\n"
7443                 "%ints_in = OpISub %v4i32 %uints_in %c_v4i32_128\n"
7444                 "%x_in = OpCompositeExtract %i32 %ints_in 0\n"
7445                 "%y_in = OpCompositeExtract %i32 %ints_in 1\n"
7446                 "%z_in = OpCompositeExtract %i32 %ints_in 2\n"
7447                 "%x_out = OpSMod %i32 %x_in %y_in\n"
7448                 "%y_out = OpSMod %i32 %y_in %z_in\n"
7449                 "%z_out = OpSMod %i32 %z_in %x_in\n"
7450                 "%ints_out = OpCompositeConstruct %v4i32 %x_out %y_out %z_out %c_i32_255\n"
7451                 "%ints_offset = OpIAdd %v4i32 %ints_out %c_v4i32_128\n"
7452                 "%f_ints_offset = OpConvertSToF %v4f32 %ints_offset\n"
7453                 "%float_out = OpFDiv %v4f32 %f_ints_offset %c_v4f32_255\n"
7454                 "OpReturnValue %float_out\n"
7455                 "OpFunctionEnd\n";
7456
7457         const struct CaseParams
7458         {
7459                 const char*             name;
7460                 const char*             failMessageTemplate;    // customized status message
7461                 qpTestResult    failResult;                             // override status on failure
7462                 int                             operands[4][3];                 // four (x, y, z) vectors of operands
7463                 int                             results[4][3];                  // four (x, y, z) vectors of results
7464         } cases[] =
7465         {
7466                 {
7467                         "positive",
7468                         "${reason}",
7469                         QP_TEST_RESULT_FAIL,
7470                         { { 5, 12, 17 }, { 5, 5, 7 }, { 75, 8, 81 }, { 25, 60, 100 } },                         // operands
7471                         { { 5, 12,  2 }, { 0, 5, 2 }, {  3, 8,  6 }, { 25, 60,   0 } },                         // results
7472                 },
7473                 {
7474                         "all",
7475                         "Inconsistent results, but within specification: ${reason}",
7476                         negFailResult,                                                                                                                          // negative operands, not required by the spec
7477                         { { 5, 12, -17 }, { -5, -5,  7 }, { 75,   8, -81 }, {  25, -60, 100 } },        // operands
7478                         { { 5, -5,   3 }, {  0,  2, -3 }, {  3, -73,  69 }, { -35,  40,   0 } },        // results
7479                 },
7480         };
7481         // If either operand is negative the result is undefined. Some implementations may still return correct values.
7482
7483         for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(cases); ++caseNdx)
7484         {
7485                 const CaseParams&       params                  = cases[caseNdx];
7486                 RGBA                            inputColors[4];
7487                 RGBA                            outputColors[4];
7488
7489                 for (int i = 0; i < 4; ++i)
7490                 {
7491                         inputColors [i] = RGBA(params.operands[i][0] + 128, params.operands[i][1] + 128, params.operands[i][2] + 128, 255);
7492                         outputColors[i] = RGBA(params.results [i][0] + 128, params.results [i][1] + 128, params.results [i][2] + 128, 255);
7493                 }
7494
7495                 createTestsForAllStages(params.name, inputColors, outputColors, fragments, testGroup.get(), params.failResult, params.failMessageTemplate);
7496         }
7497
7498         return testGroup.release();
7499 }
7500
7501 enum IntegerType
7502 {
7503         INTEGER_TYPE_SIGNED_16,
7504         INTEGER_TYPE_SIGNED_32,
7505         INTEGER_TYPE_SIGNED_64,
7506
7507         INTEGER_TYPE_UNSIGNED_16,
7508         INTEGER_TYPE_UNSIGNED_32,
7509         INTEGER_TYPE_UNSIGNED_64,
7510 };
7511
7512 const string getBitWidthStr (IntegerType type)
7513 {
7514         switch (type)
7515         {
7516                 case INTEGER_TYPE_SIGNED_16:
7517                 case INTEGER_TYPE_UNSIGNED_16:  return "16";
7518
7519                 case INTEGER_TYPE_SIGNED_32:
7520                 case INTEGER_TYPE_UNSIGNED_32:  return "32";
7521
7522                 case INTEGER_TYPE_SIGNED_64:
7523                 case INTEGER_TYPE_UNSIGNED_64:  return "64";
7524
7525                 default:                                                DE_ASSERT(false);
7526                                                                                 return "";
7527         }
7528 }
7529
7530 const string getByteWidthStr (IntegerType type)
7531 {
7532         switch (type)
7533         {
7534                 case INTEGER_TYPE_SIGNED_16:
7535                 case INTEGER_TYPE_UNSIGNED_16:  return "2";
7536
7537                 case INTEGER_TYPE_SIGNED_32:
7538                 case INTEGER_TYPE_UNSIGNED_32:  return "4";
7539
7540                 case INTEGER_TYPE_SIGNED_64:
7541                 case INTEGER_TYPE_UNSIGNED_64:  return "8";
7542
7543                 default:                                                DE_ASSERT(false);
7544                                                                                 return "";
7545         }
7546 }
7547
7548 bool isSigned (IntegerType type)
7549 {
7550         return (type <= INTEGER_TYPE_SIGNED_64);
7551 }
7552
7553 const string getTypeName (IntegerType type)
7554 {
7555         string prefix = isSigned(type) ? "" : "u";
7556         return prefix + "int" + getBitWidthStr(type);
7557 }
7558
7559 const string getTestName (IntegerType from, IntegerType to)
7560 {
7561         return getTypeName(from) + "_to_" + getTypeName(to);
7562 }
7563
7564 const string getAsmTypeDeclaration (IntegerType type)
7565 {
7566         string sign = isSigned(type) ? " 1" : " 0";
7567         return "OpTypeInt " + getBitWidthStr(type) + sign;
7568 }
7569
7570 const string getAsmTypeName (IntegerType type)
7571 {
7572         const string prefix = isSigned(type) ? "%i" : "%u";
7573         return prefix + getBitWidthStr(type);
7574 }
7575
7576 template<typename T>
7577 BufferSp getSpecializedBuffer (deInt64 number)
7578 {
7579         return BufferSp(new Buffer<T>(vector<T>(1, (T)number)));
7580 }
7581
7582 BufferSp getBuffer (IntegerType type, deInt64 number)
7583 {
7584         switch (type)
7585         {
7586                 case INTEGER_TYPE_SIGNED_16:    return getSpecializedBuffer<deInt16>(number);
7587                 case INTEGER_TYPE_SIGNED_32:    return getSpecializedBuffer<deInt32>(number);
7588                 case INTEGER_TYPE_SIGNED_64:    return getSpecializedBuffer<deInt64>(number);
7589
7590                 case INTEGER_TYPE_UNSIGNED_16:  return getSpecializedBuffer<deUint16>(number);
7591                 case INTEGER_TYPE_UNSIGNED_32:  return getSpecializedBuffer<deUint32>(number);
7592                 case INTEGER_TYPE_UNSIGNED_64:  return getSpecializedBuffer<deUint64>(number);
7593
7594                 default:                                                DE_ASSERT(false);
7595                                                                                 return BufferSp(new Buffer<deInt32>(vector<deInt32>(1, 0)));
7596         }
7597 }
7598
7599 bool usesInt16 (IntegerType from, IntegerType to)
7600 {
7601         return (from == INTEGER_TYPE_SIGNED_16 || from == INTEGER_TYPE_UNSIGNED_16
7602                         || to == INTEGER_TYPE_SIGNED_16 || to == INTEGER_TYPE_UNSIGNED_16);
7603 }
7604
7605 bool usesInt64 (IntegerType from, IntegerType to)
7606 {
7607         return (from == INTEGER_TYPE_SIGNED_64 || from == INTEGER_TYPE_UNSIGNED_64
7608                         || to == INTEGER_TYPE_SIGNED_64 || to == INTEGER_TYPE_UNSIGNED_64);
7609 }
7610
