4f8d5b1be13e443e77e2fbba613b550eaa314acb
[platform/framework/web/crosswalk.git] / src / v8 / src / x64 / assembler-x64.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #if V8_TARGET_ARCH_X64
8
9 #include "src/base/bits.h"
10 #include "src/macro-assembler.h"
11 #include "src/serialize.h"
12
13 namespace v8 {
14 namespace internal {
15
16 // -----------------------------------------------------------------------------
17 // Implementation of CpuFeatures
18
19 void CpuFeatures::ProbeImpl(bool cross_compile) {
20   base::CPU cpu;
21   CHECK(cpu.has_sse2());  // SSE2 support is mandatory.
22   CHECK(cpu.has_cmov());  // CMOV support is mandatory.
23
24   // Only use statically determined features for cross compile (snapshot).
25   if (cross_compile) return;
26
27   if (cpu.has_sse41() && FLAG_enable_sse4_1) supported_ |= 1u << SSE4_1;
28   if (cpu.has_sse3() && FLAG_enable_sse3) supported_ |= 1u << SSE3;
29   // SAHF is not generally available in long mode.
30   if (cpu.has_sahf() && FLAG_enable_sahf) supported_|= 1u << SAHF;
31 }
32
33
34 void CpuFeatures::PrintTarget() { }
35 void CpuFeatures::PrintFeatures() { }
36
37
38 // -----------------------------------------------------------------------------
39 // Implementation of RelocInfo
40
41 // Patch the code at the current PC with a call to the target address.
42 // Additional guard int3 instructions can be added if required.
43 void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
44   int code_size = Assembler::kCallSequenceLength + guard_bytes;
45
46   // Create a code patcher.
47   CodePatcher patcher(pc_, code_size);
48
49   // Add a label for checking the size of the code used for returning.
50 #ifdef DEBUG
51   Label check_codesize;
52   patcher.masm()->bind(&check_codesize);
53 #endif
54
55   // Patch the code.
56   patcher.masm()->movp(kScratchRegister, reinterpret_cast<void*>(target),
57                        Assembler::RelocInfoNone());
58   patcher.masm()->call(kScratchRegister);
59
60   // Check that the size of the code generated is as expected.
61   DCHECK_EQ(Assembler::kCallSequenceLength,
62             patcher.masm()->SizeOfCodeGeneratedSince(&check_codesize));
63
64   // Add the requested number of int3 instructions after the call.
65   for (int i = 0; i < guard_bytes; i++) {
66     patcher.masm()->int3();
67   }
68 }
69
70
71 void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
72   // Patch the code at the current address with the supplied instructions.
73   for (int i = 0; i < instruction_count; i++) {
74     *(pc_ + i) = *(instructions + i);
75   }
76
77   // Indicate that code has changed.
78   CpuFeatures::FlushICache(pc_, instruction_count);
79 }
80
81
82 // -----------------------------------------------------------------------------
83 // Register constants.
84
85 const int
86     Register::kRegisterCodeByAllocationIndex[kMaxNumAllocatableRegisters] = {
87   // rax, rbx, rdx, rcx, rsi, rdi, r8, r9, r11, r14, r15
88   0, 3, 2, 1, 6, 7, 8, 9, 11, 14, 15
89 };
90
91 const int Register::kAllocationIndexByRegisterCode[kNumRegisters] = {
92   0, 3, 2, 1, -1, -1, 4, 5, 6, 7, -1, 8, -1, -1, 9, 10
93 };
94
95
96 // -----------------------------------------------------------------------------
97 // Implementation of Operand
98
99 Operand::Operand(Register base, int32_t disp) : rex_(0) {
100   len_ = 1;
101   if (base.is(rsp) || base.is(r12)) {
102     // SIB byte is needed to encode (rsp + offset) or (r12 + offset).
103     set_sib(times_1, rsp, base);
104   }
105
106   if (disp == 0 && !base.is(rbp) && !base.is(r13)) {
107     set_modrm(0, base);
108   } else if (is_int8(disp)) {
109     set_modrm(1, base);
110     set_disp8(disp);
111   } else {
112     set_modrm(2, base);
113     set_disp32(disp);
114   }
115 }
116
117
118 Operand::Operand(Register base,
119                  Register index,
120                  ScaleFactor scale,
121                  int32_t disp) : rex_(0) {
122   DCHECK(!index.is(rsp));
123   len_ = 1;
124   set_sib(scale, index, base);
125   if (disp == 0 && !base.is(rbp) && !base.is(r13)) {
126     // This call to set_modrm doesn't overwrite the REX.B (or REX.X) bits
127     // possibly set by set_sib.
128     set_modrm(0, rsp);
129   } else if (is_int8(disp)) {
130     set_modrm(1, rsp);
131     set_disp8(disp);
132   } else {
133     set_modrm(2, rsp);
134     set_disp32(disp);
135   }
136 }
137
138
139 Operand::Operand(Register index,
140                  ScaleFactor scale,
141                  int32_t disp) : rex_(0) {
142   DCHECK(!index.is(rsp));
143   len_ = 1;
144   set_modrm(0, rsp);
145   set_sib(scale, index, rbp);
146   set_disp32(disp);
147 }
148
149
150 Operand::Operand(const Operand& operand, int32_t offset) {
151   DCHECK(operand.len_ >= 1);
152   // Operand encodes REX ModR/M [SIB] [Disp].
153   byte modrm = operand.buf_[0];
154   DCHECK(modrm < 0xC0);  // Disallow mode 3 (register target).
155   bool has_sib = ((modrm & 0x07) == 0x04);
156   byte mode = modrm & 0xC0;
157   int disp_offset = has_sib ? 2 : 1;
158   int base_reg = (has_sib ? operand.buf_[1] : modrm) & 0x07;
159   // Mode 0 with rbp/r13 as ModR/M or SIB base register always has a 32-bit
160   // displacement.
161   bool is_baseless = (mode == 0) && (base_reg == 0x05);  // No base or RIP base.
162   int32_t disp_value = 0;
163   if (mode == 0x80 || is_baseless) {
164     // Mode 2 or mode 0 with rbp/r13 as base: Word displacement.
165     disp_value = *bit_cast<const int32_t*>(&operand.buf_[disp_offset]);
166   } else if (mode == 0x40) {
167     // Mode 1: Byte displacement.
168     disp_value = static_cast<signed char>(operand.buf_[disp_offset]);
169   }
170
171   // Write new operand with same registers, but with modified displacement.
172   DCHECK(offset >= 0 ? disp_value + offset > disp_value
173                      : disp_value + offset < disp_value);  // No overflow.
174   disp_value += offset;
175   rex_ = operand.rex_;
176   if (!is_int8(disp_value) || is_baseless) {
177     // Need 32 bits of displacement, mode 2 or mode 1 with register rbp/r13.
178     buf_[0] = (modrm & 0x3f) | (is_baseless ? 0x00 : 0x80);
179     len_ = disp_offset + 4;
180     Memory::int32_at(&buf_[disp_offset]) = disp_value;
181   } else if (disp_value != 0 || (base_reg == 0x05)) {
182     // Need 8 bits of displacement.
183     buf_[0] = (modrm & 0x3f) | 0x40;  // Mode 1.
184     len_ = disp_offset + 1;
185     buf_[disp_offset] = static_cast<byte>(disp_value);
186   } else {
187     // Need no displacement.
188     buf_[0] = (modrm & 0x3f);  // Mode 0.
189     len_ = disp_offset;
190   }
191   if (has_sib) {
192     buf_[1] = operand.buf_[1];
193   }
194 }
195
196
197 bool Operand::AddressUsesRegister(Register reg) const {
198   int code = reg.code();
199   DCHECK((buf_[0] & 0xC0) != 0xC0);  // Always a memory operand.
200   // Start with only low three bits of base register. Initial decoding doesn't
201   // distinguish on the REX.B bit.
202   int base_code = buf_[0] & 0x07;
203   if (base_code == rsp.code()) {
204     // SIB byte present in buf_[1].
205     // Check the index register from the SIB byte + REX.X prefix.
206     int index_code = ((buf_[1] >> 3) & 0x07) | ((rex_ & 0x02) << 2);
207     // Index code (including REX.X) of 0x04 (rsp) means no index register.
208     if (index_code != rsp.code() && index_code == code) return true;
209     // Add REX.B to get the full base register code.
210     base_code = (buf_[1] & 0x07) | ((rex_ & 0x01) << 3);
211     // A base register of 0x05 (rbp) with mod = 0 means no base register.
212     if (base_code == rbp.code() && ((buf_[0] & 0xC0) == 0)) return false;
213     return code == base_code;
214   } else {
215     // A base register with low bits of 0x05 (rbp or r13) and mod = 0 means
216     // no base register.
217     if (base_code == rbp.code() && ((buf_[0] & 0xC0) == 0)) return false;
218     base_code |= ((rex_ & 0x01) << 3);
219     return code == base_code;
220   }
221 }
222
223
224 // -----------------------------------------------------------------------------
225 // Implementation of Assembler.
226
227 #ifdef GENERATED_CODE_COVERAGE
228 static void InitCoverageLog();
229 #endif
230
231 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
232     : AssemblerBase(isolate, buffer, buffer_size),
233       code_targets_(100),
234       positions_recorder_(this) {
235   // Clear the buffer in debug mode unless it was provided by the
236   // caller in which case we can't be sure it's okay to overwrite
237   // existing code in it.
238 #ifdef DEBUG
239   if (own_buffer_) {
240     memset(buffer_, 0xCC, buffer_size_);  // int3
241   }
242 #endif
243
244   reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
245
246
247 #ifdef GENERATED_CODE_COVERAGE
248   InitCoverageLog();
249 #endif
250 }
251
252
253 void Assembler::GetCode(CodeDesc* desc) {
254   // Finalize code (at this point overflow() may be true, but the gap ensures
255   // that we are still not overlapping instructions and relocation info).
256   DCHECK(pc_ <= reloc_info_writer.pos());  // No overlap.
257   // Set up code descriptor.
258   desc->buffer = buffer_;
259   desc->buffer_size = buffer_size_;
260   desc->instr_size = pc_offset();
261   DCHECK(desc->instr_size > 0);  // Zero-size code objects upset the system.
262   desc->reloc_size =
263       static_cast<int>((buffer_ + buffer_size_) - reloc_info_writer.pos());
264   desc->origin = this;
265 }
266
267
268 void Assembler::Align(int m) {
269   DCHECK(base::bits::IsPowerOfTwo32(m));
270   int delta = (m - (pc_offset() & (m - 1))) & (m - 1);
271   Nop(delta);
272 }
273
274
275 void Assembler::CodeTargetAlign() {
276   Align(16);  // Preferred alignment of jump targets on x64.
277 }
278
279
280 bool Assembler::IsNop(Address addr) {
281   Address a = addr;
282   while (*a == 0x66) a++;
283   if (*a == 0x90) return true;
284   if (a[0] == 0xf && a[1] == 0x1f) return true;
285   return false;
286 }
287
288
289 void Assembler::bind_to(Label* L, int pos) {
290   DCHECK(!L->is_bound());  // Label may only be bound once.
291   DCHECK(0 <= pos && pos <= pc_offset());  // Position must be valid.
292   if (L->is_linked()) {
293     int current = L->pos();
294     int next = long_at(current);
295     while (next != current) {
296       // Relative address, relative to point after address.
297       int imm32 = pos - (current + sizeof(int32_t));
298       long_at_put(current, imm32);
299       current = next;
300       next = long_at(next);
301     }
302     // Fix up last fixup on linked list.
303     int last_imm32 = pos - (current + sizeof(int32_t));
304     long_at_put(current, last_imm32);
305   }
306   while (L->is_near_linked()) {
307     int fixup_pos = L->near_link_pos();
308     int offset_to_next =
309         static_cast<int>(*reinterpret_cast<int8_t*>(addr_at(fixup_pos)));
310     DCHECK(offset_to_next <= 0);
311     int disp = pos - (fixup_pos + sizeof(int8_t));
312     CHECK(is_int8(disp));
313     set_byte_at(fixup_pos, disp);
314     if (offset_to_next < 0) {
315       L->link_to(fixup_pos + offset_to_next, Label::kNear);
316     } else {
317       L->UnuseNear();
318     }
319   }
320   L->bind_to(pos);
321 }
322
323
324 void Assembler::bind(Label* L) {
325   bind_to(L, pc_offset());
326 }
327
328
329 void Assembler::GrowBuffer() {
330   DCHECK(buffer_overflow());
331   if (!own_buffer_) FATAL("external code buffer is too small");
332
333   // Compute new buffer size.
