5209de4684be1bb697cdd989b2acf68035dfcf31
[platform/framework/web/crosswalk.git] / src / v8 / src / runtime.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <stdlib.h>
6 #include <limits>
7
8 #include "src/v8.h"
9
10 #include "src/accessors.h"
11 #include "src/allocation-site-scopes.h"
12 #include "src/api.h"
13 #include "src/arguments.h"
14 #include "src/bailout-reason.h"
15 #include "src/base/cpu.h"
16 #include "src/base/platform/platform.h"
17 #include "src/bootstrapper.h"
18 #include "src/codegen.h"
19 #include "src/compilation-cache.h"
20 #include "src/compiler.h"
21 #include "src/conversions.h"
22 #include "src/cpu-profiler.h"
23 #include "src/date.h"
24 #include "src/dateparser-inl.h"
25 #include "src/debug.h"
26 #include "src/deoptimizer.h"
27 #include "src/execution.h"
28 #include "src/full-codegen.h"
29 #include "src/global-handles.h"
30 #include "src/isolate-inl.h"
31 #include "src/json-parser.h"
32 #include "src/json-stringifier.h"
33 #include "src/jsregexp-inl.h"
34 #include "src/jsregexp.h"
35 #include "src/liveedit.h"
36 #include "src/misc-intrinsics.h"
37 #include "src/parser.h"
38 #include "src/prototype.h"
39 #include "src/runtime.h"
40 #include "src/runtime-profiler.h"
41 #include "src/scopeinfo.h"
42 #include "src/smart-pointers.h"
43 #include "src/string-search.h"
44 #include "src/uri.h"
45 #include "src/utils.h"
46 #include "src/v8threads.h"
47 #include "src/vm-state-inl.h"
48 #include "third_party/fdlibm/fdlibm.h"
49
50 #ifdef V8_I18N_SUPPORT
51 #include "src/i18n.h"
52 #include "unicode/brkiter.h"
53 #include "unicode/calendar.h"
54 #include "unicode/coll.h"
55 #include "unicode/curramt.h"
56 #include "unicode/datefmt.h"
57 #include "unicode/dcfmtsym.h"
58 #include "unicode/decimfmt.h"
59 #include "unicode/dtfmtsym.h"
60 #include "unicode/dtptngen.h"
61 #include "unicode/locid.h"
62 #include "unicode/numfmt.h"
63 #include "unicode/numsys.h"
64 #include "unicode/rbbi.h"
65 #include "unicode/smpdtfmt.h"
66 #include "unicode/timezone.h"
67 #include "unicode/uchar.h"
68 #include "unicode/ucol.h"
69 #include "unicode/ucurr.h"
70 #include "unicode/uloc.h"
71 #include "unicode/unum.h"
72 #include "unicode/uversion.h"
73 #endif
74
75 #ifndef _STLP_VENDOR_CSTD
76 // STLPort doesn't import fpclassify and isless into the std namespace.
77 using std::fpclassify;
78 using std::isless;
79 #endif
80
81 namespace v8 {
82 namespace internal {
83
84
85 #define RUNTIME_ASSERT(value) \
86   if (!(value)) return isolate->ThrowIllegalOperation();
87
88 #define RUNTIME_ASSERT_HANDLIFIED(value, T)                          \
89   if (!(value)) {                                                    \
90     isolate->ThrowIllegalOperation();                                \
91     return MaybeHandle<T>();                                         \
92   }
93
94 // Cast the given object to a value of the specified type and store
95 // it in a variable with the given name.  If the object is not of the
96 // expected type call IllegalOperation and return.
97 #define CONVERT_ARG_CHECKED(Type, name, index)                       \
98   RUNTIME_ASSERT(args[index]->Is##Type());                           \
99   Type* name = Type::cast(args[index]);
100
101 #define CONVERT_ARG_HANDLE_CHECKED(Type, name, index)                \
102   RUNTIME_ASSERT(args[index]->Is##Type());                           \
103   Handle<Type> name = args.at<Type>(index);
104
105 #define CONVERT_NUMBER_ARG_HANDLE_CHECKED(name, index)               \
106   RUNTIME_ASSERT(args[index]->IsNumber());                           \
107   Handle<Object> name = args.at<Object>(index);
108
109 // Cast the given object to a boolean and store it in a variable with
110 // the given name.  If the object is not a boolean call IllegalOperation
111 // and return.
112 #define CONVERT_BOOLEAN_ARG_CHECKED(name, index)                     \
113   RUNTIME_ASSERT(args[index]->IsBoolean());                          \
114   bool name = args[index]->IsTrue();
115
116 // Cast the given argument to a Smi and store its value in an int variable
117 // with the given name.  If the argument is not a Smi call IllegalOperation
118 // and return.
119 #define CONVERT_SMI_ARG_CHECKED(name, index)                         \
120   RUNTIME_ASSERT(args[index]->IsSmi());                              \
121   int name = args.smi_at(index);
122
123 // Cast the given argument to a double and store it in a variable with
124 // the given name.  If the argument is not a number (as opposed to
125 // the number not-a-number) call IllegalOperation and return.
126 #define CONVERT_DOUBLE_ARG_CHECKED(name, index)                      \
127   RUNTIME_ASSERT(args[index]->IsNumber());                           \
128   double name = args.number_at(index);
129
130 // Call the specified converter on the object *comand store the result in
131 // a variable of the specified type with the given name.  If the
132 // object is not a Number call IllegalOperation and return.
133 #define CONVERT_NUMBER_CHECKED(type, name, Type, obj)                \
134   RUNTIME_ASSERT(obj->IsNumber());                                   \
135   type name = NumberTo##Type(obj);
136
137
138 // Cast the given argument to PropertyDetails and store its value in a
139 // variable with the given name.  If the argument is not a Smi call
140 // IllegalOperation and return.
141 #define CONVERT_PROPERTY_DETAILS_CHECKED(name, index)                \
142   RUNTIME_ASSERT(args[index]->IsSmi());                              \
143   PropertyDetails name = PropertyDetails(Smi::cast(args[index]));
144
145
146 // Assert that the given argument has a valid value for a StrictMode
147 // and store it in a StrictMode variable with the given name.
148 #define CONVERT_STRICT_MODE_ARG_CHECKED(name, index)                 \
149   RUNTIME_ASSERT(args[index]->IsSmi());                              \
150   RUNTIME_ASSERT(args.smi_at(index) == STRICT ||                     \
151                  args.smi_at(index) == SLOPPY);                      \
152   StrictMode name = static_cast<StrictMode>(args.smi_at(index));
153
154
155 // Assert that the given argument is a number within the Int32 range
156 // and convert it to int32_t.  If the argument is not an Int32 call
157 // IllegalOperation and return.
158 #define CONVERT_INT32_ARG_CHECKED(name, index)                       \
159   RUNTIME_ASSERT(args[index]->IsNumber());                           \
160   int32_t name = 0;                                                  \
161   RUNTIME_ASSERT(args[index]->ToInt32(&name));
162
163
164 static Handle<Map> ComputeObjectLiteralMap(
165     Handle<Context> context,
166     Handle<FixedArray> constant_properties,
167     bool* is_result_from_cache) {
168   Isolate* isolate = context->GetIsolate();
169   int properties_length = constant_properties->length();
170   int number_of_properties = properties_length / 2;
171   // Check that there are only internal strings and array indices among keys.
172   int number_of_string_keys = 0;
173   for (int p = 0; p != properties_length; p += 2) {
174     Object* key = constant_properties->get(p);
175     uint32_t element_index = 0;
176     if (key->IsInternalizedString()) {
177       number_of_string_keys++;
178     } else if (key->ToArrayIndex(&element_index)) {
179       // An index key does not require space in the property backing store.
180       number_of_properties--;
181     } else {
182       // Bail out as a non-internalized-string non-index key makes caching
183       // impossible.
184       // DCHECK to make sure that the if condition after the loop is false.
185       DCHECK(number_of_string_keys != number_of_properties);
186       break;
187     }
188   }
189   // If we only have internalized strings and array indices among keys then we
190   // can use the map cache in the native context.
191   const int kMaxKeys = 10;
192   if ((number_of_string_keys == number_of_properties) &&
193       (number_of_string_keys < kMaxKeys)) {
194     // Create the fixed array with the key.
195     Handle<FixedArray> keys =
196         isolate->factory()->NewFixedArray(number_of_string_keys);
197     if (number_of_string_keys > 0) {
198       int index = 0;
199       for (int p = 0; p < properties_length; p += 2) {
200         Object* key = constant_properties->get(p);
201         if (key->IsInternalizedString()) {
202           keys->set(index++, key);
203         }
204       }
205       DCHECK(index == number_of_string_keys);
206     }
207     *is_result_from_cache = true;
208     return isolate->factory()->ObjectLiteralMapFromCache(context, keys);
209   }
210   *is_result_from_cache = false;
211   return Map::Create(isolate, number_of_properties);
212 }
213
214
215 MUST_USE_RESULT static MaybeHandle<Object> CreateLiteralBoilerplate(
216     Isolate* isolate,
217     Handle<FixedArray> literals,
218     Handle<FixedArray> constant_properties);
219
220
221 MUST_USE_RESULT static MaybeHandle<Object> CreateObjectLiteralBoilerplate(
222     Isolate* isolate,
223     Handle<FixedArray> literals,
224     Handle<FixedArray> constant_properties,
225     bool should_have_fast_elements,
226     bool has_function_literal) {
227   // Get the native context from the literals array.  This is the
228   // context in which the function was created and we use the object
229   // function from this context to create the object literal.  We do
230   // not use the object function from the current native context
231   // because this might be the object function from another context
232   // which we should not have access to.
233   Handle<Context> context =
234       Handle<Context>(JSFunction::NativeContextFromLiterals(*literals));
235
236   // In case we have function literals, we want the object to be in
237   // slow properties mode for now. We don't go in the map cache because
238   // maps with constant functions can't be shared if the functions are
239   // not the same (which is the common case).
240   bool is_result_from_cache = false;
241   Handle<Map> map = has_function_literal
242       ? Handle<Map>(context->object_function()->initial_map())
243       : ComputeObjectLiteralMap(context,
244                                 constant_properties,
245                                 &is_result_from_cache);
246
247   PretenureFlag pretenure_flag =
248       isolate->heap()->InNewSpace(*literals) ? NOT_TENURED : TENURED;
249
250   Handle<JSObject> boilerplate =
251       isolate->factory()->NewJSObjectFromMap(map, pretenure_flag);
252
253   // Normalize the elements of the boilerplate to save space if needed.
254   if (!should_have_fast_elements) JSObject::NormalizeElements(boilerplate);
255
256   // Add the constant properties to the boilerplate.
257   int length = constant_properties->length();
258   bool should_transform =
259       !is_result_from_cache && boilerplate->HasFastProperties();
260   bool should_normalize = should_transform || has_function_literal;
261   if (should_normalize) {
262     // TODO(verwaest): We might not want to ever normalize here.
263     JSObject::NormalizeProperties(
264         boilerplate, KEEP_INOBJECT_PROPERTIES, length / 2);
265   }
266   // TODO(verwaest): Support tracking representations in the boilerplate.
267   for (int index = 0; index < length; index +=2) {
268     Handle<Object> key(constant_properties->get(index+0), isolate);
269     Handle<Object> value(constant_properties->get(index+1), isolate);
270     if (value->IsFixedArray()) {
271       // The value contains the constant_properties of a
272       // simple object or array literal.
273       Handle<FixedArray> array = Handle<FixedArray>::cast(value);
274       ASSIGN_RETURN_ON_EXCEPTION(
275           isolate, value,
276           CreateLiteralBoilerplate(isolate, literals, array),
277           Object);
278     }
279     MaybeHandle<Object> maybe_result;
280     uint32_t element_index = 0;
281     if (key->IsInternalizedString()) {
282       if (Handle<String>::cast(key)->AsArrayIndex(&element_index)) {
283         // Array index as string (uint32).
284         if (value->IsUninitialized()) value = handle(Smi::FromInt(0), isolate);
285         maybe_result =
286             JSObject::SetOwnElement(boilerplate, element_index, value, SLOPPY);
287       } else {
288         Handle<String> name(String::cast(*key));
289         DCHECK(!name->AsArrayIndex(&element_index));
290         maybe_result = JSObject::SetOwnPropertyIgnoreAttributes(
291             boilerplate, name, value, NONE);
292       }
293     } else if (key->ToArrayIndex(&element_index)) {
294       // Array index (uint32).
295       if (value->IsUninitialized()) value = handle(Smi::FromInt(0), isolate);
296       maybe_result =
297           JSObject::SetOwnElement(boilerplate, element_index, value, SLOPPY);
298     } else {
299       // Non-uint32 number.
300       DCHECK(key->IsNumber());
301       double num = key->Number();
302       char arr[100];
303       Vector<char> buffer(arr, arraysize(arr));
304       const char* str = DoubleToCString(num, buffer);
305       Handle<String> name = isolate->factory()->NewStringFromAsciiChecked(str);
306       maybe_result = JSObject::SetOwnPropertyIgnoreAttributes(boilerplate, name,
307                                                               value, NONE);
308     }
309     // If setting the property on the boilerplate throws an
310     // exception, the exception is converted to an empty handle in
311     // the handle based operations.  In that case, we need to
312     // convert back to an exception.
313     RETURN_ON_EXCEPTION(isolate, maybe_result, Object);
314   }
315
316   // Transform to fast properties if necessary. For object literals with
317   // containing function literals we defer this operation until after all
318   // computed properties have been assigned so that we can generate
319   // constant function properties.
320   if (should_transform && !has_function_literal) {
321     JSObject::MigrateSlowToFast(
322         boilerplate, boilerplate->map()->unused_property_fields());
323   }
324
325   return boilerplate;
326 }
327
328
329 MUST_USE_RESULT static MaybeHandle<Object> TransitionElements(
330     Handle<Object> object,
331     ElementsKind to_kind,
332     Isolate* isolate) {
333   HandleScope scope(isolate);
334   if (!object->IsJSObject()) {
335     isolate->ThrowIllegalOperation();
336     return MaybeHandle<Object>();
337   }
338   ElementsKind from_kind =
339       Handle<JSObject>::cast(object)->map()->elements_kind();
340   if (Map::IsValidElementsTransition(from_kind, to_kind)) {
341     JSObject::TransitionElementsKind(Handle<JSObject>::cast(object), to_kind);
342     return object;
343   }
344   isolate->ThrowIllegalOperation();
345   return MaybeHandle<Object>();
346 }
347
348
349 MaybeHandle<Object> Runtime::CreateArrayLiteralBoilerplate(
350     Isolate* isolate,
351     Handle<FixedArray> literals,
352     Handle<FixedArray> elements) {
353   // Create the JSArray.
354   Handle<JSFunction> constructor(
355       JSFunction::NativeContextFromLiterals(*literals)->array_function());
356
357   PretenureFlag pretenure_flag =
358       isolate->heap()->InNewSpace(*literals) ? NOT_TENURED : TENURED;
359
360   Handle<JSArray> object = Handle<JSArray>::cast(
361       isolate->factory()->NewJSObject(constructor, pretenure_flag));
362
363   ElementsKind constant_elements_kind =
364       static_cast<ElementsKind>(Smi::cast(elements->get(0))->value());
365   Handle<FixedArrayBase> constant_elements_values(
366       FixedArrayBase::cast(elements->get(1)));
367
368   { DisallowHeapAllocation no_gc;
369     DCHECK(IsFastElementsKind(constant_elements_kind));
370     Context* native_context = isolate->context()->native_context();
371     Object* maps_array = native_context->js_array_maps();
372     DCHECK(!maps_array->IsUndefined());
373     Object* map = FixedArray::cast(maps_array)->get(constant_elements_kind);
374     object->set_map(Map::cast(map));
375   }
376
377   Handle<FixedArrayBase> copied_elements_values;
378   if (IsFastDoubleElementsKind(constant_elements_kind)) {
379     copied_elements_values = isolate->factory()->CopyFixedDoubleArray(
380         Handle<FixedDoubleArray>::cast(constant_elements_values));
381   } else {
382     DCHECK(IsFastSmiOrObjectElementsKind(constant_elements_kind));
383     const bool is_cow =
384         (constant_elements_values->map() ==
385          isolate->heap()->fixed_cow_array_map());
386     if (is_cow) {
387       copied_elements_values = constant_elements_values;
388 #if DEBUG
389       Handle<FixedArray> fixed_array_values =
390           Handle<FixedArray>::cast(copied_elements_values);
391       for (int i = 0; i < fixed_array_values->length(); i++) {
392         DCHECK(!fixed_array_values->get(i)->IsFixedArray());
393       }
394 #endif
395     } else {
396       Handle<FixedArray> fixed_array_values =
397           Handle<FixedArray>::cast(constant_elements_values);
398       Handle<FixedArray> fixed_array_values_copy =
399           isolate->factory()->CopyFixedArray(fixed_array_values);
400       copied_elements_values = fixed_array_values_copy;
401       for (int i = 0; i < fixed_array_values->length(); i++) {
402         if (fixed_array_values->get(i)->IsFixedArray()) {
403           // The value contains the constant_properties of a
404           // simple object or array literal.
405           Handle<FixedArray> fa(FixedArray::cast(fixed_array_values->get(i)));
406           Handle<Object> result;
407           ASSIGN_RETURN_ON_EXCEPTION(
408               isolate, result,
409               CreateLiteralBoilerplate(isolate, literals, fa),
410               Object);
411           fixed_array_values_copy->set(i, *result);
412         }
413       }
414     }
415   }
416   object->set_elements(*copied_elements_values);
417   object->set_length(Smi::FromInt(copied_elements_values->length()));
418
419   JSObject::ValidateElements(object);
420   return object;
421 }
422
423
424 MUST_USE_RESULT static MaybeHandle<Object> CreateLiteralBoilerplate(
425     Isolate* isolate,
426     Handle<FixedArray> literals,
427     Handle<FixedArray> array) {
428   Handle<FixedArray> elements = CompileTimeValue::GetElements(array);
429   const bool kHasNoFunctionLiteral = false;
430   switch (CompileTimeValue::GetLiteralType(array)) {
431     case CompileTimeValue::OBJECT_LITERAL_FAST_ELEMENTS:
432       return CreateObjectLiteralBoilerplate(isolate,
433                                             literals,
434                                             elements,
435                                             true,
436                                             kHasNoFunctionLiteral);
437     case CompileTimeValue::OBJECT_LITERAL_SLOW_ELEMENTS:
438       return CreateObjectLiteralBoilerplate(isolate,
439                                             literals,
440                                             elements,
441                                             false,
442                                             kHasNoFunctionLiteral);
443     case CompileTimeValue::ARRAY_LITERAL:
444       return Runtime::CreateArrayLiteralBoilerplate(
445           isolate, literals, elements);
446     default:
447       UNREACHABLE();
448       return MaybeHandle<Object>();
449   }
450 }
451
452
453 RUNTIME_FUNCTION(Runtime_CreateObjectLiteral) {
454   HandleScope scope(isolate);
455   DCHECK(args.length() == 4);
456   CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
457   CONVERT_SMI_ARG_CHECKED(literals_index, 1);
458   CONVERT_ARG_HANDLE_CHECKED(FixedArray, constant_properties, 2);
459   CONVERT_SMI_ARG_CHECKED(flags, 3);
460   bool should_have_fast_elements = (flags & ObjectLiteral::kFastElements) != 0;
461   bool has_function_literal = (flags & ObjectLiteral::kHasFunction) != 0;
462
463   RUNTIME_ASSERT(literals_index >= 0 && literals_index < literals->length());
464
465   // Check if boilerplate exists. If not, create it first.
466   Handle<Object> literal_site(literals->get(literals_index), isolate);
467   Handle<AllocationSite> site;
468   Handle<JSObject> boilerplate;
469   if (*literal_site == isolate->heap()->undefined_value()) {
470     Handle<Object> raw_boilerplate;
471     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
472         isolate, raw_boilerplate,
473         CreateObjectLiteralBoilerplate(
474             isolate,
475             literals,
476             constant_properties,
477             should_have_fast_elements,
478             has_function_literal));
479     boilerplate = Handle<JSObject>::cast(raw_boilerplate);
480
481     AllocationSiteCreationContext creation_context(isolate);
482     site = creation_context.EnterNewScope();
483     RETURN_FAILURE_ON_EXCEPTION(
484         isolate,
485         JSObject::DeepWalk(boilerplate, &creation_context));
486     creation_context.ExitScope(site, boilerplate);
487
488     // Update the functions literal and return the boilerplate.
489     literals->set(literals_index, *site);
490   } else {
491     site = Handle<AllocationSite>::cast(literal_site);
492     boilerplate = Handle<JSObject>(JSObject::cast(site->transition_info()),
493                                    isolate);
494   }
495
496   AllocationSiteUsageContext usage_context(isolate, site, true);
497   usage_context.EnterNewScope();
498   MaybeHandle<Object> maybe_copy = JSObject::DeepCopy(
499       boilerplate, &usage_context);
500   usage_context.ExitScope(site, boilerplate);
501   Handle<Object> copy;
502   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, copy, maybe_copy);
503   return *copy;
504 }
505
506
507 MUST_USE_RESULT static MaybeHandle<AllocationSite> GetLiteralAllocationSite(
508     Isolate* isolate,
509     Handle<FixedArray> literals,
510     int literals_index,
511     Handle<FixedArray> elements) {
512   // Check if boilerplate exists. If not, create it first.
513   Handle<Object> literal_site(literals->get(literals_index), isolate);
514   Handle<AllocationSite> site;
515   if (*literal_site == isolate->heap()->undefined_value()) {
516     DCHECK(*elements != isolate->heap()->empty_fixed_array());
517     Handle<Object> boilerplate;
518     ASSIGN_RETURN_ON_EXCEPTION(
519         isolate, boilerplate,
520         Runtime::CreateArrayLiteralBoilerplate(isolate, literals, elements),
521         AllocationSite);
522
523     AllocationSiteCreationContext creation_context(isolate);
524     site = creation_context.EnterNewScope();
525     if (JSObject::DeepWalk(Handle<JSObject>::cast(boilerplate),
526                            &creation_context).is_null()) {
527       return Handle<AllocationSite>::null();
528     }
529     creation_context.ExitScope(site, Handle<JSObject>::cast(boilerplate));
530
531     literals->set(literals_index, *site);
532   } else {
533     site = Handle<AllocationSite>::cast(literal_site);
534   }
535
536   return site;
537 }
538
539
540 static MaybeHandle<JSObject> CreateArrayLiteralImpl(Isolate* isolate,
541                                            Handle<FixedArray> literals,
542                                            int literals_index,
543                                            Handle<FixedArray> elements,
544                                            int flags) {
545   RUNTIME_ASSERT_HANDLIFIED(literals_index >= 0 &&
546                             literals_index < literals->length(), JSObject);
547   Handle<AllocationSite> site;
548   ASSIGN_RETURN_ON_EXCEPTION(
549       isolate, site,
550       GetLiteralAllocationSite(isolate, literals, literals_index, elements),
551       JSObject);
552
553   bool enable_mementos = (flags & ArrayLiteral::kDisableMementos) == 0;
554   Handle<JSObject> boilerplate(JSObject::cast(site->transition_info()));
555   AllocationSiteUsageContext usage_context(isolate, site, enable_mementos);
556   usage_context.EnterNewScope();
557   JSObject::DeepCopyHints hints = (flags & ArrayLiteral::kShallowElements) == 0
558                                       ? JSObject::kNoHints
559                                       : JSObject::kObjectIsShallow;
560   MaybeHandle<JSObject> copy = JSObject::DeepCopy(boilerplate, &usage_context,
561                                                   hints);
562   usage_context.ExitScope(site, boilerplate);
563   return copy;
564 }
565
566
567 RUNTIME_FUNCTION(Runtime_CreateArrayLiteral) {
568   HandleScope scope(isolate);
569   DCHECK(args.length() == 4);
570   CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
571   CONVERT_SMI_ARG_CHECKED(literals_index, 1);
572   CONVERT_ARG_HANDLE_CHECKED(FixedArray, elements, 2);
573   CONVERT_SMI_ARG_CHECKED(flags, 3);
574
575   Handle<JSObject> result;
576   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
577       CreateArrayLiteralImpl(isolate, literals, literals_index, elements,
578                              flags));
579   return *result;
580 }
581
582
583 RUNTIME_FUNCTION(Runtime_CreateArrayLiteralStubBailout) {
584   HandleScope scope(isolate);
585   DCHECK(args.length() == 3);
586   CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
587   CONVERT_SMI_ARG_CHECKED(literals_index, 1);
588   CONVERT_ARG_HANDLE_CHECKED(FixedArray, elements, 2);
589
590   Handle<JSObject> result;
591   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
592      CreateArrayLiteralImpl(isolate, literals, literals_index, elements,
593                             ArrayLiteral::kShallowElements));
594   return *result;
595 }
596
597
598 RUNTIME_FUNCTION(Runtime_CreateSymbol) {
599   HandleScope scope(isolate);
600   DCHECK(args.length() == 1);
601   CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
602   RUNTIME_ASSERT(name->IsString() || name->IsUndefined());
603   Handle<Symbol> symbol = isolate->factory()->NewSymbol();
604   if (name->IsString()) symbol->set_name(*name);
605   return *symbol;
606 }
607
608
609 RUNTIME_FUNCTION(Runtime_CreatePrivateSymbol) {
610   HandleScope scope(isolate);
611   DCHECK(args.length() == 1);
612   CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
613   RUNTIME_ASSERT(name->IsString() || name->IsUndefined());
614   Handle<Symbol> symbol = isolate->factory()->NewPrivateSymbol();
615   if (name->IsString()) symbol->set_name(*name);
616   return *symbol;
617 }
618
619
620 RUNTIME_FUNCTION(Runtime_CreatePrivateOwnSymbol) {
621   HandleScope scope(isolate);
622   DCHECK(args.length() == 1);
623   CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
624   RUNTIME_ASSERT(name->IsString() || name->IsUndefined());
625   Handle<Symbol> symbol = isolate->factory()->NewPrivateOwnSymbol();
626   if (name->IsString()) symbol->set_name(*name);
627   return *symbol;
628 }
629
630
631 RUNTIME_FUNCTION(Runtime_CreateGlobalPrivateOwnSymbol) {
632   HandleScope scope(isolate);
633   DCHECK(args.length() == 1);
634   CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
635   Handle<JSObject> registry = isolate->GetSymbolRegistry();
636   Handle<String> part = isolate->factory()->private_intern_string();
637   Handle<Object> privates;
638   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
639       isolate, privates, Object::GetPropertyOrElement(registry, part));
640   Handle<Object> symbol;
641   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
642       isolate, symbol, Object::GetPropertyOrElement(privates, name));
643   if (!symbol->IsSymbol()) {
644     DCHECK(symbol->IsUndefined());
645     symbol = isolate->factory()->NewPrivateSymbol();
646     Handle<Symbol>::cast(symbol)->set_name(*name);
647     Handle<Symbol>::cast(symbol)->set_is_own(true);
648     JSObject::SetProperty(Handle<JSObject>::cast(privates), name, symbol,
649                           STRICT).Assert();
650   }
651   return *symbol;
652 }
653
654
655 RUNTIME_FUNCTION(Runtime_NewSymbolWrapper) {
656   HandleScope scope(isolate);
657   DCHECK(args.length() == 1);
658   CONVERT_ARG_HANDLE_CHECKED(Symbol, symbol, 0);
659   return *Object::ToObject(isolate, symbol).ToHandleChecked();
660 }
661
662
663 RUNTIME_FUNCTION(Runtime_SymbolDescription) {
664   SealHandleScope shs(isolate);
665   DCHECK(args.length() == 1);
666   CONVERT_ARG_CHECKED(Symbol, symbol, 0);
667   return symbol->name();
668 }
669
670
671 RUNTIME_FUNCTION(Runtime_SymbolRegistry) {
672   HandleScope scope(isolate);
673   DCHECK(args.length() == 0);
674   return *isolate->GetSymbolRegistry();
675 }
676
677
678 RUNTIME_FUNCTION(Runtime_SymbolIsPrivate) {
679   SealHandleScope shs(isolate);
680   DCHECK(args.length() == 1);
681   CONVERT_ARG_CHECKED(Symbol, symbol, 0);
682   return isolate->heap()->ToBoolean(symbol->is_private());
683 }
684
685
686 RUNTIME_FUNCTION(Runtime_CreateJSProxy) {
687   HandleScope scope(isolate);
688   DCHECK(args.length() == 2);
689   CONVERT_ARG_HANDLE_CHECKED(JSReceiver, handler, 0);
690   CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
691   if (!prototype->IsJSReceiver()) prototype = isolate->factory()->null_value();
692   return *isolate->factory()->NewJSProxy(handler, prototype);
693 }
694
695
696 RUNTIME_FUNCTION(Runtime_CreateJSFunctionProxy) {
697   HandleScope scope(isolate);
698   DCHECK(args.length() == 4);
699   CONVERT_ARG_HANDLE_CHECKED(JSReceiver, handler, 0);
700   CONVERT_ARG_HANDLE_CHECKED(Object, call_trap, 1);
701   RUNTIME_ASSERT(call_trap->IsJSFunction() || call_trap->IsJSFunctionProxy());
702   CONVERT_ARG_HANDLE_CHECKED(JSFunction, construct_trap, 2);
703   CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 3);
704   if (!prototype->IsJSReceiver()) prototype = isolate->factory()->null_value();
705   return *isolate->factory()->NewJSFunctionProxy(
706       handler, call_trap, construct_trap, prototype);
707 }
708
709
710 RUNTIME_FUNCTION(Runtime_IsJSProxy) {
711   SealHandleScope shs(isolate);
712   DCHECK(args.length() == 1);
713   CONVERT_ARG_HANDLE_CHECKED(Object, obj, 0);
714   return isolate->heap()->ToBoolean(obj->IsJSProxy());
715 }
716
717
718 RUNTIME_FUNCTION(Runtime_IsJSFunctionProxy) {
719   SealHandleScope shs(isolate);
720   DCHECK(args.length() == 1);
721   CONVERT_ARG_HANDLE_CHECKED(Object, obj, 0);
722   return isolate->heap()->ToBoolean(obj->IsJSFunctionProxy());
723 }
724
725
726 RUNTIME_FUNCTION(Runtime_GetHandler) {
727   SealHandleScope shs(isolate);
728   DCHECK(args.length() == 1);
729   CONVERT_ARG_CHECKED(JSProxy, proxy, 0);
730   return proxy->handler();
731 }
732
733
734 RUNTIME_FUNCTION(Runtime_GetCallTrap) {
735   SealHandleScope shs(isolate);
736   DCHECK(args.length() == 1);
737   CONVERT_ARG_CHECKED(JSFunctionProxy, proxy, 0);
738   return proxy->call_trap();
739 }
740
741
742 RUNTIME_FUNCTION(Runtime_GetConstructTrap) {
743   SealHandleScope shs(isolate);
744   DCHECK(args.length() == 1);
745   CONVERT_ARG_CHECKED(JSFunctionProxy, proxy, 0);
746   return proxy->construct_trap();
747 }
748
749
750 RUNTIME_FUNCTION(Runtime_Fix) {
751   HandleScope scope(isolate);
752   DCHECK(args.length() == 1);
753   CONVERT_ARG_HANDLE_CHECKED(JSProxy, proxy, 0);
754   JSProxy::Fix(proxy);
755   return isolate->heap()->undefined_value();
756 }
757
758
759 void Runtime::FreeArrayBuffer(Isolate* isolate,
760                               JSArrayBuffer* phantom_array_buffer) {
761   if (phantom_array_buffer->should_be_freed()) {
762     DCHECK(phantom_array_buffer->is_external());
763     free(phantom_array_buffer->backing_store());
764   }
765   if (phantom_array_buffer->is_external()) return;
766
767   size_t allocated_length = NumberToSize(
768       isolate, phantom_array_buffer->byte_length());
769
770   reinterpret_cast<v8::Isolate*>(isolate)
771       ->AdjustAmountOfExternalAllocatedMemory(
772           -static_cast<int64_t>(allocated_length));
773   CHECK(V8::ArrayBufferAllocator() != NULL);
774   V8::ArrayBufferAllocator()->Free(
775       phantom_array_buffer->backing_store(),
776       allocated_length);
777 }
778
779
780 void Runtime::SetupArrayBuffer(Isolate* isolate,
781                                Handle<JSArrayBuffer> array_buffer,
782                                bool is_external,
783                                void* data,
784                                size_t allocated_length) {
785   DCHECK(array_buffer->GetInternalFieldCount() ==
786       v8::ArrayBuffer::kInternalFieldCount);
787   for (int i = 0; i < v8::ArrayBuffer::kInternalFieldCount; i++) {
788     array_buffer->SetInternalField(i, Smi::FromInt(0));
789   }
790   array_buffer->set_backing_store(data);
791   array_buffer->set_flag(Smi::FromInt(0));
792   array_buffer->set_is_external(is_external);
793
794   Handle<Object> byte_length =
795       isolate->factory()->NewNumberFromSize(allocated_length);
796   CHECK(byte_length->IsSmi() || byte_length->IsHeapNumber());
797   array_buffer->set_byte_length(*byte_length);
798
799   array_buffer->set_weak_next(isolate->heap()->array_buffers_list());
800   isolate->heap()->set_array_buffers_list(*array_buffer);
801   array_buffer->set_weak_first_view(isolate->heap()->undefined_value());
802 }
803
804
805 bool Runtime::SetupArrayBufferAllocatingData(
806     Isolate* isolate,
807     Handle<JSArrayBuffer> array_buffer,
808     size_t allocated_length,
809     bool initialize) {
810   void* data;
811   CHECK(V8::ArrayBufferAllocator() != NULL);
812   if (allocated_length != 0) {
813     if (initialize) {
814       data = V8::ArrayBufferAllocator()->Allocate(allocated_length);
815     } else {
816       data =
817           V8::ArrayBufferAllocator()->AllocateUninitialized(allocated_length);
818     }
819     if (data == NULL) return false;
820   } else {
821     data = NULL;
822   }
823
824   SetupArrayBuffer(isolate, array_buffer, false, data, allocated_length);
825
826   reinterpret_cast<v8::Isolate*>(isolate)
827       ->AdjustAmountOfExternalAllocatedMemory(allocated_length);
828
829   return true;
830 }
831
832
833 void Runtime::NeuterArrayBuffer(Handle<JSArrayBuffer> array_buffer) {
834   Isolate* isolate = array_buffer->GetIsolate();
835   for (Handle<Object> view_obj(array_buffer->weak_first_view(), isolate);
836        !view_obj->IsUndefined();) {
837     Handle<JSArrayBufferView> view(JSArrayBufferView::cast(*view_obj));
838     if (view->IsJSTypedArray()) {
839       JSTypedArray::cast(*view)->Neuter();
840     } else if (view->IsJSDataView()) {
841       JSDataView::cast(*view)->Neuter();
842     } else {
843       UNREACHABLE();
844     }
845     view_obj = handle(view->weak_next(), isolate);
846   }
847   array_buffer->Neuter();
848 }
849
850
851 RUNTIME_FUNCTION(Runtime_ArrayBufferInitialize) {
852   HandleScope scope(isolate);
853   DCHECK(args.length() == 2);
854   CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, holder, 0);
855   CONVERT_NUMBER_ARG_HANDLE_CHECKED(byteLength, 1);
856   if (!holder->byte_length()->IsUndefined()) {
857     // ArrayBuffer is already initialized; probably a fuzz test.