7611 ComputeTestFeatures getConversionUsedFeatures (IntegerType from, IntegerType to)
7612 {
7613         if (usesInt16(from, to))
7614         {
7615                 if (usesInt64(from, to))
7616                 {
7617                         return COMPUTE_TEST_USES_INT16_INT64;
7618                 }
7619                 else
7620                 {
7621                         return COMPUTE_TEST_USES_INT16;
7622                 }
7623         }
7624         else
7625         {
7626                 return COMPUTE_TEST_USES_INT64;
7627         }
7628 }
7629
7630 struct ConvertCase
7631 {
7632         ConvertCase (IntegerType from, IntegerType to, deInt64 number)
7633         : m_fromType            (from)
7634         , m_toType                      (to)
7635         , m_features            (getConversionUsedFeatures(from, to))
7636         , m_name                        (getTestName(from, to))
7637         , m_inputBuffer         (getBuffer(from, number))
7638         , m_outputBuffer        (getBuffer(to, number))
7639         {
7640                 m_asmTypes["inputType"]         = getAsmTypeName(from);
7641                 m_asmTypes["outputType"]        = getAsmTypeName(to);
7642
7643                 if (m_features == COMPUTE_TEST_USES_INT16)
7644                 {
7645                         m_asmTypes["int_capabilities"] = "OpCapability Int16\n";
7646                         m_asmTypes["int_additional_decl"] = "%i16        = OpTypeInt 16 1\n%u16        = OpTypeInt 16 0\n";
7647                 }
7648                 else if (m_features == COMPUTE_TEST_USES_INT64)
7649                 {
7650                         m_asmTypes["int_capabilities"] = "OpCapability Int64\n";
7651                         m_asmTypes["int_additional_decl"] = "%i64        = OpTypeInt 64 1\n%u64        = OpTypeInt 64 0\n";
7652                 }
7653                 else if (m_features == COMPUTE_TEST_USES_INT16_INT64)
7654                 {
7655                         m_asmTypes["int_capabilities"] = string("OpCapability Int16\n") +
7656                                                                                                         "OpCapability Int64\n";
7657                         m_asmTypes["int_additional_decl"] =     "%i16        = OpTypeInt 16 1\n%u16        = OpTypeInt 16 0\n"
7658                                                                 "%i64        = OpTypeInt 64 1\n%u64        = OpTypeInt 64 0\n";
7659                 }
7660                 else
7661                 {
7662                         DE_ASSERT(false);
7663                 }
7664         }
7665
7666         IntegerType                             m_fromType;
7667         IntegerType                             m_toType;
7668         ComputeTestFeatures             m_features;
7669         string                                  m_name;
7670         map<string, string>             m_asmTypes;
7671         BufferSp                                m_inputBuffer;
7672         BufferSp                                m_outputBuffer;
7673 };
7674
7675 const string getConvertCaseShaderStr (const string& instruction, const ConvertCase& convertCase)
7676 {
7677         map<string, string> params = convertCase.m_asmTypes;
7678
7679         params["instruction"] = instruction;
7680
7681         params["inDecorator"] = getByteWidthStr(convertCase.m_fromType);
7682         params["outDecorator"] = getByteWidthStr(convertCase.m_toType);
7683
7684         const StringTemplate shader (
7685                 "OpCapability Shader\n"
7686                 "${int_capabilities}"
7687                 "OpMemoryModel Logical GLSL450\n"
7688                 "OpEntryPoint GLCompute %main \"main\" %id\n"
7689                 "OpExecutionMode %main LocalSize 1 1 1\n"
7690                 "OpSource GLSL 430\n"
7691                 "OpName %main           \"main\"\n"
7692                 "OpName %id             \"gl_GlobalInvocationID\"\n"
7693                 // Decorators
7694                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
7695                 "OpDecorate %indata DescriptorSet 0\n"
7696                 "OpDecorate %indata Binding 0\n"
7697                 "OpDecorate %outdata DescriptorSet 0\n"
7698                 "OpDecorate %outdata Binding 1\n"
7699                 "OpDecorate %in_arr ArrayStride ${inDecorator}\n"
7700                 "OpDecorate %out_arr ArrayStride ${outDecorator}\n"
7701                 "OpDecorate %in_buf BufferBlock\n"
7702                 "OpDecorate %out_buf BufferBlock\n"
7703                 "OpMemberDecorate %in_buf 0 Offset 0\n"
7704                 "OpMemberDecorate %out_buf 0 Offset 0\n"
7705                 // Base types
7706                 "%void       = OpTypeVoid\n"
7707                 "%voidf      = OpTypeFunction %void\n"
7708                 "%u32        = OpTypeInt 32 0\n"
7709                 "%i32        = OpTypeInt 32 1\n"
7710                 "${int_additional_decl}"
7711                 "%uvec3      = OpTypeVector %u32 3\n"
7712                 "%uvec3ptr   = OpTypePointer Input %uvec3\n"
7713                 // Derived types
7714                 "%in_ptr     = OpTypePointer Uniform ${inputType}\n"
7715                 "%out_ptr    = OpTypePointer Uniform ${outputType}\n"
7716                 "%in_arr     = OpTypeRuntimeArray ${inputType}\n"
7717                 "%out_arr    = OpTypeRuntimeArray ${outputType}\n"
7718                 "%in_buf     = OpTypeStruct %in_arr\n"
7719                 "%out_buf    = OpTypeStruct %out_arr\n"
7720                 "%in_bufptr  = OpTypePointer Uniform %in_buf\n"
7721                 "%out_bufptr = OpTypePointer Uniform %out_buf\n"
7722                 "%indata     = OpVariable %in_bufptr Uniform\n"
7723                 "%outdata    = OpVariable %out_bufptr Uniform\n"
7724                 "%inputptr   = OpTypePointer Input ${inputType}\n"
7725                 "%id         = OpVariable %uvec3ptr Input\n"
7726                 // Constants
7727                 "%zero       = OpConstant %i32 0\n"
7728                 // Main function
7729                 "%main       = OpFunction %void None %voidf\n"
7730                 "%label      = OpLabel\n"
7731                 "%idval      = OpLoad %uvec3 %id\n"
7732                 "%x          = OpCompositeExtract %u32 %idval 0\n"
7733                 "%inloc      = OpAccessChain %in_ptr %indata %zero %x\n"
7734                 "%outloc     = OpAccessChain %out_ptr %outdata %zero %x\n"
7735                 "%inval      = OpLoad ${inputType} %inloc\n"
7736                 "%conv       = ${instruction} ${outputType} %inval\n"
7737                 "              OpStore %outloc %conv\n"
7738                 "              OpReturn\n"
7739                 "              OpFunctionEnd\n"
7740         );
7741
7742         return shader.specialize(params);
7743 }
7744
7745 void createSConvertCases (vector<ConvertCase>& testCases)
7746 {
7747         // Convert int to int
7748         testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_16, INTEGER_TYPE_SIGNED_32,         14669));
7749         testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_16, INTEGER_TYPE_SIGNED_64,         3341));
7750
7751         testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_32, INTEGER_TYPE_SIGNED_64,         973610259));
7752
7753         // Convert int to unsigned int
7754         testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_16, INTEGER_TYPE_UNSIGNED_32,       9288));
7755         testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_16, INTEGER_TYPE_UNSIGNED_64,       15460));
7756
7757         testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_32, INTEGER_TYPE_UNSIGNED_64,       346213461));
7758 }
7759
7760 //  Test for the OpSConvert instruction.
