arm64: zynqmp: Fix misspelled choice default
[platform/kernel/u-boot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12
13 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
14         (struct socfpga_sdr_rw_load_manager *)
15                 (SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
16 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
17         (struct socfpga_sdr_rw_load_jump_manager *)
18                 (SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
19 static struct socfpga_sdr_reg_file *sdr_reg_file =
20         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
21 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
22         (struct socfpga_sdr_scc_mgr *)
23                 (SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
24 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
25         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
26 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
27         (struct socfpga_phy_mgr_cfg *)
28                 (SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
29 static struct socfpga_data_mgr *data_mgr =
30         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
31 static struct socfpga_sdr_ctrl *sdr_ctrl =
32         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
33
34 const struct socfpga_sdram_rw_mgr_config *rwcfg;
35 const struct socfpga_sdram_io_config *iocfg;
36 const struct socfpga_sdram_misc_config *misccfg;
37
38 #define DELTA_D         1
39
40 /*
41  * In order to reduce ROM size, most of the selectable calibration steps are
42  * decided at compile time based on the user's calibration mode selection,
43  * as captured by the STATIC_CALIB_STEPS selection below.
44  *
45  * However, to support simulation-time selection of fast simulation mode, where
46  * we skip everything except the bare minimum, we need a few of the steps to
47  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
48  * check, which is based on the rtl-supplied value, or we dynamically compute
49  * the value to use based on the dynamically-chosen calibration mode
50  */
51
52 #define DLEVEL 0
53 #define STATIC_IN_RTL_SIM 0
54 #define STATIC_SKIP_DELAY_LOOPS 0
55
56 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
57         STATIC_SKIP_DELAY_LOOPS)
58
59 /* calibration steps requested by the rtl */
60 static u16 dyn_calib_steps;
61
62 /*
63  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
64  * instead of static, we use boolean logic to select between
65  * non-skip and skip values
66  *
67  * The mask is set to include all bits when not-skipping, but is
68  * zero when skipping
69  */
70
71 static u16 skip_delay_mask;     /* mask off bits when skipping/not-skipping */
72
73 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
74         ((non_skip_value) & skip_delay_mask)
75
76 static struct gbl_type *gbl;
77 static struct param_type *param;
78
79 static void set_failing_group_stage(u32 group, u32 stage,
80         u32 substage)
81 {
82         /*
83          * Only set the global stage if there was not been any other
84          * failing group
85          */
86         if (gbl->error_stage == CAL_STAGE_NIL)  {
87                 gbl->error_substage = substage;
88                 gbl->error_stage = stage;
89                 gbl->error_group = group;
90         }
91 }
92
93 static void reg_file_set_group(u16 set_group)
94 {
95         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
96 }
97
98 static void reg_file_set_stage(u8 set_stage)
99 {
100         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
101 }
102
103 static void reg_file_set_sub_stage(u8 set_sub_stage)
104 {
105         set_sub_stage &= 0xff;
106         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
107 }
108
109 /**
110  * phy_mgr_initialize() - Initialize PHY Manager
111  *
112  * Initialize PHY Manager.
113  */
114 static void phy_mgr_initialize(void)
115 {
116         u32 ratio;
117
118         debug("%s:%d\n", __func__, __LINE__);
119         /* Calibration has control over path to memory */
120         /*
121          * In Hard PHY this is a 2-bit control:
122          * 0: AFI Mux Select
123          * 1: DDIO Mux Select
124          */
125         writel(0x3, &phy_mgr_cfg->mux_sel);
126
127         /* USER memory clock is not stable we begin initialization  */
128         writel(0, &phy_mgr_cfg->reset_mem_stbl);
129
130         /* USER calibration status all set to zero */
131         writel(0, &phy_mgr_cfg->cal_status);
132
133         writel(0, &phy_mgr_cfg->cal_debug_info);
134
135         /* Init params only if we do NOT skip calibration. */
136         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
137                 return;
138
139         ratio = rwcfg->mem_dq_per_read_dqs /
140                 rwcfg->mem_virtual_groups_per_read_dqs;
141         param->read_correct_mask_vg = (1 << ratio) - 1;
142         param->write_correct_mask_vg = (1 << ratio) - 1;
143         param->read_correct_mask = (1 << rwcfg->mem_dq_per_read_dqs) - 1;
144         param->write_correct_mask = (1 << rwcfg->mem_dq_per_write_dqs) - 1;
145 }
146
147 /**
148  * set_rank_and_odt_mask() - Set Rank and ODT mask
149  * @rank:       Rank mask
150  * @odt_mode:   ODT mode, OFF or READ_WRITE
151  *
152  * Set Rank and ODT mask (On-Die Termination).
153  */
154 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
155 {
156         u32 odt_mask_0 = 0;
157         u32 odt_mask_1 = 0;
158         u32 cs_and_odt_mask;
159
160         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
161                 odt_mask_0 = 0x0;
162                 odt_mask_1 = 0x0;
163         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
164                 switch (rwcfg->mem_number_of_ranks) {
165                 case 1: /* 1 Rank */
166                         /* Read: ODT = 0 ; Write: ODT = 1 */
167                         odt_mask_0 = 0x0;
168                         odt_mask_1 = 0x1;
169                         break;
170                 case 2: /* 2 Ranks */
171                         if (rwcfg->mem_number_of_cs_per_dimm == 1) {
172                                 /*
173                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
174                                  *   OR
175                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
176                                  *
177                                  * Since MEM_NUMBER_OF_RANKS is 2, they
178                                  * are both single rank with 2 CS each
179                                  * (special for RDIMM).
180                                  *
181                                  * Read: Turn on ODT on the opposite rank
182                                  * Write: Turn on ODT on all ranks
183                                  */
184                                 odt_mask_0 = 0x3 & ~(1 << rank);
185                                 odt_mask_1 = 0x3;
186                         } else {
187                                 /*
188                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
189                                  *
190                                  * Read: Turn on ODT off on all ranks
191                                  * Write: Turn on ODT on active rank
192                                  */
193                                 odt_mask_0 = 0x0;
194                                 odt_mask_1 = 0x3 & (1 << rank);
195                         }
196                         break;
197                 case 4: /* 4 Ranks */
198                         /* Read:
199                          * ----------+-----------------------+
200                          *           |         ODT           |
201                          * Read From +-----------------------+
202                          *   Rank    |  3  |  2  |  1  |  0  |
203                          * ----------+-----+-----+-----+-----+
204                          *     0     |  0  |  1  |  0  |  0  |
205                          *     1     |  1  |  0  |  0  |  0  |
206                          *     2     |  0  |  0  |  0  |  1  |
207                          *     3     |  0  |  0  |  1  |  0  |
208                          * ----------+-----+-----+-----+-----+
209                          *
210                          * Write:
211                          * ----------+-----------------------+
212                          *           |         ODT           |
213                          * Write To  +-----------------------+
214                          *   Rank    |  3  |  2  |  1  |  0  |
215                          * ----------+-----+-----+-----+-----+
216                          *     0     |  0  |  1  |  0  |  1  |
217                          *     1     |  1  |  0  |  1  |  0  |
218                          *     2     |  0  |  1  |  0  |  1  |
219                          *     3     |  1  |  0  |  1  |  0  |
220                          * ----------+-----+-----+-----+-----+
221                          */
222                         switch (rank) {
223                         case 0:
224                                 odt_mask_0 = 0x4;
225                                 odt_mask_1 = 0x5;
226                                 break;
227                         case 1:
228                                 odt_mask_0 = 0x8;
229                                 odt_mask_1 = 0xA;
230                                 break;
231                         case 2:
232                                 odt_mask_0 = 0x1;
233                                 odt_mask_1 = 0x5;
234                                 break;
235                         case 3:
236                                 odt_mask_0 = 0x2;
237                                 odt_mask_1 = 0xA;
238                                 break;
239                         }
240                         break;
241                 }
242         }
243
244         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
245                           ((0xFF & odt_mask_0) << 8) |
246                           ((0xFF & odt_mask_1) << 16);
247         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
248                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
249 }
250
251 /**
252  * scc_mgr_set() - Set SCC Manager register
253  * @off:        Base offset in SCC Manager space
254  * @grp:        Read/Write group
255  * @val:        Value to be set
256  *
257  * This function sets the SCC Manager (Scan Chain Control Manager) register.
258  */
259 static void scc_mgr_set(u32 off, u32 grp, u32 val)
260 {
261         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
262 }
263
264 /**
265  * scc_mgr_initialize() - Initialize SCC Manager registers
266  *
267  * Initialize SCC Manager registers.
268  */
269 static void scc_mgr_initialize(void)
270 {
271         /*
272          * Clear register file for HPS. 16 (2^4) is the size of the
273          * full register file in the scc mgr:
274          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
275          *                             MEM_IF_READ_DQS_WIDTH - 1);
276          */
277         int i;
278
279         for (i = 0; i < 16; i++) {
280                 debug_cond(DLEVEL >= 1, "%s:%d: Clearing SCC RFILE index %u\n",
281                            __func__, __LINE__, i);
282                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, i, 0);
283         }
284 }
285
286 static void scc_mgr_set_dqdqs_output_phase(u32 write_group, u32 phase)
287 {
288         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
289 }
290
291 static void scc_mgr_set_dqs_bus_in_delay(u32 read_group, u32 delay)
292 {
293         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
294 }
295
296 static void scc_mgr_set_dqs_en_phase(u32 read_group, u32 phase)
297 {
298         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
299 }
300
301 static void scc_mgr_set_dqs_en_delay(u32 read_group, u32 delay)
302 {
303         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
304 }
305
306 static void scc_mgr_set_dq_in_delay(u32 dq_in_group, u32 delay)
307 {
308         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
309 }
310
311 static void scc_mgr_set_dqs_io_in_delay(u32 delay)
312 {
313         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
314                     delay);
315 }
316
317 static void scc_mgr_set_dm_in_delay(u32 dm, u32 delay)
318 {
319         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET,
320                     rwcfg->mem_dq_per_write_dqs + 1 + dm,
321                     delay);
322 }
323
324 static void scc_mgr_set_dq_out1_delay(u32 dq_in_group, u32 delay)
325 {
326         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
327 }
328
329 static void scc_mgr_set_dqs_out1_delay(u32 delay)
330 {
331         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
332                     delay);
333 }
334
335 static void scc_mgr_set_dm_out1_delay(u32 dm, u32 delay)
336 {
337         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
338                     rwcfg->mem_dq_per_write_dqs + 1 + dm,
339                     delay);
340 }
341
342 /* load up dqs config settings */
343 static void scc_mgr_load_dqs(u32 dqs)
344 {
345         writel(dqs, &sdr_scc_mgr->dqs_ena);
346 }
347
348 /* load up dqs io config settings */
349 static void scc_mgr_load_dqs_io(void)
350 {
351         writel(0, &sdr_scc_mgr->dqs_io_ena);
352 }
353
354 /* load up dq config settings */
355 static void scc_mgr_load_dq(u32 dq_in_group)
356 {
357         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
358 }
359
360 /* load up dm config settings */
361 static void scc_mgr_load_dm(u32 dm)
362 {
363         writel(dm, &sdr_scc_mgr->dm_ena);
364 }
365
366 /**
367  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
368  * @off:        Base offset in SCC Manager space
369  * @grp:        Read/Write group
370  * @val:        Value to be set
371  * @update:     If non-zero, trigger SCC Manager update for all ranks
372  *
373  * This function sets the SCC Manager (Scan Chain Control Manager) register
374  * and optionally triggers the SCC update for all ranks.
375  */
376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
377                                   const int update)
378 {
379         u32 r;
380
381         for (r = 0; r < rwcfg->mem_number_of_ranks;
382              r += NUM_RANKS_PER_SHADOW_REG) {
383                 scc_mgr_set(off, grp, val);
384
385                 if (update || (r == 0)) {
386                         writel(grp, &sdr_scc_mgr->dqs_ena);
387                         writel(0, &sdr_scc_mgr->update);
388                 }
389         }
390 }
391
392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
393 {
394         /*
395          * USER although the h/w doesn't support different phases per
396          * shadow register, for simplicity our scc manager modeling
397          * keeps different phase settings per shadow reg, and it's
398          * important for us to keep them in sync to match h/w.
399          * for efficiency, the scan chain update should occur only
400          * once to sr0.
401          */
402         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
403                               read_group, phase, 0);
404 }
405
406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(u32 write_group,
407                                                      u32 phase)
408 {
409         /*
410          * USER although the h/w doesn't support different phases per
411          * shadow register, for simplicity our scc manager modeling
412          * keeps different phase settings per shadow reg, and it's
413          * important for us to keep them in sync to match h/w.
414          * for efficiency, the scan chain update should occur only
415          * once to sr0.
416          */
417         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
418                               write_group, phase, 0);
419 }
420
421 static void scc_mgr_set_dqs_en_delay_all_ranks(u32 read_group,
422                                                u32 delay)
423 {
424         /*
425          * In shadow register mode, the T11 settings are stored in
426          * registers in the core, which are updated by the DQS_ENA
427          * signals. Not issuing the SCC_MGR_UPD command allows us to
428          * save lots of rank switching overhead, by calling
429          * select_shadow_regs_for_update with update_scan_chains
430          * set to 0.
431          */
432         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
433                               read_group, delay, 1);
434 }
435
436 /**
437  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
438  * @write_group:        Write group
439  * @delay:              Delay value
440  *
441  * This function sets the OCT output delay in SCC manager.
442  */
443 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
444 {
445         const int ratio = rwcfg->mem_if_read_dqs_width /
446                           rwcfg->mem_if_write_dqs_width;
447         const int base = write_group * ratio;
448         int i;
449         /*
450          * Load the setting in the SCC manager
451          * Although OCT affects only write data, the OCT delay is controlled
452          * by the DQS logic block which is instantiated once per read group.
453          * For protocols where a write group consists of multiple read groups,
454          * the setting must be set multiple times.
455          */
456         for (i = 0; i < ratio; i++)
457                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
458 }
459
460 /**
461  * scc_mgr_set_hhp_extras() - Set HHP extras.
462  *
463  * Load the fixed setting in the SCC manager HHP extras.
464  */
465 static void scc_mgr_set_hhp_extras(void)
466 {
467         /*
468          * Load the fixed setting in the SCC manager
469          * bits: 0:0 = 1'b1     - DQS bypass
470          * bits: 1:1 = 1'b1     - DQ bypass
471          * bits: 4:2 = 3'b001   - rfifo_mode
472          * bits: 6:5 = 2'b01    - rfifo clock_select
473          * bits: 7:7 = 1'b0     - separate gating from ungating setting
474          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
475          */
476         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
477                           (1 << 2) | (1 << 1) | (1 << 0);
478         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
479                          SCC_MGR_HHP_GLOBALS_OFFSET |
480                          SCC_MGR_HHP_EXTRAS_OFFSET;
481
482         debug_cond(DLEVEL >= 1, "%s:%d Setting HHP Extras\n",
483                    __func__, __LINE__);
484         writel(value, addr);
485         debug_cond(DLEVEL >= 1, "%s:%d Done Setting HHP Extras\n",
486                    __func__, __LINE__);
487 }
488
489 /**
490  * scc_mgr_zero_all() - Zero all DQS config
491  *
492  * Zero all DQS config.
493  */
494 static void scc_mgr_zero_all(void)
495 {
496         int i, r;
497
498         /*
499          * USER Zero all DQS config settings, across all groups and all
500          * shadow registers
501          */
502         for (r = 0; r < rwcfg->mem_number_of_ranks;
503              r += NUM_RANKS_PER_SHADOW_REG) {
504                 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
505                         /*
506                          * The phases actually don't exist on a per-rank basis,
507                          * but there's no harm updating them several times, so
508                          * let's keep the code simple.