858     return *holder;
859   }
860   size_t allocated_length = 0;
861   if (!TryNumberToSize(isolate, *byteLength, &allocated_length)) {
862     THROW_NEW_ERROR_RETURN_FAILURE(
863         isolate, NewRangeError("invalid_array_buffer_length",
864                                HandleVector<Object>(NULL, 0)));
865   }
866   if (!Runtime::SetupArrayBufferAllocatingData(isolate,
867                                                holder, allocated_length)) {
868     THROW_NEW_ERROR_RETURN_FAILURE(
869         isolate, NewRangeError("invalid_array_buffer_length",
870                                HandleVector<Object>(NULL, 0)));
871   }
872   return *holder;
873 }
874
875
876 RUNTIME_FUNCTION(Runtime_ArrayBufferGetByteLength) {
877   SealHandleScope shs(isolate);
878   DCHECK(args.length() == 1);
879   CONVERT_ARG_CHECKED(JSArrayBuffer, holder, 0);
880   return holder->byte_length();
881 }
882
883
884 RUNTIME_FUNCTION(Runtime_ArrayBufferSliceImpl) {
885   HandleScope scope(isolate);
886   DCHECK(args.length() == 3);
887   CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, source, 0);
888   CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, target, 1);
889   CONVERT_NUMBER_ARG_HANDLE_CHECKED(first, 2);
890   RUNTIME_ASSERT(!source.is_identical_to(target));
891   size_t start = 0;
892   RUNTIME_ASSERT(TryNumberToSize(isolate, *first, &start));
893   size_t target_length = NumberToSize(isolate, target->byte_length());
894
895   if (target_length == 0) return isolate->heap()->undefined_value();
896
897   size_t source_byte_length = NumberToSize(isolate, source->byte_length());
898   RUNTIME_ASSERT(start <= source_byte_length);
899   RUNTIME_ASSERT(source_byte_length - start >= target_length);
900   uint8_t* source_data = reinterpret_cast<uint8_t*>(source->backing_store());
901   uint8_t* target_data = reinterpret_cast<uint8_t*>(target->backing_store());
902   CopyBytes(target_data, source_data + start, target_length);
903   return isolate->heap()->undefined_value();
904 }
905
906
907 RUNTIME_FUNCTION(Runtime_ArrayBufferIsView) {
908   HandleScope scope(isolate);
909   DCHECK(args.length() == 1);
910   CONVERT_ARG_CHECKED(Object, object, 0);
911   return isolate->heap()->ToBoolean(object->IsJSArrayBufferView());
912 }
913
914
915 RUNTIME_FUNCTION(Runtime_ArrayBufferNeuter) {
916   HandleScope scope(isolate);
917   DCHECK(args.length() == 1);
918   CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, array_buffer, 0);
919   if (array_buffer->backing_store() == NULL) {
920     CHECK(Smi::FromInt(0) == array_buffer->byte_length());
921     return isolate->heap()->undefined_value();
922   }
923   DCHECK(!array_buffer->is_external());
924   void* backing_store = array_buffer->backing_store();
925   size_t byte_length = NumberToSize(isolate, array_buffer->byte_length());
926   array_buffer->set_is_external(true);
927   Runtime::NeuterArrayBuffer(array_buffer);
928   V8::ArrayBufferAllocator()->Free(backing_store, byte_length);
929   return isolate->heap()->undefined_value();
930 }
931
932
933 void Runtime::ArrayIdToTypeAndSize(
934     int arrayId,
935     ExternalArrayType* array_type,
936     ElementsKind* external_elements_kind,
937     ElementsKind* fixed_elements_kind,
938     size_t* element_size) {
939   switch (arrayId) {
940 #define ARRAY_ID_CASE(Type, type, TYPE, ctype, size)                           \
941     case ARRAY_ID_##TYPE:                                                      \
942       *array_type = kExternal##Type##Array;                                    \
943       *external_elements_kind = EXTERNAL_##TYPE##_ELEMENTS;                    \
944       *fixed_elements_kind = TYPE##_ELEMENTS;                                  \
945       *element_size = size;                                                    \
946       break;
947
948     TYPED_ARRAYS(ARRAY_ID_CASE)
949 #undef ARRAY_ID_CASE
950
951     default:
952       UNREACHABLE();
953   }
954 }
955
956
957 RUNTIME_FUNCTION(Runtime_TypedArrayInitialize) {
958   HandleScope scope(isolate);
959   DCHECK(args.length() == 5);
960   CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0);
961   CONVERT_SMI_ARG_CHECKED(arrayId, 1);
962   CONVERT_ARG_HANDLE_CHECKED(Object, maybe_buffer, 2);
963   CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_offset_object, 3);
964   CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_length_object, 4);
965
966   RUNTIME_ASSERT(arrayId >= Runtime::ARRAY_ID_FIRST &&
967                  arrayId <= Runtime::ARRAY_ID_LAST);
968
969   ExternalArrayType array_type = kExternalInt8Array;  // Bogus initialization.
970   size_t element_size = 1;  // Bogus initialization.
971   ElementsKind external_elements_kind =
972       EXTERNAL_INT8_ELEMENTS;  // Bogus initialization.
973   ElementsKind fixed_elements_kind = INT8_ELEMENTS;  // Bogus initialization.
974   Runtime::ArrayIdToTypeAndSize(arrayId,
975       &array_type,
976       &external_elements_kind,
977       &fixed_elements_kind,
978       &element_size);
979   RUNTIME_ASSERT(holder->map()->elements_kind() == fixed_elements_kind);
980
981   size_t byte_offset = 0;
982   size_t byte_length = 0;
983   RUNTIME_ASSERT(TryNumberToSize(isolate, *byte_offset_object, &byte_offset));
984   RUNTIME_ASSERT(TryNumberToSize(isolate, *byte_length_object, &byte_length));
985
986   if (maybe_buffer->IsJSArrayBuffer()) {
987     Handle<JSArrayBuffer> buffer = Handle<JSArrayBuffer>::cast(maybe_buffer);
988     size_t array_buffer_byte_length =
989         NumberToSize(isolate, buffer->byte_length());
990     RUNTIME_ASSERT(byte_offset <= array_buffer_byte_length);
991     RUNTIME_ASSERT(array_buffer_byte_length - byte_offset >= byte_length);
992   } else {
993     RUNTIME_ASSERT(maybe_buffer->IsNull());
994   }
995
996   RUNTIME_ASSERT(byte_length % element_size == 0);
997   size_t length = byte_length / element_size;
998
999   if (length > static_cast<unsigned>(Smi::kMaxValue)) {
1000     THROW_NEW_ERROR_RETURN_FAILURE(
1001         isolate, NewRangeError("invalid_typed_array_length",
1002                                HandleVector<Object>(NULL, 0)));
1003   }
1004
1005   // All checks are done, now we can modify objects.
1006
1007   DCHECK(holder->GetInternalFieldCount() ==
1008       v8::ArrayBufferView::kInternalFieldCount);
1009   for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) {
1010     holder->SetInternalField(i, Smi::FromInt(0));
1011   }
1012   Handle<Object> length_obj = isolate->factory()->NewNumberFromSize(length);
1013   holder->set_length(*length_obj);
1014   holder->set_byte_offset(*byte_offset_object);
1015   holder->set_byte_length(*byte_length_object);
1016
1017   if (!maybe_buffer->IsNull()) {
1018     Handle<JSArrayBuffer> buffer = Handle<JSArrayBuffer>::cast(maybe_buffer);
1019     holder->set_buffer(*buffer);
1020     holder->set_weak_next(buffer->weak_first_view());
1021     buffer->set_weak_first_view(*holder);
1022
1023     Handle<ExternalArray> elements =
1024         isolate->factory()->NewExternalArray(
1025             static_cast<int>(length), array_type,
1026             static_cast<uint8_t*>(buffer->backing_store()) + byte_offset);
1027     Handle<Map> map =
1028         JSObject::GetElementsTransitionMap(holder, external_elements_kind);
1029     JSObject::SetMapAndElements(holder, map, elements);
1030     DCHECK(IsExternalArrayElementsKind(holder->map()->elements_kind()));
1031   } else {
1032     holder->set_buffer(Smi::FromInt(0));
1033     holder->set_weak_next(isolate->heap()->undefined_value());
1034     Handle<FixedTypedArrayBase> elements =
1035         isolate->factory()->NewFixedTypedArray(
1036             static_cast<int>(length), array_type);
1037     holder->set_elements(*elements);
1038   }
1039   return isolate->heap()->undefined_value();
1040 }
1041
1042
1043 // Initializes a typed array from an array-like object.
1044 // If an array-like object happens to be a typed array of the same type,
1045 // initializes backing store using memove.
1046 //
1047 // Returns true if backing store was initialized or false otherwise.
1048 RUNTIME_FUNCTION(Runtime_TypedArrayInitializeFromArrayLike) {
1049   HandleScope scope(isolate);
1050   DCHECK(args.length() == 4);
1051   CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0);
1052   CONVERT_SMI_ARG_CHECKED(arrayId, 1);
1053   CONVERT_ARG_HANDLE_CHECKED(Object, source, 2);
1054   CONVERT_NUMBER_ARG_HANDLE_CHECKED(length_obj, 3);
1055
1056   RUNTIME_ASSERT(arrayId >= Runtime::ARRAY_ID_FIRST &&
1057                  arrayId <= Runtime::ARRAY_ID_LAST);
1058
1059   ExternalArrayType array_type = kExternalInt8Array;  // Bogus initialization.
1060   size_t element_size = 1;  // Bogus initialization.
1061   ElementsKind external_elements_kind =
1062       EXTERNAL_INT8_ELEMENTS;  // Bogus intialization.
1063   ElementsKind fixed_elements_kind = INT8_ELEMENTS;  // Bogus initialization.
1064   Runtime::ArrayIdToTypeAndSize(arrayId,
1065       &array_type,
1066       &external_elements_kind,
1067       &fixed_elements_kind,
1068       &element_size);
1069
1070   RUNTIME_ASSERT(holder->map()->elements_kind() == fixed_elements_kind);
1071
1072   Handle<JSArrayBuffer> buffer = isolate->factory()->NewJSArrayBuffer();
1073   if (source->IsJSTypedArray() &&
1074       JSTypedArray::cast(*source)->type() == array_type) {
1075     length_obj = Handle<Object>(JSTypedArray::cast(*source)->length(), isolate);
1076   }
1077   size_t length = 0;
1078   RUNTIME_ASSERT(TryNumberToSize(isolate, *length_obj, &length));
1079
1080   if ((length > static_cast<unsigned>(Smi::kMaxValue)) ||
1081       (length > (kMaxInt / element_size))) {
1082     THROW_NEW_ERROR_RETURN_FAILURE(
1083         isolate, NewRangeError("invalid_typed_array_length",
1084                                HandleVector<Object>(NULL, 0)));
1085   }
1086   size_t byte_length = length * element_size;
1087
1088   DCHECK(holder->GetInternalFieldCount() ==
1089       v8::ArrayBufferView::kInternalFieldCount);
1090   for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) {
1091     holder->SetInternalField(i, Smi::FromInt(0));
1092   }
1093
1094   // NOTE: not initializing backing store.
1095   // We assume that the caller of this function will initialize holder
1096   // with the loop
1097   //      for(i = 0; i < length; i++) { holder[i] = source[i]; }
1098   // We assume that the caller of this function is always a typed array
1099   // constructor.
1100   // If source is a typed array, this loop will always run to completion,
1101   // so we are sure that the backing store will be initialized.
1102   // Otherwise, the indexing operation might throw, so the loop will not
1103   // run to completion and the typed array might remain partly initialized.
1104   // However we further assume that the caller of this function is a typed array
1105   // constructor, and the exception will propagate out of the constructor,
1106   // therefore uninitialized memory will not be accessible by a user program.
1107   //
1108   // TODO(dslomov): revise this once we support subclassing.
1109
1110   if (!Runtime::SetupArrayBufferAllocatingData(
1111         isolate, buffer, byte_length, false)) {
1112     THROW_NEW_ERROR_RETURN_FAILURE(
1113         isolate, NewRangeError("invalid_array_buffer_length",
1114                                HandleVector<Object>(NULL, 0)));
1115   }
1116
1117   holder->set_buffer(*buffer);
1118   holder->set_byte_offset(Smi::FromInt(0));
1119   Handle<Object> byte_length_obj(
1120       isolate->factory()->NewNumberFromSize(byte_length));
1121   holder->set_byte_length(*byte_length_obj);
1122   holder->set_length(*length_obj);
1123   holder->set_weak_next(buffer->weak_first_view());
1124   buffer->set_weak_first_view(*holder);
1125
1126   Handle<ExternalArray> elements =
1127       isolate->factory()->NewExternalArray(
1128           static_cast<int>(length), array_type,
1129           static_cast<uint8_t*>(buffer->backing_store()));
1130   Handle<Map> map = JSObject::GetElementsTransitionMap(
1131       holder, external_elements_kind);
1132   JSObject::SetMapAndElements(holder, map, elements);
1133
1134   if (source->IsJSTypedArray()) {
1135     Handle<JSTypedArray> typed_array(JSTypedArray::cast(*source));
1136
1137     if (typed_array->type() == holder->type()) {
1138       uint8_t* backing_store =
1139         static_cast<uint8_t*>(
1140           typed_array->GetBuffer()->backing_store());
1141       size_t source_byte_offset =
1142           NumberToSize(isolate, typed_array->byte_offset());
1143       memcpy(
1144           buffer->backing_store(),
1145           backing_store + source_byte_offset,
1146           byte_length);
1147       return isolate->heap()->true_value();
1148     }
1149   }
1150
1151   return isolate->heap()->false_value();
1152 }
1153
1154
1155 #define BUFFER_VIEW_GETTER(Type, getter, accessor) \
1156   RUNTIME_FUNCTION(Runtime_##Type##Get##getter) {                    \
1157     HandleScope scope(isolate);                                               \
1158     DCHECK(args.length() == 1);                                               \
1159     CONVERT_ARG_HANDLE_CHECKED(JS##Type, holder, 0);                          \
1160     return holder->accessor();                                                \
1161   }
1162
1163 BUFFER_VIEW_GETTER(ArrayBufferView, ByteLength, byte_length)
1164 BUFFER_VIEW_GETTER(ArrayBufferView, ByteOffset, byte_offset)
1165 BUFFER_VIEW_GETTER(TypedArray, Length, length)
1166 BUFFER_VIEW_GETTER(DataView, Buffer, buffer)
1167
1168 #undef BUFFER_VIEW_GETTER
1169
1170 RUNTIME_FUNCTION(Runtime_TypedArrayGetBuffer) {
1171   HandleScope scope(isolate);
1172   DCHECK(args.length() == 1);
1173   CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0);
1174   return *holder->GetBuffer();
1175 }
1176
1177
1178 // Return codes for Runtime_TypedArraySetFastCases.
1179 // Should be synchronized with typedarray.js natives.
1180 enum TypedArraySetResultCodes {
1181   // Set from typed array of the same type.
1182   // This is processed by TypedArraySetFastCases
1183   TYPED_ARRAY_SET_TYPED_ARRAY_SAME_TYPE = 0,
1184   // Set from typed array of the different type, overlapping in memory.
1185   TYPED_ARRAY_SET_TYPED_ARRAY_OVERLAPPING = 1,
1186   // Set from typed array of the different type, non-overlapping.
1187   TYPED_ARRAY_SET_TYPED_ARRAY_NONOVERLAPPING = 2,
1188   // Set from non-typed array.
1189   TYPED_ARRAY_SET_NON_TYPED_ARRAY = 3
1190 };
1191
1192
1193 RUNTIME_FUNCTION(Runtime_TypedArraySetFastCases) {
1194   HandleScope scope(isolate);
1195   DCHECK(args.length() == 3);
1196   if (!args[0]->IsJSTypedArray()) {
1197     THROW_NEW_ERROR_RETURN_FAILURE(
1198         isolate,
1199         NewTypeError("not_typed_array", HandleVector<Object>(NULL, 0)));
1200   }
1201
1202   if (!args[1]->IsJSTypedArray())
1203     return Smi::FromInt(TYPED_ARRAY_SET_NON_TYPED_ARRAY);
1204
1205   CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, target_obj, 0);
1206   CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, source_obj, 1);
1207   CONVERT_NUMBER_ARG_HANDLE_CHECKED(offset_obj, 2);
1208
1209   Handle<JSTypedArray> target(JSTypedArray::cast(*target_obj));
1210   Handle<JSTypedArray> source(JSTypedArray::cast(*source_obj));
1211   size_t offset = 0;
1212   RUNTIME_ASSERT(TryNumberToSize(isolate, *offset_obj, &offset));
1213   size_t target_length = NumberToSize(isolate, target->length());
1214   size_t source_length = NumberToSize(isolate, source->length());
1215   size_t target_byte_length = NumberToSize(isolate, target->byte_length());
1216   size_t source_byte_length = NumberToSize(isolate, source->byte_length());
1217   if (offset > target_length || offset + source_length > target_length ||
1218       offset + source_length < offset) {  // overflow
1219     THROW_NEW_ERROR_RETURN_FAILURE(
1220         isolate, NewRangeError("typed_array_set_source_too_large",
1221                                HandleVector<Object>(NULL, 0)));
1222   }
1223
1224   size_t target_offset = NumberToSize(isolate, target->byte_offset());
1225   size_t source_offset = NumberToSize(isolate, source->byte_offset());
1226   uint8_t* target_base =
1227       static_cast<uint8_t*>(
1228         target->GetBuffer()->backing_store()) + target_offset;
1229   uint8_t* source_base =
1230       static_cast<uint8_t*>(
1231         source->GetBuffer()->backing_store()) + source_offset;
1232
1233   // Typed arrays of the same type: use memmove.
1234   if (target->type() == source->type()) {
1235     memmove(target_base + offset * target->element_size(),
1236         source_base, source_byte_length);
1237     return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_SAME_TYPE);
1238   }
1239
1240   // Typed arrays of different types over the same backing store
1241   if ((source_base <= target_base &&
1242         source_base + source_byte_length > target_base) ||
1243       (target_base <= source_base &&
1244         target_base + target_byte_length > source_base)) {
1245     // We do not support overlapping ArrayBuffers
1246     DCHECK(
1247       target->GetBuffer()->backing_store() ==
1248       source->GetBuffer()->backing_store());
1249     return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_OVERLAPPING);
1250   } else {  // Non-overlapping typed arrays
1251     return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_NONOVERLAPPING);
1252   }
1253 }
1254
1255
1256 RUNTIME_FUNCTION(Runtime_TypedArrayMaxSizeInHeap) {
1257   DCHECK(args.length() == 0);
1258   DCHECK_OBJECT_SIZE(
1259       FLAG_typed_array_max_size_in_heap + FixedTypedArrayBase::kDataOffset);
1260   return Smi::FromInt(FLAG_typed_array_max_size_in_heap);
1261 }
1262
1263
1264 RUNTIME_FUNCTION(Runtime_DataViewInitialize) {
1265   HandleScope scope(isolate);
1266   DCHECK(args.length() == 4);
1267   CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0);
1268   CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, buffer, 1);
1269   CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_offset, 2);
1270   CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_length, 3);
1271
1272   DCHECK(holder->GetInternalFieldCount() ==
1273       v8::ArrayBufferView::kInternalFieldCount);
1274   for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) {
1275     holder->SetInternalField(i, Smi::FromInt(0));
1276   }
1277   size_t buffer_length = 0;
1278   size_t offset = 0;
1279   size_t length = 0;
1280   RUNTIME_ASSERT(
1281       TryNumberToSize(isolate, buffer->byte_length(), &buffer_length));
1282   RUNTIME_ASSERT(TryNumberToSize(isolate, *byte_offset, &offset));
1283   RUNTIME_ASSERT(TryNumberToSize(isolate, *byte_length, &length));
1284
1285   // TODO(jkummerow): When we have a "safe numerics" helper class, use it here.
1286   // Entire range [offset, offset + length] must be in bounds.
1287   RUNTIME_ASSERT(offset <= buffer_length);
1288   RUNTIME_ASSERT(offset + length <= buffer_length);
1289   // No overflow.
1290   RUNTIME_ASSERT(offset + length >= offset);
1291
1292   holder->set_buffer(*buffer);
1293   holder->set_byte_offset(*byte_offset);
1294   holder->set_byte_length(*byte_length);
1295
1296   holder->set_weak_next(buffer->weak_first_view());
1297   buffer->set_weak_first_view(*holder);
1298
1299   return isolate->heap()->undefined_value();
1300 }
1301
1302
1303 inline static bool NeedToFlipBytes(bool is_little_endian) {
1304 #ifdef V8_TARGET_LITTLE_ENDIAN
1305   return !is_little_endian;
1306 #else
1307   return is_little_endian;
1308 #endif
1309 }
1310
1311
1312 template<int n>
1313 inline void CopyBytes(uint8_t* target, uint8_t* source) {
1314   for (int i = 0; i < n; i++) {
1315     *(target++) = *(source++);
1316   }
1317 }
1318
1319
1320 template<int n>
1321 inline void FlipBytes(uint8_t* target, uint8_t* source) {
1322   source = source + (n-1);
1323   for (int i = 0; i < n; i++) {
1324     *(target++) = *(source--);
1325   }
1326 }
1327
1328
1329 template<typename T>
1330 inline static bool DataViewGetValue(
1331     Isolate* isolate,
1332     Handle<JSDataView> data_view,
1333     Handle<Object> byte_offset_obj,
1334     bool is_little_endian,
1335     T* result) {
1336   size_t byte_offset = 0;
1337   if (!TryNumberToSize(isolate, *byte_offset_obj, &byte_offset)) {
1338     return false;
1339   }
1340   Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(data_view->buffer()));
1341
1342   size_t data_view_byte_offset =
1343       NumberToSize(isolate, data_view->byte_offset());
1344   size_t data_view_byte_length =
1345       NumberToSize(isolate, data_view->byte_length());
1346   if (byte_offset + sizeof(T) > data_view_byte_length ||
1347       byte_offset + sizeof(T) < byte_offset)  {  // overflow
1348     return false;
1349   }
1350
1351   union Value {
1352     T data;
1353     uint8_t bytes[sizeof(T)];
1354   };
1355
1356   Value value;
1357   size_t buffer_offset = data_view_byte_offset + byte_offset;
1358   DCHECK(
1359       NumberToSize(isolate, buffer->byte_length())
1360       >= buffer_offset + sizeof(T));
1361   uint8_t* source =
1362         static_cast<uint8_t*>(buffer->backing_store()) + buffer_offset;
1363   if (NeedToFlipBytes(is_little_endian)) {
1364     FlipBytes<sizeof(T)>(value.bytes, source);
1365   } else {
1366     CopyBytes<sizeof(T)>(value.bytes, source);
1367   }
1368   *result = value.data;
1369   return true;
1370 }
1371
1372
1373 template<typename T>
1374 static bool DataViewSetValue(
1375     Isolate* isolate,
1376     Handle<JSDataView> data_view,
1377     Handle<Object> byte_offset_obj,
1378     bool is_little_endian,
1379     T data) {
1380   size_t byte_offset = 0;
1381   if (!TryNumberToSize(isolate, *byte_offset_obj, &byte_offset)) {
1382     return false;
1383   }
1384   Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(data_view->buffer()));
1385
1386   size_t data_view_byte_offset =
1387       NumberToSize(isolate, data_view->byte_offset());
1388   size_t data_view_byte_length =
1389       NumberToSize(isolate, data_view->byte_length());
1390   if (byte_offset + sizeof(T) > data_view_byte_length ||
1391       byte_offset + sizeof(T) < byte_offset)  {  // overflow
1392     return false;
1393   }
1394
1395   union Value {
1396     T data;
1397     uint8_t bytes[sizeof(T)];
1398   };
1399
1400   Value value;
1401   value.data = data;
1402   size_t buffer_offset = data_view_byte_offset + byte_offset;
1403   DCHECK(
1404       NumberToSize(isolate, buffer->byte_length())
1405       >= buffer_offset + sizeof(T));
1406   uint8_t* target =
1407         static_cast<uint8_t*>(buffer->backing_store()) + buffer_offset;
1408   if (NeedToFlipBytes(is_little_endian)) {
1409     FlipBytes<sizeof(T)>(target, value.bytes);
1410   } else {
1411     CopyBytes<sizeof(T)>(target, value.bytes);
1412   }
1413   return true;
1414 }
1415
1416
1417 #define DATA_VIEW_GETTER(TypeName, Type, Converter)                   \
1418   RUNTIME_FUNCTION(Runtime_DataViewGet##TypeName) {                   \
1419     HandleScope scope(isolate);                                       \
1420     DCHECK(args.length() == 3);                                       \
1421     CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0);                \
1422     CONVERT_NUMBER_ARG_HANDLE_CHECKED(offset, 1);                     \
1423     CONVERT_BOOLEAN_ARG_CHECKED(is_little_endian, 2);                 \
1424     Type result;                                                      \
1425     if (DataViewGetValue(isolate, holder, offset, is_little_endian,   \
1426                          &result)) {                                  \
1427       return *isolate->factory()->Converter(result);                  \
1428     } else {                                                          \
1429       THROW_NEW_ERROR_RETURN_FAILURE(                                 \
1430           isolate, NewRangeError("invalid_data_view_accessor_offset", \
1431                                  HandleVector<Object>(NULL, 0)));     \
1432     }                                                                 \
1433   }
1434
1435 DATA_VIEW_GETTER(Uint8, uint8_t, NewNumberFromUint)
1436 DATA_VIEW_GETTER(Int8, int8_t, NewNumberFromInt)
1437 DATA_VIEW_GETTER(Uint16, uint16_t, NewNumberFromUint)
1438 DATA_VIEW_GETTER(Int16, int16_t, NewNumberFromInt)
1439 DATA_VIEW_GETTER(Uint32, uint32_t, NewNumberFromUint)
1440 DATA_VIEW_GETTER(Int32, int32_t, NewNumberFromInt)
1441 DATA_VIEW_GETTER(Float32, float, NewNumber)
1442 DATA_VIEW_GETTER(Float64, double, NewNumber)
1443
1444 #undef DATA_VIEW_GETTER
1445
1446
1447 template <typename T>
1448 static T DataViewConvertValue(double value);
1449
1450
1451 template <>
1452 int8_t DataViewConvertValue<int8_t>(double value) {
1453   return static_cast<int8_t>(DoubleToInt32(value));
1454 }
1455
1456
1457 template <>
1458 int16_t DataViewConvertValue<int16_t>(double value) {
1459   return static_cast<int16_t>(DoubleToInt32(value));
1460 }
1461
1462
1463 template <>
1464 int32_t DataViewConvertValue<int32_t>(double value) {
1465   return DoubleToInt32(value);
1466 }
1467
1468
1469 template <>
1470 uint8_t DataViewConvertValue<uint8_t>(double value) {
1471   return static_cast<uint8_t>(DoubleToUint32(value));
1472 }
1473
1474
1475 template <>
1476 uint16_t DataViewConvertValue<uint16_t>(double value) {
1477   return static_cast<uint16_t>(DoubleToUint32(value));
1478 }
1479
1480
1481 template <>
1482 uint32_t DataViewConvertValue<uint32_t>(double value) {
1483   return DoubleToUint32(value);
1484 }
1485
1486
1487 template <>
1488 float DataViewConvertValue<float>(double value) {
1489   return static_cast<float>(value);
1490 }
1491
1492
1493 template <>
1494 double DataViewConvertValue<double>(double value) {
1495   return value;
1496 }
1497
1498
1499 #define DATA_VIEW_SETTER(TypeName, Type)                                  \
1500   RUNTIME_FUNCTION(Runtime_DataViewSet##TypeName) {                       \
1501     HandleScope scope(isolate);                                           \
1502     DCHECK(args.length() == 4);                                           \
1503     CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0);                    \
1504     CONVERT_NUMBER_ARG_HANDLE_CHECKED(offset, 1);                         \
1505     CONVERT_NUMBER_ARG_HANDLE_CHECKED(value, 2);                          \
1506     CONVERT_BOOLEAN_ARG_CHECKED(is_little_endian, 3);                     \
1507     Type v = DataViewConvertValue<Type>(value->Number());                 \
1508     if (DataViewSetValue(isolate, holder, offset, is_little_endian, v)) { \
1509       return isolate->heap()->undefined_value();                          \
1510     } else {                                                              \
1511       THROW_NEW_ERROR_RETURN_FAILURE(                                     \
1512           isolate, NewRangeError("invalid_data_view_accessor_offset",     \
1513                                  HandleVector<Object>(NULL, 0)));         \
1514     }                                                                     \
1515   }
1516
1517 DATA_VIEW_SETTER(Uint8, uint8_t)
1518 DATA_VIEW_SETTER(Int8, int8_t)
1519 DATA_VIEW_SETTER(Uint16, uint16_t)
1520 DATA_VIEW_SETTER(Int16, int16_t)
1521 DATA_VIEW_SETTER(Uint32, uint32_t)
1522 DATA_VIEW_SETTER(Int32, int32_t)
1523 DATA_VIEW_SETTER(Float32, float)
1524 DATA_VIEW_SETTER(Float64, double)
1525
1526 #undef DATA_VIEW_SETTER
1527
1528
1529 RUNTIME_FUNCTION(Runtime_SetInitialize) {
1530   HandleScope scope(isolate);
1531   DCHECK(args.length() == 1);
1532   CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
1533   Handle<OrderedHashSet> table = isolate->factory()->NewOrderedHashSet();
1534   holder->set_table(*table);
1535   return *holder;
1536 }
1537
1538
1539 RUNTIME_FUNCTION(Runtime_SetAdd) {
1540   HandleScope scope(isolate);
1541   DCHECK(args.length() == 2);
1542   CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
1543   CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1544   Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table()));
1545   table = OrderedHashSet::Add(table, key);
1546   holder->set_table(*table);
1547   return *holder;
1548 }
1549
1550
1551 RUNTIME_FUNCTION(Runtime_SetHas) {
1552   HandleScope scope(isolate);
1553   DCHECK(args.length() == 2);
1554   CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
1555   CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1556   Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table()));
1557   return isolate->heap()->ToBoolean(table->Contains(key));
1558 }
1559
1560
1561 RUNTIME_FUNCTION(Runtime_SetDelete) {
1562   HandleScope scope(isolate);
1563   DCHECK(args.length() == 2);
1564   CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
1565   CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1566   Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table()));
1567   bool was_present = false;
1568   table = OrderedHashSet::Remove(table, key, &was_present);
1569   holder->set_table(*table);
1570   return isolate->heap()->ToBoolean(was_present);
1571 }
1572
1573
1574 RUNTIME_FUNCTION(Runtime_SetClear) {
1575   HandleScope scope(isolate);
1576   DCHECK(args.length() == 1);
1577   CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
1578   Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table()));
1579   table = OrderedHashSet::Clear(table);
1580   holder->set_table(*table);
1581   return isolate->heap()->undefined_value();
1582 }
1583
1584
1585 RUNTIME_FUNCTION(Runtime_SetGetSize) {
1586   HandleScope scope(isolate);
1587   DCHECK(args.length() == 1);
1588   CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
1589   Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table()));
1590   return Smi::FromInt(table->NumberOfElements());
1591 }
1592
1593
1594 RUNTIME_FUNCTION(Runtime_SetIteratorInitialize) {
1595   HandleScope scope(isolate);
1596   DCHECK(args.length() == 3);
1597   CONVERT_ARG_HANDLE_CHECKED(JSSetIterator, holder, 0);
1598   CONVERT_ARG_HANDLE_CHECKED(JSSet, set, 1);
1599   CONVERT_SMI_ARG_CHECKED(kind, 2)
1600   RUNTIME_ASSERT(kind == JSSetIterator::kKindValues ||
1601                  kind == JSSetIterator::kKindEntries);
1602   Handle<OrderedHashSet> table(OrderedHashSet::cast(set->table()));
1603   holder->set_table(*table);
1604   holder->set_index(Smi::FromInt(0));
1605   holder->set_kind(Smi::FromInt(kind));
1606   return isolate->heap()->undefined_value();
1607 }
1608
1609
1610 RUNTIME_FUNCTION(Runtime_SetIteratorNext) {
1611   SealHandleScope shs(isolate);
1612   DCHECK(args.length() == 2);
1613   CONVERT_ARG_CHECKED(JSSetIterator, holder, 0);
1614   CONVERT_ARG_CHECKED(JSArray, value_array, 1);
1615   return holder->Next(value_array);
1616 }
1617
1618
1619 RUNTIME_FUNCTION(Runtime_MapInitialize) {
1620   HandleScope scope(isolate);
1621   DCHECK(args.length() == 1);
1622   CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1623   Handle<OrderedHashMap> table = isolate->factory()->NewOrderedHashMap();
1624   holder->set_table(*table);
1625   return *holder;
1626 }
1627
1628
1629 RUNTIME_FUNCTION(Runtime_MapGet) {
1630   HandleScope scope(isolate);
1631   DCHECK(args.length() == 2);
1632   CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1633   CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1634   Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
1635   Handle<Object> lookup(table->Lookup(key), isolate);
1636   return lookup->IsTheHole() ? isolate->heap()->undefined_value() : *lookup;
1637 }
1638
1639
1640 RUNTIME_FUNCTION(Runtime_MapHas) {
1641   HandleScope scope(isolate);
1642   DCHECK(args.length() == 2);
1643   CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1644   CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1645   Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
1646   Handle<Object> lookup(table->Lookup(key), isolate);
1647   return isolate->heap()->ToBoolean(!lookup->IsTheHole());
1648 }
1649
1650
1651 RUNTIME_FUNCTION(Runtime_MapDelete) {
1652   HandleScope scope(isolate);
1653   DCHECK(args.length() == 2);
1654   CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1655   CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1656   Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
1657   bool was_present = false;
1658   Handle<OrderedHashMap> new_table =
1659       OrderedHashMap::Remove(table, key, &was_present);
1660   holder->set_table(*new_table);
1661   return isolate->heap()->ToBoolean(was_present);
1662 }
1663
1664
1665 RUNTIME_FUNCTION(Runtime_MapClear) {
1666   HandleScope scope(isolate);
1667   DCHECK(args.length() == 1);
1668   CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1669   Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
1670   table = OrderedHashMap::Clear(table);
1671   holder->set_table(*table);
1672   return isolate->heap()->undefined_value();
1673 }
1674
1675
1676 RUNTIME_FUNCTION(Runtime_MapSet) {
1677   HandleScope scope(isolate);
1678   DCHECK(args.length() == 3);
1679   CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1680   CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1681   CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
1682   Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
1683   Handle<OrderedHashMap> new_table = OrderedHashMap::Put(table, key, value);
1684   holder->set_table(*new_table);
1685   return *holder;
1686 }
1687
1688
1689 RUNTIME_FUNCTION(Runtime_MapGetSize) {
1690   HandleScope scope(isolate);
1691   DCHECK(args.length() == 1);
1692   CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1693   Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
1694   return Smi::FromInt(table->NumberOfElements());
1695 }
1696
1697
1698 RUNTIME_FUNCTION(Runtime_MapIteratorInitialize) {
1699   HandleScope scope(isolate);
1700   DCHECK(args.length() == 3);
1701   CONVERT_ARG_HANDLE_CHECKED(JSMapIterator, holder, 0);
1702   CONVERT_ARG_HANDLE_CHECKED(JSMap, map, 1);
1703   CONVERT_SMI_ARG_CHECKED(kind, 2)
1704   RUNTIME_ASSERT(kind == JSMapIterator::kKindKeys
1705       || kind == JSMapIterator::kKindValues
1706       || kind == JSMapIterator::kKindEntries);
1707   Handle<OrderedHashMap> table(OrderedHashMap::cast(map->table()));
1708   holder->set_table(*table);
1709   holder->set_index(Smi::FromInt(0));
1710   holder->set_kind(Smi::FromInt(kind));
1711   return isolate->heap()->undefined_value();
1712 }
1713
1714
1715 RUNTIME_FUNCTION(Runtime_GetWeakMapEntries) {
1716   HandleScope scope(isolate);
1717   DCHECK(args.length() == 1);
1718   CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, holder, 0);
1719   Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table()));
1720   Handle<FixedArray> entries =
1721       isolate->factory()->NewFixedArray(table->NumberOfElements() * 2);
1722   {
1723     DisallowHeapAllocation no_gc;
1724     int number_of_non_hole_elements = 0;
1725     for (int i = 0; i < table->Capacity(); i++) {
1726       Handle<Object> key(table->KeyAt(i), isolate);
1727       if (table->IsKey(*key)) {
1728         entries->set(number_of_non_hole_elements++, *key);
1729         Object* value = table->Lookup(key);
1730         entries->set(number_of_non_hole_elements++, value);
1731       }
1732     }
1733     DCHECK_EQ(table->NumberOfElements() * 2, number_of_non_hole_elements);
1734   }
1735   return *isolate->factory()->NewJSArrayWithElements(entries);
1736 }
1737
1738
1739 RUNTIME_FUNCTION(Runtime_MapIteratorNext) {
1740   SealHandleScope shs(isolate);
1741   DCHECK(args.length() == 2);
1742   CONVERT_ARG_CHECKED(JSMapIterator, holder, 0);
1743   CONVERT_ARG_CHECKED(JSArray, value_array, 1);
1744   return holder->Next(value_array);
1745 }
1746
1747
1748 static Handle<JSWeakCollection> WeakCollectionInitialize(
1749     Isolate* isolate,
1750     Handle<JSWeakCollection> weak_collection) {
1751   DCHECK(weak_collection->map()->inobject_properties() == 0);
1752   Handle<ObjectHashTable> table = ObjectHashTable::New(isolate, 0);
1753   weak_collection->set_table(*table);
1754   return weak_collection;
1755 }
1756
1757
1758 RUNTIME_FUNCTION(Runtime_WeakCollectionInitialize) {
1759   HandleScope scope(isolate);
1760   DCHECK(args.length() == 1);
1761   CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0);
1762   return *WeakCollectionInitialize(isolate, weak_collection);
1763 }
1764
1765
1766 RUNTIME_FUNCTION(Runtime_WeakCollectionGet) {
1767   HandleScope scope(isolate);
1768   DCHECK(args.length() == 2);
1769   CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0);
1770   CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1771   RUNTIME_ASSERT(key->IsJSReceiver() || key->IsSymbol());
1772   Handle<ObjectHashTable> table(
1773       ObjectHashTable::cast(weak_collection->table()));
1774   RUNTIME_ASSERT(table->IsKey(*key));
1775   Handle<Object> lookup(table->Lookup(key), isolate);
1776   return lookup->IsTheHole() ? isolate->heap()->undefined_value() : *lookup;
1777 }
1778
1779
1780 RUNTIME_FUNCTION(Runtime_WeakCollectionHas) {
1781   HandleScope scope(isolate);
1782   DCHECK(args.length() == 2);
1783   CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0);
1784   CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1785   RUNTIME_ASSERT(key->IsJSReceiver() || key->IsSymbol());
1786   Handle<ObjectHashTable> table(
1787       ObjectHashTable::cast(weak_collection->table()));
1788   RUNTIME_ASSERT(table->IsKey(*key));
1789   Handle<Object> lookup(table->Lookup(key), isolate);
1790   return isolate->heap()->ToBoolean(!lookup->IsTheHole());
1791 }
1792
1793
1794 RUNTIME_FUNCTION(Runtime_WeakCollectionDelete) {
1795   HandleScope scope(isolate);
1796   DCHECK(args.length() == 2);
1797   CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0);
1798   CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1799   RUNTIME_ASSERT(key->IsJSReceiver() || key->IsSymbol());
1800   Handle<ObjectHashTable> table(ObjectHashTable::cast(
1801       weak_collection->table()));
1802   RUNTIME_ASSERT(table->IsKey(*key));
1803   bool was_present = false;
1804   Handle<ObjectHashTable> new_table =
1805       ObjectHashTable::Remove(table, key, &was_present);
1806   weak_collection->set_table(*new_table);
1807   return isolate->heap()->ToBoolean(was_present);
1808 }
1809
1810
1811 RUNTIME_FUNCTION(Runtime_WeakCollectionSet) {
1812   HandleScope scope(isolate);
1813   DCHECK(args.length() == 3);
1814   CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0);
1815   CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1816   RUNTIME_ASSERT(key->IsJSReceiver() || key->IsSymbol());
1817   CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
1818   Handle<ObjectHashTable> table(
1819       ObjectHashTable::cast(weak_collection->table()));
1820   RUNTIME_ASSERT(table->IsKey(*key));
1821   Handle<ObjectHashTable> new_table = ObjectHashTable::Put(table, key, value);
1822   weak_collection->set_table(*new_table);
1823   return *weak_collection;
1824 }
1825
1826
1827 RUNTIME_FUNCTION(Runtime_GetWeakSetValues) {
1828   HandleScope scope(isolate);
1829   DCHECK(args.length() == 1);
1830   CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, holder, 0);
1831   Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table()));
1832   Handle<FixedArray> values =
1833       isolate->factory()->NewFixedArray(table->NumberOfElements());
1834   {
1835     DisallowHeapAllocation no_gc;
1836     int number_of_non_hole_elements = 0;
1837     for (int i = 0; i < table->Capacity(); i++) {
1838       Handle<Object> key(table->KeyAt(i), isolate);
1839       if (table->IsKey(*key)) {
1840         values->set(number_of_non_hole_elements++, *key);
1841       }
1842     }
1843     DCHECK_EQ(table->NumberOfElements(), number_of_non_hole_elements);
1844   }
1845   return *isolate->factory()->NewJSArrayWithElements(values);
1846 }
1847
1848
1849 RUNTIME_FUNCTION(Runtime_GetPrototype) {
1850   HandleScope scope(isolate);
1851   DCHECK(args.length() == 1);
1852   CONVERT_ARG_HANDLE_CHECKED(Object, obj, 0);
1853   // We don't expect access checks to be needed on JSProxy objects.