7761 tcu::TestCaseGroup* createSConvertTests (tcu::TestContext& testCtx)
7762 {
7763         const string instruction                                ("OpSConvert");
7764         de::MovePtr<tcu::TestCaseGroup> group   (new tcu::TestCaseGroup(testCtx, "sconvert", "OpSConvert"));
7765         vector<ConvertCase>                             testCases;
7766         createSConvertCases(testCases);
7767
7768         for (vector<ConvertCase>::const_iterator test = testCases.begin(); test != testCases.end(); ++test)
7769         {
7770                 ComputeShaderSpec       spec;
7771
7772                 spec.assembly = getConvertCaseShaderStr(instruction, *test);
7773                 spec.inputs.push_back(test->m_inputBuffer);
7774                 spec.outputs.push_back(test->m_outputBuffer);
7775                 spec.numWorkGroups = IVec3(1, 1, 1);
7776
7777                 group->addChild(new SpvAsmComputeShaderCase(testCtx, test->m_name.c_str(), "Convert integers with OpSConvert.", spec, test->m_features));
7778         }
7779
7780         return group.release();
7781 }
7782
7783 void createUConvertCases (vector<ConvertCase>& testCases)
7784 {
7785         // Convert unsigned int to unsigned int
7786         testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_16,       INTEGER_TYPE_UNSIGNED_32,       60653));
7787         testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_16,       INTEGER_TYPE_UNSIGNED_64,       17991));
7788
7789         testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_32,       INTEGER_TYPE_UNSIGNED_64,       904256275));
7790
7791         // Convert unsigned int to int
7792         testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_16,       INTEGER_TYPE_SIGNED_32,         38002));
7793         testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_16,       INTEGER_TYPE_SIGNED_64,         64921));
7794
7795         testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_32,       INTEGER_TYPE_SIGNED_64,         4294956295ll));
7796 }
7797
7798 //  Test for the OpUConvert instruction.
7799 tcu::TestCaseGroup* createUConvertTests (tcu::TestContext& testCtx)
7800 {
7801         const string instruction                                ("OpUConvert");
7802         de::MovePtr<tcu::TestCaseGroup> group   (new tcu::TestCaseGroup(testCtx, "uconvert", "OpUConvert"));
7803         vector<ConvertCase>                             testCases;
7804         createUConvertCases(testCases);
7805
7806         for (vector<ConvertCase>::const_iterator test = testCases.begin(); test != testCases.end(); ++test)
7807         {
7808                 ComputeShaderSpec       spec;
7809
7810                 spec.assembly = getConvertCaseShaderStr(instruction, *test);
7811                 spec.inputs.push_back(test->m_inputBuffer);
7812                 spec.outputs.push_back(test->m_outputBuffer);
7813                 spec.numWorkGroups = IVec3(1, 1, 1);
7814
7815                 group->addChild(new SpvAsmComputeShaderCase(testCtx, test->m_name.c_str(), "Convert integers with OpUConvert.", spec, test->m_features));
7816         }
7817         return group.release();
7818 }
7819
7820 const string getNumberTypeName (const NumberType type)
7821 {
7822         if (type == NUMBERTYPE_INT32)
7823         {
7824                 return "int";
7825         }
7826         else if (type == NUMBERTYPE_UINT32)
7827         {
7828                 return "uint";
7829         }
7830         else if (type == NUMBERTYPE_FLOAT32)
7831         {
7832                 return "float";
7833         }
7834         else
7835         {
7836                 DE_ASSERT(false);
7837                 return "";
7838         }
7839 }
7840
7841 deInt32 getInt(de::Random& rnd)
7842 {
7843         return rnd.getInt(std::numeric_limits<int>::min(), std::numeric_limits<int>::max());
7844 }
7845
7846 const string repeatString (const string& str, int times)
7847 {
7848         string filler;
7849         for (int i = 0; i < times; ++i)
7850         {
7851                 filler += str;
7852         }
7853         return filler;
7854 }
7855
7856 const string getRandomConstantString (const NumberType type, de::Random& rnd)
7857 {
7858         if (type == NUMBERTYPE_INT32)
7859         {
7860                 return numberToString<deInt32>(getInt(rnd));
7861         }
7862         else if (type == NUMBERTYPE_UINT32)
7863         {
7864                 return numberToString<deUint32>(rnd.getUint32());
7865         }
7866         else if (type == NUMBERTYPE_FLOAT32)
7867         {
7868                 return numberToString<float>(rnd.getFloat());
7869         }
7870         else
7871         {
7872                 DE_ASSERT(false);
7873                 return "";
7874         }
7875 }
7876
7877 void createVectorCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
7878 {
7879         map<string, string> params;
7880
7881         // Vec2 to Vec4
7882         for (int width = 2; width <= 4; ++width)
7883         {
7884                 const string randomConst = numberToString(getInt(rnd));
7885                 const string widthStr = numberToString(width);
7886                 const string composite_type = "${customType}vec" + widthStr;
7887                 const int index = rnd.getInt(0, width-1);
7888
7889                 params["type"]                  = "vec";
7890                 params["name"]                  = params["type"] + "_" + widthStr;
7891                 params["compositeDecl"]         = composite_type + " = OpTypeVector ${customType} " + widthStr +"\n";
7892                 params["compositeType"]         = composite_type;
7893                 params["filler"]                = string("%filler    = OpConstant ${customType} ") + getRandomConstantString(type, rnd) + "\n";
7894                 params["compositeConstruct"]    = "%instance  = OpCompositeConstruct " + composite_type + repeatString(" %filler", width) + "\n";
7895                 params["indexes"]               = numberToString(index);
7896                 testCases.push_back(params);
7897         }
7898 }
7899
7900 void createArrayCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
7901 {
7902         const int limit = 10;
7903         map<string, string> params;
7904
7905         for (int width = 2; width <= limit; ++width)
7906         {
7907                 string randomConst = numberToString(getInt(rnd));
7908                 string widthStr = numberToString(width);
7909                 int index = rnd.getInt(0, width-1);
7910
7911                 params["type"]                  = "array";
7912                 params["name"]                  = params["type"] + "_" + widthStr;
7913                 params["compositeDecl"]         = string("%arraywidth = OpConstant %u32 " + widthStr + "\n")
7914                                                                                         +        "%composite = OpTypeArray ${customType} %arraywidth\n";
7915                 params["compositeType"]         = "%composite";
7916                 params["filler"]                = string("%filler    = OpConstant ${customType} ") + getRandomConstantString(type, rnd) + "\n";
7917                 params["compositeConstruct"]    = "%instance  = OpCompositeConstruct %composite" + repeatString(" %filler", width) + "\n";
7918                 params["indexes"]               = numberToString(index);
7919                 testCases.push_back(params);
7920         }
7921 }
7922
7923 void createStructCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
7924 {
7925         const int limit = 10;
7926         map<string, string> params;
7927
7928         for (int width = 2; width <= limit; ++width)
7929         {
7930                 string randomConst = numberToString(getInt(rnd));
7931                 int index = rnd.getInt(0, width-1);
7932
7933                 params["type"]                  = "struct";
7934                 params["name"]                  = params["type"] + "_" + numberToString(width);
7935                 params["compositeDecl"]         = "%composite = OpTypeStruct" + repeatString(" ${customType}", width) + "\n";
7936                 params["compositeType"]         = "%composite";
7937                 params["filler"]                = string("%filler    = OpConstant ${customType} ") + getRandomConstantString(type, rnd) + "\n";
7938                 params["compositeConstruct"]    = "%instance  = OpCompositeConstruct %composite" + repeatString(" %filler", width) + "\n";
7939                 params["indexes"]               = numberToString(index);
7940                 testCases.push_back(params);
7941         }
7942 }
7943
7944 void createMatrixCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
7945 {
7946         map<string, string> params;
7947
7948         // Vec2 to Vec4
7949         for (int width = 2; width <= 4; ++width)
7950         {
7951                 string widthStr = numberToString(width);
7952
7953                 for (int column = 2 ; column <= 4; ++column)
7954                 {
7955                         int index_0 = rnd.getInt(0, column-1);
7956                         int index_1 = rnd.getInt(0, width-1);
