Upstream version 9.37.197.0
[platform/framework/web/crosswalk.git] / src / v8 / src / store-buffer.cc
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/store-buffer.h"
6
7 #include <algorithm>
8
9 #include "src/v8.h"
10
11 #include "src/base/atomicops.h"
12 #include "src/counters.h"
13 #include "src/store-buffer-inl.h"
14
15 namespace v8 {
16 namespace internal {
17
18 StoreBuffer::StoreBuffer(Heap* heap)
19     : heap_(heap),
20       start_(NULL),
21       limit_(NULL),
22       old_start_(NULL),
23       old_limit_(NULL),
24       old_top_(NULL),
25       old_reserved_limit_(NULL),
26       old_buffer_is_sorted_(false),
27       old_buffer_is_filtered_(false),
28       during_gc_(false),
29       store_buffer_rebuilding_enabled_(false),
30       callback_(NULL),
31       may_move_store_buffer_entries_(true),
32       virtual_memory_(NULL),
33       hash_set_1_(NULL),
34       hash_set_2_(NULL),
35       hash_sets_are_empty_(true) {
36 }
37
38
39 void StoreBuffer::SetUp() {
40   virtual_memory_ = new VirtualMemory(kStoreBufferSize * 3);
41   uintptr_t start_as_int =
42       reinterpret_cast<uintptr_t>(virtual_memory_->address());
43   start_ =
44       reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize * 2));
45   limit_ = start_ + (kStoreBufferSize / kPointerSize);
46
47   old_virtual_memory_ =
48       new VirtualMemory(kOldStoreBufferLength * kPointerSize);
49   old_top_ = old_start_ =
50       reinterpret_cast<Address*>(old_virtual_memory_->address());
51   // Don't know the alignment requirements of the OS, but it is certainly not
52   // less than 0xfff.
53   ASSERT((reinterpret_cast<uintptr_t>(old_start_) & 0xfff) == 0);
54   int initial_length = static_cast<int>(OS::CommitPageSize() / kPointerSize);
55   ASSERT(initial_length > 0);
56   ASSERT(initial_length <= kOldStoreBufferLength);
57   old_limit_ = old_start_ + initial_length;
58   old_reserved_limit_ = old_start_ + kOldStoreBufferLength;
59
60   CHECK(old_virtual_memory_->Commit(
61             reinterpret_cast<void*>(old_start_),
62             (old_limit_ - old_start_) * kPointerSize,
63             false));
64
65   ASSERT(reinterpret_cast<Address>(start_) >= virtual_memory_->address());
66   ASSERT(reinterpret_cast<Address>(limit_) >= virtual_memory_->address());
67   Address* vm_limit = reinterpret_cast<Address*>(
68       reinterpret_cast<char*>(virtual_memory_->address()) +
69           virtual_memory_->size());
70   ASSERT(start_ <= vm_limit);
71   ASSERT(limit_ <= vm_limit);
72   USE(vm_limit);
73   ASSERT((reinterpret_cast<uintptr_t>(limit_) & kStoreBufferOverflowBit) != 0);
74   ASSERT((reinterpret_cast<uintptr_t>(limit_ - 1) & kStoreBufferOverflowBit) ==
75          0);
76
77   CHECK(virtual_memory_->Commit(reinterpret_cast<Address>(start_),
78                                 kStoreBufferSize,
79                                 false));  // Not executable.
80   heap_->public_set_store_buffer_top(start_);
81
82   hash_set_1_ = new uintptr_t[kHashSetLength];
83   hash_set_2_ = new uintptr_t[kHashSetLength];
84   hash_sets_are_empty_ = false;
85
86   ClearFilteringHashSets();
87 }
88
89
90 void StoreBuffer::TearDown() {
91   delete virtual_memory_;
92   delete old_virtual_memory_;
93   delete[] hash_set_1_;
94   delete[] hash_set_2_;
95   old_start_ = old_top_ = old_limit_ = old_reserved_limit_ = NULL;
96   start_ = limit_ = NULL;
97   heap_->public_set_store_buffer_top(start_);
98 }
99
100
101 void StoreBuffer::StoreBufferOverflow(Isolate* isolate) {
102   isolate->heap()->store_buffer()->Compact();
103   isolate->counters()->store_buffer_overflows()->Increment();
104 }
105
106
107 void StoreBuffer::Uniq() {
108   // Remove adjacent duplicates and cells that do not point at new space.