1854   DCHECK(!obj->IsAccessCheckNeeded() || obj->IsJSObject());
1855   PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER);
1856   do {
1857     if (PrototypeIterator::GetCurrent(iter)->IsAccessCheckNeeded() &&
1858         !isolate->MayNamedAccess(
1859             Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)),
1860             isolate->factory()->proto_string(), v8::ACCESS_GET)) {
1861       isolate->ReportFailedAccessCheck(
1862           Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)),
1863           v8::ACCESS_GET);
1864       RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
1865       return isolate->heap()->undefined_value();
1866     }
1867     iter.AdvanceIgnoringProxies();
1868     if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) {
1869       return *PrototypeIterator::GetCurrent(iter);
1870     }
1871   } while (!iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN));
1872   return *PrototypeIterator::GetCurrent(iter);
1873 }
1874
1875
1876 static inline Handle<Object> GetPrototypeSkipHiddenPrototypes(
1877     Isolate* isolate, Handle<Object> receiver) {
1878   PrototypeIterator iter(isolate, receiver);
1879   while (!iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN)) {
1880     if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) {
1881       return PrototypeIterator::GetCurrent(iter);
1882     }
1883     iter.Advance();
1884   }
1885   return PrototypeIterator::GetCurrent(iter);
1886 }
1887
1888
1889 RUNTIME_FUNCTION(Runtime_InternalSetPrototype) {
1890   HandleScope scope(isolate);
1891   DCHECK(args.length() == 2);
1892   CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
1893   CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
1894   DCHECK(!obj->IsAccessCheckNeeded());
1895   DCHECK(!obj->map()->is_observed());
1896   Handle<Object> result;
1897   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
1898       isolate, result, JSObject::SetPrototype(obj, prototype, false));
1899   return *result;
1900 }
1901
1902
1903 RUNTIME_FUNCTION(Runtime_SetPrototype) {
1904   HandleScope scope(isolate);
1905   DCHECK(args.length() == 2);
1906   CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
1907   CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
1908   if (obj->IsAccessCheckNeeded() &&
1909       !isolate->MayNamedAccess(
1910           obj, isolate->factory()->proto_string(), v8::ACCESS_SET)) {
1911     isolate->ReportFailedAccessCheck(obj, v8::ACCESS_SET);
1912     RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
1913     return isolate->heap()->undefined_value();
1914   }
1915   if (obj->map()->is_observed()) {
1916     Handle<Object> old_value = GetPrototypeSkipHiddenPrototypes(isolate, obj);
1917     Handle<Object> result;
1918     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
1919         isolate, result,
1920         JSObject::SetPrototype(obj, prototype, true));
1921
1922     Handle<Object> new_value = GetPrototypeSkipHiddenPrototypes(isolate, obj);
1923     if (!new_value->SameValue(*old_value)) {
1924       JSObject::EnqueueChangeRecord(obj, "setPrototype",
1925                                     isolate->factory()->proto_string(),
1926                                     old_value);
1927     }
1928     return *result;
1929   }
1930   Handle<Object> result;
1931   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
1932       isolate, result,
1933       JSObject::SetPrototype(obj, prototype, true));
1934   return *result;
1935 }
1936
1937
1938 RUNTIME_FUNCTION(Runtime_IsInPrototypeChain) {
1939   HandleScope shs(isolate);
1940   DCHECK(args.length() == 2);
1941   // See ECMA-262, section 15.3.5.3, page 88 (steps 5 - 8).
1942   CONVERT_ARG_HANDLE_CHECKED(Object, O, 0);
1943   CONVERT_ARG_HANDLE_CHECKED(Object, V, 1);
1944   PrototypeIterator iter(isolate, V, PrototypeIterator::START_AT_RECEIVER);
1945   while (true) {
1946     iter.AdvanceIgnoringProxies();
1947     if (iter.IsAtEnd()) return isolate->heap()->false_value();
1948     if (iter.IsAtEnd(O)) return isolate->heap()->true_value();
1949   }
1950 }
1951
1952
1953 // Enumerator used as indices into the array returned from GetOwnProperty
1954 enum PropertyDescriptorIndices {
1955   IS_ACCESSOR_INDEX,
1956   VALUE_INDEX,
1957   GETTER_INDEX,
1958   SETTER_INDEX,
1959   WRITABLE_INDEX,
1960   ENUMERABLE_INDEX,
1961   CONFIGURABLE_INDEX,
1962   DESCRIPTOR_SIZE
1963 };
1964
1965
1966 MUST_USE_RESULT static MaybeHandle<Object> GetOwnProperty(Isolate* isolate,
1967                                                           Handle<JSObject> obj,
1968                                                           Handle<Name> name) {
1969   Heap* heap = isolate->heap();
1970   Factory* factory = isolate->factory();
1971
1972   PropertyAttributes attrs;
1973   uint32_t index = 0;
1974   Handle<Object> value;
1975   MaybeHandle<AccessorPair> maybe_accessors;
1976   // TODO(verwaest): Unify once indexed properties can be handled by the
1977   // LookupIterator.
1978   if (name->AsArrayIndex(&index)) {
1979     // Get attributes.
1980     Maybe<PropertyAttributes> maybe =
1981         JSReceiver::GetOwnElementAttribute(obj, index);
1982     if (!maybe.has_value) return MaybeHandle<Object>();
1983     attrs = maybe.value;
1984     if (attrs == ABSENT) return factory->undefined_value();
1985
1986     // Get AccessorPair if present.
1987     maybe_accessors = JSObject::GetOwnElementAccessorPair(obj, index);
1988
1989     // Get value if not an AccessorPair.
1990     if (maybe_accessors.is_null()) {
1991       ASSIGN_RETURN_ON_EXCEPTION(isolate, value,
1992           Runtime::GetElementOrCharAt(isolate, obj, index), Object);
1993     }
1994   } else {
1995     // Get attributes.
1996     LookupIterator it(obj, name, LookupIterator::HIDDEN);
1997     Maybe<PropertyAttributes> maybe = JSObject::GetPropertyAttributes(&it);
1998     if (!maybe.has_value) return MaybeHandle<Object>();
1999     attrs = maybe.value;
2000     if (attrs == ABSENT) return factory->undefined_value();
2001
2002     // Get AccessorPair if present.
2003     if (it.state() == LookupIterator::ACCESSOR &&
2004         it.GetAccessors()->IsAccessorPair()) {
2005       maybe_accessors = Handle<AccessorPair>::cast(it.GetAccessors());
2006     }
2007
2008     // Get value if not an AccessorPair.
2009     if (maybe_accessors.is_null()) {
2010       ASSIGN_RETURN_ON_EXCEPTION(
2011           isolate, value, Object::GetProperty(&it), Object);
2012     }
2013   }
2014   DCHECK(!isolate->has_pending_exception());
2015   Handle<FixedArray> elms = factory->NewFixedArray(DESCRIPTOR_SIZE);
2016   elms->set(ENUMERABLE_INDEX, heap->ToBoolean((attrs & DONT_ENUM) == 0));
2017   elms->set(CONFIGURABLE_INDEX, heap->ToBoolean((attrs & DONT_DELETE) == 0));
2018   elms->set(IS_ACCESSOR_INDEX, heap->ToBoolean(!maybe_accessors.is_null()));
2019
2020   Handle<AccessorPair> accessors;
2021   if (maybe_accessors.ToHandle(&accessors)) {
2022     Handle<Object> getter(accessors->GetComponent(ACCESSOR_GETTER), isolate);
2023     Handle<Object> setter(accessors->GetComponent(ACCESSOR_SETTER), isolate);
2024     elms->set(GETTER_INDEX, *getter);
2025     elms->set(SETTER_INDEX, *setter);
2026   } else {
2027     elms->set(WRITABLE_INDEX, heap->ToBoolean((attrs & READ_ONLY) == 0));
2028     elms->set(VALUE_INDEX, *value);
2029   }
2030
2031   return factory->NewJSArrayWithElements(elms);
2032 }
2033
2034
2035 // Returns an array with the property description:
2036 //  if args[1] is not a property on args[0]
2037 //          returns undefined
2038 //  if args[1] is a data property on args[0]
2039 //         [false, value, Writeable, Enumerable, Configurable]
2040 //  if args[1] is an accessor on args[0]
2041 //         [true, GetFunction, SetFunction, Enumerable, Configurable]
2042 RUNTIME_FUNCTION(Runtime_GetOwnProperty) {
2043   HandleScope scope(isolate);
2044   DCHECK(args.length() == 2);
2045   CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
2046   CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
2047   Handle<Object> result;
2048   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2049       isolate, result, GetOwnProperty(isolate, obj, name));
2050   return *result;
2051 }
2052
2053
2054 RUNTIME_FUNCTION(Runtime_PreventExtensions) {
2055   HandleScope scope(isolate);
2056   DCHECK(args.length() == 1);
2057   CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
2058   Handle<Object> result;
2059   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2060       isolate, result, JSObject::PreventExtensions(obj));
2061   return *result;
2062 }
2063
2064
2065 RUNTIME_FUNCTION(Runtime_ToMethod) {
2066   HandleScope scope(isolate);
2067   DCHECK(args.length() == 2);
2068   CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
2069   CONVERT_ARG_HANDLE_CHECKED(JSObject, home_object, 1);
2070   Handle<JSFunction> clone = JSFunction::CloneClosure(fun);
2071   Handle<Symbol> home_object_symbol(isolate->heap()->home_object_symbol());
2072   JSObject::SetOwnPropertyIgnoreAttributes(clone, home_object_symbol,
2073                                            home_object, DONT_ENUM).Assert();
2074   return *clone;
2075 }
2076
2077
2078 RUNTIME_FUNCTION(Runtime_HomeObjectSymbol) {
2079   DCHECK(args.length() == 0);
2080   return isolate->heap()->home_object_symbol();
2081 }
2082
2083
2084 RUNTIME_FUNCTION(Runtime_LoadFromSuper) {
2085   HandleScope scope(isolate);
2086   DCHECK(args.length() == 3);
2087   CONVERT_ARG_HANDLE_CHECKED(JSObject, home_object, 0);
2088   CONVERT_ARG_HANDLE_CHECKED(Object, receiver, 1);
2089   CONVERT_ARG_HANDLE_CHECKED(Name, name, 2);
2090
2091   if (home_object->IsAccessCheckNeeded() &&
2092       !isolate->MayNamedAccess(home_object, name, v8::ACCESS_GET)) {
2093     isolate->ReportFailedAccessCheck(home_object, v8::ACCESS_GET);
2094     RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
2095   }
2096
2097   PrototypeIterator iter(isolate, home_object);
2098   Handle<Object> proto = PrototypeIterator::GetCurrent(iter);
2099   if (!proto->IsJSReceiver()) return isolate->heap()->undefined_value();
2100
2101   LookupIterator it(receiver, name, Handle<JSReceiver>::cast(proto));
2102   Handle<Object> result;
2103   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, Object::GetProperty(&it));
2104   return *result;
2105 }
2106
2107
2108 RUNTIME_FUNCTION(Runtime_IsExtensible) {
2109   SealHandleScope shs(isolate);
2110   DCHECK(args.length() == 1);
2111   CONVERT_ARG_CHECKED(JSObject, obj, 0);
2112   if (obj->IsJSGlobalProxy()) {
2113     PrototypeIterator iter(isolate, obj);
2114     if (iter.IsAtEnd()) return isolate->heap()->false_value();
2115     DCHECK(iter.GetCurrent()->IsJSGlobalObject());
2116     obj = JSObject::cast(iter.GetCurrent());
2117   }
2118   return isolate->heap()->ToBoolean(obj->map()->is_extensible());
2119 }
2120
2121
2122 RUNTIME_FUNCTION(Runtime_RegExpCompile) {
2123   HandleScope scope(isolate);
2124   DCHECK(args.length() == 3);
2125   CONVERT_ARG_HANDLE_CHECKED(JSRegExp, re, 0);
2126   CONVERT_ARG_HANDLE_CHECKED(String, pattern, 1);
2127   CONVERT_ARG_HANDLE_CHECKED(String, flags, 2);
2128   Handle<Object> result;
2129   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2130       isolate, result, RegExpImpl::Compile(re, pattern, flags));
2131   return *result;
2132 }
2133
2134
2135 RUNTIME_FUNCTION(Runtime_CreateApiFunction) {
2136   HandleScope scope(isolate);
2137   DCHECK(args.length() == 2);
2138   CONVERT_ARG_HANDLE_CHECKED(FunctionTemplateInfo, data, 0);
2139   CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
2140   return *isolate->factory()->CreateApiFunction(data, prototype);
2141 }
2142
2143
2144 RUNTIME_FUNCTION(Runtime_IsTemplate) {
2145   SealHandleScope shs(isolate);
2146   DCHECK(args.length() == 1);
2147   CONVERT_ARG_HANDLE_CHECKED(Object, arg, 0);
2148   bool result = arg->IsObjectTemplateInfo() || arg->IsFunctionTemplateInfo();
2149   return isolate->heap()->ToBoolean(result);
2150 }
2151
2152
2153 RUNTIME_FUNCTION(Runtime_GetTemplateField) {
2154   SealHandleScope shs(isolate);
2155   DCHECK(args.length() == 2);
2156   CONVERT_ARG_CHECKED(HeapObject, templ, 0);
2157   CONVERT_SMI_ARG_CHECKED(index, 1);
2158   int offset = index * kPointerSize + HeapObject::kHeaderSize;
2159   InstanceType type = templ->map()->instance_type();
2160   RUNTIME_ASSERT(type == FUNCTION_TEMPLATE_INFO_TYPE ||
2161                  type == OBJECT_TEMPLATE_INFO_TYPE);
2162   RUNTIME_ASSERT(offset > 0);
2163   if (type == FUNCTION_TEMPLATE_INFO_TYPE) {
2164     RUNTIME_ASSERT(offset < FunctionTemplateInfo::kSize);
2165   } else {
2166     RUNTIME_ASSERT(offset < ObjectTemplateInfo::kSize);
2167   }
2168   return *HeapObject::RawField(templ, offset);
2169 }
2170
2171
2172 RUNTIME_FUNCTION(Runtime_DisableAccessChecks) {
2173   HandleScope scope(isolate);
2174   DCHECK(args.length() == 1);
2175   CONVERT_ARG_HANDLE_CHECKED(HeapObject, object, 0);
2176   Handle<Map> old_map(object->map());
2177   bool needs_access_checks = old_map->is_access_check_needed();
2178   if (needs_access_checks) {
2179     // Copy map so it won't interfere constructor's initial map.
2180     Handle<Map> new_map = Map::Copy(old_map);
2181     new_map->set_is_access_check_needed(false);
2182     JSObject::MigrateToMap(Handle<JSObject>::cast(object), new_map);
2183   }
2184   return isolate->heap()->ToBoolean(needs_access_checks);
2185 }
2186
2187
2188 RUNTIME_FUNCTION(Runtime_EnableAccessChecks) {
2189   HandleScope scope(isolate);
2190   DCHECK(args.length() == 1);
2191   CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
2192   Handle<Map> old_map(object->map());
2193   RUNTIME_ASSERT(!old_map->is_access_check_needed());
2194   // Copy map so it won't interfere constructor's initial map.
2195   Handle<Map> new_map = Map::Copy(old_map);
2196   new_map->set_is_access_check_needed(true);
2197   JSObject::MigrateToMap(object, new_map);
2198   return isolate->heap()->undefined_value();
2199 }
2200
2201
2202 static Object* ThrowRedeclarationError(Isolate* isolate, Handle<String> name) {
2203   HandleScope scope(isolate);
2204   Handle<Object> args[1] = { name };
2205   THROW_NEW_ERROR_RETURN_FAILURE(
2206       isolate, NewTypeError("var_redeclaration", HandleVector(args, 1)));
2207 }
2208
2209
2210 // May throw a RedeclarationError.
2211 static Object* DeclareGlobals(Isolate* isolate, Handle<GlobalObject> global,
2212                               Handle<String> name, Handle<Object> value,
2213                               PropertyAttributes attr, bool is_var,
2214                               bool is_const, bool is_function) {
2215   // Do the lookup own properties only, see ES5 erratum.
2216   LookupIterator it(global, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR);
2217   Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
2218   if (!maybe.has_value) return isolate->heap()->exception();
2219
2220   if (it.IsFound()) {
2221     PropertyAttributes old_attributes = maybe.value;
2222     // The name was declared before; check for conflicting re-declarations.
2223     if (is_const) return ThrowRedeclarationError(isolate, name);
2224
2225     // Skip var re-declarations.
2226     if (is_var) return isolate->heap()->undefined_value();
2227
2228     DCHECK(is_function);
2229     if ((old_attributes & DONT_DELETE) != 0) {
2230       // Only allow reconfiguring globals to functions in user code (no
2231       // natives, which are marked as read-only).
2232       DCHECK((attr & READ_ONLY) == 0);
2233
2234       // Check whether we can reconfigure the existing property into a
2235       // function.
2236       PropertyDetails old_details = it.property_details();
2237       // TODO(verwaest): CALLBACKS invalidly includes ExecutableAccessInfo,
2238       // which are actually data properties, not accessor properties.
2239       if (old_details.IsReadOnly() || old_details.IsDontEnum() ||
2240           old_details.type() == CALLBACKS) {
2241         return ThrowRedeclarationError(isolate, name);
2242       }
2243       // If the existing property is not configurable, keep its attributes. Do
2244       attr = old_attributes;
2245     }
2246   }
2247
2248   // Define or redefine own property.
2249   RETURN_FAILURE_ON_EXCEPTION(isolate, JSObject::SetOwnPropertyIgnoreAttributes(
2250                                            global, name, value, attr));
2251
2252   return isolate->heap()->undefined_value();
2253 }
2254
2255
2256 RUNTIME_FUNCTION(Runtime_DeclareGlobals) {
2257   HandleScope scope(isolate);
2258   DCHECK(args.length() == 3);
2259   Handle<GlobalObject> global(isolate->global_object());
2260
2261   CONVERT_ARG_HANDLE_CHECKED(Context, context, 0);
2262   CONVERT_ARG_HANDLE_CHECKED(FixedArray, pairs, 1);
2263   CONVERT_SMI_ARG_CHECKED(flags, 2);
2264
2265   // Traverse the name/value pairs and set the properties.
2266   int length = pairs->length();
2267   for (int i = 0; i < length; i += 2) {
2268     HandleScope scope(isolate);
2269     Handle<String> name(String::cast(pairs->get(i)));
2270     Handle<Object> initial_value(pairs->get(i + 1), isolate);
2271
2272     // We have to declare a global const property. To capture we only
2273     // assign to it when evaluating the assignment for "const x =
2274     // <expr>" the initial value is the hole.
2275     bool is_var = initial_value->IsUndefined();
2276     bool is_const = initial_value->IsTheHole();
2277     bool is_function = initial_value->IsSharedFunctionInfo();
2278     DCHECK(is_var + is_const + is_function == 1);
2279
2280     Handle<Object> value;
2281     if (is_function) {
2282       // Copy the function and update its context. Use it as value.
2283       Handle<SharedFunctionInfo> shared =
2284           Handle<SharedFunctionInfo>::cast(initial_value);
2285       Handle<JSFunction> function =
2286           isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context,
2287                                                                 TENURED);
2288       value = function;
2289     } else {
2290       value = isolate->factory()->undefined_value();
2291     }
2292
2293     // Compute the property attributes. According to ECMA-262,
2294     // the property must be non-configurable except in eval.
2295     bool is_native = DeclareGlobalsNativeFlag::decode(flags);
2296     bool is_eval = DeclareGlobalsEvalFlag::decode(flags);
2297     int attr = NONE;
2298     if (is_const) attr |= READ_ONLY;
2299     if (is_function && is_native) attr |= READ_ONLY;
2300     if (!is_const && !is_eval) attr |= DONT_DELETE;
2301
2302     Object* result = DeclareGlobals(isolate, global, name, value,
2303                                     static_cast<PropertyAttributes>(attr),
2304                                     is_var, is_const, is_function);
2305     if (isolate->has_pending_exception()) return result;
2306   }
2307
2308   return isolate->heap()->undefined_value();
2309 }
2310
2311
2312 RUNTIME_FUNCTION(Runtime_InitializeVarGlobal) {
2313   HandleScope scope(isolate);
2314   // args[0] == name
2315   // args[1] == language_mode
2316   // args[2] == value (optional)
2317
2318   // Determine if we need to assign to the variable if it already
2319   // exists (based on the number of arguments).
2320   RUNTIME_ASSERT(args.length() == 3);
2321
2322   CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
2323   CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 1);
2324   CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
2325
2326   Handle<GlobalObject> global(isolate->context()->global_object());
2327   Handle<Object> result;
2328   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2329       isolate, result, Object::SetProperty(global, name, value, strict_mode));
2330   return *result;
2331 }
2332
2333
2334 RUNTIME_FUNCTION(Runtime_InitializeConstGlobal) {
2335   HandleScope handle_scope(isolate);
2336   // All constants are declared with an initial value. The name
2337   // of the constant is the first argument and the initial value
2338   // is the second.
2339   RUNTIME_ASSERT(args.length() == 2);
2340   CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
2341   CONVERT_ARG_HANDLE_CHECKED(Object, value, 1);
2342
2343   Handle<GlobalObject> global = isolate->global_object();
2344
2345   // Lookup the property as own on the global object.
2346   LookupIterator it(global, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR);
2347   Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
2348   DCHECK(maybe.has_value);
2349   PropertyAttributes old_attributes = maybe.value;
2350
2351   PropertyAttributes attr =
2352       static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY);
2353   // Set the value if the property is either missing, or the property attributes
2354   // allow setting the value without invoking an accessor.
2355   if (it.IsFound()) {
2356     // Ignore if we can't reconfigure the value.
2357     if ((old_attributes & DONT_DELETE) != 0) {
2358       if ((old_attributes & READ_ONLY) != 0 ||
2359           it.state() == LookupIterator::ACCESSOR) {
2360         return *value;
2361       }
2362       attr = static_cast<PropertyAttributes>(old_attributes | READ_ONLY);
2363     }
2364   }
2365
2366   RETURN_FAILURE_ON_EXCEPTION(isolate, JSObject::SetOwnPropertyIgnoreAttributes(
2367                                            global, name, value, attr));
2368
2369   return *value;
2370 }
2371
2372
2373 RUNTIME_FUNCTION(Runtime_DeclareLookupSlot) {
2374   HandleScope scope(isolate);
2375   DCHECK(args.length() == 4);
2376
2377   // Declarations are always made in a function, native, or global context. In
2378   // the case of eval code, the context passed is the context of the caller,
2379   // which may be some nested context and not the declaration context.
2380   CONVERT_ARG_HANDLE_CHECKED(Context, context_arg, 0);
2381   Handle<Context> context(context_arg->declaration_context());
2382   CONVERT_ARG_HANDLE_CHECKED(String, name, 1);
2383   CONVERT_SMI_ARG_CHECKED(attr_arg, 2);
2384   PropertyAttributes attr = static_cast<PropertyAttributes>(attr_arg);
2385   RUNTIME_ASSERT(attr == READ_ONLY || attr == NONE);
2386   CONVERT_ARG_HANDLE_CHECKED(Object, initial_value, 3);
2387
2388   // TODO(verwaest): Unify the encoding indicating "var" with DeclareGlobals.
2389   bool is_var = *initial_value == NULL;
2390   bool is_const = initial_value->IsTheHole();
2391   bool is_function = initial_value->IsJSFunction();
2392   DCHECK(is_var + is_const + is_function == 1);
2393
2394   int index;
2395   PropertyAttributes attributes;
2396   ContextLookupFlags flags = DONT_FOLLOW_CHAINS;
2397   BindingFlags binding_flags;
2398   Handle<Object> holder =
2399       context->Lookup(name, flags, &index, &attributes, &binding_flags);
2400
2401   Handle<JSObject> object;
2402   Handle<Object> value =
2403       is_function ? initial_value
2404                   : Handle<Object>::cast(isolate->factory()->undefined_value());
2405
2406   // TODO(verwaest): This case should probably not be covered by this function,
2407   // but by DeclareGlobals instead.
2408   if ((attributes != ABSENT && holder->IsJSGlobalObject()) ||
2409       (context_arg->has_extension() &&
2410        context_arg->extension()->IsJSGlobalObject())) {
2411     return DeclareGlobals(isolate, Handle<JSGlobalObject>::cast(holder), name,
2412                           value, attr, is_var, is_const, is_function);
2413   }
2414
2415   if (attributes != ABSENT) {
2416     // The name was declared before; check for conflicting re-declarations.
2417     if (is_const || (attributes & READ_ONLY) != 0) {
2418       return ThrowRedeclarationError(isolate, name);
2419     }
2420
2421     // Skip var re-declarations.
2422     if (is_var) return isolate->heap()->undefined_value();
2423
2424     DCHECK(is_function);
2425     if (index >= 0) {
2426       DCHECK(holder.is_identical_to(context));
2427       context->set(index, *initial_value);
2428       return isolate->heap()->undefined_value();
2429     }
2430
2431     object = Handle<JSObject>::cast(holder);
2432
2433   } else if (context->has_extension()) {
2434     object = handle(JSObject::cast(context->extension()));
2435     DCHECK(object->IsJSContextExtensionObject() || object->IsJSGlobalObject());
2436   } else {
2437     DCHECK(context->IsFunctionContext());
2438     object =
2439         isolate->factory()->NewJSObject(isolate->context_extension_function());
2440     context->set_extension(*object);
2441   }
2442
2443   RETURN_FAILURE_ON_EXCEPTION(isolate, JSObject::SetOwnPropertyIgnoreAttributes(
2444                                            object, name, value, attr));
2445
2446   return isolate->heap()->undefined_value();
2447 }
2448
2449
2450 RUNTIME_FUNCTION(Runtime_InitializeLegacyConstLookupSlot) {
2451   HandleScope scope(isolate);
2452   DCHECK(args.length() == 3);
2453
2454   CONVERT_ARG_HANDLE_CHECKED(Object, value, 0);
2455   DCHECK(!value->IsTheHole());
2456   // Initializations are always done in a function or native context.
2457   CONVERT_ARG_HANDLE_CHECKED(Context, context_arg, 1);
2458   Handle<Context> context(context_arg->declaration_context());
2459   CONVERT_ARG_HANDLE_CHECKED(String, name, 2);
2460
2461   int index;
2462   PropertyAttributes attributes;
2463   ContextLookupFlags flags = DONT_FOLLOW_CHAINS;
2464   BindingFlags binding_flags;
2465   Handle<Object> holder =
2466       context->Lookup(name, flags, &index, &attributes, &binding_flags);
2467
2468   if (index >= 0) {
2469     DCHECK(holder->IsContext());
2470     // Property was found in a context.  Perform the assignment if the constant
2471     // was uninitialized.
2472     Handle<Context> context = Handle<Context>::cast(holder);
2473     DCHECK((attributes & READ_ONLY) != 0);
2474     if (context->get(index)->IsTheHole()) context->set(index, *value);
2475     return *value;
2476   }
2477
2478   PropertyAttributes attr =
2479       static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY);
2480
2481   // Strict mode handling not needed (legacy const is disallowed in strict
2482   // mode).
2483
2484   // The declared const was configurable, and may have been deleted in the
2485   // meanwhile. If so, re-introduce the variable in the context extension.
2486   DCHECK(context_arg->has_extension());
2487   if (attributes == ABSENT) {
2488     holder = handle(context_arg->extension(), isolate);
2489   } else {
2490     // For JSContextExtensionObjects, the initializer can be run multiple times
2491     // if in a for loop: for (var i = 0; i < 2; i++) { const x = i; }. Only the
2492     // first assignment should go through. For JSGlobalObjects, additionally any
2493     // code can run in between that modifies the declared property.
2494     DCHECK(holder->IsJSGlobalObject() || holder->IsJSContextExtensionObject());
2495
2496     LookupIterator it(holder, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR);
2497     Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
2498     if (!maybe.has_value) return isolate->heap()->exception();
2499     PropertyAttributes old_attributes = maybe.value;
2500
2501     // Ignore if we can't reconfigure the value.