7957                         string columnStr = numberToString(column);
7958
7959                         params["type"]          = "matrix";
7960                         params["name"]          = params["type"] + "_" + widthStr + "x" + columnStr;
7961                         params["compositeDecl"] = string("%vectype   = OpTypeVector ${customType} " + widthStr + "\n")
7962                                                                                                 +        "%composite = OpTypeMatrix %vectype " + columnStr + "\n";
7963                         params["compositeType"] = "%composite";
7964
7965                         params["filler"]        = string("%filler    = OpConstant ${customType} ") + getRandomConstantString(type, rnd) + "\n"
7966                                                                                                 +        "%fillerVec = OpConstantComposite %vectype" + repeatString(" %filler", width) + "\n";
7967
7968                         params["compositeConstruct"]    = "%instance  = OpCompositeConstruct %composite" + repeatString(" %fillerVec", column) + "\n";
7969                         params["indexes"]       = numberToString(index_0) + " " + numberToString(index_1);
7970                         testCases.push_back(params);
7971                 }
7972         }
7973 }
7974
7975 void createCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
7976 {
7977         createVectorCompositeCases(testCases, rnd, type);
7978         createArrayCompositeCases(testCases, rnd, type);
7979         createStructCompositeCases(testCases, rnd, type);
7980         // Matrix only supports float types
7981         if (type == NUMBERTYPE_FLOAT32)
7982         {
7983                 createMatrixCompositeCases(testCases, rnd, type);
7984         }
7985 }
7986
7987 const string getAssemblyTypeDeclaration (const NumberType type)
7988 {
7989         switch (type)
7990         {
7991                 case NUMBERTYPE_INT32:          return "OpTypeInt 32 1";
7992                 case NUMBERTYPE_UINT32:         return "OpTypeInt 32 0";
7993                 case NUMBERTYPE_FLOAT32:        return "OpTypeFloat 32";
7994                 default:                        DE_ASSERT(false); return "";
7995         }
7996 }
7997
7998 const string getAssemblyTypeName (const NumberType type)
7999 {
8000         switch (type)
8001         {
8002                 case NUMBERTYPE_INT32:          return "%i32";
8003                 case NUMBERTYPE_UINT32:         return "%u32";
8004                 case NUMBERTYPE_FLOAT32:        return "%f32";
8005                 default:                        DE_ASSERT(false); return "";
8006         }
8007 }
8008
8009 const string specializeCompositeInsertShaderTemplate (const NumberType type, const map<string, string>& params)
8010 {
8011         map<string, string>     parameters(params);
8012
8013         const string customType = getAssemblyTypeName(type);
8014         map<string, string> substCustomType;
8015         substCustomType["customType"] = customType;
8016         parameters["compositeDecl"] = StringTemplate(parameters.at("compositeDecl")).specialize(substCustomType);
8017         parameters["compositeType"] = StringTemplate(parameters.at("compositeType")).specialize(substCustomType);
8018         parameters["compositeConstruct"] = StringTemplate(parameters.at("compositeConstruct")).specialize(substCustomType);
8019         parameters["filler"] = StringTemplate(parameters.at("filler")).specialize(substCustomType);
8020         parameters["customType"] = customType;
8021         parameters["compositeDecorator"] = (parameters["type"] == "array") ? "OpDecorate %composite ArrayStride 4\n" : "";
8022
8023         if (parameters.at("compositeType") != "%u32vec3")
8024         {
8025                 parameters["u32vec3Decl"] = "%u32vec3   = OpTypeVector %u32 3\n";
8026         }
8027
8028         return StringTemplate(
8029                 "OpCapability Shader\n"
8030                 "OpCapability Matrix\n"
8031                 "OpMemoryModel Logical GLSL450\n"
8032                 "OpEntryPoint GLCompute %main \"main\" %id\n"
8033                 "OpExecutionMode %main LocalSize 1 1 1\n"
8034
8035                 "OpSource GLSL 430\n"
8036                 "OpName %main           \"main\"\n"
8037                 "OpName %id             \"gl_GlobalInvocationID\"\n"
8038
8039                 // Decorators
8040                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
8041                 "OpDecorate %buf BufferBlock\n"
8042                 "OpDecorate %indata DescriptorSet 0\n"
8043                 "OpDecorate %indata Binding 0\n"
8044                 "OpDecorate %outdata DescriptorSet 0\n"
8045                 "OpDecorate %outdata Binding 1\n"
8046                 "OpDecorate %customarr ArrayStride 4\n"
8047                 "${compositeDecorator}"
8048                 "OpMemberDecorate %buf 0 Offset 0\n"
8049
8050                 // General types
8051                 "%void      = OpTypeVoid\n"
8052                 "%voidf     = OpTypeFunction %void\n"
8053                 "%u32       = OpTypeInt 32 0\n"
8054                 "%i32       = OpTypeInt 32 1\n"
8055                 "%f32       = OpTypeFloat 32\n"
8056
8057                 // Composite declaration
8058                 "${compositeDecl}"
8059
8060                 // Constants
8061                 "${filler}"
8062
8063                 "${u32vec3Decl:opt}"
8064                 "%uvec3ptr  = OpTypePointer Input %u32vec3\n"
8065
8066                 // Inherited from custom
8067                 "%customptr = OpTypePointer Uniform ${customType}\n"
8068                 "%customarr = OpTypeRuntimeArray ${customType}\n"
8069                 "%buf       = OpTypeStruct %customarr\n"
8070                 "%bufptr    = OpTypePointer Uniform %buf\n"
8071
8072                 "%indata    = OpVariable %bufptr Uniform\n"
8073                 "%outdata   = OpVariable %bufptr Uniform\n"
8074
8075                 "%id        = OpVariable %uvec3ptr Input\n"
8076                 "%zero      = OpConstant %i32 0\n"
8077
8078                 "%main      = OpFunction %void None %voidf\n"
8079                 "%label     = OpLabel\n"
8080                 "%idval     = OpLoad %u32vec3 %id\n"
8081                 "%x         = OpCompositeExtract %u32 %idval 0\n"
8082
8083                 "%inloc     = OpAccessChain %customptr %indata %zero %x\n"
8084                 "%outloc    = OpAccessChain %customptr %outdata %zero %x\n"
8085                 // Read the input value
8086                 "%inval     = OpLoad ${customType} %inloc\n"
8087                 // Create the composite and fill it
8088                 "${compositeConstruct}"
8089                 // Insert the input value to a place
8090                 "%instance2 = OpCompositeInsert ${compositeType} %inval %instance ${indexes}\n"
8091                 // Read back the value from the position
8092                 "%out_val   = OpCompositeExtract ${customType} %instance2 ${indexes}\n"
8093                 // Store it in the output position
8094                 "             OpStore %outloc %out_val\n"
8095                 "             OpReturn\n"
8096                 "             OpFunctionEnd\n"
8097         ).specialize(parameters);
8098 }
8099
8100 template<typename T>
8101 BufferSp createCompositeBuffer(T number)
8102 {
8103         return BufferSp(new Buffer<T>(vector<T>(1, number)));
8104 }
8105
8106 tcu::TestCaseGroup* createOpCompositeInsertGroup (tcu::TestContext& testCtx)
8107 {
8108         de::MovePtr<tcu::TestCaseGroup> group   (new tcu::TestCaseGroup(testCtx, "opcompositeinsert", "Test the OpCompositeInsert instruction"));
8109         de::Random                                              rnd             (deStringHash(group->getName()));
8110
8111         for (int type = NUMBERTYPE_INT32; type != NUMBERTYPE_END32; ++type)
8112         {
8113                 NumberType                                              numberType              = NumberType(type);
8114                 const string                                    typeName                = getNumberTypeName(numberType);
8115                 const string                                    description             = "Test the OpCompositeInsert instruction with " + typeName + "s";
8116                 de::MovePtr<tcu::TestCaseGroup> subGroup                (new tcu::TestCaseGroup(testCtx, typeName.c_str(), description.c_str()));
8117                 vector<map<string, string> >    testCases;
8118
8119                 createCompositeCases(testCases, rnd, numberType);
8120
8121                 for (vector<map<string, string> >::const_iterator test = testCases.begin(); test != testCases.end(); ++test)
8122                 {
8123                         ComputeShaderSpec       spec;
8124
8125                         spec.assembly = specializeCompositeInsertShaderTemplate(numberType, *test);
8126
8127                         switch (numberType)
8128                         {
8129                                 case NUMBERTYPE_INT32:
8130                                 {
8131                                         deInt32 number = getInt(rnd);
