848f1ce25273084d4f1e9ed85f641da3971a924c
[platform/upstream/VK-GL-CTS.git] / external / vulkancts / modules / vulkan / spirv_assembly / vktSpvAsmInstructionTests.cpp
1 /*-------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2015 Google Inc.
6  * Copyright (c) 2016 The Khronos Group Inc.
7  *
8  * Licensed under the Apache License, Version 2.0 (the "License");
9  * you may not use this file except in compliance with the License.
10  * You may obtain a copy of the License at
11  *
12  *      http://www.apache.org/licenses/LICENSE-2.0
13  *
14  * Unless required by applicable law or agreed to in writing, software
15  * distributed under the License is distributed on an "AS IS" BASIS,
16  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17  * See the License for the specific language governing permissions and
18  * limitations under the License.
19  *
20  *//*!
21  * \file
22  * \brief SPIR-V Assembly Tests for Instructions (special opcode/operand)
23  *//*--------------------------------------------------------------------*/
24
25 #include "vktSpvAsmInstructionTests.hpp"
26
27 #include "tcuCommandLine.hpp"
28 #include "tcuFormatUtil.hpp"
29 #include "tcuFloat.hpp"
30 #include "tcuRGBA.hpp"
31 #include "tcuStringTemplate.hpp"
32 #include "tcuTestLog.hpp"
33 #include "tcuVectorUtil.hpp"
34
35 #include "vkDefs.hpp"
36 #include "vkDeviceUtil.hpp"
37 #include "vkMemUtil.hpp"
38 #include "vkPlatform.hpp"
39 #include "vkPrograms.hpp"
40 #include "vkQueryUtil.hpp"
41 #include "vkRef.hpp"
42 #include "vkRefUtil.hpp"
43 #include "vkStrUtil.hpp"
44 #include "vkTypeUtil.hpp"
45
46 #include "deRandom.hpp"
47 #include "deStringUtil.hpp"
48 #include "deUniquePtr.hpp"
49 #include "tcuStringTemplate.hpp"
50
51 #include "vktSpvAsm16bitStorageTests.hpp"
52 #include "vktSpvAsmComputeShaderCase.hpp"
53 #include "vktSpvAsmComputeShaderTestUtil.hpp"
54 #include "vktSpvAsmGraphicsShaderTestUtil.hpp"
55 #include "vktSpvAsmVariablePointersTests.hpp"
56 #include "vktTestCaseUtil.hpp"
57
58 #include <cmath>
59 #include <limits>
60 #include <map>
61 #include <string>
62 #include <sstream>
63 #include <utility>
64
65 namespace vkt
66 {
67 namespace SpirVAssembly
68 {
69
70 namespace
71 {
72
73 using namespace vk;
74 using std::map;
75 using std::string;
76 using std::vector;
77 using tcu::IVec3;
78 using tcu::IVec4;
79 using tcu::RGBA;
80 using tcu::TestLog;
81 using tcu::TestStatus;
82 using tcu::Vec4;
83 using de::UniquePtr;
84 using tcu::StringTemplate;
85 using tcu::Vec4;
86
87 template<typename T>
88 static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, int offset = 0)
89 {
90         T* const typedPtr = (T*)dst;
91         for (int ndx = 0; ndx < numValues; ndx++)
92                 typedPtr[offset + ndx] = randomScalar<T>(rnd, minValue, maxValue);
93 }
94
95 // Filter is a function that returns true if a value should pass, false otherwise.
96 template<typename T, typename FilterT>
97 static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, FilterT filter, int offset = 0)
98 {
99         T* const typedPtr = (T*)dst;
100         T value;
101         for (int ndx = 0; ndx < numValues; ndx++)
102         {
103                 do
104                         value = randomScalar<T>(rnd, minValue, maxValue);
105                 while (!filter(value));
106
107                 typedPtr[offset + ndx] = value;
108         }
109 }
110
111 static void floorAll (vector<float>& values)
112 {
113         for (size_t i = 0; i < values.size(); i++)
114                 values[i] = deFloatFloor(values[i]);
115 }
116
117 static void floorAll (vector<Vec4>& values)
118 {
119         for (size_t i = 0; i < values.size(); i++)
120                 values[i] = floor(values[i]);
121 }
122
123 struct CaseParameter
124 {
125         const char*             name;
126         string                  param;
127
128         CaseParameter   (const char* case_, const string& param_) : name(case_), param(param_) {}
129 };
130
131 // Assembly code used for testing OpNop, OpConstant{Null|Composite}, Op[No]Line, OpSource[Continued], OpSourceExtension, OpUndef is based on GLSL source code:
132 //
133 // #version 430
134 //
135 // layout(std140, set = 0, binding = 0) readonly buffer Input {
136 //   float elements[];
137 // } input_data;
138 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
139 //   float elements[];
140 // } output_data;
141 //
142 // layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
143 //
144 // void main() {
145 //   uint x = gl_GlobalInvocationID.x;
146 //   output_data.elements[x] = -input_data.elements[x];
147 // }
148
149 tcu::TestCaseGroup* createOpNopGroup (tcu::TestContext& testCtx)
150 {
151         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opnop", "Test the OpNop instruction"));
152         ComputeShaderSpec                               spec;
153         de::Random                                              rnd                             (deStringHash(group->getName()));
154         const int                                               numElements             = 100;
155         vector<float>                                   positiveFloats  (numElements, 0);
156         vector<float>                                   negativeFloats  (numElements, 0);
157
158         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
159
160         for (size_t ndx = 0; ndx < numElements; ++ndx)
161                 negativeFloats[ndx] = -positiveFloats[ndx];
162
163         spec.assembly =
164                 string(getComputeAsmShaderPreamble()) +
165
166                 "OpSource GLSL 430\n"
167                 "OpName %main           \"main\"\n"
168                 "OpName %id             \"gl_GlobalInvocationID\"\n"
169
170                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
171
172                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes())
173
174                 + string(getComputeAsmInputOutputBuffer()) +
175
176                 "%id        = OpVariable %uvec3ptr Input\n"
177                 "%zero      = OpConstant %i32 0\n"
178
179                 "%main      = OpFunction %void None %voidf\n"
180                 "%label     = OpLabel\n"
181                 "%idval     = OpLoad %uvec3 %id\n"
182                 "%x         = OpCompositeExtract %u32 %idval 0\n"
183
184                 "             OpNop\n" // Inside a function body
185
186                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
187                 "%inval     = OpLoad %f32 %inloc\n"
188                 "%neg       = OpFNegate %f32 %inval\n"
189                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
190                 "             OpStore %outloc %neg\n"
191                 "             OpReturn\n"
192                 "             OpFunctionEnd\n";
193         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
194         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
195         spec.numWorkGroups = IVec3(numElements, 1, 1);
196
197         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNop appearing at different places", spec));
198
199         return group.release();
200 }
201
202 bool compareFUnord (const std::vector<BufferSp>& inputs, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog& log)
203 {
204         if (outputAllocs.size() != 1)
205                 return false;
206
207         const BufferSp& expectedOutput                  = expectedOutputs[0];
208         const deInt32*  expectedOutputAsInt             = static_cast<const deInt32*>(expectedOutputs[0]->data());
209         const deInt32*  outputAsInt                             = static_cast<const deInt32*>(outputAllocs[0]->getHostPtr());
210         const float*    input1AsFloat                   = static_cast<const float*>(inputs[0]->data());
211         const float*    input2AsFloat                   = static_cast<const float*>(inputs[1]->data());
212         bool returnValue                                                = true;
213
214         for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(deInt32); ++idx)
215         {
216                 if (outputAsInt[idx] != expectedOutputAsInt[idx])
217                 {
218                         log << TestLog::Message << "ERROR: Sub-case failed. inputs: " << input1AsFloat[idx] << "," << input2AsFloat[idx] << " output: " << outputAsInt[idx]<< " expected output: " << expectedOutputAsInt[idx] << TestLog::EndMessage;
219                         returnValue = false;
220                 }
221         }
222         return returnValue;
223 }
224
225 typedef VkBool32 (*compareFuncType) (float, float);
226
227 struct OpFUnordCase
228 {
229         const char*             name;
230         const char*             opCode;
231         compareFuncType compareFunc;
232
233                                         OpFUnordCase                    (const char* _name, const char* _opCode, compareFuncType _compareFunc)
234                                                 : name                          (_name)
235                                                 , opCode                        (_opCode)
236                                                 , compareFunc           (_compareFunc) {}
237 };
238
239 #define ADD_OPFUNORD_CASE(NAME, OPCODE, OPERATOR) \
240 do { \
241     struct compare_##NAME { static VkBool32 compare(float x, float y) { return (x OPERATOR y) ? VK_TRUE : VK_FALSE; } }; \
242     cases.push_back(OpFUnordCase(#NAME, OPCODE, compare_##NAME::compare)); \
243 } while (deGetFalse())
244
245 tcu::TestCaseGroup* createOpFUnordGroup (tcu::TestContext& testCtx)
246 {
247         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opfunord", "Test the OpFUnord* opcodes"));
248         de::Random                                              rnd                             (deStringHash(group->getName()));
249         const int                                               numElements             = 100;
250         vector<OpFUnordCase>                    cases;
251
252         const StringTemplate                    shaderTemplate  (
253
254                 string(getComputeAsmShaderPreamble()) +
255
256                 "OpSource GLSL 430\n"
257                 "OpName %main           \"main\"\n"
258                 "OpName %id             \"gl_GlobalInvocationID\"\n"
259
260                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
261
262                 "OpDecorate %buf BufferBlock\n"
263                 "OpDecorate %buf2 BufferBlock\n"
264                 "OpDecorate %indata1 DescriptorSet 0\n"
265                 "OpDecorate %indata1 Binding 0\n"
266                 "OpDecorate %indata2 DescriptorSet 0\n"
267                 "OpDecorate %indata2 Binding 1\n"
268                 "OpDecorate %outdata DescriptorSet 0\n"
269                 "OpDecorate %outdata Binding 2\n"
270                 "OpDecorate %f32arr ArrayStride 4\n"
271                 "OpDecorate %i32arr ArrayStride 4\n"
272                 "OpMemberDecorate %buf 0 Offset 0\n"
273                 "OpMemberDecorate %buf2 0 Offset 0\n"
274
275                 + string(getComputeAsmCommonTypes()) +
276
277                 "%buf        = OpTypeStruct %f32arr\n"
278                 "%bufptr     = OpTypePointer Uniform %buf\n"
279                 "%indata1    = OpVariable %bufptr Uniform\n"
280                 "%indata2    = OpVariable %bufptr Uniform\n"
281
282                 "%buf2       = OpTypeStruct %i32arr\n"
283                 "%buf2ptr    = OpTypePointer Uniform %buf2\n"
284                 "%outdata    = OpVariable %buf2ptr Uniform\n"
285
286                 "%id        = OpVariable %uvec3ptr Input\n"
287                 "%zero      = OpConstant %i32 0\n"
288                 "%consti1   = OpConstant %i32 1\n"
289                 "%constf1   = OpConstant %f32 1.0\n"
290
291                 "%main      = OpFunction %void None %voidf\n"
292                 "%label     = OpLabel\n"
293                 "%idval     = OpLoad %uvec3 %id\n"
294                 "%x         = OpCompositeExtract %u32 %idval 0\n"
295
296                 "%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
297                 "%inval1    = OpLoad %f32 %inloc1\n"
298                 "%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
299                 "%inval2    = OpLoad %f32 %inloc2\n"
300                 "%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
301
302                 "%result    = ${OPCODE} %bool %inval1 %inval2\n"
303                 "%int_res   = OpSelect %i32 %result %consti1 %zero\n"
304                 "             OpStore %outloc %int_res\n"
305
306                 "             OpReturn\n"
307                 "             OpFunctionEnd\n");
308
309         ADD_OPFUNORD_CASE(equal, "OpFUnordEqual", ==);
310         ADD_OPFUNORD_CASE(less, "OpFUnordLessThan", <);
311         ADD_OPFUNORD_CASE(lessequal, "OpFUnordLessThanEqual", <=);
312         ADD_OPFUNORD_CASE(greater, "OpFUnordGreaterThan", >);
313         ADD_OPFUNORD_CASE(greaterequal, "OpFUnordGreaterThanEqual", >=);
314         ADD_OPFUNORD_CASE(notequal, "OpFUnordNotEqual", !=);
315
316         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
317         {
318                 map<string, string>                     specializations;
319                 ComputeShaderSpec                       spec;
320                 const float                                     NaN                             = std::numeric_limits<float>::quiet_NaN();
321                 vector<float>                           inputFloats1    (numElements, 0);
322                 vector<float>                           inputFloats2    (numElements, 0);
323                 vector<deInt32>                         expectedInts    (numElements, 0);
324
325                 specializations["OPCODE"]       = cases[caseNdx].opCode;
326                 spec.assembly                           = shaderTemplate.specialize(specializations);
327
328                 fillRandomScalars(rnd, 1.f, 100.f, &inputFloats1[0], numElements);
329                 for (size_t ndx = 0; ndx < numElements; ++ndx)
330                 {
331                         switch (ndx % 6)
332                         {
333                                 case 0:         inputFloats2[ndx] = inputFloats1[ndx] + 1.0f; break;
334                                 case 1:         inputFloats2[ndx] = inputFloats1[ndx] - 1.0f; break;
335                                 case 2:         inputFloats2[ndx] = inputFloats1[ndx]; break;
336                                 case 3:         inputFloats2[ndx] = NaN; break;
337                                 case 4:         inputFloats2[ndx] = inputFloats1[ndx];  inputFloats1[ndx] = NaN; break;
338                                 case 5:         inputFloats2[ndx] = NaN;                                inputFloats1[ndx] = NaN; break;
339                         }
340                         expectedInts[ndx] = tcu::Float32(inputFloats1[ndx]).isNaN() || tcu::Float32(inputFloats2[ndx]).isNaN() || cases[caseNdx].compareFunc(inputFloats1[ndx], inputFloats2[ndx]);
341                 }
342
343                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
344                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
345                 spec.outputs.push_back(BufferSp(new Int32Buffer(expectedInts)));
346                 spec.numWorkGroups = IVec3(numElements, 1, 1);
347                 spec.verifyIO = &compareFUnord;
348                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
349         }
350
351         return group.release();
352 }
353
354 struct OpAtomicCase
355 {
356         const char*             name;
357         const char*             assembly;
358         void                    (*calculateExpected)(deInt32&, deInt32);
359         deInt32                 numOutputElements;
360
361                                         OpAtomicCase                    (const char* _name, const char* _assembly, void (*_calculateExpected)(deInt32&, deInt32), deInt32 _numOutputElements)
362                                                 : name                          (_name)
363                                                 , assembly                      (_assembly)
364                                                 , calculateExpected     (_calculateExpected)
365                                                 , numOutputElements (_numOutputElements) {}
366 };
367
368 tcu::TestCaseGroup* createOpAtomicGroup (tcu::TestContext& testCtx, bool useStorageBuffer)
369 {
370         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx,
371                                                                                                                                                                 useStorageBuffer ? "opatomic_storage_buffer" : "opatomic",
372                                                                                                                                                                 "Test the OpAtomic* opcodes"));
373         de::Random                                              rnd                                     (deStringHash(group->getName()));
374         const int                                               numElements                     = 65535;
375         vector<OpAtomicCase>                    cases;
376
377         const StringTemplate                    shaderTemplate  (
378
379                 string("OpCapability Shader\n") +
380                 (useStorageBuffer ? "OpExtension \"SPV_KHR_storage_buffer_storage_class\"\n" : "") +
381                 "OpMemoryModel Logical GLSL450\n"
382                 "OpEntryPoint GLCompute %main \"main\" %id\n"
383                 "OpExecutionMode %main LocalSize 1 1 1\n" +
384
385                 "OpSource GLSL 430\n"
386                 "OpName %main           \"main\"\n"
387                 "OpName %id             \"gl_GlobalInvocationID\"\n"
388
389                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
390
391                 "OpDecorate %buf ${BLOCK_DECORATION}\n"
392                 "OpDecorate %indata DescriptorSet 0\n"
393                 "OpDecorate %indata Binding 0\n"
394                 "OpDecorate %i32arr ArrayStride 4\n"
395                 "OpMemberDecorate %buf 0 Offset 0\n"
396
397                 "OpDecorate %sumbuf ${BLOCK_DECORATION}\n"
398                 "OpDecorate %sum DescriptorSet 0\n"
399                 "OpDecorate %sum Binding 1\n"
400                 "OpMemberDecorate %sumbuf 0 Coherent\n"
401                 "OpMemberDecorate %sumbuf 0 Offset 0\n"
402
403                 "%void      = OpTypeVoid\n"
404                 "%voidf     = OpTypeFunction %void\n"
405                 "%u32       = OpTypeInt 32 0\n"
406                 "%i32       = OpTypeInt 32 1\n"
407                 "%uvec3     = OpTypeVector %u32 3\n"
408                 "%uvec3ptr  = OpTypePointer Input %uvec3\n"
409                 "%i32ptr    = OpTypePointer ${BLOCK_POINTER_TYPE} %i32\n"
410                 "%i32arr    = OpTypeRuntimeArray %i32\n"
411
412                 "%buf       = OpTypeStruct %i32arr\n"
413                 "%bufptr    = OpTypePointer ${BLOCK_POINTER_TYPE} %buf\n"
414                 "%indata    = OpVariable %bufptr ${BLOCK_POINTER_TYPE}\n"
415
416                 "%sumbuf    = OpTypeStruct %i32arr\n"
417                 "%sumbufptr = OpTypePointer ${BLOCK_POINTER_TYPE} %sumbuf\n"
418                 "%sum       = OpVariable %sumbufptr ${BLOCK_POINTER_TYPE}\n"
419
420                 "%id        = OpVariable %uvec3ptr Input\n"
421                 "%minusone  = OpConstant %i32 -1\n"
422                 "%zero      = OpConstant %i32 0\n"
423                 "%one       = OpConstant %u32 1\n"
424                 "%two       = OpConstant %i32 2\n"
425
426                 "%main      = OpFunction %void None %voidf\n"
427                 "%label     = OpLabel\n"
428                 "%idval     = OpLoad %uvec3 %id\n"
429                 "%x         = OpCompositeExtract %u32 %idval 0\n"
430
431                 "%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
432                 "%inval     = OpLoad %i32 %inloc\n"
433
434                 "%outloc    = OpAccessChain %i32ptr %sum %zero ${INDEX}\n"
435                 "${INSTRUCTION}"
436
437                 "             OpReturn\n"
438                 "             OpFunctionEnd\n");
439
440         #define ADD_OPATOMIC_CASE(NAME, ASSEMBLY, CALCULATE_EXPECTED, NUM_OUTPUT_ELEMENTS) \
441         do { \
442                 DE_STATIC_ASSERT((NUM_OUTPUT_ELEMENTS) == 1 || (NUM_OUTPUT_ELEMENTS) == numElements); \
443                 struct calculateExpected_##NAME { static void calculateExpected(deInt32& expected, deInt32 input) CALCULATE_EXPECTED }; /* NOLINT(CALCULATE_EXPECTED) */ \
444                 cases.push_back(OpAtomicCase(#NAME, ASSEMBLY, calculateExpected_##NAME::calculateExpected, NUM_OUTPUT_ELEMENTS)); \
445         } while (deGetFalse())
446         #define ADD_OPATOMIC_CASE_1(NAME, ASSEMBLY, CALCULATE_EXPECTED) ADD_OPATOMIC_CASE(NAME, ASSEMBLY, CALCULATE_EXPECTED, 1)
447         #define ADD_OPATOMIC_CASE_N(NAME, ASSEMBLY, CALCULATE_EXPECTED) ADD_OPATOMIC_CASE(NAME, ASSEMBLY, CALCULATE_EXPECTED, numElements)
448
449         ADD_OPATOMIC_CASE_1(iadd,       "%unused    = OpAtomicIAdd %i32 %outloc %one %zero %inval\n", { expected += input; } );
450         ADD_OPATOMIC_CASE_1(isub,       "%unused    = OpAtomicISub %i32 %outloc %one %zero %inval\n", { expected -= input; } );
451         ADD_OPATOMIC_CASE_1(iinc,       "%unused    = OpAtomicIIncrement %i32 %outloc %one %zero\n",  { ++expected; (void)input;} );
452         ADD_OPATOMIC_CASE_1(idec,       "%unused    = OpAtomicIDecrement %i32 %outloc %one %zero\n",  { --expected; (void)input;} );
453         ADD_OPATOMIC_CASE_N(load,       "%inval2    = OpAtomicLoad %i32 %inloc %zero %zero\n"
454                                                                 "             OpStore %outloc %inval2\n",  { expected = input;} );
455         ADD_OPATOMIC_CASE_N(store,      "             OpAtomicStore %outloc %zero %zero %inval\n",  { expected = input;} );
456         ADD_OPATOMIC_CASE_N(compex, "%even      = OpSMod %i32 %inval %two\n"
457                                                                 "             OpStore %outloc %even\n"
458                                                                 "%unused    = OpAtomicCompareExchange %i32 %outloc %one %zero %zero %minusone %zero\n",  { expected = (input % 2) == 0 ? -1 : 1;} );
459
460         #undef ADD_OPATOMIC_CASE
461         #undef ADD_OPATOMIC_CASE_1
462         #undef ADD_OPATOMIC_CASE_N
463
464         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
465         {
466                 map<string, string>                     specializations;
467                 ComputeShaderSpec                       spec;
468                 vector<deInt32>                         inputInts               (numElements, 0);
469                 vector<deInt32>                         expected                (cases[caseNdx].numOutputElements, -1);
470
471                 specializations["INDEX"]                                = (cases[caseNdx].numOutputElements == 1) ? "%zero" : "%x";
472                 specializations["INSTRUCTION"]                  = cases[caseNdx].assembly;
473                 specializations["BLOCK_DECORATION"]             = useStorageBuffer ? "Block" : "BufferBlock";
474                 specializations["BLOCK_POINTER_TYPE"]   = useStorageBuffer ? "StorageBuffer" : "Uniform";
475                 spec.assembly                                                   = shaderTemplate.specialize(specializations);
476
477                 if (useStorageBuffer)
478                         spec.extensions.push_back("VK_KHR_storage_buffer_storage_class");
479
480                 fillRandomScalars(rnd, 1, 100, &inputInts[0], numElements);
481                 for (size_t ndx = 0; ndx < numElements; ++ndx)
482                 {
483                         cases[caseNdx].calculateExpected((cases[caseNdx].numOutputElements == 1) ? expected[0] : expected[ndx], inputInts[ndx]);
484                 }
485
486                 spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
487                 spec.outputs.push_back(BufferSp(new Int32Buffer(expected)));
488                 spec.numWorkGroups = IVec3(numElements, 1, 1);
489                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
490         }
491
492         return group.release();
493 }
494
495 tcu::TestCaseGroup* createOpLineGroup (tcu::TestContext& testCtx)
496 {
497         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opline", "Test the OpLine instruction"));
498         ComputeShaderSpec                               spec;
499         de::Random                                              rnd                             (deStringHash(group->getName()));
500         const int                                               numElements             = 100;
501         vector<float>                                   positiveFloats  (numElements, 0);
502         vector<float>                                   negativeFloats  (numElements, 0);
503
504         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
505
506         for (size_t ndx = 0; ndx < numElements; ++ndx)
507                 negativeFloats[ndx] = -positiveFloats[ndx];
508
509         spec.assembly =
510                 string(getComputeAsmShaderPreamble()) +
511
512                 "%fname1 = OpString \"negateInputs.comp\"\n"
513                 "%fname2 = OpString \"negateInputs\"\n"
514
515                 "OpSource GLSL 430\n"
516                 "OpName %main           \"main\"\n"
517                 "OpName %id             \"gl_GlobalInvocationID\"\n"
518
519                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
520
521                 + string(getComputeAsmInputOutputBufferTraits()) +
522
523                 "OpLine %fname1 0 0\n" // At the earliest possible position
524
525                 + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
526
527                 "OpLine %fname1 0 1\n" // Multiple OpLines in sequence
528                 "OpLine %fname2 1 0\n" // Different filenames
529                 "OpLine %fname1 1000 100000\n"
530
531                 "%id        = OpVariable %uvec3ptr Input\n"
532                 "%zero      = OpConstant %i32 0\n"
533
534                 "OpLine %fname1 1 1\n" // Before a function
535
536                 "%main      = OpFunction %void None %voidf\n"
537                 "%label     = OpLabel\n"
538
539                 "OpLine %fname1 1 1\n" // In a function
540
541                 "%idval     = OpLoad %uvec3 %id\n"
542                 "%x         = OpCompositeExtract %u32 %idval 0\n"
543                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
544                 "%inval     = OpLoad %f32 %inloc\n"
545                 "%neg       = OpFNegate %f32 %inval\n"
546                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
547                 "             OpStore %outloc %neg\n"
548                 "             OpReturn\n"
549                 "             OpFunctionEnd\n";
550         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
551         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
552         spec.numWorkGroups = IVec3(numElements, 1, 1);
553
554         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpLine appearing at different places", spec));
555
556         return group.release();
557 }
558
559 tcu::TestCaseGroup* createOpNoLineGroup (tcu::TestContext& testCtx)
560 {
561         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opnoline", "Test the OpNoLine instruction"));
562         ComputeShaderSpec                               spec;
563         de::Random                                              rnd                             (deStringHash(group->getName()));
564         const int                                               numElements             = 100;
565         vector<float>                                   positiveFloats  (numElements, 0);
566         vector<float>                                   negativeFloats  (numElements, 0);
567
568         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
569
570         for (size_t ndx = 0; ndx < numElements; ++ndx)
571                 negativeFloats[ndx] = -positiveFloats[ndx];
572
573         spec.assembly =
574                 string(getComputeAsmShaderPreamble()) +
575
576                 "%fname = OpString \"negateInputs.comp\"\n"
577
578                 "OpSource GLSL 430\n"
579                 "OpName %main           \"main\"\n"
580                 "OpName %id             \"gl_GlobalInvocationID\"\n"
581
582                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
583
584                 + string(getComputeAsmInputOutputBufferTraits()) +
585
586                 "OpNoLine\n" // At the earliest possible position, without preceding OpLine
587
588                 + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
589
590                 "OpLine %fname 0 1\n"
591                 "OpNoLine\n" // Immediately following a preceding OpLine
592
593                 "OpLine %fname 1000 1\n"
594
595                 "%id        = OpVariable %uvec3ptr Input\n"
596                 "%zero      = OpConstant %i32 0\n"
597
598                 "OpNoLine\n" // Contents after the previous OpLine
599
600                 "%main      = OpFunction %void None %voidf\n"
601                 "%label     = OpLabel\n"
602                 "%idval     = OpLoad %uvec3 %id\n"
603                 "%x         = OpCompositeExtract %u32 %idval 0\n"
604
605                 "OpNoLine\n" // Multiple OpNoLine
606                 "OpNoLine\n"
607                 "OpNoLine\n"
608
609                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
610                 "%inval     = OpLoad %f32 %inloc\n"
611                 "%neg       = OpFNegate %f32 %inval\n"
612                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
613                 "             OpStore %outloc %neg\n"
614                 "             OpReturn\n"
615                 "             OpFunctionEnd\n";
616         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
617         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
618         spec.numWorkGroups = IVec3(numElements, 1, 1);
619
620         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpNoLine appearing at different places", spec));
621
622         return group.release();
623 }
624
625 // Compare instruction for the contraction compute case.
626 // Returns true if the output is what is expected from the test case.
627 bool compareNoContractCase(const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
628 {
629         if (outputAllocs.size() != 1)
630                 return false;
631
632         // We really just need this for size because we are not comparing the exact values.
633         const BufferSp& expectedOutput  = expectedOutputs[0];
634         const float*    outputAsFloat   = static_cast<const float*>(outputAllocs[0]->getHostPtr());;
635
636         for(size_t i = 0; i < expectedOutput->getNumBytes() / sizeof(float); ++i) {
637                 if (outputAsFloat[i] != 0.f &&
638                         outputAsFloat[i] != -ldexp(1, -24)) {
639                         return false;
640                 }
641         }
642
643         return true;
644 }
645
646 tcu::TestCaseGroup* createNoContractionGroup (tcu::TestContext& testCtx)
647 {
648         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
649         vector<CaseParameter>                   cases;
650         const int                                               numElements             = 100;
651         vector<float>                                   inputFloats1    (numElements, 0);
652         vector<float>                                   inputFloats2    (numElements, 0);
653         vector<float>                                   outputFloats    (numElements, 0);
654         const StringTemplate                    shaderTemplate  (
655                 string(getComputeAsmShaderPreamble()) +
656
657                 "OpName %main           \"main\"\n"
658                 "OpName %id             \"gl_GlobalInvocationID\"\n"
659
660                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
661
662                 "${DECORATION}\n"
663
664                 "OpDecorate %buf BufferBlock\n"
665                 "OpDecorate %indata1 DescriptorSet 0\n"
666                 "OpDecorate %indata1 Binding 0\n"
667                 "OpDecorate %indata2 DescriptorSet 0\n"
668                 "OpDecorate %indata2 Binding 1\n"
669                 "OpDecorate %outdata DescriptorSet 0\n"
670                 "OpDecorate %outdata Binding 2\n"
671                 "OpDecorate %f32arr ArrayStride 4\n"
672                 "OpMemberDecorate %buf 0 Offset 0\n"
673
674                 + string(getComputeAsmCommonTypes()) +
675
676                 "%buf        = OpTypeStruct %f32arr\n"
677                 "%bufptr     = OpTypePointer Uniform %buf\n"
678                 "%indata1    = OpVariable %bufptr Uniform\n"
679                 "%indata2    = OpVariable %bufptr Uniform\n"
680                 "%outdata    = OpVariable %bufptr Uniform\n"
681
682                 "%id         = OpVariable %uvec3ptr Input\n"
683                 "%zero       = OpConstant %i32 0\n"
684                 "%c_f_m1     = OpConstant %f32 -1.\n"
685
686                 "%main       = OpFunction %void None %voidf\n"
687                 "%label      = OpLabel\n"
688                 "%idval      = OpLoad %uvec3 %id\n"
689                 "%x          = OpCompositeExtract %u32 %idval 0\n"
690                 "%inloc1     = OpAccessChain %f32ptr %indata1 %zero %x\n"
691                 "%inval1     = OpLoad %f32 %inloc1\n"
692                 "%inloc2     = OpAccessChain %f32ptr %indata2 %zero %x\n"
693                 "%inval2     = OpLoad %f32 %inloc2\n"
694                 "%mul        = OpFMul %f32 %inval1 %inval2\n"
695                 "%add        = OpFAdd %f32 %mul %c_f_m1\n"
696                 "%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
697                 "              OpStore %outloc %add\n"
698                 "              OpReturn\n"
699                 "              OpFunctionEnd\n");
700
701         cases.push_back(CaseParameter("multiplication", "OpDecorate %mul NoContraction"));
702         cases.push_back(CaseParameter("addition",               "OpDecorate %add NoContraction"));
703         cases.push_back(CaseParameter("both",                   "OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"));
704
705         for (size_t ndx = 0; ndx < numElements; ++ndx)
706         {
707                 inputFloats1[ndx]       = 1.f + std::ldexp(1.f, -23); // 1 + 2^-23.
708                 inputFloats2[ndx]       = 1.f - std::ldexp(1.f, -23); // 1 - 2^-23.
709                 // Result for (1 + 2^-23) * (1 - 2^-23) - 1. With NoContraction, the multiplication will be
710                 // conducted separately and the result is rounded to 1, or 0x1.fffffcp-1
711                 // So the final result will be 0.f or 0x1p-24.
712                 // If the operation is combined into a precise fused multiply-add, then the result would be
713                 // 2^-46 (0xa8800000).
714                 outputFloats[ndx]       = 0.f;
715         }
716
717         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
718         {
719                 map<string, string>             specializations;
720                 ComputeShaderSpec               spec;
721
722                 specializations["DECORATION"] = cases[caseNdx].param;
723                 spec.assembly = shaderTemplate.specialize(specializations);
724                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
725                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
726                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
727                 spec.numWorkGroups = IVec3(numElements, 1, 1);
728                 // Check against the two possible answers based on rounding mode.
729                 spec.verifyIO = &compareNoContractCase;
730
731                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
732         }
733         return group.release();
734 }
735
736 bool compareFRem(const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
737 {
738         if (outputAllocs.size() != 1)
739                 return false;
740
741         const BufferSp& expectedOutput = expectedOutputs[0];
742         const float *expectedOutputAsFloat = static_cast<const float*>(expectedOutput->data());
743         const float* outputAsFloat = static_cast<const float*>(outputAllocs[0]->getHostPtr());;
744
745         for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(float); ++idx)
746         {
747                 const float f0 = expectedOutputAsFloat[idx];
748                 const float f1 = outputAsFloat[idx];
749                 // \todo relative error needs to be fairly high because FRem may be implemented as
750                 // (roughly) frac(a/b)*b, so LSB errors can be magnified. But this should be fine for now.
751                 if (deFloatAbs((f1 - f0) / f0) > 0.02)
752                         return false;
753         }
754
755         return true;
756 }
757
758 tcu::TestCaseGroup* createOpFRemGroup (tcu::TestContext& testCtx)
759 {
760         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opfrem", "Test the OpFRem instruction"));
761         ComputeShaderSpec                               spec;
762         de::Random                                              rnd                             (deStringHash(group->getName()));
763         const int                                               numElements             = 200;
764         vector<float>                                   inputFloats1    (numElements, 0);
765         vector<float>                                   inputFloats2    (numElements, 0);
766         vector<float>                                   outputFloats    (numElements, 0);
767
768         fillRandomScalars(rnd, -10000.f, 10000.f, &inputFloats1[0], numElements);
769         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats2[0], numElements);
770
771         for (size_t ndx = 0; ndx < numElements; ++ndx)
772         {
773                 // Guard against divisors near zero.
774                 if (std::fabs(inputFloats2[ndx]) < 1e-3)
775                         inputFloats2[ndx] = 8.f;
776
777                 // The return value of std::fmod() has the same sign as its first operand, which is how OpFRem spec'd.
778                 outputFloats[ndx] = std::fmod(inputFloats1[ndx], inputFloats2[ndx]);
779         }
780
781         spec.assembly =
782                 string(getComputeAsmShaderPreamble()) +
783
784                 "OpName %main           \"main\"\n"
785                 "OpName %id             \"gl_GlobalInvocationID\"\n"
786
787                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
788
789                 "OpDecorate %buf BufferBlock\n"
790                 "OpDecorate %indata1 DescriptorSet 0\n"
791                 "OpDecorate %indata1 Binding 0\n"
792                 "OpDecorate %indata2 DescriptorSet 0\n"
793                 "OpDecorate %indata2 Binding 1\n"
794                 "OpDecorate %outdata DescriptorSet 0\n"
795                 "OpDecorate %outdata Binding 2\n"
796                 "OpDecorate %f32arr ArrayStride 4\n"
797                 "OpMemberDecorate %buf 0 Offset 0\n"
798
799                 + string(getComputeAsmCommonTypes()) +
800
801                 "%buf        = OpTypeStruct %f32arr\n"
802                 "%bufptr     = OpTypePointer Uniform %buf\n"
803                 "%indata1    = OpVariable %bufptr Uniform\n"
804                 "%indata2    = OpVariable %bufptr Uniform\n"
805                 "%outdata    = OpVariable %bufptr Uniform\n"
806
807                 "%id        = OpVariable %uvec3ptr Input\n"
808                 "%zero      = OpConstant %i32 0\n"
809
810                 "%main      = OpFunction %void None %voidf\n"
811                 "%label     = OpLabel\n"
812                 "%idval     = OpLoad %uvec3 %id\n"
813                 "%x         = OpCompositeExtract %u32 %idval 0\n"
814                 "%inloc1    = OpAccessChain %f32ptr %indata1 %zero %x\n"
815                 "%inval1    = OpLoad %f32 %inloc1\n"
816                 "%inloc2    = OpAccessChain %f32ptr %indata2 %zero %x\n"
817                 "%inval2    = OpLoad %f32 %inloc2\n"
818                 "%rem       = OpFRem %f32 %inval1 %inval2\n"
819                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
820                 "             OpStore %outloc %rem\n"
821                 "             OpReturn\n"
822                 "             OpFunctionEnd\n";
823
824         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
825         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
826         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
827         spec.numWorkGroups = IVec3(numElements, 1, 1);
828         spec.verifyIO = &compareFRem;
829
830         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "", spec));
831
832         return group.release();
833 }
834
835 // Copy contents in the input buffer to the output buffer.
836 tcu::TestCaseGroup* createOpCopyMemoryGroup (tcu::TestContext& testCtx)
837 {
838         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opcopymemory", "Test the OpCopyMemory instruction"));
839         de::Random                                              rnd                             (deStringHash(group->getName()));
840         const int                                               numElements             = 100;
841
842         // The following case adds vec4(0., 0.5, 1.5, 2.5) to each of the elements in the input buffer and writes output to the output buffer.
843         ComputeShaderSpec                               spec1;
844         vector<Vec4>                                    inputFloats1    (numElements);
845         vector<Vec4>                                    outputFloats1   (numElements);
846
847         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats1[0], numElements * 4);
848
849         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
850         floorAll(inputFloats1);
851
852         for (size_t ndx = 0; ndx < numElements; ++ndx)
853                 outputFloats1[ndx] = inputFloats1[ndx] + Vec4(0.f, 0.5f, 1.5f, 2.5f);
854
855         spec1.assembly =
856                 string(getComputeAsmShaderPreamble()) +
857
858                 "OpName %main           \"main\"\n"
859                 "OpName %id             \"gl_GlobalInvocationID\"\n"
860
861                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
862                 "OpDecorate %vec4arr ArrayStride 16\n"
863
864                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
865
866                 "%vec4       = OpTypeVector %f32 4\n"
867                 "%vec4ptr_u  = OpTypePointer Uniform %vec4\n"
868                 "%vec4ptr_f  = OpTypePointer Function %vec4\n"
869                 "%vec4arr    = OpTypeRuntimeArray %vec4\n"
870                 "%buf        = OpTypeStruct %vec4arr\n"
871                 "%bufptr     = OpTypePointer Uniform %buf\n"
872                 "%indata     = OpVariable %bufptr Uniform\n"
873                 "%outdata    = OpVariable %bufptr Uniform\n"
874
875                 "%id         = OpVariable %uvec3ptr Input\n"
876                 "%zero       = OpConstant %i32 0\n"
877                 "%c_f_0      = OpConstant %f32 0.\n"
878                 "%c_f_0_5    = OpConstant %f32 0.5\n"
879                 "%c_f_1_5    = OpConstant %f32 1.5\n"
880                 "%c_f_2_5    = OpConstant %f32 2.5\n"
881                 "%c_vec4     = OpConstantComposite %vec4 %c_f_0 %c_f_0_5 %c_f_1_5 %c_f_2_5\n"
882
883                 "%main       = OpFunction %void None %voidf\n"
884                 "%label      = OpLabel\n"
885                 "%v_vec4     = OpVariable %vec4ptr_f Function\n"
886                 "%idval      = OpLoad %uvec3 %id\n"
887                 "%x          = OpCompositeExtract %u32 %idval 0\n"
888                 "%inloc      = OpAccessChain %vec4ptr_u %indata %zero %x\n"
889                 "%outloc     = OpAccessChain %vec4ptr_u %outdata %zero %x\n"
890                 "              OpCopyMemory %v_vec4 %inloc\n"
891                 "%v_vec4_val = OpLoad %vec4 %v_vec4\n"
892                 "%add        = OpFAdd %vec4 %v_vec4_val %c_vec4\n"
893                 "              OpStore %outloc %add\n"
894                 "              OpReturn\n"
895                 "              OpFunctionEnd\n";
896
897         spec1.inputs.push_back(BufferSp(new Vec4Buffer(inputFloats1)));
898         spec1.outputs.push_back(BufferSp(new Vec4Buffer(outputFloats1)));
899         spec1.numWorkGroups = IVec3(numElements, 1, 1);
900
901         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector", "OpCopyMemory elements of vector type", spec1));
902
903         // The following case copies a float[100] variable from the input buffer to the output buffer.
904         ComputeShaderSpec                               spec2;
905         vector<float>                                   inputFloats2    (numElements);
906         vector<float>                                   outputFloats2   (numElements);
907
908         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats2[0], numElements);
909
910         for (size_t ndx = 0; ndx < numElements; ++ndx)
911                 outputFloats2[ndx] = inputFloats2[ndx];
912
913         spec2.assembly =
914                 string(getComputeAsmShaderPreamble()) +
915
916                 "OpName %main           \"main\"\n"
917                 "OpName %id             \"gl_GlobalInvocationID\"\n"
918
919                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
920                 "OpDecorate %f32arr100 ArrayStride 4\n"
921
922                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
923
924                 "%hundred        = OpConstant %u32 100\n"
925                 "%f32arr100      = OpTypeArray %f32 %hundred\n"
926                 "%f32arr100ptr_f = OpTypePointer Function %f32arr100\n"
927                 "%f32arr100ptr_u = OpTypePointer Uniform %f32arr100\n"
928                 "%buf            = OpTypeStruct %f32arr100\n"
929                 "%bufptr         = OpTypePointer Uniform %buf\n"
930                 "%indata         = OpVariable %bufptr Uniform\n"
931                 "%outdata        = OpVariable %bufptr Uniform\n"
932
933                 "%id             = OpVariable %uvec3ptr Input\n"
934                 "%zero           = OpConstant %i32 0\n"
935
936                 "%main           = OpFunction %void None %voidf\n"
937                 "%label          = OpLabel\n"
938                 "%var            = OpVariable %f32arr100ptr_f Function\n"
939                 "%inarr          = OpAccessChain %f32arr100ptr_u %indata %zero\n"
940                 "%outarr         = OpAccessChain %f32arr100ptr_u %outdata %zero\n"
941                 "                  OpCopyMemory %var %inarr\n"
942                 "                  OpCopyMemory %outarr %var\n"
943                 "                  OpReturn\n"
944                 "                  OpFunctionEnd\n";
945
946         spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
947         spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
948         spec2.numWorkGroups = IVec3(1, 1, 1);
949
950         group->addChild(new SpvAsmComputeShaderCase(testCtx, "array", "OpCopyMemory elements of array type", spec2));
951
952         // The following case copies a struct{vec4, vec4, vec4, vec4} variable from the input buffer to the output buffer.