2502     if ((old_attributes & DONT_DELETE) != 0) {
2503       if ((old_attributes & READ_ONLY) != 0 ||
2504           it.state() == LookupIterator::ACCESSOR) {
2505         return *value;
2506       }
2507       attr = static_cast<PropertyAttributes>(old_attributes | READ_ONLY);
2508     }
2509   }
2510
2511   RETURN_FAILURE_ON_EXCEPTION(
2512       isolate, JSObject::SetOwnPropertyIgnoreAttributes(
2513                    Handle<JSObject>::cast(holder), name, value, attr));
2514
2515   return *value;
2516 }
2517
2518
2519 RUNTIME_FUNCTION(Runtime_OptimizeObjectForAddingMultipleProperties) {
2520   HandleScope scope(isolate);
2521   DCHECK(args.length() == 2);
2522   CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
2523   CONVERT_SMI_ARG_CHECKED(properties, 1);
2524   // Conservative upper limit to prevent fuzz tests from going OOM.
2525   RUNTIME_ASSERT(properties <= 100000);
2526   if (object->HasFastProperties() && !object->IsJSGlobalProxy()) {
2527     JSObject::NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, properties);
2528   }
2529   return *object;
2530 }
2531
2532
2533 RUNTIME_FUNCTION(Runtime_RegExpExecRT) {
2534   HandleScope scope(isolate);
2535   DCHECK(args.length() == 4);
2536   CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0);
2537   CONVERT_ARG_HANDLE_CHECKED(String, subject, 1);
2538   CONVERT_INT32_ARG_CHECKED(index, 2);
2539   CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 3);
2540   // Due to the way the JS calls are constructed this must be less than the
2541   // length of a string, i.e. it is always a Smi.  We check anyway for security.
2542   RUNTIME_ASSERT(index >= 0);
2543   RUNTIME_ASSERT(index <= subject->length());
2544   isolate->counters()->regexp_entry_runtime()->Increment();
2545   Handle<Object> result;
2546   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2547       isolate, result,
2548       RegExpImpl::Exec(regexp, subject, index, last_match_info));
2549   return *result;
2550 }
2551
2552
2553 RUNTIME_FUNCTION(Runtime_RegExpConstructResult) {
2554   HandleScope handle_scope(isolate);
2555   DCHECK(args.length() == 3);
2556   CONVERT_SMI_ARG_CHECKED(size, 0);
2557   RUNTIME_ASSERT(size >= 0 && size <= FixedArray::kMaxLength);
2558   CONVERT_ARG_HANDLE_CHECKED(Object, index, 1);
2559   CONVERT_ARG_HANDLE_CHECKED(Object, input, 2);
2560   Handle<FixedArray> elements =  isolate->factory()->NewFixedArray(size);
2561   Handle<Map> regexp_map(isolate->native_context()->regexp_result_map());
2562   Handle<JSObject> object =
2563       isolate->factory()->NewJSObjectFromMap(regexp_map, NOT_TENURED, false);
2564   Handle<JSArray> array = Handle<JSArray>::cast(object);
2565   array->set_elements(*elements);
2566   array->set_length(Smi::FromInt(size));
2567   // Write in-object properties after the length of the array.
2568   array->InObjectPropertyAtPut(JSRegExpResult::kIndexIndex, *index);
2569   array->InObjectPropertyAtPut(JSRegExpResult::kInputIndex, *input);
2570   return *array;
2571 }
2572
2573
2574 RUNTIME_FUNCTION(Runtime_RegExpInitializeObject) {
2575   HandleScope scope(isolate);
2576   DCHECK(args.length() == 6);
2577   CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0);
2578   CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
2579   // If source is the empty string we set it to "(?:)" instead as
2580   // suggested by ECMA-262, 5th, section 15.10.4.1.
2581   if (source->length() == 0) source = isolate->factory()->query_colon_string();
2582
2583   CONVERT_ARG_HANDLE_CHECKED(Object, global, 2);
2584   if (!global->IsTrue()) global = isolate->factory()->false_value();
2585
2586   CONVERT_ARG_HANDLE_CHECKED(Object, ignoreCase, 3);
2587   if (!ignoreCase->IsTrue()) ignoreCase = isolate->factory()->false_value();
2588
2589   CONVERT_ARG_HANDLE_CHECKED(Object, multiline, 4);
2590   if (!multiline->IsTrue()) multiline = isolate->factory()->false_value();
2591
2592   CONVERT_ARG_HANDLE_CHECKED(Object, sticky, 5);
2593   if (!sticky->IsTrue()) sticky = isolate->factory()->false_value();
2594
2595   Map* map = regexp->map();
2596   Object* constructor = map->constructor();
2597   if (!FLAG_harmony_regexps &&
2598       constructor->IsJSFunction() &&
2599       JSFunction::cast(constructor)->initial_map() == map) {
2600     // If we still have the original map, set in-object properties directly.
2601     regexp->InObjectPropertyAtPut(JSRegExp::kSourceFieldIndex, *source);
2602     // Both true and false are immovable immortal objects so no need for write
2603     // barrier.
2604     regexp->InObjectPropertyAtPut(
2605         JSRegExp::kGlobalFieldIndex, *global, SKIP_WRITE_BARRIER);
2606     regexp->InObjectPropertyAtPut(
2607         JSRegExp::kIgnoreCaseFieldIndex, *ignoreCase, SKIP_WRITE_BARRIER);
2608     regexp->InObjectPropertyAtPut(
2609         JSRegExp::kMultilineFieldIndex, *multiline, SKIP_WRITE_BARRIER);
2610     regexp->InObjectPropertyAtPut(
2611         JSRegExp::kLastIndexFieldIndex, Smi::FromInt(0), SKIP_WRITE_BARRIER);
2612     return *regexp;
2613   }
2614
2615   // Map has changed, so use generic, but slower, method.  We also end here if
2616   // the --harmony-regexp flag is set, because the initial map does not have
2617   // space for the 'sticky' flag, since it is from the snapshot, but must work
2618   // both with and without --harmony-regexp.  When sticky comes out from under
2619   // the flag, we will be able to use the fast initial map.
2620   PropertyAttributes final =
2621       static_cast<PropertyAttributes>(READ_ONLY | DONT_ENUM | DONT_DELETE);
2622   PropertyAttributes writable =
2623       static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
2624   Handle<Object> zero(Smi::FromInt(0), isolate);
2625   Factory* factory = isolate->factory();
2626   JSObject::SetOwnPropertyIgnoreAttributes(
2627       regexp, factory->source_string(), source, final).Check();
2628   JSObject::SetOwnPropertyIgnoreAttributes(
2629       regexp, factory->global_string(), global, final).Check();
2630   JSObject::SetOwnPropertyIgnoreAttributes(
2631       regexp, factory->ignore_case_string(), ignoreCase, final).Check();
2632   JSObject::SetOwnPropertyIgnoreAttributes(
2633       regexp, factory->multiline_string(), multiline, final).Check();
2634   if (FLAG_harmony_regexps) {
2635     JSObject::SetOwnPropertyIgnoreAttributes(
2636         regexp, factory->sticky_string(), sticky, final).Check();
2637   }
2638   JSObject::SetOwnPropertyIgnoreAttributes(
2639       regexp, factory->last_index_string(), zero, writable).Check();
2640   return *regexp;
2641 }
2642
2643
2644 RUNTIME_FUNCTION(Runtime_FinishArrayPrototypeSetup) {
2645   HandleScope scope(isolate);
2646   DCHECK(args.length() == 1);
2647   CONVERT_ARG_HANDLE_CHECKED(JSArray, prototype, 0);
2648   Object* length = prototype->length();
2649   RUNTIME_ASSERT(length->IsSmi() && Smi::cast(length)->value() == 0);
2650   RUNTIME_ASSERT(prototype->HasFastSmiOrObjectElements());
2651   // This is necessary to enable fast checks for absence of elements
2652   // on Array.prototype and below.
2653   prototype->set_elements(isolate->heap()->empty_fixed_array());
2654   return Smi::FromInt(0);
2655 }
2656
2657
2658 static void InstallBuiltin(Isolate* isolate,
2659                            Handle<JSObject> holder,
2660                            const char* name,
2661                            Builtins::Name builtin_name) {
2662   Handle<String> key = isolate->factory()->InternalizeUtf8String(name);
2663   Handle<Code> code(isolate->builtins()->builtin(builtin_name));
2664   Handle<JSFunction> optimized =
2665       isolate->factory()->NewFunctionWithoutPrototype(key, code);
2666   optimized->shared()->DontAdaptArguments();
2667   JSObject::AddProperty(holder, key, optimized, NONE);
2668 }
2669
2670
2671 RUNTIME_FUNCTION(Runtime_SpecialArrayFunctions) {
2672   HandleScope scope(isolate);
2673   DCHECK(args.length() == 0);
2674   Handle<JSObject> holder =
2675       isolate->factory()->NewJSObject(isolate->object_function());
2676
2677   InstallBuiltin(isolate, holder, "pop", Builtins::kArrayPop);
2678   InstallBuiltin(isolate, holder, "push", Builtins::kArrayPush);
2679   InstallBuiltin(isolate, holder, "shift", Builtins::kArrayShift);
2680   InstallBuiltin(isolate, holder, "unshift", Builtins::kArrayUnshift);
2681   InstallBuiltin(isolate, holder, "slice", Builtins::kArraySlice);
2682   InstallBuiltin(isolate, holder, "splice", Builtins::kArraySplice);
2683   InstallBuiltin(isolate, holder, "concat", Builtins::kArrayConcat);
2684
2685   return *holder;
2686 }
2687
2688
2689 RUNTIME_FUNCTION(Runtime_IsSloppyModeFunction) {
2690   SealHandleScope shs(isolate);
2691   DCHECK(args.length() == 1);
2692   CONVERT_ARG_CHECKED(JSReceiver, callable, 0);
2693   if (!callable->IsJSFunction()) {
2694     HandleScope scope(isolate);
2695     Handle<Object> delegate;
2696     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2697         isolate, delegate,
2698         Execution::TryGetFunctionDelegate(
2699             isolate, Handle<JSReceiver>(callable)));
2700     callable = JSFunction::cast(*delegate);
2701   }
2702   JSFunction* function = JSFunction::cast(callable);
2703   SharedFunctionInfo* shared = function->shared();
2704   return isolate->heap()->ToBoolean(shared->strict_mode() == SLOPPY);
2705 }
2706
2707
2708 RUNTIME_FUNCTION(Runtime_GetDefaultReceiver) {
2709   SealHandleScope shs(isolate);
2710   DCHECK(args.length() == 1);
2711   CONVERT_ARG_CHECKED(JSReceiver, callable, 0);
2712
2713   if (!callable->IsJSFunction()) {
2714     HandleScope scope(isolate);
2715     Handle<Object> delegate;
2716     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2717         isolate, delegate,
2718         Execution::TryGetFunctionDelegate(
2719             isolate, Handle<JSReceiver>(callable)));
2720     callable = JSFunction::cast(*delegate);
2721   }
2722   JSFunction* function = JSFunction::cast(callable);
2723
2724   SharedFunctionInfo* shared = function->shared();
2725   if (shared->native() || shared->strict_mode() == STRICT) {
2726     return isolate->heap()->undefined_value();
2727   }
2728   // Returns undefined for strict or native functions, or
2729   // the associated global receiver for "normal" functions.
2730
2731   return function->global_proxy();
2732 }
2733
2734
2735 RUNTIME_FUNCTION(Runtime_MaterializeRegExpLiteral) {
2736   HandleScope scope(isolate);
2737   DCHECK(args.length() == 4);
2738   CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
2739   CONVERT_SMI_ARG_CHECKED(index, 1);
2740   CONVERT_ARG_HANDLE_CHECKED(String, pattern, 2);
2741   CONVERT_ARG_HANDLE_CHECKED(String, flags, 3);
2742
2743   // Get the RegExp function from the context in the literals array.
2744   // This is the RegExp function from the context in which the
2745   // function was created.  We do not use the RegExp function from the
2746   // current native context because this might be the RegExp function
2747   // from another context which we should not have access to.
2748   Handle<JSFunction> constructor =
2749       Handle<JSFunction>(
2750           JSFunction::NativeContextFromLiterals(*literals)->regexp_function());
2751   // Compute the regular expression literal.
2752   Handle<Object> regexp;
2753   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2754       isolate, regexp,
2755       RegExpImpl::CreateRegExpLiteral(constructor, pattern, flags));
2756   literals->set(index, *regexp);
2757   return *regexp;
2758 }
2759
2760
2761 RUNTIME_FUNCTION(Runtime_FunctionGetName) {
2762   SealHandleScope shs(isolate);
2763   DCHECK(args.length() == 1);
2764
2765   CONVERT_ARG_CHECKED(JSFunction, f, 0);
2766   return f->shared()->name();
2767 }
2768
2769
2770 RUNTIME_FUNCTION(Runtime_FunctionSetName) {
2771   SealHandleScope shs(isolate);
2772   DCHECK(args.length() == 2);
2773
2774   CONVERT_ARG_CHECKED(JSFunction, f, 0);
2775   CONVERT_ARG_CHECKED(String, name, 1);
2776   f->shared()->set_name(name);
2777   return isolate->heap()->undefined_value();
2778 }
2779
2780
2781 RUNTIME_FUNCTION(Runtime_FunctionNameShouldPrintAsAnonymous) {
2782   SealHandleScope shs(isolate);
2783   DCHECK(args.length() == 1);
2784   CONVERT_ARG_CHECKED(JSFunction, f, 0);
2785   return isolate->heap()->ToBoolean(
2786       f->shared()->name_should_print_as_anonymous());
2787 }
2788
2789
2790 RUNTIME_FUNCTION(Runtime_FunctionMarkNameShouldPrintAsAnonymous) {
2791   SealHandleScope shs(isolate);
2792   DCHECK(args.length() == 1);
2793   CONVERT_ARG_CHECKED(JSFunction, f, 0);
2794   f->shared()->set_name_should_print_as_anonymous(true);
2795   return isolate->heap()->undefined_value();
2796 }
2797
2798
2799 RUNTIME_FUNCTION(Runtime_FunctionIsGenerator) {
2800   SealHandleScope shs(isolate);
2801   DCHECK(args.length() == 1);
2802   CONVERT_ARG_CHECKED(JSFunction, f, 0);
2803   return isolate->heap()->ToBoolean(f->shared()->is_generator());
2804 }
2805
2806
2807 RUNTIME_FUNCTION(Runtime_FunctionIsArrow) {
2808   SealHandleScope shs(isolate);
2809   DCHECK(args.length() == 1);
2810   CONVERT_ARG_CHECKED(JSFunction, f, 0);
2811   return isolate->heap()->ToBoolean(f->shared()->is_arrow());
2812 }
2813
2814
2815 RUNTIME_FUNCTION(Runtime_FunctionIsConciseMethod) {
2816   SealHandleScope shs(isolate);
2817   DCHECK(args.length() == 1);
2818   CONVERT_ARG_CHECKED(JSFunction, f, 0);
2819   return isolate->heap()->ToBoolean(f->shared()->is_concise_method());
2820 }
2821
2822
2823 RUNTIME_FUNCTION(Runtime_FunctionRemovePrototype) {
2824   SealHandleScope shs(isolate);
2825   DCHECK(args.length() == 1);
2826
2827   CONVERT_ARG_CHECKED(JSFunction, f, 0);
2828   RUNTIME_ASSERT(f->RemovePrototype());
2829
2830   return isolate->heap()->undefined_value();
2831 }
2832
2833
2834 RUNTIME_FUNCTION(Runtime_FunctionGetScript) {
2835   HandleScope scope(isolate);
2836   DCHECK(args.length() == 1);
2837
2838   CONVERT_ARG_CHECKED(JSFunction, fun, 0);
2839   Handle<Object> script = Handle<Object>(fun->shared()->script(), isolate);
2840   if (!script->IsScript()) return isolate->heap()->undefined_value();
2841
2842   return *Script::GetWrapper(Handle<Script>::cast(script));
2843 }
2844
2845
2846 RUNTIME_FUNCTION(Runtime_FunctionGetSourceCode) {
2847   HandleScope scope(isolate);
2848   DCHECK(args.length() == 1);
2849
2850   CONVERT_ARG_HANDLE_CHECKED(JSFunction, f, 0);
2851   Handle<SharedFunctionInfo> shared(f->shared());
2852   return *shared->GetSourceCode();
2853 }
2854
2855
2856 RUNTIME_FUNCTION(Runtime_FunctionGetScriptSourcePosition) {
2857   SealHandleScope shs(isolate);
2858   DCHECK(args.length() == 1);
2859
2860   CONVERT_ARG_CHECKED(JSFunction, fun, 0);
2861   int pos = fun->shared()->start_position();
2862   return Smi::FromInt(pos);
2863 }
2864
2865
2866 RUNTIME_FUNCTION(Runtime_FunctionGetPositionForOffset) {
2867   SealHandleScope shs(isolate);
2868   DCHECK(args.length() == 2);
2869
2870   CONVERT_ARG_CHECKED(Code, code, 0);
2871   CONVERT_NUMBER_CHECKED(int, offset, Int32, args[1]);
2872
2873   RUNTIME_ASSERT(0 <= offset && offset < code->Size());
2874
2875   Address pc = code->address() + offset;
2876   return Smi::FromInt(code->SourcePosition(pc));
2877 }
2878
2879
2880 RUNTIME_FUNCTION(Runtime_FunctionSetInstanceClassName) {
2881   SealHandleScope shs(isolate);
2882   DCHECK(args.length() == 2);
2883
2884   CONVERT_ARG_CHECKED(JSFunction, fun, 0);
2885   CONVERT_ARG_CHECKED(String, name, 1);
2886   fun->SetInstanceClassName(name);
2887   return isolate->heap()->undefined_value();
2888 }
2889
2890
2891 RUNTIME_FUNCTION(Runtime_FunctionSetLength) {
2892   SealHandleScope shs(isolate);
2893   DCHECK(args.length() == 2);
2894
2895   CONVERT_ARG_CHECKED(JSFunction, fun, 0);
2896   CONVERT_SMI_ARG_CHECKED(length, 1);
2897   RUNTIME_ASSERT((length & 0xC0000000) == 0xC0000000 ||
2898                  (length & 0xC0000000) == 0x0);
2899   fun->shared()->set_length(length);
2900   return isolate->heap()->undefined_value();
2901 }
2902
2903
2904 RUNTIME_FUNCTION(Runtime_FunctionSetPrototype) {
2905   HandleScope scope(isolate);
2906   DCHECK(args.length() == 2);
2907
2908   CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
2909   CONVERT_ARG_HANDLE_CHECKED(Object, value, 1);
2910   RUNTIME_ASSERT(fun->should_have_prototype());
2911   Accessors::FunctionSetPrototype(fun, value);
2912   return args[0];  // return TOS
2913 }
2914
2915
2916 RUNTIME_FUNCTION(Runtime_FunctionIsAPIFunction) {
2917   SealHandleScope shs(isolate);
2918   DCHECK(args.length() == 1);
2919
2920   CONVERT_ARG_CHECKED(JSFunction, f, 0);
2921   return isolate->heap()->ToBoolean(f->shared()->IsApiFunction());
2922 }
2923
2924
2925 RUNTIME_FUNCTION(Runtime_FunctionIsBuiltin) {
2926   SealHandleScope shs(isolate);
2927   DCHECK(args.length() == 1);
2928
2929   CONVERT_ARG_CHECKED(JSFunction, f, 0);
2930   return isolate->heap()->ToBoolean(f->IsBuiltin());
2931 }
2932
2933
2934 RUNTIME_FUNCTION(Runtime_SetCode) {
2935   HandleScope scope(isolate);
2936   DCHECK(args.length() == 2);
2937
2938   CONVERT_ARG_HANDLE_CHECKED(JSFunction, target, 0);
2939   CONVERT_ARG_HANDLE_CHECKED(JSFunction, source, 1);
2940
2941   Handle<SharedFunctionInfo> target_shared(target->shared());
2942   Handle<SharedFunctionInfo> source_shared(source->shared());
2943   RUNTIME_ASSERT(!source_shared->bound());
2944
2945   if (!Compiler::EnsureCompiled(source, KEEP_EXCEPTION)) {
2946     return isolate->heap()->exception();
2947   }
2948
2949   // Mark both, the source and the target, as un-flushable because the
2950   // shared unoptimized code makes them impossible to enqueue in a list.
2951   DCHECK(target_shared->code()->gc_metadata() == NULL);
2952   DCHECK(source_shared->code()->gc_metadata() == NULL);
2953   target_shared->set_dont_flush(true);
2954   source_shared->set_dont_flush(true);
2955
2956   // Set the code, scope info, formal parameter count, and the length
2957   // of the target shared function info.
2958   target_shared->ReplaceCode(source_shared->code());
2959   target_shared->set_scope_info(source_shared->scope_info());
2960   target_shared->set_length(source_shared->length());
2961   target_shared->set_feedback_vector(source_shared->feedback_vector());
2962   target_shared->set_formal_parameter_count(
2963       source_shared->formal_parameter_count());
2964   target_shared->set_script(source_shared->script());
2965   target_shared->set_start_position_and_type(
2966       source_shared->start_position_and_type());
2967   target_shared->set_end_position(source_shared->end_position());
2968   bool was_native = target_shared->native();
2969   target_shared->set_compiler_hints(source_shared->compiler_hints());
2970   target_shared->set_native(was_native);
2971   target_shared->set_profiler_ticks(source_shared->profiler_ticks());
2972
2973   // Set the code of the target function.
2974   target->ReplaceCode(source_shared->code());
2975   DCHECK(target->next_function_link()->IsUndefined());
2976
2977   // Make sure we get a fresh copy of the literal vector to avoid cross
2978   // context contamination.
2979   Handle<Context> context(source->context());
2980   int number_of_literals = source->NumberOfLiterals();
2981   Handle<FixedArray> literals =
2982       isolate->factory()->NewFixedArray(number_of_literals, TENURED);
2983   if (number_of_literals > 0) {
2984     literals->set(JSFunction::kLiteralNativeContextIndex,
2985                   context->native_context());
2986   }
2987   target->set_context(*context);
2988   target->set_literals(*literals);
2989
2990   if (isolate->logger()->is_logging_code_events() ||
2991       isolate->cpu_profiler()->is_profiling()) {
2992     isolate->logger()->LogExistingFunction(
2993         source_shared, Handle<Code>(source_shared->code()));
2994   }
2995
2996   return *target;
2997 }
2998
2999
3000 RUNTIME_FUNCTION(Runtime_CreateJSGeneratorObject) {
3001   HandleScope scope(isolate);
3002   DCHECK(args.length() == 0);
3003
3004   JavaScriptFrameIterator it(isolate);
3005   JavaScriptFrame* frame = it.frame();
3006   Handle<JSFunction> function(frame->function());
3007   RUNTIME_ASSERT(function->shared()->is_generator());
3008
3009   Handle<JSGeneratorObject> generator;
3010   if (frame->IsConstructor()) {
3011     generator = handle(JSGeneratorObject::cast(frame->receiver()));
3012   } else {
3013     generator = isolate->factory()->NewJSGeneratorObject(function);
3014   }
3015   generator->set_function(*function);
3016   generator->set_context(Context::cast(frame->context()));
3017   generator->set_receiver(frame->receiver());
3018   generator->set_continuation(0);
3019   generator->set_operand_stack(isolate->heap()->empty_fixed_array());
3020   generator->set_stack_handler_index(-1);
3021
3022   return *generator;
3023 }
3024
3025
3026 RUNTIME_FUNCTION(Runtime_SuspendJSGeneratorObject) {
3027   HandleScope handle_scope(isolate);
3028   DCHECK(args.length() == 1);
3029   CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator_object, 0);
3030
3031   JavaScriptFrameIterator stack_iterator(isolate);
3032   JavaScriptFrame* frame = stack_iterator.frame();
3033   RUNTIME_ASSERT(frame->function()->shared()->is_generator());
3034   DCHECK_EQ(frame->function(), generator_object->function());
3035
3036   // The caller should have saved the context and continuation already.
3037   DCHECK_EQ(generator_object->context(), Context::cast(frame->context()));
3038   DCHECK_LT(0, generator_object->continuation());
3039
3040   // We expect there to be at least two values on the operand stack: the return
3041   // value of the yield expression, and the argument to this runtime call.
3042   // Neither of those should be saved.
3043   int operands_count = frame->ComputeOperandsCount();
3044   DCHECK_GE(operands_count, 2);
3045   operands_count -= 2;
3046
3047   if (operands_count == 0) {
3048     // Although it's semantically harmless to call this function with an
3049     // operands_count of zero, it is also unnecessary.
3050     DCHECK_EQ(generator_object->operand_stack(),
3051               isolate->heap()->empty_fixed_array());
3052     DCHECK_EQ(generator_object->stack_handler_index(), -1);
3053     // If there are no operands on the stack, there shouldn't be a handler
3054     // active either.
3055     DCHECK(!frame->HasHandler());
3056   } else {
3057     int stack_handler_index = -1;
3058     Handle<FixedArray> operand_stack =
3059         isolate->factory()->NewFixedArray(operands_count);
3060     frame->SaveOperandStack(*operand_stack, &stack_handler_index);
3061     generator_object->set_operand_stack(*operand_stack);
3062     generator_object->set_stack_handler_index(stack_handler_index);
3063   }
3064
3065   return isolate->heap()->undefined_value();
3066 }
3067
3068
3069 // Note that this function is the slow path for resuming generators.  It is only
3070 // called if the suspended activation had operands on the stack, stack handlers
3071 // needing rewinding, or if the resume should throw an exception.  The fast path
3072 // is handled directly in FullCodeGenerator::EmitGeneratorResume(), which is
3073 // inlined into GeneratorNext and GeneratorThrow.  EmitGeneratorResumeResume is
3074 // called in any case, as it needs to reconstruct the stack frame and make space
3075 // for arguments and operands.
3076 RUNTIME_FUNCTION(Runtime_ResumeJSGeneratorObject) {
3077   SealHandleScope shs(isolate);
3078   DCHECK(args.length() == 3);
3079   CONVERT_ARG_CHECKED(JSGeneratorObject, generator_object, 0);
3080   CONVERT_ARG_CHECKED(Object, value, 1);
3081   CONVERT_SMI_ARG_CHECKED(resume_mode_int, 2);
3082   JavaScriptFrameIterator stack_iterator(isolate);
3083   JavaScriptFrame* frame = stack_iterator.frame();
3084
3085   DCHECK_EQ(frame->function(), generator_object->function());
3086   DCHECK(frame->function()->is_compiled());
3087
3088   STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting < 0);
3089   STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed == 0);
3090
3091   Address pc = generator_object->function()->code()->instruction_start();
3092   int offset = generator_object->continuation();
3093   DCHECK(offset > 0);
3094   frame->set_pc(pc + offset);
3095   if (FLAG_enable_ool_constant_pool) {
3096     frame->set_constant_pool(
3097         generator_object->function()->code()->constant_pool());
3098   }
3099   generator_object->set_continuation(JSGeneratorObject::kGeneratorExecuting);
3100
3101   FixedArray* operand_stack = generator_object->operand_stack();
3102   int operands_count = operand_stack->length();
3103   if (operands_count != 0) {
3104     frame->RestoreOperandStack(operand_stack,
3105                                generator_object->stack_handler_index());
3106     generator_object->set_operand_stack(isolate->heap()->empty_fixed_array());
3107     generator_object->set_stack_handler_index(-1);
3108   }
3109
3110   JSGeneratorObject::ResumeMode resume_mode =
3111       static_cast<JSGeneratorObject::ResumeMode>(resume_mode_int);
3112   switch (resume_mode) {
3113     case JSGeneratorObject::NEXT:
3114       return value;
3115     case JSGeneratorObject::THROW:
3116       return isolate->Throw(value);
3117   }
3118
3119   UNREACHABLE();
3120   return isolate->ThrowIllegalOperation();
3121 }
3122
3123
3124 RUNTIME_FUNCTION(Runtime_ThrowGeneratorStateError) {
3125   HandleScope scope(isolate);
3126   DCHECK(args.length() == 1);
3127   CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
3128   int continuation = generator->continuation();
3129   const char* message = continuation == JSGeneratorObject::kGeneratorClosed ?
3130       "generator_finished" : "generator_running";
3131   Vector< Handle<Object> > argv = HandleVector<Object>(NULL, 0);
3132   THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewError(message, argv));
3133 }
3134
3135
3136 RUNTIME_FUNCTION(Runtime_ObjectFreeze) {
3137   HandleScope scope(isolate);
3138   DCHECK(args.length() == 1);
3139   CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
3140
3141   // %ObjectFreeze is a fast path and these cases are handled elsewhere.
3142   RUNTIME_ASSERT(!object->HasSloppyArgumentsElements() &&
3143                  !object->map()->is_observed() &&
3144                  !object->IsJSProxy());
3145
3146   Handle<Object> result;
3147   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, JSObject::Freeze(object));
3148   return *result;
3149 }
3150
3151
3152 RUNTIME_FUNCTION(Runtime_StringCharCodeAtRT) {
3153   HandleScope handle_scope(isolate);
3154   DCHECK(args.length() == 2);
3155
3156   CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
3157   CONVERT_NUMBER_CHECKED(uint32_t, i, Uint32, args[1]);
3158
3159   // Flatten the string.  If someone wants to get a char at an index
3160   // in a cons string, it is likely that more indices will be
3161   // accessed.
3162   subject = String::Flatten(subject);
3163
3164   if (i >= static_cast<uint32_t>(subject->length())) {
3165     return isolate->heap()->nan_value();
3166   }
3167
3168   return Smi::FromInt(subject->Get(i));
3169 }
3170
3171
3172 RUNTIME_FUNCTION(Runtime_CharFromCode) {
3173   HandleScope handlescope(isolate);
3174   DCHECK(args.length() == 1);
3175   if (args[0]->IsNumber()) {
3176     CONVERT_NUMBER_CHECKED(uint32_t, code, Uint32, args[0]);
3177     code &= 0xffff;
3178     return *isolate->factory()->LookupSingleCharacterStringFromCode(code);
3179   }
3180   return isolate->heap()->empty_string();
3181 }
3182
3183
3184 class FixedArrayBuilder {
3185  public:
3186   explicit FixedArrayBuilder(Isolate* isolate, int initial_capacity)
3187       : array_(isolate->factory()->NewFixedArrayWithHoles(initial_capacity)),
3188         length_(0),
3189         has_non_smi_elements_(false) {
3190     // Require a non-zero initial size. Ensures that doubling the size to
3191     // extend the array will work.
3192     DCHECK(initial_capacity > 0);
3193   }
3194
3195   explicit FixedArrayBuilder(Handle<FixedArray> backing_store)
3196       : array_(backing_store),
3197         length_(0),
3198         has_non_smi_elements_(false) {
3199     // Require a non-zero initial size. Ensures that doubling the size to
3200     // extend the array will work.
3201     DCHECK(backing_store->length() > 0);
3202   }
3203
3204   bool HasCapacity(int elements) {
3205     int length = array_->length();
3206     int required_length = length_ + elements;
3207     return (length >= required_length);
3208   }
3209
3210   void EnsureCapacity(int elements) {
3211     int length = array_->length();
3212     int required_length = length_ + elements;
3213     if (length < required_length) {
3214       int new_length = length;
3215       do {
3216         new_length *= 2;
3217       } while (new_length < required_length);
3218       Handle<FixedArray> extended_array =
3219           array_->GetIsolate()->factory()->NewFixedArrayWithHoles(new_length);
3220       array_->CopyTo(0, *extended_array, 0, length_);
3221       array_ = extended_array;
3222     }
3223   }
3224
3225   void Add(Object* value) {
3226     DCHECK(!value->IsSmi());
3227     DCHECK(length_ < capacity());
3228     array_->set(length_, value);
3229     length_++;
3230     has_non_smi_elements_ = true;
3231   }
3232
3233   void Add(Smi* value) {
3234     DCHECK(value->IsSmi());
3235     DCHECK(length_ < capacity());
3236     array_->set(length_, value);
3237     length_++;
3238   }
3239
3240   Handle<FixedArray> array() {
3241     return array_;
3242   }
3243
3244   int length() {
3245     return length_;
3246   }
3247
3248   int capacity() {
3249     return array_->length();
3250   }
3251
3252   Handle<JSArray> ToJSArray(Handle<JSArray> target_array) {
3253     JSArray::SetContent(target_array, array_);
3254     target_array->set_length(Smi::FromInt(length_));
3255     return target_array;
3256   }
3257
3258
3259  private:
3260   Handle<FixedArray> array_;
3261   int length_;
3262   bool has_non_smi_elements_;
3263 };
3264
3265
3266 // Forward declarations.
3267 const int kStringBuilderConcatHelperLengthBits = 11;
3268 const int kStringBuilderConcatHelperPositionBits = 19;
3269
3270 template <typename schar>
3271 static inline void StringBuilderConcatHelper(String*,
3272                                              schar*,
3273                                              FixedArray*,
3274                                              int);
3275
3276 typedef BitField<int, 0, kStringBuilderConcatHelperLengthBits>
3277     StringBuilderSubstringLength;
3278 typedef BitField<int,
3279                  kStringBuilderConcatHelperLengthBits,
3280                  kStringBuilderConcatHelperPositionBits>
3281     StringBuilderSubstringPosition;
3282
3283
3284 class ReplacementStringBuilder {
3285  public:
3286   ReplacementStringBuilder(Heap* heap, Handle<String> subject,
3287                            int estimated_part_count)
3288       : heap_(heap),
3289         array_builder_(heap->isolate(), estimated_part_count),
3290         subject_(subject),
3291         character_count_(0),
3292         is_one_byte_(subject->IsOneByteRepresentation()) {
3293     // Require a non-zero initial size. Ensures that doubling the size to
3294     // extend the array will work.
3295     DCHECK(estimated_part_count > 0);
3296   }
3297
3298   static inline void AddSubjectSlice(FixedArrayBuilder* builder,
3299                                      int from,
3300                                      int to) {
3301     DCHECK(from >= 0);
3302     int length = to - from;
3303     DCHECK(length > 0);
3304     if (StringBuilderSubstringLength::is_valid(length) &&
3305         StringBuilderSubstringPosition::is_valid(from)) {
3306       int encoded_slice = StringBuilderSubstringLength::encode(length) |
3307           StringBuilderSubstringPosition::encode(from);
3308       builder->Add(Smi::FromInt(encoded_slice));
3309     } else {
3310       // Otherwise encode as two smis.
3311       builder->Add(Smi::FromInt(-length));
3312       builder->Add(Smi::FromInt(from));
3313     }
3314   }
3315
3316
3317   void EnsureCapacity(int elements) {
3318     array_builder_.EnsureCapacity(elements);
3319   }
3320
3321
3322   void AddSubjectSlice(int from, int to) {
3323     AddSubjectSlice(&array_builder_, from, to);
3324     IncrementCharacterCount(to - from);
3325   }
3326
3327
3328   void AddString(Handle<String> string) {
3329     int length = string->length();
3330     DCHECK(length > 0);
3331     AddElement(*string);
3332     if (!string->IsOneByteRepresentation()) {
3333       is_one_byte_ = false;
3334     }
3335     IncrementCharacterCount(length);
3336   }
3337
3338
3339   MaybeHandle<String> ToString() {
3340     Isolate* isolate = heap_->isolate();
3341     if (array_builder_.length() == 0) {
3342       return isolate->factory()->empty_string();
3343     }
3344
3345     Handle<String> joined_string;
3346     if (is_one_byte_) {
3347       Handle<SeqOneByteString> seq;
3348       ASSIGN_RETURN_ON_EXCEPTION(
3349           isolate, seq,
3350           isolate->factory()->NewRawOneByteString(character_count_),
3351           String);
3352
3353       DisallowHeapAllocation no_gc;
3354       uint8_t* char_buffer = seq->GetChars();
3355       StringBuilderConcatHelper(*subject_,
3356                                 char_buffer,
3357                                 *array_builder_.array(),
3358                                 array_builder_.length());
3359       joined_string = Handle<String>::cast(seq);
3360     } else {
3361       // Two-byte.