8132                                         spec.inputs.push_back(createCompositeBuffer<deInt32>(number));
8133                                         spec.outputs.push_back(createCompositeBuffer<deInt32>(number));
8134                                         break;
8135                                 }
8136                                 case NUMBERTYPE_UINT32:
8137                                 {
8138                                         deUint32 number = rnd.getUint32();
8139                                         spec.inputs.push_back(createCompositeBuffer<deUint32>(number));
8140                                         spec.outputs.push_back(createCompositeBuffer<deUint32>(number));
8141                                         break;
8142                                 }
8143                                 case NUMBERTYPE_FLOAT32:
8144                                 {
8145                                         float number = rnd.getFloat();
8146                                         spec.inputs.push_back(createCompositeBuffer<float>(number));
8147                                         spec.outputs.push_back(createCompositeBuffer<float>(number));
8148                                         break;
8149                                 }
8150                                 default:
8151                                         DE_ASSERT(false);
8152                         }
8153
8154                         spec.numWorkGroups = IVec3(1, 1, 1);
8155                         subGroup->addChild(new SpvAsmComputeShaderCase(testCtx, test->at("name").c_str(), "OpCompositeInsert test", spec));
8156                 }
8157                 group->addChild(subGroup.release());
8158         }
8159         return group.release();
8160 }
8161
8162 struct AssemblyStructInfo
8163 {
8164         AssemblyStructInfo (const deUint32 comp, const deUint32 idx)
8165         : components    (comp)
8166         , index                 (idx)
8167         {}
8168
8169         deUint32 components;
8170         deUint32 index;
8171 };
8172
8173 const string specializeInBoundsShaderTemplate (const NumberType type, const AssemblyStructInfo& structInfo, const map<string, string>& params)
8174 {
8175         // Create the full index string
8176         string                          fullIndex       = numberToString(structInfo.index) + " " + params.at("indexes");
8177         // Convert it to list of indexes
8178         vector<string>          indexes         = de::splitString(fullIndex, ' ');
8179
8180         map<string, string>     parameters      (params);
8181         parameters["structType"]        = repeatString(" ${compositeType}", structInfo.components);
8182         parameters["structConstruct"]   = repeatString(" %instance", structInfo.components);
8183         parameters["insertIndexes"]     = fullIndex;
8184
8185         // In matrix cases the last two index is the CompositeExtract indexes
8186         const deUint32 extractIndexes = (parameters["type"] == "matrix") ? 2 : 1;
8187
8188         // Construct the extractIndex
8189         for (vector<string>::const_iterator index = indexes.end() - extractIndexes; index != indexes.end(); ++index)
8190         {
8191                 parameters["extractIndexes"] += " " + *index;
8192         }
8193
8194         // Remove the last 1 or 2 element depends on matrix case or not
8195         indexes.erase(indexes.end() - extractIndexes, indexes.end());
8196
8197         deUint32 id = 0;
8198         // Generate AccessChain index expressions (except for the last one, because we use ptr to the composite)
8199         for (vector<string>::const_iterator index = indexes.begin(); index != indexes.end(); ++index)
8200         {
8201                 string indexId = "%index_" + numberToString(id++);
8202                 parameters["accessChainConstDeclaration"] += indexId + "   = OpConstant %u32 " + *index + "\n";
8203                 parameters["accessChainIndexes"] += " " + indexId;
8204         }
8205
8206         parameters["compositeDecorator"] = (parameters["type"] == "array") ? "OpDecorate %composite ArrayStride 4\n" : "";
8207
8208         const string customType = getAssemblyTypeName(type);
8209         map<string, string> substCustomType;
8210         substCustomType["customType"] = customType;
8211         parameters["compositeDecl"] = StringTemplate(parameters.at("compositeDecl")).specialize(substCustomType);
8212         parameters["compositeType"] = StringTemplate(parameters.at("compositeType")).specialize(substCustomType);
8213         parameters["compositeConstruct"] = StringTemplate(parameters.at("compositeConstruct")).specialize(substCustomType);
8214         parameters["filler"] = StringTemplate(parameters.at("filler")).specialize(substCustomType);
8215         parameters["customType"] = customType;
8216
8217         const string compositeType = parameters.at("compositeType");
8218         map<string, string> substCompositeType;
8219         substCompositeType["compositeType"] = compositeType;
8220         parameters["structType"] = StringTemplate(parameters.at("structType")).specialize(substCompositeType);
8221         if (compositeType != "%u32vec3")
8222         {
8223                 parameters["u32vec3Decl"] = "%u32vec3   = OpTypeVector %u32 3\n";
8224         }
8225
8226         return StringTemplate(
8227                 "OpCapability Shader\n"
8228                 "OpCapability Matrix\n"
8229                 "OpMemoryModel Logical GLSL450\n"
8230                 "OpEntryPoint GLCompute %main \"main\" %id\n"
8231                 "OpExecutionMode %main LocalSize 1 1 1\n"
8232
8233                 "OpSource GLSL 430\n"
8234                 "OpName %main           \"main\"\n"
8235                 "OpName %id             \"gl_GlobalInvocationID\"\n"
8236                 // Decorators
8237                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
8238                 "OpDecorate %buf BufferBlock\n"
8239                 "OpDecorate %indata DescriptorSet 0\n"
8240                 "OpDecorate %indata Binding 0\n"
8241                 "OpDecorate %outdata DescriptorSet 0\n"
8242                 "OpDecorate %outdata Binding 1\n"
8243                 "OpDecorate %customarr ArrayStride 4\n"
8244                 "${compositeDecorator}"
8245                 "OpMemberDecorate %buf 0 Offset 0\n"
8246                 // General types
8247                 "%void      = OpTypeVoid\n"
8248                 "%voidf     = OpTypeFunction %void\n"
8249                 "%i32       = OpTypeInt 32 1\n"
8250                 "%u32       = OpTypeInt 32 0\n"
8251                 "%f32       = OpTypeFloat 32\n"
8252                 // Custom types
8253                 "${compositeDecl}"
8254                 // %u32vec3 if not already declared in ${compositeDecl}
8255                 "${u32vec3Decl:opt}"
8256                 "%uvec3ptr  = OpTypePointer Input %u32vec3\n"
8257                 // Inherited from composite
8258                 "%composite_p = OpTypePointer Function ${compositeType}\n"
8259                 "%struct_t  = OpTypeStruct${structType}\n"
8260                 "%struct_p  = OpTypePointer Function %struct_t\n"
8261                 // Constants
8262                 "${filler}"
8263                 "${accessChainConstDeclaration}"
8264                 // Inherited from custom
8265                 "%customptr = OpTypePointer Uniform ${customType}\n"
8266                 "%customarr = OpTypeRuntimeArray ${customType}\n"
8267                 "%buf       = OpTypeStruct %customarr\n"
8268                 "%bufptr    = OpTypePointer Uniform %buf\n"
8269                 "%indata    = OpVariable %bufptr Uniform\n"
8270                 "%outdata   = OpVariable %bufptr Uniform\n"
8271
8272                 "%id        = OpVariable %uvec3ptr Input\n"
8273                 "%zero      = OpConstant %u32 0\n"
8274                 "%main      = OpFunction %void None %voidf\n"
8275                 "%label     = OpLabel\n"
8276                 "%struct_v  = OpVariable %struct_p Function\n"
8277                 "%idval     = OpLoad %u32vec3 %id\n"
8278                 "%x         = OpCompositeExtract %u32 %idval 0\n"
8279                 // Create the input/output type
8280                 "%inloc     = OpInBoundsAccessChain %customptr %indata %zero %x\n"
8281                 "%outloc    = OpInBoundsAccessChain %customptr %outdata %zero %x\n"
8282                 // Read the input value
8283                 "%inval     = OpLoad ${customType} %inloc\n"
8284                 // Create the composite and fill it
8285                 "${compositeConstruct}"
8286                 // Create the struct and fill it with the composite
8287                 "%struct    = OpCompositeConstruct %struct_t${structConstruct}\n"
8288                 // Insert the value
8289                 "%comp_obj  = OpCompositeInsert %struct_t %inval %struct ${insertIndexes}\n"
8290                 // Store the object
8291                 "             OpStore %struct_v %comp_obj\n"
8292                 // Get deepest possible composite pointer
8293                 "%inner_ptr = OpInBoundsAccessChain %composite_p %struct_v${accessChainIndexes}\n"