509                          */
510                         scc_mgr_set_dqs_bus_in_delay(i, iocfg->dqs_in_reserve);
511                         scc_mgr_set_dqs_en_phase(i, 0);
512                         scc_mgr_set_dqs_en_delay(i, 0);
513                 }
514
515                 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
516                         scc_mgr_set_dqdqs_output_phase(i, 0);
517                         /* Arria V/Cyclone V don't have out2. */
518                         scc_mgr_set_oct_out1_delay(i, iocfg->dqs_out_reserve);
519                 }
520         }
521
522         /* Multicast to all DQS group enables. */
523         writel(0xff, &sdr_scc_mgr->dqs_ena);
524         writel(0, &sdr_scc_mgr->update);
525 }
526
527 /**
528  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
529  * @write_group:        Write group
530  *
531  * Set bypass mode and trigger SCC update.
532  */
533 static void scc_set_bypass_mode(const u32 write_group)
534 {
535         /* Multicast to all DQ enables. */
536         writel(0xff, &sdr_scc_mgr->dq_ena);
537         writel(0xff, &sdr_scc_mgr->dm_ena);
538
539         /* Update current DQS IO enable. */
540         writel(0, &sdr_scc_mgr->dqs_io_ena);
541
542         /* Update the DQS logic. */
543         writel(write_group, &sdr_scc_mgr->dqs_ena);
544
545         /* Hit update. */
546         writel(0, &sdr_scc_mgr->update);
547 }
548
549 /**
550  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
551  * @write_group:        Write group
552  *
553  * Load DQS settings for Write Group, do not trigger SCC update.
554  */
555 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
556 {
557         const int ratio = rwcfg->mem_if_read_dqs_width /
558                           rwcfg->mem_if_write_dqs_width;
559         const int base = write_group * ratio;
560         int i;
561         /*
562          * Load the setting in the SCC manager
563          * Although OCT affects only write data, the OCT delay is controlled
564          * by the DQS logic block which is instantiated once per read group.
565          * For protocols where a write group consists of multiple read groups,
566          * the setting must be set multiple times.
567          */
568         for (i = 0; i < ratio; i++)
569                 writel(base + i, &sdr_scc_mgr->dqs_ena);
570 }
571
572 /**
573  * scc_mgr_zero_group() - Zero all configs for a group
574  *
575  * Zero DQ, DM, DQS and OCT configs for a group.
576  */
577 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
578 {
579         int i, r;
580
581         for (r = 0; r < rwcfg->mem_number_of_ranks;
582              r += NUM_RANKS_PER_SHADOW_REG) {
583                 /* Zero all DQ config settings. */
584                 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
585                         scc_mgr_set_dq_out1_delay(i, 0);
586                         if (!out_only)
587                                 scc_mgr_set_dq_in_delay(i, 0);
588                 }
589
590                 /* Multicast to all DQ enables. */
591                 writel(0xff, &sdr_scc_mgr->dq_ena);
592
593                 /* Zero all DM config settings. */
594                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
595                         if (!out_only)
596                                 scc_mgr_set_dm_in_delay(i, 0);
597                         scc_mgr_set_dm_out1_delay(i, 0);
598                 }
599
600                 /* Multicast to all DM enables. */
601                 writel(0xff, &sdr_scc_mgr->dm_ena);
602
603                 /* Zero all DQS IO settings. */
604                 if (!out_only)
605                         scc_mgr_set_dqs_io_in_delay(0);
606
607                 /* Arria V/Cyclone V don't have out2. */
608                 scc_mgr_set_dqs_out1_delay(iocfg->dqs_out_reserve);
609                 scc_mgr_set_oct_out1_delay(write_group, iocfg->dqs_out_reserve);
610                 scc_mgr_load_dqs_for_write_group(write_group);
611
612                 /* Multicast to all DQS IO enables (only 1 in total). */
613                 writel(0, &sdr_scc_mgr->dqs_io_ena);
614
615                 /* Hit update to zero everything. */
616                 writel(0, &sdr_scc_mgr->update);
617         }
618 }
619
620 /*
621  * apply and load a particular input delay for the DQ pins in a group
622  * group_bgn is the index of the first dq pin (in the write group)
623  */
624 static void scc_mgr_apply_group_dq_in_delay(u32 group_bgn, u32 delay)
625 {
626         u32 i, p;
627
628         for (i = 0, p = group_bgn; i < rwcfg->mem_dq_per_read_dqs; i++, p++) {
629                 scc_mgr_set_dq_in_delay(p, delay);
630                 scc_mgr_load_dq(p);
631         }
632 }
633
634 /**
635  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
636  * @delay:              Delay value
637  *
638  * Apply and load a particular output delay for the DQ pins in a group.
639  */
640 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
641 {
642         int i;
643
644         for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
645                 scc_mgr_set_dq_out1_delay(i, delay);
646                 scc_mgr_load_dq(i);
647         }
648 }
649
650 /* apply and load a particular output delay for the DM pins in a group */
651 static void scc_mgr_apply_group_dm_out1_delay(u32 delay1)
652 {
653         u32 i;
654
655         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
656                 scc_mgr_set_dm_out1_delay(i, delay1);
657                 scc_mgr_load_dm(i);
658         }
659 }
660
661
662 /* apply and load delay on both DQS and OCT out1 */
663 static void scc_mgr_apply_group_dqs_io_and_oct_out1(u32 write_group,
664                                                     u32 delay)
665 {
666         scc_mgr_set_dqs_out1_delay(delay);
667         scc_mgr_load_dqs_io();
668
669         scc_mgr_set_oct_out1_delay(write_group, delay);
670         scc_mgr_load_dqs_for_write_group(write_group);
671 }
672
673 /**
674  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
675  * @write_group:        Write group
676  * @delay:              Delay value
677  *
678  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
679  */
680 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
681                                                   const u32 delay)
682 {
683         u32 i, new_delay;
684
685         /* DQ shift */
686         for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++)
687                 scc_mgr_load_dq(i);
688
689         /* DM shift */
690         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
691                 scc_mgr_load_dm(i);
692
693         /* DQS shift */
694         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
695         if (new_delay > iocfg->io_out2_delay_max) {
696                 debug_cond(DLEVEL >= 1,
697                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
698                            __func__, __LINE__, write_group, delay, new_delay,
699                            iocfg->io_out2_delay_max,
700                            new_delay - iocfg->io_out2_delay_max);
701                 new_delay -= iocfg->io_out2_delay_max;
702                 scc_mgr_set_dqs_out1_delay(new_delay);
703         }
704
705         scc_mgr_load_dqs_io();
706
707         /* OCT shift */
708         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
709         if (new_delay > iocfg->io_out2_delay_max) {
710                 debug_cond(DLEVEL >= 1,
711                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
712                            __func__, __LINE__, write_group, delay,
713                            new_delay, iocfg->io_out2_delay_max,
714                            new_delay - iocfg->io_out2_delay_max);
715                 new_delay -= iocfg->io_out2_delay_max;
716                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
717         }
718
719         scc_mgr_load_dqs_for_write_group(write_group);
720 }
721
722 /**
723  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
724  * @write_group:        Write group
725  * @delay:              Delay value
726  *
727  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
728  */
729 static void
730 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
731                                                 const u32 delay)
732 {
733         int r;
734
735         for (r = 0; r < rwcfg->mem_number_of_ranks;
736              r += NUM_RANKS_PER_SHADOW_REG) {
737                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
738                 writel(0, &sdr_scc_mgr->update);
739         }
740 }
741
742 /**
743  * set_jump_as_return() - Return instruction optimization
744  *
745  * Optimization used to recover some slots in ddr3 inst_rom could be
746  * applied to other protocols if we wanted to
747  */
748 static void set_jump_as_return(void)
749 {
750         /*
751          * To save space, we replace return with jump to special shared
752          * RETURN instruction so we set the counter to large value so that
753          * we always jump.
754          */
755         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
756         writel(rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
757 }
758
759 /**
760  * delay_for_n_mem_clocks() - Delay for N memory clocks
761  * @clocks:     Length of the delay
762  *
763  * Delay for N memory clocks.
764  */
765 static void delay_for_n_mem_clocks(const u32 clocks)
766 {
767         u32 afi_clocks;
768         u16 c_loop;
769         u8 inner;
770         u8 outer;
771
772         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773
774         /* Scale (rounding up) to get afi clocks. */
775         afi_clocks = DIV_ROUND_UP(clocks, misccfg->afi_rate_ratio);
776         if (afi_clocks) /* Temporary underflow protection */
777                 afi_clocks--;
778
779         /*
780          * Note, we don't bother accounting for being off a little
781          * bit because of a few extra instructions in outer loops.
782          * Note, the loops have a test at the end, and do the test
783          * before the decrement, and so always perform the loop
784          * 1 time more than the counter value
785          */
786         c_loop = afi_clocks >> 16;
787         outer = c_loop ? 0xff : (afi_clocks >> 8);
788         inner = outer ? 0xff : afi_clocks;
789
790         /*
791          * rom instructions are structured as follows:
792          *
793          *    IDLE_LOOP2: jnz cntr0, TARGET_A
794          *    IDLE_LOOP1: jnz cntr1, TARGET_B
795          *                return
796          *
797          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
798          * TARGET_B is set to IDLE_LOOP2 as well
799          *
800          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
801          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
802          *
803          * a little confusing, but it helps save precious space in the inst_rom
804          * and sequencer rom and keeps the delays more accurate and reduces
805          * overhead
806          */
807         if (afi_clocks < 0x100) {
808                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
809                        &sdr_rw_load_mgr_regs->load_cntr1);
810
811                 writel(rwcfg->idle_loop1,
812                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
813
814                 writel(rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
815                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
816         } else {
817                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
818                        &sdr_rw_load_mgr_regs->load_cntr0);
819
820                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
821                        &sdr_rw_load_mgr_regs->load_cntr1);
822
823                 writel(rwcfg->idle_loop2,
824                        &sdr_rw_load_jump_mgr_regs->load_jump_add0);
825
826                 writel(rwcfg->idle_loop2,
827                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
828
829                 do {
830                         writel(rwcfg->idle_loop2,
831                                SDR_PHYGRP_RWMGRGRP_ADDRESS |
832                                RW_MGR_RUN_SINGLE_GROUP_OFFSET);
833                 } while (c_loop-- != 0);
834         }
835         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
836 }
837
838 /**
839  * rw_mgr_mem_init_load_regs() - Load instruction registers
840  * @cntr0:      Counter 0 value
841  * @cntr1:      Counter 1 value
842  * @cntr2:      Counter 2 value
843  * @jump:       Jump instruction value
844  *
845  * Load instruction registers.
846  */
847 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
848 {
849         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
850                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
851
852         /* Load counters */
853         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
854                &sdr_rw_load_mgr_regs->load_cntr0);
855         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
856                &sdr_rw_load_mgr_regs->load_cntr1);
857         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
858                &sdr_rw_load_mgr_regs->load_cntr2);
859
860         /* Load jump address */
861         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
862         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
863         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
864
865         /* Execute count instruction */
866         writel(jump, grpaddr);
867 }
868
869 /**
870  * rw_mgr_mem_load_user() - Load user calibration values
871  * @fin1:       Final instruction 1
872  * @fin2:       Final instruction 2
873  * @precharge:  If 1, precharge the banks at the end
874  *
875  * Load user calibration values and optionally precharge the banks.
876  */
877 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
878                                  const int precharge)
879 {
880         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
881                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
882         u32 r;
883
884         for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
885                 /* set rank */
886                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
887
888                 /* precharge all banks ... */
889                 if (precharge)
890                         writel(rwcfg->precharge_all, grpaddr);
891
892                 /*
893                  * USER Use Mirror-ed commands for odd ranks if address
894                  * mirrorring is on
895                  */
896                 if ((rwcfg->mem_address_mirroring >> r) & 0x1) {
897                         set_jump_as_return();
898                         writel(rwcfg->mrs2_mirr, grpaddr);
899                         delay_for_n_mem_clocks(4);
900                         set_jump_as_return();
901                         writel(rwcfg->mrs3_mirr, grpaddr);
902                         delay_for_n_mem_clocks(4);
903                         set_jump_as_return();
904                         writel(rwcfg->mrs1_mirr, grpaddr);
905                         delay_for_n_mem_clocks(4);
906                         set_jump_as_return();
907                         writel(fin1, grpaddr);
908                 } else {
909                         set_jump_as_return();
910                         writel(rwcfg->mrs2, grpaddr);
911                         delay_for_n_mem_clocks(4);
912                         set_jump_as_return();
913                         writel(rwcfg->mrs3, grpaddr);
914                         delay_for_n_mem_clocks(4);
915                         set_jump_as_return();
916                         writel(rwcfg->mrs1, grpaddr);
917                         set_jump_as_return();
918                         writel(fin2, grpaddr);
919                 }
920
921                 if (precharge)
922                         continue;
923
924                 set_jump_as_return();
925                 writel(rwcfg->zqcl, grpaddr);
926
927                 /* tZQinit = tDLLK = 512 ck cycles */
928                 delay_for_n_mem_clocks(512);
929         }
930 }
931
932 /**
933  * rw_mgr_mem_initialize() - Initialize RW Manager
934  *
935  * Initialize RW Manager.
936  */
937 static void rw_mgr_mem_initialize(void)
938 {
939         debug("%s:%d\n", __func__, __LINE__);
940
941         /* The reset / cke part of initialization is broadcasted to all ranks */
942         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
943                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
944
945         /*
946          * Here's how you load register for a loop
947          * Counters are located @ 0x800
948          * Jump address are located @ 0xC00
949          * For both, registers 0 to 3 are selected using bits 3 and 2, like
950          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
951          * I know this ain't pretty, but Avalon bus throws away the 2 least
952          * significant bits
953          */
954
955         /* Start with memory RESET activated */
956
957         /* tINIT = 200us */
958
959         /*
960          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
961          * If a and b are the number of iteration in 2 nested loops
962          * it takes the following number of cycles to complete the operation:
963          * number_of_cycles = ((2 + n) * a + 2) * b
964          * where n is the number of instruction in the inner loop
965          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
966          * b = 6A
967          */
968         rw_mgr_mem_init_load_regs(misccfg->tinit_cntr0_val,
969                                   misccfg->tinit_cntr1_val,
970                                   misccfg->tinit_cntr2_val,
971                                   rwcfg->init_reset_0_cke_0);
972
973         /* Indicate that memory is stable. */
974         writel(1, &phy_mgr_cfg->reset_mem_stbl);
975
976         /*
977          * transition the RESET to high
978          * Wait for 500us
979          */
980
981         /*
982          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
983          * If a and b are the number of iteration in 2 nested loops
984          * it takes the following number of cycles to complete the operation
985          * number_of_cycles = ((2 + n) * a + 2) * b
986          * where n is the number of instruction in the inner loop
987          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
988          * b = FF
989          */
990         rw_mgr_mem_init_load_regs(misccfg->treset_cntr0_val,
991                                   misccfg->treset_cntr1_val,
992                                   misccfg->treset_cntr2_val,
993                                   rwcfg->init_reset_1_cke_0);
994
995         /* Bring up clock enable. */
996
997         /* tXRP < 250 ck cycles */
998         delay_for_n_mem_clocks(250);
999
1000         rw_mgr_mem_load_user(rwcfg->mrs0_dll_reset_mirr, rwcfg->mrs0_dll_reset,
1001                              0);
1002 }
1003
1004 /**
1005  * rw_mgr_mem_handoff() - Hand off the memory to user
1006  *
1007  * At the end of calibration we have to program the user settings in
1008  * and hand off the memory to the user.