334   CodeDesc desc;  // the new buffer
335   desc.buffer_size = 2 * buffer_size_;
336
337   // Some internal data structures overflow for very large buffers,
338   // they must ensure that kMaximalBufferSize is not too large.
339   if ((desc.buffer_size > kMaximalBufferSize) ||
340       (desc.buffer_size > isolate()->heap()->MaxOldGenerationSize())) {
341     V8::FatalProcessOutOfMemory("Assembler::GrowBuffer");
342   }
343
344   // Set up new buffer.
345   desc.buffer = NewArray<byte>(desc.buffer_size);
346   desc.instr_size = pc_offset();
347   desc.reloc_size =
348       static_cast<int>((buffer_ + buffer_size_) - (reloc_info_writer.pos()));
349
350   // Clear the buffer in debug mode. Use 'int3' instructions to make
351   // sure to get into problems if we ever run uninitialized code.
352 #ifdef DEBUG
353   memset(desc.buffer, 0xCC, desc.buffer_size);
354 #endif
355
356   // Copy the data.
357   intptr_t pc_delta = desc.buffer - buffer_;
358   intptr_t rc_delta = (desc.buffer + desc.buffer_size) -
359       (buffer_ + buffer_size_);
360   MemMove(desc.buffer, buffer_, desc.instr_size);
361   MemMove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(),
362           desc.reloc_size);
363
364   // Switch buffers.
365   DeleteArray(buffer_);
366   buffer_ = desc.buffer;
367   buffer_size_ = desc.buffer_size;
368   pc_ += pc_delta;
369   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
370                                reloc_info_writer.last_pc() + pc_delta);
371
372   // Relocate runtime entries.
373   for (RelocIterator it(desc); !it.done(); it.next()) {
374     RelocInfo::Mode rmode = it.rinfo()->rmode();
375     if (rmode == RelocInfo::INTERNAL_REFERENCE) {
376       intptr_t* p = reinterpret_cast<intptr_t*>(it.rinfo()->pc());
377       if (*p != 0) {  // 0 means uninitialized.
378         *p += pc_delta;
379       }
380     }
381   }
382
383   DCHECK(!buffer_overflow());
384 }
385
386
387 void Assembler::emit_operand(int code, const Operand& adr) {
388   DCHECK(is_uint3(code));
389   const unsigned length = adr.len_;
390   DCHECK(length > 0);
391
392   // Emit updated ModR/M byte containing the given register.
393   DCHECK((adr.buf_[0] & 0x38) == 0);
394   pc_[0] = adr.buf_[0] | code << 3;
395
396   // Emit the rest of the encoded operand.
397   for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i];
398   pc_ += length;
399 }
400
401
402 // Assembler Instruction implementations.
403
404 void Assembler::arithmetic_op(byte opcode,
405                               Register reg,
406                               const Operand& op,
407                               int size) {
408   EnsureSpace ensure_space(this);
409   emit_rex(reg, op, size);
410   emit(opcode);
411   emit_operand(reg, op);
412 }
413
414
415 void Assembler::arithmetic_op(byte opcode,
416                               Register reg,
417                               Register rm_reg,
418                               int size) {
419   EnsureSpace ensure_space(this);
420   DCHECK((opcode & 0xC6) == 2);
421   if (rm_reg.low_bits() == 4)  {  // Forces SIB byte.
422     // Swap reg and rm_reg and change opcode operand order.
423     emit_rex(rm_reg, reg, size);
424     emit(opcode ^ 0x02);
425     emit_modrm(rm_reg, reg);
426   } else {
427     emit_rex(reg, rm_reg, size);
428     emit(opcode);
429     emit_modrm(reg, rm_reg);
430   }
431 }
432
433
434 void Assembler::arithmetic_op_16(byte opcode, Register reg, Register rm_reg) {
435   EnsureSpace ensure_space(this);
436   DCHECK((opcode & 0xC6) == 2);
437   if (rm_reg.low_bits() == 4) {  // Forces SIB byte.
438     // Swap reg and rm_reg and change opcode operand order.
439     emit(0x66);
440     emit_optional_rex_32(rm_reg, reg);
441     emit(opcode ^ 0x02);
442     emit_modrm(rm_reg, reg);
443   } else {
444     emit(0x66);
445     emit_optional_rex_32(reg, rm_reg);
446     emit(opcode);
447     emit_modrm(reg, rm_reg);
448   }
449 }
450
451
452 void Assembler::arithmetic_op_16(byte opcode,
453                                  Register reg,
454                                  const Operand& rm_reg) {
455   EnsureSpace ensure_space(this);
456   emit(0x66);
457   emit_optional_rex_32(reg, rm_reg);
458   emit(opcode);
459   emit_operand(reg, rm_reg);
460 }
461
462
463 void Assembler::arithmetic_op_8(byte opcode, Register reg, const Operand& op) {
464   EnsureSpace ensure_space(this);
465   if (!reg.is_byte_register()) {
466     // Register is not one of al, bl, cl, dl.  Its encoding needs REX.
467     emit_rex_32(reg);
468   }
469   emit(opcode);
470   emit_operand(reg, op);
471 }
472
473
474 void Assembler::arithmetic_op_8(byte opcode, Register reg, Register rm_reg) {
475   EnsureSpace ensure_space(this);
476   DCHECK((opcode & 0xC6) == 2);
477   if (rm_reg.low_bits() == 4)  {  // Forces SIB byte.
478     // Swap reg and rm_reg and change opcode operand order.
479     if (!rm_reg.is_byte_register() || !reg.is_byte_register()) {
480       // Register is not one of al, bl, cl, dl.  Its encoding needs REX.
481       emit_rex_32(rm_reg, reg);
482     }
483     emit(opcode ^ 0x02);
484     emit_modrm(rm_reg, reg);
485   } else {
486     if (!reg.is_byte_register() || !rm_reg.is_byte_register()) {
487       // Register is not one of al, bl, cl, dl.  Its encoding needs REX.
488       emit_rex_32(reg, rm_reg);
489     }
490     emit(opcode);
491     emit_modrm(reg, rm_reg);
492   }
493 }
494
495
496 void Assembler::immediate_arithmetic_op(byte subcode,
497                                         Register dst,
498                                         Immediate src,
499                                         int size) {
500   EnsureSpace ensure_space(this);
501   emit_rex(dst, size);
502   if (is_int8(src.value_)) {
503     emit(0x83);
504     emit_modrm(subcode, dst);
505     emit(src.value_);
506   } else if (dst.is(rax)) {
507     emit(0x05 | (subcode << 3));
508     emitl(src.value_);
509   } else {
510     emit(0x81);
511     emit_modrm(subcode, dst);
512     emitl(src.value_);
513   }
514 }
515
516 void Assembler::immediate_arithmetic_op(byte subcode,
517                                         const Operand& dst,
518                                         Immediate src,
519                                         int size) {
520   EnsureSpace ensure_space(this);
521   emit_rex(dst, size);
522   if (is_int8(src.value_)) {
523     emit(0x83);
524     emit_operand(subcode, dst);
525     emit(src.value_);
526   } else {
527     emit(0x81);
528     emit_operand(subcode, dst);
529     emitl(src.value_);
530   }
531 }
532
533
534 void Assembler::immediate_arithmetic_op_16(byte subcode,
535                                            Register dst,
536                                            Immediate src) {
537   EnsureSpace ensure_space(this);
538   emit(0x66);  // Operand size override prefix.
539   emit_optional_rex_32(dst);
540   if (is_int8(src.value_)) {
541     emit(0x83);
542     emit_modrm(subcode, dst);
543     emit(src.value_);
544   } else if (dst.is(rax)) {
545     emit(0x05 | (subcode << 3));
546     emitw(src.value_);
547   } else {
548     emit(0x81);
549     emit_modrm(subcode, dst);
550     emitw(src.value_);
551   }
552 }
553
554
555 void Assembler::immediate_arithmetic_op_16(byte subcode,
556                                            const Operand& dst,
557                                            Immediate src) {
558   EnsureSpace ensure_space(this);
559   emit(0x66);  // Operand size override prefix.
560   emit_optional_rex_32(dst);
561   if (is_int8(src.value_)) {
562     emit(0x83);
563     emit_operand(subcode, dst);
564     emit(src.value_);
565   } else {
566     emit(0x81);
567     emit_operand(subcode, dst);
568     emitw(src.value_);
569   }
570 }
571
572
573 void Assembler::immediate_arithmetic_op_8(byte subcode,
574                                           const Operand& dst,
575                                           Immediate src) {
576   EnsureSpace ensure_space(this);
577   emit_optional_rex_32(dst);
578   DCHECK(is_int8(src.value_) || is_uint8(src.value_));
579   emit(0x80);
580   emit_operand(subcode, dst);
581   emit(src.value_);
582 }
583
584
585 void Assembler::immediate_arithmetic_op_8(byte subcode,
586                                           Register dst,
587                                           Immediate src) {
588   EnsureSpace ensure_space(this);
589   if (!dst.is_byte_register()) {
590     // Register is not one of al, bl, cl, dl.  Its encoding needs REX.
591     emit_rex_32(dst);
592   }
593   DCHECK(is_int8(src.value_) || is_uint8(src.value_));
594   emit(0x80);
595   emit_modrm(subcode, dst);
596   emit(src.value_);
597 }
598
599
600 void Assembler::shift(Register dst,
601                       Immediate shift_amount,
602                       int subcode,
603                       int size) {
604   EnsureSpace ensure_space(this);
605   DCHECK(size == kInt64Size ? is_uint6(shift_amount.value_)
606                             : is_uint5(shift_amount.value_));
607   if (shift_amount.value_ == 1) {
608     emit_rex(dst, size);
609     emit(0xD1);
610     emit_modrm(subcode, dst);
611   } else {
612     emit_rex(dst, size);
613     emit(0xC1);
614     emit_modrm(subcode, dst);
615     emit(shift_amount.value_);
616   }
617 }
618
619
620 void Assembler::shift(Register dst, int subcode, int size) {
621   EnsureSpace ensure_space(this);
622   emit_rex(dst, size);
623   emit(0xD3);
624   emit_modrm(subcode, dst);
625 }
626
627
628 void Assembler::bt(const Operand& dst, Register src) {
629   EnsureSpace ensure_space(this);
630   emit_rex_64(src, dst);
631   emit(0x0F);
632   emit(0xA3);
633   emit_operand(src, dst);
634 }
635
636
637 void Assembler::bts(const Operand& dst, Register src) {
638   EnsureSpace ensure_space(this);
639   emit_rex_64(src, dst);
640   emit(0x0F);
641   emit(0xAB);
642   emit_operand(src, dst);
643 }
644
645
646 void Assembler::bsrl(Register dst, Register src) {
647   EnsureSpace ensure_space(this);
648   emit_optional_rex_32(dst, src);
649   emit(0x0F);
650   emit(0xBD);
651   emit_modrm(dst, src);
652 }
653
654
655 void Assembler::call(Label* L) {
656   positions_recorder()->WriteRecordedPositions();
657   EnsureSpace ensure_space(this);
658   // 1110 1000 #32-bit disp.
659   emit(0xE8);
660   if (L->is_bound()) {
661     int offset = L->pos() - pc_offset() - sizeof(int32_t);
662     DCHECK(offset <= 0);
663     emitl(offset);
664   } else if (L->is_linked()) {
665     emitl(L->pos());
666     L->link_to(pc_offset() - sizeof(int32_t));
667   } else {
668     DCHECK(L->is_unused());
669     int32_t current = pc_offset();
670     emitl(current);
671     L->link_to(current);
672   }
673 }
674
675
676 void Assembler::call(Address entry, RelocInfo::Mode rmode) {
677   DCHECK(RelocInfo::IsRuntimeEntry(rmode));
678   positions_recorder()->WriteRecordedPositions();
679   EnsureSpace ensure_space(this);
680   // 1110 1000 #32-bit disp.
681   emit(0xE8);
682   emit_runtime_entry(entry, rmode);
683 }
684
685
686 void Assembler::call(Handle<Code> target,
687                      RelocInfo::Mode rmode,
688                      TypeFeedbackId ast_id) {
689   positions_recorder()->WriteRecordedPositions();
690   EnsureSpace ensure_space(this);
691   // 1110 1000 #32-bit disp.