8294                 "%read_obj  = OpLoad ${compositeType} %inner_ptr\n"
8295                 // Read back the stored value
8296                 "%read_val  = OpCompositeExtract ${customType} %read_obj${extractIndexes}\n"
8297                 "             OpStore %outloc %read_val\n"
8298                 "             OpReturn\n"
8299                 "             OpFunctionEnd\n"
8300         ).specialize(parameters);
8301 }
8302
8303 tcu::TestCaseGroup* createOpInBoundsAccessChainGroup (tcu::TestContext& testCtx)
8304 {
8305         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opinboundsaccesschain", "Test the OpInBoundsAccessChain instruction"));
8306         de::Random                                              rnd                             (deStringHash(group->getName()));
8307
8308         for (int type = NUMBERTYPE_INT32; type != NUMBERTYPE_END32; ++type)
8309         {
8310                 NumberType                                              numberType      = NumberType(type);
8311                 const string                                    typeName        = getNumberTypeName(numberType);
8312                 const string                                    description     = "Test the OpInBoundsAccessChain instruction with " + typeName + "s";
8313                 de::MovePtr<tcu::TestCaseGroup> subGroup        (new tcu::TestCaseGroup(testCtx, typeName.c_str(), description.c_str()));
8314
8315                 vector<map<string, string> >    testCases;
8316                 createCompositeCases(testCases, rnd, numberType);
8317
8318                 for (vector<map<string, string> >::const_iterator test = testCases.begin(); test != testCases.end(); ++test)
8319                 {
8320                         ComputeShaderSpec       spec;
8321
8322                         // Number of components inside of a struct
8323                         deUint32 structComponents = rnd.getInt(2, 8);
8324                         // Component index value
8325                         deUint32 structIndex = rnd.getInt(0, structComponents - 1);
8326                         AssemblyStructInfo structInfo(structComponents, structIndex);
8327
8328                         spec.assembly = specializeInBoundsShaderTemplate(numberType, structInfo, *test);
8329
8330                         switch (numberType)
8331                         {
8332                                 case NUMBERTYPE_INT32:
8333                                 {
8334                                         deInt32 number = getInt(rnd);
8335                                         spec.inputs.push_back(createCompositeBuffer<deInt32>(number));
8336                                         spec.outputs.push_back(createCompositeBuffer<deInt32>(number));
8337                                         break;
8338                                 }
8339                                 case NUMBERTYPE_UINT32:
8340                                 {
8341                                         deUint32 number = rnd.getUint32();
8342                                         spec.inputs.push_back(createCompositeBuffer<deUint32>(number));
8343                                         spec.outputs.push_back(createCompositeBuffer<deUint32>(number));
8344                                         break;
8345                                 }
8346                                 case NUMBERTYPE_FLOAT32:
8347                                 {
8348                                         float number = rnd.getFloat();
8349                                         spec.inputs.push_back(createCompositeBuffer<float>(number));
8350                                         spec.outputs.push_back(createCompositeBuffer<float>(number));
8351                                         break;
8352                                 }
8353                                 default:
8354                                         DE_ASSERT(false);
8355                         }
8356                         spec.numWorkGroups = IVec3(1, 1, 1);
8357                         subGroup->addChild(new SpvAsmComputeShaderCase(testCtx, test->at("name").c_str(), "OpInBoundsAccessChain test", spec));
8358                 }
8359                 group->addChild(subGroup.release());
8360         }
8361         return group.release();
8362 }
8363
8364 // If the params missing, uninitialized case
8365 const string specializeDefaultOutputShaderTemplate (const NumberType type, const map<string, string>& params = map<string, string>())
8366 {
8367         map<string, string> parameters(params);
8368
8369         parameters["customType"]        = getAssemblyTypeName(type);
8370
8371         // Declare the const value, and use it in the initializer
8372         if (params.find("constValue") != params.end())
8373         {
8374                 parameters["variableInitializer"]       = " %const";
8375         }
8376         // Uninitialized case
8377         else
8378         {
8379                 parameters["commentDecl"]       = ";";
8380         }
8381
8382         return StringTemplate(
8383                 "OpCapability Shader\n"
8384                 "OpMemoryModel Logical GLSL450\n"
8385                 "OpEntryPoint GLCompute %main \"main\" %id\n"
8386                 "OpExecutionMode %main LocalSize 1 1 1\n"
8387                 "OpSource GLSL 430\n"
8388                 "OpName %main           \"main\"\n"
8389                 "OpName %id             \"gl_GlobalInvocationID\"\n"
8390                 // Decorators
8391                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
8392                 "OpDecorate %indata DescriptorSet 0\n"
8393                 "OpDecorate %indata Binding 0\n"
8394                 "OpDecorate %outdata DescriptorSet 0\n"
8395                 "OpDecorate %outdata Binding 1\n"
8396                 "OpDecorate %in_arr ArrayStride 4\n"
8397                 "OpDecorate %in_buf BufferBlock\n"
8398                 "OpMemberDecorate %in_buf 0 Offset 0\n"
8399                 // Base types
8400                 "%void       = OpTypeVoid\n"
8401                 "%voidf      = OpTypeFunction %void\n"
8402                 "%u32        = OpTypeInt 32 0\n"
8403                 "%i32        = OpTypeInt 32 1\n"
8404                 "%f32        = OpTypeFloat 32\n"
8405                 "%uvec3      = OpTypeVector %u32 3\n"
8406                 "%uvec3ptr   = OpTypePointer Input %uvec3\n"
8407                 "${commentDecl:opt}%const      = OpConstant ${customType} ${constValue:opt}\n"
8408                 // Derived types
8409                 "%in_ptr     = OpTypePointer Uniform ${customType}\n"
8410                 "%in_arr     = OpTypeRuntimeArray ${customType}\n"
8411                 "%in_buf     = OpTypeStruct %in_arr\n"
8412                 "%in_bufptr  = OpTypePointer Uniform %in_buf\n"
8413                 "%indata     = OpVariable %in_bufptr Uniform\n"
8414                 "%outdata    = OpVariable %in_bufptr Uniform\n"
8415                 "%id         = OpVariable %uvec3ptr Input\n"
8416                 "%var_ptr    = OpTypePointer Function ${customType}\n"
8417                 // Constants
8418                 "%zero       = OpConstant %i32 0\n"
8419                 // Main function
8420                 "%main       = OpFunction %void None %voidf\n"
8421                 "%label      = OpLabel\n"
8422                 "%out_var    = OpVariable %var_ptr Function${variableInitializer:opt}\n"
8423                 "%idval      = OpLoad %uvec3 %id\n"
8424                 "%x          = OpCompositeExtract %u32 %idval 0\n"
8425                 "%inloc      = OpAccessChain %in_ptr %indata %zero %x\n"
8426                 "%outloc     = OpAccessChain %in_ptr %outdata %zero %x\n"
8427
8428                 "%outval     = OpLoad ${customType} %out_var\n"
8429                 "              OpStore %outloc %outval\n"
8430                 "              OpReturn\n"
8431                 "              OpFunctionEnd\n"
8432         ).specialize(parameters);
8433 }
8434
8435 bool compareFloats (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog& log)
8436 {
8437         DE_ASSERT(outputAllocs.size() != 0);
8438         DE_ASSERT(outputAllocs.size() == expectedOutputs.size());
8439
8440         // Use custom epsilon because of the float->string conversion
8441         const float     epsilon = 0.00001f;
8442
8443         for (size_t outputNdx = 0; outputNdx < outputAllocs.size(); ++outputNdx)
8444         {
8445                 vector<deUint8> expectedBytes;
8446                 float                   expected;
8447                 float                   actual;
8448
8449                 expectedOutputs[outputNdx]->getBytes(expectedBytes);
8450                 memcpy(&expected, &expectedBytes.front(), expectedBytes.size());
8451                 memcpy(&actual, outputAllocs[outputNdx]->getHostPtr(), expectedBytes.size());
8452
8453                 // Test with epsilon
8454                 if (fabs(expected - actual) > epsilon)
8455                 {
8456                         log << TestLog::Message << "Error: The actual and expected values not matching."