1009  */
1010 static void rw_mgr_mem_handoff(void)
1011 {
1012         rw_mgr_mem_load_user(rwcfg->mrs0_user_mirr, rwcfg->mrs0_user, 1);
1013         /*
1014          * Need to wait tMOD (12CK or 15ns) time before issuing other
1015          * commands, but we will have plenty of NIOS cycles before actual
1016          * handoff so its okay.
1017          */
1018 }
1019
1020 /**
1021  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1022  * @group:      Write Group
1023  * @use_dm:     Use DM
1024  *
1025  * Issue write test command. Two variants are provided, one that just tests
1026  * a write pattern and another that tests datamask functionality.
1027  */
1028 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1029                                                   u32 test_dm)
1030 {
1031         const u32 quick_write_mode =
1032                 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1033                 misccfg->enable_super_quick_calibration;
1034         u32 mcc_instruction;
1035         u32 rw_wl_nop_cycles;
1036
1037         /*
1038          * Set counter and jump addresses for the right
1039          * number of NOP cycles.
1040          * The number of supported NOP cycles can range from -1 to infinity
1041          * Three different cases are handled:
1042          *
1043          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1044          *    mechanism will be used to insert the right number of NOPs
1045          *
1046          * 2. For a number of NOP cycles equals to 0, the micro-instruction
1047          *    issuing the write command will jump straight to the
1048          *    micro-instruction that turns on DQS (for DDRx), or outputs write
1049          *    data (for RLD), skipping
1050          *    the NOP micro-instruction all together
1051          *
1052          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1053          *    turned on in the same micro-instruction that issues the write
1054          *    command. Then we need
1055          *    to directly jump to the micro-instruction that sends out the data
1056          *
1057          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1058          *       (2 and 3). One jump-counter (0) is used to perform multiple
1059          *       write-read operations.
1060          *       one counter left to issue this command in "multiple-group" mode
1061          */
1062
1063         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1064
1065         if (rw_wl_nop_cycles == -1) {
1066                 /*
1067                  * CNTR 2 - We want to execute the special write operation that
1068                  * turns on DQS right away and then skip directly to the
1069                  * instruction that sends out the data. We set the counter to a
1070                  * large number so that the jump is always taken.
1071                  */
1072                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1073
1074                 /* CNTR 3 - Not used */
1075                 if (test_dm) {
1076                         mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0_wl_1;
1077                         writel(rwcfg->lfsr_wr_rd_dm_bank_0_data,
1078                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1079                         writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1080                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1081                 } else {
1082                         mcc_instruction = rwcfg->lfsr_wr_rd_bank_0_wl_1;
1083                         writel(rwcfg->lfsr_wr_rd_bank_0_data,
1084                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1085                         writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1086                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1087                 }
1088         } else if (rw_wl_nop_cycles == 0) {
1089                 /*
1090                  * CNTR 2 - We want to skip the NOP operation and go straight
1091                  * to the DQS enable instruction. We set the counter to a large
1092                  * number so that the jump is always taken.
1093                  */
1094                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1095
1096                 /* CNTR 3 - Not used */
1097                 if (test_dm) {
1098                         mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1099                         writel(rwcfg->lfsr_wr_rd_dm_bank_0_dqs,
1100                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1101                 } else {
1102                         mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1103                         writel(rwcfg->lfsr_wr_rd_bank_0_dqs,
1104                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1105                 }
1106         } else {
1107                 /*
1108                  * CNTR 2 - In this case we want to execute the next instruction
1109                  * and NOT take the jump. So we set the counter to 0. The jump
1110                  * address doesn't count.
1111                  */
1112                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1113                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1114
1115                 /*
1116                  * CNTR 3 - Set the nop counter to the number of cycles we
1117                  * need to loop for, minus 1.
1118                  */
1119                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1120                 if (test_dm) {
1121                         mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1122                         writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1123                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1124                 } else {
1125                         mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1126                         writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1127                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1128                 }
1129         }
1130
1131         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1132                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1133
1134         if (quick_write_mode)
1135                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1136         else
1137                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1138
1139         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1140
1141         /*
1142          * CNTR 1 - This is used to ensure enough time elapses
1143          * for read data to come back.
1144          */
1145         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1146
1147         if (test_dm) {
1148                 writel(rwcfg->lfsr_wr_rd_dm_bank_0_wait,
1149                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1150         } else {
1151                 writel(rwcfg->lfsr_wr_rd_bank_0_wait,
1152                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1153         }
1154
1155         writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1156                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1157                                 (group << 2));
1158 }
1159
1160 /**
1161  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1162  * @rank_bgn:           Rank number
1163  * @write_group:        Write Group
1164  * @use_dm:             Use DM
1165  * @all_correct:        All bits must be correct in the mask
1166  * @bit_chk:            Resulting bit mask after the test
1167  * @all_ranks:          Test all ranks
1168  *
1169  * Test writes, can check for a single bit pass or multiple bit pass.
1170  */
1171 static int
1172 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1173                                 const u32 use_dm, const u32 all_correct,
1174                                 u32 *bit_chk, const u32 all_ranks)
1175 {
1176         const u32 rank_end = all_ranks ?
1177                                 rwcfg->mem_number_of_ranks :
1178                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1179         const u32 shift_ratio = rwcfg->mem_dq_per_write_dqs /
1180                                 rwcfg->mem_virtual_groups_per_write_dqs;
1181         const u32 correct_mask_vg = param->write_correct_mask_vg;
1182
1183         u32 tmp_bit_chk, base_rw_mgr;
1184         int vg, r;
1185
1186         *bit_chk = param->write_correct_mask;
1187
1188         for (r = rank_bgn; r < rank_end; r++) {
1189                 /* Set rank */
1190                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1191
1192                 tmp_bit_chk = 0;
1193                 for (vg = rwcfg->mem_virtual_groups_per_write_dqs - 1;
1194                      vg >= 0; vg--) {
1195                         /* Reset the FIFOs to get pointers to known state. */
1196                         writel(0, &phy_mgr_cmd->fifo_reset);
1197
1198                         rw_mgr_mem_calibrate_write_test_issue(
1199                                 write_group *
1200                                 rwcfg->mem_virtual_groups_per_write_dqs + vg,
1201                                 use_dm);
1202
1203                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1204                         tmp_bit_chk <<= shift_ratio;
1205                         tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1206                 }
1207
1208                 *bit_chk &= tmp_bit_chk;
1209         }
1210
1211         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1212         if (all_correct) {
1213                 debug_cond(DLEVEL >= 2,
1214                            "write_test(%u,%u,ALL) : %u == %u => %i\n",
1215                            write_group, use_dm, *bit_chk,
1216                            param->write_correct_mask,
1217                            *bit_chk == param->write_correct_mask);
1218                 return *bit_chk == param->write_correct_mask;
1219         } else {
1220                 debug_cond(DLEVEL >= 2,
1221                            "write_test(%u,%u,ONE) : %u != %i => %i\n",
1222                            write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1223                 return *bit_chk != 0x00;
1224         }
1225 }
1226
1227 /**
1228  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1229  * @rank_bgn:   Rank number
1230  * @group:      Read/Write Group
1231  * @all_ranks:  Test all ranks
1232  *
1233  * Performs a guaranteed read on the patterns we are going to use during a
1234  * read test to ensure memory works.
1235  */
1236 static int
1237 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1238                                         const u32 all_ranks)
1239 {
1240         const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1241                          RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1242         const u32 addr_offset =
1243                          (group * rwcfg->mem_virtual_groups_per_read_dqs) << 2;
1244         const u32 rank_end = all_ranks ?
1245                                 rwcfg->mem_number_of_ranks :
1246                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1247         const u32 shift_ratio = rwcfg->mem_dq_per_read_dqs /
1248                                 rwcfg->mem_virtual_groups_per_read_dqs;
1249         const u32 correct_mask_vg = param->read_correct_mask_vg;
1250
1251         u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1252         int vg, r;
1253         int ret = 0;
1254
1255         bit_chk = param->read_correct_mask;
1256
1257         for (r = rank_bgn; r < rank_end; r++) {
1258                 /* Set rank */
1259                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1260
1261                 /* Load up a constant bursts of read commands */
1262                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1263                 writel(rwcfg->guaranteed_read,
1264                        &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1265
1266                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1267                 writel(rwcfg->guaranteed_read_cont,
1268                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1269
1270                 tmp_bit_chk = 0;
1271                 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1;
1272                      vg >= 0; vg--) {
1273                         /* Reset the FIFOs to get pointers to known state. */
1274                         writel(0, &phy_mgr_cmd->fifo_reset);
1275                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1276                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1277                         writel(rwcfg->guaranteed_read,
1278                                addr + addr_offset + (vg << 2));
1279
1280                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1281                         tmp_bit_chk <<= shift_ratio;
1282                         tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1283                 }
1284
1285                 bit_chk &= tmp_bit_chk;
1286         }
1287
1288         writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1289
1290         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1291
1292         if (bit_chk != param->read_correct_mask)
1293                 ret = -EIO;
1294
1295         debug_cond(DLEVEL >= 1,
1296                    "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1297                    __func__, __LINE__, group, bit_chk,
1298                    param->read_correct_mask, ret);
1299
1300         return ret;
1301 }
1302
1303 /**
1304  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1305  * @rank_bgn:   Rank number
1306  * @all_ranks:  Test all ranks
1307  *
1308  * Load up the patterns we are going to use during a read test.
1309  */
1310 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1311                                                     const int all_ranks)
1312 {
1313         const u32 rank_end = all_ranks ?
1314                         rwcfg->mem_number_of_ranks :
1315                         (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1316         u32 r;
1317
1318         debug("%s:%d\n", __func__, __LINE__);
1319
1320         for (r = rank_bgn; r < rank_end; r++) {
1321                 /* set rank */
1322                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1323
1324                 /* Load up a constant bursts */
1325                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1326
1327                 writel(rwcfg->guaranteed_write_wait0,
1328                        &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1329
1330                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1331
1332                 writel(rwcfg->guaranteed_write_wait1,
1333                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1334
1335                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1336
1337                 writel(rwcfg->guaranteed_write_wait2,
1338                        &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1339
1340                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1341
1342                 writel(rwcfg->guaranteed_write_wait3,
1343                        &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1344
1345                 writel(rwcfg->guaranteed_write, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1346                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1347         }
1348
1349         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1350 }
1351
1352 /**
1353  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1354  * @rank_bgn:           Rank number
1355  * @group:              Read/Write group
1356  * @num_tries:          Number of retries of the test
1357  * @all_correct:        All bits must be correct in the mask
1358  * @bit_chk:            Resulting bit mask after the test
1359  * @all_groups:         Test all R/W groups
1360  * @all_ranks:          Test all ranks
1361  *
1362  * Try a read and see if it returns correct data back. Test has dummy reads
1363  * inserted into the mix used to align DQS enable. Test has more thorough
1364  * checks than the regular read test.
1365  */
1366 static int
1367 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1368                                const u32 num_tries, const u32 all_correct,
1369                                u32 *bit_chk,
1370                                const u32 all_groups, const u32 all_ranks)
1371 {
1372         const u32 rank_end = all_ranks ? rwcfg->mem_number_of_ranks :
1373                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1374         const u32 quick_read_mode =
1375                 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1376                  misccfg->enable_super_quick_calibration);
1377         u32 correct_mask_vg = param->read_correct_mask_vg;
1378         u32 tmp_bit_chk;
1379         u32 base_rw_mgr;
1380         u32 addr;
1381
1382         int r, vg, ret;
1383
1384         *bit_chk = param->read_correct_mask;
1385
1386         for (r = rank_bgn; r < rank_end; r++) {
1387                 /* set rank */
1388                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1389
1390                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1391
1392                 writel(rwcfg->read_b2b_wait1,
1393                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1394
1395                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1396                 writel(rwcfg->read_b2b_wait2,
1397                        &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1398
1399                 if (quick_read_mode)
1400                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1401                         /* need at least two (1+1) reads to capture failures */
1402                 else if (all_groups)
1403                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1404                 else
1405                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1406
1407                 writel(rwcfg->read_b2b,
1408                        &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1409                 if (all_groups)
1410                         writel(rwcfg->mem_if_read_dqs_width *
1411                                rwcfg->mem_virtual_groups_per_read_dqs - 1,
1412                                &sdr_rw_load_mgr_regs->load_cntr3);
1413                 else
1414                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1415
1416                 writel(rwcfg->read_b2b,
1417                        &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1418
1419                 tmp_bit_chk = 0;
1420                 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; vg >= 0;
1421                      vg--) {
1422                         /* Reset the FIFOs to get pointers to known state. */
1423                         writel(0, &phy_mgr_cmd->fifo_reset);
1424                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1425                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1426
1427                         if (all_groups) {
1428                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1429                                        RW_MGR_RUN_ALL_GROUPS_OFFSET;
1430                         } else {
1431                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1432                                        RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1433                         }
1434
1435                         writel(rwcfg->read_b2b, addr +
1436                                ((group *
1437                                  rwcfg->mem_virtual_groups_per_read_dqs +
1438                                  vg) << 2));
1439
1440                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1441                         tmp_bit_chk <<= rwcfg->mem_dq_per_read_dqs /
1442                                         rwcfg->mem_virtual_groups_per_read_dqs;
1443                         tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1444                 }
1445
1446                 *bit_chk &= tmp_bit_chk;
1447         }
1448
1449         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1450         writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1451
1452         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1453
1454         if (all_correct) {
1455                 ret = (*bit_chk == param->read_correct_mask);
1456                 debug_cond(DLEVEL >= 2,
1457                            "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1458                            __func__, __LINE__, group, all_groups, *bit_chk,
1459                            param->read_correct_mask, ret);
1460         } else  {
1461                 ret = (*bit_chk != 0x00);
1462                 debug_cond(DLEVEL >= 2,
1463                            "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1464                            __func__, __LINE__, group, all_groups, *bit_chk,
1465                            0, ret);
1466         }
1467
1468         return ret;
1469 }
1470
1471 /**
1472  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1473  * @grp:                Read/Write group
1474  * @num_tries:          Number of retries of the test
1475  * @all_correct:        All bits must be correct in the mask
1476  * @all_groups:         Test all R/W groups
1477  *
1478  * Perform a READ test across all memory ranks.
1479  */
1480 static int
1481 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1482                                          const u32 all_correct,
1483                                          const u32 all_groups)
1484 {
1485         u32 bit_chk;
1486         return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1487                                               &bit_chk, all_groups, 1);
1488 }
1489
1490 /**
1491  * rw_mgr_incr_vfifo() - Increase VFIFO value
1492  * @grp:        Read/Write group
1493  *
1494  * Increase VFIFO value.
1495  */
1496 static void rw_mgr_incr_vfifo(const u32 grp)
1497 {
1498         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1499 }
1500
1501 /**
1502  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1503  * @grp:        Read/Write group
1504  *
1505  * Decrease VFIFO value.
1506  */
1507 static void rw_mgr_decr_vfifo(const u32 grp)
1508 {
1509         u32 i;
1510
1511         for (i = 0; i < misccfg->read_valid_fifo_size - 1; i++)
1512                 rw_mgr_incr_vfifo(grp);
1513 }
1514
1515 /**
1516  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1517  * @grp:        Read/Write group
1518  *
1519  * Push VFIFO until a failing read happens.