953         ComputeShaderSpec                               spec3;
954         vector<float>                                   inputFloats3    (16);
955         vector<float>                                   outputFloats3   (16);
956
957         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats3[0], 16);
958
959         for (size_t ndx = 0; ndx < 16; ++ndx)
960                 outputFloats3[ndx] = inputFloats3[ndx];
961
962         spec3.assembly =
963                 string(getComputeAsmShaderPreamble()) +
964
965                 "OpName %main           \"main\"\n"
966                 "OpName %id             \"gl_GlobalInvocationID\"\n"
967
968                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
969                 "OpMemberDecorate %buf 0 Offset 0\n"
970                 "OpMemberDecorate %buf 1 Offset 16\n"
971                 "OpMemberDecorate %buf 2 Offset 32\n"
972                 "OpMemberDecorate %buf 3 Offset 48\n"
973
974                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
975
976                 "%vec4      = OpTypeVector %f32 4\n"
977                 "%buf       = OpTypeStruct %vec4 %vec4 %vec4 %vec4\n"
978                 "%bufptr    = OpTypePointer Uniform %buf\n"
979                 "%indata    = OpVariable %bufptr Uniform\n"
980                 "%outdata   = OpVariable %bufptr Uniform\n"
981                 "%vec4stptr = OpTypePointer Function %buf\n"
982
983                 "%id        = OpVariable %uvec3ptr Input\n"
984                 "%zero      = OpConstant %i32 0\n"
985
986                 "%main      = OpFunction %void None %voidf\n"
987                 "%label     = OpLabel\n"
988                 "%var       = OpVariable %vec4stptr Function\n"
989                 "             OpCopyMemory %var %indata\n"
990                 "             OpCopyMemory %outdata %var\n"
991                 "             OpReturn\n"
992                 "             OpFunctionEnd\n";
993
994         spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
995         spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
996         spec3.numWorkGroups = IVec3(1, 1, 1);
997
998         group->addChild(new SpvAsmComputeShaderCase(testCtx, "struct", "OpCopyMemory elements of struct type", spec3));
999
1000         // The following case negates multiple float variables from the input buffer and stores the results to the output buffer.
1001         ComputeShaderSpec                               spec4;
1002         vector<float>                                   inputFloats4    (numElements);
1003         vector<float>                                   outputFloats4   (numElements);
1004
1005         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats4[0], numElements);
1006
1007         for (size_t ndx = 0; ndx < numElements; ++ndx)
1008                 outputFloats4[ndx] = -inputFloats4[ndx];
1009
1010         spec4.assembly =
1011                 string(getComputeAsmShaderPreamble()) +
1012
1013                 "OpName %main           \"main\"\n"
1014                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1015
1016                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1017
1018                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
1019
1020                 "%f32ptr_f  = OpTypePointer Function %f32\n"
1021                 "%id        = OpVariable %uvec3ptr Input\n"
1022                 "%zero      = OpConstant %i32 0\n"
1023
1024                 "%main      = OpFunction %void None %voidf\n"
1025                 "%label     = OpLabel\n"
1026                 "%var       = OpVariable %f32ptr_f Function\n"
1027                 "%idval     = OpLoad %uvec3 %id\n"
1028                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1029                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
1030                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
1031                 "             OpCopyMemory %var %inloc\n"
1032                 "%val       = OpLoad %f32 %var\n"
1033                 "%neg       = OpFNegate %f32 %val\n"
1034                 "             OpStore %outloc %neg\n"
1035                 "             OpReturn\n"
1036                 "             OpFunctionEnd\n";
1037
1038         spec4.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
1039         spec4.outputs.push_back(BufferSp(new Float32Buffer(outputFloats4)));
1040         spec4.numWorkGroups = IVec3(numElements, 1, 1);
1041
1042         group->addChild(new SpvAsmComputeShaderCase(testCtx, "float", "OpCopyMemory elements of float type", spec4));
1043
1044         return group.release();
1045 }
1046
1047 tcu::TestCaseGroup* createOpCopyObjectGroup (tcu::TestContext& testCtx)
1048 {
1049         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opcopyobject", "Test the OpCopyObject instruction"));
1050         ComputeShaderSpec                               spec;
1051         de::Random                                              rnd                             (deStringHash(group->getName()));
1052         const int                                               numElements             = 100;
1053         vector<float>                                   inputFloats             (numElements, 0);
1054         vector<float>                                   outputFloats    (numElements, 0);
1055
1056         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
1057
1058         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
1059         floorAll(inputFloats);
1060
1061         for (size_t ndx = 0; ndx < numElements; ++ndx)
1062                 outputFloats[ndx] = inputFloats[ndx] + 7.5f;
1063
1064         spec.assembly =
1065                 string(getComputeAsmShaderPreamble()) +
1066
1067                 "OpName %main           \"main\"\n"
1068                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1069
1070                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1071
1072                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
1073
1074                 "%fmat     = OpTypeMatrix %fvec3 3\n"
1075                 "%three    = OpConstant %u32 3\n"
1076                 "%farr     = OpTypeArray %f32 %three\n"
1077                 "%fst      = OpTypeStruct %f32 %f32\n"
1078
1079                 + string(getComputeAsmInputOutputBuffer()) +
1080
1081                 "%id            = OpVariable %uvec3ptr Input\n"
1082                 "%zero          = OpConstant %i32 0\n"
1083                 "%c_f           = OpConstant %f32 1.5\n"
1084                 "%c_fvec3       = OpConstantComposite %fvec3 %c_f %c_f %c_f\n"
1085                 "%c_fmat        = OpConstantComposite %fmat %c_fvec3 %c_fvec3 %c_fvec3\n"
1086                 "%c_farr        = OpConstantComposite %farr %c_f %c_f %c_f\n"
1087                 "%c_fst         = OpConstantComposite %fst %c_f %c_f\n"
1088
1089                 "%main          = OpFunction %void None %voidf\n"
1090                 "%label         = OpLabel\n"
1091                 "%c_f_copy      = OpCopyObject %f32   %c_f\n"
1092                 "%c_fvec3_copy  = OpCopyObject %fvec3 %c_fvec3\n"
1093                 "%c_fmat_copy   = OpCopyObject %fmat  %c_fmat\n"
1094                 "%c_farr_copy   = OpCopyObject %farr  %c_farr\n"
1095                 "%c_fst_copy    = OpCopyObject %fst   %c_fst\n"
1096                 "%fvec3_elem    = OpCompositeExtract %f32 %c_fvec3_copy 0\n"
1097                 "%fmat_elem     = OpCompositeExtract %f32 %c_fmat_copy 1 2\n"
1098                 "%farr_elem     = OpCompositeExtract %f32 %c_farr_copy 2\n"
1099                 "%fst_elem      = OpCompositeExtract %f32 %c_fst_copy 1\n"
1100                 // Add up. 1.5 * 5 = 7.5.
1101                 "%add1          = OpFAdd %f32 %c_f_copy %fvec3_elem\n"
1102                 "%add2          = OpFAdd %f32 %add1     %fmat_elem\n"
1103                 "%add3          = OpFAdd %f32 %add2     %farr_elem\n"
1104                 "%add4          = OpFAdd %f32 %add3     %fst_elem\n"
1105
1106                 "%idval         = OpLoad %uvec3 %id\n"
1107                 "%x             = OpCompositeExtract %u32 %idval 0\n"
1108                 "%inloc         = OpAccessChain %f32ptr %indata %zero %x\n"
1109                 "%outloc        = OpAccessChain %f32ptr %outdata %zero %x\n"
1110                 "%inval         = OpLoad %f32 %inloc\n"
1111                 "%add           = OpFAdd %f32 %add4 %inval\n"
1112                 "                 OpStore %outloc %add\n"
1113                 "                 OpReturn\n"
1114                 "                 OpFunctionEnd\n";
1115         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1116         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1117         spec.numWorkGroups = IVec3(numElements, 1, 1);
1118
1119         group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "OpCopyObject on different types", spec));
1120
1121         return group.release();
1122 }
1123 // Assembly code used for testing OpUnreachable is based on GLSL source code:
1124 //
1125 // #version 430
1126 //
1127 // layout(std140, set = 0, binding = 0) readonly buffer Input {
1128 //   float elements[];
1129 // } input_data;
1130 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
1131 //   float elements[];
1132 // } output_data;
1133 //
1134 // void not_called_func() {
1135 //   // place OpUnreachable here
1136 // }
1137 //
1138 // uint modulo4(uint val) {
1139 //   switch (val % uint(4)) {
1140 //     case 0:  return 3;
1141 //     case 1:  return 2;
1142 //     case 2:  return 1;
1143 //     case 3:  return 0;
1144 //     default: return 100; // place OpUnreachable here
1145 //   }
1146 // }
1147 //
1148 // uint const5() {
1149 //   return 5;
1150 //   // place OpUnreachable here
1151 // }
1152 //
1153 // void main() {
1154 //   uint x = gl_GlobalInvocationID.x;
1155 //   if (const5() > modulo4(1000)) {
1156 //     output_data.elements[x] = -input_data.elements[x];
1157 //   } else {
1158 //     // place OpUnreachable here
1159 //     output_data.elements[x] = input_data.elements[x];
1160 //   }
1161 // }
1162
1163 tcu::TestCaseGroup* createOpUnreachableGroup (tcu::TestContext& testCtx)
1164 {
1165         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opunreachable", "Test the OpUnreachable instruction"));
1166         ComputeShaderSpec                               spec;
1167         de::Random                                              rnd                             (deStringHash(group->getName()));
1168         const int                                               numElements             = 100;
1169         vector<float>                                   positiveFloats  (numElements, 0);
1170         vector<float>                                   negativeFloats  (numElements, 0);
1171
1172         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
1173
1174         for (size_t ndx = 0; ndx < numElements; ++ndx)
1175                 negativeFloats[ndx] = -positiveFloats[ndx];
1176
1177         spec.assembly =
1178                 string(getComputeAsmShaderPreamble()) +
1179
1180                 "OpSource GLSL 430\n"
1181                 "OpName %main            \"main\"\n"
1182                 "OpName %func_not_called_func \"not_called_func(\"\n"
1183                 "OpName %func_modulo4         \"modulo4(u1;\"\n"
1184                 "OpName %func_const5          \"const5(\"\n"
1185                 "OpName %id                   \"gl_GlobalInvocationID\"\n"
1186
1187                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1188
1189                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
1190
1191                 "%u32ptr    = OpTypePointer Function %u32\n"
1192                 "%uintfuint = OpTypeFunction %u32 %u32ptr\n"
1193                 "%unitf     = OpTypeFunction %u32\n"
1194
1195                 "%id        = OpVariable %uvec3ptr Input\n"
1196                 "%zero      = OpConstant %u32 0\n"
1197                 "%one       = OpConstant %u32 1\n"
1198                 "%two       = OpConstant %u32 2\n"
1199                 "%three     = OpConstant %u32 3\n"
1200                 "%four      = OpConstant %u32 4\n"
1201                 "%five      = OpConstant %u32 5\n"
1202                 "%hundred   = OpConstant %u32 100\n"
1203                 "%thousand  = OpConstant %u32 1000\n"
1204
1205                 + string(getComputeAsmInputOutputBuffer()) +
1206
1207                 // Main()
1208                 "%main   = OpFunction %void None %voidf\n"
1209                 "%main_entry  = OpLabel\n"
1210                 "%v_thousand  = OpVariable %u32ptr Function %thousand\n"
1211                 "%idval       = OpLoad %uvec3 %id\n"
1212                 "%x           = OpCompositeExtract %u32 %idval 0\n"
1213                 "%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
1214                 "%inval       = OpLoad %f32 %inloc\n"
1215                 "%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
1216                 "%ret_const5  = OpFunctionCall %u32 %func_const5\n"
1217                 "%ret_modulo4 = OpFunctionCall %u32 %func_modulo4 %v_thousand\n"
1218                 "%cmp_gt      = OpUGreaterThan %bool %ret_const5 %ret_modulo4\n"
1219                 "               OpSelectionMerge %if_end None\n"
1220                 "               OpBranchConditional %cmp_gt %if_true %if_false\n"
1221                 "%if_true     = OpLabel\n"
1222                 "%negate      = OpFNegate %f32 %inval\n"
1223                 "               OpStore %outloc %negate\n"
1224                 "               OpBranch %if_end\n"
1225                 "%if_false    = OpLabel\n"
1226                 "               OpUnreachable\n" // Unreachable else branch for if statement
1227                 "%if_end      = OpLabel\n"
1228                 "               OpReturn\n"
1229                 "               OpFunctionEnd\n"
1230
1231                 // not_called_function()
1232                 "%func_not_called_func  = OpFunction %void None %voidf\n"
1233                 "%not_called_func_entry = OpLabel\n"
1234                 "                         OpUnreachable\n" // Unreachable entry block in not called static function
1235                 "                         OpFunctionEnd\n"
1236
1237                 // modulo4()
1238                 "%func_modulo4  = OpFunction %u32 None %uintfuint\n"
1239                 "%valptr        = OpFunctionParameter %u32ptr\n"
1240                 "%modulo4_entry = OpLabel\n"
1241                 "%val           = OpLoad %u32 %valptr\n"
1242                 "%modulo        = OpUMod %u32 %val %four\n"
1243                 "                 OpSelectionMerge %switch_merge None\n"
1244                 "                 OpSwitch %modulo %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
1245                 "%case0         = OpLabel\n"
1246                 "                 OpReturnValue %three\n"
1247                 "%case1         = OpLabel\n"
1248                 "                 OpReturnValue %two\n"
1249                 "%case2         = OpLabel\n"
1250                 "                 OpReturnValue %one\n"
1251                 "%case3         = OpLabel\n"
1252                 "                 OpReturnValue %zero\n"
1253                 "%default       = OpLabel\n"
1254                 "                 OpUnreachable\n" // Unreachable default case for switch statement
1255                 "%switch_merge  = OpLabel\n"
1256                 "                 OpUnreachable\n" // Unreachable merge block for switch statement
1257                 "                 OpFunctionEnd\n"
1258
1259                 // const5()
1260                 "%func_const5  = OpFunction %u32 None %unitf\n"
1261                 "%const5_entry = OpLabel\n"
1262                 "                OpReturnValue %five\n"
1263                 "%unreachable  = OpLabel\n"
1264                 "                OpUnreachable\n" // Unreachable block in function
1265                 "                OpFunctionEnd\n";
1266         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
1267         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
1268         spec.numWorkGroups = IVec3(numElements, 1, 1);
1269
1270         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "OpUnreachable appearing at different places", spec));
1271
1272         return group.release();
1273 }
1274
1275 // Assembly code used for testing decoration group is based on GLSL source code:
1276 //
1277 // #version 430
1278 //
1279 // layout(std140, set = 0, binding = 0) readonly buffer Input0 {
1280 //   float elements[];
1281 // } input_data0;
1282 // layout(std140, set = 0, binding = 1) readonly buffer Input1 {
1283 //   float elements[];
1284 // } input_data1;
1285 // layout(std140, set = 0, binding = 2) readonly buffer Input2 {
1286 //   float elements[];
1287 // } input_data2;
1288 // layout(std140, set = 0, binding = 3) readonly buffer Input3 {
1289 //   float elements[];
1290 // } input_data3;
1291 // layout(std140, set = 0, binding = 4) readonly buffer Input4 {
1292 //   float elements[];
1293 // } input_data4;
1294 // layout(std140, set = 0, binding = 5) writeonly buffer Output {
1295 //   float elements[];
1296 // } output_data;
1297 //
1298 // void main() {
1299 //   uint x = gl_GlobalInvocationID.x;
1300 //   output_data.elements[x] = input_data0.elements[x] + input_data1.elements[x] + input_data2.elements[x] + input_data3.elements[x] + input_data4.elements[x];
1301 // }
1302 tcu::TestCaseGroup* createDecorationGroupGroup (tcu::TestContext& testCtx)
1303 {
1304         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "decoration_group", "Test the OpDecorationGroup & OpGroupDecorate instruction"));
1305         ComputeShaderSpec                               spec;
1306         de::Random                                              rnd                             (deStringHash(group->getName()));
1307         const int                                               numElements             = 100;
1308         vector<float>                                   inputFloats0    (numElements, 0);
1309         vector<float>                                   inputFloats1    (numElements, 0);
1310         vector<float>                                   inputFloats2    (numElements, 0);
1311         vector<float>                                   inputFloats3    (numElements, 0);
1312         vector<float>                                   inputFloats4    (numElements, 0);
1313         vector<float>                                   outputFloats    (numElements, 0);
1314
1315         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats0[0], numElements);
1316         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats1[0], numElements);
1317         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats2[0], numElements);
1318         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats3[0], numElements);
1319         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats4[0], numElements);
1320
1321         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
1322         floorAll(inputFloats0);
1323         floorAll(inputFloats1);
1324         floorAll(inputFloats2);
1325         floorAll(inputFloats3);
1326         floorAll(inputFloats4);
1327
1328         for (size_t ndx = 0; ndx < numElements; ++ndx)
1329                 outputFloats[ndx] = inputFloats0[ndx] + inputFloats1[ndx] + inputFloats2[ndx] + inputFloats3[ndx] + inputFloats4[ndx];
1330
1331         spec.assembly =
1332                 string(getComputeAsmShaderPreamble()) +
1333
1334                 "OpSource GLSL 430\n"
1335                 "OpName %main \"main\"\n"
1336                 "OpName %id \"gl_GlobalInvocationID\"\n"
1337
1338                 // Not using group decoration on variable.
1339                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1340                 // Not using group decoration on type.
1341                 "OpDecorate %f32arr ArrayStride 4\n"
1342
1343                 "OpDecorate %groups BufferBlock\n"
1344                 "OpDecorate %groupm Offset 0\n"
1345                 "%groups = OpDecorationGroup\n"
1346                 "%groupm = OpDecorationGroup\n"
1347
1348                 // Group decoration on multiple structs.
1349                 "OpGroupDecorate %groups %outbuf %inbuf0 %inbuf1 %inbuf2 %inbuf3 %inbuf4\n"
1350                 // Group decoration on multiple struct members.
1351                 "OpGroupMemberDecorate %groupm %outbuf 0 %inbuf0 0 %inbuf1 0 %inbuf2 0 %inbuf3 0 %inbuf4 0\n"
1352
1353                 "OpDecorate %group1 DescriptorSet 0\n"
1354                 "OpDecorate %group3 DescriptorSet 0\n"
1355                 "OpDecorate %group3 NonWritable\n"
1356                 "OpDecorate %group3 Restrict\n"
1357                 "%group0 = OpDecorationGroup\n"
1358                 "%group1 = OpDecorationGroup\n"
1359                 "%group3 = OpDecorationGroup\n"
1360
1361                 // Applying the same decoration group multiple times.
1362                 "OpGroupDecorate %group1 %outdata\n"
1363                 "OpGroupDecorate %group1 %outdata\n"
1364                 "OpGroupDecorate %group1 %outdata\n"
1365                 "OpDecorate %outdata DescriptorSet 0\n"
1366                 "OpDecorate %outdata Binding 5\n"
1367                 // Applying decoration group containing nothing.
1368                 "OpGroupDecorate %group0 %indata0\n"
1369                 "OpDecorate %indata0 DescriptorSet 0\n"
1370                 "OpDecorate %indata0 Binding 0\n"
1371                 // Applying decoration group containing one decoration.
1372                 "OpGroupDecorate %group1 %indata1\n"
1373                 "OpDecorate %indata1 Binding 1\n"
1374                 // Applying decoration group containing multiple decorations.
1375                 "OpGroupDecorate %group3 %indata2 %indata3\n"
1376                 "OpDecorate %indata2 Binding 2\n"
1377                 "OpDecorate %indata3 Binding 3\n"
1378                 // Applying multiple decoration groups (with overlapping).
1379                 "OpGroupDecorate %group0 %indata4\n"
1380                 "OpGroupDecorate %group1 %indata4\n"
1381                 "OpGroupDecorate %group3 %indata4\n"
1382                 "OpDecorate %indata4 Binding 4\n"
1383
1384                 + string(getComputeAsmCommonTypes()) +
1385
1386                 "%id   = OpVariable %uvec3ptr Input\n"
1387                 "%zero = OpConstant %i32 0\n"
1388
1389                 "%outbuf    = OpTypeStruct %f32arr\n"
1390                 "%outbufptr = OpTypePointer Uniform %outbuf\n"
1391                 "%outdata   = OpVariable %outbufptr Uniform\n"
1392                 "%inbuf0    = OpTypeStruct %f32arr\n"
1393                 "%inbuf0ptr = OpTypePointer Uniform %inbuf0\n"
1394                 "%indata0   = OpVariable %inbuf0ptr Uniform\n"
1395                 "%inbuf1    = OpTypeStruct %f32arr\n"
1396                 "%inbuf1ptr = OpTypePointer Uniform %inbuf1\n"
1397                 "%indata1   = OpVariable %inbuf1ptr Uniform\n"
1398                 "%inbuf2    = OpTypeStruct %f32arr\n"
1399                 "%inbuf2ptr = OpTypePointer Uniform %inbuf2\n"
1400                 "%indata2   = OpVariable %inbuf2ptr Uniform\n"
1401                 "%inbuf3    = OpTypeStruct %f32arr\n"
1402                 "%inbuf3ptr = OpTypePointer Uniform %inbuf3\n"
1403                 "%indata3   = OpVariable %inbuf3ptr Uniform\n"
1404                 "%inbuf4    = OpTypeStruct %f32arr\n"
1405                 "%inbufptr  = OpTypePointer Uniform %inbuf4\n"
1406                 "%indata4   = OpVariable %inbufptr Uniform\n"
1407
1408                 "%main   = OpFunction %void None %voidf\n"
1409                 "%label  = OpLabel\n"
1410                 "%idval  = OpLoad %uvec3 %id\n"
1411                 "%x      = OpCompositeExtract %u32 %idval 0\n"
1412                 "%inloc0 = OpAccessChain %f32ptr %indata0 %zero %x\n"
1413                 "%inloc1 = OpAccessChain %f32ptr %indata1 %zero %x\n"
1414                 "%inloc2 = OpAccessChain %f32ptr %indata2 %zero %x\n"
1415                 "%inloc3 = OpAccessChain %f32ptr %indata3 %zero %x\n"
1416                 "%inloc4 = OpAccessChain %f32ptr %indata4 %zero %x\n"
1417                 "%outloc = OpAccessChain %f32ptr %outdata %zero %x\n"
1418                 "%inval0 = OpLoad %f32 %inloc0\n"
1419                 "%inval1 = OpLoad %f32 %inloc1\n"
1420                 "%inval2 = OpLoad %f32 %inloc2\n"
1421                 "%inval3 = OpLoad %f32 %inloc3\n"
1422                 "%inval4 = OpLoad %f32 %inloc4\n"
1423                 "%add0   = OpFAdd %f32 %inval0 %inval1\n"
1424                 "%add1   = OpFAdd %f32 %add0 %inval2\n"
1425                 "%add2   = OpFAdd %f32 %add1 %inval3\n"
1426                 "%add    = OpFAdd %f32 %add2 %inval4\n"
1427                 "          OpStore %outloc %add\n"
1428                 "          OpReturn\n"
1429                 "          OpFunctionEnd\n";
1430         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats0)));
1431         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats1)));
1432         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats2)));
1433         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats3)));
1434         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats4)));
1435         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1436         spec.numWorkGroups = IVec3(numElements, 1, 1);
1437
1438         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "decoration group cases", spec));
1439
1440         return group.release();
1441 }
1442
1443 struct SpecConstantTwoIntCase
1444 {
1445         const char*             caseName;
1446         const char*             scDefinition0;
1447         const char*             scDefinition1;
1448         const char*             scResultType;
1449         const char*             scOperation;
1450         deInt32                 scActualValue0;
1451         deInt32                 scActualValue1;
1452         const char*             resultOperation;
1453         vector<deInt32> expectedOutput;
1454
1455                                         SpecConstantTwoIntCase (const char* name,
1456                                                                                         const char* definition0,
1457                                                                                         const char* definition1,
1458                                                                                         const char* resultType,
1459                                                                                         const char* operation,
1460                                                                                         deInt32 value0,
1461                                                                                         deInt32 value1,
1462                                                                                         const char* resultOp,
1463                                                                                         const vector<deInt32>& output)
1464                                                 : caseName                      (name)
1465                                                 , scDefinition0         (definition0)
1466                                                 , scDefinition1         (definition1)
1467                                                 , scResultType          (resultType)
1468                                                 , scOperation           (operation)
1469                                                 , scActualValue0        (value0)
1470                                                 , scActualValue1        (value1)
1471                                                 , resultOperation       (resultOp)
1472                                                 , expectedOutput        (output) {}
1473 };
1474
1475 tcu::TestCaseGroup* createSpecConstantGroup (tcu::TestContext& testCtx)
1476 {
1477         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
1478         vector<SpecConstantTwoIntCase>  cases;
1479         de::Random                                              rnd                             (deStringHash(group->getName()));
1480         const int                                               numElements             = 100;
1481         vector<deInt32>                                 inputInts               (numElements, 0);
1482         vector<deInt32>                                 outputInts1             (numElements, 0);
1483         vector<deInt32>                                 outputInts2             (numElements, 0);
1484         vector<deInt32>                                 outputInts3             (numElements, 0);
1485         vector<deInt32>                                 outputInts4             (numElements, 0);
1486         const StringTemplate                    shaderTemplate  (
1487                 string(getComputeAsmShaderPreamble()) +
1488
1489                 "OpName %main           \"main\"\n"
1490                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1491
1492                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1493                 "OpDecorate %sc_0  SpecId 0\n"
1494                 "OpDecorate %sc_1  SpecId 1\n"
1495                 "OpDecorate %i32arr ArrayStride 4\n"
1496
1497                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
1498
1499                 "%buf     = OpTypeStruct %i32arr\n"
1500                 "%bufptr  = OpTypePointer Uniform %buf\n"
1501                 "%indata    = OpVariable %bufptr Uniform\n"
1502                 "%outdata   = OpVariable %bufptr Uniform\n"
1503
1504                 "%id        = OpVariable %uvec3ptr Input\n"
1505                 "%zero      = OpConstant %i32 0\n"
1506
1507                 "%sc_0      = OpSpecConstant${SC_DEF0}\n"
1508                 "%sc_1      = OpSpecConstant${SC_DEF1}\n"
1509                 "%sc_final  = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n"
1510
1511                 "%main      = OpFunction %void None %voidf\n"
1512                 "%label     = OpLabel\n"
1513                 "%idval     = OpLoad %uvec3 %id\n"
1514                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1515                 "%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1516                 "%inval     = OpLoad %i32 %inloc\n"
1517                 "%final     = ${GEN_RESULT}\n"
1518                 "%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1519                 "             OpStore %outloc %final\n"
1520                 "             OpReturn\n"
1521                 "             OpFunctionEnd\n");
1522
1523         fillRandomScalars(rnd, -65536, 65536, &inputInts[0], numElements);
1524
1525         for (size_t ndx = 0; ndx < numElements; ++ndx)
1526         {
1527                 outputInts1[ndx] = inputInts[ndx] + 42;
1528                 outputInts2[ndx] = inputInts[ndx];
1529                 outputInts3[ndx] = inputInts[ndx] - 11200;
1530                 outputInts4[ndx] = inputInts[ndx] + 1;
1531         }
1532
1533         const char addScToInput[]               = "OpIAdd %i32 %inval %sc_final";
1534         const char selectTrueUsingSc[]  = "OpSelect %i32 %sc_final %inval %zero";
1535         const char selectFalseUsingSc[] = "OpSelect %i32 %sc_final %zero %inval";
1536
1537         cases.push_back(SpecConstantTwoIntCase("iadd",                                  " %i32 0",              " %i32 0",              "%i32",         "IAdd                 %sc_0 %sc_1",                     62,             -20,    addScToInput,           outputInts1));
1538         cases.push_back(SpecConstantTwoIntCase("isub",                                  " %i32 0",              " %i32 0",              "%i32",         "ISub                 %sc_0 %sc_1",                     100,    58,             addScToInput,           outputInts1));
1539         cases.push_back(SpecConstantTwoIntCase("imul",                                  " %i32 0",              " %i32 0",              "%i32",         "IMul                 %sc_0 %sc_1",                     -2,             -21,    addScToInput,           outputInts1));
1540         cases.push_back(SpecConstantTwoIntCase("sdiv",                                  " %i32 0",              " %i32 0",              "%i32",         "SDiv                 %sc_0 %sc_1",                     -126,   -3,             addScToInput,           outputInts1));
1541         cases.push_back(SpecConstantTwoIntCase("udiv",                                  " %i32 0",              " %i32 0",              "%i32",         "UDiv                 %sc_0 %sc_1",                     126,    3,              addScToInput,           outputInts1));
1542         cases.push_back(SpecConstantTwoIntCase("srem",                                  " %i32 0",              " %i32 0",              "%i32",         "SRem                 %sc_0 %sc_1",                     7,              3,              addScToInput,           outputInts4));
1543         cases.push_back(SpecConstantTwoIntCase("smod",                                  " %i32 0",              " %i32 0",              "%i32",         "SMod                 %sc_0 %sc_1",                     7,              3,              addScToInput,           outputInts4));
1544         cases.push_back(SpecConstantTwoIntCase("umod",                                  " %i32 0",              " %i32 0",              "%i32",         "UMod                 %sc_0 %sc_1",                     342,    50,             addScToInput,           outputInts1));
1545         cases.push_back(SpecConstantTwoIntCase("bitwiseand",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseAnd           %sc_0 %sc_1",                     42,             63,             addScToInput,           outputInts1));
1546         cases.push_back(SpecConstantTwoIntCase("bitwiseor",                             " %i32 0",              " %i32 0",              "%i32",         "BitwiseOr            %sc_0 %sc_1",                     34,             8,              addScToInput,           outputInts1));
1547         cases.push_back(SpecConstantTwoIntCase("bitwisexor",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseXor           %sc_0 %sc_1",                     18,             56,             addScToInput,           outputInts1));
1548         cases.push_back(SpecConstantTwoIntCase("shiftrightlogical",             " %i32 0",              " %i32 0",              "%i32",         "ShiftRightLogical    %sc_0 %sc_1",                     168,    2,              addScToInput,           outputInts1));
1549         cases.push_back(SpecConstantTwoIntCase("shiftrightarithmetic",  " %i32 0",              " %i32 0",              "%i32",         "ShiftRightArithmetic %sc_0 %sc_1",                     168,    2,              addScToInput,           outputInts1));
1550         cases.push_back(SpecConstantTwoIntCase("shiftleftlogical",              " %i32 0",              " %i32 0",              "%i32",         "ShiftLeftLogical     %sc_0 %sc_1",                     21,             1,              addScToInput,           outputInts1));
1551         cases.push_back(SpecConstantTwoIntCase("slessthan",                             " %i32 0",              " %i32 0",              "%bool",        "SLessThan            %sc_0 %sc_1",                     -20,    -10,    selectTrueUsingSc,      outputInts2));
1552         cases.push_back(SpecConstantTwoIntCase("ulessthan",                             " %i32 0",              " %i32 0",              "%bool",        "ULessThan            %sc_0 %sc_1",                     10,             20,             selectTrueUsingSc,      outputInts2));
1553         cases.push_back(SpecConstantTwoIntCase("sgreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "SGreaterThan         %sc_0 %sc_1",                     -1000,  50,             selectFalseUsingSc,     outputInts2));
1554         cases.push_back(SpecConstantTwoIntCase("ugreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "UGreaterThan         %sc_0 %sc_1",                     10,             5,              selectTrueUsingSc,      outputInts2));
1555         cases.push_back(SpecConstantTwoIntCase("slessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "SLessThanEqual       %sc_0 %sc_1",                     -10,    -10,    selectTrueUsingSc,      outputInts2));
1556         cases.push_back(SpecConstantTwoIntCase("ulessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "ULessThanEqual       %sc_0 %sc_1",                     50,             100,    selectTrueUsingSc,      outputInts2));
1557         cases.push_back(SpecConstantTwoIntCase("sgreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "SGreaterThanEqual    %sc_0 %sc_1",                     -1000,  50,             selectFalseUsingSc,     outputInts2));
1558         cases.push_back(SpecConstantTwoIntCase("ugreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "UGreaterThanEqual    %sc_0 %sc_1",                     10,             10,             selectTrueUsingSc,      outputInts2));
1559         cases.push_back(SpecConstantTwoIntCase("iequal",                                " %i32 0",              " %i32 0",              "%bool",        "IEqual               %sc_0 %sc_1",                     42,             24,             selectFalseUsingSc,     outputInts2));
1560         cases.push_back(SpecConstantTwoIntCase("logicaland",                    "True %bool",   "True %bool",   "%bool",        "LogicalAnd           %sc_0 %sc_1",                     0,              1,              selectFalseUsingSc,     outputInts2));
1561         cases.push_back(SpecConstantTwoIntCase("logicalor",                             "False %bool",  "False %bool",  "%bool",        "LogicalOr            %sc_0 %sc_1",                     1,              0,              selectTrueUsingSc,      outputInts2));
1562         cases.push_back(SpecConstantTwoIntCase("logicalequal",                  "True %bool",   "True %bool",   "%bool",        "LogicalEqual         %sc_0 %sc_1",                     0,              1,              selectFalseUsingSc,     outputInts2));
1563         cases.push_back(SpecConstantTwoIntCase("logicalnotequal",               "False %bool",  "False %bool",  "%bool",        "LogicalNotEqual      %sc_0 %sc_1",                     1,              0,              selectTrueUsingSc,      outputInts2));
1564         cases.push_back(SpecConstantTwoIntCase("snegate",                               " %i32 0",              " %i32 0",              "%i32",         "SNegate              %sc_0",                           -42,    0,              addScToInput,           outputInts1));
1565         cases.push_back(SpecConstantTwoIntCase("not",                                   " %i32 0",              " %i32 0",              "%i32",         "Not                  %sc_0",                           -43,    0,              addScToInput,           outputInts1));
1566         cases.push_back(SpecConstantTwoIntCase("logicalnot",                    "False %bool",  "False %bool",  "%bool",        "LogicalNot           %sc_0",                           1,              0,              selectFalseUsingSc,     outputInts2));
1567         cases.push_back(SpecConstantTwoIntCase("select",                                "False %bool",  " %i32 0",              "%i32",         "Select               %sc_0 %sc_1 %zero",       1,              42,             addScToInput,           outputInts1));
1568         // OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
1569
1570         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
1571         {
1572                 map<string, string>             specializations;
1573                 ComputeShaderSpec               spec;
1574
1575                 specializations["SC_DEF0"]                      = cases[caseNdx].scDefinition0;
1576                 specializations["SC_DEF1"]                      = cases[caseNdx].scDefinition1;
1577                 specializations["SC_RESULT_TYPE"]       = cases[caseNdx].scResultType;
1578                 specializations["SC_OP"]                        = cases[caseNdx].scOperation;
1579                 specializations["GEN_RESULT"]           = cases[caseNdx].resultOperation;
1580
1581                 spec.assembly = shaderTemplate.specialize(specializations);
1582                 spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1583                 spec.outputs.push_back(BufferSp(new Int32Buffer(cases[caseNdx].expectedOutput)));
1584                 spec.numWorkGroups = IVec3(numElements, 1, 1);
1585                 spec.specConstants.push_back(cases[caseNdx].scActualValue0);
1586                 spec.specConstants.push_back(cases[caseNdx].scActualValue1);
1587
1588                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].caseName, cases[caseNdx].caseName, spec));
1589         }
1590
1591         ComputeShaderSpec                               spec;
1592
1593         spec.assembly =
1594                 string(getComputeAsmShaderPreamble()) +
1595
1596                 "OpName %main           \"main\"\n"
1597                 "OpName %id             \"gl_GlobalInvocationID\"\n"
1598
1599                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1600                 "OpDecorate %sc_0  SpecId 0\n"
1601                 "OpDecorate %sc_1  SpecId 1\n"
1602                 "OpDecorate %sc_2  SpecId 2\n"
1603                 "OpDecorate %i32arr ArrayStride 4\n"
1604
1605                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
1606
1607                 "%ivec3     = OpTypeVector %i32 3\n"
1608                 "%buf     = OpTypeStruct %i32arr\n"
1609                 "%bufptr  = OpTypePointer Uniform %buf\n"
1610                 "%indata    = OpVariable %bufptr Uniform\n"
1611                 "%outdata   = OpVariable %bufptr Uniform\n"
1612
1613                 "%id        = OpVariable %uvec3ptr Input\n"
1614                 "%zero      = OpConstant %i32 0\n"
1615                 "%ivec3_0   = OpConstantComposite %ivec3 %zero %zero %zero\n"
1616
1617                 "%sc_0        = OpSpecConstant %i32 0\n"
1618                 "%sc_1        = OpSpecConstant %i32 0\n"
1619                 "%sc_2        = OpSpecConstant %i32 0\n"
1620                 "%sc_vec3_0   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_0        %ivec3_0   0\n"     // (sc_0, 0, 0)
1621                 "%sc_vec3_1   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_1        %ivec3_0   1\n"     // (0, sc_1, 0)
1622                 "%sc_vec3_2   = OpSpecConstantOp %ivec3 CompositeInsert  %sc_2        %ivec3_0   2\n"     // (0, 0, sc_2)
1623                 "%sc_vec3_01  = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
1624                 "%sc_vec3_012 = OpSpecConstantOp %ivec3 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
1625                 "%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
1626                 "%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
1627                 "%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
1628                 "%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
1629                 "%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n"        // (sc_2 - sc_0) * sc_1
1630
1631                 "%main      = OpFunction %void None %voidf\n"
1632                 "%label     = OpLabel\n"
1633                 "%idval     = OpLoad %uvec3 %id\n"
1634                 "%x         = OpCompositeExtract %u32 %idval 0\n"
1635                 "%inloc     = OpAccessChain %i32ptr %indata %zero %x\n"
1636                 "%inval     = OpLoad %i32 %inloc\n"
1637                 "%final     = OpIAdd %i32 %inval %sc_final\n"
1638                 "%outloc    = OpAccessChain %i32ptr %outdata %zero %x\n"
1639                 "             OpStore %outloc %final\n"
1640                 "             OpReturn\n"
1641                 "             OpFunctionEnd\n";
1642         spec.inputs.push_back(BufferSp(new Int32Buffer(inputInts)));
1643         spec.outputs.push_back(BufferSp(new Int32Buffer(outputInts3)));
1644         spec.numWorkGroups = IVec3(numElements, 1, 1);
1645         spec.specConstants.push_back(123);
1646         spec.specConstants.push_back(56);
1647         spec.specConstants.push_back(-77);
1648
1649         group->addChild(new SpvAsmComputeShaderCase(testCtx, "vector_related", "VectorShuffle, CompositeExtract, & CompositeInsert", spec));
1650
1651         return group.release();
1652 }
1653
1654 tcu::TestCaseGroup* createOpPhiGroup (tcu::TestContext& testCtx)
1655 {
1656         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
1657         ComputeShaderSpec                               spec1;
1658         ComputeShaderSpec                               spec2;
1659         ComputeShaderSpec                               spec3;
1660         de::Random                                              rnd                             (deStringHash(group->getName()));
1661         const int                                               numElements             = 100;
1662         vector<float>                                   inputFloats             (numElements, 0);
1663         vector<float>                                   outputFloats1   (numElements, 0);
1664         vector<float>                                   outputFloats2   (numElements, 0);
1665         vector<float>                                   outputFloats3   (numElements, 0);
1666
1667         fillRandomScalars(rnd, -300.f, 300.f, &inputFloats[0], numElements);
1668
1669         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
1670         floorAll(inputFloats);
1671
1672         for (size_t ndx = 0; ndx < numElements; ++ndx)
1673         {
1674                 switch (ndx % 3)
1675                 {
1676                         case 0:         outputFloats1[ndx] = inputFloats[ndx] + 5.5f;   break;
1677                         case 1:         outputFloats1[ndx] = inputFloats[ndx] + 20.5f;  break;
1678                         case 2:         outputFloats1[ndx] = inputFloats[ndx] + 1.75f;  break;
1679                         default:        break;
1680                 }
1681                 outputFloats2[ndx] = inputFloats[ndx] + 6.5f * 3;
1682                 outputFloats3[ndx] = 8.5f - inputFloats[ndx];
1683         }
1684
1685         spec1.assembly =
1686                 string(getComputeAsmShaderPreamble()) +
1687
1688                 "OpSource GLSL 430\n"
1689                 "OpName %main \"main\"\n"
1690                 "OpName %id \"gl_GlobalInvocationID\"\n"
1691
1692                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1693
1694                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
1695
1696                 "%id = OpVariable %uvec3ptr Input\n"
1697                 "%zero       = OpConstant %i32 0\n"
1698                 "%three      = OpConstant %u32 3\n"
1699                 "%constf5p5  = OpConstant %f32 5.5\n"
1700                 "%constf20p5 = OpConstant %f32 20.5\n"
1701                 "%constf1p75 = OpConstant %f32 1.75\n"
1702                 "%constf8p5  = OpConstant %f32 8.5\n"
1703                 "%constf6p5  = OpConstant %f32 6.5\n"
1704
1705                 "%main     = OpFunction %void None %voidf\n"
1706                 "%entry    = OpLabel\n"
1707                 "%idval    = OpLoad %uvec3 %id\n"
1708                 "%x        = OpCompositeExtract %u32 %idval 0\n"
1709                 "%selector = OpUMod %u32 %x %three\n"
1710                 "            OpSelectionMerge %phi None\n"
1711                 "            OpSwitch %selector %default 0 %case0 1 %case1 2 %case2\n"
1712
1713                 // Case 1 before OpPhi.