3362       Handle<SeqTwoByteString> seq;
3363       ASSIGN_RETURN_ON_EXCEPTION(
3364           isolate, seq,
3365           isolate->factory()->NewRawTwoByteString(character_count_),
3366           String);
3367
3368       DisallowHeapAllocation no_gc;
3369       uc16* char_buffer = seq->GetChars();
3370       StringBuilderConcatHelper(*subject_,
3371                                 char_buffer,
3372                                 *array_builder_.array(),
3373                                 array_builder_.length());
3374       joined_string = Handle<String>::cast(seq);
3375     }
3376     return joined_string;
3377   }
3378
3379
3380   void IncrementCharacterCount(int by) {
3381     if (character_count_ > String::kMaxLength - by) {
3382       STATIC_ASSERT(String::kMaxLength < kMaxInt);
3383       character_count_ = kMaxInt;
3384     } else {
3385       character_count_ += by;
3386     }
3387   }
3388
3389  private:
3390   void AddElement(Object* element) {
3391     DCHECK(element->IsSmi() || element->IsString());
3392     DCHECK(array_builder_.capacity() > array_builder_.length());
3393     array_builder_.Add(element);
3394   }
3395
3396   Heap* heap_;
3397   FixedArrayBuilder array_builder_;
3398   Handle<String> subject_;
3399   int character_count_;
3400   bool is_one_byte_;
3401 };
3402
3403
3404 class CompiledReplacement {
3405  public:
3406   explicit CompiledReplacement(Zone* zone)
3407       : parts_(1, zone), replacement_substrings_(0, zone), zone_(zone) {}
3408
3409   // Return whether the replacement is simple.
3410   bool Compile(Handle<String> replacement,
3411                int capture_count,
3412                int subject_length);
3413
3414   // Use Apply only if Compile returned false.
3415   void Apply(ReplacementStringBuilder* builder,
3416              int match_from,
3417              int match_to,
3418              int32_t* match);
3419
3420   // Number of distinct parts of the replacement pattern.
3421   int parts() {
3422     return parts_.length();
3423   }
3424
3425   Zone* zone() const { return zone_; }
3426
3427  private:
3428   enum PartType {
3429     SUBJECT_PREFIX = 1,
3430     SUBJECT_SUFFIX,
3431     SUBJECT_CAPTURE,
3432     REPLACEMENT_SUBSTRING,
3433     REPLACEMENT_STRING,
3434
3435     NUMBER_OF_PART_TYPES
3436   };
3437
3438   struct ReplacementPart {
3439     static inline ReplacementPart SubjectMatch() {
3440       return ReplacementPart(SUBJECT_CAPTURE, 0);
3441     }
3442     static inline ReplacementPart SubjectCapture(int capture_index) {
3443       return ReplacementPart(SUBJECT_CAPTURE, capture_index);
3444     }
3445     static inline ReplacementPart SubjectPrefix() {
3446       return ReplacementPart(SUBJECT_PREFIX, 0);
3447     }
3448     static inline ReplacementPart SubjectSuffix(int subject_length) {
3449       return ReplacementPart(SUBJECT_SUFFIX, subject_length);
3450     }
3451     static inline ReplacementPart ReplacementString() {
3452       return ReplacementPart(REPLACEMENT_STRING, 0);
3453     }
3454     static inline ReplacementPart ReplacementSubString(int from, int to) {
3455       DCHECK(from >= 0);
3456       DCHECK(to > from);
3457       return ReplacementPart(-from, to);
3458     }
3459
3460     // If tag <= 0 then it is the negation of a start index of a substring of
3461     // the replacement pattern, otherwise it's a value from PartType.
3462     ReplacementPart(int tag, int data)
3463         : tag(tag), data(data) {
3464       // Must be non-positive or a PartType value.
3465       DCHECK(tag < NUMBER_OF_PART_TYPES);
3466     }
3467     // Either a value of PartType or a non-positive number that is
3468     // the negation of an index into the replacement string.
3469     int tag;
3470     // The data value's interpretation depends on the value of tag:
3471     // tag == SUBJECT_PREFIX ||
3472     // tag == SUBJECT_SUFFIX:  data is unused.
3473     // tag == SUBJECT_CAPTURE: data is the number of the capture.
3474     // tag == REPLACEMENT_SUBSTRING ||
3475     // tag == REPLACEMENT_STRING:    data is index into array of substrings
3476     //                               of the replacement string.
3477     // tag <= 0: Temporary representation of the substring of the replacement
3478     //           string ranging over -tag .. data.
3479     //           Is replaced by REPLACEMENT_{SUB,}STRING when we create the
3480     //           substring objects.
3481     int data;
3482   };
3483
3484   template<typename Char>
3485   bool ParseReplacementPattern(ZoneList<ReplacementPart>* parts,
3486                                Vector<Char> characters,
3487                                int capture_count,
3488                                int subject_length,
3489                                Zone* zone) {
3490     int length = characters.length();
3491     int last = 0;
3492     for (int i = 0; i < length; i++) {
3493       Char c = characters[i];
3494       if (c == '$') {
3495         int next_index = i + 1;
3496         if (next_index == length) {  // No next character!
3497           break;
3498         }
3499         Char c2 = characters[next_index];
3500         switch (c2) {
3501         case '$':
3502           if (i > last) {
3503             // There is a substring before. Include the first "$".
3504             parts->Add(ReplacementPart::ReplacementSubString(last, next_index),
3505                        zone);
3506             last = next_index + 1;  // Continue after the second "$".
3507           } else {
3508             // Let the next substring start with the second "$".
3509             last = next_index;
3510           }
3511           i = next_index;
3512           break;
3513         case '`':
3514           if (i > last) {
3515             parts->Add(ReplacementPart::ReplacementSubString(last, i), zone);
3516           }
3517           parts->Add(ReplacementPart::SubjectPrefix(), zone);
3518           i = next_index;
3519           last = i + 1;
3520           break;
3521         case '\'':
3522           if (i > last) {
3523             parts->Add(ReplacementPart::ReplacementSubString(last, i), zone);
3524           }
3525           parts->Add(ReplacementPart::SubjectSuffix(subject_length), zone);
3526           i = next_index;
3527           last = i + 1;
3528           break;
3529         case '&':
3530           if (i > last) {
3531             parts->Add(ReplacementPart::ReplacementSubString(last, i), zone);
3532           }
3533           parts->Add(ReplacementPart::SubjectMatch(), zone);
3534           i = next_index;
3535           last = i + 1;
3536           break;
3537         case '0':
3538         case '1':
3539         case '2':
3540         case '3':
3541         case '4':
3542         case '5':
3543         case '6':
3544         case '7':
3545         case '8':
3546         case '9': {
3547           int capture_ref = c2 - '0';
3548           if (capture_ref > capture_count) {
3549             i = next_index;
3550             continue;
3551           }
3552           int second_digit_index = next_index + 1;
3553           if (second_digit_index < length) {
3554             // Peek ahead to see if we have two digits.
3555             Char c3 = characters[second_digit_index];
3556             if ('0' <= c3 && c3 <= '9') {  // Double digits.
3557               int double_digit_ref = capture_ref * 10 + c3 - '0';
3558               if (double_digit_ref <= capture_count) {
3559                 next_index = second_digit_index;
3560                 capture_ref = double_digit_ref;
3561               }
3562             }
3563           }
3564           if (capture_ref > 0) {
3565             if (i > last) {
3566               parts->Add(ReplacementPart::ReplacementSubString(last, i), zone);
3567             }
3568             DCHECK(capture_ref <= capture_count);
3569             parts->Add(ReplacementPart::SubjectCapture(capture_ref), zone);
3570             last = next_index + 1;
3571           }
3572           i = next_index;
3573           break;
3574         }
3575         default:
3576           i = next_index;
3577           break;
3578         }
3579       }
3580     }
3581     if (length > last) {
3582       if (last == 0) {
3583         // Replacement is simple.  Do not use Apply to do the replacement.
3584         return true;
3585       } else {
3586         parts->Add(ReplacementPart::ReplacementSubString(last, length), zone);
3587       }
3588     }
3589     return false;
3590   }
3591
3592   ZoneList<ReplacementPart> parts_;
3593   ZoneList<Handle<String> > replacement_substrings_;
3594   Zone* zone_;
3595 };
3596
3597
3598 bool CompiledReplacement::Compile(Handle<String> replacement,
3599                                   int capture_count,
3600                                   int subject_length) {
3601   {
3602     DisallowHeapAllocation no_gc;
3603     String::FlatContent content = replacement->GetFlatContent();
3604     DCHECK(content.IsFlat());
3605     bool simple = false;
3606     if (content.IsOneByte()) {
3607       simple = ParseReplacementPattern(&parts_,
3608                                        content.ToOneByteVector(),
3609                                        capture_count,
3610                                        subject_length,
3611                                        zone());
3612     } else {
3613       DCHECK(content.IsTwoByte());
3614       simple = ParseReplacementPattern(&parts_,
3615                                        content.ToUC16Vector(),
3616                                        capture_count,
3617                                        subject_length,
3618                                        zone());
3619     }
3620     if (simple) return true;
3621   }
3622
3623   Isolate* isolate = replacement->GetIsolate();
3624   // Find substrings of replacement string and create them as String objects.
3625   int substring_index = 0;
3626   for (int i = 0, n = parts_.length(); i < n; i++) {
3627     int tag = parts_[i].tag;
3628     if (tag <= 0) {  // A replacement string slice.
3629       int from = -tag;
3630       int to = parts_[i].data;
3631       replacement_substrings_.Add(
3632           isolate->factory()->NewSubString(replacement, from, to), zone());
3633       parts_[i].tag = REPLACEMENT_SUBSTRING;
3634       parts_[i].data = substring_index;
3635       substring_index++;
3636     } else if (tag == REPLACEMENT_STRING) {
3637       replacement_substrings_.Add(replacement, zone());
3638       parts_[i].data = substring_index;
3639       substring_index++;
3640     }
3641   }
3642   return false;
3643 }
3644
3645
3646 void CompiledReplacement::Apply(ReplacementStringBuilder* builder,
3647                                 int match_from,
3648                                 int match_to,
3649                                 int32_t* match) {
3650   DCHECK_LT(0, parts_.length());
3651   for (int i = 0, n = parts_.length(); i < n; i++) {
3652     ReplacementPart part = parts_[i];
3653     switch (part.tag) {
3654       case SUBJECT_PREFIX:
3655         if (match_from > 0) builder->AddSubjectSlice(0, match_from);
3656         break;
3657       case SUBJECT_SUFFIX: {
3658         int subject_length = part.data;
3659         if (match_to < subject_length) {
3660           builder->AddSubjectSlice(match_to, subject_length);
3661         }
3662         break;
3663       }
3664       case SUBJECT_CAPTURE: {
3665         int capture = part.data;
3666         int from = match[capture * 2];
3667         int to = match[capture * 2 + 1];
3668         if (from >= 0 && to > from) {
3669           builder->AddSubjectSlice(from, to);
3670         }
3671         break;
3672       }
3673       case REPLACEMENT_SUBSTRING:
3674       case REPLACEMENT_STRING:
3675         builder->AddString(replacement_substrings_[part.data]);
3676         break;
3677       default:
3678         UNREACHABLE();
3679     }
3680   }
3681 }
3682
3683
3684 void FindOneByteStringIndices(Vector<const uint8_t> subject, char pattern,
3685                               ZoneList<int>* indices, unsigned int limit,
3686                               Zone* zone) {
3687   DCHECK(limit > 0);
3688   // Collect indices of pattern in subject using memchr.
3689   // Stop after finding at most limit values.
3690   const uint8_t* subject_start = subject.start();
3691   const uint8_t* subject_end = subject_start + subject.length();
3692   const uint8_t* pos = subject_start;
3693   while (limit > 0) {
3694     pos = reinterpret_cast<const uint8_t*>(
3695         memchr(pos, pattern, subject_end - pos));
3696     if (pos == NULL) return;
3697     indices->Add(static_cast<int>(pos - subject_start), zone);
3698     pos++;
3699     limit--;
3700   }
3701 }
3702
3703
3704 void FindTwoByteStringIndices(const Vector<const uc16> subject,
3705                               uc16 pattern,
3706                               ZoneList<int>* indices,
3707                               unsigned int limit,
3708                               Zone* zone) {
3709   DCHECK(limit > 0);
3710   const uc16* subject_start = subject.start();
3711   const uc16* subject_end = subject_start + subject.length();
3712   for (const uc16* pos = subject_start; pos < subject_end && limit > 0; pos++) {
3713     if (*pos == pattern) {
3714       indices->Add(static_cast<int>(pos - subject_start), zone);
3715       limit--;
3716     }
3717   }
3718 }
3719
3720
3721 template <typename SubjectChar, typename PatternChar>
3722 void FindStringIndices(Isolate* isolate,
3723                        Vector<const SubjectChar> subject,
3724                        Vector<const PatternChar> pattern,
3725                        ZoneList<int>* indices,
3726                        unsigned int limit,
3727                        Zone* zone) {
3728   DCHECK(limit > 0);
3729   // Collect indices of pattern in subject.
3730   // Stop after finding at most limit values.
3731   int pattern_length = pattern.length();
3732   int index = 0;
3733   StringSearch<PatternChar, SubjectChar> search(isolate, pattern);
3734   while (limit > 0) {
3735     index = search.Search(subject, index);
3736     if (index < 0) return;
3737     indices->Add(index, zone);
3738     index += pattern_length;
3739     limit--;
3740   }
3741 }
3742
3743
3744 void FindStringIndicesDispatch(Isolate* isolate,
3745                                String* subject,
3746                                String* pattern,
3747                                ZoneList<int>* indices,
3748                                unsigned int limit,
3749                                Zone* zone) {
3750   {
3751     DisallowHeapAllocation no_gc;
3752     String::FlatContent subject_content = subject->GetFlatContent();
3753     String::FlatContent pattern_content = pattern->GetFlatContent();
3754     DCHECK(subject_content.IsFlat());
3755     DCHECK(pattern_content.IsFlat());
3756     if (subject_content.IsOneByte()) {
3757       Vector<const uint8_t> subject_vector = subject_content.ToOneByteVector();
3758       if (pattern_content.IsOneByte()) {
3759         Vector<const uint8_t> pattern_vector =
3760             pattern_content.ToOneByteVector();
3761         if (pattern_vector.length() == 1) {
3762           FindOneByteStringIndices(subject_vector, pattern_vector[0], indices,
3763                                    limit, zone);
3764         } else {
3765           FindStringIndices(isolate,
3766                             subject_vector,
3767                             pattern_vector,
3768                             indices,
3769                             limit,
3770                             zone);
3771         }
3772       } else {
3773         FindStringIndices(isolate,
3774                           subject_vector,
3775                           pattern_content.ToUC16Vector(),
3776                           indices,
3777                           limit,
3778                           zone);
3779       }
3780     } else {
3781       Vector<const uc16> subject_vector = subject_content.ToUC16Vector();
3782       if (pattern_content.IsOneByte()) {
3783         Vector<const uint8_t> pattern_vector =
3784             pattern_content.ToOneByteVector();
3785         if (pattern_vector.length() == 1) {
3786           FindTwoByteStringIndices(subject_vector,
3787                                    pattern_vector[0],
3788                                    indices,
3789                                    limit,
3790                                    zone);
3791         } else {
3792           FindStringIndices(isolate,
3793                             subject_vector,
3794                             pattern_vector,
3795                             indices,
3796                             limit,
3797                             zone);
3798         }
3799       } else {
3800         Vector<const uc16> pattern_vector = pattern_content.ToUC16Vector();
3801         if (pattern_vector.length() == 1) {
3802           FindTwoByteStringIndices(subject_vector,
3803                                    pattern_vector[0],
3804                                    indices,
3805                                    limit,
3806                                    zone);
3807         } else {
3808           FindStringIndices(isolate,
3809                             subject_vector,
3810                             pattern_vector,
3811                             indices,
3812                             limit,
3813                             zone);
3814         }
3815       }
3816     }
3817   }
3818 }
3819
3820
3821 template<typename ResultSeqString>
3822 MUST_USE_RESULT static Object* StringReplaceGlobalAtomRegExpWithString(
3823     Isolate* isolate,
3824     Handle<String> subject,
3825     Handle<JSRegExp> pattern_regexp,
3826     Handle<String> replacement,
3827     Handle<JSArray> last_match_info) {
3828   DCHECK(subject->IsFlat());
3829   DCHECK(replacement->IsFlat());
3830
3831   ZoneScope zone_scope(isolate->runtime_zone());
3832   ZoneList<int> indices(8, zone_scope.zone());
3833   DCHECK_EQ(JSRegExp::ATOM, pattern_regexp->TypeTag());
3834   String* pattern =
3835       String::cast(pattern_regexp->DataAt(JSRegExp::kAtomPatternIndex));
3836   int subject_len = subject->length();
3837   int pattern_len = pattern->length();
3838   int replacement_len = replacement->length();
3839
3840   FindStringIndicesDispatch(
3841       isolate, *subject, pattern, &indices, 0xffffffff, zone_scope.zone());
3842
3843   int matches = indices.length();
3844   if (matches == 0) return *subject;
3845
3846   // Detect integer overflow.
3847   int64_t result_len_64 =
3848       (static_cast<int64_t>(replacement_len) -
3849        static_cast<int64_t>(pattern_len)) *
3850       static_cast<int64_t>(matches) +
3851       static_cast<int64_t>(subject_len);
3852   int result_len;
3853   if (result_len_64 > static_cast<int64_t>(String::kMaxLength)) {
3854     STATIC_ASSERT(String::kMaxLength < kMaxInt);
3855     result_len = kMaxInt;  // Provoke exception.
3856   } else {
3857     result_len = static_cast<int>(result_len_64);
3858   }
3859
3860   int subject_pos = 0;
3861   int result_pos = 0;
3862
3863   MaybeHandle<SeqString> maybe_res;
3864   if (ResultSeqString::kHasOneByteEncoding) {
3865     maybe_res = isolate->factory()->NewRawOneByteString(result_len);
3866   } else {
3867     maybe_res = isolate->factory()->NewRawTwoByteString(result_len);
3868   }
3869   Handle<SeqString> untyped_res;
3870   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, untyped_res, maybe_res);
3871   Handle<ResultSeqString> result = Handle<ResultSeqString>::cast(untyped_res);
3872
3873   for (int i = 0; i < matches; i++) {
3874     // Copy non-matched subject content.
3875     if (subject_pos < indices.at(i)) {
3876       String::WriteToFlat(*subject,
3877                           result->GetChars() + result_pos,
3878                           subject_pos,
3879                           indices.at(i));
3880       result_pos += indices.at(i) - subject_pos;
3881     }
3882
3883     // Replace match.
3884     if (replacement_len > 0) {
3885       String::WriteToFlat(*replacement,
3886                           result->GetChars() + result_pos,
3887                           0,
3888                           replacement_len);
3889       result_pos += replacement_len;
3890     }
3891
3892     subject_pos = indices.at(i) + pattern_len;
3893   }
3894   // Add remaining subject content at the end.
3895   if (subject_pos < subject_len) {
3896     String::WriteToFlat(*subject,
3897                         result->GetChars() + result_pos,
3898                         subject_pos,
3899                         subject_len);
3900   }
3901
3902   int32_t match_indices[] = { indices.at(matches - 1),
3903                               indices.at(matches - 1) + pattern_len };
3904   RegExpImpl::SetLastMatchInfo(last_match_info, subject, 0, match_indices);
3905
3906   return *result;
3907 }
3908
3909
3910 MUST_USE_RESULT static Object* StringReplaceGlobalRegExpWithString(
3911     Isolate* isolate,
3912     Handle<String> subject,
3913     Handle<JSRegExp> regexp,
3914     Handle<String> replacement,
3915     Handle<JSArray> last_match_info) {
3916   DCHECK(subject->IsFlat());
3917   DCHECK(replacement->IsFlat());
3918
3919   int capture_count = regexp->CaptureCount();
3920   int subject_length = subject->length();
3921
3922   // CompiledReplacement uses zone allocation.
3923   ZoneScope zone_scope(isolate->runtime_zone());
3924   CompiledReplacement compiled_replacement(zone_scope.zone());
3925   bool simple_replace = compiled_replacement.Compile(replacement,
3926                                                      capture_count,
3927                                                      subject_length);
3928
3929   // Shortcut for simple non-regexp global replacements
3930   if (regexp->TypeTag() == JSRegExp::ATOM && simple_replace) {
3931     if (subject->HasOnlyOneByteChars() &&
3932         replacement->HasOnlyOneByteChars()) {
3933       return StringReplaceGlobalAtomRegExpWithString<SeqOneByteString>(
3934           isolate, subject, regexp, replacement, last_match_info);
3935     } else {
3936       return StringReplaceGlobalAtomRegExpWithString<SeqTwoByteString>(
3937           isolate, subject, regexp, replacement, last_match_info);
3938     }
3939   }
3940
3941   RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
3942   if (global_cache.HasException()) return isolate->heap()->exception();
3943
3944   int32_t* current_match = global_cache.FetchNext();
3945   if (current_match == NULL) {
3946     if (global_cache.HasException()) return isolate->heap()->exception();
3947     return *subject;
3948   }
3949
3950   // Guessing the number of parts that the final result string is built
3951   // from. Global regexps can match any number of times, so we guess
3952   // conservatively.
3953   int expected_parts = (compiled_replacement.parts() + 1) * 4 + 1;
3954   ReplacementStringBuilder builder(isolate->heap(),
3955                                    subject,
3956                                    expected_parts);
3957
3958   // Number of parts added by compiled replacement plus preceeding
3959   // string and possibly suffix after last match.  It is possible for
3960   // all components to use two elements when encoded as two smis.
3961   const int parts_added_per_loop = 2 * (compiled_replacement.parts() + 2);
3962
3963   int prev = 0;
3964
3965   do {
3966     builder.EnsureCapacity(parts_added_per_loop);
3967
3968     int start = current_match[0];
3969     int end = current_match[1];
3970
3971     if (prev < start) {
3972       builder.AddSubjectSlice(prev, start);
3973     }
3974
3975     if (simple_replace) {
3976       builder.AddString(replacement);
3977     } else {
3978       compiled_replacement.Apply(&builder,
3979                                  start,
3980                                  end,
3981                                  current_match);
3982     }
3983     prev = end;
3984
3985     current_match = global_cache.FetchNext();
3986   } while (current_match != NULL);
3987
3988   if (global_cache.HasException()) return isolate->heap()->exception();
3989
3990   if (prev < subject_length) {
3991     builder.EnsureCapacity(2);
3992     builder.AddSubjectSlice(prev, subject_length);
3993   }
3994
3995   RegExpImpl::SetLastMatchInfo(last_match_info,
3996                                subject,
3997                                capture_count,
3998                                global_cache.LastSuccessfulMatch());
3999
4000   Handle<String> result;
4001   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, builder.ToString());
4002   return *result;
4003 }
4004
4005
4006 template <typename ResultSeqString>
4007 MUST_USE_RESULT static Object* StringReplaceGlobalRegExpWithEmptyString(
4008     Isolate* isolate,
4009     Handle<String> subject,
4010     Handle<JSRegExp> regexp,
4011     Handle<JSArray> last_match_info) {
4012   DCHECK(subject->IsFlat());
4013
4014   // Shortcut for simple non-regexp global replacements
4015   if (regexp->TypeTag() == JSRegExp::ATOM) {
4016     Handle<String> empty_string = isolate->factory()->empty_string();
4017     if (subject->IsOneByteRepresentation()) {
4018       return StringReplaceGlobalAtomRegExpWithString<SeqOneByteString>(
4019           isolate, subject, regexp, empty_string, last_match_info);
4020     } else {
4021       return StringReplaceGlobalAtomRegExpWithString<SeqTwoByteString>(
4022           isolate, subject, regexp, empty_string, last_match_info);
4023     }
4024   }
4025
4026   RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
4027   if (global_cache.HasException()) return isolate->heap()->exception();
4028
4029   int32_t* current_match = global_cache.FetchNext();
4030   if (current_match == NULL) {
4031     if (global_cache.HasException()) return isolate->heap()->exception();
4032     return *subject;
4033   }
4034
4035   int start = current_match[0];
4036   int end = current_match[1];
4037   int capture_count = regexp->CaptureCount();
4038   int subject_length = subject->length();
4039
4040   int new_length = subject_length - (end - start);
4041   if (new_length == 0) return isolate->heap()->empty_string();
4042
4043   Handle<ResultSeqString> answer;
4044   if (ResultSeqString::kHasOneByteEncoding) {
4045     answer = Handle<ResultSeqString>::cast(
4046         isolate->factory()->NewRawOneByteString(new_length).ToHandleChecked());
4047   } else {
4048     answer = Handle<ResultSeqString>::cast(
4049         isolate->factory()->NewRawTwoByteString(new_length).ToHandleChecked());
4050   }
4051
4052   int prev = 0;
4053   int position = 0;
4054
4055   do {
4056     start = current_match[0];
4057     end = current_match[1];
4058     if (prev < start) {
4059       // Add substring subject[prev;start] to answer string.
4060       String::WriteToFlat(*subject, answer->GetChars() + position, prev, start);
4061       position += start - prev;
4062     }
4063     prev = end;
4064
4065     current_match = global_cache.FetchNext();
4066   } while (current_match != NULL);
4067
4068   if (global_cache.HasException()) return isolate->heap()->exception();
4069
4070   RegExpImpl::SetLastMatchInfo(last_match_info,
4071                                subject,
4072                                capture_count,
4073                                global_cache.LastSuccessfulMatch());
4074
4075   if (prev < subject_length) {
4076     // Add substring subject[prev;length] to answer string.
4077     String::WriteToFlat(
4078         *subject, answer->GetChars() + position, prev, subject_length);
4079     position += subject_length - prev;
4080   }
4081
4082   if (position == 0) return isolate->heap()->empty_string();
4083
4084   // Shorten string and fill
4085   int string_size = ResultSeqString::SizeFor(position);
4086   int allocated_string_size = ResultSeqString::SizeFor(new_length);
4087   int delta = allocated_string_size - string_size;
4088
4089   answer->set_length(position);
4090   if (delta == 0) return *answer;
4091
4092   Address end_of_string = answer->address() + string_size;
4093   Heap* heap = isolate->heap();
4094
4095   // The trimming is performed on a newly allocated object, which is on a
4096   // fresly allocated page or on an already swept page. Hence, the sweeper
4097   // thread can not get confused with the filler creation. No synchronization
4098   // needed.
4099   heap->CreateFillerObjectAt(end_of_string, delta);
4100   heap->AdjustLiveBytes(answer->address(), -delta, Heap::FROM_MUTATOR);
4101   return *answer;
4102 }
4103
4104
4105 RUNTIME_FUNCTION(Runtime_StringReplaceGlobalRegExpWithString) {
4106   HandleScope scope(isolate);
4107   DCHECK(args.length() == 4);
4108
4109   CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
4110   CONVERT_ARG_HANDLE_CHECKED(String, replacement, 2);
4111   CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1);
4112   CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 3);
4113
4114   RUNTIME_ASSERT(regexp->GetFlags().is_global());
4115   RUNTIME_ASSERT(last_match_info->HasFastObjectElements());
4116
4117   subject = String::Flatten(subject);
4118
4119   if (replacement->length() == 0) {
4120     if (subject->HasOnlyOneByteChars()) {
4121       return StringReplaceGlobalRegExpWithEmptyString<SeqOneByteString>(
4122           isolate, subject, regexp, last_match_info);
4123     } else {
4124       return StringReplaceGlobalRegExpWithEmptyString<SeqTwoByteString>(
4125           isolate, subject, regexp, last_match_info);
4126     }
4127   }
4128
4129   replacement = String::Flatten(replacement);
4130
4131   return StringReplaceGlobalRegExpWithString(
4132       isolate, subject, regexp, replacement, last_match_info);
4133 }
4134
4135
4136 // This may return an empty MaybeHandle if an exception is thrown or
4137 // we abort due to reaching the recursion limit.
4138 MaybeHandle<String> StringReplaceOneCharWithString(Isolate* isolate,
4139                                                    Handle<String> subject,
4140                                                    Handle<String> search,
4141                                                    Handle<String> replace,
4142                                                    bool* found,
4143                                                    int recursion_limit) {
4144   StackLimitCheck stackLimitCheck(isolate);
4145   if (stackLimitCheck.HasOverflowed() || (recursion_limit == 0)) {
4146     return MaybeHandle<String>();
4147   }
4148   recursion_limit--;
4149   if (subject->IsConsString()) {
4150     ConsString* cons = ConsString::cast(*subject);
4151     Handle<String> first = Handle<String>(cons->first());
4152     Handle<String> second = Handle<String>(cons->second());
4153     Handle<String> new_first;
4154     if (!StringReplaceOneCharWithString(
4155             isolate, first, search, replace, found, recursion_limit)
4156             .ToHandle(&new_first)) {
4157       return MaybeHandle<String>();
4158     }
4159     if (*found) return isolate->factory()->NewConsString(new_first, second);
4160
4161     Handle<String> new_second;
4162     if (!StringReplaceOneCharWithString(
4163             isolate, second, search, replace, found, recursion_limit)
4164             .ToHandle(&new_second)) {
4165       return MaybeHandle<String>();
4166     }
4167     if (*found) return isolate->factory()->NewConsString(first, new_second);
4168
4169     return subject;
4170   } else {
4171     int index = Runtime::StringMatch(isolate, subject, search, 0);
4172     if (index == -1) return subject;
4173     *found = true;
4174     Handle<String> first = isolate->factory()->NewSubString(subject, 0, index);
4175     Handle<String> cons1;
4176     ASSIGN_RETURN_ON_EXCEPTION(
4177         isolate, cons1,
4178         isolate->factory()->NewConsString(first, replace),
4179         String);
4180     Handle<String> second =
4181         isolate->factory()->NewSubString(subject, index + 1, subject->length());
4182     return isolate->factory()->NewConsString(cons1, second);
4183   }
4184 }
4185
4186
4187 RUNTIME_FUNCTION(Runtime_StringReplaceOneCharWithString) {
4188   HandleScope scope(isolate);
4189   DCHECK(args.length() == 3);
4190   CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
4191   CONVERT_ARG_HANDLE_CHECKED(String, search, 1);
4192   CONVERT_ARG_HANDLE_CHECKED(String, replace, 2);
4193
4194   // If the cons string tree is too deep, we simply abort the recursion and
4195   // retry with a flattened subject string.
4196   const int kRecursionLimit = 0x1000;
4197   bool found = false;
4198   Handle<String> result;
4199   if (StringReplaceOneCharWithString(
4200           isolate, subject, search, replace, &found, kRecursionLimit)
4201           .ToHandle(&result)) {
4202     return *result;
4203   }
4204   if (isolate->has_pending_exception()) return isolate->heap()->exception();
4205
4206   subject = String::Flatten(subject);
4207   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
4208       isolate, result,
4209       StringReplaceOneCharWithString(
4210           isolate, subject, search, replace, &found, kRecursionLimit));
4211   return *result;
4212 }
4213
4214
4215 // Perform string match of pattern on subject, starting at start index.
4216 // Caller must ensure that 0 <= start_index <= sub->length(),
4217 // and should check that pat->length() + start_index <= sub->length().
4218 int Runtime::StringMatch(Isolate* isolate,
4219                          Handle<String> sub,
4220                          Handle<String> pat,
4221                          int start_index) {
4222   DCHECK(0 <= start_index);
4223   DCHECK(start_index <= sub->length());
4224
4225   int pattern_length = pat->length();
4226   if (pattern_length == 0) return start_index;
4227
4228   int subject_length = sub->length();
4229   if (start_index + pattern_length > subject_length) return -1;
4230
4231   sub = String::Flatten(sub);
4232   pat = String::Flatten(pat);
4233
4234   DisallowHeapAllocation no_gc;  // ensure vectors stay valid
4235   // Extract flattened substrings of cons strings before getting encoding.
4236   String::FlatContent seq_sub = sub->GetFlatContent();
4237   String::FlatContent seq_pat = pat->GetFlatContent();
4238
4239   // dispatch on type of strings
4240   if (seq_pat.IsOneByte()) {
4241     Vector<const uint8_t> pat_vector = seq_pat.ToOneByteVector();
4242     if (seq_sub.IsOneByte()) {
4243       return SearchString(isolate,
4244                           seq_sub.ToOneByteVector(),
4245                           pat_vector,
4246                           start_index);
4247     }
4248     return SearchString(isolate,
4249                         seq_sub.ToUC16Vector(),
4250                         pat_vector,
4251                         start_index);
4252   }
4253   Vector<const uc16> pat_vector = seq_pat.ToUC16Vector();
4254   if (seq_sub.IsOneByte()) {
4255     return SearchString(isolate,
4256                         seq_sub.ToOneByteVector(),
4257                         pat_vector,
4258                         start_index);
4259   }
4260   return SearchString(isolate,
4261                       seq_sub.ToUC16Vector(),
4262                       pat_vector,
4263                       start_index);
4264 }
4265
4266
4267 RUNTIME_FUNCTION(Runtime_StringIndexOf) {
4268   HandleScope scope(isolate);
4269   DCHECK(args.length() == 3);
4270
4271   CONVERT_ARG_HANDLE_CHECKED(String, sub, 0);
4272   CONVERT_ARG_HANDLE_CHECKED(String, pat, 1);
4273   CONVERT_ARG_HANDLE_CHECKED(Object, index, 2);
4274
4275   uint32_t start_index;
4276   if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);
4277
4278   RUNTIME_ASSERT(start_index <= static_cast<uint32_t>(sub->length()));
4279   int position = Runtime::StringMatch(isolate, sub, pat, start_index);
4280   return Smi::FromInt(position);
4281 }
4282
4283
4284 template <typename schar, typename pchar>
4285 static int StringMatchBackwards(Vector<const schar> subject,
4286                                 Vector<const pchar> pattern,
4287                                 int idx) {
4288   int pattern_length = pattern.length();
4289   DCHECK(pattern_length >= 1);
4290   DCHECK(idx + pattern_length <= subject.length());
4291
4292   if (sizeof(schar) == 1 && sizeof(pchar) > 1) {
4293     for (int i = 0; i < pattern_length; i++) {
4294       uc16 c = pattern[i];
4295       if (c > String::kMaxOneByteCharCode) {
4296         return -1;
4297       }
4298     }
4299   }
4300
4301   pchar pattern_first_char = pattern[0];
4302   for (int i = idx; i >= 0; i--) {
4303     if (subject[i] != pattern_first_char) continue;
4304     int j = 1;
4305     while (j < pattern_length) {
4306       if (pattern[j] != subject[i+j]) {
4307         break;
4308       }
4309       j++;
4310     }
4311     if (j == pattern_length) {
4312       return i;
4313     }
4314   }
4315   return -1;
4316 }
4317
4318
4319 RUNTIME_FUNCTION(Runtime_StringLastIndexOf) {
4320   HandleScope scope(isolate);
4321   DCHECK(args.length() == 3);
4322
4323   CONVERT_ARG_HANDLE_CHECKED(String, sub, 0);
4324   CONVERT_ARG_HANDLE_CHECKED(String, pat, 1);
4325   CONVERT_ARG_HANDLE_CHECKED(Object, index, 2);
4326
4327   uint32_t start_index;
4328   if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);
4329
4330   uint32_t pat_length = pat->length();
4331   uint32_t sub_length = sub->length();
4332
4333   if (start_index + pat_length > sub_length) {
4334     start_index = sub_length - pat_length;
4335   }
4336
4337   if (pat_length == 0) {
4338     return Smi::FromInt(start_index);
4339   }
4340
4341   sub = String::Flatten(sub);
4342   pat = String::Flatten(pat);
4343
4344   int position = -1;
4345   DisallowHeapAllocation no_gc;  // ensure vectors stay valid
4346
4347   String::FlatContent sub_content = sub->GetFlatContent();
4348   String::FlatContent pat_content = pat->GetFlatContent();
4349
4350   if (pat_content.IsOneByte()) {
4351     Vector<const uint8_t> pat_vector = pat_content.ToOneByteVector();
4352     if (sub_content.IsOneByte()) {
4353       position = StringMatchBackwards(sub_content.ToOneByteVector(),
4354                                       pat_vector,
4355                                       start_index);
4356     } else {
4357       position = StringMatchBackwards(sub_content.ToUC16Vector(),
4358                                       pat_vector,
4359                                       start_index);
4360     }
4361   } else {
4362     Vector<const uc16> pat_vector = pat_content.ToUC16Vector();
4363     if (sub_content.IsOneByte()) {
4364       position = StringMatchBackwards(sub_content.ToOneByteVector(),
4365                                       pat_vector,
4366                                       start_index);
4367     } else {
4368       position = StringMatchBackwards(sub_content.ToUC16Vector(),
4369                                       pat_vector,
4370                                       start_index);
4371     }
4372   }
4373
4374   return Smi::FromInt(position);
4375 }
4376
4377
4378 RUNTIME_FUNCTION(Runtime_StringLocaleCompare) {
4379   HandleScope handle_scope(isolate);
4380   DCHECK(args.length() == 2);
4381
4382   CONVERT_ARG_HANDLE_CHECKED(String, str1, 0);
4383   CONVERT_ARG_HANDLE_CHECKED(String, str2, 1);
4384
4385   if (str1.is_identical_to(str2)) return Smi::FromInt(0);  // Equal.