692   emit(0xE8);
693   emit_code_target(target, rmode, ast_id);
694 }
695
696
697 void Assembler::call(Register adr) {
698   positions_recorder()->WriteRecordedPositions();
699   EnsureSpace ensure_space(this);
700   // Opcode: FF /2 r64.
701   emit_optional_rex_32(adr);
702   emit(0xFF);
703   emit_modrm(0x2, adr);
704 }
705
706
707 void Assembler::call(const Operand& op) {
708   positions_recorder()->WriteRecordedPositions();
709   EnsureSpace ensure_space(this);
710   // Opcode: FF /2 m64.
711   emit_optional_rex_32(op);
712   emit(0xFF);
713   emit_operand(0x2, op);
714 }
715
716
717 // Calls directly to the given address using a relative offset.
718 // Should only ever be used in Code objects for calls within the
719 // same Code object. Should not be used when generating new code (use labels),
720 // but only when patching existing code.
721 void Assembler::call(Address target) {
722   positions_recorder()->WriteRecordedPositions();
723   EnsureSpace ensure_space(this);
724   // 1110 1000 #32-bit disp.
725   emit(0xE8);
726   Address source = pc_ + 4;
727   intptr_t displacement = target - source;
728   DCHECK(is_int32(displacement));
729   emitl(static_cast<int32_t>(displacement));
730 }
731
732
733 void Assembler::clc() {
734   EnsureSpace ensure_space(this);
735   emit(0xF8);
736 }
737
738
739 void Assembler::cld() {
740   EnsureSpace ensure_space(this);
741   emit(0xFC);
742 }
743
744
745 void Assembler::cdq() {
746   EnsureSpace ensure_space(this);
747   emit(0x99);
748 }
749
750
751 void Assembler::cmovq(Condition cc, Register dst, Register src) {
752   if (cc == always) {
753     movq(dst, src);
754   } else if (cc == never) {
755     return;
756   }
757   // No need to check CpuInfo for CMOV support, it's a required part of the
758   // 64-bit architecture.
759   DCHECK(cc >= 0);  // Use mov for unconditional moves.
760   EnsureSpace ensure_space(this);
761   // Opcode: REX.W 0f 40 + cc /r.
762   emit_rex_64(dst, src);
763   emit(0x0f);
764   emit(0x40 + cc);
765   emit_modrm(dst, src);
766 }
767
768
769 void Assembler::cmovq(Condition cc, Register dst, const Operand& src) {
770   if (cc == always) {
771     movq(dst, src);
772   } else if (cc == never) {
773     return;
774   }
775   DCHECK(cc >= 0);
776   EnsureSpace ensure_space(this);
777   // Opcode: REX.W 0f 40 + cc /r.
778   emit_rex_64(dst, src);
779   emit(0x0f);
780   emit(0x40 + cc);
781   emit_operand(dst, src);
782 }
783
784
785 void Assembler::cmovl(Condition cc, Register dst, Register src) {
786   if (cc == always) {
787     movl(dst, src);
788   } else if (cc == never) {
789     return;
790   }
791   DCHECK(cc >= 0);
792   EnsureSpace ensure_space(this);
793   // Opcode: 0f 40 + cc /r.
794   emit_optional_rex_32(dst, src);
795   emit(0x0f);
796   emit(0x40 + cc);
797   emit_modrm(dst, src);
798 }
799
800
801 void Assembler::cmovl(Condition cc, Register dst, const Operand& src) {
802   if (cc == always) {
803     movl(dst, src);
804   } else if (cc == never) {
805     return;
806   }
807   DCHECK(cc >= 0);
808   EnsureSpace ensure_space(this);
809   // Opcode: 0f 40 + cc /r.
810   emit_optional_rex_32(dst, src);
811   emit(0x0f);
812   emit(0x40 + cc);
813   emit_operand(dst, src);
814 }
815
816
817 void Assembler::cmpb_al(Immediate imm8) {
818   DCHECK(is_int8(imm8.value_) || is_uint8(imm8.value_));
819   EnsureSpace ensure_space(this);
820   emit(0x3c);
821   emit(imm8.value_);
822 }
823
824
825 void Assembler::cpuid() {
826   EnsureSpace ensure_space(this);
827   emit(0x0F);
828   emit(0xA2);
829 }
830
831
832 void Assembler::cqo() {
833   EnsureSpace ensure_space(this);
834   emit_rex_64();
835   emit(0x99);
836 }
837
838
839 void Assembler::emit_dec(Register dst, int size) {
840   EnsureSpace ensure_space(this);
841   emit_rex(dst, size);
842   emit(0xFF);
843   emit_modrm(0x1, dst);
844 }
845
846
847 void Assembler::emit_dec(const Operand& dst, int size) {
848   EnsureSpace ensure_space(this);
849   emit_rex(dst, size);
850   emit(0xFF);
851   emit_operand(1, dst);
852 }
853
854
855 void Assembler::decb(Register dst) {
856   EnsureSpace ensure_space(this);
857   if (!dst.is_byte_register()) {
858     // Register is not one of al, bl, cl, dl.  Its encoding needs REX.
859     emit_rex_32(dst);
860   }
861   emit(0xFE);
862   emit_modrm(0x1, dst);
863 }
864
865
866 void Assembler::decb(const Operand& dst) {
867   EnsureSpace ensure_space(this);
868   emit_optional_rex_32(dst);
869   emit(0xFE);
870   emit_operand(1, dst);
871 }
872
873
874 void Assembler::enter(Immediate size) {
875   EnsureSpace ensure_space(this);
876   emit(0xC8);
877   emitw(size.value_);  // 16 bit operand, always.
878   emit(0);
879 }
880
881
882 void Assembler::hlt() {
883   EnsureSpace ensure_space(this);
884   emit(0xF4);
885 }
886
887
888 void Assembler::emit_idiv(Register src, int size) {
889   EnsureSpace ensure_space(this);
890   emit_rex(src, size);
891   emit(0xF7);
892   emit_modrm(0x7, src);
893 }
894
895
896 void Assembler::emit_div(Register src, int size) {
897   EnsureSpace ensure_space(this);
898   emit_rex(src, size);
899   emit(0xF7);
900   emit_modrm(0x6, src);
901 }
902
903
904 void Assembler::emit_imul(Register src, int size) {
905   EnsureSpace ensure_space(this);
906   emit_rex(src, size);
907   emit(0xF7);
908   emit_modrm(0x5, src);
909 }
910
911
912 void Assembler::emit_imul(Register dst, Register src, int size) {
913   EnsureSpace ensure_space(this);
914   emit_rex(dst, src, size);
915   emit(0x0F);
916   emit(0xAF);
917   emit_modrm(dst, src);
918 }
919
920
921 void Assembler::emit_imul(Register dst, const Operand& src, int size) {
922   EnsureSpace ensure_space(this);
923   emit_rex(dst, src, size);
924   emit(0x0F);
925   emit(0xAF);
926   emit_operand(dst, src);
927 }
928
929
930 void Assembler::emit_imul(Register dst, Register src, Immediate imm, int size) {
931   EnsureSpace ensure_space(this);
932   emit_rex(dst, src, size);
933   if (is_int8(imm.value_)) {
934     emit(0x6B);
935     emit_modrm(dst, src);
936     emit(imm.value_);
937   } else {
938     emit(0x69);
939     emit_modrm(dst, src);
940     emitl(imm.value_);
941   }
942 }
943
944
945 void Assembler::emit_inc(Register dst, int size) {
946   EnsureSpace ensure_space(this);
947   emit_rex(dst, size);
948   emit(0xFF);
949   emit_modrm(0x0, dst);
950 }
951
952
953 void Assembler::emit_inc(const Operand& dst, int size) {
954   EnsureSpace ensure_space(this);
955   emit_rex(dst, size);
956   emit(0xFF);
957   emit_operand(0, dst);
958 }
959
960
961 void Assembler::int3() {
962   EnsureSpace ensure_space(this);
963   emit(0xCC);
964 }
965
966
967 void Assembler::j(Condition cc, Label* L, Label::Distance distance) {
968   if (cc == always) {
969     jmp(L);
970     return;
971   } else if (cc == never) {
972     return;
973   }
974   EnsureSpace ensure_space(this);
975   DCHECK(is_uint4(cc));
976   if (L->is_bound()) {
977     const int short_size = 2;
978     const int long_size  = 6;
979     int offs = L->pos() - pc_offset();
980     DCHECK(offs <= 0);
981     // Determine whether we can use 1-byte offsets for backwards branches,
982     // which have a max range of 128 bytes.
983
984     // We also need to check predictable_code_size() flag here, because on x64,
985     // when the full code generator recompiles code for debugging, some places
986     // need to be padded out to a certain size. The debugger is keeping track of
987     // how often it did this so that it can adjust return addresses on the
988     // stack, but if the size of jump instructions can also change, that's not
989     // enough and the calculated offsets would be incorrect.
990     if (is_int8(offs - short_size) && !predictable_code_size()) {
991       // 0111 tttn #8-bit disp.
992       emit(0x70 | cc);
993       emit((offs - short_size) & 0xFF);
994     } else {
995       // 0000 1111 1000 tttn #32-bit disp.
996       emit(0x0F);
997       emit(0x80 | cc);
998       emitl(offs - long_size);
999     }
1000   } else if (distance == Label::kNear) {
1001     // 0111 tttn #8-bit disp
1002     emit(0x70 | cc);
1003     byte disp = 0x00;
1004     if (L->is_near_linked()) {
1005       int offset = L->near_link_pos() - pc_offset();
1006       DCHECK(is_int8(offset));
1007       disp = static_cast<byte>(offset & 0xFF);
1008     }
1009     L->link_to(pc_offset(), Label::kNear);
1010     emit(disp);
1011   } else if (L->is_linked()) {
1012     // 0000 1111 1000 tttn #32-bit disp.
1013     emit(0x0F);
1014     emit(0x80 | cc);
1015     emitl(L->pos());
1016     L->link_to(pc_offset() - sizeof(int32_t));
1017   } else {
1018     DCHECK(L->is_unused());
1019     emit(0x0F);
1020     emit(0x80 | cc);
1021     int32_t current = pc_offset();
1022     emitl(current);
1023     L->link_to(current);
1024   }
1025 }
1026
1027
1028 void Assembler::j(Condition cc, Address entry, RelocInfo::Mode rmode) {
1029   DCHECK(RelocInfo::IsRuntimeEntry(rmode));
1030   EnsureSpace ensure_space(this);
1031   DCHECK(is_uint4(cc));
1032   emit(0x0F);
1033   emit(0x80 | cc);
1034   emit_runtime_entry(entry, rmode);
1035 }
1036
1037
1038 void Assembler::j(Condition cc,
1039                   Handle<Code> target,
1040                   RelocInfo::Mode rmode) {
1041   EnsureSpace ensure_space(this);
1042   DCHECK(is_uint4(cc));
1043   // 0000 1111 1000 tttn #32-bit disp.
1044   emit(0x0F);
1045   emit(0x80 | cc);
1046   emit_code_target(target, rmode);
1047 }
1048
1049
1050 void Assembler::jmp(Label* L, Label::Distance distance) {
1051   EnsureSpace ensure_space(this);
1052   const int short_size = sizeof(int8_t);
1053   const int long_size = sizeof(int32_t);
1054   if (L->is_bound()) {
1055     int offs = L->pos() - pc_offset() - 1;
1056     DCHECK(offs <= 0);
1057     if (is_int8(offs - short_size) && !predictable_code_size()) {
1058       // 1110 1011 #8-bit disp.
1059       emit(0xEB);
1060       emit((offs - short_size) & 0xFF);
1061     } else {
1062       // 1110 1001 #32-bit disp.
1063       emit(0xE9);
1064       emitl(offs - long_size);
1065     }
1066   } else if (distance == Label::kNear) {
1067     emit(0xEB);
1068     byte disp = 0x00;
1069     if (L->is_near_linked()) {
1070       int offset = L->near_link_pos() - pc_offset();
1071       DCHECK(is_int8(offset));
1072       disp = static_cast<byte>(offset & 0xFF);
1073     }
1074     L->link_to(pc_offset(), Label::kNear);
1075     emit(disp);
1076   } else if (L->is_linked()) {
1077     // 1110 1001 #32-bit disp.