109   Address previous = NULL;
110   Address* write = old_start_;
111   ASSERT(may_move_store_buffer_entries_);
112   for (Address* read = old_start_; read < old_top_; read++) {
113     Address current = *read;
114     if (current != previous) {
115       if (heap_->InNewSpace(*reinterpret_cast<Object**>(current))) {
116         *write++ = current;
117       }
118     }
119     previous = current;
120   }
121   old_top_ = write;
122 }
123
124
125 bool StoreBuffer::SpaceAvailable(intptr_t space_needed) {
126   return old_limit_ - old_top_ >= space_needed;
127 }
128
129
130 void StoreBuffer::EnsureSpace(intptr_t space_needed) {
131   while (old_limit_ - old_top_ < space_needed &&
132          old_limit_ < old_reserved_limit_) {
133     size_t grow = old_limit_ - old_start_;  // Double size.
134     CHECK(old_virtual_memory_->Commit(reinterpret_cast<void*>(old_limit_),
135                                       grow * kPointerSize,
136                                       false));
137     old_limit_ += grow;
138   }
139
140   if (SpaceAvailable(space_needed)) return;
141
142   if (old_buffer_is_filtered_) return;
143   ASSERT(may_move_store_buffer_entries_);
144   Compact();
145
146   old_buffer_is_filtered_ = true;
147   bool page_has_scan_on_scavenge_flag = false;
148
149   PointerChunkIterator it(heap_);
150   MemoryChunk* chunk;
151   while ((chunk = it.next()) != NULL) {
152     if (chunk->scan_on_scavenge()) {
153       page_has_scan_on_scavenge_flag = true;
154       break;
155     }
156   }
157
158   if (page_has_scan_on_scavenge_flag) {
159     Filter(MemoryChunk::SCAN_ON_SCAVENGE);
160   }
161
162   if (SpaceAvailable(space_needed)) return;
163
164   // Sample 1 entry in 97 and filter out the pages where we estimate that more
165   // than 1 in 8 pointers are to new space.
166   static const int kSampleFinenesses = 5;
167   static const struct Samples {
168     int prime_sample_step;
169     int threshold;
170   } samples[kSampleFinenesses] =  {
171     { 97, ((Page::kPageSize / kPointerSize) / 97) / 8 },
172     { 23, ((Page::kPageSize / kPointerSize) / 23) / 16 },
173     { 7, ((Page::kPageSize / kPointerSize) / 7) / 32 },
174     { 3, ((Page::kPageSize / kPointerSize) / 3) / 256 },
175     { 1, 0}
176   };
177   for (int i = 0; i < kSampleFinenesses; i++) {
178     ExemptPopularPages(samples[i].prime_sample_step, samples[i].threshold);
179     // As a last resort we mark all pages as being exempt from the store buffer.
180     ASSERT(i != (kSampleFinenesses - 1) || old_top_ == old_start_);
181     if (SpaceAvailable(space_needed)) return;
182   }
183   UNREACHABLE();
184 }
185
186
187 // Sample the store buffer to see if some pages are taking up a lot of space
188 // in the store buffer.
