Upstream version 10.39.225.0
[platform/framework/web/crosswalk.git] / src / v8 / src / serialize.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #include "src/accessors.h"
8 #include "src/api.h"
9 #include "src/base/platform/platform.h"
10 #include "src/bootstrapper.h"
11 #include "src/code-stubs.h"
12 #include "src/deoptimizer.h"
13 #include "src/execution.h"
14 #include "src/global-handles.h"
15 #include "src/ic/ic.h"
16 #include "src/ic/stub-cache.h"
17 #include "src/natives.h"
18 #include "src/objects.h"
19 #include "src/runtime.h"
20 #include "src/serialize.h"
21 #include "src/snapshot.h"
22 #include "src/snapshot-source-sink.h"
23 #include "src/v8threads.h"
24 #include "src/version.h"
25
26 namespace v8 {
27 namespace internal {
28
29
30 // -----------------------------------------------------------------------------
31 // Coding of external references.
32
33 // The encoding of an external reference. The type is in the high word.
34 // The id is in the low word.
35 static uint32_t EncodeExternal(TypeCode type, uint16_t id) {
36   return static_cast<uint32_t>(type) << 16 | id;
37 }
38
39
40 static int* GetInternalPointer(StatsCounter* counter) {
41   // All counters refer to dummy_counter, if deserializing happens without
42   // setting up counters.
43   static int dummy_counter = 0;
44   return counter->Enabled() ? counter->GetInternalPointer() : &dummy_counter;
45 }
46
47
48 ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) {
49   ExternalReferenceTable* external_reference_table =
50       isolate->external_reference_table();
51   if (external_reference_table == NULL) {
52     external_reference_table = new ExternalReferenceTable(isolate);
53     isolate->set_external_reference_table(external_reference_table);
54   }
55   return external_reference_table;
56 }
57
58
59 void ExternalReferenceTable::AddFromId(TypeCode type,
60                                        uint16_t id,
61                                        const char* name,
62                                        Isolate* isolate) {
63   Address address;
64   switch (type) {
65     case C_BUILTIN: {
66       ExternalReference ref(static_cast<Builtins::CFunctionId>(id), isolate);
67       address = ref.address();
68       break;
69     }
70     case BUILTIN: {
71       ExternalReference ref(static_cast<Builtins::Name>(id), isolate);
72       address = ref.address();
73       break;
74     }
75     case RUNTIME_FUNCTION: {
76       ExternalReference ref(static_cast<Runtime::FunctionId>(id), isolate);
77       address = ref.address();
78       break;
79     }
80     case IC_UTILITY: {
81       ExternalReference ref(IC_Utility(static_cast<IC::UtilityId>(id)),
82                             isolate);
83       address = ref.address();
84       break;
85     }
86     default:
87       UNREACHABLE();
88       return;
89   }
90   Add(address, type, id, name);
91 }
92
93
94 void ExternalReferenceTable::Add(Address address,
95                                  TypeCode type,
96                                  uint16_t id,
97                                  const char* name) {
98   DCHECK_NE(NULL, address);
99   ExternalReferenceEntry entry;
100   entry.address = address;
101   entry.code = EncodeExternal(type, id);
102   entry.name = name;
103   DCHECK_NE(0, entry.code);
104   // Assert that the code is added in ascending order to rule out duplicates.
105   DCHECK((size() == 0) || (code(size() - 1) < entry.code));
106   refs_.Add(entry);
107   if (id > max_id_[type]) max_id_[type] = id;
108 }
109
110
111 void ExternalReferenceTable::PopulateTable(Isolate* isolate) {
112   for (int type_code = 0; type_code < kTypeCodeCount; type_code++) {
113     max_id_[type_code] = 0;
114   }
115
116   // Miscellaneous
117   Add(ExternalReference::roots_array_start(isolate).address(),
118       "Heap::roots_array_start()");
119   Add(ExternalReference::address_of_stack_limit(isolate).address(),
120       "StackGuard::address_of_jslimit()");
121   Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
122       "StackGuard::address_of_real_jslimit()");
123   Add(ExternalReference::new_space_start(isolate).address(),
124       "Heap::NewSpaceStart()");
125   Add(ExternalReference::new_space_mask(isolate).address(),
126       "Heap::NewSpaceMask()");
127   Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
128       "Heap::NewSpaceAllocationLimitAddress()");
129   Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
130       "Heap::NewSpaceAllocationTopAddress()");
131   Add(ExternalReference::debug_break(isolate).address(), "Debug::Break()");
132   Add(ExternalReference::debug_step_in_fp_address(isolate).address(),
133       "Debug::step_in_fp_addr()");
134   Add(ExternalReference::mod_two_doubles_operation(isolate).address(),
135       "mod_two_doubles");
136   // Keyed lookup cache.
137   Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
138       "KeyedLookupCache::keys()");
139   Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
140       "KeyedLookupCache::field_offsets()");
141   Add(ExternalReference::handle_scope_next_address(isolate).address(),
142       "HandleScope::next");
143   Add(ExternalReference::handle_scope_limit_address(isolate).address(),
144       "HandleScope::limit");
145   Add(ExternalReference::handle_scope_level_address(isolate).address(),
146       "HandleScope::level");
147   Add(ExternalReference::new_deoptimizer_function(isolate).address(),
148       "Deoptimizer::New()");
149   Add(ExternalReference::compute_output_frames_function(isolate).address(),
150       "Deoptimizer::ComputeOutputFrames()");
151   Add(ExternalReference::address_of_min_int().address(),
152       "LDoubleConstant::min_int");
153   Add(ExternalReference::address_of_one_half().address(),
154       "LDoubleConstant::one_half");
155   Add(ExternalReference::isolate_address(isolate).address(), "isolate");
156   Add(ExternalReference::address_of_negative_infinity().address(),
157       "LDoubleConstant::negative_infinity");
158   Add(ExternalReference::power_double_double_function(isolate).address(),
159       "power_double_double_function");
160   Add(ExternalReference::power_double_int_function(isolate).address(),
161       "power_double_int_function");
162   Add(ExternalReference::math_log_double_function(isolate).address(),
163       "std::log");
164   Add(ExternalReference::store_buffer_top(isolate).address(),
165       "store_buffer_top");
166   Add(ExternalReference::address_of_canonical_non_hole_nan().address(),
167       "canonical_nan");
168   Add(ExternalReference::address_of_the_hole_nan().address(), "the_hole_nan");
169   Add(ExternalReference::get_date_field_function(isolate).address(),
170       "JSDate::GetField");
171   Add(ExternalReference::date_cache_stamp(isolate).address(),
172       "date_cache_stamp");
173   Add(ExternalReference::address_of_pending_message_obj(isolate).address(),
174       "address_of_pending_message_obj");
175   Add(ExternalReference::address_of_has_pending_message(isolate).address(),
176       "address_of_has_pending_message");
177   Add(ExternalReference::address_of_pending_message_script(isolate).address(),
178       "pending_message_script");
179   Add(ExternalReference::get_make_code_young_function(isolate).address(),
180       "Code::MakeCodeYoung");
181   Add(ExternalReference::cpu_features().address(), "cpu_features");
182   Add(ExternalReference(Runtime::kAllocateInNewSpace, isolate).address(),
183       "Runtime::AllocateInNewSpace");
184   Add(ExternalReference(Runtime::kAllocateInTargetSpace, isolate).address(),
185       "Runtime::AllocateInTargetSpace");
186   Add(ExternalReference::old_pointer_space_allocation_top_address(isolate)
187           .address(),
188       "Heap::OldPointerSpaceAllocationTopAddress");
189   Add(ExternalReference::old_pointer_space_allocation_limit_address(isolate)
190           .address(),
191       "Heap::OldPointerSpaceAllocationLimitAddress");
192   Add(ExternalReference::old_data_space_allocation_top_address(isolate)
193           .address(),
194       "Heap::OldDataSpaceAllocationTopAddress");
195   Add(ExternalReference::old_data_space_allocation_limit_address(isolate)
196           .address(),
197       "Heap::OldDataSpaceAllocationLimitAddress");
198   Add(ExternalReference::allocation_sites_list_address(isolate).address(),
199       "Heap::allocation_sites_list_address()");
200   Add(ExternalReference::address_of_uint32_bias().address(), "uint32_bias");
201   Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(),
202       "Code::MarkCodeAsExecuted");
203   Add(ExternalReference::is_profiling_address(isolate).address(),
204       "CpuProfiler::is_profiling");
205   Add(ExternalReference::scheduled_exception_address(isolate).address(),
206       "Isolate::scheduled_exception");
207   Add(ExternalReference::invoke_function_callback(isolate).address(),
208       "InvokeFunctionCallback");
209   Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(),
210       "InvokeAccessorGetterCallback");
211   Add(ExternalReference::flush_icache_function(isolate).address(),
212       "CpuFeatures::FlushICache");
213   Add(ExternalReference::log_enter_external_function(isolate).address(),
214       "Logger::EnterExternal");
215   Add(ExternalReference::log_leave_external_function(isolate).address(),
216       "Logger::LeaveExternal");
217   Add(ExternalReference::address_of_minus_one_half().address(),
218       "double_constants.minus_one_half");
219   Add(ExternalReference::stress_deopt_count(isolate).address(),
220       "Isolate::stress_deopt_count_address()");
221   Add(ExternalReference::incremental_marking_record_write_function(isolate)
222           .address(),
223       "IncrementalMarking::RecordWriteFromCode");
224
225   // Debug addresses
226   Add(ExternalReference::debug_after_break_target_address(isolate).address(),
227       "Debug::after_break_target_address()");
228   Add(ExternalReference::debug_restarter_frame_function_pointer_address(isolate)
229           .address(),
230       "Debug::restarter_frame_function_pointer_address()");
231   Add(ExternalReference::debug_is_active_address(isolate).address(),
232       "Debug::is_active_address()");
233
234 #ifndef V8_INTERPRETED_REGEXP
235   Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
236       "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
237   Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
238       "RegExpMacroAssembler*::CheckStackGuardState()");
239   Add(ExternalReference::re_grow_stack(isolate).address(),
240       "NativeRegExpMacroAssembler::GrowStack()");
241   Add(ExternalReference::re_word_character_map().address(),
242       "NativeRegExpMacroAssembler::word_character_map");
243   Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
244       "RegExpStack::limit_address()");
245   Add(ExternalReference::address_of_regexp_stack_memory_address(isolate)
246           .address(),
247       "RegExpStack::memory_address()");
248   Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
249       "RegExpStack::memory_size()");
250   Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
251       "OffsetsVector::static_offsets_vector");
252 #endif  // V8_INTERPRETED_REGEXP
253
254   // The following populates all of the different type of external references
255   // into the ExternalReferenceTable.