1520  */
1521 static int find_vfifo_failing_read(const u32 grp)
1522 {
1523         u32 v, ret, fail_cnt = 0;
1524
1525         for (v = 0; v < misccfg->read_valid_fifo_size; v++) {
1526                 debug_cond(DLEVEL >= 2, "%s:%d: vfifo %u\n",
1527                            __func__, __LINE__, v);
1528                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1529                                                 PASS_ONE_BIT, 0);
1530                 if (!ret) {
1531                         fail_cnt++;
1532
1533                         if (fail_cnt == 2)
1534                                 return v;
1535                 }
1536
1537                 /* Fiddle with FIFO. */
1538                 rw_mgr_incr_vfifo(grp);
1539         }
1540
1541         /* No failing read found! Something must have gone wrong. */
1542         debug_cond(DLEVEL >= 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1543         return 0;
1544 }
1545
1546 /**
1547  * sdr_find_phase_delay() - Find DQS enable phase or delay
1548  * @working:    If 1, look for working phase/delay, if 0, look for non-working
1549  * @delay:      If 1, look for delay, if 0, look for phase
1550  * @grp:        Read/Write group
1551  * @work:       Working window position
1552  * @work_inc:   Working window increment
1553  * @pd:         DQS Phase/Delay Iterator
1554  *
1555  * Find working or non-working DQS enable phase setting.
1556  */
1557 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1558                                 u32 *work, const u32 work_inc, u32 *pd)
1559 {
1560         const u32 max = delay ? iocfg->dqs_en_delay_max :
1561                                 iocfg->dqs_en_phase_max;
1562         u32 ret;
1563
1564         for (; *pd <= max; (*pd)++) {
1565                 if (delay)
1566                         scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1567                 else
1568                         scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1569
1570                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1571                                         PASS_ONE_BIT, 0);
1572                 if (!working)
1573                         ret = !ret;
1574
1575                 if (ret)
1576                         return 0;
1577
1578                 if (work)
1579                         *work += work_inc;
1580         }
1581
1582         return -EINVAL;
1583 }
1584 /**
1585  * sdr_find_phase() - Find DQS enable phase
1586  * @working:    If 1, look for working phase, if 0, look for non-working phase
1587  * @grp:        Read/Write group
1588  * @work:       Working window position
1589  * @i:          Iterator
1590  * @p:          DQS Phase Iterator
1591  *
1592  * Find working or non-working DQS enable phase setting.
1593  */
1594 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1595                           u32 *i, u32 *p)
1596 {
1597         const u32 end = misccfg->read_valid_fifo_size + (working ? 0 : 1);
1598         int ret;
1599
1600         for (; *i < end; (*i)++) {
1601                 if (working)
1602                         *p = 0;
1603
1604                 ret = sdr_find_phase_delay(working, 0, grp, work,
1605                                            iocfg->delay_per_opa_tap, p);
1606                 if (!ret)
1607                         return 0;
1608
1609                 if (*p > iocfg->dqs_en_phase_max) {
1610                         /* Fiddle with FIFO. */
1611                         rw_mgr_incr_vfifo(grp);
1612                         if (!working)
1613                                 *p = 0;
1614                 }
1615         }
1616
1617         return -EINVAL;
1618 }
1619
1620 /**
1621  * sdr_working_phase() - Find working DQS enable phase
1622  * @grp:        Read/Write group
1623  * @work_bgn:   Working window start position
1624  * @d:          dtaps output value
1625  * @p:          DQS Phase Iterator
1626  * @i:          Iterator
1627  *
1628  * Find working DQS enable phase setting.
1629  */
1630 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1631                              u32 *p, u32 *i)
1632 {
1633         const u32 dtaps_per_ptap = iocfg->delay_per_opa_tap /
1634                                    iocfg->delay_per_dqs_en_dchain_tap;
1635         int ret;
1636
1637         *work_bgn = 0;
1638
1639         for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1640                 *i = 0;
1641                 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1642                 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1643                 if (!ret)
1644                         return 0;
1645                 *work_bgn += iocfg->delay_per_dqs_en_dchain_tap;
1646         }
1647
1648         /* Cannot find working solution */
1649         debug_cond(DLEVEL >= 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1650                    __func__, __LINE__);
1651         return -EINVAL;
1652 }
1653
1654 /**
1655  * sdr_backup_phase() - Find DQS enable backup phase
1656  * @grp:        Read/Write group
1657  * @work_bgn:   Working window start position
1658  * @p:          DQS Phase Iterator
1659  *
1660  * Find DQS enable backup phase setting.
1661  */
1662 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1663 {
1664         u32 tmp_delay, d;
1665         int ret;
1666
1667         /* Special case code for backing up a phase */
1668         if (*p == 0) {
1669                 *p = iocfg->dqs_en_phase_max;
1670                 rw_mgr_decr_vfifo(grp);
1671         } else {
1672                 (*p)--;
1673         }
1674         tmp_delay = *work_bgn - iocfg->delay_per_opa_tap;
1675         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1676
1677         for (d = 0; d <= iocfg->dqs_en_delay_max && tmp_delay < *work_bgn;
1678              d++) {
1679                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1680
1681                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1682                                         PASS_ONE_BIT, 0);
1683                 if (ret) {
1684                         *work_bgn = tmp_delay;
1685                         break;
1686                 }
1687
1688                 tmp_delay += iocfg->delay_per_dqs_en_dchain_tap;
1689         }
1690
1691         /* Restore VFIFO to old state before we decremented it (if needed). */
1692         (*p)++;
1693         if (*p > iocfg->dqs_en_phase_max) {
1694                 *p = 0;
1695                 rw_mgr_incr_vfifo(grp);
1696         }
1697
1698         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1699 }
1700
1701 /**
1702  * sdr_nonworking_phase() - Find non-working DQS enable phase
1703  * @grp:        Read/Write group
1704  * @work_end:   Working window end position
1705  * @p:          DQS Phase Iterator
1706  * @i:          Iterator
1707  *
1708  * Find non-working DQS enable phase setting.
1709  */
1710 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1711 {
1712         int ret;
1713
1714         (*p)++;
1715         *work_end += iocfg->delay_per_opa_tap;
1716         if (*p > iocfg->dqs_en_phase_max) {
1717                 /* Fiddle with FIFO. */
1718                 *p = 0;
1719                 rw_mgr_incr_vfifo(grp);
1720         }
1721
1722         ret = sdr_find_phase(0, grp, work_end, i, p);
1723         if (ret) {
1724                 /* Cannot see edge of failing read. */
1725                 debug_cond(DLEVEL >= 2, "%s:%d: end: failed\n",
1726                            __func__, __LINE__);
1727         }
1728
1729         return ret;
1730 }
1731
1732 /**
1733  * sdr_find_window_center() - Find center of the working DQS window.
1734  * @grp:        Read/Write group
1735  * @work_bgn:   First working settings
1736  * @work_end:   Last working settings
1737  *
1738  * Find center of the working DQS enable window.
1739  */
1740 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1741                                   const u32 work_end)
1742 {
1743         u32 work_mid;
1744         int tmp_delay = 0;
1745         int i, p, d;
1746
1747         work_mid = (work_bgn + work_end) / 2;
1748
1749         debug_cond(DLEVEL >= 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1750                    work_bgn, work_end, work_mid);
1751         /* Get the middle delay to be less than a VFIFO delay */
1752         tmp_delay = (iocfg->dqs_en_phase_max + 1) * iocfg->delay_per_opa_tap;
1753
1754         debug_cond(DLEVEL >= 2, "vfifo ptap delay %d\n", tmp_delay);
1755         work_mid %= tmp_delay;
1756         debug_cond(DLEVEL >= 2, "new work_mid %d\n", work_mid);
1757
1758         tmp_delay = rounddown(work_mid, iocfg->delay_per_opa_tap);
1759         if (tmp_delay > iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap)
1760                 tmp_delay = iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap;
1761         p = tmp_delay / iocfg->delay_per_opa_tap;
1762
1763         debug_cond(DLEVEL >= 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1764
1765         d = DIV_ROUND_UP(work_mid - tmp_delay,
1766                          iocfg->delay_per_dqs_en_dchain_tap);
1767         if (d > iocfg->dqs_en_delay_max)
1768                 d = iocfg->dqs_en_delay_max;
1769         tmp_delay += d * iocfg->delay_per_dqs_en_dchain_tap;
1770
1771         debug_cond(DLEVEL >= 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1772
1773         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1774         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1775
1776         /*
1777          * push vfifo until we can successfully calibrate. We can do this
1778          * because the largest possible margin in 1 VFIFO cycle.
1779          */
1780         for (i = 0; i < misccfg->read_valid_fifo_size; i++) {
1781                 debug_cond(DLEVEL >= 2, "find_dqs_en_phase: center\n");
1782                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1783                                                              PASS_ONE_BIT,
1784                                                              0)) {
1785                         debug_cond(DLEVEL >= 2,
1786                                    "%s:%d center: found: ptap=%u dtap=%u\n",
1787                                    __func__, __LINE__, p, d);
1788                         return 0;
1789                 }
1790
1791                 /* Fiddle with FIFO. */
1792                 rw_mgr_incr_vfifo(grp);
1793         }
1794
1795         debug_cond(DLEVEL >= 2, "%s:%d center: failed.\n",
1796                    __func__, __LINE__);
1797         return -EINVAL;
1798 }
1799
1800 /**
1801  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1802  * @grp:        Read/Write Group
1803  *
1804  * Find a good DQS enable to use.
1805  */
1806 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1807 {
1808         u32 d, p, i;
1809         u32 dtaps_per_ptap;
1810         u32 work_bgn, work_end;
1811         u32 found_passing_read, found_failing_read = 0, initial_failing_dtap;
1812         int ret;
1813
1814         debug("%s:%d %u\n", __func__, __LINE__, grp);
1815
1816         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1817
1818         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1819         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1820
1821         /* Step 0: Determine number of delay taps for each phase tap. */
1822         dtaps_per_ptap = iocfg->delay_per_opa_tap /
1823                          iocfg->delay_per_dqs_en_dchain_tap;
1824
1825         /* Step 1: First push vfifo until we get a failing read. */
1826         find_vfifo_failing_read(grp);
1827
1828         /* Step 2: Find first working phase, increment in ptaps. */
1829         work_bgn = 0;
1830         ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1831         if (ret)
1832                 return ret;
1833
1834         work_end = work_bgn;
1835
1836         /*
1837          * If d is 0 then the working window covers a phase tap and we can
1838          * follow the old procedure. Otherwise, we've found the beginning
1839          * and we need to increment the dtaps until we find the end.
1840          */
1841         if (d == 0) {
1842                 /*
1843                  * Step 3a: If we have room, back off by one and
1844                  *          increment in dtaps.
1845                  */
1846                 sdr_backup_phase(grp, &work_bgn, &p);
1847
1848                 /*
1849                  * Step 4a: go forward from working phase to non working
1850                  * phase, increment in ptaps.
1851                  */
1852                 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1853                 if (ret)
1854                         return ret;
1855
1856                 /* Step 5a: Back off one from last, increment in dtaps. */
1857
1858                 /* Special case code for backing up a phase */
1859                 if (p == 0) {
1860                         p = iocfg->dqs_en_phase_max;
1861                         rw_mgr_decr_vfifo(grp);
1862                 } else {
1863                         p = p - 1;
1864                 }
1865
1866                 work_end -= iocfg->delay_per_opa_tap;
1867                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1868
1869                 d = 0;
1870
1871                 debug_cond(DLEVEL >= 2, "%s:%d p: ptap=%u\n",
1872                            __func__, __LINE__, p);
1873         }
1874
1875         /* The dtap increment to find the failing edge is done here. */
1876         sdr_find_phase_delay(0, 1, grp, &work_end,
1877                              iocfg->delay_per_dqs_en_dchain_tap, &d);
1878
1879         /* Go back to working dtap */
1880         if (d != 0)
1881                 work_end -= iocfg->delay_per_dqs_en_dchain_tap;
1882
1883         debug_cond(DLEVEL >= 2,
1884                    "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1885                    __func__, __LINE__, p, d - 1, work_end);
1886
1887         if (work_end < work_bgn) {
1888                 /* nil range */
1889                 debug_cond(DLEVEL >= 2, "%s:%d end-2: failed\n",
1890                            __func__, __LINE__);
1891                 return -EINVAL;
1892         }
1893
1894         debug_cond(DLEVEL >= 2, "%s:%d found range [%u,%u]\n",
1895                    __func__, __LINE__, work_bgn, work_end);
1896
1897         /*
1898          * We need to calculate the number of dtaps that equal a ptap.
1899          * To do that we'll back up a ptap and re-find the edge of the
1900          * window using dtaps
1901          */
1902         debug_cond(DLEVEL >= 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1903                    __func__, __LINE__);
1904
1905         /* Special case code for backing up a phase */
1906         if (p == 0) {
1907                 p = iocfg->dqs_en_phase_max;
1908                 rw_mgr_decr_vfifo(grp);
1909                 debug_cond(DLEVEL >= 2, "%s:%d backedup cycle/phase: p=%u\n",
1910                            __func__, __LINE__, p);
1911         } else {
1912                 p = p - 1;
1913                 debug_cond(DLEVEL >= 2, "%s:%d backedup phase only: p=%u",
1914                            __func__, __LINE__, p);
1915         }
1916
1917         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1918
1919         /*
1920          * Increase dtap until we first see a passing read (in case the
1921          * window is smaller than a ptap), and then a failing read to
1922          * mark the edge of the window again.
1923          */
1924
1925         /* Find a passing read. */
1926         debug_cond(DLEVEL >= 2, "%s:%d find passing read\n",
1927                    __func__, __LINE__);
1928
1929         initial_failing_dtap = d;
1930
1931         found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1932         if (found_passing_read) {
1933                 /* Find a failing read. */
1934                 debug_cond(DLEVEL >= 2, "%s:%d find failing read\n",
1935                            __func__, __LINE__);
1936                 d++;
1937                 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1938                                                            &d);
1939         } else {
1940                 debug_cond(DLEVEL >= 1,
1941                            "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1942                            __func__, __LINE__);
1943         }
1944
1945         /*
1946          * The dynamically calculated dtaps_per_ptap is only valid if we
1947          * found a passing/failing read. If we didn't, it means d hit the max
1948          * (iocfg->dqs_en_delay_max). Otherwise, dtaps_per_ptap retains its
1949          * statically calculated value.
1950          */
1951         if (found_passing_read && found_failing_read)
1952                 dtaps_per_ptap = d - initial_failing_dtap;
1953
1954         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1955         debug_cond(DLEVEL >= 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1956                    __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1957
1958         /* Step 6: Find the centre of the window. */
1959         ret = sdr_find_window_center(grp, work_bgn, work_end);
1960
1961         return ret;
1962 }
1963
1964 /**
1965  * search_stop_check() - Check if the detected edge is valid
1966  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
1967  * @d:                  DQS delay
1968  * @rank_bgn:           Rank number
1969  * @write_group:        Write Group
1970  * @read_group:         Read Group
1971  * @bit_chk:            Resulting bit mask after the test
1972  * @sticky_bit_chk:     Resulting sticky bit mask after the test
1973  * @use_read_test:      Perform read test
1974  *
1975  * Test if the found edge is valid.