1078     emit(0xE9);
1079     emitl(L->pos());
1080     L->link_to(pc_offset() - long_size);
1081   } else {
1082     // 1110 1001 #32-bit disp.
1083     DCHECK(L->is_unused());
1084     emit(0xE9);
1085     int32_t current = pc_offset();
1086     emitl(current);
1087     L->link_to(current);
1088   }
1089 }
1090
1091
1092 void Assembler::jmp(Handle<Code> target, RelocInfo::Mode rmode) {
1093   EnsureSpace ensure_space(this);
1094   // 1110 1001 #32-bit disp.
1095   emit(0xE9);
1096   emit_code_target(target, rmode);
1097 }
1098
1099
1100 void Assembler::jmp(Address entry, RelocInfo::Mode rmode) {
1101   DCHECK(RelocInfo::IsRuntimeEntry(rmode));
1102   EnsureSpace ensure_space(this);
1103   DCHECK(RelocInfo::IsRuntimeEntry(rmode));
1104   emit(0xE9);
1105   emit_runtime_entry(entry, rmode);
1106 }
1107
1108
1109 void Assembler::jmp(Register target) {
1110   EnsureSpace ensure_space(this);
1111   // Opcode FF/4 r64.
1112   emit_optional_rex_32(target);
1113   emit(0xFF);
1114   emit_modrm(0x4, target);
1115 }
1116
1117
1118 void Assembler::jmp(const Operand& src) {
1119   EnsureSpace ensure_space(this);
1120   // Opcode FF/4 m64.
1121   emit_optional_rex_32(src);
1122   emit(0xFF);
1123   emit_operand(0x4, src);
1124 }
1125
1126
1127 void Assembler::emit_lea(Register dst, const Operand& src, int size) {
1128   EnsureSpace ensure_space(this);
1129   emit_rex(dst, src, size);
1130   emit(0x8D);
1131   emit_operand(dst, src);
1132 }
1133
1134
1135 void Assembler::load_rax(void* value, RelocInfo::Mode mode) {
1136   EnsureSpace ensure_space(this);
1137   if (kPointerSize == kInt64Size) {
1138     emit(0x48);  // REX.W
1139     emit(0xA1);
1140     emitp(value, mode);
1141   } else {
1142     DCHECK(kPointerSize == kInt32Size);
1143     emit(0xA1);
1144     emitp(value, mode);
1145     // In 64-bit mode, need to zero extend the operand to 8 bytes.
1146     // See 2.2.1.4 in Intel64 and IA32 Architectures Software
1147     // Developer's Manual Volume 2.
1148     emitl(0);
1149   }
1150 }
1151
1152
1153 void Assembler::load_rax(ExternalReference ref) {
1154   load_rax(ref.address(), RelocInfo::EXTERNAL_REFERENCE);
1155 }
1156
1157
1158 void Assembler::leave() {
1159   EnsureSpace ensure_space(this);
1160   emit(0xC9);
1161 }
1162
1163
1164 void Assembler::movb(Register dst, const Operand& src) {
1165   EnsureSpace ensure_space(this);
1166   if (!dst.is_byte_register()) {
1167     // Register is not one of al, bl, cl, dl.  Its encoding needs REX.
1168     emit_rex_32(dst, src);
1169   } else {
1170     emit_optional_rex_32(dst, src);
1171   }
1172   emit(0x8A);
1173   emit_operand(dst, src);
1174 }
1175
1176
1177 void Assembler::movb(Register dst, Immediate imm) {
1178   EnsureSpace ensure_space(this);
1179   if (!dst.is_byte_register()) {
1180     // Register is not one of al, bl, cl, dl.  Its encoding needs REX.
1181     emit_rex_32(dst);
1182   }
1183   emit(0xB0 + dst.low_bits());
1184   emit(imm.value_);
1185 }
1186
1187
1188 void Assembler::movb(const Operand& dst, Register src) {
1189   EnsureSpace ensure_space(this);
1190   if (!src.is_byte_register()) {
1191     // Register is not one of al, bl, cl, dl.  Its encoding needs REX.
1192     emit_rex_32(src, dst);
1193   } else {
1194     emit_optional_rex_32(src, dst);
1195   }
1196   emit(0x88);
1197   emit_operand(src, dst);
1198 }
1199
1200
1201 void Assembler::movb(const Operand& dst, Immediate imm) {
1202   EnsureSpace ensure_space(this);
1203   emit_optional_rex_32(dst);
1204   emit(0xC6);
1205   emit_operand(0x0, dst);
1206   emit(static_cast<byte>(imm.value_));
1207 }
1208
1209
1210 void Assembler::movw(Register dst, const Operand& src) {
1211   EnsureSpace ensure_space(this);
1212   emit(0x66);
1213   emit_optional_rex_32(dst, src);
1214   emit(0x8B);
1215   emit_operand(dst, src);
1216 }
1217
1218
1219 void Assembler::movw(const Operand& dst, Register src) {
1220   EnsureSpace ensure_space(this);
1221   emit(0x66);
1222   emit_optional_rex_32(src, dst);
1223   emit(0x89);
1224   emit_operand(src, dst);
1225 }
1226
1227
1228 void Assembler::movw(const Operand& dst, Immediate imm) {
1229   EnsureSpace ensure_space(this);
1230   emit(0x66);
1231   emit_optional_rex_32(dst);
1232   emit(0xC7);
1233   emit_operand(0x0, dst);
1234   emit(static_cast<byte>(imm.value_ & 0xff));
1235   emit(static_cast<byte>(imm.value_ >> 8));
1236 }
1237
1238
1239 void Assembler::emit_mov(Register dst, const Operand& src, int size) {
1240   EnsureSpace ensure_space(this);
1241   emit_rex(dst, src, size);
1242   emit(0x8B);
1243   emit_operand(dst, src);
1244 }
1245
1246
1247 void Assembler::emit_mov(Register dst, Register src, int size) {
1248   EnsureSpace ensure_space(this);
1249   if (src.low_bits() == 4) {
1250     emit_rex(src, dst, size);
1251     emit(0x89);
1252     emit_modrm(src, dst);
1253   } else {
1254     emit_rex(dst, src, size);
1255     emit(0x8B);
1256     emit_modrm(dst, src);
1257   }
1258 }
1259
1260
1261 void Assembler::emit_mov(const Operand& dst, Register src, int size) {
1262   EnsureSpace ensure_space(this);
1263   emit_rex(src, dst, size);
1264   emit(0x89);
1265   emit_operand(src, dst);
1266 }
1267
1268
1269 void Assembler::emit_mov(Register dst, Immediate value, int size) {
1270   EnsureSpace ensure_space(this);
1271   emit_rex(dst, size);
1272   if (size == kInt64Size) {
1273     emit(0xC7);
1274     emit_modrm(0x0, dst);
1275   } else {
1276     DCHECK(size == kInt32Size);
1277     emit(0xB8 + dst.low_bits());
1278   }
1279   emit(value);
1280 }
1281
1282
1283 void Assembler::emit_mov(const Operand& dst, Immediate value, int size) {
1284   EnsureSpace ensure_space(this);
1285   emit_rex(dst, size);
1286   emit(0xC7);
1287   emit_operand(0x0, dst);
1288   emit(value);
1289 }
1290
1291
1292 void Assembler::movp(Register dst, void* value, RelocInfo::Mode rmode) {
1293   EnsureSpace ensure_space(this);
1294   emit_rex(dst, kPointerSize);
1295   emit(0xB8 | dst.low_bits());
1296   emitp(value, rmode);
1297 }
1298
1299
1300 void Assembler::movq(Register dst, int64_t value) {
1301   EnsureSpace ensure_space(this);
1302   emit_rex_64(dst);
1303   emit(0xB8 | dst.low_bits());
1304   emitq(value);
1305 }
1306
1307
1308 void Assembler::movq(Register dst, uint64_t value) {
1309   movq(dst, static_cast<int64_t>(value));
1310 }
1311
1312
1313 // Loads the ip-relative location of the src label into the target location
1314 // (as a 32-bit offset sign extended to 64-bit).
1315 void Assembler::movl(const Operand& dst, Label* src) {
1316   EnsureSpace ensure_space(this);
1317   emit_optional_rex_32(dst);
1318   emit(0xC7);
1319   emit_operand(0, dst);
1320   if (src->is_bound()) {
1321     int offset = src->pos() - pc_offset() - sizeof(int32_t);
1322     DCHECK(offset <= 0);
1323     emitl(offset);
1324   } else if (src->is_linked()) {
1325     emitl(src->pos());
1326     src->link_to(pc_offset() - sizeof(int32_t));
1327   } else {
1328     DCHECK(src->is_unused());
1329     int32_t current = pc_offset();
1330     emitl(current);
1331     src->link_to(current);
1332   }
1333 }
1334
1335
1336 void Assembler::movsxbl(Register dst, const Operand& src) {
1337   EnsureSpace ensure_space(this);
1338   emit_optional_rex_32(dst, src);
1339   emit(0x0F);
1340   emit(0xBE);
1341   emit_operand(dst, src);
1342 }
1343
1344
1345 void Assembler::movsxbq(Register dst, const Operand& src) {
1346   EnsureSpace ensure_space(this);
1347   emit_rex_64(dst, src);
1348   emit(0x0F);
1349   emit(0xBE);
1350   emit_operand(dst, src);
1351 }
1352
1353
1354 void Assembler::movsxwl(Register dst, const Operand& src) {
1355   EnsureSpace ensure_space(this);
1356   emit_optional_rex_32(dst, src);
1357   emit(0x0F);
1358   emit(0xBF);
1359   emit_operand(dst, src);
1360 }
1361
1362
1363 void Assembler::movsxwq(Register dst, const Operand& src) {
1364   EnsureSpace ensure_space(this);
1365   emit_rex_64(dst, src);
1366   emit(0x0F);
1367   emit(0xBF);
1368   emit_operand(dst, src);
1369 }
1370
1371
1372 void Assembler::movsxlq(Register dst, Register src) {
1373   EnsureSpace ensure_space(this);
1374   emit_rex_64(dst, src);
1375   emit(0x63);
1376   emit_modrm(dst, src);
1377 }
1378
1379
1380 void Assembler::movsxlq(Register dst, const Operand& src) {
1381   EnsureSpace ensure_space(this);
1382   emit_rex_64(dst, src);
1383   emit(0x63);
1384   emit_operand(dst, src);
1385 }
1386
1387
1388 void Assembler::emit_movzxb(Register dst, const Operand& src, int size) {
1389   EnsureSpace ensure_space(this);
1390   // 32 bit operations zero the top 32 bits of 64 bit registers.  Therefore
1391   // there is no need to make this a 64 bit operation.
1392   emit_optional_rex_32(dst, src);
1393   emit(0x0F);
1394   emit(0xB6);
1395   emit_operand(dst, src);
1396 }
1397
1398
1399 void Assembler::emit_movzxb(Register dst, Register src, int size) {
1400   EnsureSpace ensure_space(this);
1401   // 32 bit operations zero the top 32 bits of 64 bit registers.  Therefore
1402   // there is no need to make this a 64 bit operation.
1403   if (!src.is_byte_register()) {
1404     // Register is not one of al, bl, cl, dl.  Its encoding needs REX.
1405     emit_rex_32(dst, src);
1406   } else {
1407     emit_optional_rex_32(dst, src);
1408   }
1409   emit(0x0F);
1410   emit(0xB6);
1411   emit_modrm(dst, src);
1412 }
1413
1414
1415 void Assembler::emit_movzxw(Register dst, const Operand& src, int size) {
1416   EnsureSpace ensure_space(this);
1417   // 32 bit operations zero the top 32 bits of 64 bit registers.  Therefore
1418   // there is no need to make this a 64 bit operation.
1419   emit_optional_rex_32(dst, src);
1420   emit(0x0F);
1421   emit(0xB7);
1422   emit_operand(dst, src);
1423 }
1424
1425
1426 void Assembler::emit_movzxw(Register dst, Register src, int size) {
1427   EnsureSpace ensure_space(this);
1428   // 32 bit operations zero the top 32 bits of 64 bit registers.  Therefore
1429   // there is no need to make this a 64 bit operation.