4386   int str1_length = str1->length();
4387   int str2_length = str2->length();
4388
4389   // Decide trivial cases without flattening.
4390   if (str1_length == 0) {
4391     if (str2_length == 0) return Smi::FromInt(0);  // Equal.
4392     return Smi::FromInt(-str2_length);
4393   } else {
4394     if (str2_length == 0) return Smi::FromInt(str1_length);
4395   }
4396
4397   int end = str1_length < str2_length ? str1_length : str2_length;
4398
4399   // No need to flatten if we are going to find the answer on the first
4400   // character.  At this point we know there is at least one character
4401   // in each string, due to the trivial case handling above.
4402   int d = str1->Get(0) - str2->Get(0);
4403   if (d != 0) return Smi::FromInt(d);
4404
4405   str1 = String::Flatten(str1);
4406   str2 = String::Flatten(str2);
4407
4408   DisallowHeapAllocation no_gc;
4409   String::FlatContent flat1 = str1->GetFlatContent();
4410   String::FlatContent flat2 = str2->GetFlatContent();
4411
4412   for (int i = 0; i < end; i++) {
4413     if (flat1.Get(i) != flat2.Get(i)) {
4414       return Smi::FromInt(flat1.Get(i) - flat2.Get(i));
4415     }
4416   }
4417
4418   return Smi::FromInt(str1_length - str2_length);
4419 }
4420
4421
4422 RUNTIME_FUNCTION(Runtime_SubString) {
4423   HandleScope scope(isolate);
4424   DCHECK(args.length() == 3);
4425
4426   CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
4427   int start, end;
4428   // We have a fast integer-only case here to avoid a conversion to double in
4429   // the common case where from and to are Smis.
4430   if (args[1]->IsSmi() && args[2]->IsSmi()) {
4431     CONVERT_SMI_ARG_CHECKED(from_number, 1);
4432     CONVERT_SMI_ARG_CHECKED(to_number, 2);
4433     start = from_number;
4434     end = to_number;
4435   } else {
4436     CONVERT_DOUBLE_ARG_CHECKED(from_number, 1);
4437     CONVERT_DOUBLE_ARG_CHECKED(to_number, 2);
4438     start = FastD2IChecked(from_number);
4439     end = FastD2IChecked(to_number);
4440   }
4441   RUNTIME_ASSERT(end >= start);
4442   RUNTIME_ASSERT(start >= 0);
4443   RUNTIME_ASSERT(end <= string->length());
4444   isolate->counters()->sub_string_runtime()->Increment();
4445
4446   return *isolate->factory()->NewSubString(string, start, end);
4447 }
4448
4449
4450 RUNTIME_FUNCTION(Runtime_InternalizeString) {
4451   HandleScope handles(isolate);
4452   RUNTIME_ASSERT(args.length() == 1);
4453   CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
4454   return *isolate->factory()->InternalizeString(string);
4455 }
4456
4457
4458 RUNTIME_FUNCTION(Runtime_StringMatch) {
4459   HandleScope handles(isolate);
4460   DCHECK(args.length() == 3);
4461
4462   CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
4463   CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1);
4464   CONVERT_ARG_HANDLE_CHECKED(JSArray, regexp_info, 2);
4465
4466   RUNTIME_ASSERT(regexp_info->HasFastObjectElements());
4467
4468   RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
4469   if (global_cache.HasException()) return isolate->heap()->exception();
4470
4471   int capture_count = regexp->CaptureCount();
4472
4473   ZoneScope zone_scope(isolate->runtime_zone());
4474   ZoneList<int> offsets(8, zone_scope.zone());
4475
4476   while (true) {
4477     int32_t* match = global_cache.FetchNext();
4478     if (match == NULL) break;
4479     offsets.Add(match[0], zone_scope.zone());  // start
4480     offsets.Add(match[1], zone_scope.zone());  // end
4481   }
4482
4483   if (global_cache.HasException()) return isolate->heap()->exception();
4484
4485   if (offsets.length() == 0) {
4486     // Not a single match.
4487     return isolate->heap()->null_value();
4488   }
4489
4490   RegExpImpl::SetLastMatchInfo(regexp_info,
4491                                subject,
4492                                capture_count,
4493                                global_cache.LastSuccessfulMatch());
4494
4495   int matches = offsets.length() / 2;
4496   Handle<FixedArray> elements = isolate->factory()->NewFixedArray(matches);
4497   Handle<String> substring =
4498       isolate->factory()->NewSubString(subject, offsets.at(0), offsets.at(1));
4499   elements->set(0, *substring);
4500   for (int i = 1; i < matches; i++) {
4501     HandleScope temp_scope(isolate);
4502     int from = offsets.at(i * 2);
4503     int to = offsets.at(i * 2 + 1);
4504     Handle<String> substring =
4505         isolate->factory()->NewProperSubString(subject, from, to);
4506     elements->set(i, *substring);
4507   }
4508   Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(elements);
4509   result->set_length(Smi::FromInt(matches));
4510   return *result;
4511 }
4512
4513
4514 // Only called from Runtime_RegExpExecMultiple so it doesn't need to maintain
4515 // separate last match info.  See comment on that function.
4516 template<bool has_capture>
4517 static Object* SearchRegExpMultiple(
4518     Isolate* isolate,
4519     Handle<String> subject,
4520     Handle<JSRegExp> regexp,
4521     Handle<JSArray> last_match_array,
4522     Handle<JSArray> result_array) {
4523   DCHECK(subject->IsFlat());
4524   DCHECK_NE(has_capture, regexp->CaptureCount() == 0);
4525
4526   int capture_count = regexp->CaptureCount();
4527   int subject_length = subject->length();
4528
4529   static const int kMinLengthToCache = 0x1000;
4530
4531   if (subject_length > kMinLengthToCache) {
4532     Handle<Object> cached_answer(RegExpResultsCache::Lookup(
4533         isolate->heap(),
4534         *subject,
4535         regexp->data(),
4536         RegExpResultsCache::REGEXP_MULTIPLE_INDICES), isolate);
4537     if (*cached_answer != Smi::FromInt(0)) {
4538       Handle<FixedArray> cached_fixed_array =
4539           Handle<FixedArray>(FixedArray::cast(*cached_answer));
4540       // The cache FixedArray is a COW-array and can therefore be reused.
4541       JSArray::SetContent(result_array, cached_fixed_array);
4542       // The actual length of the result array is stored in the last element of
4543       // the backing store (the backing FixedArray may have a larger capacity).
4544       Object* cached_fixed_array_last_element =
4545           cached_fixed_array->get(cached_fixed_array->length() - 1);
4546       Smi* js_array_length = Smi::cast(cached_fixed_array_last_element);
4547       result_array->set_length(js_array_length);
4548       RegExpImpl::SetLastMatchInfo(
4549           last_match_array, subject, capture_count, NULL);
4550       return *result_array;
4551     }
4552   }
4553
4554   RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
4555   if (global_cache.HasException()) return isolate->heap()->exception();
4556
4557   // Ensured in Runtime_RegExpExecMultiple.
4558   DCHECK(result_array->HasFastObjectElements());
4559   Handle<FixedArray> result_elements(
4560       FixedArray::cast(result_array->elements()));
4561   if (result_elements->length() < 16) {
4562     result_elements = isolate->factory()->NewFixedArrayWithHoles(16);
4563   }
4564
4565   FixedArrayBuilder builder(result_elements);
4566
4567   // Position to search from.
4568   int match_start = -1;
4569   int match_end = 0;
4570   bool first = true;
4571
4572   // Two smis before and after the match, for very long strings.
4573   static const int kMaxBuilderEntriesPerRegExpMatch = 5;
4574
4575   while (true) {
4576     int32_t* current_match = global_cache.FetchNext();
4577     if (current_match == NULL) break;
4578     match_start = current_match[0];
4579     builder.EnsureCapacity(kMaxBuilderEntriesPerRegExpMatch);
4580     if (match_end < match_start) {
4581       ReplacementStringBuilder::AddSubjectSlice(&builder,
4582                                                 match_end,
4583                                                 match_start);
4584     }
4585     match_end = current_match[1];
4586     {
4587       // Avoid accumulating new handles inside loop.
4588       HandleScope temp_scope(isolate);
4589       Handle<String> match;
4590       if (!first) {
4591         match = isolate->factory()->NewProperSubString(subject,
4592                                                        match_start,
4593                                                        match_end);
4594       } else {
4595         match = isolate->factory()->NewSubString(subject,
4596                                                  match_start,
4597                                                  match_end);
4598         first = false;
4599       }
4600
4601       if (has_capture) {
4602         // Arguments array to replace function is match, captures, index and
4603         // subject, i.e., 3 + capture count in total.
4604         Handle<FixedArray> elements =
4605             isolate->factory()->NewFixedArray(3 + capture_count);
4606
4607         elements->set(0, *match);
4608         for (int i = 1; i <= capture_count; i++) {
4609           int start = current_match[i * 2];
4610           if (start >= 0) {
4611             int end = current_match[i * 2 + 1];
4612             DCHECK(start <= end);
4613             Handle<String> substring =
4614                 isolate->factory()->NewSubString(subject, start, end);
4615             elements->set(i, *substring);
4616           } else {
4617             DCHECK(current_match[i * 2 + 1] < 0);
4618             elements->set(i, isolate->heap()->undefined_value());
4619           }
4620         }
4621         elements->set(capture_count + 1, Smi::FromInt(match_start));
4622         elements->set(capture_count + 2, *subject);
4623         builder.Add(*isolate->factory()->NewJSArrayWithElements(elements));
4624       } else {
4625         builder.Add(*match);
4626       }
4627     }
4628   }
4629
4630   if (global_cache.HasException()) return isolate->heap()->exception();
4631
4632   if (match_start >= 0) {
4633     // Finished matching, with at least one match.
4634     if (match_end < subject_length) {
4635       ReplacementStringBuilder::AddSubjectSlice(&builder,
4636                                                 match_end,
4637                                                 subject_length);
4638     }
4639
4640     RegExpImpl::SetLastMatchInfo(
4641         last_match_array, subject, capture_count, NULL);
4642
4643     if (subject_length > kMinLengthToCache) {
4644       // Store the length of the result array into the last element of the
4645       // backing FixedArray.
4646       builder.EnsureCapacity(1);
4647       Handle<FixedArray> fixed_array = builder.array();
4648       fixed_array->set(fixed_array->length() - 1,
4649                        Smi::FromInt(builder.length()));
4650       // Cache the result and turn the FixedArray into a COW array.
4651       RegExpResultsCache::Enter(isolate,
4652                                 subject,
4653                                 handle(regexp->data(), isolate),
4654                                 fixed_array,
4655                                 RegExpResultsCache::REGEXP_MULTIPLE_INDICES);
4656     }
4657     return *builder.ToJSArray(result_array);
4658   } else {
4659     return isolate->heap()->null_value();  // No matches at all.
4660   }
4661 }
4662
4663
4664 // This is only called for StringReplaceGlobalRegExpWithFunction.  This sets
4665 // lastMatchInfoOverride to maintain the last match info, so we don't need to
4666 // set any other last match array info.
4667 RUNTIME_FUNCTION(Runtime_RegExpExecMultiple) {
4668   HandleScope handles(isolate);
4669   DCHECK(args.length() == 4);
4670
4671   CONVERT_ARG_HANDLE_CHECKED(String, subject, 1);
4672   CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0);
4673   CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 2);
4674   CONVERT_ARG_HANDLE_CHECKED(JSArray, result_array, 3);
4675   RUNTIME_ASSERT(last_match_info->HasFastObjectElements());
4676   RUNTIME_ASSERT(result_array->HasFastObjectElements());
4677
4678   subject = String::Flatten(subject);
4679   RUNTIME_ASSERT(regexp->GetFlags().is_global());
4680
4681   if (regexp->CaptureCount() == 0) {
4682     return SearchRegExpMultiple<false>(
4683         isolate, subject, regexp, last_match_info, result_array);
4684   } else {
4685     return SearchRegExpMultiple<true>(
4686         isolate, subject, regexp, last_match_info, result_array);
4687   }
4688 }
4689
4690
4691 RUNTIME_FUNCTION(Runtime_NumberToRadixString) {
4692   HandleScope scope(isolate);
4693   DCHECK(args.length() == 2);
4694   CONVERT_SMI_ARG_CHECKED(radix, 1);
4695   RUNTIME_ASSERT(2 <= radix && radix <= 36);
4696
4697   // Fast case where the result is a one character string.
4698   if (args[0]->IsSmi()) {
4699     int value = args.smi_at(0);
4700     if (value >= 0 && value < radix) {
4701       // Character array used for conversion.
4702       static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz";
4703       return *isolate->factory()->
4704           LookupSingleCharacterStringFromCode(kCharTable[value]);
4705     }
4706   }
4707
4708   // Slow case.
4709   CONVERT_DOUBLE_ARG_CHECKED(value, 0);
4710   if (std::isnan(value)) {
4711     return isolate->heap()->nan_string();
4712   }
4713   if (std::isinf(value)) {
4714     if (value < 0) {
4715       return isolate->heap()->minus_infinity_string();
4716     }
4717     return isolate->heap()->infinity_string();
4718   }
4719   char* str = DoubleToRadixCString(value, radix);
4720   Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
4721   DeleteArray(str);
4722   return *result;
4723 }
4724
4725
4726 RUNTIME_FUNCTION(Runtime_NumberToFixed) {
4727   HandleScope scope(isolate);
4728   DCHECK(args.length() == 2);
4729
4730   CONVERT_DOUBLE_ARG_CHECKED(value, 0);
4731   CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
4732   int f = FastD2IChecked(f_number);
4733   // See DoubleToFixedCString for these constants:
4734   RUNTIME_ASSERT(f >= 0 && f <= 20);
4735   RUNTIME_ASSERT(!Double(value).IsSpecial());
4736   char* str = DoubleToFixedCString(value, f);
4737   Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
4738   DeleteArray(str);
4739   return *result;
4740 }
4741
4742
4743 RUNTIME_FUNCTION(Runtime_NumberToExponential) {
4744   HandleScope scope(isolate);
4745   DCHECK(args.length() == 2);
4746
4747   CONVERT_DOUBLE_ARG_CHECKED(value, 0);
4748   CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
4749   int f = FastD2IChecked(f_number);
4750   RUNTIME_ASSERT(f >= -1 && f <= 20);
4751   RUNTIME_ASSERT(!Double(value).IsSpecial());
4752   char* str = DoubleToExponentialCString(value, f);
4753   Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
4754   DeleteArray(str);
4755   return *result;
4756 }
4757
4758
4759 RUNTIME_FUNCTION(Runtime_NumberToPrecision) {
4760   HandleScope scope(isolate);
4761   DCHECK(args.length() == 2);
4762
4763   CONVERT_DOUBLE_ARG_CHECKED(value, 0);
4764   CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
4765   int f = FastD2IChecked(f_number);
4766   RUNTIME_ASSERT(f >= 1 && f <= 21);
4767   RUNTIME_ASSERT(!Double(value).IsSpecial());
4768   char* str = DoubleToPrecisionCString(value, f);
4769   Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
4770   DeleteArray(str);
4771   return *result;
4772 }
4773
4774
4775 RUNTIME_FUNCTION(Runtime_IsValidSmi) {
4776   SealHandleScope shs(isolate);
4777   DCHECK(args.length() == 1);
4778
4779   CONVERT_NUMBER_CHECKED(int32_t, number, Int32, args[0]);
4780   return isolate->heap()->ToBoolean(Smi::IsValid(number));
4781 }
4782
4783
4784 // Returns a single character string where first character equals
4785 // string->Get(index).
4786 static Handle<Object> GetCharAt(Handle<String> string, uint32_t index) {
4787   if (index < static_cast<uint32_t>(string->length())) {
4788     Factory* factory = string->GetIsolate()->factory();
4789     return factory->LookupSingleCharacterStringFromCode(
4790         String::Flatten(string)->Get(index));
4791   }
4792   return Execution::CharAt(string, index);
4793 }
4794
4795
4796 MaybeHandle<Object> Runtime::GetElementOrCharAt(Isolate* isolate,
4797                                                 Handle<Object> object,
4798                                                 uint32_t index) {
4799   // Handle [] indexing on Strings
4800   if (object->IsString()) {
4801     Handle<Object> result = GetCharAt(Handle<String>::cast(object), index);
4802     if (!result->IsUndefined()) return result;
4803   }
4804
4805   // Handle [] indexing on String objects
4806   if (object->IsStringObjectWithCharacterAt(index)) {
4807     Handle<JSValue> js_value = Handle<JSValue>::cast(object);
4808     Handle<Object> result =
4809         GetCharAt(Handle<String>(String::cast(js_value->value())), index);
4810     if (!result->IsUndefined()) return result;
4811   }
4812
4813   Handle<Object> result;
4814   if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
4815     PrototypeIterator iter(isolate, object);
4816     return Object::GetElement(isolate, PrototypeIterator::GetCurrent(iter),
4817                               index);
4818   } else {
4819     return Object::GetElement(isolate, object, index);
4820   }
4821 }
4822
4823
4824 MUST_USE_RESULT
4825 static MaybeHandle<Name> ToName(Isolate* isolate, Handle<Object> key) {
4826   if (key->IsName()) {
4827     return Handle<Name>::cast(key);
4828   } else {
4829     Handle<Object> converted;
4830     ASSIGN_RETURN_ON_EXCEPTION(
4831         isolate, converted, Execution::ToString(isolate, key), Name);
4832     return Handle<Name>::cast(converted);
4833   }
4834 }
4835
4836
4837 MaybeHandle<Object> Runtime::HasObjectProperty(Isolate* isolate,
4838                                                Handle<JSReceiver> object,
4839                                                Handle<Object> key) {
4840   Maybe<bool> maybe;
4841   // Check if the given key is an array index.
4842   uint32_t index;
4843   if (key->ToArrayIndex(&index)) {
4844     maybe = JSReceiver::HasElement(object, index);
4845   } else {
4846     // Convert the key to a name - possibly by calling back into JavaScript.
4847     Handle<Name> name;
4848     ASSIGN_RETURN_ON_EXCEPTION(isolate, name, ToName(isolate, key), Object);
4849
4850     maybe = JSReceiver::HasProperty(object, name);
4851   }
4852
4853   if (!maybe.has_value) return MaybeHandle<Object>();
4854   return isolate->factory()->ToBoolean(maybe.value);
4855 }
4856
4857
4858 MaybeHandle<Object> Runtime::GetObjectProperty(Isolate* isolate,
4859                                                Handle<Object> object,
4860                                                Handle<Object> key) {
4861   if (object->IsUndefined() || object->IsNull()) {
4862     Handle<Object> args[2] = { key, object };
4863     THROW_NEW_ERROR(isolate, NewTypeError("non_object_property_load",
4864                                           HandleVector(args, 2)),
4865                     Object);
4866   }
4867
4868   // Check if the given key is an array index.
4869   uint32_t index;
4870   if (key->ToArrayIndex(&index)) {
4871     return GetElementOrCharAt(isolate, object, index);
4872   }
4873
4874   // Convert the key to a name - possibly by calling back into JavaScript.
4875   Handle<Name> name;
4876   ASSIGN_RETURN_ON_EXCEPTION(isolate, name, ToName(isolate, key), Object);
4877
4878   // Check if the name is trivially convertible to an index and get
4879   // the element if so.
4880   if (name->AsArrayIndex(&index)) {
4881     return GetElementOrCharAt(isolate, object, index);
4882   } else {
4883     return Object::GetProperty(object, name);
4884   }
4885 }
4886
4887
4888 RUNTIME_FUNCTION(Runtime_GetProperty) {
4889   HandleScope scope(isolate);
4890   DCHECK(args.length() == 2);
4891
4892   CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
4893   CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
4894   Handle<Object> result;
4895   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
4896       isolate, result,
4897       Runtime::GetObjectProperty(isolate, object, key));
4898   return *result;
4899 }
4900
4901
4902 // KeyedGetProperty is called from KeyedLoadIC::GenerateGeneric.
4903 RUNTIME_FUNCTION(Runtime_KeyedGetProperty) {
4904   HandleScope scope(isolate);
4905   DCHECK(args.length() == 2);
4906
4907   CONVERT_ARG_HANDLE_CHECKED(Object, receiver_obj, 0);
4908   CONVERT_ARG_HANDLE_CHECKED(Object, key_obj, 1);
4909
4910   // Fast cases for getting named properties of the receiver JSObject
4911   // itself.
4912   //
4913   // The global proxy objects has to be excluded since LookupOwn on
4914   // the global proxy object can return a valid result even though the
4915   // global proxy object never has properties.  This is the case
4916   // because the global proxy object forwards everything to its hidden
4917   // prototype including own lookups.
4918   //
4919   // Additionally, we need to make sure that we do not cache results
4920   // for objects that require access checks.
4921   if (receiver_obj->IsJSObject()) {
4922     if (!receiver_obj->IsJSGlobalProxy() &&
4923         !receiver_obj->IsAccessCheckNeeded() &&
4924         key_obj->IsName()) {
4925       DisallowHeapAllocation no_allocation;
4926       Handle<JSObject> receiver = Handle<JSObject>::cast(receiver_obj);
4927       Handle<Name> key = Handle<Name>::cast(key_obj);
4928       if (receiver->HasFastProperties()) {
4929         // Attempt to use lookup cache.
4930         Handle<Map> receiver_map(receiver->map(), isolate);
4931         KeyedLookupCache* keyed_lookup_cache = isolate->keyed_lookup_cache();
4932         int index = keyed_lookup_cache->Lookup(receiver_map, key);
4933         if (index != -1) {
4934           // Doubles are not cached, so raw read the value.
4935           return receiver->RawFastPropertyAt(
4936               FieldIndex::ForKeyedLookupCacheIndex(*receiver_map, index));
4937         }
4938         // Lookup cache miss.  Perform lookup and update the cache if
4939         // appropriate.
4940         LookupIterator it(receiver, key, LookupIterator::OWN);
4941         if (it.state() == LookupIterator::DATA &&
4942             it.property_details().type() == FIELD) {
4943           FieldIndex field_index = it.GetFieldIndex();
4944           // Do not track double fields in the keyed lookup cache. Reading
4945           // double values requires boxing.
4946           if (!it.representation().IsDouble()) {
4947             keyed_lookup_cache->Update(receiver_map, key,
4948                 field_index.GetKeyedLookupCacheIndex());
4949           }
4950           AllowHeapAllocation allow_allocation;
4951           return *JSObject::FastPropertyAt(receiver, it.representation(),
4952                                            field_index);
4953         }
4954       } else {
4955         // Attempt dictionary lookup.
4956         NameDictionary* dictionary = receiver->property_dictionary();
4957         int entry = dictionary->FindEntry(key);
4958         if ((entry != NameDictionary::kNotFound) &&
4959             (dictionary->DetailsAt(entry).type() == NORMAL)) {
4960           Object* value = dictionary->ValueAt(entry);
4961           if (!receiver->IsGlobalObject()) return value;
4962           value = PropertyCell::cast(value)->value();
4963           if (!value->IsTheHole()) return value;
4964           // If value is the hole (meaning, absent) do the general lookup.
4965         }
4966       }
4967     } else if (key_obj->IsSmi()) {
4968       // JSObject without a name key. If the key is a Smi, check for a
4969       // definite out-of-bounds access to elements, which is a strong indicator
4970       // that subsequent accesses will also call the runtime. Proactively
4971       // transition elements to FAST_*_ELEMENTS to avoid excessive boxing of
4972       // doubles for those future calls in the case that the elements would
4973       // become FAST_DOUBLE_ELEMENTS.
4974       Handle<JSObject> js_object = Handle<JSObject>::cast(receiver_obj);
4975       ElementsKind elements_kind = js_object->GetElementsKind();
4976       if (IsFastDoubleElementsKind(elements_kind)) {
4977         Handle<Smi> key = Handle<Smi>::cast(key_obj);
4978         if (key->value() >= js_object->elements()->length()) {
4979           if (IsFastHoleyElementsKind(elements_kind)) {
4980             elements_kind = FAST_HOLEY_ELEMENTS;
4981           } else {
4982             elements_kind = FAST_ELEMENTS;
4983           }
4984           RETURN_FAILURE_ON_EXCEPTION(
4985               isolate, TransitionElements(js_object, elements_kind, isolate));
4986         }
4987       } else {
4988         DCHECK(IsFastSmiOrObjectElementsKind(elements_kind) ||
4989                !IsFastElementsKind(elements_kind));
4990       }
4991     }
4992   } else if (receiver_obj->IsString() && key_obj->IsSmi()) {
4993     // Fast case for string indexing using [] with a smi index.
4994     Handle<String> str = Handle<String>::cast(receiver_obj);
4995     int index = args.smi_at(1);
4996     if (index >= 0 && index < str->length()) {
4997       return *GetCharAt(str, index);
4998     }
4999   }
5000
5001   // Fall back to GetObjectProperty.
5002   Handle<Object> result;
5003   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5004       isolate, result,
5005       Runtime::GetObjectProperty(isolate, receiver_obj, key_obj));
5006   return *result;
5007 }
5008
5009
5010 static bool IsValidAccessor(Handle<Object> obj) {
5011   return obj->IsUndefined() || obj->IsSpecFunction() || obj->IsNull();
5012 }
5013
5014
5015 // Transform getter or setter into something DefineAccessor can handle.
5016 static Handle<Object> InstantiateAccessorComponent(Isolate* isolate,
5017                                                    Handle<Object> component) {
5018   if (component->IsUndefined()) return isolate->factory()->undefined_value();
5019   Handle<FunctionTemplateInfo> info =
5020       Handle<FunctionTemplateInfo>::cast(component);
5021   return Utils::OpenHandle(*Utils::ToLocal(info)->GetFunction());
5022 }
5023
5024
5025 RUNTIME_FUNCTION(Runtime_DefineApiAccessorProperty) {
5026   HandleScope scope(isolate);
5027   DCHECK(args.length() == 5);
5028   CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5029   CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
5030   CONVERT_ARG_HANDLE_CHECKED(Object, getter, 2);
5031   CONVERT_ARG_HANDLE_CHECKED(Object, setter, 3);
5032   CONVERT_SMI_ARG_CHECKED(attribute, 4);
5033   RUNTIME_ASSERT(getter->IsUndefined() || getter->IsFunctionTemplateInfo());
5034   RUNTIME_ASSERT(setter->IsUndefined() || setter->IsFunctionTemplateInfo());
5035   RUNTIME_ASSERT(PropertyDetails::AttributesField::is_valid(
5036       static_cast<PropertyAttributes>(attribute)));
5037   RETURN_FAILURE_ON_EXCEPTION(
5038       isolate, JSObject::DefineAccessor(
5039                    object, name, InstantiateAccessorComponent(isolate, getter),
5040                    InstantiateAccessorComponent(isolate, setter),
5041                    static_cast<PropertyAttributes>(attribute)));
5042   return isolate->heap()->undefined_value();
5043 }
5044
5045
5046 // Implements part of 8.12.9 DefineOwnProperty.
5047 // There are 3 cases that lead here:
5048 // Step 4b - define a new accessor property.
5049 // Steps 9c & 12 - replace an existing data property with an accessor property.
5050 // Step 12 - update an existing accessor property with an accessor or generic
5051 //           descriptor.
5052 RUNTIME_FUNCTION(Runtime_DefineAccessorPropertyUnchecked) {
5053   HandleScope scope(isolate);
5054   DCHECK(args.length() == 5);
5055   CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
5056   RUNTIME_ASSERT(!obj->IsNull());
5057   CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
5058   CONVERT_ARG_HANDLE_CHECKED(Object, getter, 2);
5059   RUNTIME_ASSERT(IsValidAccessor(getter));
5060   CONVERT_ARG_HANDLE_CHECKED(Object, setter, 3);
5061   RUNTIME_ASSERT(IsValidAccessor(setter));
5062   CONVERT_SMI_ARG_CHECKED(unchecked, 4);
5063   RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
5064   PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked);
5065
5066   bool fast = obj->HasFastProperties();
5067   RETURN_FAILURE_ON_EXCEPTION(
5068       isolate, JSObject::DefineAccessor(obj, name, getter, setter, attr));
5069   if (fast) JSObject::MigrateSlowToFast(obj, 0);
5070   return isolate->heap()->undefined_value();
5071 }
5072
5073
5074 // Implements part of 8.12.9 DefineOwnProperty.
5075 // There are 3 cases that lead here:
5076 // Step 4a - define a new data property.
5077 // Steps 9b & 12 - replace an existing accessor property with a data property.
5078 // Step 12 - update an existing data property with a data or generic
5079 //           descriptor.
5080 RUNTIME_FUNCTION(Runtime_DefineDataPropertyUnchecked) {
5081   HandleScope scope(isolate);
5082   DCHECK(args.length() == 4);
5083   CONVERT_ARG_HANDLE_CHECKED(JSObject, js_object, 0);
5084   CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
5085   CONVERT_ARG_HANDLE_CHECKED(Object, obj_value, 2);
5086   CONVERT_SMI_ARG_CHECKED(unchecked, 3);
5087   RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
5088   PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked);
5089
5090   LookupIterator it(js_object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
5091   if (it.IsFound() && it.state() == LookupIterator::ACCESS_CHECK) {
5092     if (!isolate->MayNamedAccess(js_object, name, v8::ACCESS_SET)) {
5093       return isolate->heap()->undefined_value();
5094     }
5095     it.Next();
5096   }
5097
5098   // Take special care when attributes are different and there is already
5099   // a property.
5100   if (it.state() == LookupIterator::ACCESSOR) {
5101     // Use IgnoreAttributes version since a readonly property may be
5102     // overridden and SetProperty does not allow this.
5103     Handle<Object> result;
5104     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5105         isolate, result,
5106         JSObject::SetOwnPropertyIgnoreAttributes(
5107             js_object, name, obj_value, attr,
5108             JSObject::DONT_FORCE_FIELD));
5109     return *result;
5110   }
5111
5112   Handle<Object> result;
5113   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5114       isolate, result,
5115       Runtime::DefineObjectProperty(js_object, name, obj_value, attr));
5116   return *result;
5117 }
5118
5119
5120 // Return property without being observable by accessors or interceptors.
5121 RUNTIME_FUNCTION(Runtime_GetDataProperty) {
5122   HandleScope scope(isolate);
5123   DCHECK(args.length() == 2);
5124   CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5125   CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
5126   return *JSObject::GetDataProperty(object, key);
5127 }
5128
5129
5130 MaybeHandle<Object> Runtime::SetObjectProperty(Isolate* isolate,
5131                                                Handle<Object> object,
5132                                                Handle<Object> key,
5133                                                Handle<Object> value,
5134                                                StrictMode strict_mode) {
5135   if (object->IsUndefined() || object->IsNull()) {
5136     Handle<Object> args[2] = { key, object };
5137     THROW_NEW_ERROR(isolate, NewTypeError("non_object_property_store",
5138                                           HandleVector(args, 2)),
5139                     Object);
5140   }
5141
5142   if (object->IsJSProxy()) {
5143     Handle<Object> name_object;
5144     if (key->IsSymbol()) {
5145       name_object = key;
5146     } else {
5147       ASSIGN_RETURN_ON_EXCEPTION(
5148           isolate, name_object, Execution::ToString(isolate, key), Object);
5149     }
5150     Handle<Name> name = Handle<Name>::cast(name_object);
5151     return Object::SetProperty(Handle<JSProxy>::cast(object), name, value,
5152                                strict_mode);
5153   }
5154
5155   // Check if the given key is an array index.
5156   uint32_t index;
5157   if (key->ToArrayIndex(&index)) {
5158     // TODO(verwaest): Support non-JSObject receivers.
5159     if (!object->IsJSObject()) return value;
5160     Handle<JSObject> js_object = Handle<JSObject>::cast(object);
5161
5162     // In Firefox/SpiderMonkey, Safari and Opera you can access the characters
5163     // of a string using [] notation.  We need to support this too in
5164     // JavaScript.
5165     // In the case of a String object we just need to redirect the assignment to
5166     // the underlying string if the index is in range.  Since the underlying
5167     // string does nothing with the assignment then we can ignore such
5168     // assignments.