189 void StoreBuffer::ExemptPopularPages(int prime_sample_step, int threshold) {
190   PointerChunkIterator it(heap_);
191   MemoryChunk* chunk;
192   while ((chunk = it.next()) != NULL) {
193     chunk->set_store_buffer_counter(0);
194   }
195   bool created_new_scan_on_scavenge_pages = false;
196   MemoryChunk* previous_chunk = NULL;
197   for (Address* p = old_start_; p < old_top_; p += prime_sample_step) {
198     Address addr = *p;
199     MemoryChunk* containing_chunk = NULL;
200     if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
201       containing_chunk = previous_chunk;
202     } else {
203       containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr);
204     }
205     int old_counter = containing_chunk->store_buffer_counter();
206     if (old_counter >= threshold) {
207       containing_chunk->set_scan_on_scavenge(true);
208       created_new_scan_on_scavenge_pages = true;
209     }
210     containing_chunk->set_store_buffer_counter(old_counter + 1);
211     previous_chunk = containing_chunk;
212   }
213   if (created_new_scan_on_scavenge_pages) {
214     Filter(MemoryChunk::SCAN_ON_SCAVENGE);
215   }
216   old_buffer_is_filtered_ = true;
217 }
218
219
220 void StoreBuffer::Filter(int flag) {
221   Address* new_top = old_start_;
222   MemoryChunk* previous_chunk = NULL;
223   for (Address* p = old_start_; p < old_top_; p++) {
224     Address addr = *p;
225     MemoryChunk* containing_chunk = NULL;
226     if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
227       containing_chunk = previous_chunk;
228     } else {
229       containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr);
230       previous_chunk = containing_chunk;
231     }
232     if (!containing_chunk->IsFlagSet(flag)) {
233       *new_top++ = addr;
234     }
235   }
236   old_top_ = new_top;
237
238   // Filtering hash sets are inconsistent with the store buffer after this
239   // operation.
240   ClearFilteringHashSets();
241 }
242
243
244 void StoreBuffer::SortUniq() {
245   Compact();
246   if (old_buffer_is_sorted_) return;
247   std::sort(old_start_, old_top_);
248   Uniq();
249
250   old_buffer_is_sorted_ = true;
251
252   // Filtering hash sets are inconsistent with the store buffer after this
253   // operation.
254   ClearFilteringHashSets();
255 }
256
257
258 bool StoreBuffer::PrepareForIteration() {
259   Compact();
260   PointerChunkIterator it(heap_);
261   MemoryChunk* chunk;
262   bool page_has_scan_on_scavenge_flag = false;
263   while ((chunk = it.next()) != NULL) {
264     if (chunk->scan_on_scavenge()) {
265       page_has_scan_on_scavenge_flag = true;
266       break;
267     }
268   }
269
270   if (page_has_scan_on_scavenge_flag) {
271     Filter(MemoryChunk::SCAN_ON_SCAVENGE);
272   }
273
274   // Filtering hash sets are inconsistent with the store buffer after
275   // iteration.
276   ClearFilteringHashSets();
277
278   return page_has_scan_on_scavenge_flag;