1430   emit_optional_rex_32(dst, src);
1431   emit(0x0F);
1432   emit(0xB7);
1433   emit_modrm(dst, src);
1434 }
1435
1436
1437 void Assembler::repmovsb() {
1438   EnsureSpace ensure_space(this);
1439   emit(0xF3);
1440   emit(0xA4);
1441 }
1442
1443
1444 void Assembler::repmovsw() {
1445   EnsureSpace ensure_space(this);
1446   emit(0x66);  // Operand size override.
1447   emit(0xF3);
1448   emit(0xA4);
1449 }
1450
1451
1452 void Assembler::emit_repmovs(int size) {
1453   EnsureSpace ensure_space(this);
1454   emit(0xF3);
1455   emit_rex(size);
1456   emit(0xA5);
1457 }
1458
1459
1460 void Assembler::mul(Register src) {
1461   EnsureSpace ensure_space(this);
1462   emit_rex_64(src);
1463   emit(0xF7);
1464   emit_modrm(0x4, src);
1465 }
1466
1467
1468 void Assembler::emit_neg(Register dst, int size) {
1469   EnsureSpace ensure_space(this);
1470   emit_rex(dst, size);
1471   emit(0xF7);
1472   emit_modrm(0x3, dst);
1473 }
1474
1475
1476 void Assembler::emit_neg(const Operand& dst, int size) {
1477   EnsureSpace ensure_space(this);
1478   emit_rex_64(dst);
1479   emit(0xF7);
1480   emit_operand(3, dst);
1481 }
1482
1483
1484 void Assembler::nop() {
1485   EnsureSpace ensure_space(this);
1486   emit(0x90);
1487 }
1488
1489
1490 void Assembler::emit_not(Register dst, int size) {
1491   EnsureSpace ensure_space(this);
1492   emit_rex(dst, size);
1493   emit(0xF7);
1494   emit_modrm(0x2, dst);
1495 }
1496
1497
1498 void Assembler::emit_not(const Operand& dst, int size) {
1499   EnsureSpace ensure_space(this);
1500   emit_rex(dst, size);
1501   emit(0xF7);
1502   emit_operand(2, dst);
1503 }
1504
1505
1506 void Assembler::Nop(int n) {
1507   // The recommended muti-byte sequences of NOP instructions from the Intel 64
1508   // and IA-32 Architectures Software Developer's Manual.
1509   //
1510   // Length   Assembly                                Byte Sequence
1511   // 2 bytes  66 NOP                                  66 90H
1512   // 3 bytes  NOP DWORD ptr [EAX]                     0F 1F 00H
1513   // 4 bytes  NOP DWORD ptr [EAX + 00H]               0F 1F 40 00H
1514   // 5 bytes  NOP DWORD ptr [EAX + EAX*1 + 00H]       0F 1F 44 00 00H
1515   // 6 bytes  66 NOP DWORD ptr [EAX + EAX*1 + 00H]    66 0F 1F 44 00 00H
1516   // 7 bytes  NOP DWORD ptr [EAX + 00000000H]         0F 1F 80 00 00 00 00H
1517   // 8 bytes  NOP DWORD ptr [EAX + EAX*1 + 00000000H] 0F 1F 84 00 00 00 00 00H
1518   // 9 bytes  66 NOP DWORD ptr [EAX + EAX*1 +         66 0F 1F 84 00 00 00 00
1519   //          00000000H]                              00H
1520
1521   EnsureSpace ensure_space(this);
1522   while (n > 0) {
1523     switch (n) {
1524       case 2:
1525         emit(0x66);
1526       case 1:
1527         emit(0x90);
1528         return;
1529       case 3:
1530         emit(0x0f);
1531         emit(0x1f);
1532         emit(0x00);
1533         return;
1534       case 4:
1535         emit(0x0f);
1536         emit(0x1f);
1537         emit(0x40);
1538         emit(0x00);
1539         return;
1540       case 6:
1541         emit(0x66);
1542       case 5:
1543         emit(0x0f);
1544         emit(0x1f);
1545         emit(0x44);
1546         emit(0x00);
1547         emit(0x00);
1548         return;
1549       case 7:
1550         emit(0x0f);
1551         emit(0x1f);
1552         emit(0x80);
1553         emit(0x00);
1554         emit(0x00);
1555         emit(0x00);
1556         emit(0x00);
1557         return;
1558       default:
1559       case 11:
1560         emit(0x66);
1561         n--;
1562       case 10:
1563         emit(0x66);
1564         n--;
1565       case 9:
1566         emit(0x66);
1567         n--;
1568       case 8:
1569         emit(0x0f);
1570         emit(0x1f);
1571         emit(0x84);
1572         emit(0x00);
1573         emit(0x00);
1574         emit(0x00);
1575         emit(0x00);
1576         emit(0x00);
1577         n -= 8;
1578     }
1579   }
1580 }
1581
1582
1583 void Assembler::popq(Register dst) {
1584   EnsureSpace ensure_space(this);
1585   emit_optional_rex_32(dst);
1586   emit(0x58 | dst.low_bits());
1587 }
1588
1589
1590 void Assembler::popq(const Operand& dst) {
1591   EnsureSpace ensure_space(this);
1592   emit_optional_rex_32(dst);
1593   emit(0x8F);
1594   emit_operand(0, dst);
1595 }
1596
1597
1598 void Assembler::popfq() {
1599   EnsureSpace ensure_space(this);
1600   emit(0x9D);
1601 }
1602
1603
1604 void Assembler::pushq(Register src) {
1605   EnsureSpace ensure_space(this);
1606   emit_optional_rex_32(src);
1607   emit(0x50 | src.low_bits());
1608 }
1609
1610
1611 void Assembler::pushq(const Operand& src) {
1612   EnsureSpace ensure_space(this);
1613   emit_optional_rex_32(src);
1614   emit(0xFF);
1615   emit_operand(6, src);
1616 }
1617
1618
1619 void Assembler::pushq(Immediate value) {
1620   EnsureSpace ensure_space(this);
1621   if (is_int8(value.value_)) {
1622     emit(0x6A);
1623     emit(value.value_);  // Emit low byte of value.
1624   } else {
1625     emit(0x68);
1626     emitl(value.value_);
1627   }
1628 }
1629
1630
1631 void Assembler::pushq_imm32(int32_t imm32) {
1632   EnsureSpace ensure_space(this);
1633   emit(0x68);
1634   emitl(imm32);
1635 }
1636
1637
1638 void Assembler::pushfq() {
1639   EnsureSpace ensure_space(this);
1640   emit(0x9C);
1641 }
1642
1643
1644 void Assembler::ret(int imm16) {
1645   EnsureSpace ensure_space(this);
1646   DCHECK(is_uint16(imm16));
1647   if (imm16 == 0) {
1648     emit(0xC3);
1649   } else {
1650     emit(0xC2);
1651     emit(imm16 & 0xFF);
1652     emit((imm16 >> 8) & 0xFF);
1653   }
1654 }
1655
1656
1657 void Assembler::setcc(Condition cc, Register reg) {
1658   if (cc > last_condition) {
1659     movb(reg, Immediate(cc == always ? 1 : 0));
1660     return;
1661   }
1662   EnsureSpace ensure_space(this);
1663   DCHECK(is_uint4(cc));
1664   if (!reg.is_byte_register()) {
1665     // Register is not one of al, bl, cl, dl.  Its encoding needs REX.
1666     emit_rex_32(reg);
1667   }
1668   emit(0x0F);
1669   emit(0x90 | cc);
1670   emit_modrm(0x0, reg);
1671 }
1672
1673
1674 void Assembler::shld(Register dst, Register src) {
1675   EnsureSpace ensure_space(this);
1676   emit_rex_64(src, dst);
1677   emit(0x0F);
1678   emit(0xA5);
1679   emit_modrm(src, dst);
1680 }
1681
1682
1683 void Assembler::shrd(Register dst, Register src) {
1684   EnsureSpace ensure_space(this);
1685   emit_rex_64(src, dst);
1686   emit(0x0F);
1687   emit(0xAD);
1688   emit_modrm(src, dst);
1689 }
1690
1691
1692 void Assembler::emit_xchg(Register dst, Register src, int size) {
1693   EnsureSpace ensure_space(this);
1694   if (src.is(rax) || dst.is(rax)) {  // Single-byte encoding
1695     Register other = src.is(rax) ? dst : src;
1696     emit_rex(other, size);
1697     emit(0x90 | other.low_bits());
1698   } else if (dst.low_bits() == 4) {
1699     emit_rex(dst, src, size);
1700     emit(0x87);
1701     emit_modrm(dst, src);
1702   } else {
1703     emit_rex(src, dst, size);
1704     emit(0x87);
1705     emit_modrm(src, dst);
1706   }
1707 }
1708
1709
1710 void Assembler::emit_xchg(Register dst, const Operand& src, int size) {
1711   EnsureSpace ensure_space(this);
1712   emit_rex(dst, src, size);
1713   emit(0x87);
1714   emit_operand(dst, src);
1715 }
1716
1717
1718 void Assembler::store_rax(void* dst, RelocInfo::Mode mode) {
1719   EnsureSpace ensure_space(this);
1720   if (kPointerSize == kInt64Size) {
1721     emit(0x48);  // REX.W
1722     emit(0xA3);
1723     emitp(dst, mode);
1724   } else {
1725     DCHECK(kPointerSize == kInt32Size);
1726     emit(0xA3);
1727     emitp(dst, mode);
1728     // In 64-bit mode, need to zero extend the operand to 8 bytes.
1729     // See 2.2.1.4 in Intel64 and IA32 Architectures Software
1730     // Developer's Manual Volume 2.
1731     emitl(0);
1732   }
1733 }
1734
1735
1736 void Assembler::store_rax(ExternalReference ref) {
1737   store_rax(ref.address(), RelocInfo::EXTERNAL_REFERENCE);
1738 }
1739
1740
1741 void Assembler::testb(Register dst, Register src) {
1742   EnsureSpace ensure_space(this);
1743   if (src.low_bits() == 4) {
1744     emit_rex_32(src, dst);
1745     emit(0x84);
1746     emit_modrm(src, dst);
1747   } else {
1748     if (!dst.is_byte_register() || !src.is_byte_register()) {
1749       // Register is not one of al, bl, cl, dl.  Its encoding needs REX.
1750       emit_rex_32(dst, src);
1751     }
1752     emit(0x84);
1753     emit_modrm(dst, src);
1754   }
1755 }
1756
1757
1758 void Assembler::testb(Register reg, Immediate mask) {
1759   DCHECK(is_int8(mask.value_) || is_uint8(mask.value_));
1760   EnsureSpace ensure_space(this);
1761   if (reg.is(rax)) {
1762     emit(0xA8);
1763     emit(mask.value_);  // Low byte emitted.
1764   } else {
1765     if (!reg.is_byte_register()) {
1766       // Register is not one of al, bl, cl, dl.  Its encoding needs REX.
1767       emit_rex_32(reg);
1768     }
1769     emit(0xF6);
1770     emit_modrm(0x0, reg);
1771     emit(mask.value_);  // Low byte emitted.
1772   }
1773 }
1774
1775
1776 void Assembler::testb(const Operand& op, Immediate mask) {
1777   DCHECK(is_int8(mask.value_) || is_uint8(mask.value_));
1778   EnsureSpace ensure_space(this);
1779   emit_optional_rex_32(rax, op);
1780   emit(0xF6);
1781   emit_operand(rax, op);  // Operation code 0
1782   emit(mask.value_);  // Low byte emitted.
1783 }
1784
1785
1786 void Assembler::testb(const Operand& op, Register reg) {
1787   EnsureSpace ensure_space(this);
1788   if (!reg.is_byte_register()) {
1789     // Register is not one of al, bl, cl, dl.  Its encoding needs REX.
1790     emit_rex_32(reg, op);
1791   } else {
1792     emit_optional_rex_32(reg, op);
1793   }
1794   emit(0x84);
1795   emit_operand(reg, op);
1796 }
1797
1798
1799 void Assembler::emit_test(Register dst, Register src, int size) {
1800   EnsureSpace ensure_space(this);
1801   if (src.low_bits() == 4) {
1802     emit_rex(src, dst, size);
1803     emit(0x85);
1804     emit_modrm(src, dst);
1805   } else {
1806     emit_rex(dst, src, size);
1807     emit(0x85);
1808     emit_modrm(dst, src);
1809   }
1810 }
1811
1812
1813 void Assembler::emit_test(Register reg, Immediate mask, int size) {
1814   // testl with a mask that fits in the low byte is exactly testb.