1976  */
1977 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1978                              const u32 write_group, const u32 read_group,
1979                              u32 *bit_chk, u32 *sticky_bit_chk,
1980                              const u32 use_read_test)
1981 {
1982         const u32 ratio = rwcfg->mem_if_read_dqs_width /
1983                           rwcfg->mem_if_write_dqs_width;
1984         const u32 correct_mask = write ? param->write_correct_mask :
1985                                          param->read_correct_mask;
1986         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
1987                                     rwcfg->mem_dq_per_read_dqs;
1988         u32 ret;
1989         /*
1990          * Stop searching when the read test doesn't pass AND when
1991          * we've seen a passing read on every bit.
1992          */
1993         if (write) {                    /* WRITE-ONLY */
1994                 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1995                                                          0, PASS_ONE_BIT,
1996                                                          bit_chk, 0);
1997         } else if (use_read_test) {     /* READ-ONLY */
1998                 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
1999                                                         NUM_READ_PB_TESTS,
2000                                                         PASS_ONE_BIT, bit_chk,
2001                                                         0, 0);
2002         } else {                        /* READ-ONLY */
2003                 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
2004                                                 PASS_ONE_BIT, bit_chk, 0);
2005                 *bit_chk = *bit_chk >> (per_dqs *
2006                         (read_group - (write_group * ratio)));
2007                 ret = (*bit_chk == 0);
2008         }
2009         *sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2010         ret = ret && (*sticky_bit_chk == correct_mask);
2011         debug_cond(DLEVEL >= 2,
2012                    "%s:%d center(left): dtap=%u => %u == %u && %u",
2013                    __func__, __LINE__, d,
2014                    *sticky_bit_chk, correct_mask, ret);
2015         return ret;
2016 }
2017
2018 /**
2019  * search_left_edge() - Find left edge of DQ/DQS working phase
2020  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2021  * @rank_bgn:           Rank number
2022  * @write_group:        Write Group
2023  * @read_group:         Read Group
2024  * @test_bgn:           Rank number to begin the test
2025  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2026  * @left_edge:          Left edge of the DQ/DQS phase
2027  * @right_edge:         Right edge of the DQ/DQS phase
2028  * @use_read_test:      Perform read test
2029  *
2030  * Find left edge of DQ/DQS working phase.
2031  */
2032 static void search_left_edge(const int write, const int rank_bgn,
2033         const u32 write_group, const u32 read_group, const u32 test_bgn,
2034         u32 *sticky_bit_chk,
2035         int *left_edge, int *right_edge, const u32 use_read_test)
2036 {
2037         const u32 delay_max = write ? iocfg->io_out1_delay_max :
2038                                       iocfg->io_in_delay_max;
2039         const u32 dqs_max = write ? iocfg->io_out1_delay_max :
2040                                     iocfg->dqs_in_delay_max;
2041         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2042                                     rwcfg->mem_dq_per_read_dqs;
2043         u32 stop, bit_chk;
2044         int i, d;
2045
2046         for (d = 0; d <= dqs_max; d++) {
2047                 if (write)
2048                         scc_mgr_apply_group_dq_out1_delay(d);
2049                 else
2050                         scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2051
2052                 writel(0, &sdr_scc_mgr->update);
2053
2054                 stop = search_stop_check(write, d, rank_bgn, write_group,
2055                                          read_group, &bit_chk, sticky_bit_chk,
2056                                          use_read_test);
2057                 if (stop == 1)
2058                         break;
2059
2060                 /* stop != 1 */
2061                 for (i = 0; i < per_dqs; i++) {
2062                         if (bit_chk & 1) {
2063                                 /*
2064                                  * Remember a passing test as
2065                                  * the left_edge.
2066                                  */
2067                                 left_edge[i] = d;
2068                         } else {
2069                                 /*
2070                                  * If a left edge has not been seen
2071                                  * yet, then a future passing test
2072                                  * will mark this edge as the right
2073                                  * edge.
2074                                  */
2075                                 if (left_edge[i] == delay_max + 1)
2076                                         right_edge[i] = -(d + 1);
2077                         }
2078                         bit_chk >>= 1;
2079                 }
2080         }
2081
2082         /* Reset DQ delay chains to 0 */
2083         if (write)
2084                 scc_mgr_apply_group_dq_out1_delay(0);
2085         else
2086                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2087
2088         *sticky_bit_chk = 0;
2089         for (i = per_dqs - 1; i >= 0; i--) {
2090                 debug_cond(DLEVEL >= 2,
2091                            "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2092                            __func__, __LINE__, i, left_edge[i],
2093                            i, right_edge[i]);
2094
2095                 /*
2096                  * Check for cases where we haven't found the left edge,
2097                  * which makes our assignment of the the right edge invalid.
2098                  * Reset it to the illegal value.
2099                  */
2100                 if ((left_edge[i] == delay_max + 1) &&
2101                     (right_edge[i] != delay_max + 1)) {
2102                         right_edge[i] = delay_max + 1;
2103                         debug_cond(DLEVEL >= 2,
2104                                    "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2105                                    __func__, __LINE__, i, right_edge[i]);
2106                 }
2107
2108                 /*
2109                  * Reset sticky bit
2110                  * READ: except for bits where we have seen both
2111                  *       the left and right edge.
2112                  * WRITE: except for bits where we have seen the
2113                  *        left edge.
2114                  */
2115                 *sticky_bit_chk <<= 1;
2116                 if (write) {
2117                         if (left_edge[i] != delay_max + 1)
2118                                 *sticky_bit_chk |= 1;
2119                 } else {
2120                         if ((left_edge[i] != delay_max + 1) &&
2121                             (right_edge[i] != delay_max + 1))
2122                                 *sticky_bit_chk |= 1;
2123                 }
2124         }
2125 }
2126
2127 /**
2128  * search_right_edge() - Find right edge of DQ/DQS working phase
2129  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2130  * @rank_bgn:           Rank number
2131  * @write_group:        Write Group
2132  * @read_group:         Read Group
2133  * @start_dqs:          DQS start phase
2134  * @start_dqs_en:       DQS enable start phase
2135  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2136  * @left_edge:          Left edge of the DQ/DQS phase
2137  * @right_edge:         Right edge of the DQ/DQS phase
2138  * @use_read_test:      Perform read test
2139  *
2140  * Find right edge of DQ/DQS working phase.
2141  */
2142 static int search_right_edge(const int write, const int rank_bgn,
2143         const u32 write_group, const u32 read_group,
2144         const int start_dqs, const int start_dqs_en,
2145         u32 *sticky_bit_chk,
2146         int *left_edge, int *right_edge, const u32 use_read_test)
2147 {
2148         const u32 delay_max = write ? iocfg->io_out1_delay_max :
2149                                       iocfg->io_in_delay_max;
2150         const u32 dqs_max = write ? iocfg->io_out1_delay_max :
2151                                     iocfg->dqs_in_delay_max;
2152         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2153                                     rwcfg->mem_dq_per_read_dqs;
2154         u32 stop, bit_chk;
2155         int i, d;
2156
2157         for (d = 0; d <= dqs_max - start_dqs; d++) {
2158                 if (write) {    /* WRITE-ONLY */
2159                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2160                                                                 d + start_dqs);
2161                 } else {        /* READ-ONLY */
2162                         scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2163                         if (iocfg->shift_dqs_en_when_shift_dqs) {
2164                                 u32 delay = d + start_dqs_en;
2165                                 if (delay > iocfg->dqs_en_delay_max)
2166                                         delay = iocfg->dqs_en_delay_max;
2167                                 scc_mgr_set_dqs_en_delay(read_group, delay);
2168                         }
2169                         scc_mgr_load_dqs(read_group);
2170                 }
2171
2172                 writel(0, &sdr_scc_mgr->update);
2173
2174                 stop = search_stop_check(write, d, rank_bgn, write_group,
2175                                          read_group, &bit_chk, sticky_bit_chk,
2176                                          use_read_test);
2177                 if (stop == 1) {
2178                         if (write && (d == 0)) {        /* WRITE-ONLY */
2179                                 for (i = 0; i < rwcfg->mem_dq_per_write_dqs;
2180                                      i++) {
2181                                         /*
2182                                          * d = 0 failed, but it passed when
2183                                          * testing the left edge, so it must be
2184                                          * marginal, set it to -1
2185                                          */
2186                                         if (right_edge[i] == delay_max + 1 &&
2187                                             left_edge[i] != delay_max + 1)
2188                                                 right_edge[i] = -1;
2189                                 }
2190                         }
2191                         break;
2192                 }
2193
2194                 /* stop != 1 */
2195                 for (i = 0; i < per_dqs; i++) {
2196                         if (bit_chk & 1) {
2197                                 /*
2198                                  * Remember a passing test as
2199                                  * the right_edge.
2200                                  */
2201                                 right_edge[i] = d;
2202                         } else {
2203                                 if (d != 0) {
2204                                         /*
2205                                          * If a right edge has not
2206                                          * been seen yet, then a future
2207                                          * passing test will mark this
2208                                          * edge as the left edge.
2209                                          */
2210                                         if (right_edge[i] == delay_max + 1)
2211                                                 left_edge[i] = -(d + 1);
2212                                 } else {
2213                                         /*
2214                                          * d = 0 failed, but it passed
2215                                          * when testing the left edge,
2216                                          * so it must be marginal, set
2217                                          * it to -1
2218                                          */
2219                                         if (right_edge[i] == delay_max + 1 &&
2220                                             left_edge[i] != delay_max + 1)
2221                                                 right_edge[i] = -1;
2222                                         /*
2223                                          * If a right edge has not been
2224                                          * seen yet, then a future
2225                                          * passing test will mark this
2226                                          * edge as the left edge.
2227                                          */
2228                                         else if (right_edge[i] == delay_max + 1)
2229                                                 left_edge[i] = -(d + 1);
2230                                 }
2231                         }
2232
2233                         debug_cond(DLEVEL >= 2, "%s:%d center[r,d=%u]: ",
2234                                    __func__, __LINE__, d);
2235                         debug_cond(DLEVEL >= 2,
2236                                    "bit_chk_test=%i left_edge[%u]: %d ",
2237                                    bit_chk & 1, i, left_edge[i]);
2238                         debug_cond(DLEVEL >= 2, "right_edge[%u]: %d\n", i,
2239                                    right_edge[i]);
2240                         bit_chk >>= 1;
2241                 }
2242         }
2243
2244         /* Check that all bits have a window */
2245         for (i = 0; i < per_dqs; i++) {
2246                 debug_cond(DLEVEL >= 2,
2247                            "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2248                            __func__, __LINE__, i, left_edge[i],
2249                            i, right_edge[i]);
2250                 if ((left_edge[i] == dqs_max + 1) ||
2251                     (right_edge[i] == dqs_max + 1))
2252                         return i + 1;   /* FIXME: If we fail, retval > 0 */
2253         }
2254
2255         return 0;
2256 }
2257
2258 /**
2259  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2260  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2261  * @left_edge:          Left edge of the DQ/DQS phase
2262  * @right_edge:         Right edge of the DQ/DQS phase
2263  * @mid_min:            Best DQ/DQS phase middle setting
2264  *
2265  * Find index and value of the middle of the DQ/DQS working phase.
2266  */
2267 static int get_window_mid_index(const int write, int *left_edge,
2268                                 int *right_edge, int *mid_min)
2269 {
2270         const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2271                                     rwcfg->mem_dq_per_read_dqs;
2272         int i, mid, min_index;
2273
2274         /* Find middle of window for each DQ bit */
2275         *mid_min = left_edge[0] - right_edge[0];
2276         min_index = 0;
2277         for (i = 1; i < per_dqs; i++) {
2278                 mid = left_edge[i] - right_edge[i];
2279                 if (mid < *mid_min) {
2280                         *mid_min = mid;
2281                         min_index = i;
2282                 }
2283         }
2284
2285         /*
2286          * -mid_min/2 represents the amount that we need to move DQS.
2287          * If mid_min is odd and positive we'll need to add one to make
2288          * sure the rounding in further calculations is correct (always
2289          * bias to the right), so just add 1 for all positive values.
2290          */
2291         if (*mid_min > 0)
2292                 (*mid_min)++;
2293         *mid_min = *mid_min / 2;
2294
2295         debug_cond(DLEVEL >= 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2296                    __func__, __LINE__, *mid_min, min_index);
2297         return min_index;
2298 }
2299
2300 /**
2301  * center_dq_windows() - Center the DQ/DQS windows
2302  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2303  * @left_edge:          Left edge of the DQ/DQS phase
2304  * @right_edge:         Right edge of the DQ/DQS phase
2305  * @mid_min:            Adjusted DQ/DQS phase middle setting
2306  * @orig_mid_min:       Original DQ/DQS phase middle setting
2307  * @min_index:          DQ/DQS phase middle setting index
2308  * @test_bgn:           Rank number to begin the test
2309  * @dq_margin:          Amount of shift for the DQ
2310  * @dqs_margin:         Amount of shift for the DQS
2311  *
2312  * Align the DQ/DQS windows in each group.
2313  */
2314 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2315                               const int mid_min, const int orig_mid_min,
2316                               const int min_index, const int test_bgn,
2317                               int *dq_margin, int *dqs_margin)
2318 {
2319         const s32 delay_max = write ? iocfg->io_out1_delay_max :
2320                                       iocfg->io_in_delay_max;
2321         const s32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2322                                     rwcfg->mem_dq_per_read_dqs;
2323         const s32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2324                                       SCC_MGR_IO_IN_DELAY_OFFSET;
2325         const s32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2326
2327         s32 temp_dq_io_delay1;
2328         int shift_dq, i, p;
2329
2330         /* Initialize data for export structures */
2331         *dqs_margin = delay_max + 1;
2332         *dq_margin  = delay_max + 1;
2333
2334         /* add delay to bring centre of all DQ windows to the same "level" */
2335         for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2336                 /* Use values before divide by 2 to reduce round off error */
2337                 shift_dq = (left_edge[i] - right_edge[i] -
2338                         (left_edge[min_index] - right_edge[min_index]))/2  +
2339                         (orig_mid_min - mid_min);
2340
2341                 debug_cond(DLEVEL >= 2,
2342                            "vfifo_center: before: shift_dq[%u]=%d\n",
2343                            i, shift_dq);
2344
2345                 temp_dq_io_delay1 = readl(addr + (i << 2));
2346
2347                 if (shift_dq + temp_dq_io_delay1 > delay_max)
2348                         shift_dq = delay_max - temp_dq_io_delay1;
2349                 else if (shift_dq + temp_dq_io_delay1 < 0)
2350                         shift_dq = -temp_dq_io_delay1;
2351
2352                 debug_cond(DLEVEL >= 2,
2353                            "vfifo_center: after: shift_dq[%u]=%d\n",
2354                            i, shift_dq);
2355
2356                 if (write)
2357                         scc_mgr_set_dq_out1_delay(i,
2358                                                   temp_dq_io_delay1 + shift_dq);
2359                 else
2360                         scc_mgr_set_dq_in_delay(p,
2361                                                 temp_dq_io_delay1 + shift_dq);
2362
2363                 scc_mgr_load_dq(p);
2364
2365                 debug_cond(DLEVEL >= 2,
2366                            "vfifo_center: margin[%u]=[%d,%d]\n", i,
2367                            left_edge[i] - shift_dq + (-mid_min),
2368                            right_edge[i] + shift_dq - (-mid_min));
2369
2370                 /* To determine values for export structures */
2371                 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2372                         *dq_margin = left_edge[i] - shift_dq + (-mid_min);
2373
2374                 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2375                         *dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2376         }
2377 }
2378
2379 /**
2380  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2381  * @rank_bgn:           Rank number
2382  * @rw_group:           Read/Write Group
2383  * @test_bgn:           Rank at which the test begins
2384  * @use_read_test:      Perform a read test
2385  * @update_fom:         Update FOM
2386  *
2387  * Per-bit deskew DQ and centering.