256   //
257   // NOTE: This function was originally 100k of code.  It has since been
258   // rewritten to be mostly table driven, as the callback macro style tends to
259   // very easily cause code bloat.  Please be careful in the future when adding
260   // new references.
261
262   struct RefTableEntry {
263     TypeCode type;
264     uint16_t id;
265     const char* name;
266   };
267
268   static const RefTableEntry ref_table[] = {
269   // Builtins
270 #define DEF_ENTRY_C(name, ignored) \
271   { C_BUILTIN, \
272     Builtins::c_##name, \
273     "Builtins::" #name },
274
275   BUILTIN_LIST_C(DEF_ENTRY_C)
276 #undef DEF_ENTRY_C
277
278 #define DEF_ENTRY_C(name, ignored) \
279   { BUILTIN, \
280     Builtins::k##name, \
281     "Builtins::" #name },
282 #define DEF_ENTRY_A(name, kind, state, extra) DEF_ENTRY_C(name, ignored)
283
284   BUILTIN_LIST_C(DEF_ENTRY_C)
285   BUILTIN_LIST_A(DEF_ENTRY_A)
286   BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
287 #undef DEF_ENTRY_C
288 #undef DEF_ENTRY_A
289
290   // Runtime functions
291 #define RUNTIME_ENTRY(name, nargs, ressize) \
292   { RUNTIME_FUNCTION, \
293     Runtime::k##name, \
294     "Runtime::" #name },
295
296   RUNTIME_FUNCTION_LIST(RUNTIME_ENTRY)
297   INLINE_OPTIMIZED_FUNCTION_LIST(RUNTIME_ENTRY)
298 #undef RUNTIME_ENTRY
299
300 #define INLINE_OPTIMIZED_ENTRY(name, nargs, ressize) \
301   { RUNTIME_FUNCTION, \
302     Runtime::kInlineOptimized##name, \
303     "Runtime::" #name },
304
305   INLINE_OPTIMIZED_FUNCTION_LIST(INLINE_OPTIMIZED_ENTRY)
306 #undef INLINE_OPTIMIZED_ENTRY
307
308   // IC utilities
309 #define IC_ENTRY(name) \
310   { IC_UTILITY, \
311     IC::k##name, \
312     "IC::" #name },
313
314   IC_UTIL_LIST(IC_ENTRY)
315 #undef IC_ENTRY
316   };  // end of ref_table[].
317
318   for (size_t i = 0; i < arraysize(ref_table); ++i) {
319     AddFromId(ref_table[i].type,
320               ref_table[i].id,
321               ref_table[i].name,
322               isolate);
323   }
324
325   // Stat counters
326   struct StatsRefTableEntry {
327     StatsCounter* (Counters::*counter)();
328     uint16_t id;
329     const char* name;
330   };
331
332   const StatsRefTableEntry stats_ref_table[] = {
333 #define COUNTER_ENTRY(name, caption) \
334   { &Counters::name,    \
335     Counters::k_##name, \
336     "Counters::" #name },
337
338   STATS_COUNTER_LIST_1(COUNTER_ENTRY)
339   STATS_COUNTER_LIST_2(COUNTER_ENTRY)
340 #undef COUNTER_ENTRY
341   };  // end of stats_ref_table[].
342
343   Counters* counters = isolate->counters();
344   for (size_t i = 0; i < arraysize(stats_ref_table); ++i) {
345     Add(reinterpret_cast<Address>(GetInternalPointer(
346             (counters->*(stats_ref_table[i].counter))())),
347         STATS_COUNTER,
348         stats_ref_table[i].id,
349         stats_ref_table[i].name);
350   }
351
352   // Top addresses
353
354   const char* AddressNames[] = {
355 #define BUILD_NAME_LITERAL(CamelName, hacker_name)      \
356     "Isolate::" #hacker_name "_address",
357     FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL)
358     NULL
359 #undef BUILD_NAME_LITERAL
360   };
361
362   for (uint16_t i = 0; i < Isolate::kIsolateAddressCount; ++i) {
363     Add(isolate->get_address_from_id((Isolate::AddressId)i),
364         TOP_ADDRESS, i, AddressNames[i]);
365   }
366
367   // Accessors
368 #define ACCESSOR_INFO_DECLARATION(name) \
369   Add(FUNCTION_ADDR(&Accessors::name##Getter), \
370       ACCESSOR, \
371       Accessors::k##name##Getter, \
372       "Accessors::" #name "Getter"); \
373   Add(FUNCTION_ADDR(&Accessors::name##Setter), \
374       ACCESSOR, \
375       Accessors::k##name##Setter, \
376       "Accessors::" #name "Setter");
377   ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION)
378 #undef ACCESSOR_INFO_DECLARATION
379
380   StubCache* stub_cache = isolate->stub_cache();
381
382   // Stub cache tables
383   Add(stub_cache->key_reference(StubCache::kPrimary).address(),
384       STUB_CACHE_TABLE, 1, "StubCache::primary_->key");
385   Add(stub_cache->value_reference(StubCache::kPrimary).address(),
386       STUB_CACHE_TABLE, 2, "StubCache::primary_->value");
387   Add(stub_cache->map_reference(StubCache::kPrimary).address(),
388       STUB_CACHE_TABLE, 3, "StubCache::primary_->map");
389   Add(stub_cache->key_reference(StubCache::kSecondary).address(),
390       STUB_CACHE_TABLE, 4, "StubCache::secondary_->key");
391   Add(stub_cache->value_reference(StubCache::kSecondary).address(),
392       STUB_CACHE_TABLE, 5, "StubCache::secondary_->value");
393   Add(stub_cache->map_reference(StubCache::kSecondary).address(),
394       STUB_CACHE_TABLE, 6, "StubCache::secondary_->map");
395
396   // Runtime entries
397   Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
398       RUNTIME_ENTRY, 1, "HandleScope::DeleteExtensions");
399   Add(ExternalReference::incremental_marking_record_write_function(isolate)
400           .address(),
401       RUNTIME_ENTRY, 2, "IncrementalMarking::RecordWrite");
402   Add(ExternalReference::store_buffer_overflow_function(isolate).address(),
403       RUNTIME_ENTRY, 3, "StoreBuffer::StoreBufferOverflow");
404
405   // Add a small set of deopt entry addresses to encoder without generating the
406   // deopt table code, which isn't possible at deserialization time.
407   HandleScope scope(isolate);
408   for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) {
409     Address address = Deoptimizer::GetDeoptimizationEntry(
410         isolate,
411         entry,
412         Deoptimizer::LAZY,
413         Deoptimizer::CALCULATE_ENTRY_ADDRESS);
414     Add(address, LAZY_DEOPTIMIZATION, entry, "lazy_deopt");
415   }
416 }
417
418
419 ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate)
420     : encodings_(HashMap::PointersMatch),
421       isolate_(isolate) {
422   ExternalReferenceTable* external_references =
423       ExternalReferenceTable::instance(isolate_);
424   for (int i = 0; i < external_references->size(); ++i) {
425     Put(external_references->address(i), i);
426   }
427 }
428
429
430 uint32_t ExternalReferenceEncoder::Encode(Address key) const {
431   int index = IndexOf(key);
432   DCHECK(key == NULL || index >= 0);
433   return index >= 0 ?