5169     if (js_object->IsStringObjectWithCharacterAt(index)) {
5170       return value;
5171     }
5172
5173     JSObject::ValidateElements(js_object);
5174     if (js_object->HasExternalArrayElements() ||
5175         js_object->HasFixedTypedArrayElements()) {
5176       if (!value->IsNumber() && !value->IsUndefined()) {
5177         ASSIGN_RETURN_ON_EXCEPTION(
5178             isolate, value, Execution::ToNumber(isolate, value), Object);
5179       }
5180     }
5181
5182     MaybeHandle<Object> result = JSObject::SetElement(
5183         js_object, index, value, NONE, strict_mode, true, SET_PROPERTY);
5184     JSObject::ValidateElements(js_object);
5185
5186     return result.is_null() ? result : value;
5187   }
5188
5189   if (key->IsName()) {
5190     Handle<Name> name = Handle<Name>::cast(key);
5191     if (name->AsArrayIndex(&index)) {
5192       // TODO(verwaest): Support non-JSObject receivers.
5193       if (!object->IsJSObject()) return value;
5194       Handle<JSObject> js_object = Handle<JSObject>::cast(object);
5195       if (js_object->HasExternalArrayElements()) {
5196         if (!value->IsNumber() && !value->IsUndefined()) {
5197           ASSIGN_RETURN_ON_EXCEPTION(
5198               isolate, value, Execution::ToNumber(isolate, value), Object);
5199         }
5200       }
5201       return JSObject::SetElement(js_object, index, value, NONE, strict_mode,
5202                                   true, SET_PROPERTY);
5203     } else {
5204       if (name->IsString()) name = String::Flatten(Handle<String>::cast(name));
5205       return Object::SetProperty(object, name, value, strict_mode);
5206     }
5207   }
5208
5209   // Call-back into JavaScript to convert the key to a string.
5210   Handle<Object> converted;
5211   ASSIGN_RETURN_ON_EXCEPTION(
5212       isolate, converted, Execution::ToString(isolate, key), Object);
5213   Handle<String> name = Handle<String>::cast(converted);
5214
5215   if (name->AsArrayIndex(&index)) {
5216     // TODO(verwaest): Support non-JSObject receivers.
5217     if (!object->IsJSObject()) return value;
5218     Handle<JSObject> js_object = Handle<JSObject>::cast(object);
5219     return JSObject::SetElement(js_object, index, value, NONE, strict_mode,
5220                                 true, SET_PROPERTY);
5221   }
5222   return Object::SetProperty(object, name, value, strict_mode);
5223 }
5224
5225
5226 MaybeHandle<Object> Runtime::DefineObjectProperty(Handle<JSObject> js_object,
5227                                                   Handle<Object> key,
5228                                                   Handle<Object> value,
5229                                                   PropertyAttributes attr) {
5230   Isolate* isolate = js_object->GetIsolate();
5231   // Check if the given key is an array index.
5232   uint32_t index;
5233   if (key->ToArrayIndex(&index)) {
5234     // In Firefox/SpiderMonkey, Safari and Opera you can access the characters
5235     // of a string using [] notation.  We need to support this too in
5236     // JavaScript.
5237     // In the case of a String object we just need to redirect the assignment to
5238     // the underlying string if the index is in range.  Since the underlying
5239     // string does nothing with the assignment then we can ignore such
5240     // assignments.
5241     if (js_object->IsStringObjectWithCharacterAt(index)) {
5242       return value;
5243     }
5244
5245     return JSObject::SetElement(js_object, index, value, attr,
5246                                 SLOPPY, false, DEFINE_PROPERTY);
5247   }
5248
5249   if (key->IsName()) {
5250     Handle<Name> name = Handle<Name>::cast(key);
5251     if (name->AsArrayIndex(&index)) {
5252       return JSObject::SetElement(js_object, index, value, attr,
5253                                   SLOPPY, false, DEFINE_PROPERTY);
5254     } else {
5255       if (name->IsString()) name = String::Flatten(Handle<String>::cast(name));
5256       return JSObject::SetOwnPropertyIgnoreAttributes(js_object, name, value,
5257                                                       attr);
5258     }
5259   }
5260
5261   // Call-back into JavaScript to convert the key to a string.
5262   Handle<Object> converted;
5263   ASSIGN_RETURN_ON_EXCEPTION(
5264       isolate, converted, Execution::ToString(isolate, key), Object);
5265   Handle<String> name = Handle<String>::cast(converted);
5266
5267   if (name->AsArrayIndex(&index)) {
5268     return JSObject::SetElement(js_object, index, value, attr,
5269                                 SLOPPY, false, DEFINE_PROPERTY);
5270   } else {
5271     return JSObject::SetOwnPropertyIgnoreAttributes(js_object, name, value,
5272                                                     attr);
5273   }
5274 }
5275
5276
5277 MaybeHandle<Object> Runtime::DeleteObjectProperty(Isolate* isolate,
5278                                                   Handle<JSReceiver> receiver,
5279                                                   Handle<Object> key,
5280                                                   JSReceiver::DeleteMode mode) {
5281   // Check if the given key is an array index.
5282   uint32_t index;
5283   if (key->ToArrayIndex(&index)) {
5284     // In Firefox/SpiderMonkey, Safari and Opera you can access the
5285     // characters of a string using [] notation.  In the case of a
5286     // String object we just need to redirect the deletion to the
5287     // underlying string if the index is in range.  Since the
5288     // underlying string does nothing with the deletion, we can ignore
5289     // such deletions.
5290     if (receiver->IsStringObjectWithCharacterAt(index)) {
5291       return isolate->factory()->true_value();
5292     }
5293
5294     return JSReceiver::DeleteElement(receiver, index, mode);
5295   }
5296
5297   Handle<Name> name;
5298   if (key->IsName()) {
5299     name = Handle<Name>::cast(key);
5300   } else {
5301     // Call-back into JavaScript to convert the key to a string.
5302     Handle<Object> converted;
5303     ASSIGN_RETURN_ON_EXCEPTION(
5304         isolate, converted, Execution::ToString(isolate, key), Object);
5305     name = Handle<String>::cast(converted);
5306   }
5307
5308   if (name->IsString()) name = String::Flatten(Handle<String>::cast(name));
5309   return JSReceiver::DeleteProperty(receiver, name, mode);
5310 }
5311
5312
5313 RUNTIME_FUNCTION(Runtime_SetHiddenProperty) {
5314   HandleScope scope(isolate);
5315   RUNTIME_ASSERT(args.length() == 3);
5316
5317   CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5318   CONVERT_ARG_HANDLE_CHECKED(String, key, 1);
5319   CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
5320   RUNTIME_ASSERT(key->IsUniqueName());
5321   return *JSObject::SetHiddenProperty(object, key, value);
5322 }
5323
5324
5325 RUNTIME_FUNCTION(Runtime_AddNamedProperty) {
5326   HandleScope scope(isolate);
5327   RUNTIME_ASSERT(args.length() == 4);
5328
5329   CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5330   CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
5331   CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
5332   CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3);
5333   RUNTIME_ASSERT(
5334       (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
5335   // Compute attributes.
5336   PropertyAttributes attributes =
5337       static_cast<PropertyAttributes>(unchecked_attributes);
5338
5339 #ifdef DEBUG
5340   uint32_t index = 0;
5341   DCHECK(!key->ToArrayIndex(&index));
5342   LookupIterator it(object, key, LookupIterator::OWN_SKIP_INTERCEPTOR);
5343   Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
5344   if (!maybe.has_value) return isolate->heap()->exception();
5345   RUNTIME_ASSERT(!it.IsFound());
5346 #endif
5347
5348   Handle<Object> result;
5349   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5350       isolate, result,
5351       JSObject::SetOwnPropertyIgnoreAttributes(object, key, value, attributes));
5352   return *result;
5353 }
5354
5355
5356 RUNTIME_FUNCTION(Runtime_AddPropertyForTemplate) {
5357   HandleScope scope(isolate);
5358   RUNTIME_ASSERT(args.length() == 4);
5359
5360   CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5361   CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
5362   CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
5363   CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3);
5364   RUNTIME_ASSERT(
5365       (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
5366   // Compute attributes.
5367   PropertyAttributes attributes =
5368       static_cast<PropertyAttributes>(unchecked_attributes);
5369
5370 #ifdef DEBUG
5371   bool duplicate;
5372   if (key->IsName()) {
5373     LookupIterator it(object, Handle<Name>::cast(key),
5374                       LookupIterator::OWN_SKIP_INTERCEPTOR);
5375     Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
5376     DCHECK(maybe.has_value);
5377     duplicate = it.IsFound();
5378   } else {
5379     uint32_t index = 0;
5380     RUNTIME_ASSERT(key->ToArrayIndex(&index));
5381     Maybe<bool> maybe = JSReceiver::HasOwnElement(object, index);
5382     if (!maybe.has_value) return isolate->heap()->exception();
5383     duplicate = maybe.value;
5384   }
5385   if (duplicate) {
5386     Handle<Object> args[1] = { key };
5387     THROW_NEW_ERROR_RETURN_FAILURE(
5388         isolate,
5389         NewTypeError("duplicate_template_property", HandleVector(args, 1)));
5390   }
5391 #endif
5392
5393   Handle<Object> result;
5394   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5395       isolate, result,
5396       Runtime::DefineObjectProperty(object, key, value, attributes));
5397   return *result;
5398 }
5399
5400
5401 RUNTIME_FUNCTION(Runtime_SetProperty) {
5402   HandleScope scope(isolate);
5403   RUNTIME_ASSERT(args.length() == 4);
5404
5405   CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
5406   CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
5407   CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
5408   CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode_arg, 3);
5409   StrictMode strict_mode = strict_mode_arg;
5410
5411   Handle<Object> result;
5412   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5413       isolate, result,
5414       Runtime::SetObjectProperty(isolate, object, key, value, strict_mode));
5415   return *result;
5416 }
5417
5418
5419 // Adds an element to an array.
5420 // This is used to create an indexed data property into an array.
5421 RUNTIME_FUNCTION(Runtime_AddElement) {
5422   HandleScope scope(isolate);
5423   RUNTIME_ASSERT(args.length() == 4);
5424
5425   CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5426   CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
5427   CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
5428   CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3);
5429   RUNTIME_ASSERT(
5430       (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
5431   // Compute attributes.
5432   PropertyAttributes attributes =
5433       static_cast<PropertyAttributes>(unchecked_attributes);
5434
5435   uint32_t index = 0;
5436   key->ToArrayIndex(&index);
5437
5438   Handle<Object> result;
5439   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5440       isolate, result, JSObject::SetElement(object, index, value, attributes,
5441                                             SLOPPY, false, DEFINE_PROPERTY));
5442   return *result;
5443 }
5444
5445
5446 RUNTIME_FUNCTION(Runtime_TransitionElementsKind) {
5447   HandleScope scope(isolate);
5448   RUNTIME_ASSERT(args.length() == 2);
5449   CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
5450   CONVERT_ARG_HANDLE_CHECKED(Map, map, 1);
5451   JSObject::TransitionElementsKind(array, map->elements_kind());
5452   return *array;
5453 }
5454
5455
5456 // Set the native flag on the function.
5457 // This is used to decide if we should transform null and undefined
5458 // into the global object when doing call and apply.
5459 RUNTIME_FUNCTION(Runtime_SetNativeFlag) {
5460   SealHandleScope shs(isolate);
5461   RUNTIME_ASSERT(args.length() == 1);
5462
5463   CONVERT_ARG_CHECKED(Object, object, 0);
5464
5465   if (object->IsJSFunction()) {
5466     JSFunction* func = JSFunction::cast(object);
5467     func->shared()->set_native(true);
5468   }
5469   return isolate->heap()->undefined_value();
5470 }
5471
5472
5473 RUNTIME_FUNCTION(Runtime_SetInlineBuiltinFlag) {
5474   SealHandleScope shs(isolate);
5475   RUNTIME_ASSERT(args.length() == 1);
5476   CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
5477
5478   if (object->IsJSFunction()) {
5479     JSFunction* func = JSFunction::cast(*object);
5480     func->shared()->set_inline_builtin(true);
5481   }
5482   return isolate->heap()->undefined_value();
5483 }
5484
5485
5486 RUNTIME_FUNCTION(Runtime_StoreArrayLiteralElement) {
5487   HandleScope scope(isolate);
5488   RUNTIME_ASSERT(args.length() == 5);
5489   CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5490   CONVERT_SMI_ARG_CHECKED(store_index, 1);
5491   CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
5492   CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 3);
5493   CONVERT_SMI_ARG_CHECKED(literal_index, 4);
5494
5495   Object* raw_literal_cell = literals->get(literal_index);
5496   JSArray* boilerplate = NULL;
5497   if (raw_literal_cell->IsAllocationSite()) {
5498     AllocationSite* site = AllocationSite::cast(raw_literal_cell);
5499     boilerplate = JSArray::cast(site->transition_info());
5500   } else {
5501     boilerplate = JSArray::cast(raw_literal_cell);
5502   }
5503   Handle<JSArray> boilerplate_object(boilerplate);
5504   ElementsKind elements_kind = object->GetElementsKind();
5505   DCHECK(IsFastElementsKind(elements_kind));
5506   // Smis should never trigger transitions.
5507   DCHECK(!value->IsSmi());
5508
5509   if (value->IsNumber()) {
5510     DCHECK(IsFastSmiElementsKind(elements_kind));
5511     ElementsKind transitioned_kind = IsFastHoleyElementsKind(elements_kind)
5512         ? FAST_HOLEY_DOUBLE_ELEMENTS
5513         : FAST_DOUBLE_ELEMENTS;
5514     if (IsMoreGeneralElementsKindTransition(
5515             boilerplate_object->GetElementsKind(),
5516             transitioned_kind)) {
5517       JSObject::TransitionElementsKind(boilerplate_object, transitioned_kind);
5518     }
5519     JSObject::TransitionElementsKind(object, transitioned_kind);
5520     DCHECK(IsFastDoubleElementsKind(object->GetElementsKind()));
5521     FixedDoubleArray* double_array = FixedDoubleArray::cast(object->elements());
5522     HeapNumber* number = HeapNumber::cast(*value);
5523     double_array->set(store_index, number->Number());
5524   } else {
5525     if (!IsFastObjectElementsKind(elements_kind)) {
5526       ElementsKind transitioned_kind = IsFastHoleyElementsKind(elements_kind)
5527           ? FAST_HOLEY_ELEMENTS
5528           : FAST_ELEMENTS;
5529       JSObject::TransitionElementsKind(object, transitioned_kind);
5530       ElementsKind boilerplate_elements_kind =
5531           boilerplate_object->GetElementsKind();
5532       if (IsMoreGeneralElementsKindTransition(boilerplate_elements_kind,
5533                                               transitioned_kind)) {
5534         JSObject::TransitionElementsKind(boilerplate_object, transitioned_kind);
5535       }
5536     }
5537     FixedArray* object_array = FixedArray::cast(object->elements());
5538     object_array->set(store_index, *value);
5539   }
5540   return *object;
5541 }
5542
5543
5544 // Check whether debugger and is about to step into the callback that is passed
5545 // to a built-in function such as Array.forEach.
5546 RUNTIME_FUNCTION(Runtime_DebugCallbackSupportsStepping) {
5547   DCHECK(args.length() == 1);
5548   if (!isolate->debug()->is_active() || !isolate->debug()->StepInActive()) {
5549     return isolate->heap()->false_value();
5550   }
5551   CONVERT_ARG_CHECKED(Object, callback, 0);
5552   // We do not step into the callback if it's a builtin or not even a function.
5553   return isolate->heap()->ToBoolean(
5554       callback->IsJSFunction() && !JSFunction::cast(callback)->IsBuiltin());
5555 }
5556
5557
5558 // Set one shot breakpoints for the callback function that is passed to a
5559 // built-in function such as Array.forEach to enable stepping into the callback.
5560 RUNTIME_FUNCTION(Runtime_DebugPrepareStepInIfStepping) {
5561   DCHECK(args.length() == 1);
5562   Debug* debug = isolate->debug();
5563   if (!debug->IsStepping()) return isolate->heap()->undefined_value();
5564
5565   HandleScope scope(isolate);
5566   CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
5567   RUNTIME_ASSERT(object->IsJSFunction() || object->IsJSGeneratorObject());
5568   Handle<JSFunction> fun;
5569   if (object->IsJSFunction()) {
5570     fun = Handle<JSFunction>::cast(object);
5571   } else {
5572     fun = Handle<JSFunction>(
5573         Handle<JSGeneratorObject>::cast(object)->function(), isolate);
5574   }
5575   // When leaving the function, step out has been activated, but not performed
5576   // if we do not leave the builtin.  To be able to step into the function
5577   // again, we need to clear the step out at this point.
5578   debug->ClearStepOut();
5579   debug->FloodWithOneShot(fun);
5580   return isolate->heap()->undefined_value();
5581 }
5582
5583
5584 RUNTIME_FUNCTION(Runtime_DebugPushPromise) {
5585   DCHECK(args.length() == 1);
5586   HandleScope scope(isolate);
5587   CONVERT_ARG_HANDLE_CHECKED(JSObject, promise, 0);
5588   isolate->PushPromise(promise);
5589   return isolate->heap()->undefined_value();
5590 }
5591
5592
5593 RUNTIME_FUNCTION(Runtime_DebugPopPromise) {
5594   DCHECK(args.length() == 0);
5595   SealHandleScope shs(isolate);
5596   isolate->PopPromise();
5597   return isolate->heap()->undefined_value();
5598 }
5599
5600
5601 RUNTIME_FUNCTION(Runtime_DebugPromiseEvent) {
5602   DCHECK(args.length() == 1);
5603   HandleScope scope(isolate);
5604   CONVERT_ARG_HANDLE_CHECKED(JSObject, data, 0);
5605   isolate->debug()->OnPromiseEvent(data);
5606   return isolate->heap()->undefined_value();
5607 }
5608
5609
5610 RUNTIME_FUNCTION(Runtime_DebugPromiseRejectEvent) {
5611   DCHECK(args.length() == 2);
5612   HandleScope scope(isolate);
5613   CONVERT_ARG_HANDLE_CHECKED(JSObject, promise, 0);
5614   CONVERT_ARG_HANDLE_CHECKED(Object, value, 1);
5615   isolate->debug()->OnPromiseReject(promise, value);
5616   return isolate->heap()->undefined_value();
5617 }
5618
5619
5620 RUNTIME_FUNCTION(Runtime_DebugAsyncTaskEvent) {
5621   DCHECK(args.length() == 1);
5622   HandleScope scope(isolate);
5623   CONVERT_ARG_HANDLE_CHECKED(JSObject, data, 0);
5624   isolate->debug()->OnAsyncTaskEvent(data);
5625   return isolate->heap()->undefined_value();
5626 }
5627
5628
5629 RUNTIME_FUNCTION(Runtime_DeleteProperty) {
5630   HandleScope scope(isolate);
5631   DCHECK(args.length() == 3);
5632   CONVERT_ARG_HANDLE_CHECKED(JSReceiver, object, 0);
5633   CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
5634   CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 2);
5635   JSReceiver::DeleteMode delete_mode = strict_mode == STRICT
5636       ? JSReceiver::STRICT_DELETION : JSReceiver::NORMAL_DELETION;
5637   Handle<Object> result;
5638   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5639       isolate, result,
5640       JSReceiver::DeleteProperty(object, key, delete_mode));
5641   return *result;
5642 }
5643
5644
5645 static Object* HasOwnPropertyImplementation(Isolate* isolate,
5646                                             Handle<JSObject> object,
5647                                             Handle<Name> key) {
5648   Maybe<bool> maybe = JSReceiver::HasOwnProperty(object, key);
5649   if (!maybe.has_value) return isolate->heap()->exception();
5650   if (maybe.value) return isolate->heap()->true_value();
5651   // Handle hidden prototypes.  If there's a hidden prototype above this thing
5652   // then we have to check it for properties, because they are supposed to
5653   // look like they are on this object.
5654   PrototypeIterator iter(isolate, object);
5655   if (!iter.IsAtEnd() &&
5656       Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter))
5657           ->map()
5658           ->is_hidden_prototype()) {
5659     // TODO(verwaest): The recursion is not necessary for keys that are array
5660     // indices. Removing this.
5661     return HasOwnPropertyImplementation(
5662         isolate, Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)),
5663         key);
5664   }
5665   RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
5666   return isolate->heap()->false_value();
5667 }
5668
5669
5670 RUNTIME_FUNCTION(Runtime_HasOwnProperty) {
5671   HandleScope scope(isolate);
5672   DCHECK(args.length() == 2);
5673   CONVERT_ARG_HANDLE_CHECKED(Object, object, 0)
5674   CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
5675
5676   uint32_t index;
5677   const bool key_is_array_index = key->AsArrayIndex(&index);
5678
5679   // Only JS objects can have properties.
5680   if (object->IsJSObject()) {
5681     Handle<JSObject> js_obj = Handle<JSObject>::cast(object);
5682     // Fast case: either the key is a real named property or it is not
5683     // an array index and there are no interceptors or hidden
5684     // prototypes.
5685     Maybe<bool> maybe = JSObject::HasRealNamedProperty(js_obj, key);
5686     if (!maybe.has_value) return isolate->heap()->exception();
5687     DCHECK(!isolate->has_pending_exception());
5688     if (maybe.value) {
5689       return isolate->heap()->true_value();
5690     }
5691     Map* map = js_obj->map();
5692     if (!key_is_array_index &&
5693         !map->has_named_interceptor() &&
5694         !HeapObject::cast(map->prototype())->map()->is_hidden_prototype()) {
5695       return isolate->heap()->false_value();
5696     }
5697     // Slow case.
5698     return HasOwnPropertyImplementation(isolate,
5699                                         Handle<JSObject>(js_obj),
5700                                         Handle<Name>(key));
5701   } else if (object->IsString() && key_is_array_index) {
5702     // Well, there is one exception:  Handle [] on strings.
5703     Handle<String> string = Handle<String>::cast(object);
5704     if (index < static_cast<uint32_t>(string->length())) {
5705       return isolate->heap()->true_value();
5706     }
5707   }
5708   return isolate->heap()->false_value();
5709 }
5710
5711
5712 RUNTIME_FUNCTION(Runtime_HasProperty) {
5713   HandleScope scope(isolate);
5714   DCHECK(args.length() == 2);
5715   CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0);
5716   CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
5717
5718   Maybe<bool> maybe = JSReceiver::HasProperty(receiver, key);
5719   if (!maybe.has_value) return isolate->heap()->exception();
5720   return isolate->heap()->ToBoolean(maybe.value);
5721 }
5722
5723
5724 RUNTIME_FUNCTION(Runtime_HasElement) {
5725   HandleScope scope(isolate);
5726   DCHECK(args.length() == 2);
5727   CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0);
5728   CONVERT_SMI_ARG_CHECKED(index, 1);
5729
5730   Maybe<bool> maybe = JSReceiver::HasElement(receiver, index);
5731   if (!maybe.has_value) return isolate->heap()->exception();
5732   return isolate->heap()->ToBoolean(maybe.value);
5733 }
5734
5735
5736 RUNTIME_FUNCTION(Runtime_IsPropertyEnumerable) {
5737   HandleScope scope(isolate);
5738   DCHECK(args.length() == 2);
5739
5740   CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5741   CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
5742
5743   Maybe<PropertyAttributes> maybe =
5744       JSReceiver::GetOwnPropertyAttributes(object, key);
5745   if (!maybe.has_value) return isolate->heap()->exception();
5746   if (maybe.value == ABSENT) maybe.value = DONT_ENUM;
5747   return isolate->heap()->ToBoolean((maybe.value & DONT_ENUM) == 0);
5748 }
5749
5750
5751 RUNTIME_FUNCTION(Runtime_GetPropertyNames) {
5752   HandleScope scope(isolate);
5753   DCHECK(args.length() == 1);
5754   CONVERT_ARG_HANDLE_CHECKED(JSReceiver, object, 0);
5755   Handle<JSArray> result;
5756
5757   isolate->counters()->for_in()->Increment();
5758   Handle<FixedArray> elements;
5759   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5760       isolate, elements,
5761       JSReceiver::GetKeys(object, JSReceiver::INCLUDE_PROTOS));
5762   return *isolate->factory()->NewJSArrayWithElements(elements);
5763 }
5764
5765
5766 // Returns either a FixedArray as Runtime_GetPropertyNames,
5767 // or, if the given object has an enum cache that contains
5768 // all enumerable properties of the object and its prototypes
5769 // have none, the map of the object. This is used to speed up
5770 // the check for deletions during a for-in.
5771 RUNTIME_FUNCTION(Runtime_GetPropertyNamesFast) {
5772   SealHandleScope shs(isolate);
5773   DCHECK(args.length() == 1);
5774
5775   CONVERT_ARG_CHECKED(JSReceiver, raw_object, 0);
5776
5777   if (raw_object->IsSimpleEnum()) return raw_object->map();
5778
5779   HandleScope scope(isolate);
5780   Handle<JSReceiver> object(raw_object);
5781   Handle<FixedArray> content;
5782   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5783       isolate, content,
5784       JSReceiver::GetKeys(object, JSReceiver::INCLUDE_PROTOS));
5785
5786   // Test again, since cache may have been built by preceding call.
5787   if (object->IsSimpleEnum()) return object->map();
5788
5789   return *content;
5790 }
5791
5792
5793 // Find the length of the prototype chain that is to be handled as one. If a
5794 // prototype object is hidden it is to be viewed as part of the the object it
5795 // is prototype for.
5796 static int OwnPrototypeChainLength(JSObject* obj) {
5797   int count = 1;
5798   for (PrototypeIterator iter(obj->GetIsolate(), obj);
5799        !iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN); iter.Advance()) {
5800     count++;
5801   }
5802   return count;
5803 }
5804
5805
5806 // Return the names of the own named properties.
5807 // args[0]: object
5808 // args[1]: PropertyAttributes as int
5809 RUNTIME_FUNCTION(Runtime_GetOwnPropertyNames) {
5810   HandleScope scope(isolate);
5811   DCHECK(args.length() == 2);
5812   if (!args[0]->IsJSObject()) {
5813     return isolate->heap()->undefined_value();
5814   }
5815   CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
5816   CONVERT_SMI_ARG_CHECKED(filter_value, 1);
5817   PropertyAttributes filter = static_cast<PropertyAttributes>(filter_value);
5818
5819   // Skip the global proxy as it has no properties and always delegates to the
5820   // real global object.
5821   if (obj->IsJSGlobalProxy()) {
5822     // Only collect names if access is permitted.
5823     if (obj->IsAccessCheckNeeded() &&
5824         !isolate->MayNamedAccess(
5825             obj, isolate->factory()->undefined_value(), v8::ACCESS_KEYS)) {
5826       isolate->ReportFailedAccessCheck(obj, v8::ACCESS_KEYS);
5827       RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
5828       return *isolate->factory()->NewJSArray(0);
5829     }
5830     PrototypeIterator iter(isolate, obj);
5831     obj = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
5832   }
5833
5834   // Find the number of objects making up this.
5835   int length = OwnPrototypeChainLength(*obj);
5836
5837   // Find the number of own properties for each of the objects.
5838   ScopedVector<int> own_property_count(length);
5839   int total_property_count = 0;
5840   {
5841     PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER);
5842     for (int i = 0; i < length; i++) {
5843       DCHECK(!iter.IsAtEnd());
5844       Handle<JSObject> jsproto =
5845           Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
5846       // Only collect names if access is permitted.
5847       if (jsproto->IsAccessCheckNeeded() &&
5848           !isolate->MayNamedAccess(jsproto,
5849                                    isolate->factory()->undefined_value(),
5850                                    v8::ACCESS_KEYS)) {
5851         isolate->ReportFailedAccessCheck(jsproto, v8::ACCESS_KEYS);
5852         RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
5853         return *isolate->factory()->NewJSArray(0);
5854       }
5855       int n;
5856       n = jsproto->NumberOfOwnProperties(filter);
5857       own_property_count[i] = n;
5858       total_property_count += n;
5859       iter.Advance();
5860     }
5861   }
5862
5863   // Allocate an array with storage for all the property names.
5864   Handle<FixedArray> names =
5865       isolate->factory()->NewFixedArray(total_property_count);
5866
5867   // Get the property names.
5868   int next_copy_index = 0;
5869   int hidden_strings = 0;
5870   {
5871     PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER);
5872     for (int i = 0; i < length; i++) {
5873       DCHECK(!iter.IsAtEnd());
5874       Handle<JSObject> jsproto =
5875           Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
5876       jsproto->GetOwnPropertyNames(*names, next_copy_index, filter);
5877       if (i > 0) {
5878         // Names from hidden prototypes may already have been added
5879         // for inherited function template instances. Count the duplicates
5880         // and stub them out; the final copy pass at the end ignores holes.
5881         for (int j = next_copy_index;
5882              j < next_copy_index + own_property_count[i]; j++) {
5883           Object* name_from_hidden_proto = names->get(j);
5884           for (int k = 0; k < next_copy_index; k++) {
5885             if (names->get(k) != isolate->heap()->hidden_string()) {
5886               Object* name = names->get(k);
5887               if (name_from_hidden_proto == name) {
5888                 names->set(j, isolate->heap()->hidden_string());
5889                 hidden_strings++;
5890                 break;
5891               }
5892             }
5893           }
5894         }
5895       }
5896       next_copy_index += own_property_count[i];
5897
5898       // Hidden properties only show up if the filter does not skip strings.
5899       if ((filter & STRING) == 0 && JSObject::HasHiddenProperties(jsproto)) {
5900         hidden_strings++;
5901       }
5902       iter.Advance();
5903     }
5904   }
5905
5906   // Filter out name of hidden properties object and
5907   // hidden prototype duplicates.
5908   if (hidden_strings > 0) {
5909     Handle<FixedArray> old_names = names;
5910     names = isolate->factory()->NewFixedArray(
5911         names->length() - hidden_strings);
5912     int dest_pos = 0;
5913     for (int i = 0; i < total_property_count; i++) {
5914       Object* name = old_names->get(i);
5915       if (name == isolate->heap()->hidden_string()) {
5916         hidden_strings--;
5917         continue;
5918       }
5919       names->set(dest_pos++, name);
5920     }
5921     DCHECK_EQ(0, hidden_strings);
5922   }
5923
5924   return *isolate->factory()->NewJSArrayWithElements(names);
5925 }
5926
5927
5928 // Return the names of the own indexed properties.
5929 // args[0]: object
5930 RUNTIME_FUNCTION(Runtime_GetOwnElementNames) {
5931   HandleScope scope(isolate);
5932   DCHECK(args.length() == 1);
5933   if (!args[0]->IsJSObject()) {
5934     return isolate->heap()->undefined_value();
5935   }
5936   CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
5937
5938   int n = obj->NumberOfOwnElements(static_cast<PropertyAttributes>(NONE));
5939   Handle<FixedArray> names = isolate->factory()->NewFixedArray(n);
5940   obj->GetOwnElementKeys(*names, static_cast<PropertyAttributes>(NONE));
5941   return *isolate->factory()->NewJSArrayWithElements(names);
5942 }
5943
5944
5945 // Return information on whether an object has a named or indexed interceptor.
5946 // args[0]: object
5947 RUNTIME_FUNCTION(Runtime_GetInterceptorInfo) {
5948   HandleScope scope(isolate);
5949   DCHECK(args.length() == 1);
5950   if (!args[0]->IsJSObject()) {
5951     return Smi::FromInt(0);
5952   }
5953   CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
5954
5955   int result = 0;
5956   if (obj->HasNamedInterceptor()) result |= 2;
5957   if (obj->HasIndexedInterceptor()) result |= 1;
5958
5959   return Smi::FromInt(result);
5960 }
5961
5962
5963 // Return property names from named interceptor.
5964 // args[0]: object
5965 RUNTIME_FUNCTION(Runtime_GetNamedInterceptorPropertyNames) {
5966   HandleScope scope(isolate);
5967   DCHECK(args.length() == 1);
5968   CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
5969
5970   if (obj->HasNamedInterceptor()) {
5971     Handle<JSObject> result;
5972     if (JSObject::GetKeysForNamedInterceptor(obj, obj).ToHandle(&result)) {
5973       return *result;
5974     }
5975   }
5976   return isolate->heap()->undefined_value();
5977 }
5978
5979
5980 // Return element names from indexed interceptor.
5981 // args[0]: object
5982 RUNTIME_FUNCTION(Runtime_GetIndexedInterceptorElementNames) {
5983   HandleScope scope(isolate);
5984   DCHECK(args.length() == 1);
5985   CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
5986
5987   if (obj->HasIndexedInterceptor()) {
5988     Handle<JSObject> result;
5989     if (JSObject::GetKeysForIndexedInterceptor(obj, obj).ToHandle(&result)) {
5990       return *result;
5991     }
5992   }
5993   return isolate->heap()->undefined_value();
5994 }
5995
5996
5997 RUNTIME_FUNCTION(Runtime_OwnKeys) {
5998   HandleScope scope(isolate);
5999   DCHECK(args.length() == 1);
6000   CONVERT_ARG_CHECKED(JSObject, raw_object, 0);
6001   Handle<JSObject> object(raw_object);
6002
6003   if (object->IsJSGlobalProxy()) {
6004     // Do access checks before going to the global object.
6005     if (object->IsAccessCheckNeeded() &&
6006         !isolate->MayNamedAccess(
6007             object, isolate->factory()->undefined_value(), v8::ACCESS_KEYS)) {
6008       isolate->ReportFailedAccessCheck(object, v8::ACCESS_KEYS);
6009       RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
6010       return *isolate->factory()->NewJSArray(0);
6011     }
6012
6013     PrototypeIterator iter(isolate, object);
6014     // If proxy is detached we simply return an empty array.
6015     if (iter.IsAtEnd()) return *isolate->factory()->NewJSArray(0);
6016     object = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
6017   }
6018
6019   Handle<FixedArray> contents;
6020   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6021       isolate, contents,
6022       JSReceiver::GetKeys(object, JSReceiver::OWN_ONLY));
6023
6024   // Some fast paths through GetKeysInFixedArrayFor reuse a cached
6025   // property array and since the result is mutable we have to create
6026   // a fresh clone on each invocation.
6027   int length = contents->length();
6028   Handle<FixedArray> copy = isolate->factory()->NewFixedArray(length);
6029   for (int i = 0; i < length; i++) {
6030     Object* entry = contents->get(i);
6031     if (entry->IsString()) {
6032       copy->set(i, entry);
6033     } else {
6034       DCHECK(entry->IsNumber());
6035       HandleScope scope(isolate);
6036       Handle<Object> entry_handle(entry, isolate);
6037       Handle<Object> entry_str =
6038           isolate->factory()->NumberToString(entry_handle);
6039       copy->set(i, *entry_str);
6040     }
6041   }
6042   return *isolate->factory()->NewJSArrayWithElements(copy);
6043 }
6044
6045
6046 RUNTIME_FUNCTION(Runtime_GetArgumentsProperty) {
6047   SealHandleScope shs(isolate);
6048   DCHECK(args.length() == 1);
6049   CONVERT_ARG_HANDLE_CHECKED(Object, raw_key, 0);
6050
6051   // Compute the frame holding the arguments.
6052   JavaScriptFrameIterator it(isolate);
6053   it.AdvanceToArgumentsFrame();
6054   JavaScriptFrame* frame = it.frame();
6055
6056   // Get the actual number of provided arguments.
6057   const uint32_t n = frame->ComputeParametersCount();
6058
6059   // Try to convert the key to an index. If successful and within
6060   // index return the the argument from the frame.