2388  */
2389 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2390                         const u32 rw_group, const u32 test_bgn,
2391                         const int use_read_test, const int update_fom)
2392 {
2393         const u32 addr =
2394                 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2395                 (rw_group << 2);
2396         /*
2397          * Store these as signed since there are comparisons with
2398          * signed numbers.
2399          */
2400         u32 sticky_bit_chk;
2401         int32_t left_edge[rwcfg->mem_dq_per_read_dqs];
2402         int32_t right_edge[rwcfg->mem_dq_per_read_dqs];
2403         int32_t orig_mid_min, mid_min;
2404         int32_t new_dqs, start_dqs, start_dqs_en = 0, final_dqs_en;
2405         int32_t dq_margin, dqs_margin;
2406         int i, min_index;
2407         int ret;
2408
2409         debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2410
2411         start_dqs = readl(addr);
2412         if (iocfg->shift_dqs_en_when_shift_dqs)
2413                 start_dqs_en = readl(addr - iocfg->dqs_en_delay_offset);
2414
2415         /* set the left and right edge of each bit to an illegal value */
2416         /* use (iocfg->io_in_delay_max + 1) as an illegal value */
2417         sticky_bit_chk = 0;
2418         for (i = 0; i < rwcfg->mem_dq_per_read_dqs; i++) {
2419                 left_edge[i]  = iocfg->io_in_delay_max + 1;
2420                 right_edge[i] = iocfg->io_in_delay_max + 1;
2421         }
2422
2423         /* Search for the left edge of the window for each bit */
2424         search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2425                          &sticky_bit_chk,
2426                          left_edge, right_edge, use_read_test);
2427
2428
2429         /* Search for the right edge of the window for each bit */
2430         ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2431                                 start_dqs, start_dqs_en,
2432                                 &sticky_bit_chk,
2433                                 left_edge, right_edge, use_read_test);
2434         if (ret) {
2435                 /*
2436                  * Restore delay chain settings before letting the loop
2437                  * in rw_mgr_mem_calibrate_vfifo to retry different
2438                  * dqs/ck relationships.
2439                  */
2440                 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2441                 if (iocfg->shift_dqs_en_when_shift_dqs)
2442                         scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2443
2444                 scc_mgr_load_dqs(rw_group);
2445                 writel(0, &sdr_scc_mgr->update);
2446
2447                 debug_cond(DLEVEL >= 1,
2448                            "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2449                            __func__, __LINE__, i, left_edge[i], right_edge[i]);
2450                 if (use_read_test) {
2451                         set_failing_group_stage(rw_group *
2452                                 rwcfg->mem_dq_per_read_dqs + i,
2453                                 CAL_STAGE_VFIFO,
2454                                 CAL_SUBSTAGE_VFIFO_CENTER);
2455                 } else {
2456                         set_failing_group_stage(rw_group *
2457                                 rwcfg->mem_dq_per_read_dqs + i,
2458                                 CAL_STAGE_VFIFO_AFTER_WRITES,
2459                                 CAL_SUBSTAGE_VFIFO_CENTER);
2460                 }
2461                 return -EIO;
2462         }
2463
2464         min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2465
2466         /* Determine the amount we can change DQS (which is -mid_min) */
2467         orig_mid_min = mid_min;
2468         new_dqs = start_dqs - mid_min;
2469         if (new_dqs > iocfg->dqs_in_delay_max)
2470                 new_dqs = iocfg->dqs_in_delay_max;
2471         else if (new_dqs < 0)
2472                 new_dqs = 0;
2473
2474         mid_min = start_dqs - new_dqs;
2475         debug_cond(DLEVEL >= 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2476                    mid_min, new_dqs);
2477
2478         if (iocfg->shift_dqs_en_when_shift_dqs) {
2479                 if (start_dqs_en - mid_min > iocfg->dqs_en_delay_max)
2480                         mid_min += start_dqs_en - mid_min -
2481                                    iocfg->dqs_en_delay_max;
2482                 else if (start_dqs_en - mid_min < 0)
2483                         mid_min += start_dqs_en - mid_min;
2484         }
2485         new_dqs = start_dqs - mid_min;
2486
2487         debug_cond(DLEVEL >= 1,
2488                    "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2489                    start_dqs,
2490                    iocfg->shift_dqs_en_when_shift_dqs ? start_dqs_en : -1,
2491                    new_dqs, mid_min);
2492
2493         /* Add delay to bring centre of all DQ windows to the same "level". */
2494         center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2495                           min_index, test_bgn, &dq_margin, &dqs_margin);
2496
2497         /* Move DQS-en */
2498         if (iocfg->shift_dqs_en_when_shift_dqs) {
2499                 final_dqs_en = start_dqs_en - mid_min;
2500                 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2501                 scc_mgr_load_dqs(rw_group);
2502         }
2503
2504         /* Move DQS */
2505         scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2506         scc_mgr_load_dqs(rw_group);
2507         debug_cond(DLEVEL >= 2,
2508                    "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2509                    __func__, __LINE__, dq_margin, dqs_margin);
2510
2511         /*
2512          * Do not remove this line as it makes sure all of our decisions
2513          * have been applied. Apply the update bit.
2514          */
2515         writel(0, &sdr_scc_mgr->update);
2516
2517         if ((dq_margin < 0) || (dqs_margin < 0))
2518                 return -EINVAL;
2519
2520         return 0;
2521 }
2522
2523 /**
2524  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2525  * @rw_group:   Read/Write Group
2526  * @phase:      DQ/DQS phase
2527  *
2528  * Because initially no communication ca be reliably performed with the memory
2529  * device, the sequencer uses a guaranteed write mechanism to write data into
2530  * the memory device.
2531  */
2532 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2533                                                  const u32 phase)
2534 {
2535         int ret;
2536
2537         /* Set a particular DQ/DQS phase. */
2538         scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2539
2540         debug_cond(DLEVEL >= 1, "%s:%d guaranteed write: g=%u p=%u\n",
2541                    __func__, __LINE__, rw_group, phase);
2542
2543         /*
2544          * Altera EMI_RM 2015.05.04 :: Figure 1-25
2545          * Load up the patterns used by read calibration using the
2546          * current DQDQS phase.
2547          */
2548         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2549
2550         if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2551                 return 0;
2552
2553         /*
2554          * Altera EMI_RM 2015.05.04 :: Figure 1-26
2555          * Back-to-Back reads of the patterns used for calibration.
2556          */
2557         ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2558         if (ret)
2559                 debug_cond(DLEVEL >= 1,
2560                            "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2561                            __func__, __LINE__, rw_group, phase);
2562         return ret;
2563 }
2564
2565 /**
2566  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2567  * @rw_group:   Read/Write Group
2568  * @test_bgn:   Rank at which the test begins
2569  *
2570  * DQS enable calibration ensures reliable capture of the DQ signal without
2571  * glitches on the DQS line.
2572  */
2573 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2574                                                        const u32 test_bgn)
2575 {
2576         /*
2577          * Altera EMI_RM 2015.05.04 :: Figure 1-27
2578          * DQS and DQS Eanble Signal Relationships.
2579          */
2580
2581         /* We start at zero, so have one less dq to devide among */
2582         const u32 delay_step = iocfg->io_in_delay_max /
2583                                (rwcfg->mem_dq_per_read_dqs - 1);
2584         int ret;
2585         u32 i, p, d, r;
2586
2587         debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2588
2589         /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2590         for (r = 0; r < rwcfg->mem_number_of_ranks;
2591              r += NUM_RANKS_PER_SHADOW_REG) {
2592                 for (i = 0, p = test_bgn, d = 0;
2593                      i < rwcfg->mem_dq_per_read_dqs;
2594                      i++, p++, d += delay_step) {
2595                         debug_cond(DLEVEL >= 1,
2596                                    "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2597                                    __func__, __LINE__, rw_group, r, i, p, d);
2598
2599                         scc_mgr_set_dq_in_delay(p, d);
2600                         scc_mgr_load_dq(p);
2601                 }
2602
2603                 writel(0, &sdr_scc_mgr->update);
2604         }
2605
2606         /*
2607          * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2608          * dq_in_delay values
2609          */
2610         ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2611
2612         debug_cond(DLEVEL >= 1,
2613                    "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2614                    __func__, __LINE__, rw_group, !ret);
2615
2616         for (r = 0; r < rwcfg->mem_number_of_ranks;
2617              r += NUM_RANKS_PER_SHADOW_REG) {
2618                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2619                 writel(0, &sdr_scc_mgr->update);
2620         }
2621
2622         return ret;
2623 }
2624
2625 /**
2626  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2627  * @rw_group:           Read/Write Group
2628  * @test_bgn:           Rank at which the test begins
2629  * @use_read_test:      Perform a read test
2630  * @update_fom:         Update FOM
2631  *
2632  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2633  * within a group.
2634  */
2635 static int
2636 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2637                                       const int use_read_test,
2638                                       const int update_fom)
2639
2640 {
2641         int ret, grp_calibrated;
2642         u32 rank_bgn, sr;
2643
2644         /*
2645          * Altera EMI_RM 2015.05.04 :: Figure 1-28
2646          * Read per-bit deskew can be done on a per shadow register basis.
2647          */
2648         grp_calibrated = 1;
2649         for (rank_bgn = 0, sr = 0;
2650              rank_bgn < rwcfg->mem_number_of_ranks;
2651              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2652                 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2653                                                         test_bgn,
2654                                                         use_read_test,
2655                                                         update_fom);
2656                 if (!ret)
2657                         continue;
2658
2659                 grp_calibrated = 0;
2660         }
2661
2662         if (!grp_calibrated)
2663                 return -EIO;
2664
2665         return 0;
2666 }
2667
2668 /**
2669  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2670  * @rw_group:           Read/Write Group
2671  * @test_bgn:           Rank at which the test begins
2672  *
2673  * Stage 1: Calibrate the read valid prediction FIFO.
2674  *
2675  * This function implements UniPHY calibration Stage 1, as explained in
2676  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2677  *
2678  * - read valid prediction will consist of finding:
2679  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2680  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2681  *  - we also do a per-bit deskew on the DQ lines.
2682  */
2683 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2684 {
2685         u32 p, d;
2686         u32 dtaps_per_ptap;
2687         u32 failed_substage;
2688
2689         int ret;
2690
2691         debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2692
2693         /* Update info for sims */
2694         reg_file_set_group(rw_group);
2695         reg_file_set_stage(CAL_STAGE_VFIFO);
2696         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2697
2698         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2699
2700         /* USER Determine number of delay taps for each phase tap. */
2701         dtaps_per_ptap = DIV_ROUND_UP(iocfg->delay_per_opa_tap,
2702                                       iocfg->delay_per_dqs_en_dchain_tap) - 1;
2703
2704         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2705                 /*
2706                  * In RLDRAMX we may be messing the delay of pins in
2707                  * the same write rw_group but outside of the current read
2708                  * the rw_group, but that's ok because we haven't calibrated
2709                  * output side yet.
2710                  */
2711                 if (d > 0) {
2712                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2713                                                                 rw_group, d);
2714                 }
2715
2716                 for (p = 0; p <= iocfg->dqdqs_out_phase_max; p++) {
2717                         /* 1) Guaranteed Write */
2718                         ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2719                         if (ret)
2720                                 break;
2721
2722                         /* 2) DQS Enable Calibration */
2723                         ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2724                                                                           test_bgn);
2725                         if (ret) {
2726                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2727                                 continue;
2728                         }
2729
2730                         /* 3) Centering DQ/DQS */
2731                         /*
2732                          * If doing read after write calibration, do not update
2733                          * FOM now. Do it then.
2734                          */
2735                         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2736                                                                 test_bgn, 1, 0);
2737                         if (ret) {
2738                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2739                                 continue;
2740                         }
2741
2742                         /* All done. */
2743                         goto cal_done_ok;
2744                 }
2745         }
2746
2747         /* Calibration Stage 1 failed. */
2748         set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2749         return 0;
2750
2751         /* Calibration Stage 1 completed OK. */
2752 cal_done_ok:
2753         /*
2754          * Reset the delay chains back to zero if they have moved > 1
2755          * (check for > 1 because loop will increase d even when pass in
2756          * first case).
2757          */
2758         if (d > 2)
2759                 scc_mgr_zero_group(rw_group, 1);
2760
2761         return 1;
2762 }
2763
2764 /**
2765  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2766  * @rw_group:           Read/Write Group
2767  * @test_bgn:           Rank at which the test begins
2768  *
2769  * Stage 3: DQ/DQS Centering.
2770  *
2771  * This function implements UniPHY calibration Stage 3, as explained in
2772  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2773  */
2774 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2775                                           const u32 test_bgn)
2776 {
2777         int ret;
2778
2779         debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2780
2781         /* Update info for sims. */
2782         reg_file_set_group(rw_group);
2783         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2784         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2785
2786         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2787         if (ret)
2788                 set_failing_group_stage(rw_group,
2789                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2790                                         CAL_SUBSTAGE_VFIFO_CENTER);
2791         return ret;
2792 }
2793
2794 /**
2795  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2796  *
2797  * Stage 4: Minimize latency.
2798  *
2799  * This function implements UniPHY calibration Stage 4, as explained in
2800  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2801  * Calibrate LFIFO to find smallest read latency.
2802  */
2803 static u32 rw_mgr_mem_calibrate_lfifo(void)
2804 {
2805         int found_one = 0;
2806
2807         debug("%s:%d\n", __func__, __LINE__);
2808
2809         /* Update info for sims. */
2810         reg_file_set_stage(CAL_STAGE_LFIFO);
2811         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2812
2813         /* Load up the patterns used by read calibration for all ranks */
2814         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2815
2816         do {
2817                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2818                 debug_cond(DLEVEL >= 2, "%s:%d lfifo: read_lat=%u",
2819                            __func__, __LINE__, gbl->curr_read_lat);
2820
2821                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2822                                                               PASS_ALL_BITS, 1))
2823                         break;
2824
2825                 found_one = 1;
2826                 /*
2827                  * Reduce read latency and see if things are
2828                  * working correctly.
2829                  */
2830                 gbl->curr_read_lat--;
2831         } while (gbl->curr_read_lat > 0);
2832
2833         /* Reset the fifos to get pointers to known state. */
2834         writel(0, &phy_mgr_cmd->fifo_reset);
2835
2836         if (found_one) {
2837                 /* Add a fudge factor to the read latency that was determined */
2838                 gbl->curr_read_lat += 2;
2839                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2840                 debug_cond(DLEVEL >= 2,
2841                            "%s:%d lfifo: success: using read_lat=%u\n",
2842                            __func__, __LINE__, gbl->curr_read_lat);
2843         } else {
2844                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2845                                         CAL_SUBSTAGE_READ_LATENCY);
2846
2847                 debug_cond(DLEVEL >= 2,
2848                            "%s:%d lfifo: failed at initial read_lat=%u\n",
2849                            __func__, __LINE__, gbl->curr_read_lat);
2850         }
2851
2852         return found_one;
2853 }
2854
2855 /**
2856  * search_window() - Search for the/part of the window with DM/DQS shift
2857  * @search_dm:          If 1, search for the DM shift, if 0, search for DQS shift
2858  * @rank_bgn:           Rank number
2859  * @write_group:        Write Group
2860  * @bgn_curr:           Current window begin
2861  * @end_curr:           Current window end
2862  * @bgn_best:           Current best window begin
2863  * @end_best:           Current best window end
2864  * @win_best:           Size of the best window
2865  * @new_dqs:            New DQS value (only applicable if search_dm = 0).