434          ExternalReferenceTable::instance(isolate_)->code(index) : 0;
435 }
436
437
438 const char* ExternalReferenceEncoder::NameOfAddress(Address key) const {
439   int index = IndexOf(key);
440   return index >= 0 ? ExternalReferenceTable::instance(isolate_)->name(index)
441                     : "<unknown>";
442 }
443
444
445 int ExternalReferenceEncoder::IndexOf(Address key) const {
446   if (key == NULL) return -1;
447   HashMap::Entry* entry =
448       const_cast<HashMap&>(encodings_).Lookup(key, Hash(key), false);
449   return entry == NULL
450       ? -1
451       : static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
452 }
453
454
455 void ExternalReferenceEncoder::Put(Address key, int index) {
456   HashMap::Entry* entry = encodings_.Lookup(key, Hash(key), true);
457   entry->value = reinterpret_cast<void*>(index);
458 }
459
460
461 ExternalReferenceDecoder::ExternalReferenceDecoder(Isolate* isolate)
462     : encodings_(NewArray<Address*>(kTypeCodeCount)),
463       isolate_(isolate) {
464   ExternalReferenceTable* external_references =
465       ExternalReferenceTable::instance(isolate_);
466   for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
467     int max = external_references->max_id(type) + 1;
468     encodings_[type] = NewArray<Address>(max + 1);
469   }
470   for (int i = 0; i < external_references->size(); ++i) {
471     Put(external_references->code(i), external_references->address(i));
472   }
473 }
474
475
476 ExternalReferenceDecoder::~ExternalReferenceDecoder() {
477   for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
478     DeleteArray(encodings_[type]);
479   }
480   DeleteArray(encodings_);
481 }
482
483
484 class CodeAddressMap: public CodeEventLogger {
485  public:
486   explicit CodeAddressMap(Isolate* isolate)
487       : isolate_(isolate) {
488     isolate->logger()->addCodeEventListener(this);
489   }
490
491   virtual ~CodeAddressMap() {
492     isolate_->logger()->removeCodeEventListener(this);
493   }
494
495   virtual void CodeMoveEvent(Address from, Address to) {
496     address_to_name_map_.Move(from, to);
497   }
498
499   virtual void CodeDisableOptEvent(Code* code, SharedFunctionInfo* shared) {
500   }
501
502   virtual void CodeDeleteEvent(Address from) {
503     address_to_name_map_.Remove(from);
504   }
505
506   const char* Lookup(Address address) {
507     return address_to_name_map_.Lookup(address);
508   }
509
510  private:
511   class NameMap {
512    public:
513     NameMap() : impl_(HashMap::PointersMatch) {}
514
515     ~NameMap() {
516       for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) {
517         DeleteArray(static_cast<const char*>(p->value));
518       }
519     }
520
521     void Insert(Address code_address, const char* name, int name_size) {
522       HashMap::Entry* entry = FindOrCreateEntry(code_address);
523       if (entry->value == NULL) {
524         entry->value = CopyName(name, name_size);
525       }
526     }
527
528     const char* Lookup(Address code_address) {
529       HashMap::Entry* entry = FindEntry(code_address);
530       return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL;
531     }
532
533     void Remove(Address code_address) {
534       HashMap::Entry* entry = FindEntry(code_address);
535       if (entry != NULL) {
536         DeleteArray(static_cast<char*>(entry->value));
537         RemoveEntry(entry);
538       }
539     }
540
541     void Move(Address from, Address to) {
542       if (from == to) return;
543       HashMap::Entry* from_entry = FindEntry(from);
544       DCHECK(from_entry != NULL);
545       void* value = from_entry->value;
546       RemoveEntry(from_entry);
547       HashMap::Entry* to_entry = FindOrCreateEntry(to);
548       DCHECK(to_entry->value == NULL);
549       to_entry->value = value;
550     }
551
552    private:
553     static char* CopyName(const char* name, int name_size) {
554       char* result = NewArray<char>(name_size + 1);
555       for (int i = 0; i < name_size; ++i) {
556         char c = name[i];
557         if (c == '\0') c = ' ';
558         result[i] = c;
559       }
560       result[name_size] = '\0';
561       return result;
562     }
563
564     HashMap::Entry* FindOrCreateEntry(Address code_address) {
565       return impl_.Lookup(code_address, ComputePointerHash(code_address), true);
566     }
567
568     HashMap::Entry* FindEntry(Address code_address) {
569       return impl_.Lookup(code_address,
570                           ComputePointerHash(code_address),
571                           false);
572     }
573
574     void RemoveEntry(HashMap::Entry* entry) {
575       impl_.Remove(entry->key, entry->hash);
576     }
577
578     HashMap impl_;
579
580     DISALLOW_COPY_AND_ASSIGN(NameMap);
581   };
582
583   virtual void LogRecordedBuffer(Code* code,
584                                  SharedFunctionInfo*,
585                                  const char* name,
586                                  int length) {
587     address_to_name_map_.Insert(code->address(), name, length);
588   }
589
590   NameMap address_to_name_map_;
591   Isolate* isolate_;
592 };
593
594
595 Deserializer::Deserializer(SnapshotByteSource* source)
596     : isolate_(NULL),
597       attached_objects_(NULL),
598       source_(source),
599       external_reference_decoder_(NULL) {
600   for (int i = 0; i < LAST_SPACE + 1; i++) {
601     reservations_[i] = kUninitializedReservation;
602   }
603 }
604
605
606 void Deserializer::FlushICacheForNewCodeObjects() {
607   PageIterator it(isolate_->heap()->code_space());
608   while (it.has_next()) {
609     Page* p = it.next();
610     CpuFeatures::FlushICache(p->area_start(), p->area_end() - p->area_start());
611   }
612 }
613
614
615 void Deserializer::Deserialize(Isolate* isolate) {
616   isolate_ = isolate;
617   DCHECK(isolate_ != NULL);
618   isolate_->heap()->ReserveSpace(reservations_, &high_water_[0]);
619   // No active threads.
620   DCHECK_EQ(NULL, isolate_->thread_manager()->FirstThreadStateInUse());
621   // No active handles.
622   DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty());
623   DCHECK_EQ(NULL, external_reference_decoder_);
624   external_reference_decoder_ = new ExternalReferenceDecoder(isolate);
625   isolate_->heap()->IterateSmiRoots(this);
626   isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
627   isolate_->heap()->RepairFreeListsAfterBoot();
628   isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
629
630   isolate_->heap()->set_native_contexts_list(
631       isolate_->heap()->undefined_value());
632   isolate_->heap()->set_array_buffers_list(
633       isolate_->heap()->undefined_value());
634
635   // The allocation site list is build during root iteration, but if no sites
636   // were encountered then it needs to be initialized to undefined.
637   if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
638     isolate_->heap()->set_allocation_sites_list(
639         isolate_->heap()->undefined_value());
640   }
641
642   isolate_->heap()->InitializeWeakObjectToCodeTable();
643
644   // Update data pointers to the external strings containing natives sources.
645   for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
646     Object* source = isolate_->heap()->natives_source_cache()->get(i);
647     if (!source->IsUndefined()) {
648       ExternalOneByteString::cast(source)->update_data_cache();
649     }
650   }
651
652   FlushICacheForNewCodeObjects();
653
654   // Issue code events for newly deserialized code objects.
655   LOG_CODE_EVENT(isolate_, LogCodeObjects());
656   LOG_CODE_EVENT(isolate_, LogCompiledFunctions());
657 }
658
659
660 void Deserializer::DeserializePartial(Isolate* isolate, Object** root) {
661   isolate_ = isolate;
662   for (int i = NEW_SPACE; i < kNumberOfSpaces; i++) {
663     DCHECK(reservations_[i] != kUninitializedReservation);
664   }
665   isolate_->heap()->ReserveSpace(reservations_, &high_water_[0]);
666   if (external_reference_decoder_ == NULL) {
667     external_reference_decoder_ = new ExternalReferenceDecoder(isolate);
668   }
669
670   DisallowHeapAllocation no_gc;
671
672   // Keep track of the code space start and end pointers in case new
673   // code objects were unserialized
674   OldSpace* code_space = isolate_->heap()->code_space();
675   Address start_address = code_space->top();
676   VisitPointer(root);
677
678   // There's no code deserialized here. If this assert fires
679   // then that's changed and logging should be added to notify
680   // the profiler et al of the new code.
681   CHECK_EQ(start_address, code_space->top());
682 }
683
684
685 Deserializer::~Deserializer() {
686   // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed.
687   // DCHECK(source_->AtEOF());
688   if (external_reference_decoder_) {
689     delete external_reference_decoder_;
690     external_reference_decoder_ = NULL;
691   }
692   if (attached_objects_) attached_objects_->Dispose();
693 }
694
695
696 // This is called on the roots.  It is the driver of the deserialization
697 // process.  It is also called on the body of each function.
698 void Deserializer::VisitPointers(Object** start, Object** end) {
699   // The space must be new space.  Any other space would cause ReadChunk to try
700   // to update the remembered using NULL as the address.
701   ReadChunk(start, end, NEW_SPACE, NULL);
702 }
703
704
705 void Deserializer::RelinkAllocationSite(AllocationSite* site) {
706   if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
707     site->set_weak_next(isolate_->heap()->undefined_value());
708   } else {
709     site->set_weak_next(isolate_->heap()->allocation_sites_list());
710   }
711   isolate_->heap()->set_allocation_sites_list(site);
712 }
713
714
715 // Used to insert a deserialized internalized string into the string table.
716 class StringTableInsertionKey : public HashTableKey {
717  public:
718   explicit StringTableInsertionKey(String* string)
719       : string_(string), hash_(HashForObject(string)) {
720     DCHECK(string->IsInternalizedString());
721   }
722
723   virtual bool IsMatch(Object* string) {
724     // We know that all entries in a hash table had their hash keys created.
725     // Use that knowledge to have fast failure.
726     if (hash_ != HashForObject(string)) return false;
727     // We want to compare the content of two internalized strings here.
728     return string_->SlowEquals(String::cast(string));
729   }
730
731   virtual uint32_t Hash() OVERRIDE { return hash_; }
732
733   virtual uint32_t HashForObject(Object* key) OVERRIDE {
734     return String::cast(key)->Hash();
735   }
736
737   MUST_USE_RESULT virtual Handle<Object> AsHandle(Isolate* isolate)
738       OVERRIDE {
739     return handle(string_, isolate);
740   }
741
742   String* string_;
743   uint32_t hash_;
744 };
745
746
747 HeapObject* Deserializer::ProcessNewObjectFromSerializedCode(HeapObject* obj) {
748   if (obj->IsString()) {
749     String* string = String::cast(obj);
750     // Uninitialize hash field as the hash seed may have changed.
751     string->set_hash_field(String::kEmptyHashField);
752     if (string->IsInternalizedString()) {
753       DisallowHeapAllocation no_gc;
754       HandleScope scope(isolate_);
755       StringTableInsertionKey key(string);
756       String* canonical = *StringTable::LookupKey(isolate_, &key);
757       string->SetForwardedInternalizedString(canonical);
758       return canonical;
759     }
760   }
761   return obj;
762 }
763
764
765 Object* Deserializer::ProcessBackRefInSerializedCode(Object* obj) {
766   if (obj->IsInternalizedString()) {
767     return String::cast(obj)->GetForwardedInternalizedString();
768   }
769   return obj;
770 }
771
772
773 // This routine writes the new object into the pointer provided and then
774 // returns true if the new object was in young space and false otherwise.
775 // The reason for this strange interface is that otherwise the object is
776 // written very late, which means the FreeSpace map is not set up by the
777 // time we need to use it to mark the space at the end of a page free.
778 void Deserializer::ReadObject(int space_number,
779                               Object** write_back) {
780   int size = source_->GetInt() << kObjectAlignmentBits;
781   Address address = Allocate(space_number, size);
782   HeapObject* obj = HeapObject::FromAddress(address);
783   isolate_->heap()->OnAllocationEvent(obj, size);
784   Object** current = reinterpret_cast<Object**>(address);
785   Object** limit = current + (size >> kPointerSizeLog2);
786   if (FLAG_log_snapshot_positions) {
787     LOG(isolate_, SnapshotPositionEvent(address, source_->position()));
788   }
789   ReadChunk(current, limit, space_number, address);
790
791   // TODO(mvstanton): consider treating the heap()->allocation_sites_list()
792   // as a (weak) root. If this root is relocated correctly,
793   // RelinkAllocationSite() isn't necessary.
794   if (obj->IsAllocationSite()) RelinkAllocationSite(AllocationSite::cast(obj));
795
796   // Fix up strings from serialized user code.
797   if (deserializing_user_code()) obj = ProcessNewObjectFromSerializedCode(obj);
798
799   *write_back = obj;
800 #ifdef DEBUG
801   bool is_codespace = (space_number == CODE_SPACE);
802   DCHECK(obj->IsCode() == is_codespace);
803 #endif
804 }
805
806 void Deserializer::ReadChunk(Object** current,
807                              Object** limit,
808                              int source_space,
809                              Address current_object_address) {
810   Isolate* const isolate = isolate_;
811   // Write barrier support costs around 1% in startup time.  In fact there
812   // are no new space objects in current boot snapshots, so it's not needed,
813   // but that may change.
