Upstream version 9.38.198.0
[platform/framework/web/crosswalk.git] / src / v8 / test / cctest / test-macro-assembler-mips64.cc
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include <stdlib.h>
29
30 #include "src/v8.h"
31 #include "test/cctest/cctest.h"
32
33 #include "src/macro-assembler.h"
34 #include "src/mips64/macro-assembler-mips64.h"
35 #include "src/mips64/simulator-mips64.h"
36
37
38 using namespace v8::internal;
39
40 typedef void* (*F)(int64_t x, int64_t y, int p2, int p3, int p4);
41
42 #define __ masm->
43
44
45 static byte to_non_zero(int n) {
46   return static_cast<unsigned>(n) % 255 + 1;
47 }
48
49
50 static bool all_zeroes(const byte* beg, const byte* end) {
51   CHECK(beg);
52   CHECK(beg <= end);
53   while (beg < end) {
54     if (*beg++ != 0)
55       return false;
56   }
57   return true;
58 }
59
60
61 TEST(CopyBytes) {
62   CcTest::InitializeVM();
63   Isolate* isolate = Isolate::Current();
64   HandleScope handles(isolate);
65
66   const int data_size = 1 * KB;
67   size_t act_size;
68
69   // Allocate two blocks to copy data between.
70   byte* src_buffer =
71       static_cast<byte*>(v8::base::OS::Allocate(data_size, &act_size, 0));
72   CHECK(src_buffer);
73   CHECK(act_size >= static_cast<size_t>(data_size));
74   byte* dest_buffer =
75       static_cast<byte*>(v8::base::OS::Allocate(data_size, &act_size, 0));
76   CHECK(dest_buffer);
77   CHECK(act_size >= static_cast<size_t>(data_size));
78
79   // Storage for a0 and a1.
80   byte* a0_;
81   byte* a1_;
82
83   MacroAssembler assembler(isolate, NULL, 0);
84   MacroAssembler* masm = &assembler;
85
86   // Code to be generated: The stuff in CopyBytes followed by a store of a0 and
87   // a1, respectively.
88   __ CopyBytes(a0, a1, a2, a3);
89   __ li(a2, Operand(reinterpret_cast<int64_t>(&a0_)));
90   __ li(a3, Operand(reinterpret_cast<int64_t>(&a1_)));
91   __ sd(a0, MemOperand(a2));
92   __ jr(ra);
93   __ sd(a1, MemOperand(a3));
94
95   CodeDesc desc;
96   masm->GetCode(&desc);
97   Handle<Code> code = isolate->factory()->NewCode(
98       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
99
100   ::F f = FUNCTION_CAST< ::F>(code->entry());
101
102   // Initialise source data with non-zero bytes.
103   for (int i = 0; i < data_size; i++) {
104     src_buffer[i] = to_non_zero(i);
105   }
106
107   const int fuzz = 11;
108
109   for (int size = 0; size < 600; size++) {
110     for (const byte* src = src_buffer; src < src_buffer + fuzz; src++) {
111       for (byte* dest = dest_buffer; dest < dest_buffer + fuzz; dest++) {
112         memset(dest_buffer, 0, data_size);
113         CHECK(dest + size < dest_buffer + data_size);
114         (void) CALL_GENERATED_CODE(f, reinterpret_cast<int64_t>(src),
115                                       reinterpret_cast<int64_t>(dest),
116                                       size, 0, 0);
117         // a0 and a1 should point at the first byte after the copied data.
118         CHECK_EQ(src + size, a0_);
119         CHECK_EQ(dest + size, a1_);
120         // Check that we haven't written outside the target area.
121         CHECK(all_zeroes(dest_buffer, dest));
122         CHECK(all_zeroes(dest + size, dest_buffer + data_size));
123         // Check the target area.
124         CHECK_EQ(0, memcmp(src, dest, size));
125       }
126     }
127   }
128
129   // Check that the source data hasn't been clobbered.
130   for (int i = 0; i < data_size; i++) {
131     CHECK(src_buffer[i] == to_non_zero(i));
132   }
133 }
134
135
136 TEST(LoadConstants) {
137   CcTest::InitializeVM();
138   Isolate* isolate = Isolate::Current();
139   HandleScope handles(isolate);
140
141   int64_t refConstants[64];
142   int64_t result[64];
143
144   int64_t mask = 1;
145   for (int i = 0; i < 64; i++) {
146     refConstants[i] = ~(mask << i);
147   }
148
149   MacroAssembler assembler(isolate, NULL, 0);
150   MacroAssembler* masm = &assembler;
151
152   __ mov(a4, a0);
153   for (int i = 0; i < 64; i++) {
154     // Load constant.
155     __ li(a5, Operand(refConstants[i]));
156     __ sd(a5, MemOperand(a4));
157     __ Daddu(a4, a4, Operand(kPointerSize));
158   }
159
160   __ jr(ra);
161   __ nop();
162
163   CodeDesc desc;
164   masm->GetCode(&desc);
165   Handle<Code> code = isolate->factory()->NewCode(
166       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
167
168   ::F f = FUNCTION_CAST< ::F>(code->entry());
169      (void) CALL_GENERATED_CODE(f, reinterpret_cast<int64_t>(result),
170                                 0, 0, 0, 0);
171   // Check results.
172   for (int i = 0; i < 64; i++) {
173     CHECK(refConstants[i] == result[i]);
174   }
175 }
176
177
178 TEST(LoadAddress) {
179   CcTest::InitializeVM();
180   Isolate* isolate = Isolate::Current();
181   HandleScope handles(isolate);
182
183   MacroAssembler assembler(isolate, NULL, 0);
184   MacroAssembler* masm = &assembler;
185   Label to_jump, skip;
186   __ mov(a4, a0);
187
188   __ Branch(&skip);
189   __ bind(&to_jump);
190   __ nop();
191   __ nop();
192   __ jr(ra);
193   __ nop();
194   __ bind(&skip);
195   __ li(a4, Operand(masm->jump_address(&to_jump)), ADDRESS_LOAD);
196   int check_size = masm->InstructionsGeneratedSince(&skip);
197   CHECK_EQ(check_size, 4);
198   __ jr(a4);
199   __ nop();
200   __ stop("invalid");
201   __ stop("invalid");
202   __ stop("invalid");
203   __ stop("invalid");
204   __ stop("invalid");
205
206
207   CodeDesc desc;
208   masm->GetCode(&desc);
209   Handle<Code> code = isolate->factory()->NewCode(
210       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
211
212   ::F f = FUNCTION_CAST< ::F>(code->entry());
213      (void) CALL_GENERATED_CODE(f, 0, 0, 0, 0, 0);
214   // Check results.
215 }
216
217 #undef __