2866  *
2867  * Search for the/part of the window with DM/DQS shift.
2868  */
2869 static void search_window(const int search_dm,
2870                           const u32 rank_bgn, const u32 write_group,
2871                           int *bgn_curr, int *end_curr, int *bgn_best,
2872                           int *end_best, int *win_best, int new_dqs)
2873 {
2874         u32 bit_chk;
2875         const int max = iocfg->io_out1_delay_max - new_dqs;
2876         int d, di;
2877
2878         /* Search for the/part of the window with DM/DQS shift. */
2879         for (di = max; di >= 0; di -= DELTA_D) {
2880                 if (search_dm) {
2881                         d = di;
2882                         scc_mgr_apply_group_dm_out1_delay(d);
2883                 } else {
2884                         /* For DQS, we go from 0...max */
2885                         d = max - di;
2886                         /*
2887                          * Note: This only shifts DQS, so are we limiting
2888                          *       ourselves to width of DQ unnecessarily.
2889                          */
2890                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2891                                                                 d + new_dqs);
2892                 }
2893
2894                 writel(0, &sdr_scc_mgr->update);
2895
2896                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2897                                                     PASS_ALL_BITS, &bit_chk,
2898                                                     0)) {
2899                         /* Set current end of the window. */
2900                         *end_curr = search_dm ? -d : d;
2901
2902                         /*
2903                          * If a starting edge of our window has not been seen
2904                          * this is our current start of the DM window.
2905                          */
2906                         if (*bgn_curr == iocfg->io_out1_delay_max + 1)
2907                                 *bgn_curr = search_dm ? -d : d;
2908
2909                         /*
2910                          * If current window is bigger than best seen.
2911                          * Set best seen to be current window.
2912                          */
2913                         if ((*end_curr - *bgn_curr + 1) > *win_best) {
2914                                 *win_best = *end_curr - *bgn_curr + 1;
2915                                 *bgn_best = *bgn_curr;
2916                                 *end_best = *end_curr;
2917                         }
2918                 } else {
2919                         /* We just saw a failing test. Reset temp edge. */
2920                         *bgn_curr = iocfg->io_out1_delay_max + 1;
2921                         *end_curr = iocfg->io_out1_delay_max + 1;
2922
2923                         /* Early exit is only applicable to DQS. */
2924                         if (search_dm)
2925                                 continue;
2926
2927                         /*
2928                          * Early exit optimization: if the remaining delay
2929                          * chain space is less than already seen largest
2930                          * window we can exit.
2931                          */
2932                         if (*win_best - 1 > iocfg->io_out1_delay_max - new_dqs - d)
2933                                 break;
2934                 }
2935         }
2936 }
2937
2938 /*
2939  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2940  * @rank_bgn:           Rank number
2941  * @write_group:        Write group
2942  * @test_bgn:           Rank at which the test begins
2943  *
2944  * Center all windows. Do per-bit-deskew to possibly increase size of
2945  * certain windows.
2946  */
2947 static int
2948 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2949                                    const u32 test_bgn)
2950 {
2951         int i;
2952         u32 sticky_bit_chk;
2953         u32 min_index;
2954         int left_edge[rwcfg->mem_dq_per_write_dqs];
2955         int right_edge[rwcfg->mem_dq_per_write_dqs];
2956         int mid;
2957         int mid_min, orig_mid_min;
2958         int new_dqs, start_dqs;
2959         int dq_margin, dqs_margin, dm_margin;
2960         int bgn_curr = iocfg->io_out1_delay_max + 1;
2961         int end_curr = iocfg->io_out1_delay_max + 1;
2962         int bgn_best = iocfg->io_out1_delay_max + 1;
2963         int end_best = iocfg->io_out1_delay_max + 1;
2964         int win_best = 0;
2965
2966         int ret;
2967
2968         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2969
2970         dm_margin = 0;
2971
2972         start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2973                           SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2974                           (rwcfg->mem_dq_per_write_dqs << 2));
2975
2976         /* Per-bit deskew. */
2977
2978         /*
2979          * Set the left and right edge of each bit to an illegal value.
2980          * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
2981          */
2982         sticky_bit_chk = 0;
2983         for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
2984                 left_edge[i]  = iocfg->io_out1_delay_max + 1;
2985                 right_edge[i] = iocfg->io_out1_delay_max + 1;
2986         }
2987
2988         /* Search for the left edge of the window for each bit. */
2989         search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
2990                          &sticky_bit_chk,
2991                          left_edge, right_edge, 0);
2992
2993         /* Search for the right edge of the window for each bit. */
2994         ret = search_right_edge(1, rank_bgn, write_group, 0,
2995                                 start_dqs, 0,
2996                                 &sticky_bit_chk,
2997                                 left_edge, right_edge, 0);
2998         if (ret) {
2999                 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
3000                                         CAL_SUBSTAGE_WRITES_CENTER);
3001                 return -EINVAL;
3002         }
3003
3004         min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
3005
3006         /* Determine the amount we can change DQS (which is -mid_min). */
3007         orig_mid_min = mid_min;
3008         new_dqs = start_dqs;
3009         mid_min = 0;
3010         debug_cond(DLEVEL >= 1,
3011                    "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3012                    __func__, __LINE__, start_dqs, new_dqs, mid_min);
3013
3014         /* Add delay to bring centre of all DQ windows to the same "level". */
3015         center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3016                           min_index, 0, &dq_margin, &dqs_margin);
3017
3018         /* Move DQS */
3019         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3020         writel(0, &sdr_scc_mgr->update);
3021
3022         /* Centre DM */
3023         debug_cond(DLEVEL >= 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3024
3025         /*
3026          * Set the left and right edge of each bit to an illegal value.
3027          * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
3028          */
3029         left_edge[0]  = iocfg->io_out1_delay_max + 1;
3030         right_edge[0] = iocfg->io_out1_delay_max + 1;
3031
3032         /* Search for the/part of the window with DM shift. */
3033         search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3034                       &bgn_best, &end_best, &win_best, 0);
3035
3036         /* Reset DM delay chains to 0. */
3037         scc_mgr_apply_group_dm_out1_delay(0);
3038
3039         /*
3040          * Check to see if the current window nudges up aganist 0 delay.
3041          * If so we need to continue the search by shifting DQS otherwise DQS
3042          * search begins as a new search.
3043          */
3044         if (end_curr != 0) {
3045                 bgn_curr = iocfg->io_out1_delay_max + 1;
3046                 end_curr = iocfg->io_out1_delay_max + 1;
3047         }
3048
3049         /* Search for the/part of the window with DQS shifts. */
3050         search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3051                       &bgn_best, &end_best, &win_best, new_dqs);
3052
3053         /* Assign left and right edge for cal and reporting. */
3054         left_edge[0] = -1 * bgn_best;
3055         right_edge[0] = end_best;
3056
3057         debug_cond(DLEVEL >= 2, "%s:%d dm_calib: left=%d right=%d\n",
3058                    __func__, __LINE__, left_edge[0], right_edge[0]);
3059
3060         /* Move DQS (back to orig). */
3061         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3062
3063         /* Move DM */
3064
3065         /* Find middle of window for the DM bit. */
3066         mid = (left_edge[0] - right_edge[0]) / 2;
3067
3068         /* Only move right, since we are not moving DQS/DQ. */
3069         if (mid < 0)
3070                 mid = 0;
3071
3072         /* dm_marign should fail if we never find a window. */
3073         if (win_best == 0)
3074                 dm_margin = -1;
3075         else
3076                 dm_margin = left_edge[0] - mid;
3077
3078         scc_mgr_apply_group_dm_out1_delay(mid);
3079         writel(0, &sdr_scc_mgr->update);
3080
3081         debug_cond(DLEVEL >= 2,
3082                    "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3083                    __func__, __LINE__, left_edge[0], right_edge[0],
3084                    mid, dm_margin);
3085         /* Export values. */
3086         gbl->fom_out += dq_margin + dqs_margin;
3087
3088         debug_cond(DLEVEL >= 2,
3089                    "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3090                    __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3091
3092         /*
3093          * Do not remove this line as it makes sure all of our
3094          * decisions have been applied.
3095          */
3096         writel(0, &sdr_scc_mgr->update);
3097
3098         if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3099                 return -EINVAL;
3100
3101         return 0;
3102 }
3103
3104 /**
3105  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3106  * @rank_bgn:           Rank number
3107  * @group:              Read/Write Group
3108  * @test_bgn:           Rank at which the test begins
3109  *
3110  * Stage 2: Write Calibration Part One.
3111  *
3112  * This function implements UniPHY calibration Stage 2, as explained in
3113  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3114  */
3115 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3116                                        const u32 test_bgn)
3117 {
3118         int ret;
3119
3120         /* Update info for sims */
3121         debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3122
3123         reg_file_set_group(group);
3124         reg_file_set_stage(CAL_STAGE_WRITES);
3125         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3126
3127         ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3128         if (ret)
3129                 set_failing_group_stage(group, CAL_STAGE_WRITES,
3130                                         CAL_SUBSTAGE_WRITES_CENTER);
3131
3132         return ret;
3133 }
3134
3135 /**
3136  * mem_precharge_and_activate() - Precharge all banks and activate
3137  *
3138  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3139  */
3140 static void mem_precharge_and_activate(void)
3141 {
3142         int r;
3143
3144         for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
3145                 /* Set rank. */
3146                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3147
3148                 /* Precharge all banks. */
3149                 writel(rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3150                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3151
3152                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3153                 writel(rwcfg->activate_0_and_1_wait1,
3154                        &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3155
3156                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3157                 writel(rwcfg->activate_0_and_1_wait2,
3158                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3159
3160                 /* Activate rows. */
3161                 writel(rwcfg->activate_0_and_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3162                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3163         }
3164 }
3165
3166 /**
3167  * mem_init_latency() - Configure memory RLAT and WLAT settings
3168  *
3169  * Configure memory RLAT and WLAT parameters.
3170  */
3171 static void mem_init_latency(void)
3172 {
3173         /*
3174          * For AV/CV, LFIFO is hardened and always runs at full rate
3175          * so max latency in AFI clocks, used here, is correspondingly
3176          * smaller.
3177          */
3178         const u32 max_latency = (1 << misccfg->max_latency_count_width) - 1;
3179         u32 rlat, wlat;
3180
3181         debug("%s:%d\n", __func__, __LINE__);
3182
3183         /*
3184          * Read in write latency.
3185          * WL for Hard PHY does not include additive latency.
3186          */
3187         wlat = readl(&data_mgr->t_wl_add);
3188         wlat += readl(&data_mgr->mem_t_add);
3189
3190         gbl->rw_wl_nop_cycles = wlat - 1;
3191
3192         /* Read in readl latency. */
3193         rlat = readl(&data_mgr->t_rl_add);
3194
3195         /* Set a pretty high read latency initially. */
3196         gbl->curr_read_lat = rlat + 16;
3197         if (gbl->curr_read_lat > max_latency)
3198                 gbl->curr_read_lat = max_latency;
3199
3200         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3201
3202         /* Advertise write latency. */
3203         writel(wlat, &phy_mgr_cfg->afi_wlat);
3204 }
3205
3206 /**
3207  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3208  *
3209  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3210  */
3211 static void mem_skip_calibrate(void)
3212 {
3213         u32 vfifo_offset;
3214         u32 i, j, r;
3215
3216         debug("%s:%d\n", __func__, __LINE__);
3217         /* Need to update every shadow register set used by the interface */
3218         for (r = 0; r < rwcfg->mem_number_of_ranks;
3219              r += NUM_RANKS_PER_SHADOW_REG) {
3220                 /*
3221                  * Set output phase alignment settings appropriate for
3222                  * skip calibration.
3223                  */
3224                 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3225                         scc_mgr_set_dqs_en_phase(i, 0);
3226                         if (iocfg->dll_chain_length == 6)
3227                                 scc_mgr_set_dqdqs_output_phase(i, 6);
3228                         else
3229                                 scc_mgr_set_dqdqs_output_phase(i, 7);
3230                         /*
3231                          * Case:33398
3232                          *
3233                          * Write data arrives to the I/O two cycles before write
3234                          * latency is reached (720 deg).
3235                          *   -> due to bit-slip in a/c bus
3236                          *   -> to allow board skew where dqs is longer than ck
3237                          *      -> how often can this happen!?
3238                          *      -> can claim back some ptaps for high freq
3239                          *       support if we can relax this, but i digress...
3240                          *
3241                          * The write_clk leads mem_ck by 90 deg
3242                          * The minimum ptap of the OPA is 180 deg
3243                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3244                          * The write_clk is always delayed by 2 ptaps
3245                          *
3246                          * Hence, to make DQS aligned to CK, we need to delay
3247                          * DQS by:
3248                          *    (720 - 90 - 180 - 2) *
3249                          *      (360 / iocfg->dll_chain_length)
3250                          *
3251                          * Dividing the above by (360 / iocfg->dll_chain_length)
3252                          * gives us the number of ptaps, which simplies to:
3253                          *
3254                          *    (1.25 * iocfg->dll_chain_length - 2)
3255                          */
3256                         scc_mgr_set_dqdqs_output_phase(i,
3257                                        ((125 * iocfg->dll_chain_length) / 100) - 2);
3258                 }
3259                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3260                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3261
3262                 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
3263                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3264                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3265                 }
3266                 writel(0xff, &sdr_scc_mgr->dq_ena);
3267                 writel(0xff, &sdr_scc_mgr->dm_ena);
3268                 writel(0, &sdr_scc_mgr->update);
3269         }
3270
3271         /* Compensate for simulation model behaviour */
3272         for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3273                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3274                 scc_mgr_load_dqs(i);
3275         }
3276         writel(0, &sdr_scc_mgr->update);
3277
3278         /*
3279          * ArriaV has hard FIFOs that can only be initialized by incrementing
3280          * in sequencer.
3281          */
3282         vfifo_offset = misccfg->calib_vfifo_offset;
3283         for (j = 0; j < vfifo_offset; j++)
3284                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3285         writel(0, &phy_mgr_cmd->fifo_reset);
3286
3287         /*
3288          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3289          * setting from generation-time constant.
3290          */
3291         gbl->curr_read_lat = misccfg->calib_lfifo_offset;
3292         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3293 }
3294
3295 /**
3296  * mem_calibrate() - Memory calibration entry point.
3297  *
3298  * Perform memory calibration.
3299  */
3300 static u32 mem_calibrate(void)
3301 {
3302         u32 i;
3303         u32 rank_bgn, sr;
3304         u32 write_group, write_test_bgn;
3305         u32 read_group, read_test_bgn;
3306         u32 run_groups, current_run;
3307         u32 failing_groups = 0;
3308         u32 group_failed = 0;
3309
3310         const u32 rwdqs_ratio = rwcfg->mem_if_read_dqs_width /
3311                                 rwcfg->mem_if_write_dqs_width;
3312
3313         debug("%s:%d\n", __func__, __LINE__);
3314
3315         /* Initialize the data settings */
3316         gbl->error_substage = CAL_SUBSTAGE_NIL;
3317         gbl->error_stage = CAL_STAGE_NIL;
3318         gbl->error_group = 0xff;
3319         gbl->fom_in = 0;
3320         gbl->fom_out = 0;
3321
3322         /* Initialize WLAT and RLAT. */
3323         mem_init_latency();
3324
3325         /* Initialize bit slips. */
3326         mem_precharge_and_activate();
3327
3328         for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3329                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3330                           SCC_MGR_GROUP_COUNTER_OFFSET);
3331                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3332                 if (i == 0)
3333                         scc_mgr_set_hhp_extras();
3334
3335                 scc_set_bypass_mode(i);
3336         }
3337
3338         /* Calibration is skipped. */
3339         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3340                 /*
3341                  * Set VFIFO and LFIFO to instant-on settings in skip
3342                  * calibration mode.