1714                 "%case1    = OpLabel\n"
1715                 "            OpBranch %phi\n"
1716
1717                 "%default  = OpLabel\n"
1718                 "            OpUnreachable\n"
1719
1720                 "%phi      = OpLabel\n"
1721                 "%operand  = OpPhi %f32   %constf1p75 %case2   %constf20p5 %case1   %constf5p5 %case0\n" // not in the order of blocks
1722                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
1723                 "%inval    = OpLoad %f32 %inloc\n"
1724                 "%add      = OpFAdd %f32 %inval %operand\n"
1725                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
1726                 "            OpStore %outloc %add\n"
1727                 "            OpReturn\n"
1728
1729                 // Case 0 after OpPhi.
1730                 "%case0    = OpLabel\n"
1731                 "            OpBranch %phi\n"
1732
1733
1734                 // Case 2 after OpPhi.
1735                 "%case2    = OpLabel\n"
1736                 "            OpBranch %phi\n"
1737
1738                 "            OpFunctionEnd\n";
1739         spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1740         spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
1741         spec1.numWorkGroups = IVec3(numElements, 1, 1);
1742
1743         group->addChild(new SpvAsmComputeShaderCase(testCtx, "block", "out-of-order and unreachable blocks for OpPhi", spec1));
1744
1745         spec2.assembly =
1746                 string(getComputeAsmShaderPreamble()) +
1747
1748                 "OpName %main \"main\"\n"
1749                 "OpName %id \"gl_GlobalInvocationID\"\n"
1750
1751                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1752
1753                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
1754
1755                 "%id         = OpVariable %uvec3ptr Input\n"
1756                 "%zero       = OpConstant %i32 0\n"
1757                 "%one        = OpConstant %i32 1\n"
1758                 "%three      = OpConstant %i32 3\n"
1759                 "%constf6p5  = OpConstant %f32 6.5\n"
1760
1761                 "%main       = OpFunction %void None %voidf\n"
1762                 "%entry      = OpLabel\n"
1763                 "%idval      = OpLoad %uvec3 %id\n"
1764                 "%x          = OpCompositeExtract %u32 %idval 0\n"
1765                 "%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1766                 "%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1767                 "%inval      = OpLoad %f32 %inloc\n"
1768                 "              OpBranch %phi\n"
1769
1770                 "%phi        = OpLabel\n"
1771                 "%step       = OpPhi %i32 %zero  %entry %step_next  %phi\n"
1772                 "%accum      = OpPhi %f32 %inval %entry %accum_next %phi\n"
1773                 "%step_next  = OpIAdd %i32 %step %one\n"
1774                 "%accum_next = OpFAdd %f32 %accum %constf6p5\n"
1775                 "%still_loop = OpSLessThan %bool %step %three\n"
1776                 "              OpLoopMerge %exit %phi None\n"
1777                 "              OpBranchConditional %still_loop %phi %exit\n"
1778
1779                 "%exit       = OpLabel\n"
1780                 "              OpStore %outloc %accum\n"
1781                 "              OpReturn\n"
1782                 "              OpFunctionEnd\n";
1783         spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1784         spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
1785         spec2.numWorkGroups = IVec3(numElements, 1, 1);
1786
1787         group->addChild(new SpvAsmComputeShaderCase(testCtx, "induction", "The usual way induction variables are handled in LLVM IR", spec2));
1788
1789         spec3.assembly =
1790                 string(getComputeAsmShaderPreamble()) +
1791
1792                 "OpName %main \"main\"\n"
1793                 "OpName %id \"gl_GlobalInvocationID\"\n"
1794
1795                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1796
1797                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
1798
1799                 "%f32ptr_f   = OpTypePointer Function %f32\n"
1800                 "%id         = OpVariable %uvec3ptr Input\n"
1801                 "%true       = OpConstantTrue %bool\n"
1802                 "%false      = OpConstantFalse %bool\n"
1803                 "%zero       = OpConstant %i32 0\n"
1804                 "%constf8p5  = OpConstant %f32 8.5\n"
1805
1806                 "%main       = OpFunction %void None %voidf\n"
1807                 "%entry      = OpLabel\n"
1808                 "%b          = OpVariable %f32ptr_f Function %constf8p5\n"
1809                 "%idval      = OpLoad %uvec3 %id\n"
1810                 "%x          = OpCompositeExtract %u32 %idval 0\n"
1811                 "%inloc      = OpAccessChain %f32ptr %indata %zero %x\n"
1812                 "%outloc     = OpAccessChain %f32ptr %outdata %zero %x\n"
1813                 "%a_init     = OpLoad %f32 %inloc\n"
1814                 "%b_init     = OpLoad %f32 %b\n"
1815                 "              OpBranch %phi\n"
1816
1817                 "%phi        = OpLabel\n"
1818                 "%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
1819                 "%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
1820                 "%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
1821                 "              OpLoopMerge %exit %phi None\n"
1822                 "              OpBranchConditional %still_loop %phi %exit\n"
1823
1824                 "%exit       = OpLabel\n"
1825                 "%sub        = OpFSub %f32 %a_next %b_next\n"
1826                 "              OpStore %outloc %sub\n"
1827                 "              OpReturn\n"
1828                 "              OpFunctionEnd\n";
1829         spec3.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1830         spec3.outputs.push_back(BufferSp(new Float32Buffer(outputFloats3)));
1831         spec3.numWorkGroups = IVec3(numElements, 1, 1);
1832
1833         group->addChild(new SpvAsmComputeShaderCase(testCtx, "swap", "Swap the values of two variables using OpPhi", spec3));
1834
1835         return group.release();
1836 }
1837
1838 // Assembly code used for testing block order is based on GLSL source code:
1839 //
1840 // #version 430
1841 //
1842 // layout(std140, set = 0, binding = 0) readonly buffer Input {
1843 //   float elements[];
1844 // } input_data;
1845 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
1846 //   float elements[];
1847 // } output_data;
1848 //
1849 // void main() {
1850 //   uint x = gl_GlobalInvocationID.x;
1851 //   output_data.elements[x] = input_data.elements[x];
1852 //   if (x > uint(50)) {
1853 //     switch (x % uint(3)) {
1854 //       case 0: output_data.elements[x] += 1.5f; break;
1855 //       case 1: output_data.elements[x] += 42.f; break;
1856 //       case 2: output_data.elements[x] -= 27.f; break;
1857 //       default: break;
1858 //     }
1859 //   } else {
1860 //     output_data.elements[x] = -input_data.elements[x];
1861 //   }
1862 // }
1863 tcu::TestCaseGroup* createBlockOrderGroup (tcu::TestContext& testCtx)
1864 {
1865         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "block_order", "Test block orders"));
1866         ComputeShaderSpec                               spec;
1867         de::Random                                              rnd                             (deStringHash(group->getName()));
1868         const int                                               numElements             = 100;
1869         vector<float>                                   inputFloats             (numElements, 0);
1870         vector<float>                                   outputFloats    (numElements, 0);
1871
1872         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
1873
1874         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
1875         floorAll(inputFloats);
1876
1877         for (size_t ndx = 0; ndx <= 50; ++ndx)
1878                 outputFloats[ndx] = -inputFloats[ndx];
1879
1880         for (size_t ndx = 51; ndx < numElements; ++ndx)
1881         {
1882                 switch (ndx % 3)
1883                 {
1884                         case 0:         outputFloats[ndx] = inputFloats[ndx] + 1.5f; break;
1885                         case 1:         outputFloats[ndx] = inputFloats[ndx] + 42.f; break;
1886                         case 2:         outputFloats[ndx] = inputFloats[ndx] - 27.f; break;
1887                         default:        break;
1888                 }
1889         }
1890
1891         spec.assembly =
1892                 string(getComputeAsmShaderPreamble()) +
1893
1894                 "OpSource GLSL 430\n"
1895                 "OpName %main \"main\"\n"
1896                 "OpName %id \"gl_GlobalInvocationID\"\n"
1897
1898                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
1899
1900                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
1901
1902                 "%u32ptr       = OpTypePointer Function %u32\n"
1903                 "%u32ptr_input = OpTypePointer Input %u32\n"
1904
1905                 + string(getComputeAsmInputOutputBuffer()) +
1906
1907                 "%id        = OpVariable %uvec3ptr Input\n"
1908                 "%zero      = OpConstant %i32 0\n"
1909                 "%const3    = OpConstant %u32 3\n"
1910                 "%const50   = OpConstant %u32 50\n"
1911                 "%constf1p5 = OpConstant %f32 1.5\n"
1912                 "%constf27  = OpConstant %f32 27.0\n"
1913                 "%constf42  = OpConstant %f32 42.0\n"
1914
1915                 "%main = OpFunction %void None %voidf\n"
1916
1917                 // entry block.
1918                 "%entry    = OpLabel\n"
1919
1920                 // Create a temporary variable to hold the value of gl_GlobalInvocationID.x.
1921                 "%xvar     = OpVariable %u32ptr Function\n"
1922                 "%xptr     = OpAccessChain %u32ptr_input %id %zero\n"
1923                 "%x        = OpLoad %u32 %xptr\n"
1924                 "            OpStore %xvar %x\n"
1925
1926                 "%cmp      = OpUGreaterThan %bool %x %const50\n"
1927                 "            OpSelectionMerge %if_merge None\n"
1928                 "            OpBranchConditional %cmp %if_true %if_false\n"
1929
1930                 // False branch for if-statement: placed in the middle of switch cases and before true branch.
1931                 "%if_false = OpLabel\n"
1932                 "%x_f      = OpLoad %u32 %xvar\n"
1933                 "%inloc_f  = OpAccessChain %f32ptr %indata %zero %x_f\n"
1934                 "%inval_f  = OpLoad %f32 %inloc_f\n"
1935                 "%negate   = OpFNegate %f32 %inval_f\n"
1936                 "%outloc_f = OpAccessChain %f32ptr %outdata %zero %x_f\n"
1937                 "            OpStore %outloc_f %negate\n"
1938                 "            OpBranch %if_merge\n"
1939
1940                 // Merge block for if-statement: placed in the middle of true and false branch.
1941                 "%if_merge = OpLabel\n"
1942                 "            OpReturn\n"
1943
1944                 // True branch for if-statement: placed in the middle of swtich cases and after the false branch.
1945                 "%if_true  = OpLabel\n"
1946                 "%xval_t   = OpLoad %u32 %xvar\n"
1947                 "%mod      = OpUMod %u32 %xval_t %const3\n"
1948                 "            OpSelectionMerge %switch_merge None\n"
1949                 "            OpSwitch %mod %default 0 %case0 1 %case1 2 %case2\n"
1950
1951                 // Merge block for switch-statement: placed before the case
1952                 // bodies.  But it must follow OpSwitch which dominates it.
1953                 "%switch_merge = OpLabel\n"
1954                 "                OpBranch %if_merge\n"
1955
1956                 // Case 1 for switch-statement: placed before case 0.
1957                 // It must follow the OpSwitch that dominates it.
1958                 "%case1    = OpLabel\n"
1959                 "%x_1      = OpLoad %u32 %xvar\n"
1960                 "%inloc_1  = OpAccessChain %f32ptr %indata %zero %x_1\n"
1961                 "%inval_1  = OpLoad %f32 %inloc_1\n"
1962                 "%addf42   = OpFAdd %f32 %inval_1 %constf42\n"
1963                 "%outloc_1 = OpAccessChain %f32ptr %outdata %zero %x_1\n"
1964                 "            OpStore %outloc_1 %addf42\n"
1965                 "            OpBranch %switch_merge\n"
1966
1967                 // Case 2 for switch-statement.
1968                 "%case2    = OpLabel\n"
1969                 "%x_2      = OpLoad %u32 %xvar\n"
1970                 "%inloc_2  = OpAccessChain %f32ptr %indata %zero %x_2\n"
1971                 "%inval_2  = OpLoad %f32 %inloc_2\n"
1972                 "%subf27   = OpFSub %f32 %inval_2 %constf27\n"
1973                 "%outloc_2 = OpAccessChain %f32ptr %outdata %zero %x_2\n"
1974                 "            OpStore %outloc_2 %subf27\n"
1975                 "            OpBranch %switch_merge\n"
1976
1977                 // Default case for switch-statement: placed in the middle of normal cases.
1978                 "%default = OpLabel\n"
1979                 "           OpBranch %switch_merge\n"
1980
1981                 // Case 0 for switch-statement: out of order.
1982                 "%case0    = OpLabel\n"
1983                 "%x_0      = OpLoad %u32 %xvar\n"
1984                 "%inloc_0  = OpAccessChain %f32ptr %indata %zero %x_0\n"
1985                 "%inval_0  = OpLoad %f32 %inloc_0\n"
1986                 "%addf1p5  = OpFAdd %f32 %inval_0 %constf1p5\n"
1987                 "%outloc_0 = OpAccessChain %f32ptr %outdata %zero %x_0\n"
1988                 "            OpStore %outloc_0 %addf1p5\n"
1989                 "            OpBranch %switch_merge\n"
1990
1991                 "            OpFunctionEnd\n";
1992         spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
1993         spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
1994         spec.numWorkGroups = IVec3(numElements, 1, 1);
1995
1996         group->addChild(new SpvAsmComputeShaderCase(testCtx, "all", "various out-of-order blocks", spec));
1997
1998         return group.release();
1999 }
2000
2001 tcu::TestCaseGroup* createMultipleShaderGroup (tcu::TestContext& testCtx)
2002 {
2003         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "multiple_shaders", "Test multiple shaders in the same module"));
2004         ComputeShaderSpec                               spec1;
2005         ComputeShaderSpec                               spec2;
2006         de::Random                                              rnd                             (deStringHash(group->getName()));
2007         const int                                               numElements             = 100;
2008         vector<float>                                   inputFloats             (numElements, 0);
2009         vector<float>                                   outputFloats1   (numElements, 0);
2010         vector<float>                                   outputFloats2   (numElements, 0);
2011         fillRandomScalars(rnd, -500.f, 500.f, &inputFloats[0], numElements);
2012
2013         for (size_t ndx = 0; ndx < numElements; ++ndx)
2014         {
2015                 outputFloats1[ndx] = inputFloats[ndx] + inputFloats[ndx];
2016                 outputFloats2[ndx] = -inputFloats[ndx];
2017         }
2018
2019         const string assembly(
2020                 "OpCapability Shader\n"
2021                 "OpCapability ClipDistance\n"
2022                 "OpMemoryModel Logical GLSL450\n"
2023                 "OpEntryPoint GLCompute %comp_main1 \"entrypoint1\" %id\n"
2024                 "OpEntryPoint GLCompute %comp_main2 \"entrypoint2\" %id\n"
2025                 // A module cannot have two OpEntryPoint instructions with the same Execution Model and the same Name string.
2026                 "OpEntryPoint Vertex    %vert_main  \"entrypoint2\" %vert_builtins %vertexIndex %instanceIndex\n"
2027                 "OpExecutionMode %comp_main1 LocalSize 1 1 1\n"
2028                 "OpExecutionMode %comp_main2 LocalSize 1 1 1\n"
2029
2030                 "OpName %comp_main1              \"entrypoint1\"\n"
2031                 "OpName %comp_main2              \"entrypoint2\"\n"
2032                 "OpName %vert_main               \"entrypoint2\"\n"
2033                 "OpName %id                      \"gl_GlobalInvocationID\"\n"
2034                 "OpName %vert_builtin_st         \"gl_PerVertex\"\n"
2035                 "OpName %vertexIndex             \"gl_VertexIndex\"\n"
2036                 "OpName %instanceIndex           \"gl_InstanceIndex\"\n"
2037                 "OpMemberName %vert_builtin_st 0 \"gl_Position\"\n"
2038                 "OpMemberName %vert_builtin_st 1 \"gl_PointSize\"\n"
2039                 "OpMemberName %vert_builtin_st 2 \"gl_ClipDistance\"\n"
2040
2041                 "OpDecorate %id                      BuiltIn GlobalInvocationId\n"
2042                 "OpDecorate %vertexIndex             BuiltIn VertexIndex\n"
2043                 "OpDecorate %instanceIndex           BuiltIn InstanceIndex\n"
2044                 "OpDecorate %vert_builtin_st         Block\n"
2045                 "OpMemberDecorate %vert_builtin_st 0 BuiltIn Position\n"
2046                 "OpMemberDecorate %vert_builtin_st 1 BuiltIn PointSize\n"
2047                 "OpMemberDecorate %vert_builtin_st 2 BuiltIn ClipDistance\n"
2048
2049                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
2050
2051                 "%zero       = OpConstant %i32 0\n"
2052                 "%one        = OpConstant %u32 1\n"
2053                 "%c_f32_1    = OpConstant %f32 1\n"
2054
2055                 "%i32inputptr         = OpTypePointer Input %i32\n"
2056                 "%vec4                = OpTypeVector %f32 4\n"
2057                 "%vec4ptr             = OpTypePointer Output %vec4\n"
2058                 "%f32arr1             = OpTypeArray %f32 %one\n"
2059                 "%vert_builtin_st     = OpTypeStruct %vec4 %f32 %f32arr1\n"
2060                 "%vert_builtin_st_ptr = OpTypePointer Output %vert_builtin_st\n"
2061                 "%vert_builtins       = OpVariable %vert_builtin_st_ptr Output\n"
2062
2063                 "%id         = OpVariable %uvec3ptr Input\n"
2064                 "%vertexIndex = OpVariable %i32inputptr Input\n"
2065                 "%instanceIndex = OpVariable %i32inputptr Input\n"
2066                 "%c_vec4_1   = OpConstantComposite %vec4 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
2067
2068                 // gl_Position = vec4(1.);
2069                 "%vert_main  = OpFunction %void None %voidf\n"
2070                 "%vert_entry = OpLabel\n"
2071                 "%position   = OpAccessChain %vec4ptr %vert_builtins %zero\n"
2072                 "              OpStore %position %c_vec4_1\n"
2073                 "              OpReturn\n"
2074                 "              OpFunctionEnd\n"
2075
2076                 // Double inputs.
2077                 "%comp_main1  = OpFunction %void None %voidf\n"
2078                 "%comp1_entry = OpLabel\n"
2079                 "%idval1      = OpLoad %uvec3 %id\n"
2080                 "%x1          = OpCompositeExtract %u32 %idval1 0\n"
2081                 "%inloc1      = OpAccessChain %f32ptr %indata %zero %x1\n"
2082                 "%inval1      = OpLoad %f32 %inloc1\n"
2083                 "%add         = OpFAdd %f32 %inval1 %inval1\n"
2084                 "%outloc1     = OpAccessChain %f32ptr %outdata %zero %x1\n"
2085                 "               OpStore %outloc1 %add\n"
2086                 "               OpReturn\n"
2087                 "               OpFunctionEnd\n"
2088
2089                 // Negate inputs.
2090                 "%comp_main2  = OpFunction %void None %voidf\n"
2091                 "%comp2_entry = OpLabel\n"
2092                 "%idval2      = OpLoad %uvec3 %id\n"
2093                 "%x2          = OpCompositeExtract %u32 %idval2 0\n"
2094                 "%inloc2      = OpAccessChain %f32ptr %indata %zero %x2\n"
2095                 "%inval2      = OpLoad %f32 %inloc2\n"
2096                 "%neg         = OpFNegate %f32 %inval2\n"
2097                 "%outloc2     = OpAccessChain %f32ptr %outdata %zero %x2\n"
2098                 "               OpStore %outloc2 %neg\n"
2099                 "               OpReturn\n"
2100                 "               OpFunctionEnd\n");
2101
2102         spec1.assembly = assembly;
2103         spec1.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2104         spec1.outputs.push_back(BufferSp(new Float32Buffer(outputFloats1)));
2105         spec1.numWorkGroups = IVec3(numElements, 1, 1);
2106         spec1.entryPoint = "entrypoint1";
2107
2108         spec2.assembly = assembly;
2109         spec2.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2110         spec2.outputs.push_back(BufferSp(new Float32Buffer(outputFloats2)));
2111         spec2.numWorkGroups = IVec3(numElements, 1, 1);
2112         spec2.entryPoint = "entrypoint2";
2113
2114         group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader1", "multiple shaders in the same module", spec1));
2115         group->addChild(new SpvAsmComputeShaderCase(testCtx, "shader2", "multiple shaders in the same module", spec2));
2116
2117         return group.release();
2118 }
2119
2120 inline std::string makeLongUTF8String (size_t num4ByteChars)
2121 {
2122         // An example of a longest valid UTF-8 character.  Be explicit about the
2123         // character type because Microsoft compilers can otherwise interpret the
2124         // character string as being over wide (16-bit) characters. Ideally, we
2125         // would just use a C++11 UTF-8 string literal, but we want to support older
2126         // Microsoft compilers.
2127         const std::basic_string<char> earthAfrica("\xF0\x9F\x8C\x8D");
2128         std::string longString;
2129         longString.reserve(num4ByteChars * 4);
2130         for (size_t count = 0; count < num4ByteChars; count++)
2131         {
2132                 longString += earthAfrica;
2133         }
2134         return longString;
2135 }
2136
2137 tcu::TestCaseGroup* createOpSourceGroup (tcu::TestContext& testCtx)
2138 {
2139         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opsource", "Tests the OpSource & OpSourceContinued instruction"));
2140         vector<CaseParameter>                   cases;
2141         de::Random                                              rnd                             (deStringHash(group->getName()));
2142         const int                                               numElements             = 100;
2143         vector<float>                                   positiveFloats  (numElements, 0);
2144         vector<float>                                   negativeFloats  (numElements, 0);
2145         const StringTemplate                    shaderTemplate  (
2146                 "OpCapability Shader\n"
2147                 "OpMemoryModel Logical GLSL450\n"
2148
2149                 "OpEntryPoint GLCompute %main \"main\" %id\n"
2150                 "OpExecutionMode %main LocalSize 1 1 1\n"
2151
2152                 "${SOURCE}\n"
2153
2154                 "OpName %main           \"main\"\n"
2155                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2156
2157                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2158
2159                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
2160
2161                 "%id        = OpVariable %uvec3ptr Input\n"
2162                 "%zero      = OpConstant %i32 0\n"
2163
2164                 "%main      = OpFunction %void None %voidf\n"
2165                 "%label     = OpLabel\n"
2166                 "%idval     = OpLoad %uvec3 %id\n"
2167                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2168                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2169                 "%inval     = OpLoad %f32 %inloc\n"
2170                 "%neg       = OpFNegate %f32 %inval\n"
2171                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2172                 "             OpStore %outloc %neg\n"
2173                 "             OpReturn\n"
2174                 "             OpFunctionEnd\n");
2175
2176         cases.push_back(CaseParameter("unknown_source",                                                 "OpSource Unknown 0"));
2177         cases.push_back(CaseParameter("wrong_source",                                                   "OpSource OpenCL_C 210"));
2178         cases.push_back(CaseParameter("normal_filename",                                                "%fname = OpString \"filename\"\n"
2179                                                                                                                                                         "OpSource GLSL 430 %fname"));
2180         cases.push_back(CaseParameter("empty_filename",                                                 "%fname = OpString \"\"\n"
2181                                                                                                                                                         "OpSource GLSL 430 %fname"));
2182         cases.push_back(CaseParameter("normal_source_code",                                             "%fname = OpString \"filename\"\n"
2183                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\""));
2184         cases.push_back(CaseParameter("empty_source_code",                                              "%fname = OpString \"filename\"\n"
2185                                                                                                                                                         "OpSource GLSL 430 %fname \"\""));
2186         cases.push_back(CaseParameter("long_source_code",                                               "%fname = OpString \"filename\"\n"
2187                                                                                                                                                         "OpSource GLSL 430 %fname \"" + makeLongUTF8String(65530) + "ccc\"")); // word count: 65535
2188         cases.push_back(CaseParameter("utf8_source_code",                                               "%fname = OpString \"filename\"\n"
2189                                                                                                                                                         "OpSource GLSL 430 %fname \"\xE2\x98\x82\xE2\x98\x85\"")); // umbrella & black star symbol
2190         cases.push_back(CaseParameter("normal_sourcecontinued",                                 "%fname = OpString \"filename\"\n"
2191                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvo\"\n"
2192                                                                                                                                                         "OpSourceContinued \"id main() {}\""));
2193         cases.push_back(CaseParameter("empty_sourcecontinued",                                  "%fname = OpString \"filename\"\n"
2194                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
2195                                                                                                                                                         "OpSourceContinued \"\""));
2196         cases.push_back(CaseParameter("long_sourcecontinued",                                   "%fname = OpString \"filename\"\n"
2197                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
2198                                                                                                                                                         "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\"")); // word count: 65535
2199         cases.push_back(CaseParameter("utf8_sourcecontinued",                                   "%fname = OpString \"filename\"\n"
2200                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\nvoid main() {}\"\n"
2201                                                                                                                                                         "OpSourceContinued \"\xE2\x98\x8E\xE2\x9A\x91\"")); // white telephone & black flag symbol
2202         cases.push_back(CaseParameter("multi_sourcecontinued",                                  "%fname = OpString \"filename\"\n"
2203                                                                                                                                                         "OpSource GLSL 430 %fname \"#version 430\n\"\n"
2204                                                                                                                                                         "OpSourceContinued \"void\"\n"
2205                                                                                                                                                         "OpSourceContinued \"main()\"\n"
2206                                                                                                                                                         "OpSourceContinued \"{}\""));
2207         cases.push_back(CaseParameter("empty_source_before_sourcecontinued",    "%fname = OpString \"filename\"\n"
2208                                                                                                                                                         "OpSource GLSL 430 %fname \"\"\n"
2209                                                                                                                                                         "OpSourceContinued \"#version 430\nvoid main() {}\""));
2210
2211         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2212
2213         for (size_t ndx = 0; ndx < numElements; ++ndx)
2214                 negativeFloats[ndx] = -positiveFloats[ndx];
2215
2216         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2217         {
2218                 map<string, string>             specializations;
2219                 ComputeShaderSpec               spec;
2220
2221                 specializations["SOURCE"] = cases[caseNdx].param;
2222                 spec.assembly = shaderTemplate.specialize(specializations);
2223                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2224                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2225                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2226
2227                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2228         }
2229
2230         return group.release();
2231 }
2232
2233 tcu::TestCaseGroup* createOpSourceExtensionGroup (tcu::TestContext& testCtx)
2234 {
2235         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opsourceextension", "Tests the OpSource instruction"));
2236         vector<CaseParameter>                   cases;
2237         de::Random                                              rnd                             (deStringHash(group->getName()));
2238         const int                                               numElements             = 100;
2239         vector<float>                                   inputFloats             (numElements, 0);
2240         vector<float>                                   outputFloats    (numElements, 0);
2241         const StringTemplate                    shaderTemplate  (
2242                 string(getComputeAsmShaderPreamble()) +
2243
2244                 "OpSourceExtension \"${EXTENSION}\"\n"
2245
2246                 "OpName %main           \"main\"\n"
2247                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2248
2249                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2250
2251                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
2252
2253                 "%id        = OpVariable %uvec3ptr Input\n"
2254                 "%zero      = OpConstant %i32 0\n"
2255
2256                 "%main      = OpFunction %void None %voidf\n"
2257                 "%label     = OpLabel\n"
2258                 "%idval     = OpLoad %uvec3 %id\n"
2259                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2260                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2261                 "%inval     = OpLoad %f32 %inloc\n"
2262                 "%neg       = OpFNegate %f32 %inval\n"
2263                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2264                 "             OpStore %outloc %neg\n"
2265                 "             OpReturn\n"
2266                 "             OpFunctionEnd\n");
2267
2268         cases.push_back(CaseParameter("empty_extension",        ""));
2269         cases.push_back(CaseParameter("real_extension",         "GL_ARB_texture_rectangle"));
2270         cases.push_back(CaseParameter("fake_extension",         "GL_ARB_im_the_ultimate_extension"));
2271         cases.push_back(CaseParameter("utf8_extension",         "GL_ARB_\xE2\x98\x82\xE2\x98\x85"));
2272         cases.push_back(CaseParameter("long_extension",         makeLongUTF8String(65533) + "ccc")); // word count: 65535
2273
2274         fillRandomScalars(rnd, -200.f, 200.f, &inputFloats[0], numElements);
2275
2276         for (size_t ndx = 0; ndx < numElements; ++ndx)
2277                 outputFloats[ndx] = -inputFloats[ndx];
2278
2279         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2280         {
2281                 map<string, string>             specializations;
2282                 ComputeShaderSpec               spec;
2283
2284                 specializations["EXTENSION"] = cases[caseNdx].param;
2285                 spec.assembly = shaderTemplate.specialize(specializations);
2286                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
2287                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
2288                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2289
2290                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2291         }
2292
2293         return group.release();
2294 }
2295
2296 // Checks that a compute shader can generate a constant null value of various types, without exercising a computation on it.
2297 tcu::TestCaseGroup* createOpConstantNullGroup (tcu::TestContext& testCtx)
2298 {
2299         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opconstantnull", "Tests the OpConstantNull instruction"));
2300         vector<CaseParameter>                   cases;
2301         de::Random                                              rnd                             (deStringHash(group->getName()));
2302         const int                                               numElements             = 100;
2303         vector<float>                                   positiveFloats  (numElements, 0);
2304         vector<float>                                   negativeFloats  (numElements, 0);
2305         const StringTemplate                    shaderTemplate  (
2306                 string(getComputeAsmShaderPreamble()) +
2307
2308                 "OpSource GLSL 430\n"
2309                 "OpName %main           \"main\"\n"
2310                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2311
2312                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2313
2314                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
2315                 "%uvec2     = OpTypeVector %u32 2\n"
2316                 "%bvec3     = OpTypeVector %bool 3\n"
2317                 "%fvec4     = OpTypeVector %f32 4\n"
2318                 "%fmat33    = OpTypeMatrix %fvec3 3\n"
2319                 "%const100  = OpConstant %u32 100\n"
2320                 "%uarr100   = OpTypeArray %i32 %const100\n"
2321                 "%struct    = OpTypeStruct %f32 %i32 %u32\n"
2322                 "%pointer   = OpTypePointer Function %i32\n"
2323                 + string(getComputeAsmInputOutputBuffer()) +
2324
2325                 "%null      = OpConstantNull ${TYPE}\n"
2326
2327                 "%id        = OpVariable %uvec3ptr Input\n"
2328                 "%zero      = OpConstant %i32 0\n"
2329
2330                 "%main      = OpFunction %void None %voidf\n"
2331                 "%label     = OpLabel\n"
2332                 "%idval     = OpLoad %uvec3 %id\n"
2333                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2334                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2335                 "%inval     = OpLoad %f32 %inloc\n"
2336                 "%neg       = OpFNegate %f32 %inval\n"
2337                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2338                 "             OpStore %outloc %neg\n"
2339                 "             OpReturn\n"
2340                 "             OpFunctionEnd\n");
2341
2342         cases.push_back(CaseParameter("bool",                   "%bool"));
2343         cases.push_back(CaseParameter("sint32",                 "%i32"));
2344         cases.push_back(CaseParameter("uint32",                 "%u32"));
2345         cases.push_back(CaseParameter("float32",                "%f32"));
2346         cases.push_back(CaseParameter("vec4float32",    "%fvec4"));
2347         cases.push_back(CaseParameter("vec3bool",               "%bvec3"));
2348         cases.push_back(CaseParameter("vec2uint32",             "%uvec2"));
2349         cases.push_back(CaseParameter("matrix",                 "%fmat33"));
2350         cases.push_back(CaseParameter("array",                  "%uarr100"));
2351         cases.push_back(CaseParameter("struct",                 "%struct"));
2352         cases.push_back(CaseParameter("pointer",                "%pointer"));
2353
2354         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2355
2356         for (size_t ndx = 0; ndx < numElements; ++ndx)
2357                 negativeFloats[ndx] = -positiveFloats[ndx];
2358
2359         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2360         {
2361                 map<string, string>             specializations;
2362                 ComputeShaderSpec               spec;
2363
2364                 specializations["TYPE"] = cases[caseNdx].param;
2365                 spec.assembly = shaderTemplate.specialize(specializations);
2366                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2367                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2368                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2369
2370                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2371         }
2372
2373         return group.release();
2374 }
2375
2376 // Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2377 tcu::TestCaseGroup* createOpConstantCompositeGroup (tcu::TestContext& testCtx)
2378 {
2379         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "Tests the OpConstantComposite instruction"));
2380         vector<CaseParameter>                   cases;
2381         de::Random                                              rnd                             (deStringHash(group->getName()));
2382         const int                                               numElements             = 100;
2383         vector<float>                                   positiveFloats  (numElements, 0);
2384         vector<float>                                   negativeFloats  (numElements, 0);
2385         const StringTemplate                    shaderTemplate  (
2386                 string(getComputeAsmShaderPreamble()) +
2387
2388                 "OpSource GLSL 430\n"
2389                 "OpName %main           \"main\"\n"
2390                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2391
2392                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2393
2394                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
2395
2396                 "%id        = OpVariable %uvec3ptr Input\n"
2397                 "%zero      = OpConstant %i32 0\n"
2398
2399                 "${CONSTANT}\n"
2400
2401                 "%main      = OpFunction %void None %voidf\n"
2402                 "%label     = OpLabel\n"
2403                 "%idval     = OpLoad %uvec3 %id\n"
2404                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2405                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2406                 "%inval     = OpLoad %f32 %inloc\n"
2407                 "%neg       = OpFNegate %f32 %inval\n"
2408                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2409                 "             OpStore %outloc %neg\n"
2410                 "             OpReturn\n"
2411                 "             OpFunctionEnd\n");
2412
2413         cases.push_back(CaseParameter("vector",                 "%five = OpConstant %u32 5\n"
2414                                                                                                         "%const = OpConstantComposite %uvec3 %five %zero %five"));
2415         cases.push_back(CaseParameter("matrix",                 "%m3fvec3 = OpTypeMatrix %fvec3 3\n"
2416                                                                                                         "%ten = OpConstant %f32 10.\n"
2417                                                                                                         "%fzero = OpConstant %f32 0.\n"
2418                                                                                                         "%vec = OpConstantComposite %fvec3 %ten %fzero %ten\n"
2419                                                                                                         "%mat = OpConstantComposite %m3fvec3 %vec %vec %vec"));
2420         cases.push_back(CaseParameter("struct",                 "%m2vec3 = OpTypeMatrix %fvec3 2\n"
2421                                                                                                         "%struct = OpTypeStruct %i32 %f32 %fvec3 %m2vec3\n"
2422                                                                                                         "%fzero = OpConstant %f32 0.\n"
2423                                                                                                         "%one = OpConstant %f32 1.\n"
2424                                                                                                         "%point5 = OpConstant %f32 0.5\n"
2425                                                                                                         "%vec = OpConstantComposite %fvec3 %one %one %fzero\n"
2426                                                                                                         "%mat = OpConstantComposite %m2vec3 %vec %vec\n"
2427                                                                                                         "%const = OpConstantComposite %struct %zero %point5 %vec %mat"));
2428         cases.push_back(CaseParameter("nested_struct",  "%st1 = OpTypeStruct %u32 %f32\n"
2429                                                                                                         "%st2 = OpTypeStruct %i32 %i32\n"
2430                                                                                                         "%struct = OpTypeStruct %st1 %st2\n"
2431                                                                                                         "%point5 = OpConstant %f32 0.5\n"
2432                                                                                                         "%one = OpConstant %u32 1\n"
2433                                                                                                         "%ten = OpConstant %i32 10\n"
2434                                                                                                         "%st1val = OpConstantComposite %st1 %one %point5\n"
2435                                                                                                         "%st2val = OpConstantComposite %st2 %ten %ten\n"
2436                                                                                                         "%const = OpConstantComposite %struct %st1val %st2val"));
2437
2438         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2439
2440         for (size_t ndx = 0; ndx < numElements; ++ndx)
2441                 negativeFloats[ndx] = -positiveFloats[ndx];
2442
2443         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
2444         {
2445                 map<string, string>             specializations;
2446                 ComputeShaderSpec               spec;
2447
2448                 specializations["CONSTANT"] = cases[caseNdx].param;
2449                 spec.assembly = shaderTemplate.specialize(specializations);
2450                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
2451                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
2452                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2453
2454                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
2455         }
2456
2457         return group.release();
2458 }
2459
2460 // Creates a floating point number with the given exponent, and significand
2461 // bits set. It can only create normalized numbers. Only the least significant
2462 // 24 bits of the significand will be examined. The final bit of the
2463 // significand will also be ignored. This allows alignment to be written
2464 // similarly to C99 hex-floats.
2465 // For example if you wanted to write 0x1.7f34p-12 you would call
2466 // constructNormalizedFloat(-12, 0x7f3400)
2467 float constructNormalizedFloat (deInt32 exponent, deUint32 significand)
2468 {
2469         float f = 1.0f;
2470
2471         for (deInt32 idx = 0; idx < 23; ++idx)
2472         {
2473                 f += ((significand & 0x800000) == 0) ? 0.f : std::ldexp(1.0f, -(idx + 1));
2474                 significand <<= 1;
2475         }
2476
2477         return std::ldexp(f, exponent);
2478 }
2479
2480 // Compare instruction for the OpQuantizeF16 compute exact case.
2481 // Returns true if the output is what is expected from the test case.
2482 bool compareOpQuantizeF16ComputeExactCase (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
2483 {
2484         if (outputAllocs.size() != 1)
2485                 return false;
2486
2487         // We really just need this for size because we cannot compare Nans.
2488         const BufferSp& expectedOutput  = expectedOutputs[0];
2489         const float*    outputAsFloat   = static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2490
2491         if (expectedOutput->getNumBytes() != 4*sizeof(float)) {
2492                 return false;
2493         }
2494
2495         if (*outputAsFloat != constructNormalizedFloat(8, 0x304000) &&
2496                 *outputAsFloat != constructNormalizedFloat(8, 0x300000)) {
2497                 return false;
2498         }
2499         outputAsFloat++;
2500
2501         if (*outputAsFloat != -constructNormalizedFloat(-7, 0x600000) &&
2502                 *outputAsFloat != -constructNormalizedFloat(-7, 0x604000)) {
2503                 return false;
2504         }
2505         outputAsFloat++;
2506
2507         if (*outputAsFloat != constructNormalizedFloat(2, 0x01C000) &&
2508                 *outputAsFloat != constructNormalizedFloat(2, 0x020000)) {
2509                 return false;
2510         }
2511         outputAsFloat++;
2512
2513         if (*outputAsFloat != constructNormalizedFloat(1, 0xFFC000) &&
2514                 *outputAsFloat != constructNormalizedFloat(2, 0x000000)) {
2515                 return false;
2516         }
2517
2518         return true;
2519 }
2520
2521 // Checks that every output from a test-case is a float NaN.
2522 bool compareNan (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
2523 {
2524         if (outputAllocs.size() != 1)
2525                 return false;
2526
2527         // We really just need this for size because we cannot compare Nans.
2528         const BufferSp& expectedOutput          = expectedOutputs[0];
2529         const float* output_as_float            = static_cast<const float*>(outputAllocs[0]->getHostPtr());;
2530
2531         for (size_t idx = 0; idx < expectedOutput->getNumBytes() / sizeof(float); ++idx)
2532         {
2533                 if (!deFloatIsNaN(output_as_float[idx]))
2534                 {
2535                         return false;
2536                 }
2537         }
2538
2539         return true;
2540 }
2541
2542 // Checks that a compute shader can generate a constant composite value of various types, without exercising a computation on it.