8457                                 << " Expected: " << expected << " Actual: " << actual << " Epsilon: " << epsilon << TestLog::EndMessage;
8458                         return false;
8459                 }
8460         }
8461         return true;
8462 }
8463
8464 // Checks if the driver crash with uninitialized cases
8465 bool passthruVerify (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
8466 {
8467         DE_ASSERT(outputAllocs.size() != 0);
8468         DE_ASSERT(outputAllocs.size() == expectedOutputs.size());
8469
8470         // Copy and discard the result.
8471         for (size_t outputNdx = 0; outputNdx < outputAllocs.size(); ++outputNdx)
8472         {
8473                 vector<deUint8> expectedBytes;
8474                 expectedOutputs[outputNdx]->getBytes(expectedBytes);
8475
8476                 const size_t    width                   = expectedBytes.size();
8477                 vector<char>    data                    (width);
8478
8479                 memcpy(&data[0], outputAllocs[outputNdx]->getHostPtr(), width);
8480         }
8481         return true;
8482 }
8483
8484 tcu::TestCaseGroup* createShaderDefaultOutputGroup (tcu::TestContext& testCtx)
8485 {
8486         de::MovePtr<tcu::TestCaseGroup> group   (new tcu::TestCaseGroup(testCtx, "shader_default_output", "Test shader default output."));
8487         de::Random                                              rnd             (deStringHash(group->getName()));
8488
8489         for (int type = NUMBERTYPE_INT32; type != NUMBERTYPE_END32; ++type)
8490         {
8491                 NumberType                                              numberType      = NumberType(type);
8492                 const string                                    typeName        = getNumberTypeName(numberType);
8493                 const string                                    description     = "Test the OpVariable initializer with " + typeName + ".";
8494                 de::MovePtr<tcu::TestCaseGroup> subGroup        (new tcu::TestCaseGroup(testCtx, typeName.c_str(), description.c_str()));
8495
8496                 // 2 similar subcases (initialized and uninitialized)
8497                 for (int subCase = 0; subCase < 2; ++subCase)
8498                 {
8499                         ComputeShaderSpec spec;
8500                         spec.numWorkGroups = IVec3(1, 1, 1);
8501
8502                         map<string, string>                             params;
8503
8504                         switch (numberType)
8505                         {
8506                                 case NUMBERTYPE_INT32:
8507                                 {
8508                                         deInt32 number = getInt(rnd);
8509                                         spec.inputs.push_back(createCompositeBuffer<deInt32>(number));
8510                                         spec.outputs.push_back(createCompositeBuffer<deInt32>(number));
8511                                         params["constValue"] = numberToString(number);
8512                                         break;
8513                                 }
8514                                 case NUMBERTYPE_UINT32:
8515                                 {
8516                                         deUint32 number = rnd.getUint32();
8517                                         spec.inputs.push_back(createCompositeBuffer<deUint32>(number));
8518                                         spec.outputs.push_back(createCompositeBuffer<deUint32>(number));
8519                                         params["constValue"] = numberToString(number);
8520                                         break;
8521                                 }
8522                                 case NUMBERTYPE_FLOAT32:
8523                                 {
8524                                         float number = rnd.getFloat();
8525                                         spec.inputs.push_back(createCompositeBuffer<float>(number));
8526                                         spec.outputs.push_back(createCompositeBuffer<float>(number));
8527                                         spec.verifyIO = &compareFloats;
8528                                         params["constValue"] = numberToString(number);
8529                                         break;
8530                                 }
8531                                 default:
8532                                         DE_ASSERT(false);
8533                         }
8534
8535                         // Initialized subcase
8536                         if (!subCase)
8537                         {
8538                                 spec.assembly = specializeDefaultOutputShaderTemplate(numberType, params);
8539                                 subGroup->addChild(new SpvAsmComputeShaderCase(testCtx, "initialized", "OpVariable initializer tests.", spec));
8540                         }
8541                         // Uninitialized subcase
8542                         else
8543                         {
8544                                 spec.assembly = specializeDefaultOutputShaderTemplate(numberType);
8545                                 spec.verifyIO = &passthruVerify;
8546                                 subGroup->addChild(new SpvAsmComputeShaderCase(testCtx, "uninitialized", "OpVariable initializer tests.", spec));
8547                         }
8548                 }
8549                 group->addChild(subGroup.release());
8550         }
8551         return group.release();
8552 }
8553
8554 tcu::TestCaseGroup* createOpNopTests (tcu::TestContext& testCtx)
8555 {
8556         de::MovePtr<tcu::TestCaseGroup> testGroup (new tcu::TestCaseGroup(testCtx, "opnop", "Test OpNop"));
8557         RGBA                                                    defaultColors[4];
8558         map<string, string>                             opNopFragments;
8559
8560         getDefaultColors(defaultColors);
8561
8562         opNopFragments["testfun"]               =
8563                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
8564                 "%param1 = OpFunctionParameter %v4f32\n"
8565                 "%label_testfun = OpLabel\n"
8566                 "OpNop\n"
8567                 "OpNop\n"
8568                 "OpNop\n"
8569                 "OpNop\n"
8570                 "OpNop\n"
8571                 "OpNop\n"
8572                 "OpNop\n"
8573                 "OpNop\n"
8574                 "%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
8575                 "%b = OpFAdd %f32 %a %a\n"
8576                 "OpNop\n"
8577                 "%c = OpFSub %f32 %b %a\n"
8578                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %c %c_i32_0\n"
8579                 "OpNop\n"
8580                 "OpNop\n"
8581                 "OpReturnValue %ret\n"
8582                 "OpFunctionEnd\n";
8583
8584         createTestsForAllStages("opnop", defaultColors, defaultColors, opNopFragments, testGroup.get());
8585
8586         return testGroup.release();
8587 }
8588
8589 tcu::TestCaseGroup* createInstructionTests (tcu::TestContext& testCtx)
8590 {