814   bool write_barrier_needed = (current_object_address != NULL &&
815                                source_space != NEW_SPACE &&
816                                source_space != CELL_SPACE &&
817                                source_space != PROPERTY_CELL_SPACE &&
818                                source_space != CODE_SPACE &&
819                                source_space != OLD_DATA_SPACE);
820   while (current < limit) {
821     int data = source_->Get();
822     switch (data) {
823 #define CASE_STATEMENT(where, how, within, space_number) \
824   case where + how + within + space_number:              \
825     STATIC_ASSERT((where & ~kPointedToMask) == 0);       \
826     STATIC_ASSERT((how & ~kHowToCodeMask) == 0);         \
827     STATIC_ASSERT((within & ~kWhereToPointMask) == 0);   \
828     STATIC_ASSERT((space_number & ~kSpaceMask) == 0);
829
830 #define CASE_BODY(where, how, within, space_number_if_any)                     \
831   {                                                                            \
832     bool emit_write_barrier = false;                                           \
833     bool current_was_incremented = false;                                      \
834     int space_number = space_number_if_any == kAnyOldSpace                     \
835                            ? (data & kSpaceMask)                               \
836                            : space_number_if_any;                              \
837     if (where == kNewObject && how == kPlain && within == kStartOfObject) {    \
838       ReadObject(space_number, current);                                       \
839       emit_write_barrier = (space_number == NEW_SPACE);                        \
840     } else {                                                                   \
841       Object* new_object = NULL; /* May not be a real Object pointer. */       \
842       if (where == kNewObject) {                                               \
843         ReadObject(space_number, &new_object);                                 \
844       } else if (where == kRootArray) {                                        \
845         int root_id = source_->GetInt();                                       \
846         new_object = isolate->heap()->roots_array_start()[root_id];            \
847         emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
848       } else if (where == kPartialSnapshotCache) {                             \
849         int cache_index = source_->GetInt();                                   \
850         new_object = isolate->serialize_partial_snapshot_cache()[cache_index]; \
851         emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
852       } else if (where == kExternalReference) {                                \
853         int skip = source_->GetInt();                                          \
854         current = reinterpret_cast<Object**>(                                  \
855             reinterpret_cast<Address>(current) + skip);                        \
856         int reference_id = source_->GetInt();                                  \
857         Address address = external_reference_decoder_->Decode(reference_id);   \
858         new_object = reinterpret_cast<Object*>(address);                       \
859       } else if (where == kBackref) {                                          \
860         emit_write_barrier = (space_number == NEW_SPACE);                      \
861         new_object = GetAddressFromEnd(data & kSpaceMask);                     \
862         if (deserializing_user_code()) {                                       \
863           new_object = ProcessBackRefInSerializedCode(new_object);             \
864         }                                                                      \
865       } else if (where == kBuiltin) {                                          \
866         DCHECK(deserializing_user_code());                                     \
867         int builtin_id = source_->GetInt();                                    \
868         DCHECK_LE(0, builtin_id);                                              \
869         DCHECK_LT(builtin_id, Builtins::builtin_count);                        \
870         Builtins::Name name = static_cast<Builtins::Name>(builtin_id);         \
871         new_object = isolate->builtins()->builtin(name);                       \
872         emit_write_barrier = false;                                            \
873       } else if (where == kAttachedReference) {                                \
874         DCHECK(deserializing_user_code());                                     \
875         int index = source_->GetInt();                                         \
876         new_object = *attached_objects_->at(index);                            \
877         emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
878       } else {                                                                 \
879         DCHECK(where == kBackrefWithSkip);                                     \
880         int skip = source_->GetInt();                                          \
881         current = reinterpret_cast<Object**>(                                  \
882             reinterpret_cast<Address>(current) + skip);                        \
883         emit_write_barrier = (space_number == NEW_SPACE);                      \
884         new_object = GetAddressFromEnd(data & kSpaceMask);                     \
885         if (deserializing_user_code()) {                                       \
886           new_object = ProcessBackRefInSerializedCode(new_object);             \
887         }                                                                      \
888       }                                                                        \
889       if (within == kInnerPointer) {                                           \
890         if (space_number != CODE_SPACE || new_object->IsCode()) {              \
891           Code* new_code_object = reinterpret_cast<Code*>(new_object);         \
892           new_object =                                                         \
893               reinterpret_cast<Object*>(new_code_object->instruction_start()); \
894         } else {                                                               \
895           DCHECK(space_number == CODE_SPACE);                                  \
896           Cell* cell = Cell::cast(new_object);                                 \
897           new_object = reinterpret_cast<Object*>(cell->ValueAddress());        \
898         }                                                                      \
899       }                                                                        \
900       if (how == kFromCode) {                                                  \
901         Address location_of_branch_data = reinterpret_cast<Address>(current);  \
902         Assembler::deserialization_set_special_target_at(                      \
903             location_of_branch_data,                                           \
904             Code::cast(HeapObject::FromAddress(current_object_address)),       \
905             reinterpret_cast<Address>(new_object));                            \
906         location_of_branch_data += Assembler::kSpecialTargetSize;              \
907         current = reinterpret_cast<Object**>(location_of_branch_data);         \
908         current_was_incremented = true;                                        \
909       } else {                                                                 \
910         *current = new_object;                                                 \
911       }                                                                        \
912     }                                                                          \
913     if (emit_write_barrier && write_barrier_needed) {                          \
914       Address current_address = reinterpret_cast<Address>(current);            \
915       isolate->heap()->RecordWrite(                                            \
916           current_object_address,                                              \
917           static_cast<int>(current_address - current_object_address));         \
918     }                                                                          \
919     if (!current_was_incremented) {                                            \
920       current++;                                                               \
921     }                                                                          \
922     break;                                                                     \
923   }
924
925 // This generates a case and a body for the new space (which has to do extra
926 // write barrier handling) and handles the other spaces with 8 fall-through
927 // cases and one body.
928 #define ALL_SPACES(where, how, within)                                         \
929   CASE_STATEMENT(where, how, within, NEW_SPACE)                                \
930   CASE_BODY(where, how, within, NEW_SPACE)                                     \
931   CASE_STATEMENT(where, how, within, OLD_DATA_SPACE)                           \
932   CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE)                        \
933   CASE_STATEMENT(where, how, within, CODE_SPACE)                               \
934   CASE_STATEMENT(where, how, within, CELL_SPACE)                               \
935   CASE_STATEMENT(where, how, within, PROPERTY_CELL_SPACE)                      \
936   CASE_STATEMENT(where, how, within, MAP_SPACE)                                \
937   CASE_BODY(where, how, within, kAnyOldSpace)
938
939 #define FOUR_CASES(byte_code)             \
940   case byte_code:                         \
941   case byte_code + 1:                     \
942   case byte_code + 2:                     \
943   case byte_code + 3:
944
945 #define SIXTEEN_CASES(byte_code)          \
946   FOUR_CASES(byte_code)                   \
947   FOUR_CASES(byte_code + 4)               \
948   FOUR_CASES(byte_code + 8)               \
949   FOUR_CASES(byte_code + 12)
950
951 #define COMMON_RAW_LENGTHS(f)        \
952   f(1)  \
953   f(2)  \
954   f(3)  \
955   f(4)  \
956   f(5)  \
957   f(6)  \
958   f(7)  \
959   f(8)  \
960   f(9)  \
961   f(10) \
962   f(11) \
963   f(12) \
964   f(13) \
965   f(14) \
966   f(15) \
967   f(16) \
968   f(17) \
969   f(18) \
970   f(19) \
971   f(20) \
972   f(21) \
973   f(22) \
974   f(23) \
975   f(24) \
976   f(25) \
977   f(26) \
978   f(27) \
979   f(28) \
980   f(29) \
981   f(30) \
982   f(31)
983
984       // We generate 15 cases and bodies that process special tags that combine
985       // the raw data tag and the length into one byte.
986 #define RAW_CASE(index)                                                      \
987       case kRawData + index: {                                               \
988         byte* raw_data_out = reinterpret_cast<byte*>(current);               \
989         source_->CopyRaw(raw_data_out, index * kPointerSize);                \
990         current =                                                            \
991             reinterpret_cast<Object**>(raw_data_out + index * kPointerSize); \
992         break;                                                               \
993       }
994       COMMON_RAW_LENGTHS(RAW_CASE)
995 #undef RAW_CASE
996
997       // Deserialize a chunk of raw data that doesn't have one of the popular
998       // lengths.
999       case kRawData: {
1000         int size = source_->GetInt();
1001         byte* raw_data_out = reinterpret_cast<byte*>(current);
1002         source_->CopyRaw(raw_data_out, size);
1003         break;
1004       }
1005
1006       SIXTEEN_CASES(kRootArrayConstants + kNoSkipDistance)
1007       SIXTEEN_CASES(kRootArrayConstants + kNoSkipDistance + 16) {
1008         int root_id = RootArrayConstantFromByteCode(data);
1009         Object* object = isolate->heap()->roots_array_start()[root_id];
1010         DCHECK(!isolate->heap()->InNewSpace(object));
1011         *current++ = object;
1012         break;
1013       }
1014
1015       SIXTEEN_CASES(kRootArrayConstants + kHasSkipDistance)
1016       SIXTEEN_CASES(kRootArrayConstants + kHasSkipDistance + 16) {
1017         int root_id = RootArrayConstantFromByteCode(data);
1018         int skip = source_->GetInt();
1019         current = reinterpret_cast<Object**>(
1020             reinterpret_cast<intptr_t>(current) + skip);
1021         Object* object = isolate->heap()->roots_array_start()[root_id];
1022         DCHECK(!isolate->heap()->InNewSpace(object));
1023         *current++ = object;
1024         break;
1025       }
1026
1027       case kRepeat: {
1028         int repeats = source_->GetInt();
1029         Object* object = current[-1];
1030         DCHECK(!isolate->heap()->InNewSpace(object));
1031         for (int i = 0; i < repeats; i++) current[i] = object;
1032         current += repeats;
1033         break;
1034       }
1035
1036       STATIC_ASSERT(kRootArrayNumberOfConstantEncodings ==
1037                     Heap::kOldSpaceRoots);
1038       STATIC_ASSERT(kMaxRepeats == 13);
1039       case kConstantRepeat:
1040       FOUR_CASES(kConstantRepeat + 1)
1041       FOUR_CASES(kConstantRepeat + 5)
1042       FOUR_CASES(kConstantRepeat + 9) {
1043         int repeats = RepeatsForCode(data);
1044         Object* object = current[-1];
1045         DCHECK(!isolate->heap()->InNewSpace(object));
1046         for (int i = 0; i < repeats; i++) current[i] = object;
1047         current += repeats;
1048         break;
1049       }
1050
1051       // Deserialize a new object and write a pointer to it to the current
1052       // object.