3343                  */
3344                 mem_skip_calibrate();
3345
3346                 /*
3347                  * Do not remove this line as it makes sure all of our
3348                  * decisions have been applied.
3349                  */
3350                 writel(0, &sdr_scc_mgr->update);
3351                 return 1;
3352         }
3353
3354         /* Calibration is not skipped. */
3355         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3356                 /*
3357                  * Zero all delay chain/phase settings for all
3358                  * groups and all shadow register sets.
3359                  */
3360                 scc_mgr_zero_all();
3361
3362                 run_groups = ~0;
3363
3364                 for (write_group = 0, write_test_bgn = 0; write_group
3365                         < rwcfg->mem_if_write_dqs_width; write_group++,
3366                         write_test_bgn += rwcfg->mem_dq_per_write_dqs) {
3367                         /* Initialize the group failure */
3368                         group_failed = 0;
3369
3370                         current_run = run_groups & ((1 <<
3371                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3372                         run_groups = run_groups >>
3373                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3374
3375                         if (current_run == 0)
3376                                 continue;
3377
3378                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3379                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3380                         scc_mgr_zero_group(write_group, 0);
3381
3382                         for (read_group = write_group * rwdqs_ratio,
3383                              read_test_bgn = 0;
3384                              read_group < (write_group + 1) * rwdqs_ratio;
3385                              read_group++,
3386                              read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3387                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3388                                         continue;
3389
3390                                 /* Calibrate the VFIFO */
3391                                 if (rw_mgr_mem_calibrate_vfifo(read_group,
3392                                                                read_test_bgn))
3393                                         continue;
3394
3395                                 if (!(gbl->phy_debug_mode_flags &
3396                                       PHY_DEBUG_SWEEP_ALL_GROUPS))
3397                                         return 0;
3398
3399                                 /* The group failed, we're done. */
3400                                 goto grp_failed;
3401                         }
3402
3403                         /* Calibrate the output side */
3404                         for (rank_bgn = 0, sr = 0;
3405                              rank_bgn < rwcfg->mem_number_of_ranks;
3406                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3407                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3408                                         continue;
3409
3410                                 /* Not needed in quick mode! */
3411                                 if (STATIC_CALIB_STEPS &
3412                                     CALIB_SKIP_DELAY_SWEEPS)
3413                                         continue;
3414
3415                                 /* Calibrate WRITEs */
3416                                 if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3417                                                                  write_group,
3418                                                                  write_test_bgn))
3419                                         continue;
3420
3421                                 group_failed = 1;
3422                                 if (!(gbl->phy_debug_mode_flags &
3423                                       PHY_DEBUG_SWEEP_ALL_GROUPS))
3424                                         return 0;
3425                         }
3426
3427                         /* Some group failed, we're done. */
3428                         if (group_failed)
3429                                 goto grp_failed;
3430
3431                         for (read_group = write_group * rwdqs_ratio,
3432                              read_test_bgn = 0;
3433                              read_group < (write_group + 1) * rwdqs_ratio;
3434                              read_group++,
3435                              read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3436                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3437                                         continue;
3438
3439                                 if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3440                                                                     read_test_bgn))
3441                                         continue;
3442
3443                                 if (!(gbl->phy_debug_mode_flags &
3444                                       PHY_DEBUG_SWEEP_ALL_GROUPS))
3445                                         return 0;
3446
3447                                 /* The group failed, we're done. */
3448                                 goto grp_failed;
3449                         }
3450
3451                         /* No group failed, continue as usual. */
3452                         continue;
3453
3454 grp_failed:             /* A group failed, increment the counter. */
3455                         failing_groups++;
3456                 }
3457
3458                 /*
3459                  * USER If there are any failing groups then report
3460                  * the failure.
3461                  */
3462                 if (failing_groups != 0)
3463                         return 0;
3464
3465                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3466                         continue;
3467
3468                 /* Calibrate the LFIFO */
3469                 if (!rw_mgr_mem_calibrate_lfifo())
3470                         return 0;
3471         }
3472
3473         /*
3474          * Do not remove this line as it makes sure all of our decisions
3475          * have been applied.
3476          */
3477         writel(0, &sdr_scc_mgr->update);
3478         return 1;
3479 }
3480
3481 /**
3482  * run_mem_calibrate() - Perform memory calibration
3483  *
3484  * This function triggers the entire memory calibration procedure.
3485  */
3486 static int run_mem_calibrate(void)
3487 {
3488         int pass;
3489         u32 ctrl_cfg;
3490
3491         debug("%s:%d\n", __func__, __LINE__);
3492
3493         /* Reset pass/fail status shown on afi_cal_success/fail */
3494         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3495
3496         /* Stop tracking manager. */
3497         ctrl_cfg = readl(&sdr_ctrl->ctrl_cfg);
3498         writel(ctrl_cfg & ~SDR_CTRLGRP_CTRLCFG_DQSTRKEN_MASK,
3499                &sdr_ctrl->ctrl_cfg);
3500
3501         phy_mgr_initialize();
3502         rw_mgr_mem_initialize();
3503
3504         /* Perform the actual memory calibration. */
3505         pass = mem_calibrate();
3506
3507         mem_precharge_and_activate();
3508         writel(0, &phy_mgr_cmd->fifo_reset);
3509
3510         /* Handoff. */
3511         rw_mgr_mem_handoff();
3512         /*
3513          * In Hard PHY this is a 2-bit control:
3514          * 0: AFI Mux Select
3515          * 1: DDIO Mux Select
3516          */
3517         writel(0x2, &phy_mgr_cfg->mux_sel);
3518
3519         /* Start tracking manager. */
3520         writel(ctrl_cfg, &sdr_ctrl->ctrl_cfg);
3521
3522         return pass;
3523 }
3524
3525 /**
3526  * debug_mem_calibrate() - Report result of memory calibration
3527  * @pass:       Value indicating whether calibration passed or failed
3528  *
3529  * This function reports the results of the memory calibration
3530  * and writes debug information into the register file.
3531  */
3532 static void debug_mem_calibrate(int pass)
3533 {
3534         u32 debug_info;
3535
3536         if (pass) {
3537                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3538
3539                 gbl->fom_in /= 2;
3540                 gbl->fom_out /= 2;
3541
3542                 if (gbl->fom_in > 0xff)
3543                         gbl->fom_in = 0xff;
3544
3545                 if (gbl->fom_out > 0xff)
3546                         gbl->fom_out = 0xff;
3547
3548                 /* Update the FOM in the register file */
3549                 debug_info = gbl->fom_in;
3550                 debug_info |= gbl->fom_out << 8;
3551                 writel(debug_info, &sdr_reg_file->fom);
3552
3553                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3554                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3555         } else {
3556                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3557
3558                 debug_info = gbl->error_stage;
3559                 debug_info |= gbl->error_substage << 8;
3560                 debug_info |= gbl->error_group << 16;
3561
3562                 writel(debug_info, &sdr_reg_file->failing_stage);
3563                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3564                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3565
3566                 /* Update the failing group/stage in the register file */
3567                 debug_info = gbl->error_stage;
3568                 debug_info |= gbl->error_substage << 8;
3569                 debug_info |= gbl->error_group << 16;
3570                 writel(debug_info, &sdr_reg_file->failing_stage);
3571         }
3572
3573         printf("%s: Calibration complete\n", __FILE__);
3574 }
3575
3576 /**
3577  * hc_initialize_rom_data() - Initialize ROM data
3578  *
3579  * Initialize ROM data.
3580  */
3581 static void hc_initialize_rom_data(void)
3582 {
3583         unsigned int nelem = 0;
3584         const u32 *rom_init;
3585         u32 i, addr;
3586
3587         socfpga_get_seq_inst_init(&rom_init, &nelem);
3588         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3589         for (i = 0; i < nelem; i++)
3590                 writel(rom_init[i], addr + (i << 2));
3591
3592         socfpga_get_seq_ac_init(&rom_init, &nelem);
3593         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3594         for (i = 0; i < nelem; i++)
3595                 writel(rom_init[i], addr + (i << 2));
3596 }
3597
3598 /**
3599  * initialize_reg_file() - Initialize SDR register file
3600  *
3601  * Initialize SDR register file.
3602  */
3603 static void initialize_reg_file(void)
3604 {
3605         /* Initialize the register file with the correct data */
3606         writel(misccfg->reg_file_init_seq_signature, &sdr_reg_file->signature);
3607         writel(0, &sdr_reg_file->debug_data_addr);
3608         writel(0, &sdr_reg_file->cur_stage);
3609         writel(0, &sdr_reg_file->fom);
3610         writel(0, &sdr_reg_file->failing_stage);
3611         writel(0, &sdr_reg_file->debug1);
3612         writel(0, &sdr_reg_file->debug2);
3613 }
3614
3615 /**
3616  * initialize_hps_phy() - Initialize HPS PHY
3617  *
3618  * Initialize HPS PHY.
3619  */
3620 static void initialize_hps_phy(void)
3621 {
3622         u32 reg;
3623         /*
3624          * Tracking also gets configured here because it's in the
3625          * same register.
3626          */
3627         u32 trk_sample_count = 7500;
3628         u32 trk_long_idle_sample_count = (10 << 16) | 100;
3629         /*
3630          * Format is number of outer loops in the 16 MSB, sample
3631          * count in 16 LSB.
3632          */
3633
3634         reg = 0;
3635         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3636         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3637         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3638         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3639         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3640         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3641         /*
3642          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3643          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3644          */
3645         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3646         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3647                 trk_sample_count);
3648         writel(reg, &sdr_ctrl->phy_ctrl0);
3649
3650         reg = 0;
3651         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3652                 trk_sample_count >>
3653                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3654         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3655                 trk_long_idle_sample_count);
3656         writel(reg, &sdr_ctrl->phy_ctrl1);
3657
3658         reg = 0;
3659         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3660                 trk_long_idle_sample_count >>
3661                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3662         writel(reg, &sdr_ctrl->phy_ctrl2);
3663 }
3664
3665 /**
3666  * initialize_tracking() - Initialize tracking
3667  *
3668  * Initialize the register file with usable initial data.
3669  */
3670 static void initialize_tracking(void)
3671 {
3672         /*
3673          * Initialize the register file with the correct data.
3674          * Compute usable version of value in case we skip full
3675          * computation later.
3676          */
3677         writel(DIV_ROUND_UP(iocfg->delay_per_opa_tap,
3678                             iocfg->delay_per_dchain_tap) - 1,
3679                &sdr_reg_file->dtaps_per_ptap);
3680
3681         /* trk_sample_count */
3682         writel(7500, &sdr_reg_file->trk_sample_count);
3683
3684         /* longidle outer loop [15:0] */
3685         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3686
3687         /*
3688          * longidle sample count [31:24]
3689          * trfc, worst case of 933Mhz 4Gb [23:16]
3690          * trcd, worst case [15:8]
3691          * vfifo wait [7:0]
3692          */
3693         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3694                &sdr_reg_file->delays);
3695
3696         /* mux delay */
3697         writel((rwcfg->idle << 24) | (rwcfg->activate_1 << 16) |
3698                (rwcfg->sgle_read << 8) | (rwcfg->precharge_all << 0),
3699                &sdr_reg_file->trk_rw_mgr_addr);
3700
3701         writel(rwcfg->mem_if_read_dqs_width,
3702                &sdr_reg_file->trk_read_dqs_width);
3703
3704         /* trefi [7:0] */
3705         writel((rwcfg->refresh_all << 24) | (1000 << 0),
3706                &sdr_reg_file->trk_rfsh);
3707 }
3708
3709 int sdram_calibration_full(void)
3710 {
3711         struct param_type my_param;
3712         struct gbl_type my_gbl;
3713         u32 pass;
3714
3715         memset(&my_param, 0, sizeof(my_param));
3716         memset(&my_gbl, 0, sizeof(my_gbl));
3717
3718         param = &my_param;
3719         gbl = &my_gbl;
3720
3721         rwcfg = socfpga_get_sdram_rwmgr_config();
3722         iocfg = socfpga_get_sdram_io_config();
3723         misccfg = socfpga_get_sdram_misc_config();
3724
3725         /* Set the calibration enabled by default */
3726         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3727         /*
3728          * Only sweep all groups (regardless of fail state) by default
3729          * Set enabled read test by default.
3730          */
3731 #if DISABLE_GUARANTEED_READ
3732         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3733 #endif
3734         /* Initialize the register file */
3735         initialize_reg_file();
3736
3737         /* Initialize any PHY CSR */
3738         initialize_hps_phy();
3739
3740         scc_mgr_initialize();
3741
3742         initialize_tracking();
3743
3744         printf("%s: Preparing to start memory calibration\n", __FILE__);
3745
3746         debug("%s:%d\n", __func__, __LINE__);
3747         debug_cond(DLEVEL >= 1,
3748                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3749                    rwcfg->mem_number_of_ranks, rwcfg->mem_number_of_cs_per_dimm,
3750                    rwcfg->mem_dq_per_read_dqs, rwcfg->mem_dq_per_write_dqs,
3751                    rwcfg->mem_virtual_groups_per_read_dqs,
3752                    rwcfg->mem_virtual_groups_per_write_dqs);
3753         debug_cond(DLEVEL >= 1,
3754                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3755                    rwcfg->mem_if_read_dqs_width, rwcfg->mem_if_write_dqs_width,
3756                    rwcfg->mem_data_width, rwcfg->mem_data_mask_width,
3757                    iocfg->delay_per_opa_tap, iocfg->delay_per_dchain_tap);
3758         debug_cond(DLEVEL >= 1, "dtap_dqsen_delay=%u, dll=%u",
3759                    iocfg->delay_per_dqs_en_dchain_tap, iocfg->dll_chain_length);
3760         debug_cond(DLEVEL >= 1,
3761                    "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3762                    iocfg->dqs_en_phase_max, iocfg->dqdqs_out_phase_max,
3763                    iocfg->dqs_en_delay_max, iocfg->dqs_in_delay_max);
3764         debug_cond(DLEVEL >= 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3765                    iocfg->io_in_delay_max, iocfg->io_out1_delay_max,
3766                    iocfg->io_out2_delay_max);
3767         debug_cond(DLEVEL >= 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3768                    iocfg->dqs_in_reserve, iocfg->dqs_out_reserve);
3769
3770         hc_initialize_rom_data();
3771
3772         /* update info for sims */
3773         reg_file_set_stage(CAL_STAGE_NIL);
3774         reg_file_set_group(0);
3775
3776         /*
3777          * Load global needed for those actions that require
3778          * some dynamic calibration support.
3779          */
3780         dyn_calib_steps = STATIC_CALIB_STEPS;
3781         /*
3782          * Load global to allow dynamic selection of delay loop settings
3783          * based on calibration mode.
3784          */
3785         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3786                 skip_delay_mask = 0xff;
3787         else
3788                 skip_delay_mask = 0x0;
3789
3790         pass = run_mem_calibrate();
3791         debug_mem_calibrate(pass);
3792         return pass;
3793 }