1815   if (is_uint8(mask.value_)) {
1816     testb(reg, mask);
1817     return;
1818   }
1819   EnsureSpace ensure_space(this);
1820   if (reg.is(rax)) {
1821     emit_rex(rax, size);
1822     emit(0xA9);
1823     emit(mask);
1824   } else {
1825     emit_rex(reg, size);
1826     emit(0xF7);
1827     emit_modrm(0x0, reg);
1828     emit(mask);
1829   }
1830 }
1831
1832
1833 void Assembler::emit_test(const Operand& op, Immediate mask, int size) {
1834   // testl with a mask that fits in the low byte is exactly testb.
1835   if (is_uint8(mask.value_)) {
1836     testb(op, mask);
1837     return;
1838   }
1839   EnsureSpace ensure_space(this);
1840   emit_rex(rax, op, size);
1841   emit(0xF7);
1842   emit_operand(rax, op);  // Operation code 0
1843   emit(mask);
1844 }
1845
1846
1847 void Assembler::emit_test(const Operand& op, Register reg, int size) {
1848   EnsureSpace ensure_space(this);
1849   emit_rex(reg, op, size);
1850   emit(0x85);
1851   emit_operand(reg, op);
1852 }
1853
1854
1855 // FPU instructions.
1856
1857
1858 void Assembler::fld(int i) {
1859   EnsureSpace ensure_space(this);
1860   emit_farith(0xD9, 0xC0, i);
1861 }
1862
1863
1864 void Assembler::fld1() {
1865   EnsureSpace ensure_space(this);
1866   emit(0xD9);
1867   emit(0xE8);
1868 }
1869
1870
1871 void Assembler::fldz() {
1872   EnsureSpace ensure_space(this);
1873   emit(0xD9);
1874   emit(0xEE);
1875 }
1876
1877
1878 void Assembler::fldpi() {
1879   EnsureSpace ensure_space(this);
1880   emit(0xD9);
1881   emit(0xEB);
1882 }
1883
1884
1885 void Assembler::fldln2() {
1886   EnsureSpace ensure_space(this);
1887   emit(0xD9);
1888   emit(0xED);
1889 }
1890
1891
1892 void Assembler::fld_s(const Operand& adr) {
1893   EnsureSpace ensure_space(this);
1894   emit_optional_rex_32(adr);
1895   emit(0xD9);
1896   emit_operand(0, adr);
1897 }
1898
1899
1900 void Assembler::fld_d(const Operand& adr) {
1901   EnsureSpace ensure_space(this);
1902   emit_optional_rex_32(adr);
1903   emit(0xDD);
1904   emit_operand(0, adr);
1905 }
1906
1907
1908 void Assembler::fstp_s(const Operand& adr) {
1909   EnsureSpace ensure_space(this);
1910   emit_optional_rex_32(adr);
1911   emit(0xD9);
1912   emit_operand(3, adr);
1913 }
1914
1915
1916 void Assembler::fstp_d(const Operand& adr) {
1917   EnsureSpace ensure_space(this);
1918   emit_optional_rex_32(adr);
1919   emit(0xDD);
1920   emit_operand(3, adr);
1921 }
1922
1923
1924 void Assembler::fstp(int index) {
1925   DCHECK(is_uint3(index));
1926   EnsureSpace ensure_space(this);
1927   emit_farith(0xDD, 0xD8, index);
1928 }
1929
1930
1931 void Assembler::fild_s(const Operand& adr) {
1932   EnsureSpace ensure_space(this);
1933   emit_optional_rex_32(adr);
1934   emit(0xDB);
1935   emit_operand(0, adr);
1936 }
1937
1938
1939 void Assembler::fild_d(const Operand& adr) {
1940   EnsureSpace ensure_space(this);
1941   emit_optional_rex_32(adr);
1942   emit(0xDF);
1943   emit_operand(5, adr);
1944 }
1945
1946
1947 void Assembler::fistp_s(const Operand& adr) {
1948   EnsureSpace ensure_space(this);
1949   emit_optional_rex_32(adr);
1950   emit(0xDB);
1951   emit_operand(3, adr);
1952 }
1953
1954
1955 void Assembler::fisttp_s(const Operand& adr) {
1956   DCHECK(IsEnabled(SSE3));
1957   EnsureSpace ensure_space(this);
1958   emit_optional_rex_32(adr);
1959   emit(0xDB);
1960   emit_operand(1, adr);
1961 }
1962
1963
1964 void Assembler::fisttp_d(const Operand& adr) {
1965   DCHECK(IsEnabled(SSE3));
1966   EnsureSpace ensure_space(this);
1967   emit_optional_rex_32(adr);
1968   emit(0xDD);
1969   emit_operand(1, adr);
1970 }
1971
1972
1973 void Assembler::fist_s(const Operand& adr) {
1974   EnsureSpace ensure_space(this);
1975   emit_optional_rex_32(adr);
1976   emit(0xDB);
1977   emit_operand(2, adr);
1978 }
1979
1980
1981 void Assembler::fistp_d(const Operand& adr) {
1982   EnsureSpace ensure_space(this);
1983   emit_optional_rex_32(adr);
1984   emit(0xDF);
1985   emit_operand(7, adr);
1986 }
1987
1988
1989 void Assembler::fabs() {
1990   EnsureSpace ensure_space(this);
1991   emit(0xD9);
1992   emit(0xE1);
1993 }
1994
1995
1996 void Assembler::fchs() {
1997   EnsureSpace ensure_space(this);
1998   emit(0xD9);
1999   emit(0xE0);
2000 }
2001
2002
2003 void Assembler::fcos() {
2004   EnsureSpace ensure_space(this);
2005   emit(0xD9);
2006   emit(0xFF);
2007 }
2008
2009
2010 void Assembler::fsin() {
2011   EnsureSpace ensure_space(this);
2012   emit(0xD9);
2013   emit(0xFE);
2014 }
2015
2016
2017 void Assembler::fptan() {
2018   EnsureSpace ensure_space(this);
2019   emit(0xD9);
2020   emit(0xF2);
2021 }
2022
2023
2024 void Assembler::fyl2x() {
2025   EnsureSpace ensure_space(this);
2026   emit(0xD9);
2027   emit(0xF1);
2028 }
2029
2030
2031 void Assembler::f2xm1() {
2032   EnsureSpace ensure_space(this);
2033   emit(0xD9);
2034   emit(0xF0);
2035 }
2036
2037
2038 void Assembler::fscale() {
2039   EnsureSpace ensure_space(this);
2040   emit(0xD9);
2041   emit(0xFD);
2042 }
2043
2044
2045 void Assembler::fninit() {
2046   EnsureSpace ensure_space(this);
2047   emit(0xDB);
2048   emit(0xE3);
2049 }
2050
2051
2052 void Assembler::fadd(int i) {
2053   EnsureSpace ensure_space(this);
2054   emit_farith(0xDC, 0xC0, i);
2055 }
2056
2057
2058 void Assembler::fsub(int i) {
2059   EnsureSpace ensure_space(this);
2060   emit_farith(0xDC, 0xE8, i);
2061 }
2062
2063
2064 void Assembler::fisub_s(const Operand& adr) {
2065   EnsureSpace ensure_space(this);
2066   emit_optional_rex_32(adr);
2067   emit(0xDA);
2068   emit_operand(4, adr);
2069 }
2070
2071
2072 void Assembler::fmul(int i) {
2073   EnsureSpace ensure_space(this);
2074   emit_farith(0xDC, 0xC8, i);
2075 }
2076
2077
2078 void Assembler::fdiv(int i) {
2079   EnsureSpace ensure_space(this);
2080   emit_farith(0xDC, 0xF8, i);
2081 }
2082
2083
2084 void Assembler::faddp(int i) {
2085   EnsureSpace ensure_space(this);
2086   emit_farith(0xDE, 0xC0, i);
2087 }
2088
2089
2090 void Assembler::fsubp(int i) {
2091   EnsureSpace ensure_space(this);
2092   emit_farith(0xDE, 0xE8, i);
2093 }
2094
2095
2096 void Assembler::fsubrp(int i) {
2097   EnsureSpace ensure_space(this);
2098   emit_farith(0xDE, 0xE0, i);
2099 }
2100
2101
2102 void Assembler::fmulp(int i) {
2103   EnsureSpace ensure_space(this);
2104   emit_farith(0xDE, 0xC8, i);
2105 }
2106
2107
2108 void Assembler::fdivp(int i) {
2109   EnsureSpace ensure_space(this);
2110   emit_farith(0xDE, 0xF8, i);
2111 }
2112
2113
2114 void Assembler::fprem() {
2115   EnsureSpace ensure_space(this);
2116   emit(0xD9);
2117   emit(0xF8);
2118 }
2119
2120
2121 void Assembler::fprem1() {
2122   EnsureSpace ensure_space(this);
2123   emit(0xD9);
2124   emit(0xF5);
2125 }
2126
2127
2128 void Assembler::fxch(int i) {
2129   EnsureSpace ensure_space(this);
2130   emit_farith(0xD9, 0xC8, i);
2131 }
2132
2133
2134 void Assembler::fincstp() {
2135   EnsureSpace ensure_space(this);
2136   emit(0xD9);
2137   emit(0xF7);
2138 }
2139
2140
2141 void Assembler::ffree(int i) {
2142   EnsureSpace ensure_space(this);
2143   emit_farith(0xDD, 0xC0, i);
2144 }
2145
2146
2147 void Assembler::ftst() {
2148   EnsureSpace ensure_space(this);
2149   emit(0xD9);
2150   emit(0xE4);
2151 }
2152
2153
2154 void Assembler::fucomp(int i) {
2155   EnsureSpace ensure_space(this);
2156   emit_farith(0xDD, 0xE8, i);
2157 }
2158
2159
2160 void Assembler::fucompp() {
2161   EnsureSpace ensure_space(this);
2162   emit(0xDA);
2163   emit(0xE9);
2164 }
2165
2166
2167 void Assembler::fucomi(int i) {
2168   EnsureSpace ensure_space(this);
2169   emit(0xDB);
2170   emit(0xE8 + i);
2171 }
2172
2173
2174 void Assembler::fucomip() {
2175   EnsureSpace ensure_space(this);
2176   emit(0xDF);
2177   emit(0xE9);
2178 }
2179
2180
2181 void Assembler::fcompp() {
2182   EnsureSpace ensure_space(this);
2183   emit(0xDE);
2184   emit(0xD9);
2185 }
2186
2187
2188 void Assembler::fnstsw_ax() {
2189   EnsureSpace ensure_space(this);
2190   emit(0xDF);
2191   emit(0xE0);
2192 }
2193
2194
2195 void Assembler::fwait() {
2196   EnsureSpace ensure_space(this);
2197   emit(0x9B);
2198 }
2199
2200
2201 void Assembler::frndint() {
2202   EnsureSpace ensure_space(this);
2203   emit(0xD9);
2204   emit(0xFC);
2205 }
2206
2207
2208 void Assembler::fnclex() {
2209   EnsureSpace ensure_space(this);
2210   emit(0xDB);
2211   emit(0xE2);
2212 }
2213
2214
2215 void Assembler::sahf() {
2216   // TODO(X64): Test for presence. Not all 64-bit intel CPU's have sahf
2217   // in 64-bit mode. Test CpuID.
2218   DCHECK(IsEnabled(SAHF));
2219   EnsureSpace ensure_space(this);
2220   emit(0x9E);
2221 }
2222
2223
2224 void Assembler::emit_farith(int b1, int b2, int i) {
2225   DCHECK(is_uint8(b1) && is_uint8(b2));  // wrong opcode
2226   DCHECK(is_uint3(i));  // illegal stack offset
2227   emit(b1);
2228   emit(b2 + i);
2229 }
2230
2231
2232 // SSE operations.