2543 tcu::TestCaseGroup* createOpQuantizeToF16Group (tcu::TestContext& testCtx)
2544 {
2545         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opquantize", "Tests the OpQuantizeToF16 instruction"));
2546
2547         const std::string shader (
2548                 string(getComputeAsmShaderPreamble()) +
2549
2550                 "OpSource GLSL 430\n"
2551                 "OpName %main           \"main\"\n"
2552                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2553
2554                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2555
2556                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
2557
2558                 "%id        = OpVariable %uvec3ptr Input\n"
2559                 "%zero      = OpConstant %i32 0\n"
2560
2561                 "%main      = OpFunction %void None %voidf\n"
2562                 "%label     = OpLabel\n"
2563                 "%idval     = OpLoad %uvec3 %id\n"
2564                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2565                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2566                 "%inval     = OpLoad %f32 %inloc\n"
2567                 "%quant     = OpQuantizeToF16 %f32 %inval\n"
2568                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2569                 "             OpStore %outloc %quant\n"
2570                 "             OpReturn\n"
2571                 "             OpFunctionEnd\n");
2572
2573         {
2574                 ComputeShaderSpec       spec;
2575                 const deUint32          numElements             = 100;
2576                 vector<float>           infinities;
2577                 vector<float>           results;
2578
2579                 infinities.reserve(numElements);
2580                 results.reserve(numElements);
2581
2582                 for (size_t idx = 0; idx < numElements; ++idx)
2583                 {
2584                         switch(idx % 4)
2585                         {
2586                                 case 0:
2587                                         infinities.push_back(std::numeric_limits<float>::infinity());
2588                                         results.push_back(std::numeric_limits<float>::infinity());
2589                                         break;
2590                                 case 1:
2591                                         infinities.push_back(-std::numeric_limits<float>::infinity());
2592                                         results.push_back(-std::numeric_limits<float>::infinity());
2593                                         break;
2594                                 case 2:
2595                                         infinities.push_back(std::ldexp(1.0f, 16));
2596                                         results.push_back(std::numeric_limits<float>::infinity());
2597                                         break;
2598                                 case 3:
2599                                         infinities.push_back(std::ldexp(-1.0f, 32));
2600                                         results.push_back(-std::numeric_limits<float>::infinity());
2601                                         break;
2602                         }
2603                 }
2604
2605                 spec.assembly = shader;
2606                 spec.inputs.push_back(BufferSp(new Float32Buffer(infinities)));
2607                 spec.outputs.push_back(BufferSp(new Float32Buffer(results)));
2608                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2609
2610                 group->addChild(new SpvAsmComputeShaderCase(
2611                         testCtx, "infinities", "Check that infinities propagated and created", spec));
2612         }
2613
2614         {
2615                 ComputeShaderSpec       spec;
2616                 vector<float>           nans;
2617                 const deUint32          numElements             = 100;
2618
2619                 nans.reserve(numElements);
2620
2621                 for (size_t idx = 0; idx < numElements; ++idx)
2622                 {
2623                         if (idx % 2 == 0)
2624                         {
2625                                 nans.push_back(std::numeric_limits<float>::quiet_NaN());
2626                         }
2627                         else
2628                         {
2629                                 nans.push_back(-std::numeric_limits<float>::quiet_NaN());
2630                         }
2631                 }
2632
2633                 spec.assembly = shader;
2634                 spec.inputs.push_back(BufferSp(new Float32Buffer(nans)));
2635                 spec.outputs.push_back(BufferSp(new Float32Buffer(nans)));
2636                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2637                 spec.verifyIO = &compareNan;
2638
2639                 group->addChild(new SpvAsmComputeShaderCase(
2640                         testCtx, "propagated_nans", "Check that nans are propagated", spec));
2641         }
2642
2643         {
2644                 ComputeShaderSpec       spec;
2645                 vector<float>           small;
2646                 vector<float>           zeros;
2647                 const deUint32          numElements             = 100;
2648
2649                 small.reserve(numElements);
2650                 zeros.reserve(numElements);
2651
2652                 for (size_t idx = 0; idx < numElements; ++idx)
2653                 {
2654                         switch(idx % 6)
2655                         {
2656                                 case 0:
2657                                         small.push_back(0.f);
2658                                         zeros.push_back(0.f);
2659                                         break;
2660                                 case 1:
2661                                         small.push_back(-0.f);
2662                                         zeros.push_back(-0.f);
2663                                         break;
2664                                 case 2:
2665                                         small.push_back(std::ldexp(1.0f, -16));
2666                                         zeros.push_back(0.f);
2667                                         break;
2668                                 case 3:
2669                                         small.push_back(std::ldexp(-1.0f, -32));
2670                                         zeros.push_back(-0.f);
2671                                         break;
2672                                 case 4:
2673                                         small.push_back(std::ldexp(1.0f, -127));
2674                                         zeros.push_back(0.f);
2675                                         break;
2676                                 case 5:
2677                                         small.push_back(-std::ldexp(1.0f, -128));
2678                                         zeros.push_back(-0.f);
2679                                         break;
2680                         }
2681                 }
2682
2683                 spec.assembly = shader;
2684                 spec.inputs.push_back(BufferSp(new Float32Buffer(small)));
2685                 spec.outputs.push_back(BufferSp(new Float32Buffer(zeros)));
2686                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2687
2688                 group->addChild(new SpvAsmComputeShaderCase(
2689                         testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2690         }
2691
2692         {
2693                 ComputeShaderSpec       spec;
2694                 vector<float>           exact;
2695                 const deUint32          numElements             = 200;
2696
2697                 exact.reserve(numElements);
2698
2699                 for (size_t idx = 0; idx < numElements; ++idx)
2700                         exact.push_back(static_cast<float>(static_cast<int>(idx) - 100));
2701
2702                 spec.assembly = shader;
2703                 spec.inputs.push_back(BufferSp(new Float32Buffer(exact)));
2704                 spec.outputs.push_back(BufferSp(new Float32Buffer(exact)));
2705                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2706
2707                 group->addChild(new SpvAsmComputeShaderCase(
2708                         testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2709         }
2710
2711         {
2712                 ComputeShaderSpec       spec;
2713                 vector<float>           inputs;
2714                 const deUint32          numElements             = 4;
2715
2716                 inputs.push_back(constructNormalizedFloat(8,    0x300300));
2717                 inputs.push_back(-constructNormalizedFloat(-7,  0x600800));
2718                 inputs.push_back(constructNormalizedFloat(2,    0x01E000));
2719                 inputs.push_back(constructNormalizedFloat(1,    0xFFE000));
2720
2721                 spec.assembly = shader;
2722                 spec.verifyIO = &compareOpQuantizeF16ComputeExactCase;
2723                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2724                 spec.outputs.push_back(BufferSp(new Float32Buffer(inputs)));
2725                 spec.numWorkGroups = IVec3(numElements, 1, 1);
2726
2727                 group->addChild(new SpvAsmComputeShaderCase(
2728                         testCtx, "rounded", "Check that are rounded when needed", spec));
2729         }
2730
2731         return group.release();
2732 }
2733
2734 tcu::TestCaseGroup* createSpecConstantOpQuantizeToF16Group (tcu::TestContext& testCtx)
2735 {
2736         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opspecconstantop_opquantize", "Tests the OpQuantizeToF16 opcode for the OpSpecConstantOp instruction"));
2737
2738         const std::string shader (
2739                 string(getComputeAsmShaderPreamble()) +
2740
2741                 "OpName %main           \"main\"\n"
2742                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2743
2744                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2745
2746                 "OpDecorate %sc_0  SpecId 0\n"
2747                 "OpDecorate %sc_1  SpecId 1\n"
2748                 "OpDecorate %sc_2  SpecId 2\n"
2749                 "OpDecorate %sc_3  SpecId 3\n"
2750                 "OpDecorate %sc_4  SpecId 4\n"
2751                 "OpDecorate %sc_5  SpecId 5\n"
2752
2753                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
2754
2755                 "%id        = OpVariable %uvec3ptr Input\n"
2756                 "%zero      = OpConstant %i32 0\n"
2757                 "%c_u32_6   = OpConstant %u32 6\n"
2758
2759                 "%sc_0      = OpSpecConstant %f32 0.\n"
2760                 "%sc_1      = OpSpecConstant %f32 0.\n"
2761                 "%sc_2      = OpSpecConstant %f32 0.\n"
2762                 "%sc_3      = OpSpecConstant %f32 0.\n"
2763                 "%sc_4      = OpSpecConstant %f32 0.\n"
2764                 "%sc_5      = OpSpecConstant %f32 0.\n"
2765
2766                 "%sc_0_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_0\n"
2767                 "%sc_1_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_1\n"
2768                 "%sc_2_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_2\n"
2769                 "%sc_3_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_3\n"
2770                 "%sc_4_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_4\n"
2771                 "%sc_5_quant = OpSpecConstantOp %f32 QuantizeToF16 %sc_5\n"
2772
2773                 "%main      = OpFunction %void None %voidf\n"
2774                 "%label     = OpLabel\n"
2775                 "%idval     = OpLoad %uvec3 %id\n"
2776                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2777                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
2778                 "%selector  = OpUMod %u32 %x %c_u32_6\n"
2779                 "            OpSelectionMerge %exit None\n"
2780                 "            OpSwitch %selector %exit 0 %case0 1 %case1 2 %case2 3 %case3 4 %case4 5 %case5\n"
2781
2782                 "%case0     = OpLabel\n"
2783                 "             OpStore %outloc %sc_0_quant\n"
2784                 "             OpBranch %exit\n"
2785
2786                 "%case1     = OpLabel\n"
2787                 "             OpStore %outloc %sc_1_quant\n"
2788                 "             OpBranch %exit\n"
2789
2790                 "%case2     = OpLabel\n"
2791                 "             OpStore %outloc %sc_2_quant\n"
2792                 "             OpBranch %exit\n"
2793
2794                 "%case3     = OpLabel\n"
2795                 "             OpStore %outloc %sc_3_quant\n"
2796                 "             OpBranch %exit\n"
2797
2798                 "%case4     = OpLabel\n"
2799                 "             OpStore %outloc %sc_4_quant\n"
2800                 "             OpBranch %exit\n"
2801
2802                 "%case5     = OpLabel\n"
2803                 "             OpStore %outloc %sc_5_quant\n"
2804                 "             OpBranch %exit\n"
2805
2806                 "%exit      = OpLabel\n"
2807                 "             OpReturn\n"
2808
2809                 "             OpFunctionEnd\n");
2810
2811         {
2812                 ComputeShaderSpec       spec;
2813                 const deUint8           numCases        = 4;
2814                 vector<float>           inputs          (numCases, 0.f);
2815                 vector<float>           outputs;
2816
2817                 spec.assembly           = shader;
2818                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
2819
2820                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::numeric_limits<float>::infinity()));
2821                 spec.specConstants.push_back(bitwiseCast<deUint32>(-std::numeric_limits<float>::infinity()));
2822                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, 16)));
2823                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, 32)));
2824
2825                 outputs.push_back(std::numeric_limits<float>::infinity());
2826                 outputs.push_back(-std::numeric_limits<float>::infinity());
2827                 outputs.push_back(std::numeric_limits<float>::infinity());
2828                 outputs.push_back(-std::numeric_limits<float>::infinity());
2829
2830                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2831                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2832
2833                 group->addChild(new SpvAsmComputeShaderCase(
2834                         testCtx, "infinities", "Check that infinities propagated and created", spec));
2835         }
2836
2837         {
2838                 ComputeShaderSpec       spec;
2839                 const deUint8           numCases        = 2;
2840                 vector<float>           inputs          (numCases, 0.f);
2841                 vector<float>           outputs;
2842
2843                 spec.assembly           = shader;
2844                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
2845                 spec.verifyIO           = &compareNan;
2846
2847                 outputs.push_back(std::numeric_limits<float>::quiet_NaN());
2848                 outputs.push_back(-std::numeric_limits<float>::quiet_NaN());
2849
2850                 for (deUint8 idx = 0; idx < numCases; ++idx)
2851                         spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2852
2853                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2854                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2855
2856                 group->addChild(new SpvAsmComputeShaderCase(
2857                         testCtx, "propagated_nans", "Check that nans are propagated", spec));
2858         }
2859
2860         {
2861                 ComputeShaderSpec       spec;
2862                 const deUint8           numCases        = 6;
2863                 vector<float>           inputs          (numCases, 0.f);
2864                 vector<float>           outputs;
2865
2866                 spec.assembly           = shader;
2867                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
2868
2869                 spec.specConstants.push_back(bitwiseCast<deUint32>(0.f));
2870                 spec.specConstants.push_back(bitwiseCast<deUint32>(-0.f));
2871                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -16)));
2872                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(-1.0f, -32)));
2873                 spec.specConstants.push_back(bitwiseCast<deUint32>(std::ldexp(1.0f, -127)));
2874                 spec.specConstants.push_back(bitwiseCast<deUint32>(-std::ldexp(1.0f, -128)));
2875
2876                 outputs.push_back(0.f);
2877                 outputs.push_back(-0.f);
2878                 outputs.push_back(0.f);
2879                 outputs.push_back(-0.f);
2880                 outputs.push_back(0.f);
2881                 outputs.push_back(-0.f);
2882
2883                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2884                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2885
2886                 group->addChild(new SpvAsmComputeShaderCase(
2887                         testCtx, "flush_to_zero", "Check that values are zeroed correctly", spec));
2888         }
2889
2890         {
2891                 ComputeShaderSpec       spec;
2892                 const deUint8           numCases        = 6;
2893                 vector<float>           inputs          (numCases, 0.f);
2894                 vector<float>           outputs;
2895
2896                 spec.assembly           = shader;
2897                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
2898
2899                 for (deUint8 idx = 0; idx < 6; ++idx)
2900                 {
2901                         const float f = static_cast<float>(idx * 10 - 30) / 4.f;
2902                         spec.specConstants.push_back(bitwiseCast<deUint32>(f));
2903                         outputs.push_back(f);
2904                 }
2905
2906                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2907                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2908
2909                 group->addChild(new SpvAsmComputeShaderCase(
2910                         testCtx, "exact", "Check that values exactly preserved where appropriate", spec));
2911         }
2912
2913         {
2914                 ComputeShaderSpec       spec;
2915                 const deUint8           numCases        = 4;
2916                 vector<float>           inputs          (numCases, 0.f);
2917                 vector<float>           outputs;
2918
2919                 spec.assembly           = shader;
2920                 spec.numWorkGroups      = IVec3(numCases, 1, 1);
2921                 spec.verifyIO           = &compareOpQuantizeF16ComputeExactCase;
2922
2923                 outputs.push_back(constructNormalizedFloat(8, 0x300300));
2924                 outputs.push_back(-constructNormalizedFloat(-7, 0x600800));
2925                 outputs.push_back(constructNormalizedFloat(2, 0x01E000));
2926                 outputs.push_back(constructNormalizedFloat(1, 0xFFE000));
2927
2928                 for (deUint8 idx = 0; idx < numCases; ++idx)
2929                         spec.specConstants.push_back(bitwiseCast<deUint32>(outputs[idx]));
2930
2931                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputs)));
2932                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputs)));
2933
2934                 group->addChild(new SpvAsmComputeShaderCase(
2935                         testCtx, "rounded", "Check that are rounded when needed", spec));
2936         }
2937
2938         return group.release();
2939 }
2940
2941 // Checks that constant null/composite values can be used in computation.
2942 tcu::TestCaseGroup* createOpConstantUsageGroup (tcu::TestContext& testCtx)
2943 {
2944         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opconstantnullcomposite", "Spotcheck the OpConstantNull & OpConstantComposite instruction"));
2945         ComputeShaderSpec                               spec;
2946         de::Random                                              rnd                             (deStringHash(group->getName()));
2947         const int                                               numElements             = 100;
2948         vector<float>                                   positiveFloats  (numElements, 0);
2949         vector<float>                                   negativeFloats  (numElements, 0);
2950
2951         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
2952
2953         for (size_t ndx = 0; ndx < numElements; ++ndx)
2954                 negativeFloats[ndx] = -positiveFloats[ndx];
2955
2956         spec.assembly =
2957                 "OpCapability Shader\n"
2958                 "%std450 = OpExtInstImport \"GLSL.std.450\"\n"
2959                 "OpMemoryModel Logical GLSL450\n"
2960                 "OpEntryPoint GLCompute %main \"main\" %id\n"
2961                 "OpExecutionMode %main LocalSize 1 1 1\n"
2962
2963                 "OpSource GLSL 430\n"
2964                 "OpName %main           \"main\"\n"
2965                 "OpName %id             \"gl_GlobalInvocationID\"\n"
2966
2967                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
2968
2969                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
2970
2971                 "%fmat      = OpTypeMatrix %fvec3 3\n"
2972                 "%ten       = OpConstant %u32 10\n"
2973                 "%f32arr10  = OpTypeArray %f32 %ten\n"
2974                 "%fst       = OpTypeStruct %f32 %f32\n"
2975
2976                 + string(getComputeAsmInputOutputBuffer()) +
2977
2978                 "%id        = OpVariable %uvec3ptr Input\n"
2979                 "%zero      = OpConstant %i32 0\n"
2980
2981                 // Create a bunch of null values
2982                 "%unull     = OpConstantNull %u32\n"
2983                 "%fnull     = OpConstantNull %f32\n"
2984                 "%vnull     = OpConstantNull %fvec3\n"
2985                 "%mnull     = OpConstantNull %fmat\n"
2986                 "%anull     = OpConstantNull %f32arr10\n"
2987                 "%snull     = OpConstantComposite %fst %fnull %fnull\n"
2988
2989                 "%main      = OpFunction %void None %voidf\n"
2990                 "%label     = OpLabel\n"
2991                 "%idval     = OpLoad %uvec3 %id\n"
2992                 "%x         = OpCompositeExtract %u32 %idval 0\n"
2993                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
2994                 "%inval     = OpLoad %f32 %inloc\n"
2995                 "%neg       = OpFNegate %f32 %inval\n"
2996
2997                 // Get the abs() of (a certain element of) those null values
2998                 "%unull_cov = OpConvertUToF %f32 %unull\n"
2999                 "%unull_abs = OpExtInst %f32 %std450 FAbs %unull_cov\n"
3000                 "%fnull_abs = OpExtInst %f32 %std450 FAbs %fnull\n"
3001                 "%vnull_0   = OpCompositeExtract %f32 %vnull 0\n"
3002                 "%vnull_abs = OpExtInst %f32 %std450 FAbs %vnull_0\n"
3003                 "%mnull_12  = OpCompositeExtract %f32 %mnull 1 2\n"
3004                 "%mnull_abs = OpExtInst %f32 %std450 FAbs %mnull_12\n"
3005                 "%anull_3   = OpCompositeExtract %f32 %anull 3\n"
3006                 "%anull_abs = OpExtInst %f32 %std450 FAbs %anull_3\n"
3007                 "%snull_1   = OpCompositeExtract %f32 %snull 1\n"
3008                 "%snull_abs = OpExtInst %f32 %std450 FAbs %snull_1\n"
3009
3010                 // Add them all
3011                 "%add1      = OpFAdd %f32 %neg  %unull_abs\n"
3012                 "%add2      = OpFAdd %f32 %add1 %fnull_abs\n"
3013                 "%add3      = OpFAdd %f32 %add2 %vnull_abs\n"
3014                 "%add4      = OpFAdd %f32 %add3 %mnull_abs\n"
3015                 "%add5      = OpFAdd %f32 %add4 %anull_abs\n"
3016                 "%final     = OpFAdd %f32 %add5 %snull_abs\n"
3017
3018                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3019                 "             OpStore %outloc %final\n" // write to output
3020                 "             OpReturn\n"
3021                 "             OpFunctionEnd\n";
3022         spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
3023         spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
3024         spec.numWorkGroups = IVec3(numElements, 1, 1);
3025
3026         group->addChild(new SpvAsmComputeShaderCase(testCtx, "spotcheck", "Check that values constructed via OpConstantNull & OpConstantComposite can be used", spec));
3027
3028         return group.release();
3029 }
3030
3031 // Assembly code used for testing loop control is based on GLSL source code:
3032 // #version 430
3033 //
3034 // layout(std140, set = 0, binding = 0) readonly buffer Input {
3035 //   float elements[];
3036 // } input_data;
3037 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
3038 //   float elements[];
3039 // } output_data;
3040 //
3041 // void main() {
3042 //   uint x = gl_GlobalInvocationID.x;
3043 //   output_data.elements[x] = input_data.elements[x];
3044 //   for (uint i = 0; i < 4; ++i)
3045 //     output_data.elements[x] += 1.f;
3046 // }
3047 tcu::TestCaseGroup* createLoopControlGroup (tcu::TestContext& testCtx)
3048 {
3049         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "loop_control", "Tests loop control cases"));
3050         vector<CaseParameter>                   cases;
3051         de::Random                                              rnd                             (deStringHash(group->getName()));
3052         const int                                               numElements             = 100;
3053         vector<float>                                   inputFloats             (numElements, 0);
3054         vector<float>                                   outputFloats    (numElements, 0);
3055         const StringTemplate                    shaderTemplate  (
3056                 string(getComputeAsmShaderPreamble()) +
3057
3058                 "OpSource GLSL 430\n"
3059                 "OpName %main \"main\"\n"
3060                 "OpName %id \"gl_GlobalInvocationID\"\n"
3061
3062                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3063
3064                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3065
3066                 "%u32ptr      = OpTypePointer Function %u32\n"
3067
3068                 "%id          = OpVariable %uvec3ptr Input\n"
3069                 "%zero        = OpConstant %i32 0\n"
3070                 "%uzero       = OpConstant %u32 0\n"
3071                 "%one         = OpConstant %i32 1\n"
3072                 "%constf1     = OpConstant %f32 1.0\n"
3073                 "%four        = OpConstant %u32 4\n"
3074
3075                 "%main        = OpFunction %void None %voidf\n"
3076                 "%entry       = OpLabel\n"
3077                 "%i           = OpVariable %u32ptr Function\n"
3078                 "               OpStore %i %uzero\n"
3079
3080                 "%idval       = OpLoad %uvec3 %id\n"
3081                 "%x           = OpCompositeExtract %u32 %idval 0\n"
3082                 "%inloc       = OpAccessChain %f32ptr %indata %zero %x\n"
3083                 "%inval       = OpLoad %f32 %inloc\n"
3084                 "%outloc      = OpAccessChain %f32ptr %outdata %zero %x\n"
3085                 "               OpStore %outloc %inval\n"
3086                 "               OpBranch %loop_entry\n"
3087
3088                 "%loop_entry  = OpLabel\n"
3089                 "%i_val       = OpLoad %u32 %i\n"
3090                 "%cmp_lt      = OpULessThan %bool %i_val %four\n"
3091                 "               OpLoopMerge %loop_merge %loop_body ${CONTROL}\n"
3092                 "               OpBranchConditional %cmp_lt %loop_body %loop_merge\n"
3093                 "%loop_body   = OpLabel\n"
3094                 "%outval      = OpLoad %f32 %outloc\n"
3095                 "%addf1       = OpFAdd %f32 %outval %constf1\n"
3096                 "               OpStore %outloc %addf1\n"
3097                 "%new_i       = OpIAdd %u32 %i_val %one\n"
3098                 "               OpStore %i %new_i\n"
3099                 "               OpBranch %loop_entry\n"
3100                 "%loop_merge  = OpLabel\n"
3101                 "               OpReturn\n"
3102                 "               OpFunctionEnd\n");
3103
3104         cases.push_back(CaseParameter("none",                           "None"));
3105         cases.push_back(CaseParameter("unroll",                         "Unroll"));
3106         cases.push_back(CaseParameter("dont_unroll",            "DontUnroll"));
3107         cases.push_back(CaseParameter("unroll_dont_unroll",     "Unroll|DontUnroll"));
3108
3109         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3110
3111         for (size_t ndx = 0; ndx < numElements; ++ndx)
3112                 outputFloats[ndx] = inputFloats[ndx] + 4.f;
3113
3114         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3115         {
3116                 map<string, string>             specializations;
3117                 ComputeShaderSpec               spec;
3118
3119                 specializations["CONTROL"] = cases[caseNdx].param;
3120                 spec.assembly = shaderTemplate.specialize(specializations);
3121                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3122                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3123                 spec.numWorkGroups = IVec3(numElements, 1, 1);
3124
3125                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3126         }
3127
3128         return group.release();
3129 }
3130
3131 // Assembly code used for testing selection control is based on GLSL source code:
3132 // #version 430
3133 //
3134 // layout(std140, set = 0, binding = 0) readonly buffer Input {
3135 //   float elements[];
3136 // } input_data;
3137 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
3138 //   float elements[];
3139 // } output_data;
3140 //
3141 // void main() {
3142 //   uint x = gl_GlobalInvocationID.x;
3143 //   float val = input_data.elements[x];
3144 //   if (val > 10.f)
3145 //     output_data.elements[x] = val + 1.f;
3146 //   else
3147 //     output_data.elements[x] = val - 1.f;
3148 // }
3149 tcu::TestCaseGroup* createSelectionControlGroup (tcu::TestContext& testCtx)
3150 {
3151         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "selection_control", "Tests selection control cases"));
3152         vector<CaseParameter>                   cases;
3153         de::Random                                              rnd                             (deStringHash(group->getName()));
3154         const int                                               numElements             = 100;
3155         vector<float>                                   inputFloats             (numElements, 0);
3156         vector<float>                                   outputFloats    (numElements, 0);
3157         const StringTemplate                    shaderTemplate  (
3158                 string(getComputeAsmShaderPreamble()) +
3159
3160                 "OpSource GLSL 430\n"
3161                 "OpName %main \"main\"\n"
3162                 "OpName %id \"gl_GlobalInvocationID\"\n"
3163
3164                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3165
3166                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3167
3168                 "%id       = OpVariable %uvec3ptr Input\n"
3169                 "%zero     = OpConstant %i32 0\n"
3170                 "%constf1  = OpConstant %f32 1.0\n"
3171                 "%constf10 = OpConstant %f32 10.0\n"
3172
3173                 "%main     = OpFunction %void None %voidf\n"
3174                 "%entry    = OpLabel\n"
3175                 "%idval    = OpLoad %uvec3 %id\n"
3176                 "%x        = OpCompositeExtract %u32 %idval 0\n"
3177                 "%inloc    = OpAccessChain %f32ptr %indata %zero %x\n"
3178                 "%inval    = OpLoad %f32 %inloc\n"
3179                 "%outloc   = OpAccessChain %f32ptr %outdata %zero %x\n"
3180                 "%cmp_gt   = OpFOrdGreaterThan %bool %inval %constf10\n"
3181
3182                 "            OpSelectionMerge %if_end ${CONTROL}\n"
3183                 "            OpBranchConditional %cmp_gt %if_true %if_false\n"
3184                 "%if_true  = OpLabel\n"
3185                 "%addf1    = OpFAdd %f32 %inval %constf1\n"
3186                 "            OpStore %outloc %addf1\n"
3187                 "            OpBranch %if_end\n"
3188                 "%if_false = OpLabel\n"
3189                 "%subf1    = OpFSub %f32 %inval %constf1\n"
3190                 "            OpStore %outloc %subf1\n"
3191                 "            OpBranch %if_end\n"
3192                 "%if_end   = OpLabel\n"
3193                 "            OpReturn\n"
3194                 "            OpFunctionEnd\n");
3195
3196         cases.push_back(CaseParameter("none",                                   "None"));
3197         cases.push_back(CaseParameter("flatten",                                "Flatten"));
3198         cases.push_back(CaseParameter("dont_flatten",                   "DontFlatten"));
3199         cases.push_back(CaseParameter("flatten_dont_flatten",   "DontFlatten|Flatten"));
3200
3201         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3202
3203         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
3204         floorAll(inputFloats);
3205
3206         for (size_t ndx = 0; ndx < numElements; ++ndx)
3207                 outputFloats[ndx] = inputFloats[ndx] + (inputFloats[ndx] > 10.f ? 1.f : -1.f);
3208
3209         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3210         {
3211                 map<string, string>             specializations;
3212                 ComputeShaderSpec               spec;
3213
3214                 specializations["CONTROL"] = cases[caseNdx].param;
3215                 spec.assembly = shaderTemplate.specialize(specializations);
3216                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3217                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3218                 spec.numWorkGroups = IVec3(numElements, 1, 1);
3219
3220                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3221         }
3222
3223         return group.release();
3224 }
3225
3226 // Assembly code used for testing function control is based on GLSL source code:
3227 //
3228 // #version 430
3229 //
3230 // layout(std140, set = 0, binding = 0) readonly buffer Input {
3231 //   float elements[];
3232 // } input_data;
3233 // layout(std140, set = 0, binding = 1) writeonly buffer Output {
3234 //   float elements[];
3235 // } output_data;
3236 //
3237 // float const10() { return 10.f; }
3238 //
3239 // void main() {
3240 //   uint x = gl_GlobalInvocationID.x;
3241 //   output_data.elements[x] = input_data.elements[x] + const10();
3242 // }
3243 tcu::TestCaseGroup* createFunctionControlGroup (tcu::TestContext& testCtx)
3244 {
3245         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "function_control", "Tests function control cases"));
3246         vector<CaseParameter>                   cases;
3247         de::Random                                              rnd                             (deStringHash(group->getName()));
3248         const int                                               numElements             = 100;
3249         vector<float>                                   inputFloats             (numElements, 0);
3250         vector<float>                                   outputFloats    (numElements, 0);
3251         const StringTemplate                    shaderTemplate  (
3252                 string(getComputeAsmShaderPreamble()) +
3253
3254                 "OpSource GLSL 430\n"
3255                 "OpName %main \"main\"\n"
3256                 "OpName %func_const10 \"const10(\"\n"
3257                 "OpName %id \"gl_GlobalInvocationID\"\n"
3258
3259                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3260
3261                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3262
3263                 "%f32f = OpTypeFunction %f32\n"
3264                 "%id = OpVariable %uvec3ptr Input\n"
3265                 "%zero = OpConstant %i32 0\n"
3266                 "%constf10 = OpConstant %f32 10.0\n"
3267
3268                 "%main         = OpFunction %void None %voidf\n"
3269                 "%entry        = OpLabel\n"
3270                 "%idval        = OpLoad %uvec3 %id\n"
3271                 "%x            = OpCompositeExtract %u32 %idval 0\n"
3272                 "%inloc        = OpAccessChain %f32ptr %indata %zero %x\n"
3273                 "%inval        = OpLoad %f32 %inloc\n"
3274                 "%ret_10       = OpFunctionCall %f32 %func_const10\n"
3275                 "%fadd         = OpFAdd %f32 %inval %ret_10\n"
3276                 "%outloc       = OpAccessChain %f32ptr %outdata %zero %x\n"
3277                 "                OpStore %outloc %fadd\n"
3278                 "                OpReturn\n"
3279                 "                OpFunctionEnd\n"
3280
3281                 "%func_const10 = OpFunction %f32 ${CONTROL} %f32f\n"
3282                 "%label        = OpLabel\n"
3283                 "                OpReturnValue %constf10\n"
3284                 "                OpFunctionEnd\n");
3285
3286         cases.push_back(CaseParameter("none",                                           "None"));
3287         cases.push_back(CaseParameter("inline",                                         "Inline"));
3288         cases.push_back(CaseParameter("dont_inline",                            "DontInline"));
3289         cases.push_back(CaseParameter("pure",                                           "Pure"));
3290         cases.push_back(CaseParameter("const",                                          "Const"));
3291         cases.push_back(CaseParameter("inline_pure",                            "Inline|Pure"));
3292         cases.push_back(CaseParameter("const_dont_inline",                      "Const|DontInline"));
3293         cases.push_back(CaseParameter("inline_dont_inline",                     "Inline|DontInline"));
3294         cases.push_back(CaseParameter("pure_inline_dont_inline",        "Pure|Inline|DontInline"));
3295
3296         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3297
3298         // CPU might not use the same rounding mode as the GPU. Use whole numbers to avoid rounding differences.
3299         floorAll(inputFloats);
3300
3301         for (size_t ndx = 0; ndx < numElements; ++ndx)
3302                 outputFloats[ndx] = inputFloats[ndx] + 10.f;
3303
3304         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3305         {
3306                 map<string, string>             specializations;
3307                 ComputeShaderSpec               spec;
3308
3309                 specializations["CONTROL"] = cases[caseNdx].param;
3310                 spec.assembly = shaderTemplate.specialize(specializations);
3311                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3312                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3313                 spec.numWorkGroups = IVec3(numElements, 1, 1);
3314
3315                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3316         }
3317
3318         return group.release();
3319 }
3320
3321 tcu::TestCaseGroup* createMemoryAccessGroup (tcu::TestContext& testCtx)
3322 {
3323         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "memory_access", "Tests memory access cases"));
3324         vector<CaseParameter>                   cases;
3325         de::Random                                              rnd                             (deStringHash(group->getName()));
3326         const int                                               numElements             = 100;
3327         vector<float>                                   inputFloats             (numElements, 0);
3328         vector<float>                                   outputFloats    (numElements, 0);
3329         const StringTemplate                    shaderTemplate  (
3330                 string(getComputeAsmShaderPreamble()) +
3331
3332                 "OpSource GLSL 430\n"
3333                 "OpName %main           \"main\"\n"
3334                 "OpName %id             \"gl_GlobalInvocationID\"\n"
3335
3336                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3337
3338                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) + string(getComputeAsmInputOutputBuffer()) +
3339
3340                 "%f32ptr_f  = OpTypePointer Function %f32\n"
3341
3342                 "%id        = OpVariable %uvec3ptr Input\n"
3343                 "%zero      = OpConstant %i32 0\n"
3344                 "%four      = OpConstant %i32 4\n"
3345
3346                 "%main      = OpFunction %void None %voidf\n"
3347                 "%label     = OpLabel\n"
3348                 "%copy      = OpVariable %f32ptr_f Function\n"
3349                 "%idval     = OpLoad %uvec3 %id ${ACCESS}\n"
3350                 "%x         = OpCompositeExtract %u32 %idval 0\n"
3351                 "%inloc     = OpAccessChain %f32ptr %indata  %zero %x\n"
3352                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3353                 "             OpCopyMemory %copy %inloc ${ACCESS}\n"
3354                 "%val1      = OpLoad %f32 %copy\n"
3355                 "%val2      = OpLoad %f32 %inloc\n"
3356                 "%add       = OpFAdd %f32 %val1 %val2\n"
3357                 "             OpStore %outloc %add ${ACCESS}\n"
3358                 "             OpReturn\n"
3359                 "             OpFunctionEnd\n");
3360
3361         cases.push_back(CaseParameter("null",                                   ""));
3362         cases.push_back(CaseParameter("none",                                   "None"));
3363         cases.push_back(CaseParameter("volatile",                               "Volatile"));
3364         cases.push_back(CaseParameter("aligned",                                "Aligned 4"));
3365         cases.push_back(CaseParameter("nontemporal",                    "Nontemporal"));
3366         cases.push_back(CaseParameter("aligned_nontemporal",    "Aligned|Nontemporal 4"));
3367         cases.push_back(CaseParameter("aligned_volatile",               "Volatile|Aligned 4"));
3368
3369         fillRandomScalars(rnd, -100.f, 100.f, &inputFloats[0], numElements);
3370
3371         for (size_t ndx = 0; ndx < numElements; ++ndx)
3372                 outputFloats[ndx] = inputFloats[ndx] + inputFloats[ndx];
3373
3374         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3375         {
3376                 map<string, string>             specializations;
3377                 ComputeShaderSpec               spec;
3378
3379                 specializations["ACCESS"] = cases[caseNdx].param;
3380                 spec.assembly = shaderTemplate.specialize(specializations);
3381                 spec.inputs.push_back(BufferSp(new Float32Buffer(inputFloats)));
3382                 spec.outputs.push_back(BufferSp(new Float32Buffer(outputFloats)));
3383                 spec.numWorkGroups = IVec3(numElements, 1, 1);
3384
3385                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3386         }
3387
3388         return group.release();
3389 }
3390
3391 // Checks that we can get undefined values for various types, without exercising a computation with it.
3392 tcu::TestCaseGroup* createOpUndefGroup (tcu::TestContext& testCtx)
3393 {
3394         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opundef", "Tests the OpUndef instruction"));
3395         vector<CaseParameter>                   cases;
3396         de::Random                                              rnd                             (deStringHash(group->getName()));
3397         const int                                               numElements             = 100;
3398         vector<float>                                   positiveFloats  (numElements, 0);
3399         vector<float>                                   negativeFloats  (numElements, 0);
3400         const StringTemplate                    shaderTemplate  (
3401                 string(getComputeAsmShaderPreamble()) +
3402
3403                 "OpSource GLSL 430\n"
3404                 "OpName %main           \"main\"\n"
3405                 "OpName %id             \"gl_GlobalInvocationID\"\n"
3406
3407                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
3408
3409                 + string(getComputeAsmInputOutputBufferTraits()) + string(getComputeAsmCommonTypes()) +
3410                 "%uvec2     = OpTypeVector %u32 2\n"
3411                 "%fvec4     = OpTypeVector %f32 4\n"
3412                 "%fmat33    = OpTypeMatrix %fvec3 3\n"
3413                 "%image     = OpTypeImage %f32 2D 0 0 0 1 Unknown\n"
3414                 "%sampler   = OpTypeSampler\n"
3415                 "%simage    = OpTypeSampledImage %image\n"
3416                 "%const100  = OpConstant %u32 100\n"
3417                 "%uarr100   = OpTypeArray %i32 %const100\n"
3418                 "%struct    = OpTypeStruct %f32 %i32 %u32\n"
3419                 "%pointer   = OpTypePointer Function %i32\n"
3420                 + string(getComputeAsmInputOutputBuffer()) +
3421
3422                 "%id        = OpVariable %uvec3ptr Input\n"
3423                 "%zero      = OpConstant %i32 0\n"
3424
3425                 "%main      = OpFunction %void None %voidf\n"
3426                 "%label     = OpLabel\n"
3427
3428                 "%undef     = OpUndef ${TYPE}\n"
3429
3430                 "%idval     = OpLoad %uvec3 %id\n"
3431                 "%x         = OpCompositeExtract %u32 %idval 0\n"
3432
3433                 "%inloc     = OpAccessChain %f32ptr %indata %zero %x\n"
3434                 "%inval     = OpLoad %f32 %inloc\n"
3435                 "%neg       = OpFNegate %f32 %inval\n"
3436                 "%outloc    = OpAccessChain %f32ptr %outdata %zero %x\n"
3437                 "             OpStore %outloc %neg\n"
3438                 "             OpReturn\n"
3439                 "             OpFunctionEnd\n");
3440
3441         cases.push_back(CaseParameter("bool",                   "%bool"));
3442         cases.push_back(CaseParameter("sint32",                 "%i32"));
3443         cases.push_back(CaseParameter("uint32",                 "%u32"));
3444         cases.push_back(CaseParameter("float32",                "%f32"));
3445         cases.push_back(CaseParameter("vec4float32",    "%fvec4"));
3446         cases.push_back(CaseParameter("vec2uint32",             "%uvec2"));
3447         cases.push_back(CaseParameter("matrix",                 "%fmat33"));
3448         cases.push_back(CaseParameter("image",                  "%image"));
3449         cases.push_back(CaseParameter("sampler",                "%sampler"));
3450         cases.push_back(CaseParameter("sampledimage",   "%simage"));
3451         cases.push_back(CaseParameter("array",                  "%uarr100"));
3452         cases.push_back(CaseParameter("runtimearray",   "%f32arr"));
3453         cases.push_back(CaseParameter("struct",                 "%struct"));
3454         cases.push_back(CaseParameter("pointer",                "%pointer"));
3455
3456         fillRandomScalars(rnd, 1.f, 100.f, &positiveFloats[0], numElements);
3457
3458         for (size_t ndx = 0; ndx < numElements; ++ndx)
3459                 negativeFloats[ndx] = -positiveFloats[ndx];
3460
3461         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
3462         {
3463                 map<string, string>             specializations;
3464                 ComputeShaderSpec               spec;
3465
3466                 specializations["TYPE"] = cases[caseNdx].param;
3467                 spec.assembly = shaderTemplate.specialize(specializations);
3468                 spec.inputs.push_back(BufferSp(new Float32Buffer(positiveFloats)));
3469                 spec.outputs.push_back(BufferSp(new Float32Buffer(negativeFloats)));
3470                 spec.numWorkGroups = IVec3(numElements, 1, 1);
3471
3472                 group->addChild(new SpvAsmComputeShaderCase(testCtx, cases[caseNdx].name, cases[caseNdx].name, spec));
3473         }
3474
3475                 return group.release();
3476 }
3477 } // anonymous
3478
3479 tcu::TestCaseGroup* createOpSourceTests (tcu::TestContext& testCtx)
3480 {
3481         struct NameCodePair { string name, code; };
3482         RGBA                                                    defaultColors[4];
3483         de::MovePtr<tcu::TestCaseGroup> opSourceTests                   (new tcu::TestCaseGroup(testCtx, "opsource", "OpSource instruction"));
3484         const std::string                               opsourceGLSLWithFile    = "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile ";
3485         map<string, string>                             fragments                               = passthruFragments();
3486         const NameCodePair                              tests[]                                 =
3487         {
3488                 {"unknown", "OpSource Unknown 321"},
3489                 {"essl", "OpSource ESSL 310"},
3490                 {"glsl", "OpSource GLSL 450"},
3491                 {"opencl_cpp", "OpSource OpenCL_CPP 120"},
3492                 {"opencl_c", "OpSource OpenCL_C 120"},
3493                 {"multiple", "OpSource GLSL 450\nOpSource GLSL 450"},
3494                 {"file", opsourceGLSLWithFile},
3495                 {"source", opsourceGLSLWithFile + "\"void main(){}\""},
3496                 // Longest possible source string: SPIR-V limits instructions to 65535
3497                 // words, of which the first 4 are opsourceGLSLWithFile; the rest will
3498                 // contain 65530 UTF8 characters (one word each) plus one last word
3499                 // containing 3 ASCII characters and \0.
3500                 {"longsource", opsourceGLSLWithFile + '"' + makeLongUTF8String(65530) + "ccc" + '"'}
3501         };
3502
3503         getDefaultColors(defaultColors);
3504         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
3505         {
3506                 fragments["debug"] = tests[testNdx].code;
3507                 createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
3508         }
3509
3510         return opSourceTests.release();
3511 }
3512
3513 tcu::TestCaseGroup* createOpSourceContinuedTests (tcu::TestContext& testCtx)
3514 {
3515         struct NameCodePair { string name, code; };
3516         RGBA                                                            defaultColors[4];
3517         de::MovePtr<tcu::TestCaseGroup>         opSourceTests           (new tcu::TestCaseGroup(testCtx, "opsourcecontinued", "OpSourceContinued instruction"));
3518         map<string, string>                                     fragments                       = passthruFragments();
3519         const std::string                                       opsource                        = "%opsrcfile = OpString \"foo.vert\"\nOpSource GLSL 450 %opsrcfile \"void main(){}\"\n";
3520         const NameCodePair                                      tests[]                         =
3521         {
3522                 {"empty", opsource + "OpSourceContinued \"\""},
3523                 {"short", opsource + "OpSourceContinued \"abcde\""},
3524                 {"multiple", opsource + "OpSourceContinued \"abcde\"\nOpSourceContinued \"fghij\""},
3525                 // Longest possible source string: SPIR-V limits instructions to 65535
3526                 // words, of which the first one is OpSourceContinued/length; the rest
3527                 // will contain 65533 UTF8 characters (one word each) plus one last word
3528                 // containing 3 ASCII characters and \0.