279 }
280
281
282 #ifdef DEBUG
283 void StoreBuffer::Clean() {
284   ClearFilteringHashSets();
285   Uniq();  // Also removes things that no longer point to new space.
286   EnsureSpace(kStoreBufferSize / 2);
287 }
288
289
290 static Address* in_store_buffer_1_element_cache = NULL;
291
292
293 bool StoreBuffer::CellIsInStoreBuffer(Address cell_address) {
294   if (!FLAG_enable_slow_asserts) return true;
295   if (in_store_buffer_1_element_cache != NULL &&
296       *in_store_buffer_1_element_cache == cell_address) {
297     return true;
298   }
299   Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
300   for (Address* current = top - 1; current >= start_; current--) {
301     if (*current == cell_address) {
302       in_store_buffer_1_element_cache = current;
303       return true;
304     }
305   }
306   for (Address* current = old_top_ - 1; current >= old_start_; current--) {
307     if (*current == cell_address) {
308       in_store_buffer_1_element_cache = current;
309       return true;
310     }
311   }
312   return false;
313 }
314 #endif
315
316
317 void StoreBuffer::ClearFilteringHashSets() {
318   if (!hash_sets_are_empty_) {
319     memset(reinterpret_cast<void*>(hash_set_1_),
320            0,
321            sizeof(uintptr_t) * kHashSetLength);
322     memset(reinterpret_cast<void*>(hash_set_2_),
323            0,
324            sizeof(uintptr_t) * kHashSetLength);
325     hash_sets_are_empty_ = true;
326   }
327 }
328
329
330 void StoreBuffer::GCPrologue() {
331   ClearFilteringHashSets();
332   during_gc_ = true;
333 }
334
335
336 #ifdef VERIFY_HEAP
337 void StoreBuffer::VerifyPointers(LargeObjectSpace* space) {
338   LargeObjectIterator it(space);
339   for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
340     if (object->IsFixedArray()) {
341       Address slot_address = object->address();
342       Address end = object->address() + object->Size();
343
344       while (slot_address < end) {
345         HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address);
346         // When we are not in GC the Heap::InNewSpace() predicate
347         // checks that pointers which satisfy predicate point into
348         // the active semispace.
349         Object* object = reinterpret_cast<Object*>(
350             base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
351         heap_->InNewSpace(object);
352         slot_address += kPointerSize;
353       }
354     }
355   }
356 }
357 #endif
358
359
360 void StoreBuffer::Verify() {
361 #ifdef VERIFY_HEAP
362   VerifyPointers(heap_->lo_space());
363 #endif
364 }
365
366
367 void StoreBuffer::GCEpilogue() {
368   during_gc_ = false;
369 #ifdef VERIFY_HEAP
370   if (FLAG_verify_heap) {
371     Verify();
372   }
373 #endif
374 }
375
376
377 void StoreBuffer::FindPointersToNewSpaceInRegion(
378     Address start,
379     Address end,
380     ObjectSlotCallback slot_callback,
381     bool clear_maps) {
382   for (Address slot_address = start;
383        slot_address < end;
384        slot_address += kPointerSize) {
385     Object** slot = reinterpret_cast<Object**>(slot_address);
386     Object* object = reinterpret_cast<Object*>(
387         base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
388     if (heap_->InNewSpace(object)) {
389       HeapObject* heap_object = reinterpret_cast<HeapObject*>(object);
390       ASSERT(heap_object->IsHeapObject());
391       // The new space object was not promoted if it still contains a map
392       // pointer. Clear the map field now lazily.
393       if (clear_maps) ClearDeadObject(heap_object);
394       slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object);
395       object = reinterpret_cast<Object*>(
396           base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
397       if (heap_->InNewSpace(object)) {
398         EnterDirectlyIntoStoreBuffer(slot_address);
399       }
400     }
401   }
402 }
403
404
405 // Compute start address of the first map following given addr.
406 static inline Address MapStartAlign(Address addr) {
407   Address page = Page::FromAddress(addr)->area_start();
408   return page + (((addr - page) + (Map::kSize - 1)) / Map::kSize * Map::kSize);
409 }
410
411
412 // Compute end address of the first map preceding given addr.