2233
2234 void Assembler::andps(XMMRegister dst, XMMRegister src) {
2235   EnsureSpace ensure_space(this);
2236   emit_optional_rex_32(dst, src);
2237   emit(0x0F);
2238   emit(0x54);
2239   emit_sse_operand(dst, src);
2240 }
2241
2242
2243 void Assembler::andps(XMMRegister dst, const Operand& src) {
2244   EnsureSpace ensure_space(this);
2245   emit_optional_rex_32(dst, src);
2246   emit(0x0F);
2247   emit(0x54);
2248   emit_sse_operand(dst, src);
2249 }
2250
2251
2252 void Assembler::orps(XMMRegister dst, XMMRegister src) {
2253   EnsureSpace ensure_space(this);
2254   emit_optional_rex_32(dst, src);
2255   emit(0x0F);
2256   emit(0x56);
2257   emit_sse_operand(dst, src);
2258 }
2259
2260
2261 void Assembler::orps(XMMRegister dst, const Operand& src) {
2262   EnsureSpace ensure_space(this);
2263   emit_optional_rex_32(dst, src);
2264   emit(0x0F);
2265   emit(0x56);
2266   emit_sse_operand(dst, src);
2267 }
2268
2269
2270 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
2271   EnsureSpace ensure_space(this);
2272   emit_optional_rex_32(dst, src);
2273   emit(0x0F);
2274   emit(0x57);
2275   emit_sse_operand(dst, src);
2276 }
2277
2278
2279 void Assembler::xorps(XMMRegister dst, const Operand& src) {
2280   EnsureSpace ensure_space(this);
2281   emit_optional_rex_32(dst, src);
2282   emit(0x0F);
2283   emit(0x57);
2284   emit_sse_operand(dst, src);
2285 }
2286
2287
2288 void Assembler::addps(XMMRegister dst, XMMRegister src) {
2289   EnsureSpace ensure_space(this);
2290   emit_optional_rex_32(dst, src);
2291   emit(0x0F);
2292   emit(0x58);
2293   emit_sse_operand(dst, src);
2294 }
2295
2296
2297 void Assembler::addps(XMMRegister dst, const Operand& src) {
2298   EnsureSpace ensure_space(this);
2299   emit_optional_rex_32(dst, src);
2300   emit(0x0F);
2301   emit(0x58);
2302   emit_sse_operand(dst, src);
2303 }
2304
2305
2306 void Assembler::subps(XMMRegister dst, XMMRegister src) {
2307   EnsureSpace ensure_space(this);
2308   emit_optional_rex_32(dst, src);
2309   emit(0x0F);
2310   emit(0x5C);
2311   emit_sse_operand(dst, src);
2312 }
2313
2314
2315 void Assembler::subps(XMMRegister dst, const Operand& src) {
2316   EnsureSpace ensure_space(this);
2317   emit_optional_rex_32(dst, src);
2318   emit(0x0F);
2319   emit(0x5C);
2320   emit_sse_operand(dst, src);
2321 }
2322
2323
2324 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
2325   EnsureSpace ensure_space(this);
2326   emit_optional_rex_32(dst, src);
2327   emit(0x0F);
2328   emit(0x59);
2329   emit_sse_operand(dst, src);
2330 }
2331
2332
2333 void Assembler::mulps(XMMRegister dst, const Operand& src) {
2334   EnsureSpace ensure_space(this);
2335   emit_optional_rex_32(dst, src);
2336   emit(0x0F);
2337   emit(0x59);
2338   emit_sse_operand(dst, src);
2339 }
2340
2341
2342 void Assembler::divps(XMMRegister dst, XMMRegister src) {
2343   EnsureSpace ensure_space(this);
2344   emit_optional_rex_32(dst, src);
2345   emit(0x0F);
2346   emit(0x5E);
2347   emit_sse_operand(dst, src);
2348 }
2349
2350
2351 void Assembler::divps(XMMRegister dst, const Operand& src) {
2352   EnsureSpace ensure_space(this);
2353   emit_optional_rex_32(dst, src);
2354   emit(0x0F);
2355   emit(0x5E);
2356   emit_sse_operand(dst, src);
2357 }
2358
2359
2360 // SSE 2 operations.
2361
2362 void Assembler::movd(XMMRegister dst, Register src) {
2363   EnsureSpace ensure_space(this);
2364   emit(0x66);
2365   emit_optional_rex_32(dst, src);
2366   emit(0x0F);
2367   emit(0x6E);
2368   emit_sse_operand(dst, src);
2369 }
2370
2371
2372 void Assembler::movd(Register dst, XMMRegister src) {
2373   EnsureSpace ensure_space(this);
2374   emit(0x66);
2375   emit_optional_rex_32(src, dst);
2376   emit(0x0F);
2377   emit(0x7E);
2378   emit_sse_operand(src, dst);
2379 }
2380
2381
2382 void Assembler::movq(XMMRegister dst, Register src) {
2383   EnsureSpace ensure_space(this);
2384   emit(0x66);
2385   emit_rex_64(dst, src);
2386   emit(0x0F);
2387   emit(0x6E);
2388   emit_sse_operand(dst, src);
2389 }
2390
2391
2392 void Assembler::movq(Register dst, XMMRegister src) {
2393   EnsureSpace ensure_space(this);
2394   emit(0x66);
2395   emit_rex_64(src, dst);
2396   emit(0x0F);
2397   emit(0x7E);
2398   emit_sse_operand(src, dst);
2399 }
2400
2401
2402 void Assembler::movq(XMMRegister dst, XMMRegister src) {
2403   EnsureSpace ensure_space(this);
2404   if (dst.low_bits() == 4) {
2405     // Avoid unnecessary SIB byte.
2406     emit(0xf3);
2407     emit_optional_rex_32(dst, src);
2408     emit(0x0F);
2409     emit(0x7e);
2410     emit_sse_operand(dst, src);
2411   } else {
2412     emit(0x66);
2413     emit_optional_rex_32(src, dst);
2414     emit(0x0F);
2415     emit(0xD6);
2416     emit_sse_operand(src, dst);
2417   }
2418 }
2419
2420
2421 void Assembler::movdqa(const Operand& dst, XMMRegister src) {
2422   EnsureSpace ensure_space(this);
2423   emit(0x66);
2424   emit_rex_64(src, dst);
2425   emit(0x0F);
2426   emit(0x7F);
2427   emit_sse_operand(src, dst);
2428 }
2429
2430
2431 void Assembler::movdqa(XMMRegister dst, const Operand& src) {
2432   EnsureSpace ensure_space(this);
2433   emit(0x66);
2434   emit_rex_64(dst, src);
2435   emit(0x0F);
2436   emit(0x6F);
2437   emit_sse_operand(dst, src);
2438 }
2439
2440
2441 void Assembler::movdqu(const Operand& dst, XMMRegister src) {
2442   EnsureSpace ensure_space(this);
2443   emit(0xF3);
2444   emit_rex_64(src, dst);
2445   emit(0x0F);
2446   emit(0x7F);
2447   emit_sse_operand(src, dst);
2448 }
2449
2450
2451 void Assembler::movdqu(XMMRegister dst, const Operand& src) {
2452   EnsureSpace ensure_space(this);
2453   emit(0xF3);
2454   emit_rex_64(dst, src);
2455   emit(0x0F);
2456   emit(0x6F);
2457   emit_sse_operand(dst, src);
2458 }
2459
2460
2461 void Assembler::extractps(Register dst, XMMRegister src, byte imm8) {
2462   DCHECK(IsEnabled(SSE4_1));
2463   DCHECK(is_uint8(imm8));
2464   EnsureSpace ensure_space(this);
2465   emit(0x66);
2466   emit_optional_rex_32(src, dst);
2467   emit(0x0F);
2468   emit(0x3A);
2469   emit(0x17);
2470   emit_sse_operand(src, dst);
2471   emit(imm8);
2472 }
2473
2474
2475 void Assembler::movsd(const Operand& dst, XMMRegister src) {
2476   EnsureSpace ensure_space(this);
2477   emit(0xF2);  // double
2478   emit_optional_rex_32(src, dst);
2479   emit(0x0F);
2480   emit(0x11);  // store
2481   emit_sse_operand(src, dst);
2482 }
2483
2484
2485 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2486   EnsureSpace ensure_space(this);
2487   emit(0xF2);  // double
2488   emit_optional_rex_32(dst, src);
2489   emit(0x0F);
2490   emit(0x10);  // load
2491   emit_sse_operand(dst, src);
2492 }
2493
2494
2495 void Assembler::movsd(XMMRegister dst, const Operand& src) {
2496   EnsureSpace ensure_space(this);
2497   emit(0xF2);  // double
2498   emit_optional_rex_32(dst, src);
2499   emit(0x0F);
2500   emit(0x10);  // load
2501   emit_sse_operand(dst, src);
2502 }
2503
2504
2505 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2506   EnsureSpace ensure_space(this);
2507   if (src.low_bits() == 4) {
2508     // Try to avoid an unnecessary SIB byte.
2509     emit_optional_rex_32(src, dst);
2510     emit(0x0F);
2511     emit(0x29);
2512     emit_sse_operand(src, dst);
2513   } else {
2514     emit_optional_rex_32(dst, src);
2515     emit(0x0F);
2516     emit(0x28);
2517     emit_sse_operand(dst, src);
2518   }
2519 }
2520
2521
2522 void Assembler::shufps(XMMRegister dst, XMMRegister src, byte imm8) {
2523   DCHECK(is_uint8(imm8));
2524   EnsureSpace ensure_space(this);
2525   emit_optional_rex_32(src, dst);
2526   emit(0x0F);
2527   emit(0xC6);
2528   emit_sse_operand(dst, src);
2529   emit(imm8);
2530 }
2531
2532
2533 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2534   EnsureSpace ensure_space(this);
2535   if (src.low_bits() == 4) {
2536     // Try to avoid an unnecessary SIB byte.