1053       ALL_SPACES(kNewObject, kPlain, kStartOfObject)
1054       // Support for direct instruction pointers in functions.  It's an inner
1055       // pointer because it points at the entry point, not at the start of the
1056       // code object.
1057       CASE_STATEMENT(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
1058       CASE_BODY(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
1059       // Deserialize a new code object and write a pointer to its first
1060       // instruction to the current code object.
1061       ALL_SPACES(kNewObject, kFromCode, kInnerPointer)
1062       // Find a recently deserialized object using its offset from the current
1063       // allocation point and write a pointer to it to the current object.
1064       ALL_SPACES(kBackref, kPlain, kStartOfObject)
1065       ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject)
1066 #if defined(V8_TARGET_ARCH_MIPS) || V8_OOL_CONSTANT_POOL || \
1067     defined(V8_TARGET_ARCH_MIPS64)
1068       // Deserialize a new object from pointer found in code and write
1069       // a pointer to it to the current object. Required only for MIPS or ARM
1070       // with ool constant pool, and omitted on the other architectures because
1071       // it is fully unrolled and would cause bloat.
1072       ALL_SPACES(kNewObject, kFromCode, kStartOfObject)
1073       // Find a recently deserialized code object using its offset from the
1074       // current allocation point and write a pointer to it to the current
1075       // object. Required only for MIPS or ARM with ool constant pool.
1076       ALL_SPACES(kBackref, kFromCode, kStartOfObject)
1077       ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject)
1078 #endif
1079       // Find a recently deserialized code object using its offset from the
1080       // current allocation point and write a pointer to its first instruction
1081       // to the current code object or the instruction pointer in a function
1082       // object.
1083       ALL_SPACES(kBackref, kFromCode, kInnerPointer)
1084       ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer)
1085       ALL_SPACES(kBackref, kPlain, kInnerPointer)
1086       ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer)
1087       // Find an object in the roots array and write a pointer to it to the
1088       // current object.
1089       CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0)
1090       CASE_BODY(kRootArray, kPlain, kStartOfObject, 0)
1091 #if defined(V8_TARGET_ARCH_MIPS) || V8_OOL_CONSTANT_POOL || \
1092     defined(V8_TARGET_ARCH_MIPS64)
1093       // Find an object in the roots array and write a pointer to it to in code.
1094       CASE_STATEMENT(kRootArray, kFromCode, kStartOfObject, 0)
1095       CASE_BODY(kRootArray, kFromCode, kStartOfObject, 0)
1096 #endif
1097       // Find an object in the partial snapshots cache and write a pointer to it
1098       // to the current object.
1099       CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
1100       CASE_BODY(kPartialSnapshotCache,
1101                 kPlain,
1102                 kStartOfObject,
1103                 0)
1104       // Find an code entry in the partial snapshots cache and
1105       // write a pointer to it to the current object.
1106       CASE_STATEMENT(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
1107       CASE_BODY(kPartialSnapshotCache,
1108                 kPlain,
1109                 kInnerPointer,
1110                 0)
1111       // Find an external reference and write a pointer to it to the current
1112       // object.
1113       CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0)
1114       CASE_BODY(kExternalReference,
1115                 kPlain,
1116                 kStartOfObject,
1117                 0)
1118       // Find an external reference and write a pointer to it in the current
1119       // code object.
1120       CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0)
1121       CASE_BODY(kExternalReference,
1122                 kFromCode,
1123                 kStartOfObject,
1124                 0)
1125       // Find a builtin and write a pointer to it to the current object.
1126       CASE_STATEMENT(kBuiltin, kPlain, kStartOfObject, 0)
1127       CASE_BODY(kBuiltin, kPlain, kStartOfObject, 0)
1128 #if V8_OOL_CONSTANT_POOL
1129       // Find a builtin code entry and write a pointer to it to the current
1130       // object.
1131       CASE_STATEMENT(kBuiltin, kPlain, kInnerPointer, 0)
1132       CASE_BODY(kBuiltin, kPlain, kInnerPointer, 0)
1133 #endif
1134       // Find a builtin and write a pointer to it in the current code object.
1135       CASE_STATEMENT(kBuiltin, kFromCode, kInnerPointer, 0)
1136       CASE_BODY(kBuiltin, kFromCode, kInnerPointer, 0)
1137       // Find an object in the attached references and write a pointer to it to
1138       // the current object.
1139       CASE_STATEMENT(kAttachedReference, kPlain, kStartOfObject, 0)
1140       CASE_BODY(kAttachedReference, kPlain, kStartOfObject, 0)
1141       CASE_STATEMENT(kAttachedReference, kPlain, kInnerPointer, 0)
1142       CASE_BODY(kAttachedReference, kPlain, kInnerPointer, 0)
1143       CASE_STATEMENT(kAttachedReference, kFromCode, kInnerPointer, 0)
1144       CASE_BODY(kAttachedReference, kFromCode, kInnerPointer, 0)
1145
1146 #undef CASE_STATEMENT
1147 #undef CASE_BODY
1148 #undef ALL_SPACES
1149
1150       case kSkip: {
1151         int size = source_->GetInt();
1152         current = reinterpret_cast<Object**>(
1153             reinterpret_cast<intptr_t>(current) + size);
1154         break;
1155       }
1156
1157       case kNativesStringResource: {
1158         int index = source_->Get();
1159         Vector<const char> source_vector = Natives::GetRawScriptSource(index);
1160         NativesExternalStringResource* resource =
1161             new NativesExternalStringResource(isolate->bootstrapper(),
1162                                               source_vector.start(),
1163                                               source_vector.length());
1164         *current++ = reinterpret_cast<Object*>(resource);
1165         break;
1166       }
1167
1168       case kSynchronize: {
1169         // If we get here then that indicates that you have a mismatch between
1170         // the number of GC roots when serializing and deserializing.
1171         UNREACHABLE();
1172       }
1173
1174       default:
1175         UNREACHABLE();
1176     }
1177   }
1178   DCHECK_EQ(limit, current);
1179 }
1180
1181
1182 Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink)
1183     : isolate_(isolate),
1184       sink_(sink),
1185       external_reference_encoder_(new ExternalReferenceEncoder(isolate)),
1186       root_index_wave_front_(0),
1187       code_address_map_(NULL) {
1188   // The serializer is meant to be used only to generate initial heap images
1189   // from a context in which there is only one isolate.
1190   for (int i = 0; i <= LAST_SPACE; i++) {
1191     fullness_[i] = 0;
1192   }
1193 }
1194
1195
1196 Serializer::~Serializer() {
1197   delete external_reference_encoder_;
1198   if (code_address_map_ != NULL) delete code_address_map_;
1199 }
1200
1201
1202 void StartupSerializer::SerializeStrongReferences() {
1203   Isolate* isolate = this->isolate();
1204   // No active threads.
1205   CHECK_EQ(NULL, isolate->thread_manager()->FirstThreadStateInUse());
1206   // No active or weak handles.
1207   CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
1208   CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
1209   CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles());
1210   // We don't support serializing installed extensions.
1211   CHECK(!isolate->has_installed_extensions());
1212   isolate->heap()->IterateSmiRoots(this);
1213   isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
1214 }
1215
1216
1217 void PartialSerializer::Serialize(Object** object) {
1218   this->VisitPointer(object);
1219   Pad();
1220 }
1221
1222
1223 bool Serializer::ShouldBeSkipped(Object** current) {
1224   Object** roots = isolate()->heap()->roots_array_start();
1225   return current == &roots[Heap::kStoreBufferTopRootIndex]
1226       || current == &roots[Heap::kStackLimitRootIndex]
1227       || current == &roots[Heap::kRealStackLimitRootIndex];
1228 }
1229
1230
1231 void Serializer::VisitPointers(Object** start, Object** end) {
1232   Isolate* isolate = this->isolate();;
1233
1234   for (Object** current = start; current < end; current++) {
1235     if (start == isolate->heap()->roots_array_start()) {
1236       root_index_wave_front_ =
1237           Max(root_index_wave_front_, static_cast<intptr_t>(current - start));
1238     }
1239     if (ShouldBeSkipped(current)) {
1240       sink_->Put(kSkip, "Skip");
1241       sink_->PutInt(kPointerSize, "SkipOneWord");
1242     } else if ((*current)->IsSmi()) {
1243       sink_->Put(kRawData + 1, "Smi");
1244       for (int i = 0; i < kPointerSize; i++) {
1245         sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
1246       }
1247     } else {
1248       SerializeObject(*current, kPlain, kStartOfObject, 0);
1249     }
1250   }
1251 }
1252
1253
1254 // This ensures that the partial snapshot cache keeps things alive during GC and
1255 // tracks their movement.  When it is called during serialization of the startup
1256 // snapshot nothing happens.  When the partial (context) snapshot is created,
1257 // this array is populated with the pointers that the partial snapshot will
1258 // need. As that happens we emit serialized objects to the startup snapshot
1259 // that correspond to the elements of this cache array.  On deserialization we
1260 // therefore need to visit the cache array.  This fills it up with pointers to
1261 // deserialized objects.
1262 void SerializerDeserializer::Iterate(Isolate* isolate,
1263                                      ObjectVisitor* visitor) {
1264   if (isolate->serializer_enabled()) return;
1265   for (int i = 0; ; i++) {
1266     if (isolate->serialize_partial_snapshot_cache_length() <= i) {
1267       // Extend the array ready to get a value from the visitor when
1268       // deserializing.
1269       isolate->PushToPartialSnapshotCache(Smi::FromInt(0));
1270     }
1271     Object** cache = isolate->serialize_partial_snapshot_cache();
1272     visitor->VisitPointers(&cache[i], &cache[i + 1]);
1273     // Sentinel is the undefined object, which is a root so it will not normally
1274     // be found in the cache.