3529                 {"long", opsource + "OpSourceContinued \"" + makeLongUTF8String(65533) + "ccc\""}
3530         };
3531
3532         getDefaultColors(defaultColors);
3533         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
3534         {
3535                 fragments["debug"] = tests[testNdx].code;
3536                 createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opSourceTests.get());
3537         }
3538
3539         return opSourceTests.release();
3540 }
3541
3542 tcu::TestCaseGroup* createOpNoLineTests(tcu::TestContext& testCtx)
3543 {
3544         RGBA                                                             defaultColors[4];
3545         de::MovePtr<tcu::TestCaseGroup>          opLineTests             (new tcu::TestCaseGroup(testCtx, "opnoline", "OpNoLine instruction"));
3546         map<string, string>                                      fragments;
3547         getDefaultColors(defaultColors);
3548         fragments["debug"]                      =
3549                 "%name = OpString \"name\"\n";
3550
3551         fragments["pre_main"]   =
3552                 "OpNoLine\n"
3553                 "OpNoLine\n"
3554                 "OpLine %name 1 1\n"
3555                 "OpNoLine\n"
3556                 "OpLine %name 1 1\n"
3557                 "OpLine %name 1 1\n"
3558                 "%second_function = OpFunction %v4f32 None %v4f32_function\n"
3559                 "OpNoLine\n"
3560                 "OpLine %name 1 1\n"
3561                 "OpNoLine\n"
3562                 "OpLine %name 1 1\n"
3563                 "OpLine %name 1 1\n"
3564                 "%second_param1 = OpFunctionParameter %v4f32\n"
3565                 "OpNoLine\n"
3566                 "OpNoLine\n"
3567                 "%label_secondfunction = OpLabel\n"
3568                 "OpNoLine\n"
3569                 "OpReturnValue %second_param1\n"
3570                 "OpFunctionEnd\n"
3571                 "OpNoLine\n"
3572                 "OpNoLine\n";
3573
3574         fragments["testfun"]            =
3575                 // A %test_code function that returns its argument unchanged.
3576                 "OpNoLine\n"
3577                 "OpNoLine\n"
3578                 "OpLine %name 1 1\n"
3579                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
3580                 "OpNoLine\n"
3581                 "%param1 = OpFunctionParameter %v4f32\n"
3582                 "OpNoLine\n"
3583                 "OpNoLine\n"
3584                 "%label_testfun = OpLabel\n"
3585                 "OpNoLine\n"
3586                 "%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
3587                 "OpReturnValue %val1\n"
3588                 "OpFunctionEnd\n"
3589                 "OpLine %name 1 1\n"
3590                 "OpNoLine\n";
3591
3592         createTestsForAllStages("opnoline", defaultColors, defaultColors, fragments, opLineTests.get());
3593
3594         return opLineTests.release();
3595 }
3596
3597
3598 tcu::TestCaseGroup* createOpLineTests(tcu::TestContext& testCtx)
3599 {
3600         RGBA                                                                                                    defaultColors[4];
3601         de::MovePtr<tcu::TestCaseGroup>                                                 opLineTests                     (new tcu::TestCaseGroup(testCtx, "opline", "OpLine instruction"));
3602         map<string, string>                                                                             fragments;
3603         std::vector<std::pair<std::string, std::string> >               problemStrings;
3604
3605         problemStrings.push_back(std::make_pair<std::string, std::string>("empty_name", ""));
3606         problemStrings.push_back(std::make_pair<std::string, std::string>("short_name", "short_name"));
3607         problemStrings.push_back(std::make_pair<std::string, std::string>("long_name", makeLongUTF8String(65530) + "ccc"));
3608         getDefaultColors(defaultColors);
3609
3610         fragments["debug"]                      =
3611                 "%other_name = OpString \"other_name\"\n";
3612
3613         fragments["pre_main"]   =
3614                 "OpLine %file_name 32 0\n"
3615                 "OpLine %file_name 32 32\n"
3616                 "OpLine %file_name 32 40\n"
3617                 "OpLine %other_name 32 40\n"
3618                 "OpLine %other_name 0 100\n"
3619                 "OpLine %other_name 0 4294967295\n"
3620                 "OpLine %other_name 4294967295 0\n"
3621                 "OpLine %other_name 32 40\n"
3622                 "OpLine %file_name 0 0\n"
3623                 "%second_function = OpFunction %v4f32 None %v4f32_function\n"
3624                 "OpLine %file_name 1 0\n"
3625                 "%second_param1 = OpFunctionParameter %v4f32\n"
3626                 "OpLine %file_name 1 3\n"
3627                 "OpLine %file_name 1 2\n"
3628                 "%label_secondfunction = OpLabel\n"
3629                 "OpLine %file_name 0 2\n"
3630                 "OpReturnValue %second_param1\n"
3631                 "OpFunctionEnd\n"
3632                 "OpLine %file_name 0 2\n"
3633                 "OpLine %file_name 0 2\n";
3634
3635         fragments["testfun"]            =
3636                 // A %test_code function that returns its argument unchanged.
3637                 "OpLine %file_name 1 0\n"
3638                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
3639                 "OpLine %file_name 16 330\n"
3640                 "%param1 = OpFunctionParameter %v4f32\n"
3641                 "OpLine %file_name 14 442\n"
3642                 "%label_testfun = OpLabel\n"
3643                 "OpLine %file_name 11 1024\n"
3644                 "%val1 = OpFunctionCall %v4f32 %second_function %param1\n"
3645                 "OpLine %file_name 2 97\n"
3646                 "OpReturnValue %val1\n"
3647                 "OpFunctionEnd\n"
3648                 "OpLine %file_name 5 32\n";
3649
3650         for (size_t i = 0; i < problemStrings.size(); ++i)
3651         {
3652                 map<string, string> testFragments = fragments;
3653                 testFragments["debug"] += "%file_name = OpString \"" + problemStrings[i].second + "\"\n";
3654                 createTestsForAllStages(string("opline") + "_" + problemStrings[i].first, defaultColors, defaultColors, testFragments, opLineTests.get());
3655         }
3656
3657         return opLineTests.release();
3658 }
3659
3660 tcu::TestCaseGroup* createOpConstantNullTests(tcu::TestContext& testCtx)
3661 {
3662         de::MovePtr<tcu::TestCaseGroup> opConstantNullTests             (new tcu::TestCaseGroup(testCtx, "opconstantnull", "OpConstantNull instruction"));
3663         RGBA                                                    colors[4];
3664
3665
3666         const char                                              functionStart[] =
3667                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
3668                 "%param1 = OpFunctionParameter %v4f32\n"
3669                 "%lbl    = OpLabel\n";
3670
3671         const char                                              functionEnd[]   =
3672                 "OpReturnValue %transformed_param\n"
3673                 "OpFunctionEnd\n";
3674
3675         struct NameConstantsCode
3676         {
3677                 string name;
3678                 string constants;
3679                 string code;
3680         };
3681
3682         NameConstantsCode tests[] =
3683         {
3684                 {
3685                         "vec4",
3686                         "%cnull = OpConstantNull %v4f32\n",
3687                         "%transformed_param = OpFAdd %v4f32 %param1 %cnull\n"
3688                 },
3689                 {
3690                         "float",
3691                         "%cnull = OpConstantNull %f32\n",
3692                         "%vp = OpVariable %fp_v4f32 Function\n"
3693                         "%v  = OpLoad %v4f32 %vp\n"
3694                         "%v0 = OpVectorInsertDynamic %v4f32 %v %cnull %c_i32_0\n"
3695                         "%v1 = OpVectorInsertDynamic %v4f32 %v0 %cnull %c_i32_1\n"
3696                         "%v2 = OpVectorInsertDynamic %v4f32 %v1 %cnull %c_i32_2\n"
3697                         "%v3 = OpVectorInsertDynamic %v4f32 %v2 %cnull %c_i32_3\n"
3698                         "%transformed_param = OpFAdd %v4f32 %param1 %v3\n"
3699                 },
3700                 {
3701                         "bool",
3702                         "%cnull             = OpConstantNull %bool\n",
3703                         "%v                 = OpVariable %fp_v4f32 Function\n"
3704                         "                     OpStore %v %param1\n"
3705                         "                     OpSelectionMerge %false_label None\n"
3706                         "                     OpBranchConditional %cnull %true_label %false_label\n"
3707                         "%true_label        = OpLabel\n"
3708                         "                     OpStore %v %c_v4f32_0_5_0_5_0_5_0_5\n"
3709                         "                     OpBranch %false_label\n"
3710                         "%false_label       = OpLabel\n"
3711                         "%transformed_param = OpLoad %v4f32 %v\n"
3712                 },
3713                 {
3714                         "i32",
3715                         "%cnull             = OpConstantNull %i32\n",
3716                         "%v                 = OpVariable %fp_v4f32 Function %c_v4f32_0_5_0_5_0_5_0_5\n"
3717                         "%b                 = OpIEqual %bool %cnull %c_i32_0\n"
3718                         "                     OpSelectionMerge %false_label None\n"
3719                         "                     OpBranchConditional %b %true_label %false_label\n"
3720                         "%true_label        = OpLabel\n"
3721                         "                     OpStore %v %param1\n"
3722                         "                     OpBranch %false_label\n"
3723                         "%false_label       = OpLabel\n"
3724                         "%transformed_param = OpLoad %v4f32 %v\n"
3725                 },
3726                 {
3727                         "struct",
3728                         "%stype             = OpTypeStruct %f32 %v4f32\n"
3729                         "%fp_stype          = OpTypePointer Function %stype\n"
3730                         "%cnull             = OpConstantNull %stype\n",
3731                         "%v                 = OpVariable %fp_stype Function %cnull\n"
3732                         "%f                 = OpAccessChain %fp_v4f32 %v %c_i32_1\n"
3733                         "%f_val             = OpLoad %v4f32 %f\n"
3734                         "%transformed_param = OpFAdd %v4f32 %param1 %f_val\n"
3735                 },
3736                 {
3737                         "array",
3738                         "%a4_v4f32          = OpTypeArray %v4f32 %c_u32_4\n"
3739                         "%fp_a4_v4f32       = OpTypePointer Function %a4_v4f32\n"
3740                         "%cnull             = OpConstantNull %a4_v4f32\n",
3741                         "%v                 = OpVariable %fp_a4_v4f32 Function %cnull\n"
3742                         "%f                 = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
3743                         "%f1                = OpAccessChain %fp_v4f32 %v %c_u32_1\n"
3744                         "%f2                = OpAccessChain %fp_v4f32 %v %c_u32_2\n"
3745                         "%f3                = OpAccessChain %fp_v4f32 %v %c_u32_3\n"
3746                         "%f_val             = OpLoad %v4f32 %f\n"
3747                         "%f1_val            = OpLoad %v4f32 %f1\n"
3748                         "%f2_val            = OpLoad %v4f32 %f2\n"
3749                         "%f3_val            = OpLoad %v4f32 %f3\n"
3750                         "%t0                = OpFAdd %v4f32 %param1 %f_val\n"
3751                         "%t1                = OpFAdd %v4f32 %t0 %f1_val\n"
3752                         "%t2                = OpFAdd %v4f32 %t1 %f2_val\n"
3753                         "%transformed_param = OpFAdd %v4f32 %t2 %f3_val\n"
3754                 },
3755                 {
3756                         "matrix",
3757                         "%mat4x4_f32        = OpTypeMatrix %v4f32 4\n"
3758                         "%cnull             = OpConstantNull %mat4x4_f32\n",
3759                         // Our null matrix * any vector should result in a zero vector.
3760                         "%v                 = OpVectorTimesMatrix %v4f32 %param1 %cnull\n"
3761                         "%transformed_param = OpFAdd %v4f32 %param1 %v\n"
3762                 }
3763         };
3764
3765         getHalfColorsFullAlpha(colors);
3766
3767         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
3768         {
3769                 map<string, string> fragments;
3770                 fragments["pre_main"] = tests[testNdx].constants;
3771                 fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
3772                 createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, opConstantNullTests.get());
3773         }
3774         return opConstantNullTests.release();
3775 }
3776 tcu::TestCaseGroup* createOpConstantCompositeTests(tcu::TestContext& testCtx)
3777 {
3778         de::MovePtr<tcu::TestCaseGroup> opConstantCompositeTests                (new tcu::TestCaseGroup(testCtx, "opconstantcomposite", "OpConstantComposite instruction"));
3779         RGBA                                                    inputColors[4];
3780         RGBA                                                    outputColors[4];
3781
3782
3783         const char                                              functionStart[]  =
3784                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
3785                 "%param1 = OpFunctionParameter %v4f32\n"
3786                 "%lbl    = OpLabel\n";
3787
3788         const char                                              functionEnd[]           =
3789                 "OpReturnValue %transformed_param\n"
3790                 "OpFunctionEnd\n";
3791
3792         struct NameConstantsCode
3793         {
3794                 string name;
3795                 string constants;
3796                 string code;
3797         };
3798
3799         NameConstantsCode tests[] =
3800         {
3801                 {
3802                         "vec4",
3803
3804                         "%cval              = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_0\n",
3805                         "%transformed_param = OpFAdd %v4f32 %param1 %cval\n"
3806                 },
3807                 {
3808                         "struct",
3809
3810                         "%stype             = OpTypeStruct %v4f32 %f32\n"
3811                         "%fp_stype          = OpTypePointer Function %stype\n"
3812                         "%f32_n_1           = OpConstant %f32 -1.0\n"
3813                         "%f32_1_5           = OpConstant %f32 !0x3fc00000\n" // +1.5
3814                         "%cvec              = OpConstantComposite %v4f32 %f32_1_5 %f32_1_5 %f32_1_5 %c_f32_1\n"
3815                         "%cval              = OpConstantComposite %stype %cvec %f32_n_1\n",
3816
3817                         "%v                 = OpVariable %fp_stype Function %cval\n"
3818                         "%vec_ptr           = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
3819                         "%f32_ptr           = OpAccessChain %fp_f32 %v %c_u32_1\n"
3820                         "%vec_val           = OpLoad %v4f32 %vec_ptr\n"
3821                         "%f32_val           = OpLoad %f32 %f32_ptr\n"
3822                         "%tmp1              = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_1 %f32_val\n" // vec4(-1)
3823                         "%tmp2              = OpFAdd %v4f32 %tmp1 %param1\n" // param1 + vec4(-1)
3824                         "%transformed_param = OpFAdd %v4f32 %tmp2 %vec_val\n" // param1 + vec4(-1) + vec4(1.5, 1.5, 1.5, 1.0)
3825                 },
3826                 {
3827                         // [1|0|0|0.5] [x] = x + 0.5
3828                         // [0|1|0|0.5] [y] = y + 0.5
3829                         // [0|0|1|0.5] [z] = z + 0.5
3830                         // [0|0|0|1  ] [1] = 1
3831                         "matrix",
3832
3833                         "%mat4x4_f32          = OpTypeMatrix %v4f32 4\n"
3834                     "%v4f32_1_0_0_0       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_0 %c_f32_0 %c_f32_0\n"
3835                     "%v4f32_0_1_0_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_1 %c_f32_0 %c_f32_0\n"
3836                     "%v4f32_0_0_1_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_1 %c_f32_0\n"
3837                     "%v4f32_0_5_0_5_0_5_1 = OpConstantComposite %v4f32 %c_f32_0_5 %c_f32_0_5 %c_f32_0_5 %c_f32_1\n"
3838                         "%cval                = OpConstantComposite %mat4x4_f32 %v4f32_1_0_0_0 %v4f32_0_1_0_0 %v4f32_0_0_1_0 %v4f32_0_5_0_5_0_5_1\n",
3839
3840                         "%transformed_param   = OpMatrixTimesVector %v4f32 %cval %param1\n"
3841                 },
3842                 {
3843                         "array",
3844
3845                         "%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
3846                         "%fp_a4f32            = OpTypePointer Function %a4f32\n"
3847                         "%f32_n_1             = OpConstant %f32 -1.0\n"
3848                         "%f32_1_5             = OpConstant %f32 !0x3fc00000\n" // +1.5
3849                         "%carr                = OpConstantComposite %a4f32 %c_f32_0 %f32_n_1 %f32_1_5 %c_f32_0\n",
3850
3851                         "%v                   = OpVariable %fp_a4f32 Function %carr\n"
3852                         "%f                   = OpAccessChain %fp_f32 %v %c_u32_0\n"
3853                         "%f1                  = OpAccessChain %fp_f32 %v %c_u32_1\n"
3854                         "%f2                  = OpAccessChain %fp_f32 %v %c_u32_2\n"
3855                         "%f3                  = OpAccessChain %fp_f32 %v %c_u32_3\n"
3856                         "%f_val               = OpLoad %f32 %f\n"
3857                         "%f1_val              = OpLoad %f32 %f1\n"
3858                         "%f2_val              = OpLoad %f32 %f2\n"
3859                         "%f3_val              = OpLoad %f32 %f3\n"
3860                         "%ftot1               = OpFAdd %f32 %f_val %f1_val\n"
3861                         "%ftot2               = OpFAdd %f32 %ftot1 %f2_val\n"
3862                         "%ftot3               = OpFAdd %f32 %ftot2 %f3_val\n"  // 0 - 1 + 1.5 + 0
3863                         "%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %ftot3\n"
3864                         "%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
3865                 },
3866                 {
3867                         //
3868                         // [
3869                         //   {
3870                         //      0.0,
3871                         //      [ 1.0, 1.0, 1.0, 1.0]
3872                         //   },
3873                         //   {
3874                         //      1.0,
3875                         //      [ 0.0, 0.5, 0.0, 0.0]
3876                         //   }, //     ^^^
3877                         //   {
3878                         //      0.0,
3879                         //      [ 1.0, 1.0, 1.0, 1.0]
3880                         //   }
3881                         // ]
3882                         "array_of_struct_of_array",
3883
3884                         "%c_v4f32_1_1_1_0     = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_0\n"
3885                         "%fp_a4f32            = OpTypePointer Function %a4f32\n"
3886                         "%stype               = OpTypeStruct %f32 %a4f32\n"
3887                         "%a3stype             = OpTypeArray %stype %c_u32_3\n"
3888                         "%fp_a3stype          = OpTypePointer Function %a3stype\n"
3889                         "%ca4f32_0            = OpConstantComposite %a4f32 %c_f32_0 %c_f32_0_5 %c_f32_0 %c_f32_0\n"
3890                         "%ca4f32_1            = OpConstantComposite %a4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
3891                         "%cstype1             = OpConstantComposite %stype %c_f32_0 %ca4f32_1\n"
3892                         "%cstype2             = OpConstantComposite %stype %c_f32_1 %ca4f32_0\n"
3893                         "%carr                = OpConstantComposite %a3stype %cstype1 %cstype2 %cstype1",
3894
3895                         "%v                   = OpVariable %fp_a3stype Function %carr\n"
3896                         "%f                   = OpAccessChain %fp_f32 %v %c_u32_1 %c_u32_1 %c_u32_1\n"
3897                         "%f_l                 = OpLoad %f32 %f\n"
3898                         "%add_vec             = OpVectorTimesScalar %v4f32 %c_v4f32_1_1_1_0 %f_l\n"
3899                         "%transformed_param   = OpFAdd %v4f32 %param1 %add_vec\n"
3900                 }
3901         };
3902
3903         getHalfColorsFullAlpha(inputColors);
3904         outputColors[0] = RGBA(255, 255, 255, 255);
3905         outputColors[1] = RGBA(255, 127, 127, 255);
3906         outputColors[2] = RGBA(127, 255, 127, 255);
3907         outputColors[3] = RGBA(127, 127, 255, 255);
3908
3909         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameConstantsCode); ++testNdx)
3910         {
3911                 map<string, string> fragments;
3912                 fragments["pre_main"] = tests[testNdx].constants;
3913                 fragments["testfun"] = string(functionStart) + tests[testNdx].code + functionEnd;
3914                 createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, opConstantCompositeTests.get());
3915         }
3916         return opConstantCompositeTests.release();
3917 }
3918
3919 tcu::TestCaseGroup* createSelectionBlockOrderTests(tcu::TestContext& testCtx)
3920 {
3921         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "selection_block_order", "Out-of-order blocks for selection"));
3922         RGBA                                                    inputColors[4];
3923         RGBA                                                    outputColors[4];
3924         map<string, string>                             fragments;
3925
3926         // vec4 test_code(vec4 param) {
3927         //   vec4 result = param;
3928         //   for (int i = 0; i < 4; ++i) {
3929         //     if (i == 0) result[i] = 0.;
3930         //     else        result[i] = 1. - result[i];
3931         //   }
3932         //   return result;
3933         // }
3934         const char                                              function[]                      =
3935                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
3936                 "%param1    = OpFunctionParameter %v4f32\n"
3937                 "%lbl       = OpLabel\n"
3938                 "%iptr      = OpVariable %fp_i32 Function\n"
3939                 "%result    = OpVariable %fp_v4f32 Function\n"
3940                 "             OpStore %iptr %c_i32_0\n"
3941                 "             OpStore %result %param1\n"
3942                 "             OpBranch %loop\n"
3943
3944                 // Loop entry block.
3945                 "%loop      = OpLabel\n"
3946                 "%ival      = OpLoad %i32 %iptr\n"
3947                 "%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
3948                 "             OpLoopMerge %exit %if_entry None\n"
3949                 "             OpBranchConditional %lt_4 %if_entry %exit\n"
3950
3951                 // Merge block for loop.
3952                 "%exit      = OpLabel\n"
3953                 "%ret       = OpLoad %v4f32 %result\n"
3954                 "             OpReturnValue %ret\n"
3955
3956                 // If-statement entry block.
3957                 "%if_entry  = OpLabel\n"
3958                 "%loc       = OpAccessChain %fp_f32 %result %ival\n"
3959                 "%eq_0      = OpIEqual %bool %ival %c_i32_0\n"
3960                 "             OpSelectionMerge %if_exit None\n"
3961                 "             OpBranchConditional %eq_0 %if_true %if_false\n"
3962
3963                 // False branch for if-statement.
3964                 "%if_false  = OpLabel\n"
3965                 "%val       = OpLoad %f32 %loc\n"
3966                 "%sub       = OpFSub %f32 %c_f32_1 %val\n"
3967                 "             OpStore %loc %sub\n"
3968                 "             OpBranch %if_exit\n"
3969
3970                 // Merge block for if-statement.
3971                 "%if_exit   = OpLabel\n"
3972                 "%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
3973                 "             OpStore %iptr %ival_next\n"
3974                 "             OpBranch %loop\n"
3975
3976                 // True branch for if-statement.
3977                 "%if_true   = OpLabel\n"
3978                 "             OpStore %loc %c_f32_0\n"
3979                 "             OpBranch %if_exit\n"
3980
3981                 "             OpFunctionEnd\n";
3982
3983         fragments["testfun"]    = function;
3984
3985         inputColors[0]                  = RGBA(127, 127, 127, 0);
3986         inputColors[1]                  = RGBA(127, 0,   0,   0);
3987         inputColors[2]                  = RGBA(0,   127, 0,   0);
3988         inputColors[3]                  = RGBA(0,   0,   127, 0);
3989
3990         outputColors[0]                 = RGBA(0, 128, 128, 255);
3991         outputColors[1]                 = RGBA(0, 255, 255, 255);
3992         outputColors[2]                 = RGBA(0, 128, 255, 255);
3993         outputColors[3]                 = RGBA(0, 255, 128, 255);
3994
3995         createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
3996
3997         return group.release();
3998 }
3999
4000 tcu::TestCaseGroup* createSwitchBlockOrderTests(tcu::TestContext& testCtx)
4001 {
4002         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "switch_block_order", "Out-of-order blocks for switch"));
4003         RGBA                                                    inputColors[4];
4004         RGBA                                                    outputColors[4];
4005         map<string, string>                             fragments;
4006
4007         const char                                              typesAndConstants[]     =
4008                 "%c_f32_p2  = OpConstant %f32 0.2\n"
4009                 "%c_f32_p4  = OpConstant %f32 0.4\n"
4010                 "%c_f32_p6  = OpConstant %f32 0.6\n"
4011                 "%c_f32_p8  = OpConstant %f32 0.8\n";
4012
4013         // vec4 test_code(vec4 param) {
4014         //   vec4 result = param;
4015         //   for (int i = 0; i < 4; ++i) {
4016         //     switch (i) {
4017         //       case 0: result[i] += .2; break;
4018         //       case 1: result[i] += .6; break;
4019         //       case 2: result[i] += .4; break;
4020         //       case 3: result[i] += .8; break;
4021         //       default: break; // unreachable
4022         //     }
4023         //   }
4024         //   return result;
4025         // }
4026         const char                                              function[]                      =
4027                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
4028                 "%param1    = OpFunctionParameter %v4f32\n"
4029                 "%lbl       = OpLabel\n"
4030                 "%iptr      = OpVariable %fp_i32 Function\n"
4031                 "%result    = OpVariable %fp_v4f32 Function\n"
4032                 "             OpStore %iptr %c_i32_0\n"
4033                 "             OpStore %result %param1\n"
4034                 "             OpBranch %loop\n"
4035
4036                 // Loop entry block.
4037                 "%loop      = OpLabel\n"
4038                 "%ival      = OpLoad %i32 %iptr\n"
4039                 "%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
4040                 "             OpLoopMerge %exit %switch_exit None\n"
4041                 "             OpBranchConditional %lt_4 %switch_entry %exit\n"
4042
4043                 // Merge block for loop.
4044                 "%exit      = OpLabel\n"
4045                 "%ret       = OpLoad %v4f32 %result\n"
4046                 "             OpReturnValue %ret\n"
4047
4048                 // Switch-statement entry block.
4049                 "%switch_entry   = OpLabel\n"
4050                 "%loc            = OpAccessChain %fp_f32 %result %ival\n"
4051                 "%val            = OpLoad %f32 %loc\n"
4052                 "                  OpSelectionMerge %switch_exit None\n"
4053                 "                  OpSwitch %ival %switch_default 0 %case0 1 %case1 2 %case2 3 %case3\n"
4054
4055                 "%case2          = OpLabel\n"
4056                 "%addp4          = OpFAdd %f32 %val %c_f32_p4\n"
4057                 "                  OpStore %loc %addp4\n"
4058                 "                  OpBranch %switch_exit\n"
4059
4060                 "%switch_default = OpLabel\n"
4061                 "                  OpUnreachable\n"
4062
4063                 "%case3          = OpLabel\n"
4064                 "%addp8          = OpFAdd %f32 %val %c_f32_p8\n"
4065                 "                  OpStore %loc %addp8\n"
4066                 "                  OpBranch %switch_exit\n"
4067
4068                 "%case0          = OpLabel\n"
4069                 "%addp2          = OpFAdd %f32 %val %c_f32_p2\n"
4070                 "                  OpStore %loc %addp2\n"
4071                 "                  OpBranch %switch_exit\n"
4072
4073                 // Merge block for switch-statement.
4074                 "%switch_exit    = OpLabel\n"
4075                 "%ival_next      = OpIAdd %i32 %ival %c_i32_1\n"
4076                 "                  OpStore %iptr %ival_next\n"
4077                 "                  OpBranch %loop\n"
4078
4079                 "%case1          = OpLabel\n"
4080                 "%addp6          = OpFAdd %f32 %val %c_f32_p6\n"
4081                 "                  OpStore %loc %addp6\n"
4082                 "                  OpBranch %switch_exit\n"
4083
4084                 "                  OpFunctionEnd\n";
4085
4086         fragments["pre_main"]   = typesAndConstants;
4087         fragments["testfun"]    = function;
4088
4089         inputColors[0]                  = RGBA(127, 27,  127, 51);
4090         inputColors[1]                  = RGBA(127, 0,   0,   51);
4091         inputColors[2]                  = RGBA(0,   27,  0,   51);
4092         inputColors[3]                  = RGBA(0,   0,   127, 51);
4093
4094         outputColors[0]                 = RGBA(178, 180, 229, 255);
4095         outputColors[1]                 = RGBA(178, 153, 102, 255);
4096         outputColors[2]                 = RGBA(51,  180, 102, 255);
4097         outputColors[3]                 = RGBA(51,  153, 229, 255);
4098
4099         createTestsForAllStages("out_of_order", inputColors, outputColors, fragments, group.get());
4100
4101         return group.release();
4102 }
4103
4104 tcu::TestCaseGroup* createDecorationGroupTests(tcu::TestContext& testCtx)
4105 {
4106         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "decoration_group", "Decoration group tests"));
4107         RGBA                                                    inputColors[4];
4108         RGBA                                                    outputColors[4];
4109         map<string, string>                             fragments;
4110
4111         const char                                              decorations[]           =
4112                 "OpDecorate %array_group         ArrayStride 4\n"
4113                 "OpDecorate %struct_member_group Offset 0\n"
4114                 "%array_group         = OpDecorationGroup\n"
4115                 "%struct_member_group = OpDecorationGroup\n"
4116
4117                 "OpDecorate %group1 RelaxedPrecision\n"
4118                 "OpDecorate %group3 RelaxedPrecision\n"
4119                 "OpDecorate %group3 Invariant\n"
4120                 "OpDecorate %group3 Restrict\n"
4121                 "%group0 = OpDecorationGroup\n"
4122                 "%group1 = OpDecorationGroup\n"
4123                 "%group3 = OpDecorationGroup\n";
4124
4125         const char                                              typesAndConstants[]     =
4126                 "%a3f32     = OpTypeArray %f32 %c_u32_3\n"
4127                 "%struct1   = OpTypeStruct %a3f32\n"
4128                 "%struct2   = OpTypeStruct %a3f32\n"
4129                 "%fp_struct1 = OpTypePointer Function %struct1\n"
4130                 "%fp_struct2 = OpTypePointer Function %struct2\n"
4131                 "%c_f32_2    = OpConstant %f32 2.\n"
4132                 "%c_f32_n2   = OpConstant %f32 -2.\n"
4133
4134                 "%c_a3f32_1 = OpConstantComposite %a3f32 %c_f32_1 %c_f32_2 %c_f32_1\n"
4135                 "%c_a3f32_2 = OpConstantComposite %a3f32 %c_f32_n1 %c_f32_n2 %c_f32_n1\n"
4136                 "%c_struct1 = OpConstantComposite %struct1 %c_a3f32_1\n"
4137                 "%c_struct2 = OpConstantComposite %struct2 %c_a3f32_2\n";
4138
4139         const char                                              function[]                      =
4140                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
4141                 "%param     = OpFunctionParameter %v4f32\n"
4142                 "%entry     = OpLabel\n"
4143                 "%result    = OpVariable %fp_v4f32 Function\n"
4144                 "%v_struct1 = OpVariable %fp_struct1 Function\n"
4145                 "%v_struct2 = OpVariable %fp_struct2 Function\n"
4146                 "             OpStore %result %param\n"
4147                 "             OpStore %v_struct1 %c_struct1\n"
4148                 "             OpStore %v_struct2 %c_struct2\n"
4149                 "%ptr1      = OpAccessChain %fp_f32 %v_struct1 %c_i32_0 %c_i32_2\n"
4150                 "%val1      = OpLoad %f32 %ptr1\n"
4151                 "%ptr2      = OpAccessChain %fp_f32 %v_struct2 %c_i32_0 %c_i32_2\n"
4152                 "%val2      = OpLoad %f32 %ptr2\n"
4153                 "%addvalues = OpFAdd %f32 %val1 %val2\n"
4154                 "%ptr       = OpAccessChain %fp_f32 %result %c_i32_1\n"
4155                 "%val       = OpLoad %f32 %ptr\n"
4156                 "%addresult = OpFAdd %f32 %addvalues %val\n"
4157                 "             OpStore %ptr %addresult\n"
4158                 "%ret       = OpLoad %v4f32 %result\n"
4159                 "             OpReturnValue %ret\n"
4160                 "             OpFunctionEnd\n";
4161
4162         struct CaseNameDecoration
4163         {
4164                 string name;
4165                 string decoration;
4166         };
4167
4168         CaseNameDecoration tests[] =
4169         {
4170                 {
4171                         "same_decoration_group_on_multiple_types",
4172                         "OpGroupMemberDecorate %struct_member_group %struct1 0 %struct2 0\n"
4173                 },
4174                 {
4175                         "empty_decoration_group",
4176                         "OpGroupDecorate %group0      %a3f32\n"
4177                         "OpGroupDecorate %group0      %result\n"
4178                 },
4179                 {
4180                         "one_element_decoration_group",
4181                         "OpGroupDecorate %array_group %a3f32\n"
4182                 },
4183                 {
4184                         "multiple_elements_decoration_group",
4185                         "OpGroupDecorate %group3      %v_struct1\n"
4186                 },
4187                 {
4188                         "multiple_decoration_groups_on_same_variable",
4189                         "OpGroupDecorate %group0      %v_struct2\n"
4190                         "OpGroupDecorate %group1      %v_struct2\n"
4191                         "OpGroupDecorate %group3      %v_struct2\n"
4192                 },
4193                 {
4194                         "same_decoration_group_multiple_times",
4195                         "OpGroupDecorate %group1      %addvalues\n"
4196                         "OpGroupDecorate %group1      %addvalues\n"
4197                         "OpGroupDecorate %group1      %addvalues\n"
4198                 },
4199
4200         };
4201
4202         getHalfColorsFullAlpha(inputColors);
4203         getHalfColorsFullAlpha(outputColors);
4204
4205         for (size_t idx = 0; idx < (sizeof(tests) / sizeof(tests[0])); ++idx)
4206         {
4207                 fragments["decoration"] = decorations + tests[idx].decoration;
4208                 fragments["pre_main"]   = typesAndConstants;
4209                 fragments["testfun"]    = function;
4210
4211                 createTestsForAllStages(tests[idx].name, inputColors, outputColors, fragments, group.get());
4212         }
4213
4214         return group.release();
4215 }
4216
4217 struct SpecConstantTwoIntGraphicsCase
4218 {
4219         const char*             caseName;
4220         const char*             scDefinition0;
4221         const char*             scDefinition1;
4222         const char*             scResultType;
4223         const char*             scOperation;
4224         deInt32                 scActualValue0;
4225         deInt32                 scActualValue1;
4226         const char*             resultOperation;
4227         RGBA                    expectedColors[4];
4228
4229                                         SpecConstantTwoIntGraphicsCase (const char* name,
4230                                                                                         const char* definition0,
4231                                                                                         const char* definition1,
4232                                                                                         const char* resultType,
4233                                                                                         const char* operation,
4234                                                                                         deInt32         value0,
4235                                                                                         deInt32         value1,
4236                                                                                         const char* resultOp,
4237                                                                                         const RGBA      (&output)[4])
4238                                                 : caseName                      (name)
4239                                                 , scDefinition0         (definition0)
4240                                                 , scDefinition1         (definition1)
4241                                                 , scResultType          (resultType)
4242                                                 , scOperation           (operation)
4243                                                 , scActualValue0        (value0)
4244                                                 , scActualValue1        (value1)
4245                                                 , resultOperation       (resultOp)
4246         {
4247                 expectedColors[0] = output[0];
4248                 expectedColors[1] = output[1];
4249                 expectedColors[2] = output[2];
4250                 expectedColors[3] = output[3];
4251         }
4252 };
4253
4254 tcu::TestCaseGroup* createSpecConstantTests (tcu::TestContext& testCtx)
4255 {
4256         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "opspecconstantop", "Test the OpSpecConstantOp instruction"));
4257         vector<SpecConstantTwoIntGraphicsCase>  cases;
4258         RGBA                                                    inputColors[4];
4259         RGBA                                                    outputColors0[4];
4260         RGBA                                                    outputColors1[4];
4261         RGBA                                                    outputColors2[4];
4262
4263         const char      decorations1[]                  =
4264                 "OpDecorate %sc_0  SpecId 0\n"
4265                 "OpDecorate %sc_1  SpecId 1\n";
4266
4267         const char      typesAndConstants1[]    =
4268                 "%sc_0      = OpSpecConstant${SC_DEF0}\n"
4269                 "%sc_1      = OpSpecConstant${SC_DEF1}\n"
4270                 "%sc_op     = OpSpecConstantOp ${SC_RESULT_TYPE} ${SC_OP}\n";
4271
4272         const char      function1[]                             =
4273                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
4274                 "%param     = OpFunctionParameter %v4f32\n"
4275                 "%label     = OpLabel\n"
4276                 "%result    = OpVariable %fp_v4f32 Function\n"
4277                 "             OpStore %result %param\n"
4278                 "%gen       = ${GEN_RESULT}\n"
4279                 "%index     = OpIAdd %i32 %gen %c_i32_1\n"
4280                 "%loc       = OpAccessChain %fp_f32 %result %index\n"
4281                 "%val       = OpLoad %f32 %loc\n"
4282                 "%add       = OpFAdd %f32 %val %c_f32_0_5\n"
4283                 "             OpStore %loc %add\n"
4284                 "%ret       = OpLoad %v4f32 %result\n"
4285                 "             OpReturnValue %ret\n"
4286                 "             OpFunctionEnd\n";
4287
4288         inputColors[0] = RGBA(127, 127, 127, 255);
4289         inputColors[1] = RGBA(127, 0,   0,   255);
4290         inputColors[2] = RGBA(0,   127, 0,   255);
4291         inputColors[3] = RGBA(0,   0,   127, 255);
4292
4293         // Derived from inputColors[x] by adding 128 to inputColors[x][0].
4294         outputColors0[0] = RGBA(255, 127, 127, 255);
4295         outputColors0[1] = RGBA(255, 0,   0,   255);
4296         outputColors0[2] = RGBA(128, 127, 0,   255);
4297         outputColors0[3] = RGBA(128, 0,   127, 255);
4298
4299         // Derived from inputColors[x] by adding 128 to inputColors[x][1].
4300         outputColors1[0] = RGBA(127, 255, 127, 255);
4301         outputColors1[1] = RGBA(127, 128, 0,   255);
4302         outputColors1[2] = RGBA(0,   255, 0,   255);
4303         outputColors1[3] = RGBA(0,   128, 127, 255);
4304
4305         // Derived from inputColors[x] by adding 128 to inputColors[x][2].
4306         outputColors2[0] = RGBA(127, 127, 255, 255);
4307         outputColors2[1] = RGBA(127, 0,   128, 255);
4308         outputColors2[2] = RGBA(0,   127, 128, 255);
4309         outputColors2[3] = RGBA(0,   0,   255, 255);
4310
4311         const char addZeroToSc[]                = "OpIAdd %i32 %c_i32_0 %sc_op";
4312         const char selectTrueUsingSc[]  = "OpSelect %i32 %sc_op %c_i32_1 %c_i32_0";
4313         const char selectFalseUsingSc[] = "OpSelect %i32 %sc_op %c_i32_0 %c_i32_1";
4314
4315         cases.push_back(SpecConstantTwoIntGraphicsCase("iadd",                                  " %i32 0",              " %i32 0",              "%i32",         "IAdd                 %sc_0 %sc_1",                             19,             -20,    addZeroToSc,            outputColors0));
4316         cases.push_back(SpecConstantTwoIntGraphicsCase("isub",                                  " %i32 0",              " %i32 0",              "%i32",         "ISub                 %sc_0 %sc_1",                             19,             20,             addZeroToSc,            outputColors0));
4317         cases.push_back(SpecConstantTwoIntGraphicsCase("imul",                                  " %i32 0",              " %i32 0",              "%i32",         "IMul                 %sc_0 %sc_1",                             -1,             -1,             addZeroToSc,            outputColors2));
4318         cases.push_back(SpecConstantTwoIntGraphicsCase("sdiv",                                  " %i32 0",              " %i32 0",              "%i32",         "SDiv                 %sc_0 %sc_1",                             -126,   126,    addZeroToSc,            outputColors0));
4319         cases.push_back(SpecConstantTwoIntGraphicsCase("udiv",                                  " %i32 0",              " %i32 0",              "%i32",         "UDiv                 %sc_0 %sc_1",                             126,    126,    addZeroToSc,            outputColors2));
4320         cases.push_back(SpecConstantTwoIntGraphicsCase("srem",                                  " %i32 0",              " %i32 0",              "%i32",         "SRem                 %sc_0 %sc_1",                             3,              2,              addZeroToSc,            outputColors2));
4321         cases.push_back(SpecConstantTwoIntGraphicsCase("smod",                                  " %i32 0",              " %i32 0",              "%i32",         "SMod                 %sc_0 %sc_1",                             3,              2,              addZeroToSc,            outputColors2));
4322         cases.push_back(SpecConstantTwoIntGraphicsCase("umod",                                  " %i32 0",              " %i32 0",              "%i32",         "UMod                 %sc_0 %sc_1",                             1001,   500,    addZeroToSc,            outputColors2));
4323         cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseand",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseAnd           %sc_0 %sc_1",                             0x33,   0x0d,   addZeroToSc,            outputColors2));
4324         cases.push_back(SpecConstantTwoIntGraphicsCase("bitwiseor",                             " %i32 0",              " %i32 0",              "%i32",         "BitwiseOr            %sc_0 %sc_1",                             0,              1,              addZeroToSc,            outputColors2));
4325         cases.push_back(SpecConstantTwoIntGraphicsCase("bitwisexor",                    " %i32 0",              " %i32 0",              "%i32",         "BitwiseXor           %sc_0 %sc_1",                             0x2e,   0x2f,   addZeroToSc,            outputColors2));
4326         cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightlogical",             " %i32 0",              " %i32 0",              "%i32",         "ShiftRightLogical    %sc_0 %sc_1",                             2,              1,              addZeroToSc,            outputColors2));
4327         cases.push_back(SpecConstantTwoIntGraphicsCase("shiftrightarithmetic",  " %i32 0",              " %i32 0",              "%i32",         "ShiftRightArithmetic %sc_0 %sc_1",                             -4,             2,              addZeroToSc,            outputColors0));
4328         cases.push_back(SpecConstantTwoIntGraphicsCase("shiftleftlogical",              " %i32 0",              " %i32 0",              "%i32",         "ShiftLeftLogical     %sc_0 %sc_1",                             1,              0,              addZeroToSc,            outputColors2));
4329         cases.push_back(SpecConstantTwoIntGraphicsCase("slessthan",                             " %i32 0",              " %i32 0",              "%bool",        "SLessThan            %sc_0 %sc_1",                             -20,    -10,    selectTrueUsingSc,      outputColors2));
4330         cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthan",                             " %i32 0",              " %i32 0",              "%bool",        "ULessThan            %sc_0 %sc_1",                             10,             20,             selectTrueUsingSc,      outputColors2));
4331         cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "SGreaterThan         %sc_0 %sc_1",                             -1000,  50,             selectFalseUsingSc,     outputColors2));
4332         cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthan",                  " %i32 0",              " %i32 0",              "%bool",        "UGreaterThan         %sc_0 %sc_1",                             10,             5,              selectTrueUsingSc,      outputColors2));
4333         cases.push_back(SpecConstantTwoIntGraphicsCase("slessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "SLessThanEqual       %sc_0 %sc_1",                             -10,    -10,    selectTrueUsingSc,      outputColors2));
4334         cases.push_back(SpecConstantTwoIntGraphicsCase("ulessthanequal",                " %i32 0",              " %i32 0",              "%bool",        "ULessThanEqual       %sc_0 %sc_1",                             50,             100,    selectTrueUsingSc,      outputColors2));
4335         cases.push_back(SpecConstantTwoIntGraphicsCase("sgreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "SGreaterThanEqual    %sc_0 %sc_1",                             -1000,  50,             selectFalseUsingSc,     outputColors2));
4336         cases.push_back(SpecConstantTwoIntGraphicsCase("ugreaterthanequal",             " %i32 0",              " %i32 0",              "%bool",        "UGreaterThanEqual    %sc_0 %sc_1",                             10,             10,             selectTrueUsingSc,      outputColors2));
4337         cases.push_back(SpecConstantTwoIntGraphicsCase("iequal",                                " %i32 0",              " %i32 0",              "%bool",        "IEqual               %sc_0 %sc_1",                             42,             24,             selectFalseUsingSc,     outputColors2));
4338         cases.push_back(SpecConstantTwoIntGraphicsCase("logicaland",                    "True %bool",   "True %bool",   "%bool",        "LogicalAnd           %sc_0 %sc_1",                             0,              1,              selectFalseUsingSc,     outputColors2));
4339         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalor",                             "False %bool",  "False %bool",  "%bool",        "LogicalOr            %sc_0 %sc_1",                             1,              0,              selectTrueUsingSc,      outputColors2));
4340         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalequal",                  "True %bool",   "True %bool",   "%bool",        "LogicalEqual         %sc_0 %sc_1",                             0,              1,              selectFalseUsingSc,     outputColors2));
4341         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnotequal",               "False %bool",  "False %bool",  "%bool",        "LogicalNotEqual      %sc_0 %sc_1",                             1,              0,              selectTrueUsingSc,      outputColors2));
4342         cases.push_back(SpecConstantTwoIntGraphicsCase("snegate",                               " %i32 0",              " %i32 0",              "%i32",         "SNegate              %sc_0",                                   -1,             0,              addZeroToSc,            outputColors2));
4343         cases.push_back(SpecConstantTwoIntGraphicsCase("not",                                   " %i32 0",              " %i32 0",              "%i32",         "Not                  %sc_0",                                   -2,             0,              addZeroToSc,            outputColors2));
4344         cases.push_back(SpecConstantTwoIntGraphicsCase("logicalnot",                    "False %bool",  "False %bool",  "%bool",        "LogicalNot           %sc_0",                                   1,              0,              selectFalseUsingSc,     outputColors2));
4345         cases.push_back(SpecConstantTwoIntGraphicsCase("select",                                "False %bool",  " %i32 0",              "%i32",         "Select               %sc_0 %sc_1 %c_i32_0",    1,              1,              addZeroToSc,            outputColors2));
4346         // OpSConvert, OpFConvert: these two instructions involve ints/floats of different bitwidths.