2537     emit(0x66);
2538     emit_optional_rex_32(src, dst);
2539     emit(0x0F);
2540     emit(0x29);
2541     emit_sse_operand(src, dst);
2542   } else {
2543     emit(0x66);
2544     emit_optional_rex_32(dst, src);
2545     emit(0x0F);
2546     emit(0x28);
2547     emit_sse_operand(dst, src);
2548   }
2549 }
2550
2551
2552 void Assembler::movss(XMMRegister dst, const Operand& src) {
2553   EnsureSpace ensure_space(this);
2554   emit(0xF3);  // single
2555   emit_optional_rex_32(dst, src);
2556   emit(0x0F);
2557   emit(0x10);  // load
2558   emit_sse_operand(dst, src);
2559 }
2560
2561
2562 void Assembler::movss(const Operand& src, XMMRegister dst) {
2563   EnsureSpace ensure_space(this);
2564   emit(0xF3);  // single
2565   emit_optional_rex_32(dst, src);
2566   emit(0x0F);
2567   emit(0x11);  // store
2568   emit_sse_operand(dst, src);
2569 }
2570
2571
2572 void Assembler::psllq(XMMRegister reg, byte imm8) {
2573   EnsureSpace ensure_space(this);
2574   emit(0x66);
2575   emit(0x0F);
2576   emit(0x73);
2577   emit_sse_operand(rsi, reg);  // rsi == 6
2578   emit(imm8);
2579 }
2580
2581
2582 void Assembler::cvttss2si(Register dst, const Operand& src) {
2583   EnsureSpace ensure_space(this);
2584   emit(0xF3);
2585   emit_optional_rex_32(dst, src);
2586   emit(0x0F);
2587   emit(0x2C);
2588   emit_operand(dst, src);
2589 }
2590
2591
2592 void Assembler::cvttss2si(Register dst, XMMRegister src) {
2593   EnsureSpace ensure_space(this);
2594   emit(0xF3);
2595   emit_optional_rex_32(dst, src);
2596   emit(0x0F);
2597   emit(0x2C);
2598   emit_sse_operand(dst, src);
2599 }
2600
2601
2602 void Assembler::cvttsd2si(Register dst, const Operand& src) {
2603   EnsureSpace ensure_space(this);
2604   emit(0xF2);
2605   emit_optional_rex_32(dst, src);
2606   emit(0x0F);
2607   emit(0x2C);
2608   emit_operand(dst, src);
2609 }
2610
2611
2612 void Assembler::cvttsd2si(Register dst, XMMRegister src) {
2613   EnsureSpace ensure_space(this);
2614   emit(0xF2);
2615   emit_optional_rex_32(dst, src);
2616   emit(0x0F);
2617   emit(0x2C);
2618   emit_sse_operand(dst, src);
2619 }
2620
2621
2622 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
2623   EnsureSpace ensure_space(this);
2624   emit(0xF2);
2625   emit_rex_64(dst, src);
2626   emit(0x0F);
2627   emit(0x2C);
2628   emit_sse_operand(dst, src);
2629 }
2630
2631
2632 void Assembler::cvttsd2siq(Register dst, const Operand& src) {
2633   EnsureSpace ensure_space(this);
2634   emit(0xF2);
2635   emit_rex_64(dst, src);
2636   emit(0x0F);
2637   emit(0x2C);
2638   emit_sse_operand(dst, src);
2639 }
2640
2641
2642 void Assembler::cvtlsi2sd(XMMRegister dst, const Operand& src) {
2643   EnsureSpace ensure_space(this);
2644   emit(0xF2);
2645   emit_optional_rex_32(dst, src);
2646   emit(0x0F);
2647   emit(0x2A);
2648   emit_sse_operand(dst, src);
2649 }
2650
2651
2652 void Assembler::cvtlsi2sd(XMMRegister dst, Register src) {
2653   EnsureSpace ensure_space(this);
2654   emit(0xF2);
2655   emit_optional_rex_32(dst, src);
2656   emit(0x0F);
2657   emit(0x2A);
2658   emit_sse_operand(dst, src);
2659 }
2660
2661
2662 void Assembler::cvtlsi2ss(XMMRegister dst, Register src) {
2663   EnsureSpace ensure_space(this);
2664   emit(0xF3);
2665   emit_optional_rex_32(dst, src);
2666   emit(0x0F);
2667   emit(0x2A);
2668   emit_sse_operand(dst, src);
2669 }
2670
2671
2672 void Assembler::cvtqsi2sd(XMMRegister dst, Register src) {
2673   EnsureSpace ensure_space(this);
2674   emit(0xF2);
2675   emit_rex_64(dst, src);
2676   emit(0x0F);
2677   emit(0x2A);
2678   emit_sse_operand(dst, src);
2679 }
2680
2681
2682 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
2683   EnsureSpace ensure_space(this);
2684   emit(0xF3);
2685   emit_optional_rex_32(dst, src);
2686   emit(0x0F);
2687   emit(0x5A);
2688   emit_sse_operand(dst, src);
2689 }
2690
2691
2692 void Assembler::cvtss2sd(XMMRegister dst, const Operand& src) {
2693   EnsureSpace ensure_space(this);
2694   emit(0xF3);
2695   emit_optional_rex_32(dst, src);
2696   emit(0x0F);
2697   emit(0x5A);
2698   emit_sse_operand(dst, src);
2699 }
2700
2701
2702 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
2703   EnsureSpace ensure_space(this);
2704   emit(0xF2);
2705   emit_optional_rex_32(dst, src);
2706   emit(0x0F);
2707   emit(0x5A);
2708   emit_sse_operand(dst, src);
2709 }
2710
2711
2712 void Assembler::cvtsd2si(Register dst, XMMRegister src) {
2713   EnsureSpace ensure_space(this);
2714   emit(0xF2);
2715   emit_optional_rex_32(dst, src);
2716   emit(0x0F);
2717   emit(0x2D);
2718   emit_sse_operand(dst, src);
2719 }
2720
2721
2722 void Assembler::cvtsd2siq(Register dst, XMMRegister src) {
2723   EnsureSpace ensure_space(this);
2724   emit(0xF2);
2725   emit_rex_64(dst, src);
2726   emit(0x0F);
2727   emit(0x2D);
2728   emit_sse_operand(dst, src);
2729 }
2730
2731
2732 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
2733   EnsureSpace ensure_space(this);
2734   emit(0xF2);
2735   emit_optional_rex_32(dst, src);
2736   emit(0x0F);
2737   emit(0x58);
2738   emit_sse_operand(dst, src);
2739 }
2740
2741
2742 void Assembler::addsd(XMMRegister dst, const Operand& src) {
2743   EnsureSpace ensure_space(this);
2744   emit(0xF2);
2745   emit_optional_rex_32(dst, src);
2746   emit(0x0F);
2747   emit(0x58);
2748   emit_sse_operand(dst, src);
2749 }
2750
2751
2752 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2753   EnsureSpace ensure_space(this);
2754   emit(0xF2);
2755   emit_optional_rex_32(dst, src);
2756   emit(0x0F);
2757   emit(0x59);
2758   emit_sse_operand(dst, src);
2759 }
2760
2761
2762 void Assembler::mulsd(XMMRegister dst, const Operand& src) {
2763   EnsureSpace ensure_space(this);
2764   emit(0xF2);
2765   emit_optional_rex_32(dst, src);
2766   emit(0x0F);
2767   emit(0x59);
2768   emit_sse_operand(dst, src);
2769 }
2770
2771
2772 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
2773   EnsureSpace ensure_space(this);
2774   emit(0xF2);
2775   emit_optional_rex_32(dst, src);
2776   emit(0x0F);
2777   emit(0x5C);
2778   emit_sse_operand(dst, src);
2779 }
2780
2781
2782 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
2783   EnsureSpace ensure_space(this);
2784   emit(0xF2);
2785   emit_optional_rex_32(dst, src);
2786   emit(0x0F);
2787   emit(0x5E);
2788   emit_sse_operand(dst, src);
2789 }
2790
2791
2792 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
2793   EnsureSpace ensure_space(this);
2794   emit(0x66);
2795   emit_optional_rex_32(dst, src);
2796   emit(0x0F);
2797   emit(0x54);
2798   emit_sse_operand(dst, src);
2799 }
2800
2801
2802 void Assembler::orpd(XMMRegister dst, XMMRegister src) {
2803   EnsureSpace ensure_space(this);
2804   emit(0x66);
2805   emit_optional_rex_32(dst, src);
2806   emit(0x0F);
2807   emit(0x56);
2808   emit_sse_operand(dst, src);
2809 }
2810
2811
2812 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
2813   EnsureSpace ensure_space(this);
2814   emit(0x66);
2815   emit_optional_rex_32(dst, src);
2816   emit(0x0F);
2817   emit(0x57);
2818   emit_sse_operand(dst, src);
2819 }
2820
2821
2822 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
2823   EnsureSpace ensure_space(this);
2824   emit(0xF2);
2825   emit_optional_rex_32(dst, src);
2826   emit(0x0F);
2827   emit(0x51);
2828   emit_sse_operand(dst, src);
2829 }
2830
2831
2832 void Assembler::sqrtsd(XMMRegister dst, const Operand& src) {
2833   EnsureSpace ensure_space(this);
2834   emit(0xF2);
2835   emit_optional_rex_32(dst, src);
2836   emit(0x0F);
2837   emit(0x51);
2838   emit_sse_operand(dst, src);
2839 }
2840
2841
2842 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
2843   EnsureSpace ensure_space(this);
2844   emit(0x66);
2845   emit_optional_rex_32(dst, src);
2846   emit(0x0f);
2847   emit(0x2e);
2848   emit_sse_operand(dst, src);
2849 }
2850
2851
2852 void Assembler::ucomisd(XMMRegister dst, const Operand& src) {
2853   EnsureSpace ensure_space(this);
2854   emit(0x66);
2855   emit_optional_rex_32(dst, src);
2856   emit(0x0f);
2857   emit(0x2e);
2858   emit_sse_operand(dst, src);
2859 }
2860
2861
2862 void Assembler::cmpltsd(XMMRegister dst, XMMRegister src) {
2863   EnsureSpace ensure_space(this);
2864   emit(0xF2);
2865   emit_optional_rex_32(dst, src);
2866   emit(0x0F);
2867   emit(0xC2);
2868   emit_sse_operand(dst, src);
2869   emit(0x01);  // LT == 1
2870 }
2871
2872
2873 void Assembler::roundsd(XMMRegister dst, XMMRegister src,
2874                         Assembler::RoundingMode mode) {
2875   DCHECK(IsEnabled(SSE4_1));
2876   EnsureSpace ensure_space(this);
2877   emit(0x66);
2878   emit_optional_rex_32(dst, src);
2879   emit(0x0f);
2880   emit(0x3a);
2881   emit(0x0b);
2882   emit_sse_operand(dst, src);
2883   // Mask precision exeption.
2884   emit(static_cast<byte>(mode) | 0x8);
2885 }
2886
2887
2888 void Assembler::movmskpd(Register dst, XMMRegister src) {
2889   EnsureSpace ensure_space(this);
2890   emit(0x66);
2891   emit_optional_rex_32(dst, src);
2892   emit(0x0f);
2893   emit(0x50);
2894   emit_sse_operand(dst, src);
2895 }
2896
2897
2898 void Assembler::movmskps(Register dst, XMMRegister src) {
2899   EnsureSpace ensure_space(this);
2900   emit_optional_rex_32(dst, src);
2901   emit(0x0f);
2902   emit(0x50);
2903   emit_sse_operand(dst, src);
2904 }
2905
2906
2907 void Assembler::emit_sse_operand(XMMRegister reg, const Operand& adr) {
2908   Register ireg = { reg.code() };
2909   emit_operand(ireg, adr);
2910 }
2911
2912
2913 void Assembler::emit_sse_operand(Register reg, const Operand& adr) {
2914   Register ireg = {reg.code()};
2915   emit_operand(ireg, adr);
2916 }
2917
2918
2919 void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) {
2920   emit(0xC0 | (dst.low_bits() << 3) | src.low_bits());
2921 }
2922
2923
2924 void Assembler::emit_sse_operand(XMMRegister dst, Register src) {
2925   emit(0xC0 | (dst.low_bits() << 3) | src.low_bits());
2926 }
2927
2928
2929 void Assembler::emit_sse_operand(Register dst, XMMRegister src) {
2930   emit(0xC0 | (dst.low_bits() << 3) | src.low_bits());
2931 }
2932
2933
2934 void Assembler::db(uint8_t data) {
2935   EnsureSpace ensure_space(this);
2936   emit(data);
2937 }
2938
2939
2940 void Assembler::dd(uint32_t data) {
2941   EnsureSpace ensure_space(this);
2942   emitl(data);
2943 }
2944
2945
2946 // Relocation information implementations.
2947
2948 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2949   DCHECK(!RelocInfo::IsNone(rmode));
2950   // Don't record external references unless the heap will be serialized.
2951   if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
2952       !serializer_enabled() && !emit_debug_code()) {
2953     return;
2954   } else if (rmode == RelocInfo::CODE_AGE_SEQUENCE) {
2955     // Don't record psuedo relocation info for code age sequence mode.
2956     return;
2957   }
2958   RelocInfo rinfo(pc_, rmode, data, NULL);
2959   reloc_info_writer.Write(&rinfo);
2960 }
2961
2962
2963 void Assembler::RecordJSReturn() {
2964   positions_recorder()->WriteRecordedPositions();
2965   EnsureSpace ensure_space(this);
2966   RecordRelocInfo(RelocInfo::JS_RETURN);
2967 }
2968
2969
2970 void Assembler::RecordDebugBreakSlot() {
2971   positions_recorder()->WriteRecordedPositions();
2972   EnsureSpace ensure_space(this);
2973   RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
2974 }
2975
2976
2977 void Assembler::RecordComment(const char* msg, bool force) {
2978   if (FLAG_code_comments || force) {
2979     EnsureSpace ensure_space(this);
2980     RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
2981   }
2982 }
2983
2984
2985 Handle<ConstantPoolArray> Assembler::NewConstantPool(Isolate* isolate) {
2986   // No out-of-line constant pool support.
2987   DCHECK(!FLAG_enable_ool_constant_pool);
2988   return isolate->factory()->empty_constant_pool_array();
2989 }
2990
2991
2992 void Assembler::PopulateConstantPool(ConstantPoolArray* constant_pool) {
2993   // No out-of-line constant pool support.
2994   DCHECK(!FLAG_enable_ool_constant_pool);
2995   return;
2996 }
2997
2998
2999 const int RelocInfo::kApplyMask = RelocInfo::kCodeTargetMask |
3000     1 << RelocInfo::RUNTIME_ENTRY |
3001     1 << RelocInfo::INTERNAL_REFERENCE |
3002     1 << RelocInfo::CODE_AGE_SEQUENCE;
3003
3004
3005 bool RelocInfo::IsCodedSpecially() {
3006   // The deserializer needs to know whether a pointer is specially coded.  Being
3007   // specially coded on x64 means that it is a relative 32 bit address, as used
3008   // by branch instructions.
3009   return (1 << rmode_) & kApplyMask;
3010 }
3011
3012
3013 bool RelocInfo::IsInConstantPool() {
3014   return false;
3015 }
3016
3017
3018 } }  // namespace v8::internal
3019
3020 #endif  // V8_TARGET_ARCH_X64