1275     if (cache[i] == isolate->heap()->undefined_value()) {
1276       break;
1277     }
1278   }
1279 }
1280
1281
1282 int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
1283   Isolate* isolate = this->isolate();
1284
1285   for (int i = 0;
1286        i < isolate->serialize_partial_snapshot_cache_length();
1287        i++) {
1288     Object* entry = isolate->serialize_partial_snapshot_cache()[i];
1289     if (entry == heap_object) return i;
1290   }
1291
1292   // We didn't find the object in the cache.  So we add it to the cache and
1293   // then visit the pointer so that it becomes part of the startup snapshot
1294   // and we can refer to it from the partial snapshot.
1295   int length = isolate->serialize_partial_snapshot_cache_length();
1296   isolate->PushToPartialSnapshotCache(heap_object);
1297   startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object));
1298   // We don't recurse from the startup snapshot generator into the partial
1299   // snapshot generator.
1300   DCHECK(length == isolate->serialize_partial_snapshot_cache_length() - 1);
1301   return length;
1302 }
1303
1304
1305 int Serializer::RootIndex(HeapObject* heap_object, HowToCode from) {
1306   Heap* heap = isolate()->heap();
1307   if (heap->InNewSpace(heap_object)) return kInvalidRootIndex;
1308   for (int i = 0; i < root_index_wave_front_; i++) {
1309     Object* root = heap->roots_array_start()[i];
1310     if (!root->IsSmi() && root == heap_object) {
1311       return i;
1312     }
1313   }
1314   return kInvalidRootIndex;
1315 }
1316
1317
1318 // Encode the location of an already deserialized object in order to write its
1319 // location into a later object.  We can encode the location as an offset from
1320 // the start of the deserialized objects or as an offset backwards from the
1321 // current allocation pointer.
1322 void Serializer::SerializeReferenceToPreviousObject(HeapObject* heap_object,
1323                                                     HowToCode how_to_code,
1324                                                     WhereToPoint where_to_point,
1325                                                     int skip) {
1326   int space = SpaceOfObject(heap_object);
1327   int address = address_mapper_.MappedTo(heap_object);
1328   int offset = CurrentAllocationAddress(space) - address;
1329   // Shift out the bits that are always 0.
1330   offset >>= kObjectAlignmentBits;
1331   if (skip == 0) {
1332     sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRefSer");
1333   } else {
1334     sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space,
1335                "BackRefSerWithSkip");
1336     sink_->PutInt(skip, "BackRefSkipDistance");
1337   }
1338   sink_->PutInt(offset, "offset");
1339 }
1340
1341
1342 void StartupSerializer::SerializeObject(
1343     Object* o,
1344     HowToCode how_to_code,
1345     WhereToPoint where_to_point,
1346     int skip) {
1347   CHECK(o->IsHeapObject());
1348   HeapObject* heap_object = HeapObject::cast(o);
1349   DCHECK(!heap_object->IsJSFunction());
1350
1351   int root_index;
1352   if ((root_index = RootIndex(heap_object, how_to_code)) != kInvalidRootIndex) {
1353     PutRoot(root_index, heap_object, how_to_code, where_to_point, skip);
1354     return;
1355   }
1356
1357   if (address_mapper_.IsMapped(heap_object)) {
1358     SerializeReferenceToPreviousObject(heap_object, how_to_code, where_to_point,
1359                                        skip);
1360   } else {
1361     if (skip != 0) {
1362       sink_->Put(kSkip, "FlushPendingSkip");
1363       sink_->PutInt(skip, "SkipDistance");
1364     }
1365
1366     // Object has not yet been serialized.  Serialize it here.
1367     ObjectSerializer object_serializer(this,
1368                                        heap_object,
1369                                        sink_,
1370                                        how_to_code,
1371                                        where_to_point);
1372     object_serializer.Serialize();
1373   }
1374 }
1375
1376
1377 void StartupSerializer::SerializeWeakReferences() {
1378   // This phase comes right after the partial serialization (of the snapshot).
1379   // After we have done the partial serialization the partial snapshot cache
1380   // will contain some references needed to decode the partial snapshot.  We
1381   // add one entry with 'undefined' which is the sentinel that the deserializer
1382   // uses to know it is done deserializing the array.
1383   Object* undefined = isolate()->heap()->undefined_value();
1384   VisitPointer(&undefined);
1385   isolate()->heap()->IterateWeakRoots(this, VISIT_ALL);
1386   Pad();
1387 }
1388
1389
1390 void Serializer::PutRoot(int root_index,
1391                          HeapObject* object,
1392                          SerializerDeserializer::HowToCode how_to_code,
1393                          SerializerDeserializer::WhereToPoint where_to_point,
1394                          int skip) {
1395   if (how_to_code == kPlain &&
1396       where_to_point == kStartOfObject &&
1397       root_index < kRootArrayNumberOfConstantEncodings &&
1398       !isolate()->heap()->InNewSpace(object)) {
1399     if (skip == 0) {
1400       sink_->Put(kRootArrayConstants + kNoSkipDistance + root_index,
1401                  "RootConstant");
1402     } else {
1403       sink_->Put(kRootArrayConstants + kHasSkipDistance + root_index,
1404                  "RootConstant");
1405       sink_->PutInt(skip, "SkipInPutRoot");
1406     }
1407   } else {
1408     if (skip != 0) {
1409       sink_->Put(kSkip, "SkipFromPutRoot");
1410       sink_->PutInt(skip, "SkipFromPutRootDistance");
1411     }
1412     sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
1413     sink_->PutInt(root_index, "root_index");
1414   }
1415 }
1416
1417
1418 void PartialSerializer::SerializeObject(
1419     Object* o,
1420     HowToCode how_to_code,
1421     WhereToPoint where_to_point,
1422     int skip) {
1423   CHECK(o->IsHeapObject());
1424   HeapObject* heap_object = HeapObject::cast(o);
1425
1426   if (heap_object->IsMap()) {
1427     // The code-caches link to context-specific code objects, which
1428     // the startup and context serializes cannot currently handle.
1429     DCHECK(Map::cast(heap_object)->code_cache() ==
1430            heap_object->GetHeap()->empty_fixed_array());
1431   }
1432
1433   int root_index;
1434   if ((root_index = RootIndex(heap_object, how_to_code)) != kInvalidRootIndex) {
1435     PutRoot(root_index, heap_object, how_to_code, where_to_point, skip);
1436     return;
1437   }
1438
1439   if (ShouldBeInThePartialSnapshotCache(heap_object)) {
1440     if (skip != 0) {
1441       sink_->Put(kSkip, "SkipFromSerializeObject");
1442       sink_->PutInt(skip, "SkipDistanceFromSerializeObject");
1443     }
1444
1445     int cache_index = PartialSnapshotCacheIndex(heap_object);
1446     sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
1447                "PartialSnapshotCache");
1448     sink_->PutInt(cache_index, "partial_snapshot_cache_index");
1449     return;
1450   }
1451
1452   // Pointers from the partial snapshot to the objects in the startup snapshot
1453   // should go through the root array or through the partial snapshot cache.
1454   // If this is not the case you may have to add something to the root array.
1455   DCHECK(!startup_serializer_->address_mapper()->IsMapped(heap_object));
1456   // All the internalized strings that the partial snapshot needs should be
1457   // either in the root table or in the partial snapshot cache.
1458   DCHECK(!heap_object->IsInternalizedString());
1459
1460   if (address_mapper_.IsMapped(heap_object)) {
1461     SerializeReferenceToPreviousObject(heap_object, how_to_code, where_to_point,
1462                                        skip);
1463   } else {
1464     if (skip != 0) {
1465       sink_->Put(kSkip, "SkipFromSerializeObject");
1466       sink_->PutInt(skip, "SkipDistanceFromSerializeObject");
1467     }
1468     // Object has not yet been serialized.  Serialize it here.
1469     ObjectSerializer serializer(this,
1470                                 heap_object,
1471                                 sink_,
1472                                 how_to_code,
1473                                 where_to_point);
1474     serializer.Serialize();
1475   }
1476 }
1477
1478
1479 void Serializer::ObjectSerializer::Serialize() {
1480   int space = Serializer::SpaceOfObject(object_);
1481   int size = object_->Size();
1482
1483   sink_->Put(kNewObject + reference_representation_ + space,
1484              "ObjectSerialization");
1485   sink_->PutInt(size >> kObjectAlignmentBits, "Size in words");
1486
1487   if (serializer_->code_address_map_) {
1488     const char* code_name =
1489         serializer_->code_address_map_->Lookup(object_->address());
1490     LOG(serializer_->isolate_,
1491         CodeNameEvent(object_->address(), sink_->Position(), code_name));
1492     LOG(serializer_->isolate_,
1493         SnapshotPositionEvent(object_->address(), sink_->Position()));
1494   }
1495
1496   // Mark this object as already serialized.
1497   int offset = serializer_->Allocate(space, size);
1498   serializer_->address_mapper()->AddMapping(object_, offset);
1499
1500   // Serialize the map (first word of the object).
1501   serializer_->SerializeObject(object_->map(), kPlain, kStartOfObject, 0);
1502
1503   // Serialize the rest of the object.
1504   CHECK_EQ(0, bytes_processed_so_far_);
1505   bytes_processed_so_far_ = kPointerSize;
1506   object_->IterateBody(object_->map()->instance_type(), size, this);
1507   OutputRawData(object_->address() + size);
1508 }
1509
1510
1511 void Serializer::ObjectSerializer::VisitPointers(Object** start,
1512                                                  Object** end) {
1513   Object** current = start;
1514   while (current < end) {
1515     while (current < end && (*current)->IsSmi()) current++;
1516     if (current < end) OutputRawData(reinterpret_cast<Address>(current));
1517
1518     while (current < end && !(*current)->IsSmi()) {
1519       HeapObject* current_contents = HeapObject::cast(*current);
1520       int root_index = serializer_->RootIndex(current_contents, kPlain);
1521       // Repeats are not subject to the write barrier so there are only some
1522       // objects that can be used in a repeat encoding.  These are the early
1523       // ones in the root array that are never in new space.