4347         // \todo[2015-12-1 antiagainst] OpQuantizeToF16
4348
4349         for (size_t caseNdx = 0; caseNdx < cases.size(); ++caseNdx)
4350         {
4351                 map<string, string>     specializations;
4352                 map<string, string>     fragments;
4353                 vector<deInt32>         specConstants;
4354
4355                 specializations["SC_DEF0"]                      = cases[caseNdx].scDefinition0;
4356                 specializations["SC_DEF1"]                      = cases[caseNdx].scDefinition1;
4357                 specializations["SC_RESULT_TYPE"]       = cases[caseNdx].scResultType;
4358                 specializations["SC_OP"]                        = cases[caseNdx].scOperation;
4359                 specializations["GEN_RESULT"]           = cases[caseNdx].resultOperation;
4360
4361                 fragments["decoration"]                         = tcu::StringTemplate(decorations1).specialize(specializations);
4362                 fragments["pre_main"]                           = tcu::StringTemplate(typesAndConstants1).specialize(specializations);
4363                 fragments["testfun"]                            = tcu::StringTemplate(function1).specialize(specializations);
4364
4365                 specConstants.push_back(cases[caseNdx].scActualValue0);
4366                 specConstants.push_back(cases[caseNdx].scActualValue1);
4367
4368                 createTestsForAllStages(cases[caseNdx].caseName, inputColors, cases[caseNdx].expectedColors, fragments, specConstants, group.get());
4369         }
4370
4371         const char      decorations2[]                  =
4372                 "OpDecorate %sc_0  SpecId 0\n"
4373                 "OpDecorate %sc_1  SpecId 1\n"
4374                 "OpDecorate %sc_2  SpecId 2\n";
4375
4376         const char      typesAndConstants2[]    =
4377                 "%v3i32     = OpTypeVector %i32 3\n"
4378
4379                 "%sc_0      = OpSpecConstant %i32 0\n"
4380                 "%sc_1      = OpSpecConstant %i32 0\n"
4381                 "%sc_2      = OpSpecConstant %i32 0\n"
4382
4383                 "%vec3_0      = OpConstantComposite %v3i32 %c_i32_0 %c_i32_0 %c_i32_0\n"
4384                 "%sc_vec3_0   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_0        %vec3_0    0\n"     // (sc_0, 0, 0)
4385                 "%sc_vec3_1   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_1        %vec3_0    1\n"     // (0, sc_1, 0)
4386                 "%sc_vec3_2   = OpSpecConstantOp %v3i32 CompositeInsert  %sc_2        %vec3_0    2\n"     // (0, 0, sc_2)
4387                 "%sc_vec3_01  = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_0   %sc_vec3_1 1 0 4\n" // (0,    sc_0, sc_1)
4388                 "%sc_vec3_012 = OpSpecConstantOp %v3i32 VectorShuffle    %sc_vec3_01  %sc_vec3_2 5 1 2\n" // (sc_2, sc_0, sc_1)
4389                 "%sc_ext_0    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            0\n"     // sc_2
4390                 "%sc_ext_1    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            1\n"     // sc_0
4391                 "%sc_ext_2    = OpSpecConstantOp %i32   CompositeExtract %sc_vec3_012            2\n"     // sc_1
4392                 "%sc_sub      = OpSpecConstantOp %i32   ISub             %sc_ext_0    %sc_ext_1\n"        // (sc_2 - sc_0)
4393                 "%sc_final    = OpSpecConstantOp %i32   IMul             %sc_sub      %sc_ext_2\n";       // (sc_2 - sc_0) * sc_1
4394
4395         const char      function2[]                             =
4396                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
4397                 "%param     = OpFunctionParameter %v4f32\n"
4398                 "%label     = OpLabel\n"
4399                 "%result    = OpVariable %fp_v4f32 Function\n"
4400                 "             OpStore %result %param\n"
4401                 "%loc       = OpAccessChain %fp_f32 %result %sc_final\n"
4402                 "%val       = OpLoad %f32 %loc\n"
4403                 "%add       = OpFAdd %f32 %val %c_f32_0_5\n"
4404                 "             OpStore %loc %add\n"
4405                 "%ret       = OpLoad %v4f32 %result\n"
4406                 "             OpReturnValue %ret\n"
4407                 "             OpFunctionEnd\n";
4408
4409         map<string, string>     fragments;
4410         vector<deInt32>         specConstants;
4411
4412         fragments["decoration"] = decorations2;
4413         fragments["pre_main"]   = typesAndConstants2;
4414         fragments["testfun"]    = function2;
4415
4416         specConstants.push_back(56789);
4417         specConstants.push_back(-2);
4418         specConstants.push_back(56788);
4419
4420         createTestsForAllStages("vector_related", inputColors, outputColors2, fragments, specConstants, group.get());
4421
4422         return group.release();
4423 }
4424
4425 tcu::TestCaseGroup* createOpPhiTests(tcu::TestContext& testCtx)
4426 {
4427         de::MovePtr<tcu::TestCaseGroup> group                           (new tcu::TestCaseGroup(testCtx, "opphi", "Test the OpPhi instruction"));
4428         RGBA                                                    inputColors[4];
4429         RGBA                                                    outputColors1[4];
4430         RGBA                                                    outputColors2[4];
4431         RGBA                                                    outputColors3[4];
4432         map<string, string>                             fragments1;
4433         map<string, string>                             fragments2;
4434         map<string, string>                             fragments3;
4435
4436         const char      typesAndConstants1[]    =
4437                 "%c_f32_p2  = OpConstant %f32 0.2\n"
4438                 "%c_f32_p4  = OpConstant %f32 0.4\n"
4439                 "%c_f32_p5  = OpConstant %f32 0.5\n"
4440                 "%c_f32_p8  = OpConstant %f32 0.8\n";
4441
4442         // vec4 test_code(vec4 param) {
4443         //   vec4 result = param;
4444         //   for (int i = 0; i < 4; ++i) {
4445         //     float operand;
4446         //     switch (i) {
4447         //       case 0: operand = .2; break;
4448         //       case 1: operand = .5; break;
4449         //       case 2: operand = .4; break;
4450         //       case 3: operand = .0; break;
4451         //       default: break; // unreachable
4452         //     }
4453         //     result[i] += operand;
4454         //   }
4455         //   return result;
4456         // }
4457         const char      function1[]                             =
4458                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
4459                 "%param1    = OpFunctionParameter %v4f32\n"
4460                 "%lbl       = OpLabel\n"
4461                 "%iptr      = OpVariable %fp_i32 Function\n"
4462                 "%result    = OpVariable %fp_v4f32 Function\n"
4463                 "             OpStore %iptr %c_i32_0\n"
4464                 "             OpStore %result %param1\n"
4465                 "             OpBranch %loop\n"
4466
4467                 "%loop      = OpLabel\n"
4468                 "%ival      = OpLoad %i32 %iptr\n"
4469                 "%lt_4      = OpSLessThan %bool %ival %c_i32_4\n"
4470                 "             OpLoopMerge %exit %phi None\n"
4471                 "             OpBranchConditional %lt_4 %entry %exit\n"
4472
4473                 "%entry     = OpLabel\n"
4474                 "%loc       = OpAccessChain %fp_f32 %result %ival\n"
4475                 "%val       = OpLoad %f32 %loc\n"
4476                 "             OpSelectionMerge %phi None\n"
4477                 "             OpSwitch %ival %default 0 %case0 1 %case1 2 %case2 3 %case3\n"
4478
4479                 "%case0     = OpLabel\n"
4480                 "             OpBranch %phi\n"
4481                 "%case1     = OpLabel\n"
4482                 "             OpBranch %phi\n"
4483                 "%case2     = OpLabel\n"
4484                 "             OpBranch %phi\n"
4485                 "%case3     = OpLabel\n"
4486                 "             OpBranch %phi\n"
4487
4488                 "%default   = OpLabel\n"
4489                 "             OpUnreachable\n"
4490
4491                 "%phi       = OpLabel\n"
4492                 "%operand   = OpPhi %f32 %c_f32_p4 %case2 %c_f32_p5 %case1 %c_f32_p2 %case0 %c_f32_0 %case3\n" // not in the order of blocks
4493                 "%add       = OpFAdd %f32 %val %operand\n"
4494                 "             OpStore %loc %add\n"
4495                 "%ival_next = OpIAdd %i32 %ival %c_i32_1\n"
4496                 "             OpStore %iptr %ival_next\n"
4497                 "             OpBranch %loop\n"
4498
4499                 "%exit      = OpLabel\n"
4500                 "%ret       = OpLoad %v4f32 %result\n"
4501                 "             OpReturnValue %ret\n"
4502
4503                 "             OpFunctionEnd\n";
4504
4505         fragments1["pre_main"]  = typesAndConstants1;
4506         fragments1["testfun"]   = function1;
4507
4508         getHalfColorsFullAlpha(inputColors);
4509
4510         outputColors1[0]                = RGBA(178, 255, 229, 255);
4511         outputColors1[1]                = RGBA(178, 127, 102, 255);
4512         outputColors1[2]                = RGBA(51,  255, 102, 255);
4513         outputColors1[3]                = RGBA(51,  127, 229, 255);
4514
4515         createTestsForAllStages("out_of_order", inputColors, outputColors1, fragments1, group.get());
4516
4517         const char      typesAndConstants2[]    =
4518                 "%c_f32_p2  = OpConstant %f32 0.2\n";
4519
4520         // Add .4 to the second element of the given parameter.
4521         const char      function2[]                             =
4522                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
4523                 "%param     = OpFunctionParameter %v4f32\n"
4524                 "%entry     = OpLabel\n"
4525                 "%result    = OpVariable %fp_v4f32 Function\n"
4526                 "             OpStore %result %param\n"
4527                 "%loc       = OpAccessChain %fp_f32 %result %c_i32_1\n"
4528                 "%val       = OpLoad %f32 %loc\n"
4529                 "             OpBranch %phi\n"
4530
4531                 "%phi        = OpLabel\n"
4532                 "%step       = OpPhi %i32 %c_i32_0  %entry %step_next  %phi\n"
4533                 "%accum      = OpPhi %f32 %val      %entry %accum_next %phi\n"
4534                 "%step_next  = OpIAdd %i32 %step  %c_i32_1\n"
4535                 "%accum_next = OpFAdd %f32 %accum %c_f32_p2\n"
4536                 "%still_loop = OpSLessThan %bool %step %c_i32_2\n"
4537                 "              OpLoopMerge %exit %phi None\n"
4538                 "              OpBranchConditional %still_loop %phi %exit\n"
4539
4540                 "%exit       = OpLabel\n"
4541                 "              OpStore %loc %accum\n"
4542                 "%ret        = OpLoad %v4f32 %result\n"
4543                 "              OpReturnValue %ret\n"
4544
4545                 "              OpFunctionEnd\n";
4546
4547         fragments2["pre_main"]  = typesAndConstants2;
4548         fragments2["testfun"]   = function2;
4549
4550         outputColors2[0]                        = RGBA(127, 229, 127, 255);
4551         outputColors2[1]                        = RGBA(127, 102, 0,   255);
4552         outputColors2[2]                        = RGBA(0,   229, 0,   255);
4553         outputColors2[3]                        = RGBA(0,   102, 127, 255);
4554
4555         createTestsForAllStages("induction", inputColors, outputColors2, fragments2, group.get());
4556
4557         const char      typesAndConstants3[]    =
4558                 "%true      = OpConstantTrue %bool\n"
4559                 "%false     = OpConstantFalse %bool\n"
4560                 "%c_f32_p2  = OpConstant %f32 0.2\n";
4561
4562         // Swap the second and the third element of the given parameter.
4563         const char      function3[]                             =
4564                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
4565                 "%param     = OpFunctionParameter %v4f32\n"
4566                 "%entry     = OpLabel\n"
4567                 "%result    = OpVariable %fp_v4f32 Function\n"
4568                 "             OpStore %result %param\n"
4569                 "%a_loc     = OpAccessChain %fp_f32 %result %c_i32_1\n"
4570                 "%a_init    = OpLoad %f32 %a_loc\n"
4571                 "%b_loc     = OpAccessChain %fp_f32 %result %c_i32_2\n"
4572                 "%b_init    = OpLoad %f32 %b_loc\n"
4573                 "             OpBranch %phi\n"
4574
4575                 "%phi        = OpLabel\n"
4576                 "%still_loop = OpPhi %bool %true   %entry %false  %phi\n"
4577                 "%a_next     = OpPhi %f32  %a_init %entry %b_next %phi\n"
4578                 "%b_next     = OpPhi %f32  %b_init %entry %a_next %phi\n"
4579                 "              OpLoopMerge %exit %phi None\n"
4580                 "              OpBranchConditional %still_loop %phi %exit\n"
4581
4582                 "%exit       = OpLabel\n"
4583                 "              OpStore %a_loc %a_next\n"
4584                 "              OpStore %b_loc %b_next\n"
4585                 "%ret        = OpLoad %v4f32 %result\n"
4586                 "              OpReturnValue %ret\n"
4587
4588                 "              OpFunctionEnd\n";
4589
4590         fragments3["pre_main"]  = typesAndConstants3;
4591         fragments3["testfun"]   = function3;
4592
4593         outputColors3[0]                        = RGBA(127, 127, 127, 255);
4594         outputColors3[1]                        = RGBA(127, 0,   0,   255);
4595         outputColors3[2]                        = RGBA(0,   0,   127, 255);
4596         outputColors3[3]                        = RGBA(0,   127, 0,   255);
4597
4598         createTestsForAllStages("swap", inputColors, outputColors3, fragments3, group.get());
4599
4600         return group.release();
4601 }
4602
4603 tcu::TestCaseGroup* createNoContractionTests(tcu::TestContext& testCtx)
4604 {
4605         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "nocontraction", "Test the NoContraction decoration"));
4606         RGBA                                                    inputColors[4];
4607         RGBA                                                    outputColors[4];
4608
4609         // With NoContraction, (1 + 2^-23) * (1 - 2^-23) - 1 should be conducted as a multiplication and an addition separately.
4610         // For the multiplication, the result is 1 - 2^-46, which is out of the precision range for 32-bit float. (32-bit float
4611         // only have 23-bit fraction.) So it will be rounded to 1. Or 0x1.fffffc. Then the final result is 0 or -0x1p-24.
4612         // On the contrary, the result will be 2^-46, which is a normalized number perfectly representable as 32-bit float.
4613         const char                                              constantsAndTypes[]      =
4614                 "%c_vec4_0       = OpConstantComposite %v4f32 %c_f32_0 %c_f32_0 %c_f32_0 %c_f32_1\n"
4615                 "%c_vec4_1       = OpConstantComposite %v4f32 %c_f32_1 %c_f32_1 %c_f32_1 %c_f32_1\n"
4616                 "%c_f32_1pl2_23  = OpConstant %f32 0x1.000002p+0\n" // 1 + 2^-23
4617                 "%c_f32_1mi2_23  = OpConstant %f32 0x1.fffffcp-1\n" // 1 - 2^-23
4618                 "%c_f32_n1pn24   = OpConstant %f32 -0x1p-24\n"
4619                 ;
4620
4621         const char                                              function[]       =
4622                 "%test_code      = OpFunction %v4f32 None %v4f32_function\n"
4623                 "%param          = OpFunctionParameter %v4f32\n"
4624                 "%label          = OpLabel\n"
4625                 "%var1           = OpVariable %fp_f32 Function %c_f32_1pl2_23\n"
4626                 "%var2           = OpVariable %fp_f32 Function\n"
4627                 "%red            = OpCompositeExtract %f32 %param 0\n"
4628                 "%plus_red       = OpFAdd %f32 %c_f32_1mi2_23 %red\n"
4629                 "                  OpStore %var2 %plus_red\n"
4630                 "%val1           = OpLoad %f32 %var1\n"
4631                 "%val2           = OpLoad %f32 %var2\n"
4632                 "%mul            = OpFMul %f32 %val1 %val2\n"
4633                 "%add            = OpFAdd %f32 %mul %c_f32_n1\n"
4634                 "%is0            = OpFOrdEqual %bool %add %c_f32_0\n"
4635                 "%isn1n24         = OpFOrdEqual %bool %add %c_f32_n1pn24\n"
4636                 "%success        = OpLogicalOr %bool %is0 %isn1n24\n"
4637                 "%v4success      = OpCompositeConstruct %v4bool %success %success %success %success\n"
4638                 "%ret            = OpSelect %v4f32 %v4success %c_vec4_0 %c_vec4_1\n"
4639                 "                  OpReturnValue %ret\n"
4640                 "                  OpFunctionEnd\n";
4641
4642         struct CaseNameDecoration
4643         {
4644                 string name;
4645                 string decoration;
4646         };
4647
4648
4649         CaseNameDecoration tests[] = {
4650                 {"multiplication",      "OpDecorate %mul NoContraction"},
4651                 {"addition",            "OpDecorate %add NoContraction"},
4652                 {"both",                        "OpDecorate %mul NoContraction\nOpDecorate %add NoContraction"},
4653         };
4654
4655         getHalfColorsFullAlpha(inputColors);
4656
4657         for (deUint8 idx = 0; idx < 4; ++idx)
4658         {
4659                 inputColors[idx].setRed(0);
4660                 outputColors[idx] = RGBA(0, 0, 0, 255);
4661         }
4662
4663         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(CaseNameDecoration); ++testNdx)
4664         {
4665                 map<string, string> fragments;
4666
4667                 fragments["decoration"] = tests[testNdx].decoration;
4668                 fragments["pre_main"] = constantsAndTypes;
4669                 fragments["testfun"] = function;
4670
4671                 createTestsForAllStages(tests[testNdx].name, inputColors, outputColors, fragments, group.get());
4672         }
4673
4674         return group.release();
4675 }
4676
4677 tcu::TestCaseGroup* createMemoryAccessTests(tcu::TestContext& testCtx)
4678 {
4679         de::MovePtr<tcu::TestCaseGroup> memoryAccessTests (new tcu::TestCaseGroup(testCtx, "opmemoryaccess", "Memory Semantics"));
4680         RGBA                                                    colors[4];
4681
4682         const char                                              constantsAndTypes[]      =
4683                 "%c_a2f32_1         = OpConstantComposite %a2f32 %c_f32_1 %c_f32_1\n"
4684                 "%fp_a2f32          = OpTypePointer Function %a2f32\n"
4685                 "%stype             = OpTypeStruct  %v4f32 %a2f32 %f32\n"
4686                 "%fp_stype          = OpTypePointer Function %stype\n";
4687
4688         const char                                              function[]       =
4689                 "%test_code         = OpFunction %v4f32 None %v4f32_function\n"
4690                 "%param1            = OpFunctionParameter %v4f32\n"
4691                 "%lbl               = OpLabel\n"
4692                 "%v1                = OpVariable %fp_v4f32 Function\n"
4693                 "%v2                = OpVariable %fp_a2f32 Function\n"
4694                 "%v3                = OpVariable %fp_f32 Function\n"
4695                 "%v                 = OpVariable %fp_stype Function\n"
4696                 "%vv                = OpVariable %fp_stype Function\n"
4697                 "%vvv               = OpVariable %fp_f32 Function\n"
4698
4699                 "                     OpStore %v1 %c_v4f32_1_1_1_1\n"
4700                 "                     OpStore %v2 %c_a2f32_1\n"
4701                 "                     OpStore %v3 %c_f32_1\n"
4702
4703                 "%p_v4f32          = OpAccessChain %fp_v4f32 %v %c_u32_0\n"
4704                 "%p_a2f32          = OpAccessChain %fp_a2f32 %v %c_u32_1\n"
4705                 "%p_f32            = OpAccessChain %fp_f32 %v %c_u32_2\n"
4706                 "%v1_v             = OpLoad %v4f32 %v1 ${access_type}\n"
4707                 "%v2_v             = OpLoad %a2f32 %v2 ${access_type}\n"
4708                 "%v3_v             = OpLoad %f32 %v3 ${access_type}\n"
4709
4710                 "                    OpStore %p_v4f32 %v1_v ${access_type}\n"
4711                 "                    OpStore %p_a2f32 %v2_v ${access_type}\n"
4712                 "                    OpStore %p_f32 %v3_v ${access_type}\n"
4713
4714                 "                    OpCopyMemory %vv %v ${access_type}\n"
4715                 "                    OpCopyMemory %vvv %p_f32 ${access_type}\n"
4716
4717                 "%p_f32_2          = OpAccessChain %fp_f32 %vv %c_u32_2\n"
4718                 "%v_f32_2          = OpLoad %f32 %p_f32_2\n"
4719                 "%v_f32_3          = OpLoad %f32 %vvv\n"
4720
4721                 "%ret1             = OpVectorTimesScalar %v4f32 %param1 %v_f32_2\n"
4722                 "%ret2             = OpVectorTimesScalar %v4f32 %ret1 %v_f32_3\n"
4723                 "                    OpReturnValue %ret2\n"
4724                 "                    OpFunctionEnd\n";
4725
4726         struct NameMemoryAccess
4727         {
4728                 string name;
4729                 string accessType;
4730         };
4731
4732
4733         NameMemoryAccess tests[] =
4734         {
4735                 { "none", "" },
4736                 { "volatile", "Volatile" },
4737                 { "aligned",  "Aligned 1" },
4738                 { "volatile_aligned",  "Volatile|Aligned 1" },
4739                 { "nontemporal_aligned",  "Nontemporal|Aligned 1" },
4740                 { "volatile_nontemporal",  "Volatile|Nontemporal" },
4741                 { "volatile_nontermporal_aligned",  "Volatile|Nontemporal|Aligned 1" },
4742         };
4743
4744         getHalfColorsFullAlpha(colors);
4745
4746         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameMemoryAccess); ++testNdx)
4747         {
4748                 map<string, string> fragments;
4749                 map<string, string> memoryAccess;
4750                 memoryAccess["access_type"] = tests[testNdx].accessType;
4751
4752                 fragments["pre_main"] = constantsAndTypes;
4753                 fragments["testfun"] = tcu::StringTemplate(function).specialize(memoryAccess);
4754                 createTestsForAllStages(tests[testNdx].name, colors, colors, fragments, memoryAccessTests.get());
4755         }
4756         return memoryAccessTests.release();
4757 }
4758 tcu::TestCaseGroup* createOpUndefTests(tcu::TestContext& testCtx)
4759 {
4760         de::MovePtr<tcu::TestCaseGroup>         opUndefTests             (new tcu::TestCaseGroup(testCtx, "opundef", "Test OpUndef"));
4761         RGBA                                                            defaultColors[4];
4762         map<string, string>                                     fragments;
4763         getDefaultColors(defaultColors);
4764
4765         // First, simple cases that don't do anything with the OpUndef result.
4766         struct NameCodePair { string name, decl, type; };
4767         const NameCodePair tests[] =
4768         {
4769                 {"bool", "", "%bool"},
4770                 {"vec2uint32", "%type = OpTypeVector %u32 2", "%type"},
4771                 {"image", "%type = OpTypeImage %f32 2D 0 0 0 1 Unknown", "%type"},
4772                 {"sampler", "%type = OpTypeSampler", "%type"},
4773                 {"sampledimage", "%img = OpTypeImage %f32 2D 0 0 0 1 Unknown\n" "%type = OpTypeSampledImage %img", "%type"},
4774                 {"pointer", "", "%fp_i32"},
4775                 {"runtimearray", "%type = OpTypeRuntimeArray %f32", "%type"},
4776                 {"array", "%c_u32_100 = OpConstant %u32 100\n" "%type = OpTypeArray %i32 %c_u32_100", "%type"},
4777                 {"struct", "%type = OpTypeStruct %f32 %i32 %u32", "%type"}};
4778         for (size_t testNdx = 0; testNdx < sizeof(tests) / sizeof(NameCodePair); ++testNdx)
4779         {
4780                 fragments["undef_type"] = tests[testNdx].type;
4781                 fragments["testfun"] = StringTemplate(
4782                         "%test_code = OpFunction %v4f32 None %v4f32_function\n"
4783                         "%param1 = OpFunctionParameter %v4f32\n"
4784                         "%label_testfun = OpLabel\n"
4785                         "%undef = OpUndef ${undef_type}\n"
4786                         "OpReturnValue %param1\n"
4787                         "OpFunctionEnd\n").specialize(fragments);
4788                 fragments["pre_main"] = tests[testNdx].decl;
4789                 createTestsForAllStages(tests[testNdx].name, defaultColors, defaultColors, fragments, opUndefTests.get());
4790         }
4791         fragments.clear();
4792
4793         fragments["testfun"] =
4794                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
4795                 "%param1 = OpFunctionParameter %v4f32\n"
4796                 "%label_testfun = OpLabel\n"
4797                 "%undef = OpUndef %f32\n"
4798                 "%zero = OpFMul %f32 %undef %c_f32_0\n"
4799                 "%is_nan = OpIsNan %bool %zero\n" //OpUndef may result in NaN which may turn %zero into Nan.
4800                 "%actually_zero = OpSelect %f32 %is_nan %c_f32_0 %zero\n"
4801                 "%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
4802                 "%b = OpFAdd %f32 %a %actually_zero\n"
4803                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %b %c_i32_0\n"
4804                 "OpReturnValue %ret\n"
4805                 "OpFunctionEnd\n"
4806                 ;
4807         createTestsForAllStages("float32", defaultColors, defaultColors, fragments, opUndefTests.get());
4808
4809         fragments["testfun"] =
4810                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
4811                 "%param1 = OpFunctionParameter %v4f32\n"
4812                 "%label_testfun = OpLabel\n"
4813                 "%undef = OpUndef %i32\n"
4814                 "%zero = OpIMul %i32 %undef %c_i32_0\n"
4815                 "%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
4816                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
4817                 "OpReturnValue %ret\n"
4818                 "OpFunctionEnd\n"
4819                 ;
4820         createTestsForAllStages("sint32", defaultColors, defaultColors, fragments, opUndefTests.get());
4821
4822         fragments["testfun"] =
4823                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
4824                 "%param1 = OpFunctionParameter %v4f32\n"
4825                 "%label_testfun = OpLabel\n"
4826                 "%undef = OpUndef %u32\n"
4827                 "%zero = OpIMul %u32 %undef %c_i32_0\n"
4828                 "%a = OpVectorExtractDynamic %f32 %param1 %zero\n"
4829                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %a %c_i32_0\n"
4830                 "OpReturnValue %ret\n"
4831                 "OpFunctionEnd\n"
4832                 ;
4833         createTestsForAllStages("uint32", defaultColors, defaultColors, fragments, opUndefTests.get());
4834
4835         fragments["testfun"] =
4836                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
4837                 "%param1 = OpFunctionParameter %v4f32\n"
4838                 "%label_testfun = OpLabel\n"
4839                 "%undef = OpUndef %v4f32\n"
4840                 "%vzero = OpVectorTimesScalar %v4f32 %undef %c_f32_0\n"
4841                 "%zero_0 = OpVectorExtractDynamic %f32 %vzero %c_i32_0\n"
4842                 "%zero_1 = OpVectorExtractDynamic %f32 %vzero %c_i32_1\n"
4843                 "%zero_2 = OpVectorExtractDynamic %f32 %vzero %c_i32_2\n"
4844                 "%zero_3 = OpVectorExtractDynamic %f32 %vzero %c_i32_3\n"
4845                 "%is_nan_0 = OpIsNan %bool %zero_0\n"
4846                 "%is_nan_1 = OpIsNan %bool %zero_1\n"
4847                 "%is_nan_2 = OpIsNan %bool %zero_2\n"
4848                 "%is_nan_3 = OpIsNan %bool %zero_3\n"
4849                 "%actually_zero_0 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_0\n"
4850                 "%actually_zero_1 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_1\n"
4851                 "%actually_zero_2 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_2\n"
4852                 "%actually_zero_3 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_3\n"
4853                 "%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
4854                 "%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
4855                 "%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
4856                 "%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
4857                 "%sum_0 = OpFAdd %f32 %param1_0 %actually_zero_0\n"
4858                 "%sum_1 = OpFAdd %f32 %param1_1 %actually_zero_1\n"
4859                 "%sum_2 = OpFAdd %f32 %param1_2 %actually_zero_2\n"
4860                 "%sum_3 = OpFAdd %f32 %param1_3 %actually_zero_3\n"
4861                 "%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
4862                 "%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
4863                 "%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
4864                 "%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
4865                 "OpReturnValue %ret\n"
4866                 "OpFunctionEnd\n"
4867                 ;
4868         createTestsForAllStages("vec4float32", defaultColors, defaultColors, fragments, opUndefTests.get());
4869
4870         fragments["pre_main"] =
4871                 "%m2x2f32 = OpTypeMatrix %v2f32 2\n";
4872         fragments["testfun"] =
4873                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
4874                 "%param1 = OpFunctionParameter %v4f32\n"
4875                 "%label_testfun = OpLabel\n"
4876                 "%undef = OpUndef %m2x2f32\n"
4877                 "%mzero = OpMatrixTimesScalar %m2x2f32 %undef %c_f32_0\n"
4878                 "%zero_0 = OpCompositeExtract %f32 %mzero 0 0\n"
4879                 "%zero_1 = OpCompositeExtract %f32 %mzero 0 1\n"
4880                 "%zero_2 = OpCompositeExtract %f32 %mzero 1 0\n"
4881                 "%zero_3 = OpCompositeExtract %f32 %mzero 1 1\n"
4882                 "%is_nan_0 = OpIsNan %bool %zero_0\n"
4883                 "%is_nan_1 = OpIsNan %bool %zero_1\n"
4884                 "%is_nan_2 = OpIsNan %bool %zero_2\n"
4885                 "%is_nan_3 = OpIsNan %bool %zero_3\n"
4886                 "%actually_zero_0 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_0\n"
4887                 "%actually_zero_1 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_1\n"
4888                 "%actually_zero_2 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_2\n"
4889                 "%actually_zero_3 = OpSelect %f32 %is_nan_0 %c_f32_0 %zero_3\n"
4890                 "%param1_0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
4891                 "%param1_1 = OpVectorExtractDynamic %f32 %param1 %c_i32_1\n"
4892                 "%param1_2 = OpVectorExtractDynamic %f32 %param1 %c_i32_2\n"
4893                 "%param1_3 = OpVectorExtractDynamic %f32 %param1 %c_i32_3\n"
4894                 "%sum_0 = OpFAdd %f32 %param1_0 %actually_zero_0\n"
4895                 "%sum_1 = OpFAdd %f32 %param1_1 %actually_zero_1\n"
4896                 "%sum_2 = OpFAdd %f32 %param1_2 %actually_zero_2\n"
4897                 "%sum_3 = OpFAdd %f32 %param1_3 %actually_zero_3\n"
4898                 "%ret3 = OpVectorInsertDynamic %v4f32 %param1 %sum_3 %c_i32_3\n"
4899                 "%ret2 = OpVectorInsertDynamic %v4f32 %ret3 %sum_2 %c_i32_2\n"
4900                 "%ret1 = OpVectorInsertDynamic %v4f32 %ret2 %sum_1 %c_i32_1\n"
4901                 "%ret = OpVectorInsertDynamic %v4f32 %ret1 %sum_0 %c_i32_0\n"
4902                 "OpReturnValue %ret\n"
4903                 "OpFunctionEnd\n"
4904                 ;
4905         createTestsForAllStages("matrix", defaultColors, defaultColors, fragments, opUndefTests.get());
4906
4907         return opUndefTests.release();
4908 }
4909
4910 void createOpQuantizeSingleOptionTests(tcu::TestCaseGroup* testCtx)
4911 {
4912         const RGBA              inputColors[4]          =
4913         {
4914                 RGBA(0,         0,              0,              255),
4915                 RGBA(0,         0,              255,    255),
4916                 RGBA(0,         255,    0,              255),
4917                 RGBA(0,         255,    255,    255)
4918         };
4919
4920         const RGBA              expectedColors[4]       =
4921         {
4922                 RGBA(255,        0,              0,              255),
4923                 RGBA(255,        0,              0,              255),
4924                 RGBA(255,        0,              0,              255),
4925                 RGBA(255,        0,              0,              255)
4926         };
4927
4928         const struct SingleFP16Possibility
4929         {
4930                 const char* name;
4931                 const char* constant;  // Value to assign to %test_constant.
4932                 float           valueAsFloat;
4933                 const char* condition; // Must assign to %cond an expression that evaluates to true after %c = OpQuantizeToF16(%test_constant + 0).
4934         }                               tests[]                         =
4935         {
4936                 {
4937                         "negative",
4938                         "-0x1.3p1\n",
4939                         -constructNormalizedFloat(1, 0x300000),
4940                         "%cond = OpFOrdEqual %bool %c %test_constant\n"
4941                 }, // -19
4942                 {
4943                         "positive",
4944                         "0x1.0p7\n",
4945                         constructNormalizedFloat(7, 0x000000),
4946                         "%cond = OpFOrdEqual %bool %c %test_constant\n"
4947                 },  // +128
4948                 // SPIR-V requires that OpQuantizeToF16 flushes
4949                 // any numbers that would end up denormalized in F16 to zero.
4950                 {
4951                         "denorm",
4952                         "0x0.0006p-126\n",
4953                         std::ldexp(1.5f, -140),
4954                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
4955                 },  // denorm
4956                 {
4957                         "negative_denorm",
4958                         "-0x0.0006p-126\n",
4959                         -std::ldexp(1.5f, -140),
4960                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
4961                 }, // -denorm
4962                 {
4963                         "too_small",
4964                         "0x1.0p-16\n",
4965                         std::ldexp(1.0f, -16),
4966                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
4967                 },     // too small positive
4968                 {
4969                         "negative_too_small",
4970                         "-0x1.0p-32\n",
4971                         -std::ldexp(1.0f, -32),
4972                         "%cond = OpFOrdEqual %bool %c %c_f32_0\n"
4973                 },      // too small negative
4974                 {
4975                         "negative_inf",
4976                         "-0x1.0p128\n",
4977                         -std::ldexp(1.0f, 128),
4978
4979                         "%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
4980                         "%inf = OpIsInf %bool %c\n"
4981                         "%cond = OpLogicalAnd %bool %gz %inf\n"
4982                 },     // -inf to -inf
4983                 {
4984                         "inf",
4985                         "0x1.0p128\n",
4986                         std::ldexp(1.0f, 128),
4987
4988                         "%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
4989                         "%inf = OpIsInf %bool %c\n"
4990                         "%cond = OpLogicalAnd %bool %gz %inf\n"
4991                 },     // +inf to +inf
4992                 {
4993                         "round_to_negative_inf",
4994                         "-0x1.0p32\n",
4995                         -std::ldexp(1.0f, 32),
4996
4997                         "%gz = OpFOrdLessThan %bool %c %c_f32_0\n"
4998                         "%inf = OpIsInf %bool %c\n"
4999                         "%cond = OpLogicalAnd %bool %gz %inf\n"
5000                 },     // round to -inf
5001                 {
5002                         "round_to_inf",
5003                         "0x1.0p16\n",
5004                         std::ldexp(1.0f, 16),
5005
5006                         "%gz = OpFOrdGreaterThan %bool %c %c_f32_0\n"
5007                         "%inf = OpIsInf %bool %c\n"
5008                         "%cond = OpLogicalAnd %bool %gz %inf\n"
5009                 },     // round to +inf
5010                 {
5011                         "nan",
5012                         "0x1.1p128\n",
5013                         std::numeric_limits<float>::quiet_NaN(),
5014
5015                         // Test for any NaN value, as NaNs are not preserved
5016                         "%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
5017                         "%cond = OpIsNan %bool %direct_quant\n"
5018                 }, // nan
5019                 {
5020                         "negative_nan",
5021                         "-0x1.0001p128\n",
5022                         std::numeric_limits<float>::quiet_NaN(),
5023
5024                         // Test for any NaN value, as NaNs are not preserved
5025                         "%direct_quant = OpQuantizeToF16 %f32 %test_constant\n"
5026                         "%cond = OpIsNan %bool %direct_quant\n"
5027                 } // -nan
5028         };
5029         const char*             constants                       =
5030                 "%test_constant = OpConstant %f32 ";  // The value will be test.constant.