413 static inline Address MapEndAlign(Address addr) {
414   Address page = Page::FromAllocationTop(addr)->area_start();
415   return page + ((addr - page) / Map::kSize * Map::kSize);
416 }
417
418
419 void StoreBuffer::FindPointersToNewSpaceInMaps(
420     Address start,
421     Address end,
422     ObjectSlotCallback slot_callback,
423     bool clear_maps) {
424   ASSERT(MapStartAlign(start) == start);
425   ASSERT(MapEndAlign(end) == end);
426
427   Address map_address = start;
428   while (map_address < end) {
429     ASSERT(!heap_->InNewSpace(Memory::Object_at(map_address)));
430     ASSERT(Memory::Object_at(map_address)->IsMap());
431
432     Address pointer_fields_start = map_address + Map::kPointerFieldsBeginOffset;
433     Address pointer_fields_end = map_address + Map::kPointerFieldsEndOffset;
434
435     FindPointersToNewSpaceInRegion(pointer_fields_start,
436                                    pointer_fields_end,
437                                    slot_callback,
438                                    clear_maps);
439     map_address += Map::kSize;
440   }
441 }
442
443
444 void StoreBuffer::FindPointersToNewSpaceInMapsRegion(
445     Address start,
446     Address end,
447     ObjectSlotCallback slot_callback,
448     bool clear_maps) {
449   Address map_aligned_start = MapStartAlign(start);
450   Address map_aligned_end   = MapEndAlign(end);
451
452   ASSERT(map_aligned_start == start);
453   ASSERT(map_aligned_start <= map_aligned_end && map_aligned_end <= end);
454
455   FindPointersToNewSpaceInMaps(map_aligned_start,
456                                map_aligned_end,
457                                slot_callback,
458                                clear_maps);
459 }
460
461
462 void StoreBuffer::IteratePointersInStoreBuffer(
463     ObjectSlotCallback slot_callback,
464     bool clear_maps) {
465   Address* limit = old_top_;
466   old_top_ = old_start_;
467   {
468     DontMoveStoreBufferEntriesScope scope(this);
469     for (Address* current = old_start_; current < limit; current++) {
470 #ifdef DEBUG
471       Address* saved_top = old_top_;
472 #endif
473       Object** slot = reinterpret_cast<Object**>(*current);
474       Object* object = reinterpret_cast<Object*>(
475           base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
476       if (heap_->InFromSpace(object)) {
477         HeapObject* heap_object = reinterpret_cast<HeapObject*>(object);
478         // The new space object was not promoted if it still contains a map
479         // pointer. Clear the map field now lazily.
480         if (clear_maps) ClearDeadObject(heap_object);
481         slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object);
482         object = reinterpret_cast<Object*>(
483             base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot)));
484         if (heap_->InNewSpace(object)) {
485           EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot));
486         }
487       }
488       ASSERT(old_top_ == saved_top + 1 || old_top_ == saved_top);
489     }
490   }
491 }
492
493
494 void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) {
495   IteratePointersToNewSpace(slot_callback, false);
496 }
497
498
499 void StoreBuffer::IteratePointersToNewSpaceAndClearMaps(
500     ObjectSlotCallback slot_callback) {
501   IteratePointersToNewSpace(slot_callback, true);
502 }
503
504
505 void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback,
506                                             bool clear_maps) {
507   // We do not sort or remove duplicated entries from the store buffer because
508   // we expect that callback will rebuild the store buffer thus removing
509   // all duplicates and pointers to old space.
510   bool some_pages_to_scan = PrepareForIteration();
511
512   // TODO(gc): we want to skip slots on evacuation candidates
513   // but we can't simply figure that out from slot address
514   // because slot can belong to a large object.
515   IteratePointersInStoreBuffer(slot_callback, clear_maps);
516
517   // We are done scanning all the pointers that were in the store buffer, but
518   // there may be some pages marked scan_on_scavenge that have pointers to new
519   // space that are not in the store buffer.  We must scan them now.  As we
520   // scan, the surviving pointers to new space will be added to the store
521   // buffer.  If there are still a lot of pointers to new space then we will
522   // keep the scan_on_scavenge flag on the page and discard the pointers that
523   // were added to the store buffer.  If there are not many pointers to new
524   // space left on the page we will keep the pointers in the store buffer and
525   // remove the flag from the page.