1524       if (current != start &&
1525           root_index != kInvalidRootIndex &&
1526           root_index < kRootArrayNumberOfConstantEncodings &&
1527           current_contents == current[-1]) {
1528         DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents));
1529         int repeat_count = 1;
1530         while (&current[repeat_count] < end - 1 &&
1531                current[repeat_count] == current_contents) {
1532           repeat_count++;
1533         }
1534         current += repeat_count;
1535         bytes_processed_so_far_ += repeat_count * kPointerSize;
1536         if (repeat_count > kMaxRepeats) {
1537           sink_->Put(kRepeat, "SerializeRepeats");
1538           sink_->PutInt(repeat_count, "SerializeRepeats");
1539         } else {
1540           sink_->Put(CodeForRepeats(repeat_count), "SerializeRepeats");
1541         }
1542       } else {
1543         serializer_->SerializeObject(
1544                 current_contents, kPlain, kStartOfObject, 0);
1545         bytes_processed_so_far_ += kPointerSize;
1546         current++;
1547       }
1548     }
1549   }
1550 }
1551
1552
1553 void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
1554   // Out-of-line constant pool entries will be visited by the ConstantPoolArray.
1555   if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
1556
1557   int skip = OutputRawData(rinfo->target_address_address(),
1558                            kCanReturnSkipInsteadOfSkipping);
1559   HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
1560   Object* object = rinfo->target_object();
1561   serializer_->SerializeObject(object, how_to_code, kStartOfObject, skip);
1562   bytes_processed_so_far_ += rinfo->target_address_size();
1563 }
1564
1565
1566 void Serializer::ObjectSerializer::VisitExternalReference(Address* p) {
1567   int skip = OutputRawData(reinterpret_cast<Address>(p),
1568                            kCanReturnSkipInsteadOfSkipping);
1569   sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
1570   sink_->PutInt(skip, "SkipB4ExternalRef");
1571   Address target = *p;
1572   sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
1573   bytes_processed_so_far_ += kPointerSize;
1574 }
1575
1576
1577 void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
1578   int skip = OutputRawData(rinfo->target_address_address(),
1579                            kCanReturnSkipInsteadOfSkipping);
1580   HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
1581   sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
1582   sink_->PutInt(skip, "SkipB4ExternalRef");
1583   Address target = rinfo->target_reference();
1584   sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
1585   bytes_processed_so_far_ += rinfo->target_address_size();
1586 }
1587
1588
1589 void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
1590   int skip = OutputRawData(rinfo->target_address_address(),
1591                            kCanReturnSkipInsteadOfSkipping);
1592   HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
1593   sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
1594   sink_->PutInt(skip, "SkipB4ExternalRef");
1595   Address target = rinfo->target_address();
1596   sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
1597   bytes_processed_so_far_ += rinfo->target_address_size();
1598 }
1599
1600
1601 void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
1602   // Out-of-line constant pool entries will be visited by the ConstantPoolArray.
1603   if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
1604
1605   int skip = OutputRawData(rinfo->target_address_address(),
1606                            kCanReturnSkipInsteadOfSkipping);
1607   Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address());
1608   serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip);
1609   bytes_processed_so_far_ += rinfo->target_address_size();
1610 }
1611
1612
1613 void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
1614   int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping);
1615   Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
1616   serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
1617   bytes_processed_so_far_ += kPointerSize;
1618 }
1619
1620
1621 void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) {
1622   // Out-of-line constant pool entries will be visited by the ConstantPoolArray.
1623   if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
1624
1625   int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping);
1626   Cell* object = Cell::cast(rinfo->target_cell());
1627   serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
1628   bytes_processed_so_far_ += kPointerSize;
1629 }
1630
1631
1632 void Serializer::ObjectSerializer::VisitExternalOneByteString(
1633     v8::String::ExternalOneByteStringResource** resource_pointer) {
1634   Address references_start = reinterpret_cast<Address>(resource_pointer);
1635   OutputRawData(references_start);
1636   for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
1637     Object* source =
1638         serializer_->isolate()->heap()->natives_source_cache()->get(i);
1639     if (!source->IsUndefined()) {
1640       ExternalOneByteString* string = ExternalOneByteString::cast(source);
1641       typedef v8::String::ExternalOneByteStringResource Resource;
1642       const Resource* resource = string->resource();
1643       if (resource == *resource_pointer) {
1644         sink_->Put(kNativesStringResource, "NativesStringResource");
1645         sink_->PutSection(i, "NativesStringResourceEnd");
1646         bytes_processed_so_far_ += sizeof(resource);
1647         return;
1648       }
1649     }
1650   }
1651   // One of the strings in the natives cache should match the resource.  We
1652   // can't serialize any other kinds of external strings.
1653   UNREACHABLE();
1654 }
1655
1656
1657 static Code* CloneCodeObject(HeapObject* code) {
1658   Address copy = new byte[code->Size()];
1659   MemCopy(copy, code->address(), code->Size());
1660   return Code::cast(HeapObject::FromAddress(copy));
1661 }
1662
1663
1664 static void WipeOutRelocations(Code* code) {
1665   int mode_mask =
1666       RelocInfo::kCodeTargetMask |
1667       RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
1668       RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
1669       RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY);
1670   for (RelocIterator it(code, mode_mask); !it.done(); it.next()) {
1671     if (!(FLAG_enable_ool_constant_pool && it.rinfo()->IsInConstantPool())) {
1672       it.rinfo()->WipeOut();
1673     }
1674   }
1675 }
1676
1677
1678 int Serializer::ObjectSerializer::OutputRawData(
1679     Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) {
1680   Address object_start = object_->address();
1681   int base = bytes_processed_so_far_;
1682   int up_to_offset = static_cast<int>(up_to - object_start);
1683   int to_skip = up_to_offset - bytes_processed_so_far_;
1684   int bytes_to_output = to_skip;
1685   bytes_processed_so_far_ += to_skip;
1686   // This assert will fail if the reloc info gives us the target_address_address
1687   // locations in a non-ascending order.  Luckily that doesn't happen.
1688   DCHECK(to_skip >= 0);
1689   bool outputting_code = false;
1690   if (to_skip != 0 && code_object_ && !code_has_been_output_) {
1691     // Output the code all at once and fix later.
1692     bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_;
1693     outputting_code = true;
1694     code_has_been_output_ = true;
1695   }
1696   if (bytes_to_output != 0 &&
1697       (!code_object_ || outputting_code)) {
1698 #define RAW_CASE(index)                                                        \
1699     if (!outputting_code && bytes_to_output == index * kPointerSize &&         \
1700         index * kPointerSize == to_skip) {                                     \
1701       sink_->PutSection(kRawData + index, "RawDataFixed");                     \
1702       to_skip = 0;  /* This insn already skips. */                             \
1703     } else  /* NOLINT */
1704     COMMON_RAW_LENGTHS(RAW_CASE)
1705 #undef RAW_CASE
1706     {  /* NOLINT */
1707       // We always end up here if we are outputting the code of a code object.
1708       sink_->Put(kRawData, "RawData");
1709       sink_->PutInt(bytes_to_output, "length");
1710     }
1711
1712     // To make snapshots reproducible, we need to wipe out all pointers in code.
1713     if (code_object_) {
1714       Code* code = CloneCodeObject(object_);
1715       WipeOutRelocations(code);
1716       // We need to wipe out the header fields *after* wiping out the
1717       // relocations, because some of these fields are needed for the latter.
1718       code->WipeOutHeader();
1719       object_start = code->address();
1720     }
1721
1722     const char* description = code_object_ ? "Code" : "Byte";
1723     for (int i = 0; i < bytes_to_output; i++) {
1724       sink_->PutSection(object_start[base + i], description);
1725     }
1726     if (code_object_) delete[] object_start;
1727   }
1728   if (to_skip != 0 && return_skip == kIgnoringReturn) {
1729     sink_->Put(kSkip, "Skip");
1730     sink_->PutInt(to_skip, "SkipDistance");
1731     to_skip = 0;
1732   }
1733   return to_skip;
1734 }
1735
1736
1737 int Serializer::SpaceOfObject(HeapObject* object) {
1738   for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
1739     AllocationSpace s = static_cast<AllocationSpace>(i);
1740     if (object->GetHeap()->InSpace(object, s)) {
1741       DCHECK(i < kNumberOfSpaces);
1742       return i;
1743     }
1744   }
1745   UNREACHABLE();
1746   return 0;
1747 }
1748
1749
1750 int Serializer::Allocate(int space, int size) {
1751   CHECK(space >= 0 && space < kNumberOfSpaces);
1752   int allocation_address = fullness_[space];
1753   fullness_[space] = allocation_address + size;
1754   return allocation_address;
1755 }
1756
1757
1758 int Serializer::SpaceAreaSize(int space) {
1759   if (space == CODE_SPACE) {
1760     return isolate_->memory_allocator()->CodePageAreaSize();
1761   } else {
1762     return Page::kPageSize - Page::kObjectStartOffset;
1763   }
1764 }
1765
1766
1767 void Serializer::Pad() {
1768   // The non-branching GetInt will read up to 3 bytes too far, so we need
1769   // to pad the snapshot to make sure we don't read over the end.
1770   for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
1771     sink_->Put(kNop, "Padding");
1772   }
1773 }
1774
1775
1776 void Serializer::InitializeCodeAddressMap() {
1777   isolate_->InitializeLoggingAndCounters();
1778   code_address_map_ = new CodeAddressMap(isolate_);
1779 }
1780
1781
1782 ScriptData* CodeSerializer::Serialize(Isolate* isolate,
1783                                       Handle<SharedFunctionInfo> info,
1784                                       Handle<String> source) {
1785   base::ElapsedTimer timer;
1786   if (FLAG_profile_deserialization) timer.Start();
1787
1788   // Serialize code object.
1789   List<byte> payload;
1790   ListSnapshotSink list_sink(&payload);
1791   DebugSnapshotSink debug_sink(&list_sink);
1792   SnapshotByteSink* sink = FLAG_trace_code_serializer
1793                                ? static_cast<SnapshotByteSink*>(&debug_sink)
1794                                : static_cast<SnapshotByteSink*>(&list_sink);
1795   CodeSerializer cs(isolate, sink, *source);
1796   DisallowHeapAllocation no_gc;
1797   Object** location = Handle<Object>::cast(info).location();
1798   cs.VisitPointer(location);
1799   cs.Pad();
1800
1801   SerializedCodeData data(&payload, &cs);
1802   ScriptData* script_data = data.GetScriptData();
1803
1804   if (FLAG_profile_deserialization) {
1805     double ms = timer.Elapsed().InMillisecondsF();
1806     int length = script_data->length();
1807     PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms);
1808   }
1809
1810   return script_data;
1811 }
1812
1813
1814 void CodeSerializer::SerializeObject(Object* o, HowToCode how_to_code,
1815                                      WhereToPoint where_to_point, int skip) {
1816   CHECK(o->IsHeapObject());
1817   HeapObject* heap_object = HeapObject::cast(o);
1818
1819   // The code-caches link to context-specific code objects, which
1820   // the startup and context serializes cannot currently handle.