5031
5032         StringTemplate  function                        (
5033                 "%test_code     = OpFunction %v4f32 None %v4f32_function\n"
5034                 "%param1        = OpFunctionParameter %v4f32\n"
5035                 "%label_testfun = OpLabel\n"
5036                 "%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
5037                 "%b             = OpFAdd %f32 %test_constant %a\n"
5038                 "%c             = OpQuantizeToF16 %f32 %b\n"
5039                 "${condition}\n"
5040                 "%v4cond        = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
5041                 "%retval        = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1\n"
5042                 "                 OpReturnValue %retval\n"
5043                 "OpFunctionEnd\n"
5044         );
5045
5046         const char*             specDecorations         = "OpDecorate %test_constant SpecId 0\n";
5047         const char*             specConstants           =
5048                         "%test_constant = OpSpecConstant %f32 0.\n"
5049                         "%c             = OpSpecConstantOp %f32 QuantizeToF16 %test_constant\n";
5050
5051         StringTemplate  specConstantFunction(
5052                 "%test_code     = OpFunction %v4f32 None %v4f32_function\n"
5053                 "%param1        = OpFunctionParameter %v4f32\n"
5054                 "%label_testfun = OpLabel\n"
5055                 "${condition}\n"
5056                 "%v4cond        = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
5057                 "%retval        = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1\n"
5058                 "                 OpReturnValue %retval\n"
5059                 "OpFunctionEnd\n"
5060         );
5061
5062         for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
5063         {
5064                 map<string, string>                                                             codeSpecialization;
5065                 map<string, string>                                                             fragments;
5066                 codeSpecialization["condition"]                                 = tests[idx].condition;
5067                 fragments["testfun"]                                                    = function.specialize(codeSpecialization);
5068                 fragments["pre_main"]                                                   = string(constants) + tests[idx].constant + "\n";
5069                 createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
5070         }
5071
5072         for (size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx)
5073         {
5074                 map<string, string>                                                             codeSpecialization;
5075                 map<string, string>                                                             fragments;
5076                 vector<deInt32>                                                                 passConstants;
5077                 deInt32                                                                                 specConstant;
5078
5079                 codeSpecialization["condition"]                                 = tests[idx].condition;
5080                 fragments["testfun"]                                                    = specConstantFunction.specialize(codeSpecialization);
5081                 fragments["decoration"]                                                 = specDecorations;
5082                 fragments["pre_main"]                                                   = specConstants;
5083
5084                 memcpy(&specConstant, &tests[idx].valueAsFloat, sizeof(float));
5085                 passConstants.push_back(specConstant);
5086
5087                 createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
5088         }
5089 }
5090
5091 void createOpQuantizeTwoPossibilityTests(tcu::TestCaseGroup* testCtx)
5092 {
5093         RGBA inputColors[4] =  {
5094                 RGBA(0,         0,              0,              255),
5095                 RGBA(0,         0,              255,    255),
5096                 RGBA(0,         255,    0,              255),
5097                 RGBA(0,         255,    255,    255)
5098         };
5099
5100         RGBA expectedColors[4] =
5101         {
5102                 RGBA(255,        0,              0,              255),
5103                 RGBA(255,        0,              0,              255),
5104                 RGBA(255,        0,              0,              255),
5105                 RGBA(255,        0,              0,              255)
5106         };
5107
5108         struct DualFP16Possibility
5109         {
5110                 const char* name;
5111                 const char* input;
5112                 float           inputAsFloat;
5113                 const char* possibleOutput1;
5114                 const char* possibleOutput2;
5115         } tests[] = {
5116                 {
5117                         "positive_round_up_or_round_down",
5118                         "0x1.3003p8",
5119                         constructNormalizedFloat(8, 0x300300),
5120                         "0x1.304p8",
5121                         "0x1.3p8"
5122                 },
5123                 {
5124                         "negative_round_up_or_round_down",
5125                         "-0x1.6008p-7",
5126                         -constructNormalizedFloat(-7, 0x600800),
5127                         "-0x1.6p-7",
5128                         "-0x1.604p-7"
5129                 },
5130                 {
5131                         "carry_bit",
5132                         "0x1.01ep2",
5133                         constructNormalizedFloat(2, 0x01e000),
5134                         "0x1.01cp2",
5135                         "0x1.02p2"
5136                 },
5137                 {
5138                         "carry_to_exponent",
5139                         "0x1.ffep1",
5140                         constructNormalizedFloat(1, 0xffe000),
5141                         "0x1.ffcp1",
5142                         "0x1.0p2"
5143                 },
5144         };
5145         StringTemplate constants (
5146                 "%input_const = OpConstant %f32 ${input}\n"
5147                 "%possible_solution1 = OpConstant %f32 ${output1}\n"
5148                 "%possible_solution2 = OpConstant %f32 ${output2}\n"
5149                 );
5150
5151         StringTemplate specConstants (
5152                 "%input_const = OpSpecConstant %f32 0.\n"
5153                 "%possible_solution1 = OpConstant %f32 ${output1}\n"
5154                 "%possible_solution2 = OpConstant %f32 ${output2}\n"
5155         );
5156
5157         const char* specDecorations = "OpDecorate %input_const  SpecId 0\n";
5158
5159         const char* function  =
5160                 "%test_code     = OpFunction %v4f32 None %v4f32_function\n"
5161                 "%param1        = OpFunctionParameter %v4f32\n"
5162                 "%label_testfun = OpLabel\n"
5163                 "%a             = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
5164                 // For the purposes of this test we assume that 0.f will always get
5165                 // faithfully passed through the pipeline stages.
5166                 "%b             = OpFAdd %f32 %input_const %a\n"
5167                 "%c             = OpQuantizeToF16 %f32 %b\n"
5168                 "%eq_1          = OpFOrdEqual %bool %c %possible_solution1\n"
5169                 "%eq_2          = OpFOrdEqual %bool %c %possible_solution2\n"
5170                 "%cond          = OpLogicalOr %bool %eq_1 %eq_2\n"
5171                 "%v4cond        = OpCompositeConstruct %v4bool %cond %cond %cond %cond\n"
5172                 "%retval        = OpSelect %v4f32 %v4cond %c_v4f32_1_0_0_1 %param1"
5173                 "                 OpReturnValue %retval\n"
5174                 "OpFunctionEnd\n";
5175
5176         for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
5177                 map<string, string>                                                                     fragments;
5178                 map<string, string>                                                                     constantSpecialization;
5179
5180                 constantSpecialization["input"]                                         = tests[idx].input;
5181                 constantSpecialization["output1"]                                       = tests[idx].possibleOutput1;
5182                 constantSpecialization["output2"]                                       = tests[idx].possibleOutput2;
5183                 fragments["testfun"]                                                            = function;
5184                 fragments["pre_main"]                                                           = constants.specialize(constantSpecialization);
5185                 createTestsForAllStages(tests[idx].name, inputColors, expectedColors, fragments, testCtx);
5186         }
5187
5188         for(size_t idx = 0; idx < (sizeof(tests)/sizeof(tests[0])); ++idx) {
5189                 map<string, string>                                                                     fragments;
5190                 map<string, string>                                                                     constantSpecialization;
5191                 vector<deInt32>                                                                         passConstants;
5192                 deInt32                                                                                         specConstant;
5193
5194                 constantSpecialization["output1"]                                       = tests[idx].possibleOutput1;
5195                 constantSpecialization["output2"]                                       = tests[idx].possibleOutput2;
5196                 fragments["testfun"]                                                            = function;
5197                 fragments["decoration"]                                                         = specDecorations;
5198                 fragments["pre_main"]                                                           = specConstants.specialize(constantSpecialization);
5199
5200                 memcpy(&specConstant, &tests[idx].inputAsFloat, sizeof(float));
5201                 passConstants.push_back(specConstant);
5202
5203                 createTestsForAllStages(string("spec_const_") + tests[idx].name, inputColors, expectedColors, fragments, passConstants, testCtx);
5204         }
5205 }
5206
5207 tcu::TestCaseGroup* createOpQuantizeTests(tcu::TestContext& testCtx)
5208 {
5209         de::MovePtr<tcu::TestCaseGroup> opQuantizeTests (new tcu::TestCaseGroup(testCtx, "opquantize", "Test OpQuantizeToF16"));
5210         createOpQuantizeSingleOptionTests(opQuantizeTests.get());
5211         createOpQuantizeTwoPossibilityTests(opQuantizeTests.get());
5212         return opQuantizeTests.release();
5213 }
5214
5215 struct ShaderPermutation
5216 {
5217         deUint8 vertexPermutation;
5218         deUint8 geometryPermutation;
5219         deUint8 tesscPermutation;
5220         deUint8 tessePermutation;
5221         deUint8 fragmentPermutation;
5222 };
5223
5224 ShaderPermutation getShaderPermutation(deUint8 inputValue)
5225 {
5226         ShaderPermutation       permutation =
5227         {
5228                 static_cast<deUint8>(inputValue & 0x10? 1u: 0u),
5229                 static_cast<deUint8>(inputValue & 0x08? 1u: 0u),
5230                 static_cast<deUint8>(inputValue & 0x04? 1u: 0u),
5231                 static_cast<deUint8>(inputValue & 0x02? 1u: 0u),
5232                 static_cast<deUint8>(inputValue & 0x01? 1u: 0u)
5233         };
5234         return permutation;
5235 }
5236
5237 tcu::TestCaseGroup* createModuleTests(tcu::TestContext& testCtx)
5238 {
5239         RGBA                                                            defaultColors[4];
5240         RGBA                                                            invertedColors[4];
5241         de::MovePtr<tcu::TestCaseGroup>         moduleTests                     (new tcu::TestCaseGroup(testCtx, "module", "Multiple entry points into shaders"));
5242
5243         const ShaderElement                                     combinedPipeline[]      =
5244         {
5245                 ShaderElement("module", "main", VK_SHADER_STAGE_VERTEX_BIT),
5246                 ShaderElement("module", "main", VK_SHADER_STAGE_GEOMETRY_BIT),
5247                 ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
5248                 ShaderElement("module", "main", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
5249                 ShaderElement("module", "main", VK_SHADER_STAGE_FRAGMENT_BIT)
5250         };
5251
5252         getDefaultColors(defaultColors);
5253         getInvertedDefaultColors(invertedColors);
5254         addFunctionCaseWithPrograms<InstanceContext>(
5255                         moduleTests.get(), "same_module", "", createCombinedModule, runAndVerifyDefaultPipeline,
5256                         createInstanceContext(combinedPipeline, map<string, string>()));
5257
5258         const char* numbers[] =
5259         {
5260                 "1", "2"
5261         };
5262
5263         for (deInt8 idx = 0; idx < 32; ++idx)
5264         {
5265                 ShaderPermutation                       permutation             = getShaderPermutation(idx);
5266                 string                                          name                    = string("vert") + numbers[permutation.vertexPermutation] + "_geom" + numbers[permutation.geometryPermutation] + "_tessc" + numbers[permutation.tesscPermutation] + "_tesse" + numbers[permutation.tessePermutation] + "_frag" + numbers[permutation.fragmentPermutation];
5267                 const ShaderElement                     pipeline[]              =
5268                 {
5269                         ShaderElement("vert",   string("vert") +        numbers[permutation.vertexPermutation],         VK_SHADER_STAGE_VERTEX_BIT),
5270                         ShaderElement("geom",   string("geom") +        numbers[permutation.geometryPermutation],       VK_SHADER_STAGE_GEOMETRY_BIT),
5271                         ShaderElement("tessc",  string("tessc") +       numbers[permutation.tesscPermutation],          VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT),
5272                         ShaderElement("tesse",  string("tesse") +       numbers[permutation.tessePermutation],          VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT),
5273                         ShaderElement("frag",   string("frag") +        numbers[permutation.fragmentPermutation],       VK_SHADER_STAGE_FRAGMENT_BIT)
5274                 };
5275
5276                 // If there are an even number of swaps, then it should be no-op.
5277                 // If there are an odd number, the color should be flipped.
5278                 if ((permutation.vertexPermutation + permutation.geometryPermutation + permutation.tesscPermutation + permutation.tessePermutation + permutation.fragmentPermutation) % 2 == 0)
5279                 {
5280                         addFunctionCaseWithPrograms<InstanceContext>(
5281                                         moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline,
5282                                         createInstanceContext(pipeline, defaultColors, defaultColors, map<string, string>()));
5283                 }
5284                 else
5285                 {
5286                         addFunctionCaseWithPrograms<InstanceContext>(
5287                                         moduleTests.get(), name, "", createMultipleEntries, runAndVerifyDefaultPipeline,
5288                                         createInstanceContext(pipeline, defaultColors, invertedColors, map<string, string>()));
5289                 }
5290         }
5291         return moduleTests.release();
5292 }
5293
5294 tcu::TestCaseGroup* createLoopTests(tcu::TestContext& testCtx)
5295 {
5296         de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "loop", "Looping control flow"));
5297         RGBA defaultColors[4];
5298         getDefaultColors(defaultColors);
5299         map<string, string> fragments;
5300         fragments["pre_main"] =
5301                 "%c_f32_5 = OpConstant %f32 5.\n";
5302
5303         // A loop with a single block. The Continue Target is the loop block
5304         // itself. In SPIR-V terms, the "loop construct" contains no blocks at all
5305         // -- the "continue construct" forms the entire loop.
5306         fragments["testfun"] =
5307                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5308                 "%param1 = OpFunctionParameter %v4f32\n"
5309
5310                 "%entry = OpLabel\n"
5311                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
5312                 "OpBranch %loop\n"
5313
5314                 ";adds and subtracts 1.0 to %val in alternate iterations\n"
5315                 "%loop = OpLabel\n"
5316                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
5317                 "%delta = OpPhi %f32 %c_f32_1 %entry %minus_delta %loop\n"
5318                 "%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
5319                 "%val = OpFAdd %f32 %val1 %delta\n"
5320                 "%minus_delta = OpFSub %f32 %c_f32_0 %delta\n"
5321                 "%count__ = OpISub %i32 %count %c_i32_1\n"
5322                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
5323                 "OpLoopMerge %exit %loop None\n"
5324                 "OpBranchConditional %again %loop %exit\n"
5325
5326                 "%exit = OpLabel\n"
5327                 "%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
5328                 "OpReturnValue %result\n"
5329
5330                 "OpFunctionEnd\n"
5331                 ;
5332         createTestsForAllStages("single_block", defaultColors, defaultColors, fragments, testGroup.get());
5333
5334         // Body comprised of multiple basic blocks.
5335         const StringTemplate multiBlock(
5336                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5337                 "%param1 = OpFunctionParameter %v4f32\n"
5338
5339                 "%entry = OpLabel\n"
5340                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
5341                 "OpBranch %loop\n"
5342
5343                 ";adds and subtracts 1.0 to %val in alternate iterations\n"
5344                 "%loop = OpLabel\n"
5345                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %gather\n"
5346                 "%delta = OpPhi %f32 %c_f32_1 %entry %delta_next %gather\n"
5347                 "%val1 = OpPhi %f32 %val0 %entry %val %gather\n"
5348                 // There are several possibilities for the Continue Target below.  Each
5349                 // will be specialized into a separate test case.
5350                 "OpLoopMerge %exit ${continue_target} None\n"
5351                 "OpBranch %if\n"
5352
5353                 "%if = OpLabel\n"
5354                 ";delta_next = (delta > 0) ? -1 : 1;\n"
5355                 "%gt0 = OpFOrdGreaterThan %bool %delta %c_f32_0\n"
5356                 "OpSelectionMerge %gather DontFlatten\n"
5357                 "OpBranchConditional %gt0 %even %odd ;tells us if %count is even or odd\n"
5358
5359                 "%odd = OpLabel\n"
5360                 "OpBranch %gather\n"
5361
5362                 "%even = OpLabel\n"
5363                 "OpBranch %gather\n"
5364
5365                 "%gather = OpLabel\n"
5366                 "%delta_next = OpPhi %f32 %c_f32_n1 %even %c_f32_1 %odd\n"
5367                 "%val = OpFAdd %f32 %val1 %delta\n"
5368                 "%count__ = OpISub %i32 %count %c_i32_1\n"
5369                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
5370                 "OpBranchConditional %again %loop %exit\n"
5371
5372                 "%exit = OpLabel\n"
5373                 "%result = OpVectorInsertDynamic %v4f32 %param1 %val %c_i32_0\n"
5374                 "OpReturnValue %result\n"
5375
5376                 "OpFunctionEnd\n");
5377
5378         map<string, string> continue_target;
5379
5380         // The Continue Target is the loop block itself.
5381         continue_target["continue_target"] = "%loop";
5382         fragments["testfun"] = multiBlock.specialize(continue_target);
5383         createTestsForAllStages("multi_block_continue_construct", defaultColors, defaultColors, fragments, testGroup.get());
5384
5385         // The Continue Target is at the end of the loop.
5386         continue_target["continue_target"] = "%gather";
5387         fragments["testfun"] = multiBlock.specialize(continue_target);
5388         createTestsForAllStages("multi_block_loop_construct", defaultColors, defaultColors, fragments, testGroup.get());
5389
5390         // A loop with continue statement.
5391         fragments["testfun"] =
5392                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5393                 "%param1 = OpFunctionParameter %v4f32\n"
5394
5395                 "%entry = OpLabel\n"
5396                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
5397                 "OpBranch %loop\n"
5398
5399                 ";adds 4, 3, and 1 to %val0 (skips 2)\n"
5400                 "%loop = OpLabel\n"
5401                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
5402                 "%val1 = OpPhi %f32 %val0 %entry %val %continue\n"
5403                 "OpLoopMerge %exit %continue None\n"
5404                 "OpBranch %if\n"
5405
5406                 "%if = OpLabel\n"
5407                 ";skip if %count==2\n"
5408                 "%eq2 = OpIEqual %bool %count %c_i32_2\n"
5409                 "OpSelectionMerge %continue DontFlatten\n"
5410                 "OpBranchConditional %eq2 %continue %body\n"
5411
5412                 "%body = OpLabel\n"
5413                 "%fcount = OpConvertSToF %f32 %count\n"
5414                 "%val2 = OpFAdd %f32 %val1 %fcount\n"
5415                 "OpBranch %continue\n"
5416
5417                 "%continue = OpLabel\n"
5418                 "%val = OpPhi %f32 %val2 %body %val1 %if\n"
5419                 "%count__ = OpISub %i32 %count %c_i32_1\n"
5420                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
5421                 "OpBranchConditional %again %loop %exit\n"
5422
5423                 "%exit = OpLabel\n"
5424                 "%same = OpFSub %f32 %val %c_f32_8\n"
5425                 "%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
5426                 "OpReturnValue %result\n"
5427                 "OpFunctionEnd\n";
5428         createTestsForAllStages("continue", defaultColors, defaultColors, fragments, testGroup.get());
5429
5430         // A loop with break.
5431         fragments["testfun"] =
5432                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5433                 "%param1 = OpFunctionParameter %v4f32\n"
5434
5435                 "%entry = OpLabel\n"
5436                 ";param1 components are between 0 and 1, so dot product is 4 or less\n"
5437                 "%dot = OpDot %f32 %param1 %param1\n"
5438                 "%div = OpFDiv %f32 %dot %c_f32_5\n"
5439                 "%zero = OpConvertFToU %u32 %div\n"
5440                 "%two = OpIAdd %i32 %zero %c_i32_2\n"
5441                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
5442                 "OpBranch %loop\n"
5443
5444                 ";adds 4 and 3 to %val0 (exits early)\n"
5445                 "%loop = OpLabel\n"
5446                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
5447                 "%val1 = OpPhi %f32 %val0 %entry %val2 %continue\n"
5448                 "OpLoopMerge %exit %continue None\n"
5449                 "OpBranch %if\n"
5450
5451                 "%if = OpLabel\n"
5452                 ";end loop if %count==%two\n"
5453                 "%above2 = OpSGreaterThan %bool %count %two\n"
5454                 "OpSelectionMerge %continue DontFlatten\n"
5455                 "OpBranchConditional %above2 %body %exit\n"
5456
5457                 "%body = OpLabel\n"
5458                 "%fcount = OpConvertSToF %f32 %count\n"
5459                 "%val2 = OpFAdd %f32 %val1 %fcount\n"
5460                 "OpBranch %continue\n"
5461
5462                 "%continue = OpLabel\n"
5463                 "%count__ = OpISub %i32 %count %c_i32_1\n"
5464                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
5465                 "OpBranchConditional %again %loop %exit\n"
5466
5467                 "%exit = OpLabel\n"
5468                 "%val_post = OpPhi %f32 %val2 %continue %val1 %if\n"
5469                 "%same = OpFSub %f32 %val_post %c_f32_7\n"
5470                 "%result = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
5471                 "OpReturnValue %result\n"
5472                 "OpFunctionEnd\n";
5473         createTestsForAllStages("break", defaultColors, defaultColors, fragments, testGroup.get());
5474
5475         // A loop with return.
5476         fragments["testfun"] =
5477                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5478                 "%param1 = OpFunctionParameter %v4f32\n"
5479
5480                 "%entry = OpLabel\n"
5481                 ";param1 components are between 0 and 1, so dot product is 4 or less\n"
5482                 "%dot = OpDot %f32 %param1 %param1\n"
5483                 "%div = OpFDiv %f32 %dot %c_f32_5\n"
5484                 "%zero = OpConvertFToU %u32 %div\n"
5485                 "%two = OpIAdd %i32 %zero %c_i32_2\n"
5486                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
5487                 "OpBranch %loop\n"
5488
5489                 ";returns early without modifying %param1\n"
5490                 "%loop = OpLabel\n"
5491                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %continue\n"
5492                 "%val1 = OpPhi %f32 %val0 %entry %val2 %continue\n"
5493                 "OpLoopMerge %exit %continue None\n"
5494                 "OpBranch %if\n"
5495
5496                 "%if = OpLabel\n"
5497                 ";return if %count==%two\n"
5498                 "%above2 = OpSGreaterThan %bool %count %two\n"
5499                 "OpSelectionMerge %continue DontFlatten\n"
5500                 "OpBranchConditional %above2 %body %early_exit\n"
5501
5502                 "%early_exit = OpLabel\n"
5503                 "OpReturnValue %param1\n"
5504
5505                 "%body = OpLabel\n"
5506                 "%fcount = OpConvertSToF %f32 %count\n"
5507                 "%val2 = OpFAdd %f32 %val1 %fcount\n"
5508                 "OpBranch %continue\n"
5509
5510                 "%continue = OpLabel\n"
5511                 "%count__ = OpISub %i32 %count %c_i32_1\n"
5512                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
5513                 "OpBranchConditional %again %loop %exit\n"
5514
5515                 "%exit = OpLabel\n"
5516                 ";should never get here, so return an incorrect result\n"
5517                 "%result = OpVectorInsertDynamic %v4f32 %param1 %val2 %c_i32_0\n"
5518                 "OpReturnValue %result\n"
5519                 "OpFunctionEnd\n";
5520         createTestsForAllStages("return", defaultColors, defaultColors, fragments, testGroup.get());
5521
5522         return testGroup.release();
5523 }
5524
5525 // A collection of tests putting OpControlBarrier in places GLSL forbids but SPIR-V allows.
5526 tcu::TestCaseGroup* createBarrierTests(tcu::TestContext& testCtx)
5527 {
5528         de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "barrier", "OpControlBarrier"));
5529         map<string, string> fragments;
5530
5531         // A barrier inside a function body.
5532         fragments["pre_main"] =
5533                 "%Workgroup = OpConstant %i32 2\n"
5534                 "%SequentiallyConsistent = OpConstant %i32 0x10\n";
5535         fragments["testfun"] =
5536                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5537                 "%param1 = OpFunctionParameter %v4f32\n"
5538                 "%label_testfun = OpLabel\n"
5539                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
5540                 "OpReturnValue %param1\n"
5541                 "OpFunctionEnd\n";
5542         addTessCtrlTest(testGroup.get(), "in_function", fragments);
5543
5544         // Common setup code for the following tests.
5545         fragments["pre_main"] =
5546                 "%Workgroup = OpConstant %i32 2\n"
5547                 "%SequentiallyConsistent = OpConstant %i32 0x10\n"
5548                 "%c_f32_5 = OpConstant %f32 5.\n";
5549         const string setupPercentZero =  // Begins %test_code function with code that sets %zero to 0u but cannot be optimized away.
5550                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5551                 "%param1 = OpFunctionParameter %v4f32\n"
5552                 "%entry = OpLabel\n"
5553                 ";param1 components are between 0 and 1, so dot product is 4 or less\n"
5554                 "%dot = OpDot %f32 %param1 %param1\n"
5555                 "%div = OpFDiv %f32 %dot %c_f32_5\n"
5556                 "%zero = OpConvertFToU %u32 %div\n";
5557
5558         // Barriers inside OpSwitch branches.
5559         fragments["testfun"] =
5560                 setupPercentZero +
5561                 "OpSelectionMerge %switch_exit None\n"
5562                 "OpSwitch %zero %switch_default 0 %case0 1 %case1 ;should always go to %case0\n"
5563
5564                 "%case1 = OpLabel\n"
5565                 ";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
5566                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
5567                 "%wrong_branch_alert1 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
5568                 "OpBranch %switch_exit\n"
5569
5570                 "%switch_default = OpLabel\n"
5571                 "%wrong_branch_alert2 = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
5572                 ";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
5573                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
5574                 "OpBranch %switch_exit\n"
5575
5576                 "%case0 = OpLabel\n"
5577                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
5578                 "OpBranch %switch_exit\n"
5579
5580                 "%switch_exit = OpLabel\n"
5581                 "%ret = OpPhi %v4f32 %param1 %case0 %wrong_branch_alert1 %case1 %wrong_branch_alert2 %switch_default\n"
5582                 "OpReturnValue %ret\n"
5583                 "OpFunctionEnd\n";
5584         addTessCtrlTest(testGroup.get(), "in_switch", fragments);
5585
5586         // Barriers inside if-then-else.
5587         fragments["testfun"] =
5588                 setupPercentZero +
5589                 "%eq0 = OpIEqual %bool %zero %c_u32_0\n"
5590                 "OpSelectionMerge %exit DontFlatten\n"
5591                 "OpBranchConditional %eq0 %then %else\n"
5592
5593                 "%else = OpLabel\n"
5594                 ";This barrier should never be executed, but its presence makes test failure more likely when there's a bug.\n"
5595                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
5596                 "%wrong_branch_alert = OpVectorInsertDynamic %v4f32 %param1 %c_f32_0_5 %c_i32_0\n"
5597                 "OpBranch %exit\n"
5598
5599                 "%then = OpLabel\n"
5600                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
5601                 "OpBranch %exit\n"
5602
5603                 "%exit = OpLabel\n"
5604                 "%ret = OpPhi %v4f32 %param1 %then %wrong_branch_alert %else\n"
5605                 "OpReturnValue %ret\n"
5606                 "OpFunctionEnd\n";
5607         addTessCtrlTest(testGroup.get(), "in_if", fragments);
5608
5609         // A barrier after control-flow reconvergence, tempting the compiler to attempt something like this:
5610         // http://lists.llvm.org/pipermail/llvm-dev/2009-October/026317.html.
5611         fragments["testfun"] =
5612                 setupPercentZero +
5613                 "%thread_id = OpLoad %i32 %BP_gl_InvocationID\n"
5614                 "%thread0 = OpIEqual %bool %thread_id %c_i32_0\n"
5615                 "OpSelectionMerge %exit DontFlatten\n"
5616                 "OpBranchConditional %thread0 %then %else\n"
5617
5618                 "%else = OpLabel\n"
5619                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
5620                 "OpBranch %exit\n"
5621
5622                 "%then = OpLabel\n"
5623                 "%val1 = OpVectorExtractDynamic %f32 %param1 %zero\n"
5624                 "OpBranch %exit\n"
5625
5626                 "%exit = OpLabel\n"
5627                 "%val = OpPhi %f32 %val0 %else %val1 %then\n"
5628                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
5629                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %val %zero\n"
5630                 "OpReturnValue %ret\n"
5631                 "OpFunctionEnd\n";
5632         addTessCtrlTest(testGroup.get(), "after_divergent_if", fragments);
5633
5634         // A barrier inside a loop.
5635         fragments["pre_main"] =
5636                 "%Workgroup = OpConstant %i32 2\n"
5637                 "%SequentiallyConsistent = OpConstant %i32 0x10\n"
5638                 "%c_f32_10 = OpConstant %f32 10.\n";
5639         fragments["testfun"] =
5640                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5641                 "%param1 = OpFunctionParameter %v4f32\n"
5642                 "%entry = OpLabel\n"
5643                 "%val0 = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
5644                 "OpBranch %loop\n"
5645
5646                 ";adds 4, 3, 2, and 1 to %val0\n"
5647                 "%loop = OpLabel\n"
5648                 "%count = OpPhi %i32 %c_i32_4 %entry %count__ %loop\n"
5649                 "%val1 = OpPhi %f32 %val0 %entry %val %loop\n"
5650                 "OpControlBarrier %Workgroup %Workgroup %SequentiallyConsistent\n"
5651                 "%fcount = OpConvertSToF %f32 %count\n"
5652                 "%val = OpFAdd %f32 %val1 %fcount\n"
5653                 "%count__ = OpISub %i32 %count %c_i32_1\n"
5654                 "%again = OpSGreaterThan %bool %count__ %c_i32_0\n"
5655                 "OpLoopMerge %exit %loop None\n"
5656                 "OpBranchConditional %again %loop %exit\n"
5657
5658                 "%exit = OpLabel\n"
5659                 "%same = OpFSub %f32 %val %c_f32_10\n"
5660                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %same %c_i32_0\n"
5661                 "OpReturnValue %ret\n"
5662                 "OpFunctionEnd\n";
5663         addTessCtrlTest(testGroup.get(), "in_loop", fragments);
5664
5665         return testGroup.release();
5666 }
5667
5668 // Test for the OpFRem instruction.
5669 tcu::TestCaseGroup* createFRemTests(tcu::TestContext& testCtx)
5670 {
5671         de::MovePtr<tcu::TestCaseGroup>         testGroup(new tcu::TestCaseGroup(testCtx, "frem", "OpFRem"));
5672         map<string, string>                                     fragments;
5673         RGBA                                                            inputColors[4];
5674         RGBA                                                            outputColors[4];
5675
5676         fragments["pre_main"]                            =
5677                 "%c_f32_3 = OpConstant %f32 3.0\n"
5678                 "%c_f32_n3 = OpConstant %f32 -3.0\n"
5679                 "%c_f32_4 = OpConstant %f32 4.0\n"
5680                 "%c_f32_p75 = OpConstant %f32 0.75\n"
5681                 "%c_v4f32_p75_p75_p75_p75 = OpConstantComposite %v4f32 %c_f32_p75 %c_f32_p75 %c_f32_p75 %c_f32_p75 \n"
5682                 "%c_v4f32_4_4_4_4 = OpConstantComposite %v4f32 %c_f32_4 %c_f32_4 %c_f32_4 %c_f32_4\n"
5683                 "%c_v4f32_3_n3_3_n3 = OpConstantComposite %v4f32 %c_f32_3 %c_f32_n3 %c_f32_3 %c_f32_n3\n";
5684
5685         // The test does the following.
5686         // vec4 result = (param1 * 8.0) - 4.0;
5687         // return (frem(result.x,3) + 0.75, frem(result.y, -3) + 0.75, 0, 1)
5688         fragments["testfun"]                             =
5689                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
5690                 "%param1 = OpFunctionParameter %v4f32\n"
5691                 "%label_testfun = OpLabel\n"
5692                 "%v_times_8 = OpVectorTimesScalar %v4f32 %param1 %c_f32_8\n"
5693                 "%minus_4 = OpFSub %v4f32 %v_times_8 %c_v4f32_4_4_4_4\n"
5694                 "%frem = OpFRem %v4f32 %minus_4 %c_v4f32_3_n3_3_n3\n"
5695                 "%added = OpFAdd %v4f32 %frem %c_v4f32_p75_p75_p75_p75\n"
5696                 "%xyz_1 = OpVectorInsertDynamic %v4f32 %added %c_f32_1 %c_i32_3\n"
5697                 "%xy_0_1 = OpVectorInsertDynamic %v4f32 %xyz_1 %c_f32_0 %c_i32_2\n"
5698                 "OpReturnValue %xy_0_1\n"
5699                 "OpFunctionEnd\n";
5700
5701
5702         inputColors[0]          = RGBA(16,      16,             0, 255);
5703         inputColors[1]          = RGBA(232, 232,        0, 255);
5704         inputColors[2]          = RGBA(232, 16,         0, 255);
5705         inputColors[3]          = RGBA(16,      232,    0, 255);
5706
5707         outputColors[0]         = RGBA(64,      64,             0, 255);
5708         outputColors[1]         = RGBA(255, 255,        0, 255);
5709         outputColors[2]         = RGBA(255, 64,         0, 255);
5710         outputColors[3]         = RGBA(64,      255,    0, 255);
5711
5712         createTestsForAllStages("frem", inputColors, outputColors, fragments, testGroup.get());
5713         return testGroup.release();
5714 }
5715
5716 enum IntegerType
5717 {
5718         INTEGER_TYPE_SIGNED_16,
5719         INTEGER_TYPE_SIGNED_32,
5720         INTEGER_TYPE_SIGNED_64,
5721
5722         INTEGER_TYPE_UNSIGNED_16,
5723         INTEGER_TYPE_UNSIGNED_32,
5724         INTEGER_TYPE_UNSIGNED_64,
5725 };
5726
5727 const string getBitWidthStr (IntegerType type)
5728 {
5729         switch (type)
5730         {
5731                 case INTEGER_TYPE_SIGNED_16:
5732                 case INTEGER_TYPE_UNSIGNED_16:  return "16";
5733
5734                 case INTEGER_TYPE_SIGNED_32:
5735                 case INTEGER_TYPE_UNSIGNED_32:  return "32";
5736
5737                 case INTEGER_TYPE_SIGNED_64:
5738                 case INTEGER_TYPE_UNSIGNED_64:  return "64";
5739
5740                 default:                                                DE_ASSERT(false);
5741                                                                                 return "";
5742         }
5743 }
5744
5745 const string getByteWidthStr (IntegerType type)
5746 {
5747         switch (type)
5748         {
5749                 case INTEGER_TYPE_SIGNED_16:
5750                 case INTEGER_TYPE_UNSIGNED_16:  return "2";
5751
5752                 case INTEGER_TYPE_SIGNED_32:
5753                 case INTEGER_TYPE_UNSIGNED_32:  return "4";
5754
5755                 case INTEGER_TYPE_SIGNED_64:
5756                 case INTEGER_TYPE_UNSIGNED_64:  return "8";
5757
5758                 default:                                                DE_ASSERT(false);
5759                                                                                 return "";
5760         }
5761 }
5762
5763 bool isSigned (IntegerType type)
5764 {
5765         return (type <= INTEGER_TYPE_SIGNED_64);
5766 }
5767
5768 const string getTypeName (IntegerType type)
5769 {
5770         string prefix = isSigned(type) ? "" : "u";
5771         return prefix + "int" + getBitWidthStr(type);
5772 }
5773
5774 const string getTestName (IntegerType from, IntegerType to)
5775 {
5776         return getTypeName(from) + "_to_" + getTypeName(to);
5777 }
5778
5779 const string getAsmTypeDeclaration (IntegerType type)
5780 {
5781         string sign = isSigned(type) ? " 1" : " 0";
5782         return "OpTypeInt " + getBitWidthStr(type) + sign;
5783 }
5784
5785 template<typename T>
5786 BufferSp getSpecializedBuffer (deInt64 number)
5787 {
5788         return BufferSp(new Buffer<T>(vector<T>(1, (T)number)));
5789 }
5790
5791 BufferSp getBuffer (IntegerType type, deInt64 number)
5792 {
5793         switch (type)
5794         {
5795                 case INTEGER_TYPE_SIGNED_16:    return getSpecializedBuffer<deInt16>(number);
5796                 case INTEGER_TYPE_SIGNED_32:    return getSpecializedBuffer<deInt32>(number);
5797                 case INTEGER_TYPE_SIGNED_64:    return getSpecializedBuffer<deInt64>(number);
5798
5799                 case INTEGER_TYPE_UNSIGNED_16:  return getSpecializedBuffer<deUint16>(number);
5800                 case INTEGER_TYPE_UNSIGNED_32:  return getSpecializedBuffer<deUint32>(number);
5801                 case INTEGER_TYPE_UNSIGNED_64:  return getSpecializedBuffer<deUint64>(number);
5802
5803                 default:                                                DE_ASSERT(false);
5804                                                                                 return BufferSp(new Buffer<deInt32>(vector<deInt32>(1, 0)));
5805         }
5806 }
5807
5808 bool usesInt16 (IntegerType from, IntegerType to)
5809 {
5810         return (from == INTEGER_TYPE_SIGNED_16 || from == INTEGER_TYPE_UNSIGNED_16
5811                         || to == INTEGER_TYPE_SIGNED_16 || to == INTEGER_TYPE_UNSIGNED_16);
5812 }
5813
5814 bool usesInt64 (IntegerType from, IntegerType to)
5815 {
5816         return (from == INTEGER_TYPE_SIGNED_64 || from == INTEGER_TYPE_UNSIGNED_64
5817                         || to == INTEGER_TYPE_SIGNED_64 || to == INTEGER_TYPE_UNSIGNED_64);
5818 }
5819
5820 ComputeTestFeatures getConversionUsedFeatures (IntegerType from, IntegerType to)
5821 {
5822         if (usesInt16(from, to))
5823         {
5824                 if (usesInt64(from, to))
5825                 {
5826                         return COMPUTE_TEST_USES_INT16_INT64;
5827                 }
5828                 else
5829                 {
5830                         return COMPUTE_TEST_USES_INT16;
5831                 }
5832         }
5833         else
5834         {
5835                 return COMPUTE_TEST_USES_INT64;
5836         }
5837 }
5838
5839 struct ConvertCase
5840 {
5841         ConvertCase (IntegerType from, IntegerType to, deInt64 number)
5842         : m_fromType            (from)
5843         , m_toType                      (to)
5844         , m_features            (getConversionUsedFeatures(from, to))
5845         , m_name                        (getTestName(from, to))
5846         , m_inputBuffer         (getBuffer(from, number))
5847         , m_outputBuffer        (getBuffer(to, number))
5848         {
5849                 m_asmTypes["inputType"]         = getAsmTypeDeclaration(from);
5850                 m_asmTypes["outputType"]        = getAsmTypeDeclaration(to);
5851
5852                 if (m_features == COMPUTE_TEST_USES_INT16)
5853                 {
5854                         m_asmTypes["int_capabilities"] = "OpCapability Int16\n";
5855                 }
5856                 else if (m_features == COMPUTE_TEST_USES_INT64)
5857                 {
5858                         m_asmTypes["int_capabilities"] = "OpCapability Int64\n";
5859                 }
5860                 else if (m_features == COMPUTE_TEST_USES_INT16_INT64)
5861                 {
5862                         m_asmTypes["int_capabilities"] = string("OpCapability Int16\n") +
5863                                                                                                         "OpCapability Int64\n";
5864                 }
5865                 else
5866                 {
5867                         DE_ASSERT(false);
5868                 }
5869         }
5870
5871         IntegerType                             m_fromType;
5872         IntegerType                             m_toType;
5873         ComputeTestFeatures             m_features;
5874         string                                  m_name;
5875         map<string, string>             m_asmTypes;
5876         BufferSp                                m_inputBuffer;
5877         BufferSp                                m_outputBuffer;
5878 };
5879
5880 const string getConvertCaseShaderStr (const string& instruction, const ConvertCase& convertCase)
5881 {
5882         map<string, string> params = convertCase.m_asmTypes;
5883
5884         params["instruction"] = instruction;
5885
5886         params["inDecorator"] = getByteWidthStr(convertCase.m_fromType);
5887         params["outDecorator"] = getByteWidthStr(convertCase.m_toType);
5888
5889         const StringTemplate shader (
5890                 "OpCapability Shader\n"
5891                 "${int_capabilities}"
5892                 "OpMemoryModel Logical GLSL450\n"
5893                 "OpEntryPoint GLCompute %main \"main\" %id\n"
5894                 "OpExecutionMode %main LocalSize 1 1 1\n"
5895                 "OpSource GLSL 430\n"
5896                 "OpName %main           \"main\"\n"
5897                 "OpName %id             \"gl_GlobalInvocationID\"\n"
5898                 // Decorators
5899                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
5900                 "OpDecorate %indata DescriptorSet 0\n"
5901                 "OpDecorate %indata Binding 0\n"
5902                 "OpDecorate %outdata DescriptorSet 0\n"
5903                 "OpDecorate %outdata Binding 1\n"
5904                 "OpDecorate %in_arr ArrayStride ${inDecorator}\n"
5905                 "OpDecorate %out_arr ArrayStride ${outDecorator}\n"
5906                 "OpDecorate %in_buf BufferBlock\n"
5907                 "OpDecorate %out_buf BufferBlock\n"
5908                 "OpMemberDecorate %in_buf 0 Offset 0\n"
5909                 "OpMemberDecorate %out_buf 0 Offset 0\n"
5910                 // Base types
5911                 "%void       = OpTypeVoid\n"
5912                 "%voidf      = OpTypeFunction %void\n"
5913                 "%u32        = OpTypeInt 32 0\n"
5914                 "%i32        = OpTypeInt 32 1\n"
5915                 "%uvec3      = OpTypeVector %u32 3\n"
5916                 "%uvec3ptr   = OpTypePointer Input %uvec3\n"
5917                 // Custom types
5918                 "%in_type    = ${inputType}\n"
5919                 "%out_type   = ${outputType}\n"
5920                 // Derived types
5921                 "%in_ptr     = OpTypePointer Uniform %in_type\n"
5922                 "%out_ptr    = OpTypePointer Uniform %out_type\n"
5923                 "%in_arr     = OpTypeRuntimeArray %in_type\n"
5924                 "%out_arr    = OpTypeRuntimeArray %out_type\n"
5925                 "%in_buf     = OpTypeStruct %in_arr\n"
5926                 "%out_buf    = OpTypeStruct %out_arr\n"
5927                 "%in_bufptr  = OpTypePointer Uniform %in_buf\n"
5928                 "%out_bufptr = OpTypePointer Uniform %out_buf\n"
5929                 "%indata     = OpVariable %in_bufptr Uniform\n"
5930                 "%outdata    = OpVariable %out_bufptr Uniform\n"
5931                 "%inputptr   = OpTypePointer Input %in_type\n"
5932                 "%id         = OpVariable %uvec3ptr Input\n"
5933                 // Constants
5934                 "%zero       = OpConstant %i32 0\n"
5935                 // Main function
5936                 "%main       = OpFunction %void None %voidf\n"
5937                 "%label      = OpLabel\n"
5938                 "%idval      = OpLoad %uvec3 %id\n"
5939                 "%x          = OpCompositeExtract %u32 %idval 0\n"
5940                 "%inloc      = OpAccessChain %in_ptr %indata %zero %x\n"
5941                 "%outloc     = OpAccessChain %out_ptr %outdata %zero %x\n"
5942                 "%inval      = OpLoad %in_type %inloc\n"
5943                 "%conv       = ${instruction} %out_type %inval\n"
5944                 "              OpStore %outloc %conv\n"
5945                 "              OpReturn\n"
5946                 "              OpFunctionEnd\n"
5947         );
5948
5949         return shader.specialize(params);
5950 }
5951
5952 void createSConvertCases (vector<ConvertCase>& testCases)
5953 {
5954         // Convert int to int
5955         testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_16, INTEGER_TYPE_SIGNED_32,         14669));
5956         testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_16, INTEGER_TYPE_SIGNED_64,         3341));
5957
5958         testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_32, INTEGER_TYPE_SIGNED_64,         973610259));
5959
5960         // Convert int to unsigned int
5961         testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_16, INTEGER_TYPE_UNSIGNED_32,       9288));
5962         testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_16, INTEGER_TYPE_UNSIGNED_64,       15460));
5963
5964         testCases.push_back(ConvertCase(INTEGER_TYPE_SIGNED_32, INTEGER_TYPE_UNSIGNED_64,       346213461));
5965 }
5966
5967 //  Test for the OpSConvert instruction.