8591         de::MovePtr<tcu::TestCaseGroup> instructionTests        (new tcu::TestCaseGroup(testCtx, "instruction", "Instructions with special opcodes/operands"));
8592         de::MovePtr<tcu::TestCaseGroup> computeTests            (new tcu::TestCaseGroup(testCtx, "compute", "Compute Instructions with special opcodes/operands"));
8593         de::MovePtr<tcu::TestCaseGroup> graphicsTests           (new tcu::TestCaseGroup(testCtx, "graphics", "Graphics Instructions with special opcodes/operands"));
8594
8595         computeTests->addChild(createOpNopGroup(testCtx));
8596         computeTests->addChild(createOpFUnordGroup(testCtx));
8597         computeTests->addChild(createOpAtomicGroup(testCtx, false));
8598         computeTests->addChild(createOpAtomicGroup(testCtx, true)); // Using new StorageBuffer decoration
8599         computeTests->addChild(createOpLineGroup(testCtx));
8600         computeTests->addChild(createOpNoLineGroup(testCtx));
8601         computeTests->addChild(createOpConstantNullGroup(testCtx));
8602         computeTests->addChild(createOpConstantCompositeGroup(testCtx));
8603         computeTests->addChild(createOpConstantUsageGroup(testCtx));
8604         computeTests->addChild(createSpecConstantGroup(testCtx));
8605         computeTests->addChild(createOpSourceGroup(testCtx));
8606         computeTests->addChild(createOpSourceExtensionGroup(testCtx));
8607         computeTests->addChild(createDecorationGroupGroup(testCtx));
8608         computeTests->addChild(createOpPhiGroup(testCtx));
8609         computeTests->addChild(createLoopControlGroup(testCtx));
8610         computeTests->addChild(createFunctionControlGroup(testCtx));
8611         computeTests->addChild(createSelectionControlGroup(testCtx));
8612         computeTests->addChild(createBlockOrderGroup(testCtx));
8613         computeTests->addChild(createMultipleShaderGroup(testCtx));
8614         computeTests->addChild(createMemoryAccessGroup(testCtx));
8615         computeTests->addChild(createOpCopyMemoryGroup(testCtx));
8616         computeTests->addChild(createOpCopyObjectGroup(testCtx));
8617         computeTests->addChild(createNoContractionGroup(testCtx));
8618         computeTests->addChild(createOpUndefGroup(testCtx));
8619         computeTests->addChild(createOpUnreachableGroup(testCtx));
8620         computeTests ->addChild(createOpQuantizeToF16Group(testCtx));
8621         computeTests ->addChild(createOpFRemGroup(testCtx));
8622         computeTests->addChild(createOpSRemComputeGroup(testCtx, QP_TEST_RESULT_PASS));
8623         computeTests->addChild(createOpSRemComputeGroup64(testCtx, QP_TEST_RESULT_PASS));
8624         computeTests->addChild(createOpSModComputeGroup(testCtx, QP_TEST_RESULT_PASS));
8625         computeTests->addChild(createOpSModComputeGroup64(testCtx, QP_TEST_RESULT_PASS));
8626         computeTests->addChild(createSConvertTests(testCtx));
8627         computeTests->addChild(createUConvertTests(testCtx));
8628         computeTests->addChild(createOpCompositeInsertGroup(testCtx));
8629         computeTests->addChild(createOpInBoundsAccessChainGroup(testCtx));
8630         computeTests->addChild(createShaderDefaultOutputGroup(testCtx));
8631         computeTests->addChild(createOpNMinGroup(testCtx));
8632         computeTests->addChild(createOpNMaxGroup(testCtx));
8633         computeTests->addChild(createOpNClampGroup(testCtx));
8634         {
8635                 de::MovePtr<tcu::TestCaseGroup> computeAndroidTests     (new tcu::TestCaseGroup(testCtx, "android", "Android CTS Tests"));
8636
8637                 computeAndroidTests->addChild(createOpSRemComputeGroup(testCtx, QP_TEST_RESULT_QUALITY_WARNING));
8638                 computeAndroidTests->addChild(createOpSModComputeGroup(testCtx, QP_TEST_RESULT_QUALITY_WARNING));
8639
8640                 computeTests->addChild(computeAndroidTests.release());
8641         }
8642
8643         computeTests->addChild(create16BitStorageComputeGroup(testCtx));
8644         computeTests->addChild(createUboMatrixPaddingComputeGroup(testCtx));
8645         computeTests->addChild(createConditionalBranchComputeGroup(testCtx));
8646         computeTests->addChild(createIndexingComputeGroup(testCtx));
8647         computeTests->addChild(createVariablePointersComputeGroup(testCtx));
8648         graphicsTests->addChild(createOpNopTests(testCtx));
8649         graphicsTests->addChild(createOpSourceTests(testCtx));
8650         graphicsTests->addChild(createOpSourceContinuedTests(testCtx));
8651         graphicsTests->addChild(createOpLineTests(testCtx));
8652         graphicsTests->addChild(createOpNoLineTests(testCtx));
8653         graphicsTests->addChild(createOpConstantNullTests(testCtx));
8654         graphicsTests->addChild(createOpConstantCompositeTests(testCtx));
8655         graphicsTests->addChild(createMemoryAccessTests(testCtx));
8656         graphicsTests->addChild(createOpUndefTests(testCtx));
8657         graphicsTests->addChild(createSelectionBlockOrderTests(testCtx));
8658         graphicsTests->addChild(createModuleTests(testCtx));
8659         graphicsTests->addChild(createSwitchBlockOrderTests(testCtx));
8660         graphicsTests->addChild(createOpPhiTests(testCtx));
8661         graphicsTests->addChild(createNoContractionTests(testCtx));
8662         graphicsTests->addChild(createOpQuantizeTests(testCtx));
8663         graphicsTests->addChild(createLoopTests(testCtx));
8664         graphicsTests->addChild(createSpecConstantTests(testCtx));
8665         graphicsTests->addChild(createSpecConstantOpQuantizeToF16Group(testCtx));
8666         graphicsTests->addChild(createBarrierTests(testCtx));
8667         graphicsTests->addChild(createDecorationGroupTests(testCtx));
8668         graphicsTests->addChild(createFRemTests(testCtx));
8669         graphicsTests->addChild(createOpSRemGraphicsTests(testCtx, QP_TEST_RESULT_PASS));
8670         graphicsTests->addChild(createOpSModGraphicsTests(testCtx, QP_TEST_RESULT_PASS));
8671
8672         {
8673                 de::MovePtr<tcu::TestCaseGroup> graphicsAndroidTests    (new tcu::TestCaseGroup(testCtx, "android", "Android CTS Tests"));
8674
8675                 graphicsAndroidTests->addChild(createOpSRemGraphicsTests(testCtx, QP_TEST_RESULT_QUALITY_WARNING));
8676                 graphicsAndroidTests->addChild(createOpSModGraphicsTests(testCtx, QP_TEST_RESULT_QUALITY_WARNING));
8677
8678                 graphicsTests->addChild(graphicsAndroidTests.release());
8679         }
8680
8681         graphicsTests->addChild(create16BitStorageGraphicsGroup(testCtx));
8682         graphicsTests->addChild(createUboMatrixPaddingGraphicsGroup(testCtx));
8683         graphicsTests->addChild(createConditionalBranchGraphicsGroup(testCtx));
8684         graphicsTests->addChild(createIndexingGraphicsGroup(testCtx));
8685         graphicsTests->addChild(createVariablePointersGraphicsGroup(testCtx));
8686
8687         instructionTests->addChild(computeTests.release());
8688         instructionTests->addChild(graphicsTests.release());
8689
8690         return instructionTests.release();
8691 }
8692
8693 } // SpirVAssembly
8694 } // vkt