1821   DCHECK(!heap_object->IsMap() ||
1822          Map::cast(heap_object)->code_cache() ==
1823              heap_object->GetHeap()->empty_fixed_array());
1824
1825   int root_index;
1826   if ((root_index = RootIndex(heap_object, how_to_code)) != kInvalidRootIndex) {
1827     PutRoot(root_index, heap_object, how_to_code, where_to_point, skip);
1828     return;
1829   }
1830
1831   // TODO(yangguo) wire up global object.
1832   // TODO(yangguo) We cannot deal with different hash seeds yet.
1833   DCHECK(!heap_object->IsHashTable());
1834
1835   if (address_mapper_.IsMapped(heap_object)) {
1836     SerializeReferenceToPreviousObject(heap_object, how_to_code, where_to_point,
1837                                        skip);
1838     return;
1839   }
1840
1841   if (heap_object->IsCode()) {
1842     Code* code_object = Code::cast(heap_object);
1843     if (code_object->kind() == Code::BUILTIN) {
1844       SerializeBuiltin(code_object, how_to_code, where_to_point, skip);
1845       return;
1846     }
1847     if (code_object->IsCodeStubOrIC()) {
1848       SerializeCodeStub(code_object, how_to_code, where_to_point, skip);
1849       return;
1850     }
1851     code_object->ClearInlineCaches();
1852   }
1853
1854   if (heap_object == source_) {
1855     SerializeSourceObject(how_to_code, where_to_point, skip);
1856     return;
1857   }
1858
1859   SerializeHeapObject(heap_object, how_to_code, where_to_point, skip);
1860 }
1861
1862
1863 void CodeSerializer::SerializeHeapObject(HeapObject* heap_object,
1864                                          HowToCode how_to_code,
1865                                          WhereToPoint where_to_point,
1866                                          int skip) {
1867   if (heap_object->IsScript()) {
1868     // The wrapper cache uses a Foreign object to point to a global handle.
1869     // However, the object visitor expects foreign objects to point to external
1870     // references.  Clear the cache to avoid this issue.
1871     Script::cast(heap_object)->ClearWrapperCache();
1872   }
1873
1874   if (skip != 0) {
1875     sink_->Put(kSkip, "SkipFromSerializeObject");
1876     sink_->PutInt(skip, "SkipDistanceFromSerializeObject");
1877   }
1878
1879   if (FLAG_trace_code_serializer) {
1880     PrintF("Encoding heap object: ");
1881     heap_object->ShortPrint();
1882     PrintF("\n");
1883   }
1884
1885   // Object has not yet been serialized.  Serialize it here.
1886   ObjectSerializer serializer(this, heap_object, sink_, how_to_code,
1887                               where_to_point);
1888   serializer.Serialize();
1889 }
1890
1891
1892 void CodeSerializer::SerializeBuiltin(Code* builtin, HowToCode how_to_code,
1893                                       WhereToPoint where_to_point, int skip) {
1894   if (skip != 0) {
1895     sink_->Put(kSkip, "SkipFromSerializeBuiltin");
1896     sink_->PutInt(skip, "SkipDistanceFromSerializeBuiltin");
1897   }
1898
1899   DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
1900          (how_to_code == kPlain && where_to_point == kInnerPointer) ||
1901          (how_to_code == kFromCode && where_to_point == kInnerPointer));
1902   int builtin_index = builtin->builtin_index();
1903   DCHECK_LT(builtin_index, Builtins::builtin_count);
1904   DCHECK_LE(0, builtin_index);
1905
1906   if (FLAG_trace_code_serializer) {
1907     PrintF("Encoding builtin: %s\n",
1908            isolate()->builtins()->name(builtin_index));
1909   }
1910
1911   sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin");
1912   sink_->PutInt(builtin_index, "builtin_index");
1913 }
1914
1915
1916 void CodeSerializer::SerializeCodeStub(Code* code, HowToCode how_to_code,
1917                                        WhereToPoint where_to_point, int skip) {
1918   DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
1919          (how_to_code == kPlain && where_to_point == kInnerPointer) ||
1920          (how_to_code == kFromCode && where_to_point == kInnerPointer));
1921   uint32_t stub_key = code->stub_key();
1922
1923   if (stub_key == CodeStub::NoCacheKey()) {
1924     if (FLAG_trace_code_serializer) {
1925       PrintF("Encoding uncacheable code stub as heap object\n");
1926     }
1927     SerializeHeapObject(code, how_to_code, where_to_point, skip);
1928     return;
1929   }
1930
1931   if (skip != 0) {
1932     sink_->Put(kSkip, "SkipFromSerializeCodeStub");
1933     sink_->PutInt(skip, "SkipDistanceFromSerializeCodeStub");
1934   }
1935
1936   int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex;
1937
1938   if (FLAG_trace_code_serializer) {
1939     PrintF("Encoding code stub %s as %d\n",
1940            CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key), false),
1941            index);
1942   }
1943
1944   sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub");
1945   sink_->PutInt(index, "CodeStub key");
1946 }
1947
1948
1949 int CodeSerializer::AddCodeStubKey(uint32_t stub_key) {
1950   // TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2).
1951   int index = 0;
1952   while (index < stub_keys_.length()) {
1953     if (stub_keys_[index] == stub_key) return index;
1954     index++;
1955   }
1956   stub_keys_.Add(stub_key);
1957   return index;
1958 }
1959
1960
1961 void CodeSerializer::SerializeSourceObject(HowToCode how_to_code,
1962                                            WhereToPoint where_to_point,
1963                                            int skip) {
1964   if (skip != 0) {
1965     sink_->Put(kSkip, "SkipFromSerializeSourceObject");
1966     sink_->PutInt(skip, "SkipDistanceFromSerializeSourceObject");
1967   }
1968
1969   if (FLAG_trace_code_serializer) {
1970     PrintF("Encoding source object\n");
1971   }
1972
1973   DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
1974   sink_->Put(kAttachedReference + how_to_code + where_to_point, "Source");
1975   sink_->PutInt(kSourceObjectIndex, "kSourceObjectIndex");
1976 }
1977
1978
1979 Handle<SharedFunctionInfo> CodeSerializer::Deserialize(Isolate* isolate,
1980                                                        ScriptData* data,
1981                                                        Handle<String> source) {
1982   base::ElapsedTimer timer;
1983   if (FLAG_profile_deserialization) timer.Start();
1984
1985   Object* root;
1986
1987   {
1988     HandleScope scope(isolate);
1989
1990     SerializedCodeData scd(data, *source);
1991     SnapshotByteSource payload(scd.Payload(), scd.PayloadLength());
1992     Deserializer deserializer(&payload);
1993     STATIC_ASSERT(NEW_SPACE == 0);
1994     for (int i = NEW_SPACE; i <= PROPERTY_CELL_SPACE; i++) {
1995       deserializer.set_reservation(i, scd.GetReservation(i));
1996     }
1997
1998     // Prepare and register list of attached objects.
1999     Vector<const uint32_t> code_stub_keys = scd.CodeStubKeys();
2000     Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(
2001         code_stub_keys.length() + kCodeStubsBaseIndex);
2002     attached_objects[kSourceObjectIndex] = source;
2003     for (int i = 0; i < code_stub_keys.length(); i++) {
2004       attached_objects[i + kCodeStubsBaseIndex] =
2005           CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked();
2006     }
2007     deserializer.SetAttachedObjects(&attached_objects);
2008
2009     // Deserialize.
2010     deserializer.DeserializePartial(isolate, &root);
2011     deserializer.FlushICacheForNewCodeObjects();
2012   }
2013
2014   if (FLAG_profile_deserialization) {
2015     double ms = timer.Elapsed().InMillisecondsF();
2016     int length = data->length();
2017     PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms);
2018   }
2019   return Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root), isolate);
2020 }
2021
2022
2023 SerializedCodeData::SerializedCodeData(List<byte>* payload, CodeSerializer* cs)
2024     : owns_script_data_(true) {
2025   DisallowHeapAllocation no_gc;
2026   List<uint32_t>* stub_keys = cs->stub_keys();
2027
2028   // Calculate sizes.
2029   int num_stub_keys = stub_keys->length();
2030   int stub_keys_size = stub_keys->length() * kInt32Size;
2031   int data_length = kHeaderSize + stub_keys_size + payload->length();
2032
2033   // Allocate backing store and create result data.
2034   byte* data = NewArray<byte>(data_length);
2035   DCHECK(IsAligned(reinterpret_cast<intptr_t>(data), kPointerAlignment));
2036   script_data_ = new ScriptData(data, data_length);
2037   script_data_->AcquireDataOwnership();
2038
2039   // Set header values.
2040   SetHeaderValue(kCheckSumOffset, CheckSum(cs->source()));
2041   SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys);
2042   SetHeaderValue(kPayloadLengthOffset, payload->length());
2043   STATIC_ASSERT(NEW_SPACE == 0);
2044   for (int i = NEW_SPACE; i <= PROPERTY_CELL_SPACE; i++) {
2045     SetHeaderValue(kReservationsOffset + i, cs->CurrentAllocationAddress(i));
2046   }
2047
2048   // Copy code stub keys.
2049   CopyBytes(data + kHeaderSize, reinterpret_cast<byte*>(stub_keys->begin()),
2050             stub_keys_size);
2051
2052   // Copy serialized data.
2053   CopyBytes(data + kHeaderSize + stub_keys_size, payload->begin(),
2054             static_cast<size_t>(payload->length()));
2055 }
2056
2057
2058 bool SerializedCodeData::IsSane(String* source) {
2059   return GetHeaderValue(kCheckSumOffset) == CheckSum(source) &&
2060          PayloadLength() >= SharedFunctionInfo::kSize;
2061 }
2062
2063
2064 int SerializedCodeData::CheckSum(String* string) {
2065   int checksum = Version::Hash();
2066 #ifdef DEBUG
2067   uint32_t seed = static_cast<uint32_t>(checksum);
2068   checksum = static_cast<int>(IteratingStringHasher::Hash(string, seed));
2069 #endif  // DEBUG
2070   return checksum;
2071 }
2072 } }  // namespace v8::internal