5968 tcu::TestCaseGroup* createSConvertTests (tcu::TestContext& testCtx)
5969 {
5970         const string instruction                                ("OpSConvert");
5971         de::MovePtr<tcu::TestCaseGroup> group   (new tcu::TestCaseGroup(testCtx, "sconvert", "OpSConvert"));
5972         vector<ConvertCase>                             testCases;
5973         createSConvertCases(testCases);
5974
5975         for (vector<ConvertCase>::const_iterator test = testCases.begin(); test != testCases.end(); ++test)
5976         {
5977                 ComputeShaderSpec       spec;
5978
5979                 spec.assembly = getConvertCaseShaderStr(instruction, *test);
5980                 spec.inputs.push_back(test->m_inputBuffer);
5981                 spec.outputs.push_back(test->m_outputBuffer);
5982                 spec.numWorkGroups = IVec3(1, 1, 1);
5983
5984                 group->addChild(new SpvAsmComputeShaderCase(testCtx, test->m_name.c_str(), "Convert integers with OpSConvert.", spec, test->m_features));
5985         }
5986
5987         return group.release();
5988 }
5989
5990 void createUConvertCases (vector<ConvertCase>& testCases)
5991 {
5992         // Convert unsigned int to unsigned int
5993         testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_16,       INTEGER_TYPE_UNSIGNED_32,       60653));
5994         testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_16,       INTEGER_TYPE_UNSIGNED_64,       17991));
5995
5996         testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_32,       INTEGER_TYPE_UNSIGNED_64,       904256275));
5997
5998         // Convert unsigned int to int
5999         testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_16,       INTEGER_TYPE_SIGNED_32,         38002));
6000         testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_16,       INTEGER_TYPE_SIGNED_64,         64921));
6001
6002         testCases.push_back(ConvertCase(INTEGER_TYPE_UNSIGNED_32,       INTEGER_TYPE_SIGNED_64,         4294956295ll));
6003 }
6004
6005 //  Test for the OpUConvert instruction.
6006 tcu::TestCaseGroup* createUConvertTests (tcu::TestContext& testCtx)
6007 {
6008         const string instruction                                ("OpUConvert");
6009         de::MovePtr<tcu::TestCaseGroup> group   (new tcu::TestCaseGroup(testCtx, "uconvert", "OpUConvert"));
6010         vector<ConvertCase>                             testCases;
6011         createUConvertCases(testCases);
6012
6013         for (vector<ConvertCase>::const_iterator test = testCases.begin(); test != testCases.end(); ++test)
6014         {
6015                 ComputeShaderSpec       spec;
6016
6017                 spec.assembly = getConvertCaseShaderStr(instruction, *test);
6018                 spec.inputs.push_back(test->m_inputBuffer);
6019                 spec.outputs.push_back(test->m_outputBuffer);
6020                 spec.numWorkGroups = IVec3(1, 1, 1);
6021
6022                 group->addChild(new SpvAsmComputeShaderCase(testCtx, test->m_name.c_str(), "Convert integers with OpUConvert.", spec, test->m_features));
6023         }
6024         return group.release();
6025 }
6026
6027 const string getNumberTypeName (const NumberType type)
6028 {
6029         if (type == NUMBERTYPE_INT32)
6030         {
6031                 return "int";
6032         }
6033         else if (type == NUMBERTYPE_UINT32)
6034         {
6035                 return "uint";
6036         }
6037         else if (type == NUMBERTYPE_FLOAT32)
6038         {
6039                 return "float";
6040         }
6041         else
6042         {
6043                 DE_ASSERT(false);
6044                 return "";
6045         }
6046 }
6047
6048 deInt32 getInt(de::Random& rnd)
6049 {
6050         return rnd.getInt(std::numeric_limits<int>::min(), std::numeric_limits<int>::max());
6051 }
6052
6053 const string repeatString (const string& str, int times)
6054 {
6055         string filler;
6056         for (int i = 0; i < times; ++i)
6057         {
6058                 filler += str;
6059         }
6060         return filler;
6061 }
6062
6063 const string getRandomConstantString (const NumberType type, de::Random& rnd)
6064 {
6065         if (type == NUMBERTYPE_INT32)
6066         {
6067                 return numberToString<deInt32>(getInt(rnd));
6068         }
6069         else if (type == NUMBERTYPE_UINT32)
6070         {
6071                 return numberToString<deUint32>(rnd.getUint32());
6072         }
6073         else if (type == NUMBERTYPE_FLOAT32)
6074         {
6075                 return numberToString<float>(rnd.getFloat());
6076         }
6077         else
6078         {
6079                 DE_ASSERT(false);
6080                 return "";
6081         }
6082 }
6083
6084 void createVectorCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
6085 {
6086         map<string, string> params;
6087
6088         // Vec2 to Vec4
6089         for (int width = 2; width <= 4; ++width)
6090         {
6091                 string randomConst = numberToString(getInt(rnd));
6092                 string widthStr = numberToString(width);
6093                 int index = rnd.getInt(0, width-1);
6094
6095                 params["type"]                                  = "vec";
6096                 params["name"]                                  = params["type"] + "_" + widthStr;
6097                 params["compositeType"]                 = "%composite = OpTypeVector %custom " + widthStr +"\n";
6098                 params["filler"]                                = string("%filler    = OpConstant %custom ") + getRandomConstantString(type, rnd) + "\n";
6099                 params["compositeConstruct"]    = "%instance  = OpCompositeConstruct %composite" + repeatString(" %filler", width) + "\n";
6100                 params["indexes"]                               = numberToString(index);
6101                 testCases.push_back(params);
6102         }
6103 }
6104
6105 void createArrayCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
6106 {
6107         const int limit = 10;
6108         map<string, string> params;
6109
6110         for (int width = 2; width <= limit; ++width)
6111         {
6112                 string randomConst = numberToString(getInt(rnd));
6113                 string widthStr = numberToString(width);
6114                 int index = rnd.getInt(0, width-1);
6115
6116                 params["type"]                                  = "array";
6117                 params["name"]                                  = params["type"] + "_" + widthStr;
6118                 params["compositeType"]                 = string("%arraywidth = OpConstant %u32 " + widthStr + "\n")
6119                                                                                         +        "%composite = OpTypeArray %custom %arraywidth\n";
6120
6121                 params["filler"]                                = string("%filler    = OpConstant %custom ") + getRandomConstantString(type, rnd) + "\n";
6122                 params["compositeConstruct"]    = "%instance  = OpCompositeConstruct %composite" + repeatString(" %filler", width) + "\n";
6123                 params["indexes"]                               = numberToString(index);
6124                 testCases.push_back(params);
6125         }
6126 }
6127
6128 void createStructCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
6129 {
6130         const int limit = 10;
6131         map<string, string> params;
6132
6133         for (int width = 2; width <= limit; ++width)
6134         {
6135                 string randomConst = numberToString(getInt(rnd));
6136                 int index = rnd.getInt(0, width-1);
6137
6138                 params["type"]                                  = "struct";
6139                 params["name"]                                  = params["type"] + "_" + numberToString(width);
6140                 params["compositeType"]                 = "%composite = OpTypeStruct" + repeatString(" %custom", width) + "\n";
6141                 params["filler"]                                = string("%filler    = OpConstant %custom ") + getRandomConstantString(type, rnd) + "\n";
6142                 params["compositeConstruct"]    = "%instance  = OpCompositeConstruct %composite" + repeatString(" %filler", width) + "\n";
6143                 params["indexes"]                               = numberToString(index);
6144                 testCases.push_back(params);
6145         }
6146 }
6147
6148 void createMatrixCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
6149 {
6150         map<string, string> params;
6151
6152         // Vec2 to Vec4
6153         for (int width = 2; width <= 4; ++width)
6154         {
6155                 string widthStr = numberToString(width);
6156
6157                 for (int column = 2 ; column <= 4; ++column)
6158                 {
6159                         int index_0 = rnd.getInt(0, column-1);
6160                         int index_1 = rnd.getInt(0, width-1);
6161                         string columnStr = numberToString(column);
6162
6163                         params["type"]                                  = "matrix";
6164                         params["name"]                                  = params["type"] + "_" + widthStr + "x" + columnStr;
6165                         params["compositeType"]                 = string("%vectype   = OpTypeVector %custom " + widthStr + "\n")
6166                                                                                                 +        "%composite = OpTypeMatrix %vectype " + columnStr + "\n";
6167
6168                         params["filler"]                                = string("%filler    = OpConstant %custom ") + getRandomConstantString(type, rnd) + "\n"
6169                                                                                                 +        "%fillerVec = OpConstantComposite %vectype" + repeatString(" %filler", width) + "\n";
6170
6171                         params["compositeConstruct"]    = "%instance  = OpCompositeConstruct %composite" + repeatString(" %fillerVec", column) + "\n";
6172                         params["indexes"]                               = numberToString(index_0) + " " + numberToString(index_1);
6173                         testCases.push_back(params);
6174                 }
6175         }
6176 }
6177
6178 void createCompositeCases (vector<map<string, string> >& testCases, de::Random& rnd, const NumberType type)
6179 {
6180         createVectorCompositeCases(testCases, rnd, type);
6181         createArrayCompositeCases(testCases, rnd, type);
6182         createStructCompositeCases(testCases, rnd, type);
6183         // Matrix only supports float types
6184         if (type == NUMBERTYPE_FLOAT32)
6185         {
6186                 createMatrixCompositeCases(testCases, rnd, type);
6187         }
6188 }
6189
6190 const string getAssemblyTypeDeclaration (const NumberType type)
6191 {
6192         switch (type)
6193         {
6194                 case NUMBERTYPE_INT32:          return "OpTypeInt 32 1";
6195                 case NUMBERTYPE_UINT32:         return "OpTypeInt 32 0";
6196                 case NUMBERTYPE_FLOAT32:        return "OpTypeFloat 32";
6197                 default:                        DE_ASSERT(false); return "";
6198         }
6199 }
6200
6201 const string specializeCompositeInsertShaderTemplate (const NumberType type, const map<string, string>& params)
6202 {
6203         map<string, string>     parameters(params);
6204
6205         parameters["typeDeclaration"] = getAssemblyTypeDeclaration(type);
6206
6207         parameters["compositeDecorator"] = (parameters["type"] == "array") ? "OpDecorate %composite ArrayStride 4\n" : "";
6208
6209         return StringTemplate (
6210                 "OpCapability Shader\n"
6211                 "OpCapability Matrix\n"
6212                 "OpMemoryModel Logical GLSL450\n"
6213                 "OpEntryPoint GLCompute %main \"main\" %id\n"
6214                 "OpExecutionMode %main LocalSize 1 1 1\n"
6215
6216                 "OpSource GLSL 430\n"
6217                 "OpName %main           \"main\"\n"
6218                 "OpName %id             \"gl_GlobalInvocationID\"\n"
6219
6220                 // Decorators
6221                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
6222                 "OpDecorate %buf BufferBlock\n"
6223                 "OpDecorate %indata DescriptorSet 0\n"
6224                 "OpDecorate %indata Binding 0\n"
6225                 "OpDecorate %outdata DescriptorSet 0\n"
6226                 "OpDecorate %outdata Binding 1\n"
6227                 "OpDecorate %customarr ArrayStride 4\n"
6228                 "${compositeDecorator}"
6229                 "OpMemberDecorate %buf 0 Offset 0\n"
6230
6231                 // General types
6232                 "%void      = OpTypeVoid\n"
6233                 "%voidf     = OpTypeFunction %void\n"
6234                 "%u32       = OpTypeInt 32 0\n"
6235                 "%i32       = OpTypeInt 32 1\n"
6236                 "%uvec3     = OpTypeVector %u32 3\n"
6237                 "%uvec3ptr  = OpTypePointer Input %uvec3\n"
6238
6239                 // Custom type
6240                 "%custom    = ${typeDeclaration}\n"
6241                 "${compositeType}"
6242
6243                 // Constants
6244                 "${filler}"
6245
6246                 // Inherited from custom
6247                 "%customptr = OpTypePointer Uniform %custom\n"
6248                 "%customarr = OpTypeRuntimeArray %custom\n"
6249                 "%buf       = OpTypeStruct %customarr\n"
6250                 "%bufptr    = OpTypePointer Uniform %buf\n"
6251
6252                 "%indata    = OpVariable %bufptr Uniform\n"
6253                 "%outdata   = OpVariable %bufptr Uniform\n"
6254
6255                 "%id        = OpVariable %uvec3ptr Input\n"
6256                 "%zero      = OpConstant %i32 0\n"
6257
6258                 "%main      = OpFunction %void None %voidf\n"
6259                 "%label     = OpLabel\n"
6260                 "%idval     = OpLoad %uvec3 %id\n"
6261                 "%x         = OpCompositeExtract %u32 %idval 0\n"
6262
6263                 "%inloc     = OpAccessChain %customptr %indata %zero %x\n"
6264                 "%outloc    = OpAccessChain %customptr %outdata %zero %x\n"
6265                 // Read the input value
6266                 "%inval     = OpLoad %custom %inloc\n"
6267                 // Create the composite and fill it
6268                 "${compositeConstruct}"
6269                 // Insert the input value to a place
6270                 "%instance2 = OpCompositeInsert %composite %inval %instance ${indexes}\n"
6271                 // Read back the value from the position
6272                 "%out_val   = OpCompositeExtract %custom %instance2 ${indexes}\n"
6273                 // Store it in the output position
6274                 "             OpStore %outloc %out_val\n"
6275                 "             OpReturn\n"
6276                 "             OpFunctionEnd\n"
6277         ).specialize(parameters);
6278 }
6279
6280 template<typename T>
6281 BufferSp createCompositeBuffer(T number)
6282 {
6283         return BufferSp(new Buffer<T>(vector<T>(1, number)));
6284 }
6285
6286 tcu::TestCaseGroup* createOpCompositeInsertGroup (tcu::TestContext& testCtx)
6287 {
6288         de::MovePtr<tcu::TestCaseGroup> group   (new tcu::TestCaseGroup(testCtx, "opcompositeinsert", "Test the OpCompositeInsert instruction"));
6289         de::Random                                              rnd             (deStringHash(group->getName()));
6290
6291         for (int type = NUMBERTYPE_INT32; type != NUMBERTYPE_END32; ++type)
6292         {
6293                 NumberType                                              numberType              = NumberType(type);
6294                 const string                                    typeName                = getNumberTypeName(numberType);
6295                 const string                                    description             = "Test the OpCompositeInsert instruction with " + typeName + "s";
6296                 de::MovePtr<tcu::TestCaseGroup> subGroup                (new tcu::TestCaseGroup(testCtx, typeName.c_str(), description.c_str()));
6297                 vector<map<string, string> >    testCases;
6298
6299                 createCompositeCases(testCases, rnd, numberType);
6300
6301                 for (vector<map<string, string> >::const_iterator test = testCases.begin(); test != testCases.end(); ++test)
6302                 {
6303                         ComputeShaderSpec       spec;
6304
6305                         spec.assembly = specializeCompositeInsertShaderTemplate(numberType, *test);
6306
6307                         switch (numberType)
6308                         {
6309                                 case NUMBERTYPE_INT32:
6310                                 {
6311                                         deInt32 number = getInt(rnd);
6312                                         spec.inputs.push_back(createCompositeBuffer<deInt32>(number));
6313                                         spec.outputs.push_back(createCompositeBuffer<deInt32>(number));
6314                                         break;
6315                                 }
6316                                 case NUMBERTYPE_UINT32:
6317                                 {
6318                                         deUint32 number = rnd.getUint32();
6319                                         spec.inputs.push_back(createCompositeBuffer<deUint32>(number));
6320                                         spec.outputs.push_back(createCompositeBuffer<deUint32>(number));
6321                                         break;
6322                                 }
6323                                 case NUMBERTYPE_FLOAT32:
6324                                 {
6325                                         float number = rnd.getFloat();
6326                                         spec.inputs.push_back(createCompositeBuffer<float>(number));
6327                                         spec.outputs.push_back(createCompositeBuffer<float>(number));
6328                                         break;
6329                                 }
6330                                 default:
6331                                         DE_ASSERT(false);
6332                         }
6333
6334                         spec.numWorkGroups = IVec3(1, 1, 1);
6335                         subGroup->addChild(new SpvAsmComputeShaderCase(testCtx, test->at("name").c_str(), "OpCompositeInsert test", spec));
6336                 }
6337                 group->addChild(subGroup.release());
6338         }
6339         return group.release();
6340 }
6341
6342 struct AssemblyStructInfo
6343 {
6344         AssemblyStructInfo (const deUint32 comp, const deUint32 idx)
6345         : components    (comp)
6346         , index                 (idx)
6347         {}
6348
6349         deUint32 components;
6350         deUint32 index;
6351 };
6352
6353 const string specializeInBoundsShaderTemplate (const NumberType type, const AssemblyStructInfo& structInfo, const map<string, string>& params)
6354 {
6355         // Create the full index string
6356         string                          fullIndex       = numberToString(structInfo.index) + " " + params.at("indexes");
6357         // Convert it to list of indexes
6358         vector<string>          indexes         = de::splitString(fullIndex, ' ');
6359
6360         map<string, string>     parameters      (params);
6361         parameters["typeDeclaration"]   = getAssemblyTypeDeclaration(type);
6362         parameters["structType"]                = repeatString(" %composite", structInfo.components);
6363         parameters["structConstruct"]   = repeatString(" %instance", structInfo.components);
6364         parameters["insertIndexes"]             = fullIndex;
6365
6366         // In matrix cases the last two index is the CompositeExtract indexes
6367         const deUint32 extractIndexes = (parameters["type"] == "matrix") ? 2 : 1;
6368
6369         // Construct the extractIndex
6370         for (vector<string>::const_iterator index = indexes.end() - extractIndexes; index != indexes.end(); ++index)
6371         {
6372                 parameters["extractIndexes"] += " " + *index;
6373         }
6374
6375         // Remove the last 1 or 2 element depends on matrix case or not
6376         indexes.erase(indexes.end() - extractIndexes, indexes.end());
6377
6378         deUint32 id = 0;
6379         // Generate AccessChain index expressions (except for the last one, because we use ptr to the composite)
6380         for (vector<string>::const_iterator index = indexes.begin(); index != indexes.end(); ++index)
6381         {
6382                 string indexId = "%index_" + numberToString(id++);
6383                 parameters["accessChainConstDeclaration"] += indexId + "   = OpConstant %u32 " + *index + "\n";
6384                 parameters["accessChainIndexes"] += " " + indexId;
6385         }
6386
6387         parameters["compositeDecorator"] = (parameters["type"] == "array") ? "OpDecorate %composite ArrayStride 4\n" : "";
6388
6389         return StringTemplate (
6390                 "OpCapability Shader\n"
6391                 "OpCapability Matrix\n"
6392                 "OpMemoryModel Logical GLSL450\n"
6393                 "OpEntryPoint GLCompute %main \"main\" %id\n"
6394                 "OpExecutionMode %main LocalSize 1 1 1\n"
6395
6396                 "OpSource GLSL 430\n"
6397                 "OpName %main           \"main\"\n"
6398                 "OpName %id             \"gl_GlobalInvocationID\"\n"
6399                 // Decorators
6400                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
6401                 "OpDecorate %buf BufferBlock\n"
6402                 "OpDecorate %indata DescriptorSet 0\n"
6403                 "OpDecorate %indata Binding 0\n"
6404                 "OpDecorate %outdata DescriptorSet 0\n"
6405                 "OpDecorate %outdata Binding 1\n"
6406                 "OpDecorate %customarr ArrayStride 4\n"
6407                 "${compositeDecorator}"
6408                 "OpMemberDecorate %buf 0 Offset 0\n"
6409                 // General types
6410                 "%void      = OpTypeVoid\n"
6411                 "%voidf     = OpTypeFunction %void\n"
6412                 "%u32       = OpTypeInt 32 0\n"
6413                 "%uvec3     = OpTypeVector %u32 3\n"
6414                 "%uvec3ptr  = OpTypePointer Input %uvec3\n"
6415                 // Custom type
6416                 "%custom    = ${typeDeclaration}\n"
6417                 // Custom types
6418                 "${compositeType}"
6419                 // Inherited from composite
6420                 "%composite_p = OpTypePointer Function %composite\n"
6421                 "%struct_t  = OpTypeStruct${structType}\n"
6422                 "%struct_p  = OpTypePointer Function %struct_t\n"
6423                 // Constants
6424                 "${filler}"
6425                 "${accessChainConstDeclaration}"
6426                 // Inherited from custom
6427                 "%customptr = OpTypePointer Uniform %custom\n"
6428                 "%customarr = OpTypeRuntimeArray %custom\n"
6429                 "%buf       = OpTypeStruct %customarr\n"
6430                 "%bufptr    = OpTypePointer Uniform %buf\n"
6431                 "%indata    = OpVariable %bufptr Uniform\n"
6432                 "%outdata   = OpVariable %bufptr Uniform\n"
6433
6434                 "%id        = OpVariable %uvec3ptr Input\n"
6435                 "%zero      = OpConstant %u32 0\n"
6436                 "%main      = OpFunction %void None %voidf\n"
6437                 "%label     = OpLabel\n"
6438                 "%struct_v  = OpVariable %struct_p Function\n"
6439                 "%idval     = OpLoad %uvec3 %id\n"
6440                 "%x         = OpCompositeExtract %u32 %idval 0\n"
6441                 // Create the input/output type
6442                 "%inloc     = OpInBoundsAccessChain %customptr %indata %zero %x\n"
6443                 "%outloc    = OpInBoundsAccessChain %customptr %outdata %zero %x\n"
6444                 // Read the input value
6445                 "%inval     = OpLoad %custom %inloc\n"
6446                 // Create the composite and fill it
6447                 "${compositeConstruct}"
6448                 // Create the struct and fill it with the composite
6449                 "%struct    = OpCompositeConstruct %struct_t${structConstruct}\n"
6450                 // Insert the value
6451                 "%comp_obj  = OpCompositeInsert %struct_t %inval %struct ${insertIndexes}\n"
6452                 // Store the object
6453                 "             OpStore %struct_v %comp_obj\n"
6454                 // Get deepest possible composite pointer
6455                 "%inner_ptr = OpInBoundsAccessChain %composite_p %struct_v${accessChainIndexes}\n"
6456                 "%read_obj  = OpLoad %composite %inner_ptr\n"
6457                 // Read back the stored value
6458                 "%read_val  = OpCompositeExtract %custom %read_obj${extractIndexes}\n"
6459                 "             OpStore %outloc %read_val\n"
6460                 "             OpReturn\n"
6461                 "             OpFunctionEnd\n").specialize(parameters);
6462 }
6463
6464 tcu::TestCaseGroup* createOpInBoundsAccessChainGroup (tcu::TestContext& testCtx)
6465 {
6466         de::MovePtr<tcu::TestCaseGroup> group                   (new tcu::TestCaseGroup(testCtx, "opinboundsaccesschain", "Test the OpInBoundsAccessChain instruction"));
6467         de::Random                                              rnd                             (deStringHash(group->getName()));
6468
6469         for (int type = NUMBERTYPE_INT32; type != NUMBERTYPE_END32; ++type)
6470         {
6471                 NumberType                                              numberType      = NumberType(type);
6472                 const string                                    typeName        = getNumberTypeName(numberType);
6473                 const string                                    description     = "Test the OpInBoundsAccessChain instruction with " + typeName + "s";
6474                 de::MovePtr<tcu::TestCaseGroup> subGroup        (new tcu::TestCaseGroup(testCtx, typeName.c_str(), description.c_str()));
6475
6476                 vector<map<string, string> >    testCases;
6477                 createCompositeCases(testCases, rnd, numberType);
6478
6479                 for (vector<map<string, string> >::const_iterator test = testCases.begin(); test != testCases.end(); ++test)
6480                 {
6481                         ComputeShaderSpec       spec;
6482
6483                         // Number of components inside of a struct
6484                         deUint32 structComponents = rnd.getInt(2, 8);
6485                         // Component index value
6486                         deUint32 structIndex = rnd.getInt(0, structComponents - 1);
6487                         AssemblyStructInfo structInfo(structComponents, structIndex);
6488
6489                         spec.assembly = specializeInBoundsShaderTemplate(numberType, structInfo, *test);
6490
6491                         switch (numberType)
6492                         {
6493                                 case NUMBERTYPE_INT32:
6494                                 {
6495                                         deInt32 number = getInt(rnd);
6496                                         spec.inputs.push_back(createCompositeBuffer<deInt32>(number));
6497                                         spec.outputs.push_back(createCompositeBuffer<deInt32>(number));
6498                                         break;
6499                                 }
6500                                 case NUMBERTYPE_UINT32:
6501                                 {
6502                                         deUint32 number = rnd.getUint32();
6503                                         spec.inputs.push_back(createCompositeBuffer<deUint32>(number));
6504                                         spec.outputs.push_back(createCompositeBuffer<deUint32>(number));
6505                                         break;
6506                                 }
6507                                 case NUMBERTYPE_FLOAT32:
6508                                 {
6509                                         float number = rnd.getFloat();
6510                                         spec.inputs.push_back(createCompositeBuffer<float>(number));
6511                                         spec.outputs.push_back(createCompositeBuffer<float>(number));
6512                                         break;
6513                                 }
6514                                 default:
6515                                         DE_ASSERT(false);
6516                         }
6517                         spec.numWorkGroups = IVec3(1, 1, 1);
6518                         subGroup->addChild(new SpvAsmComputeShaderCase(testCtx, test->at("name").c_str(), "OpInBoundsAccessChain test", spec));
6519                 }
6520                 group->addChild(subGroup.release());
6521         }
6522         return group.release();
6523 }
6524
6525 // If the params missing, uninitialized case
6526 const string specializeDefaultOutputShaderTemplate (const NumberType type, const map<string, string>& params = map<string, string>())
6527 {
6528         map<string, string> parameters(params);
6529
6530         parameters["typeDeclaration"] = getAssemblyTypeDeclaration(type);
6531
6532         // Declare the const value, and use it in the initializer
6533         if (params.find("constValue") != params.end())
6534         {
6535                 parameters["constDeclaration"]          = "%const      = OpConstant %in_type " + params.at("constValue") + "\n";
6536                 parameters["variableInitializer"]       = "%const";
6537         }
6538         // Uninitialized case
6539         else
6540         {
6541                 parameters["constDeclaration"]          = "";
6542                 parameters["variableInitializer"]       = "";
6543         }
6544
6545         return StringTemplate(
6546                 "OpCapability Shader\n"
6547                 "OpMemoryModel Logical GLSL450\n"
6548                 "OpEntryPoint GLCompute %main \"main\" %id\n"
6549                 "OpExecutionMode %main LocalSize 1 1 1\n"
6550                 "OpSource GLSL 430\n"
6551                 "OpName %main           \"main\"\n"
6552                 "OpName %id             \"gl_GlobalInvocationID\"\n"
6553                 // Decorators
6554                 "OpDecorate %id BuiltIn GlobalInvocationId\n"
6555                 "OpDecorate %indata DescriptorSet 0\n"
6556                 "OpDecorate %indata Binding 0\n"
6557                 "OpDecorate %outdata DescriptorSet 0\n"
6558                 "OpDecorate %outdata Binding 1\n"
6559                 "OpDecorate %in_arr ArrayStride 4\n"
6560                 "OpDecorate %in_buf BufferBlock\n"
6561                 "OpMemberDecorate %in_buf 0 Offset 0\n"
6562                 // Base types
6563                 "%void       = OpTypeVoid\n"
6564                 "%voidf      = OpTypeFunction %void\n"
6565                 "%u32        = OpTypeInt 32 0\n"
6566                 "%i32        = OpTypeInt 32 1\n"
6567                 "%uvec3      = OpTypeVector %u32 3\n"
6568                 "%uvec3ptr   = OpTypePointer Input %uvec3\n"
6569                 // Custom types
6570                 "%in_type    = ${typeDeclaration}\n"
6571                 // "%const      = OpConstant %in_type ${constValue}\n"
6572                 "${constDeclaration}\n"
6573                 // Derived types
6574                 "%in_ptr     = OpTypePointer Uniform %in_type\n"
6575                 "%in_arr     = OpTypeRuntimeArray %in_type\n"
6576                 "%in_buf     = OpTypeStruct %in_arr\n"
6577                 "%in_bufptr  = OpTypePointer Uniform %in_buf\n"
6578                 "%indata     = OpVariable %in_bufptr Uniform\n"
6579                 "%outdata    = OpVariable %in_bufptr Uniform\n"
6580                 "%id         = OpVariable %uvec3ptr Input\n"
6581                 "%var_ptr    = OpTypePointer Function %in_type\n"
6582                 // Constants
6583                 "%zero       = OpConstant %i32 0\n"
6584                 // Main function
6585                 "%main       = OpFunction %void None %voidf\n"
6586                 "%label      = OpLabel\n"
6587                 "%out_var    = OpVariable %var_ptr Function ${variableInitializer}\n"
6588                 "%idval      = OpLoad %uvec3 %id\n"
6589                 "%x          = OpCompositeExtract %u32 %idval 0\n"
6590                 "%inloc      = OpAccessChain %in_ptr %indata %zero %x\n"
6591                 "%outloc     = OpAccessChain %in_ptr %outdata %zero %x\n"
6592
6593                 "%outval     = OpLoad %in_type %out_var\n"
6594                 "              OpStore %outloc %outval\n"
6595                 "              OpReturn\n"
6596                 "              OpFunctionEnd\n"
6597         ).specialize(parameters);
6598 }
6599
6600 bool compareFloats (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog& log)
6601 {
6602         DE_ASSERT(outputAllocs.size() != 0);
6603         DE_ASSERT(outputAllocs.size() == expectedOutputs.size());
6604
6605         // Use custom epsilon because of the float->string conversion
6606         const float     epsilon = 0.00001f;
6607
6608         for (size_t outputNdx = 0; outputNdx < outputAllocs.size(); ++outputNdx)
6609         {
6610                 float expected;
6611                 memcpy(&expected, expectedOutputs[outputNdx]->data(), expectedOutputs[outputNdx]->getNumBytes());
6612
6613                 float actual;
6614                 memcpy(&actual, outputAllocs[outputNdx]->getHostPtr(), expectedOutputs[outputNdx]->getNumBytes());
6615
6616                 // Test with epsilon
6617                 if (fabs(expected - actual) > epsilon)
6618                 {
6619                         log << TestLog::Message << "Error: The actual and expected values not matching."
6620                                 << " Expected: " << expected << " Actual: " << actual << " Epsilon: " << epsilon << TestLog::EndMessage;
6621                         return false;
6622                 }
6623         }
6624         return true;
6625 }
6626
6627 // Checks if the driver crash with uninitialized cases
6628 bool passthruVerify (const std::vector<BufferSp>&, const vector<AllocationSp>& outputAllocs, const std::vector<BufferSp>& expectedOutputs, TestLog&)
6629 {
6630         DE_ASSERT(outputAllocs.size() != 0);
6631         DE_ASSERT(outputAllocs.size() == expectedOutputs.size());
6632
6633         // Copy and discard the result.
6634         for (size_t outputNdx = 0; outputNdx < outputAllocs.size(); ++outputNdx)
6635         {
6636                 size_t width = expectedOutputs[outputNdx]->getNumBytes();
6637
6638                 vector<char> data(width);
6639                 memcpy(&data[0], outputAllocs[outputNdx]->getHostPtr(), width);
6640         }
6641         return true;
6642 }
6643
6644 tcu::TestCaseGroup* createShaderDefaultOutputGroup (tcu::TestContext& testCtx)
6645 {
6646         de::MovePtr<tcu::TestCaseGroup> group   (new tcu::TestCaseGroup(testCtx, "shader_default_output", "Test shader default output."));
6647         de::Random                                              rnd             (deStringHash(group->getName()));
6648
6649         for (int type = NUMBERTYPE_INT32; type != NUMBERTYPE_END32; ++type)
6650         {
6651                 NumberType                                              numberType      = NumberType(type);
6652                 const string                                    typeName        = getNumberTypeName(numberType);
6653                 const string                                    description     = "Test the OpVariable initializer with " + typeName + ".";
6654                 de::MovePtr<tcu::TestCaseGroup> subGroup        (new tcu::TestCaseGroup(testCtx, typeName.c_str(), description.c_str()));
6655
6656                 // 2 similar subcases (initialized and uninitialized)
6657                 for (int subCase = 0; subCase < 2; ++subCase)
6658                 {
6659                         ComputeShaderSpec spec;
6660                         spec.numWorkGroups = IVec3(1, 1, 1);
6661
6662                         map<string, string>                             params;
6663
6664                         switch (numberType)
6665                         {
6666                                 case NUMBERTYPE_INT32:
6667                                 {
6668                                         deInt32 number = getInt(rnd);
6669                                         spec.inputs.push_back(createCompositeBuffer<deInt32>(number));
6670                                         spec.outputs.push_back(createCompositeBuffer<deInt32>(number));
6671                                         params["constValue"] = numberToString(number);
6672                                         break;
6673                                 }
6674                                 case NUMBERTYPE_UINT32:
6675                                 {
6676                                         deUint32 number = rnd.getUint32();
6677                                         spec.inputs.push_back(createCompositeBuffer<deUint32>(number));
6678                                         spec.outputs.push_back(createCompositeBuffer<deUint32>(number));
6679                                         params["constValue"] = numberToString(number);
6680                                         break;
6681                                 }
6682                                 case NUMBERTYPE_FLOAT32:
6683                                 {
6684                                         float number = rnd.getFloat();
6685                                         spec.inputs.push_back(createCompositeBuffer<float>(number));
6686                                         spec.outputs.push_back(createCompositeBuffer<float>(number));
6687                                         spec.verifyIO = &compareFloats;
6688                                         params["constValue"] = numberToString(number);
6689                                         break;
6690                                 }
6691                                 default:
6692                                         DE_ASSERT(false);
6693                         }
6694
6695                         // Initialized subcase
6696                         if (!subCase)
6697                         {
6698                                 spec.assembly = specializeDefaultOutputShaderTemplate(numberType, params);
6699                                 subGroup->addChild(new SpvAsmComputeShaderCase(testCtx, "initialized", "OpVariable initializer tests.", spec));
6700                         }
6701                         // Uninitialized subcase
6702                         else
6703                         {
6704                                 spec.assembly = specializeDefaultOutputShaderTemplate(numberType);
6705                                 spec.verifyIO = &passthruVerify;
6706                                 subGroup->addChild(new SpvAsmComputeShaderCase(testCtx, "uninitialized", "OpVariable initializer tests.", spec));
6707                         }
6708                 }
6709                 group->addChild(subGroup.release());
6710         }
6711         return group.release();
6712 }
6713
6714 tcu::TestCaseGroup* createOpNopTests (tcu::TestContext& testCtx)
6715 {
6716         de::MovePtr<tcu::TestCaseGroup> testGroup (new tcu::TestCaseGroup(testCtx, "opnop", "Test OpNop"));
6717         RGBA                                                    defaultColors[4];
6718         map<string, string>                             opNopFragments;
6719
6720         getDefaultColors(defaultColors);
6721
6722         opNopFragments["testfun"]               =
6723                 "%test_code = OpFunction %v4f32 None %v4f32_function\n"
6724                 "%param1 = OpFunctionParameter %v4f32\n"
6725                 "%label_testfun = OpLabel\n"
6726                 "OpNop\n"
6727                 "OpNop\n"
6728                 "OpNop\n"
6729                 "OpNop\n"
6730                 "OpNop\n"
6731                 "OpNop\n"
6732                 "OpNop\n"
6733                 "OpNop\n"
6734                 "%a = OpVectorExtractDynamic %f32 %param1 %c_i32_0\n"
6735                 "%b = OpFAdd %f32 %a %a\n"
6736                 "OpNop\n"
6737                 "%c = OpFSub %f32 %b %a\n"
6738                 "%ret = OpVectorInsertDynamic %v4f32 %param1 %c %c_i32_0\n"
6739                 "OpNop\n"
6740                 "OpNop\n"
6741                 "OpReturnValue %ret\n"
6742                 "OpFunctionEnd\n";
6743
6744         createTestsForAllStages("opnop", defaultColors, defaultColors, opNopFragments, testGroup.get());
6745
6746         return testGroup.release();
6747 }
6748
6749 tcu::TestCaseGroup* createInstructionTests (tcu::TestContext& testCtx)
6750 {
6751         de::MovePtr<tcu::TestCaseGroup> instructionTests        (new tcu::TestCaseGroup(testCtx, "instruction", "Instructions with special opcodes/operands"));
6752         de::MovePtr<tcu::TestCaseGroup> computeTests            (new tcu::TestCaseGroup(testCtx, "compute", "Compute Instructions with special opcodes/operands"));
6753         de::MovePtr<tcu::TestCaseGroup> graphicsTests           (new tcu::TestCaseGroup(testCtx, "graphics", "Graphics Instructions with special opcodes/operands"));
6754
6755         computeTests->addChild(createOpNopGroup(testCtx));
6756         computeTests->addChild(createOpFUnordGroup(testCtx));
6757         computeTests->addChild(createOpAtomicGroup(testCtx, false));
6758         computeTests->addChild(createOpAtomicGroup(testCtx, true)); // Using new StorageBuffer decoration
6759         computeTests->addChild(createOpLineGroup(testCtx));
6760         computeTests->addChild(createOpNoLineGroup(testCtx));
6761         computeTests->addChild(createOpConstantNullGroup(testCtx));
6762         computeTests->addChild(createOpConstantCompositeGroup(testCtx));
6763         computeTests->addChild(createOpConstantUsageGroup(testCtx));
6764         computeTests->addChild(createSpecConstantGroup(testCtx));
6765         computeTests->addChild(createOpSourceGroup(testCtx));
6766         computeTests->addChild(createOpSourceExtensionGroup(testCtx));
6767         computeTests->addChild(createDecorationGroupGroup(testCtx));
6768         computeTests->addChild(createOpPhiGroup(testCtx));
6769         computeTests->addChild(createLoopControlGroup(testCtx));
6770         computeTests->addChild(createFunctionControlGroup(testCtx));
6771         computeTests->addChild(createSelectionControlGroup(testCtx));
6772         computeTests->addChild(createBlockOrderGroup(testCtx));
6773         computeTests->addChild(createMultipleShaderGroup(testCtx));
6774         computeTests->addChild(createMemoryAccessGroup(testCtx));
6775         computeTests->addChild(createOpCopyMemoryGroup(testCtx));
6776         computeTests->addChild(createOpCopyObjectGroup(testCtx));
6777         computeTests->addChild(createNoContractionGroup(testCtx));
6778         computeTests->addChild(createOpUndefGroup(testCtx));
6779         computeTests->addChild(createOpUnreachableGroup(testCtx));
6780         computeTests ->addChild(createOpQuantizeToF16Group(testCtx));
6781         computeTests ->addChild(createOpFRemGroup(testCtx));
6782         computeTests->addChild(createSConvertTests(testCtx));
6783         computeTests->addChild(createUConvertTests(testCtx));
6784         computeTests->addChild(createOpCompositeInsertGroup(testCtx));
6785         computeTests->addChild(createOpInBoundsAccessChainGroup(testCtx));
6786         computeTests->addChild(createShaderDefaultOutputGroup(testCtx));
6787         computeTests->addChild(create16BitStorageComputeGroup(testCtx));
6788         computeTests->addChild(createVariablePointersComputeGroup(testCtx));
6789         graphicsTests->addChild(createOpNopTests(testCtx));
6790         graphicsTests->addChild(createOpSourceTests(testCtx));
6791         graphicsTests->addChild(createOpSourceContinuedTests(testCtx));
6792         graphicsTests->addChild(createOpLineTests(testCtx));
6793         graphicsTests->addChild(createOpNoLineTests(testCtx));
6794         graphicsTests->addChild(createOpConstantNullTests(testCtx));
6795         graphicsTests->addChild(createOpConstantCompositeTests(testCtx));
6796         graphicsTests->addChild(createMemoryAccessTests(testCtx));
6797         graphicsTests->addChild(createOpUndefTests(testCtx));
6798         graphicsTests->addChild(createSelectionBlockOrderTests(testCtx));
6799         graphicsTests->addChild(createModuleTests(testCtx));
6800         graphicsTests->addChild(createSwitchBlockOrderTests(testCtx));
6801         graphicsTests->addChild(createOpPhiTests(testCtx));
6802         graphicsTests->addChild(createNoContractionTests(testCtx));
6803         graphicsTests->addChild(createOpQuantizeTests(testCtx));
6804         graphicsTests->addChild(createLoopTests(testCtx));
6805         graphicsTests->addChild(createSpecConstantTests(testCtx));
6806         graphicsTests->addChild(createSpecConstantOpQuantizeToF16Group(testCtx));
6807         graphicsTests->addChild(createBarrierTests(testCtx));
6808         graphicsTests->addChild(createDecorationGroupTests(testCtx));
6809         graphicsTests->addChild(createFRemTests(testCtx));
6810
6811         graphicsTests->addChild(create16BitStorageGraphicsGroup(testCtx));
6812         graphicsTests->addChild(createVariablePointersGraphicsGroup(testCtx));
6813
6814         instructionTests->addChild(computeTests.release());
6815         instructionTests->addChild(graphicsTests.release());
6816
6817         return instructionTests.release();
6818 }
6819
6820 } // SpirVAssembly
6821 } // vkt