526   if (some_pages_to_scan) {
527     if (callback_ != NULL) {
528       (*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent);
529     }
530     PointerChunkIterator it(heap_);
531     MemoryChunk* chunk;
532     while ((chunk = it.next()) != NULL) {
533       if (chunk->scan_on_scavenge()) {
534         chunk->set_scan_on_scavenge(false);
535         if (callback_ != NULL) {
536           (*callback_)(heap_, chunk, kStoreBufferScanningPageEvent);
537         }
538         if (chunk->owner() == heap_->lo_space()) {
539           LargePage* large_page = reinterpret_cast<LargePage*>(chunk);
540           HeapObject* array = large_page->GetObject();
541           ASSERT(array->IsFixedArray());
542           Address start = array->address();
543           Address end = start + array->Size();
544           FindPointersToNewSpaceInRegion(start, end, slot_callback, clear_maps);
545         } else {
546           Page* page = reinterpret_cast<Page*>(chunk);
547           PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner());
548           Address start = page->area_start();
549           Address end = page->area_end();
550           if (owner == heap_->map_space()) {
551             FindPointersToNewSpaceInMapsRegion(
552                 start, end, slot_callback, clear_maps);
553           } else {
554             FindPointersToNewSpaceInRegion(
555                 start, end, slot_callback, clear_maps);
556           }
557         }
558       }
559     }
560     if (callback_ != NULL) {
561       (*callback_)(heap_, NULL, kStoreBufferScanningPageEvent);
562     }
563   }
564 }
565
566
567 void StoreBuffer::Compact() {
568   Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
569
570   if (top == start_) return;
571
572   // There's no check of the limit in the loop below so we check here for
573   // the worst case (compaction doesn't eliminate any pointers).
574   ASSERT(top <= limit_);
575   heap_->public_set_store_buffer_top(start_);
576   EnsureSpace(top - start_);
577   ASSERT(may_move_store_buffer_entries_);
578   // Goes through the addresses in the store buffer attempting to remove
579   // duplicates.  In the interest of speed this is a lossy operation.  Some
580   // duplicates will remain.  We have two hash sets with different hash
581   // functions to reduce the number of unnecessary clashes.
582   hash_sets_are_empty_ = false;  // Hash sets are in use.
583   for (Address* current = start_; current < top; current++) {
584     ASSERT(!heap_->cell_space()->Contains(*current));
585     ASSERT(!heap_->code_space()->Contains(*current));
586     ASSERT(!heap_->old_data_space()->Contains(*current));
587     uintptr_t int_addr = reinterpret_cast<uintptr_t>(*current);
588     // Shift out the last bits including any tags.
589     int_addr >>= kPointerSizeLog2;
590     // The upper part of an address is basically random because of ASLR and OS
591     // non-determinism, so we use only the bits within a page for hashing to
592     // make v8's behavior (more) deterministic.
593     uintptr_t hash_addr =
594         int_addr & (Page::kPageAlignmentMask >> kPointerSizeLog2);
595     int hash1 = ((hash_addr ^ (hash_addr >> kHashSetLengthLog2)) &
596                  (kHashSetLength - 1));
597     if (hash_set_1_[hash1] == int_addr) continue;
598     uintptr_t hash2 = (hash_addr - (hash_addr >> kHashSetLengthLog2));
599     hash2 ^= hash2 >> (kHashSetLengthLog2 * 2);
600     hash2 &= (kHashSetLength - 1);
601     if (hash_set_2_[hash2] == int_addr) continue;
602     if (hash_set_1_[hash1] == 0) {
603       hash_set_1_[hash1] = int_addr;
604     } else if (hash_set_2_[hash2] == 0) {
605       hash_set_2_[hash2] = int_addr;
606     } else {
607       // Rather than slowing down we just throw away some entries.  This will
608       // cause some duplicates to remain undetected.
609       hash_set_1_[hash1] = int_addr;
610       hash_set_2_[hash2] = 0;
611     }
612     old_buffer_is_sorted_ = false;
613     old_buffer_is_filtered_ = false;
614     *old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2);
615     ASSERT(old_top_ <= old_limit_);
616   }
617   heap_->isolate()->counters()->store_buffer_compactions()->Increment();
618 }
619
620 } }  // namespace v8::internal