6061   uint32_t index;
6062   if (raw_key->ToArrayIndex(&index) && index < n) {
6063     return frame->GetParameter(index);
6064   }
6065
6066   HandleScope scope(isolate);
6067   if (raw_key->IsSymbol()) {
6068     Handle<Symbol> symbol = Handle<Symbol>::cast(raw_key);
6069     if (symbol->Equals(isolate->native_context()->iterator_symbol())) {
6070       return isolate->native_context()->array_values_iterator();
6071     }
6072     // Lookup in the initial Object.prototype object.
6073     Handle<Object> result;
6074     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6075         isolate, result,
6076         Object::GetProperty(isolate->initial_object_prototype(),
6077                             Handle<Symbol>::cast(raw_key)));
6078     return *result;
6079   }
6080
6081   // Convert the key to a string.
6082   Handle<Object> converted;
6083   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6084       isolate, converted, Execution::ToString(isolate, raw_key));
6085   Handle<String> key = Handle<String>::cast(converted);
6086
6087   // Try to convert the string key into an array index.
6088   if (key->AsArrayIndex(&index)) {
6089     if (index < n) {
6090       return frame->GetParameter(index);
6091     } else {
6092       Handle<Object> initial_prototype(isolate->initial_object_prototype());
6093       Handle<Object> result;
6094       ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6095           isolate, result,
6096           Object::GetElement(isolate, initial_prototype, index));
6097       return *result;
6098     }
6099   }
6100
6101   // Handle special arguments properties.
6102   if (String::Equals(isolate->factory()->length_string(), key)) {
6103     return Smi::FromInt(n);
6104   }
6105   if (String::Equals(isolate->factory()->callee_string(), key)) {
6106     JSFunction* function = frame->function();
6107     if (function->shared()->strict_mode() == STRICT) {
6108       THROW_NEW_ERROR_RETURN_FAILURE(
6109           isolate, NewTypeError("strict_arguments_callee",
6110                                 HandleVector<Object>(NULL, 0)));
6111     }
6112     return function;
6113   }
6114
6115   // Lookup in the initial Object.prototype object.
6116   Handle<Object> result;
6117   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6118       isolate, result,
6119       Object::GetProperty(isolate->initial_object_prototype(), key));
6120   return *result;
6121 }
6122
6123
6124 RUNTIME_FUNCTION(Runtime_ToFastProperties) {
6125   HandleScope scope(isolate);
6126   DCHECK(args.length() == 1);
6127   CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
6128   if (object->IsJSObject() && !object->IsGlobalObject()) {
6129     JSObject::MigrateSlowToFast(Handle<JSObject>::cast(object), 0);
6130   }
6131   return *object;
6132 }
6133
6134
6135 RUNTIME_FUNCTION(Runtime_ToBool) {
6136   SealHandleScope shs(isolate);
6137   DCHECK(args.length() == 1);
6138   CONVERT_ARG_CHECKED(Object, object, 0);
6139
6140   return isolate->heap()->ToBoolean(object->BooleanValue());
6141 }
6142
6143
6144 // Returns the type string of a value; see ECMA-262, 11.4.3 (p 47).
6145 // Possible optimizations: put the type string into the oddballs.
6146 RUNTIME_FUNCTION(Runtime_Typeof) {
6147   SealHandleScope shs(isolate);
6148   DCHECK(args.length() == 1);
6149   CONVERT_ARG_CHECKED(Object, obj, 0);
6150   if (obj->IsNumber()) return isolate->heap()->number_string();
6151   HeapObject* heap_obj = HeapObject::cast(obj);
6152
6153   // typeof an undetectable object is 'undefined'
6154   if (heap_obj->map()->is_undetectable()) {
6155     return isolate->heap()->undefined_string();
6156   }
6157
6158   InstanceType instance_type = heap_obj->map()->instance_type();
6159   if (instance_type < FIRST_NONSTRING_TYPE) {
6160     return isolate->heap()->string_string();
6161   }
6162
6163   switch (instance_type) {
6164     case ODDBALL_TYPE:
6165       if (heap_obj->IsTrue() || heap_obj->IsFalse()) {
6166         return isolate->heap()->boolean_string();
6167       }
6168       if (heap_obj->IsNull()) {
6169         return isolate->heap()->object_string();
6170       }
6171       DCHECK(heap_obj->IsUndefined());
6172       return isolate->heap()->undefined_string();
6173     case SYMBOL_TYPE:
6174       return isolate->heap()->symbol_string();
6175     case JS_FUNCTION_TYPE:
6176     case JS_FUNCTION_PROXY_TYPE:
6177       return isolate->heap()->function_string();
6178     default:
6179       // For any kind of object not handled above, the spec rule for
6180       // host objects gives that it is okay to return "object"
6181       return isolate->heap()->object_string();
6182   }
6183 }
6184
6185
6186 RUNTIME_FUNCTION(Runtime_Booleanize) {
6187   SealHandleScope shs(isolate);
6188   DCHECK(args.length() == 2);
6189   CONVERT_ARG_CHECKED(Object, value_raw, 0);
6190   CONVERT_SMI_ARG_CHECKED(token_raw, 1);
6191   intptr_t value = reinterpret_cast<intptr_t>(value_raw);
6192   Token::Value token = static_cast<Token::Value>(token_raw);
6193   switch (token) {
6194     case Token::EQ:
6195     case Token::EQ_STRICT:
6196       return isolate->heap()->ToBoolean(value == 0);
6197     case Token::NE:
6198     case Token::NE_STRICT:
6199       return isolate->heap()->ToBoolean(value != 0);
6200     case Token::LT:
6201       return isolate->heap()->ToBoolean(value < 0);
6202     case Token::GT:
6203       return isolate->heap()->ToBoolean(value > 0);
6204     case Token::LTE:
6205       return isolate->heap()->ToBoolean(value <= 0);
6206     case Token::GTE:
6207       return isolate->heap()->ToBoolean(value >= 0);
6208     default:
6209       // This should only happen during natives fuzzing.
6210       return isolate->heap()->undefined_value();
6211   }
6212 }
6213
6214
6215 static bool AreDigits(const uint8_t*s, int from, int to) {
6216   for (int i = from; i < to; i++) {
6217     if (s[i] < '0' || s[i] > '9') return false;
6218   }
6219
6220   return true;
6221 }
6222
6223
6224 static int ParseDecimalInteger(const uint8_t*s, int from, int to) {
6225   DCHECK(to - from < 10);  // Overflow is not possible.
6226   DCHECK(from < to);
6227   int d = s[from] - '0';
6228
6229   for (int i = from + 1; i < to; i++) {
6230     d = 10 * d + (s[i] - '0');
6231   }
6232
6233   return d;
6234 }
6235
6236
6237 RUNTIME_FUNCTION(Runtime_StringToNumber) {
6238   HandleScope handle_scope(isolate);
6239   DCHECK(args.length() == 1);
6240   CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
6241   subject = String::Flatten(subject);
6242
6243   // Fast case: short integer or some sorts of junk values.
6244   if (subject->IsSeqOneByteString()) {
6245     int len = subject->length();
6246     if (len == 0) return Smi::FromInt(0);
6247
6248     DisallowHeapAllocation no_gc;
6249     uint8_t const* data = Handle<SeqOneByteString>::cast(subject)->GetChars();
6250     bool minus = (data[0] == '-');
6251     int start_pos = (minus ? 1 : 0);
6252
6253     if (start_pos == len) {
6254       return isolate->heap()->nan_value();
6255     } else if (data[start_pos] > '9') {
6256       // Fast check for a junk value. A valid string may start from a
6257       // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit
6258       // or the 'I' character ('Infinity'). All of that have codes not greater
6259       // than '9' except 'I' and &nbsp;.
6260       if (data[start_pos] != 'I' && data[start_pos] != 0xa0) {
6261         return isolate->heap()->nan_value();
6262       }
6263     } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) {
6264       // The maximal/minimal smi has 10 digits. If the string has less digits
6265       // we know it will fit into the smi-data type.
6266       int d = ParseDecimalInteger(data, start_pos, len);
6267       if (minus) {
6268         if (d == 0) return isolate->heap()->minus_zero_value();
6269         d = -d;
6270       } else if (!subject->HasHashCode() &&
6271                  len <= String::kMaxArrayIndexSize &&
6272                  (len == 1 || data[0] != '0')) {
6273         // String hash is not calculated yet but all the data are present.
6274         // Update the hash field to speed up sequential convertions.
6275         uint32_t hash = StringHasher::MakeArrayIndexHash(d, len);
6276 #ifdef DEBUG
6277         subject->Hash();  // Force hash calculation.
6278         DCHECK_EQ(static_cast<int>(subject->hash_field()),
6279                   static_cast<int>(hash));
6280 #endif
6281         subject->set_hash_field(hash);
6282       }
6283       return Smi::FromInt(d);
6284     }
6285   }
6286
6287   // Slower case.
6288   int flags = ALLOW_HEX;
6289   if (FLAG_harmony_numeric_literals) {
6290     // The current spec draft has not updated "ToNumber Applied to the String
6291     // Type", https://bugs.ecmascript.org/show_bug.cgi?id=1584
6292     flags |= ALLOW_OCTAL | ALLOW_BINARY;
6293   }
6294
6295   return *isolate->factory()->NewNumber(StringToDouble(
6296       isolate->unicode_cache(), *subject, flags));
6297 }
6298
6299
6300 RUNTIME_FUNCTION(Runtime_NewString) {
6301   HandleScope scope(isolate);
6302   DCHECK(args.length() == 2);
6303   CONVERT_INT32_ARG_CHECKED(length, 0);
6304   CONVERT_BOOLEAN_ARG_CHECKED(is_one_byte, 1);
6305   if (length == 0) return isolate->heap()->empty_string();
6306   Handle<String> result;
6307   if (is_one_byte) {
6308     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6309         isolate, result, isolate->factory()->NewRawOneByteString(length));
6310   } else {
6311     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6312         isolate, result, isolate->factory()->NewRawTwoByteString(length));
6313   }
6314   return *result;
6315 }
6316
6317
6318 RUNTIME_FUNCTION(Runtime_TruncateString) {
6319   HandleScope scope(isolate);
6320   DCHECK(args.length() == 2);
6321   CONVERT_ARG_HANDLE_CHECKED(SeqString, string, 0);
6322   CONVERT_INT32_ARG_CHECKED(new_length, 1);
6323   RUNTIME_ASSERT(new_length >= 0);
6324   return *SeqString::Truncate(string, new_length);
6325 }
6326
6327
6328 RUNTIME_FUNCTION(Runtime_URIEscape) {
6329   HandleScope scope(isolate);
6330   DCHECK(args.length() == 1);
6331   CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
6332   Handle<String> string = String::Flatten(source);
6333   DCHECK(string->IsFlat());
6334   Handle<String> result;
6335   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6336       isolate, result,
6337       string->IsOneByteRepresentationUnderneath()
6338             ? URIEscape::Escape<uint8_t>(isolate, source)
6339             : URIEscape::Escape<uc16>(isolate, source));
6340   return *result;
6341 }
6342
6343
6344 RUNTIME_FUNCTION(Runtime_URIUnescape) {
6345   HandleScope scope(isolate);
6346   DCHECK(args.length() == 1);
6347   CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
6348   Handle<String> string = String::Flatten(source);
6349   DCHECK(string->IsFlat());
6350   Handle<String> result;
6351   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6352       isolate, result,
6353       string->IsOneByteRepresentationUnderneath()
6354             ? URIUnescape::Unescape<uint8_t>(isolate, source)
6355             : URIUnescape::Unescape<uc16>(isolate, source));
6356   return *result;
6357 }
6358
6359
6360 RUNTIME_FUNCTION(Runtime_QuoteJSONString) {
6361   HandleScope scope(isolate);
6362   CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
6363   DCHECK(args.length() == 1);
6364   Handle<Object> result;
6365   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6366       isolate, result, BasicJsonStringifier::StringifyString(isolate, string));
6367   return *result;
6368 }
6369
6370
6371 RUNTIME_FUNCTION(Runtime_BasicJSONStringify) {
6372   HandleScope scope(isolate);
6373   DCHECK(args.length() == 1);
6374   CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
6375   BasicJsonStringifier stringifier(isolate);
6376   Handle<Object> result;
6377   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6378       isolate, result, stringifier.Stringify(object));
6379   return *result;
6380 }
6381
6382
6383 RUNTIME_FUNCTION(Runtime_StringParseInt) {
6384   HandleScope handle_scope(isolate);
6385   DCHECK(args.length() == 2);
6386   CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
6387   CONVERT_NUMBER_CHECKED(int, radix, Int32, args[1]);
6388   RUNTIME_ASSERT(radix == 0 || (2 <= radix && radix <= 36));
6389
6390   subject = String::Flatten(subject);
6391   double value;
6392
6393   { DisallowHeapAllocation no_gc;
6394     String::FlatContent flat = subject->GetFlatContent();
6395
6396     // ECMA-262 section 15.1.2.3, empty string is NaN
6397     if (flat.IsOneByte()) {
6398       value = StringToInt(
6399           isolate->unicode_cache(), flat.ToOneByteVector(), radix);
6400     } else {
6401       value = StringToInt(
6402           isolate->unicode_cache(), flat.ToUC16Vector(), radix);
6403     }
6404   }
6405
6406   return *isolate->factory()->NewNumber(value);
6407 }
6408
6409
6410 RUNTIME_FUNCTION(Runtime_StringParseFloat) {
6411   HandleScope shs(isolate);
6412   DCHECK(args.length() == 1);
6413   CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
6414
6415   subject = String::Flatten(subject);
6416   double value = StringToDouble(isolate->unicode_cache(), *subject,
6417                                 ALLOW_TRAILING_JUNK, base::OS::nan_value());
6418
6419   return *isolate->factory()->NewNumber(value);
6420 }
6421
6422
6423 static inline bool ToUpperOverflows(uc32 character) {
6424   // y with umlauts and the micro sign are the only characters that stop
6425   // fitting into one-byte when converting to uppercase.
6426   static const uc32 yuml_code = 0xff;
6427   static const uc32 micro_code = 0xb5;
6428   return (character == yuml_code || character == micro_code);
6429 }
6430
6431
6432 template <class Converter>
6433 MUST_USE_RESULT static Object* ConvertCaseHelper(
6434     Isolate* isolate,
6435     String* string,
6436     SeqString* result,
6437     int result_length,
6438     unibrow::Mapping<Converter, 128>* mapping) {
6439   DisallowHeapAllocation no_gc;
6440   // We try this twice, once with the assumption that the result is no longer
6441   // than the input and, if that assumption breaks, again with the exact
6442   // length.  This may not be pretty, but it is nicer than what was here before
6443   // and I hereby claim my vaffel-is.
6444   //
6445   // NOTE: This assumes that the upper/lower case of an ASCII
6446   // character is also ASCII.  This is currently the case, but it
6447   // might break in the future if we implement more context and locale
6448   // dependent upper/lower conversions.
6449   bool has_changed_character = false;
6450
6451   // Convert all characters to upper case, assuming that they will fit
6452   // in the buffer
6453   Access<ConsStringIteratorOp> op(
6454       isolate->runtime_state()->string_iterator());
6455   StringCharacterStream stream(string, op.value());
6456   unibrow::uchar chars[Converter::kMaxWidth];
6457   // We can assume that the string is not empty
6458   uc32 current = stream.GetNext();
6459   bool ignore_overflow = Converter::kIsToLower || result->IsSeqTwoByteString();
6460   for (int i = 0; i < result_length;) {
6461     bool has_next = stream.HasMore();
6462     uc32 next = has_next ? stream.GetNext() : 0;
6463     int char_length = mapping->get(current, next, chars);
6464     if (char_length == 0) {
6465       // The case conversion of this character is the character itself.
6466       result->Set(i, current);
6467       i++;
6468     } else if (char_length == 1 &&
6469                (ignore_overflow || !ToUpperOverflows(current))) {
6470       // Common case: converting the letter resulted in one character.
6471       DCHECK(static_cast<uc32>(chars[0]) != current);
6472       result->Set(i, chars[0]);
6473       has_changed_character = true;
6474       i++;
6475     } else if (result_length == string->length()) {
6476       bool overflows = ToUpperOverflows(current);
6477       // We've assumed that the result would be as long as the
6478       // input but here is a character that converts to several
6479       // characters.  No matter, we calculate the exact length
6480       // of the result and try the whole thing again.
6481       //
6482       // Note that this leaves room for optimization.  We could just
6483       // memcpy what we already have to the result string.  Also,
6484       // the result string is the last object allocated we could
6485       // "realloc" it and probably, in the vast majority of cases,
6486       // extend the existing string to be able to hold the full
6487       // result.
6488       int next_length = 0;
6489       if (has_next) {
6490         next_length = mapping->get(next, 0, chars);
6491         if (next_length == 0) next_length = 1;
6492       }
6493       int current_length = i + char_length + next_length;
6494       while (stream.HasMore()) {
6495         current = stream.GetNext();
6496         overflows |= ToUpperOverflows(current);
6497         // NOTE: we use 0 as the next character here because, while
6498         // the next character may affect what a character converts to,
6499         // it does not in any case affect the length of what it convert
6500         // to.
6501         int char_length = mapping->get(current, 0, chars);
6502         if (char_length == 0) char_length = 1;
6503         current_length += char_length;
6504         if (current_length > String::kMaxLength) {
6505           AllowHeapAllocation allocate_error_and_return;
6506           THROW_NEW_ERROR_RETURN_FAILURE(isolate,
6507                                          NewInvalidStringLengthError());
6508         }
6509       }
6510       // Try again with the real length.  Return signed if we need
6511       // to allocate a two-byte string for to uppercase.
6512       return (overflows && !ignore_overflow) ? Smi::FromInt(-current_length)
6513                                              : Smi::FromInt(current_length);
6514     } else {
6515       for (int j = 0; j < char_length; j++) {
6516         result->Set(i, chars[j]);
6517         i++;
6518       }
6519       has_changed_character = true;
6520     }
6521     current = next;
6522   }
6523   if (has_changed_character) {
6524     return result;
6525   } else {
6526     // If we didn't actually change anything in doing the conversion
6527     // we simple return the result and let the converted string
6528     // become garbage; there is no reason to keep two identical strings
6529     // alive.
6530     return string;
6531   }
6532 }
6533
6534
6535 namespace {
6536
6537 static const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF;
6538 static const uintptr_t kAsciiMask = kOneInEveryByte << 7;
6539
6540 // Given a word and two range boundaries returns a word with high bit
6541 // set in every byte iff the corresponding input byte was strictly in
6542 // the range (m, n). All the other bits in the result are cleared.
6543 // This function is only useful when it can be inlined and the
6544 // boundaries are statically known.
6545 // Requires: all bytes in the input word and the boundaries must be
6546 // ASCII (less than 0x7F).
6547 static inline uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) {
6548   // Use strict inequalities since in edge cases the function could be
6549   // further simplified.
6550   DCHECK(0 < m && m < n);
6551   // Has high bit set in every w byte less than n.
6552   uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w;
6553   // Has high bit set in every w byte greater than m.
6554   uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m);
6555   return (tmp1 & tmp2 & (kOneInEveryByte * 0x80));
6556 }
6557
6558
6559 #ifdef DEBUG
6560 static bool CheckFastAsciiConvert(char* dst,
6561                                   const char* src,
6562                                   int length,
6563                                   bool changed,
6564                                   bool is_to_lower) {
6565   bool expected_changed = false;
6566   for (int i = 0; i < length; i++) {
6567     if (dst[i] == src[i]) continue;
6568     expected_changed = true;
6569     if (is_to_lower) {
6570       DCHECK('A' <= src[i] && src[i] <= 'Z');
6571       DCHECK(dst[i] == src[i] + ('a' - 'A'));
6572     } else {
6573       DCHECK('a' <= src[i] && src[i] <= 'z');
6574       DCHECK(dst[i] == src[i] - ('a' - 'A'));
6575     }
6576   }
6577   return (expected_changed == changed);
6578 }
6579 #endif
6580
6581
6582 template<class Converter>
6583 static bool FastAsciiConvert(char* dst,
6584                              const char* src,
6585                              int length,
6586                              bool* changed_out) {
6587 #ifdef DEBUG
6588     char* saved_dst = dst;
6589     const char* saved_src = src;
6590 #endif
6591   DisallowHeapAllocation no_gc;
6592   // We rely on the distance between upper and lower case letters
6593   // being a known power of 2.
6594   DCHECK('a' - 'A' == (1 << 5));
6595   // Boundaries for the range of input characters than require conversion.
6596   static const char lo = Converter::kIsToLower ? 'A' - 1 : 'a' - 1;
6597   static const char hi = Converter::kIsToLower ? 'Z' + 1 : 'z' + 1;
6598   bool changed = false;
6599   uintptr_t or_acc = 0;
6600   const char* const limit = src + length;
6601
6602   // dst is newly allocated and always aligned.
6603   DCHECK(IsAligned(reinterpret_cast<intptr_t>(dst), sizeof(uintptr_t)));
6604   // Only attempt processing one word at a time if src is also aligned.
6605   if (IsAligned(reinterpret_cast<intptr_t>(src), sizeof(uintptr_t))) {
6606     // Process the prefix of the input that requires no conversion one aligned
6607     // (machine) word at a time.
6608     while (src <= limit - sizeof(uintptr_t)) {
6609       const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
6610       or_acc |= w;
6611       if (AsciiRangeMask(w, lo, hi) != 0) {
6612         changed = true;
6613         break;
6614       }
6615       *reinterpret_cast<uintptr_t*>(dst) = w;
6616       src += sizeof(uintptr_t);
6617       dst += sizeof(uintptr_t);
6618     }
6619     // Process the remainder of the input performing conversion when
6620     // required one word at a time.
6621     while (src <= limit - sizeof(uintptr_t)) {
6622       const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
6623       or_acc |= w;
6624       uintptr_t m = AsciiRangeMask(w, lo, hi);
6625       // The mask has high (7th) bit set in every byte that needs
6626       // conversion and we know that the distance between cases is
6627       // 1 << 5.
6628       *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2);
6629       src += sizeof(uintptr_t);
6630       dst += sizeof(uintptr_t);
6631     }
6632   }
6633   // Process the last few bytes of the input (or the whole input if
6634   // unaligned access is not supported).
6635   while (src < limit) {
6636     char c = *src;
6637     or_acc |= c;
6638     if (lo < c && c < hi) {
6639       c ^= (1 << 5);
6640       changed = true;
6641     }
6642     *dst = c;
6643     ++src;
6644     ++dst;
6645   }
6646
6647   if ((or_acc & kAsciiMask) != 0) return false;
6648
6649   DCHECK(CheckFastAsciiConvert(
6650              saved_dst, saved_src, length, changed, Converter::kIsToLower));
6651
6652   *changed_out = changed;
6653   return true;
6654 }
6655
6656 }  // namespace
6657
6658
6659 template <class Converter>
6660 MUST_USE_RESULT static Object* ConvertCase(
6661     Handle<String> s,
6662     Isolate* isolate,
6663     unibrow::Mapping<Converter, 128>* mapping) {
6664   s = String::Flatten(s);
6665   int length = s->length();
6666   // Assume that the string is not empty; we need this assumption later
6667   if (length == 0) return *s;
6668
6669   // Simpler handling of ASCII strings.
6670   //
6671   // NOTE: This assumes that the upper/lower case of an ASCII
6672   // character is also ASCII.  This is currently the case, but it
6673   // might break in the future if we implement more context and locale
6674   // dependent upper/lower conversions.
6675   if (s->IsOneByteRepresentationUnderneath()) {
6676     // Same length as input.
6677     Handle<SeqOneByteString> result =
6678         isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
6679     DisallowHeapAllocation no_gc;
6680     String::FlatContent flat_content = s->GetFlatContent();
6681     DCHECK(flat_content.IsFlat());
6682     bool has_changed_character = false;
6683     bool is_ascii = FastAsciiConvert<Converter>(
6684         reinterpret_cast<char*>(result->GetChars()),
6685         reinterpret_cast<const char*>(flat_content.ToOneByteVector().start()),
6686         length,
6687         &has_changed_character);
6688     // If not ASCII, we discard the result and take the 2 byte path.
6689     if (is_ascii) return has_changed_character ? *result : *s;
6690   }
6691
6692   Handle<SeqString> result;  // Same length as input.
6693   if (s->IsOneByteRepresentation()) {
6694     result = isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
6695   } else {
6696     result = isolate->factory()->NewRawTwoByteString(length).ToHandleChecked();
6697   }
6698
6699   Object* answer = ConvertCaseHelper(isolate, *s, *result, length, mapping);
6700   if (answer->IsException() || answer->IsString()) return answer;
6701
6702   DCHECK(answer->IsSmi());
6703   length = Smi::cast(answer)->value();
6704   if (s->IsOneByteRepresentation() && length > 0) {
6705     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6706         isolate, result, isolate->factory()->NewRawOneByteString(length));
6707   } else {
6708     if (length < 0) length = -length;
6709     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6710         isolate, result, isolate->factory()->NewRawTwoByteString(length));
6711   }
6712   return ConvertCaseHelper(isolate, *s, *result, length, mapping);
6713 }
6714
6715
6716 RUNTIME_FUNCTION(Runtime_StringToLowerCase) {
6717   HandleScope scope(isolate);
6718   DCHECK(args.length() == 1);
6719   CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
6720   return ConvertCase(
6721       s, isolate, isolate->runtime_state()->to_lower_mapping());
6722 }
6723
6724
6725 RUNTIME_FUNCTION(Runtime_StringToUpperCase) {
6726   HandleScope scope(isolate);
6727   DCHECK(args.length() == 1);
6728   CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
6729   return ConvertCase(
6730       s, isolate, isolate->runtime_state()->to_upper_mapping());
6731 }
6732
6733
6734 RUNTIME_FUNCTION(Runtime_StringTrim) {
6735   HandleScope scope(isolate);
6736   DCHECK(args.length() == 3);
6737
6738   CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
6739   CONVERT_BOOLEAN_ARG_CHECKED(trimLeft, 1);
6740   CONVERT_BOOLEAN_ARG_CHECKED(trimRight, 2);
6741
6742   string = String::Flatten(string);
6743   int length = string->length();
6744
6745   int left = 0;
6746   UnicodeCache* unicode_cache = isolate->unicode_cache();
6747   if (trimLeft) {
6748     while (left < length &&
6749            unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(left))) {
6750       left++;
6751     }
6752   }
6753
6754   int right = length;
6755   if (trimRight) {
6756     while (right > left &&
6757            unicode_cache->IsWhiteSpaceOrLineTerminator(
6758                string->Get(right - 1))) {
6759       right--;
6760     }
6761   }
6762
6763   return *isolate->factory()->NewSubString(string, left, right);
6764 }
6765
6766
6767 RUNTIME_FUNCTION(Runtime_StringSplit) {
6768   HandleScope handle_scope(isolate);
6769   DCHECK(args.length() == 3);
6770   CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
6771   CONVERT_ARG_HANDLE_CHECKED(String, pattern, 1);
6772   CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[2]);
6773   RUNTIME_ASSERT(limit > 0);
6774
6775   int subject_length = subject->length();
6776   int pattern_length = pattern->length();
6777   RUNTIME_ASSERT(pattern_length > 0);
6778
6779   if (limit == 0xffffffffu) {
6780     Handle<Object> cached_answer(
6781         RegExpResultsCache::Lookup(isolate->heap(),
6782                                    *subject,
6783                                    *pattern,
6784                                    RegExpResultsCache::STRING_SPLIT_SUBSTRINGS),
6785         isolate);
6786     if (*cached_answer != Smi::FromInt(0)) {
6787       // The cache FixedArray is a COW-array and can therefore be reused.
6788       Handle<JSArray> result =
6789           isolate->factory()->NewJSArrayWithElements(
6790               Handle<FixedArray>::cast(cached_answer));
6791       return *result;
6792     }
6793   }
6794
6795   // The limit can be very large (0xffffffffu), but since the pattern
6796   // isn't empty, we can never create more parts than ~half the length
6797   // of the subject.
6798
6799   subject = String::Flatten(subject);
6800   pattern = String::Flatten(pattern);
6801
6802   static const int kMaxInitialListCapacity = 16;
6803
6804   ZoneScope zone_scope(isolate->runtime_zone());
6805
6806   // Find (up to limit) indices of separator and end-of-string in subject
6807   int initial_capacity = Min<uint32_t>(kMaxInitialListCapacity, limit);
6808   ZoneList<int> indices(initial_capacity, zone_scope.zone());
6809
6810   FindStringIndicesDispatch(isolate, *subject, *pattern,
6811                             &indices, limit, zone_scope.zone());
6812
6813   if (static_cast<uint32_t>(indices.length()) < limit) {
6814     indices.Add(subject_length, zone_scope.zone());
6815   }
6816
6817   // The list indices now contains the end of each part to create.
6818
6819   // Create JSArray of substrings separated by separator.
6820   int part_count = indices.length();
6821
6822   Handle<JSArray> result = isolate->factory()->NewJSArray(part_count);
6823   JSObject::EnsureCanContainHeapObjectElements(result);
6824   result->set_length(Smi::FromInt(part_count));
6825
6826   DCHECK(result->HasFastObjectElements());
6827
6828   if (part_count == 1 && indices.at(0) == subject_length) {
6829     FixedArray::cast(result->elements())->set(0, *subject);
6830     return *result;
6831   }
6832
6833   Handle<FixedArray> elements(FixedArray::cast(result->elements()));
6834   int part_start = 0;
6835   for (int i = 0; i < part_count; i++) {
6836     HandleScope local_loop_handle(isolate);
6837     int part_end = indices.at(i);
6838     Handle<String> substring =
6839         isolate->factory()->NewProperSubString(subject, part_start, part_end);
6840     elements->set(i, *substring);
6841     part_start = part_end + pattern_length;
6842   }
6843
6844   if (limit == 0xffffffffu) {
6845     if (result->HasFastObjectElements()) {
6846       RegExpResultsCache::Enter(isolate,
6847                                 subject,
6848                                 pattern,
6849                                 elements,
6850                                 RegExpResultsCache::STRING_SPLIT_SUBSTRINGS);
6851     }
6852   }
6853
6854   return *result;
6855 }
6856
6857
6858 // Copies Latin1 characters to the given fixed array looking up
6859 // one-char strings in the cache. Gives up on the first char that is
6860 // not in the cache and fills the remainder with smi zeros. Returns
6861 // the length of the successfully copied prefix.
6862 static int CopyCachedOneByteCharsToArray(Heap* heap, const uint8_t* chars,
6863                                          FixedArray* elements, int length) {
6864   DisallowHeapAllocation no_gc;
6865   FixedArray* one_byte_cache = heap->single_character_string_cache();
6866   Object* undefined = heap->undefined_value();
6867   int i;
6868   WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc);
6869   for (i = 0; i < length; ++i) {
6870     Object* value = one_byte_cache->get(chars[i]);
6871     if (value == undefined) break;
6872     elements->set(i, value, mode);
6873   }
6874   if (i < length) {
6875     DCHECK(Smi::FromInt(0) == 0);
6876     memset(elements->data_start() + i, 0, kPointerSize * (length - i));
6877   }
6878 #ifdef DEBUG
6879   for (int j = 0; j < length; ++j) {
6880     Object* element = elements->get(j);
6881     DCHECK(element == Smi::FromInt(0) ||
6882            (element->IsString() && String::cast(element)->LooksValid()));
6883   }
6884 #endif
6885   return i;
6886 }
6887
6888
6889 // Converts a String to JSArray.
6890 // For example, "foo" => ["f", "o", "o"].
6891 RUNTIME_FUNCTION(Runtime_StringToArray) {
6892   HandleScope scope(isolate);
6893   DCHECK(args.length() == 2);
6894   CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
6895   CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
6896
6897   s = String::Flatten(s);
6898   const int length = static_cast<int>(Min<uint32_t>(s->length(), limit));
6899
6900   Handle<FixedArray> elements;
6901   int position = 0;
6902   if (s->IsFlat() && s->IsOneByteRepresentation()) {
6903     // Try using cached chars where possible.
6904     elements = isolate->factory()->NewUninitializedFixedArray(length);
6905
6906     DisallowHeapAllocation no_gc;
6907     String::FlatContent content = s->GetFlatContent();
6908     if (content.IsOneByte()) {
6909       Vector<const uint8_t> chars = content.ToOneByteVector();
6910       // Note, this will initialize all elements (not only the prefix)
6911       // to prevent GC from seeing partially initialized array.
6912       position = CopyCachedOneByteCharsToArray(isolate->heap(), chars.start(),
6913                                                *elements, length);
6914     } else {
6915       MemsetPointer(elements->data_start(),
6916                     isolate->heap()->undefined_value(),
6917                     length);
6918     }
6919   } else {
6920     elements = isolate->factory()->NewFixedArray(length);
6921   }
6922   for (int i = position; i < length; ++i) {
6923     Handle<Object> str =
6924         isolate->factory()->LookupSingleCharacterStringFromCode(s->Get(i));
6925     elements->set(i, *str);
6926   }
6927
6928 #ifdef DEBUG
6929   for (int i = 0; i < length; ++i) {
6930     DCHECK(String::cast(elements->get(i))->length() == 1);
6931   }
6932 #endif
6933
6934   return *isolate->factory()->NewJSArrayWithElements(elements);
6935 }
6936
6937
6938 RUNTIME_FUNCTION(Runtime_NewStringWrapper) {
6939   HandleScope scope(isolate);
6940   DCHECK(args.length() == 1);
6941   CONVERT_ARG_HANDLE_CHECKED(String, value, 0);
6942   return *Object::ToObject(isolate, value).ToHandleChecked();
6943 }
6944
6945
6946 bool Runtime::IsUpperCaseChar(RuntimeState* runtime_state, uint16_t ch) {
6947   unibrow::uchar chars[unibrow::ToUppercase::kMaxWidth];
6948   int char_length = runtime_state->to_upper_mapping()->get(ch, 0, chars);
6949   return char_length == 0;
6950 }
6951
6952
6953 RUNTIME_FUNCTION(Runtime_NumberToStringRT) {
6954   HandleScope scope(isolate);
6955   DCHECK(args.length() == 1);
6956   CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0);
6957
6958   return *isolate->factory()->NumberToString(number);
6959 }
6960
6961
6962 RUNTIME_FUNCTION(Runtime_NumberToStringSkipCache) {
6963   HandleScope scope(isolate);
6964   DCHECK(args.length() == 1);
6965   CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0);
6966
6967   return *isolate->factory()->NumberToString(number, false);
6968 }
6969
6970
6971 RUNTIME_FUNCTION(Runtime_NumberToInteger) {
6972   HandleScope scope(isolate);
6973   DCHECK(args.length() == 1);
6974
6975   CONVERT_DOUBLE_ARG_CHECKED(number, 0);
6976   return *isolate->factory()->NewNumber(DoubleToInteger(number));
6977 }
6978
6979
6980 RUNTIME_FUNCTION(Runtime_NumberToIntegerMapMinusZero) {
6981   HandleScope scope(isolate);
6982   DCHECK(args.length() == 1);
6983
6984   CONVERT_DOUBLE_ARG_CHECKED(number, 0);
6985   double double_value = DoubleToInteger(number);
6986   // Map both -0 and +0 to +0.
6987   if (double_value == 0) double_value = 0;
6988
6989   return *isolate->factory()->NewNumber(double_value);
6990 }
6991
6992
6993 RUNTIME_FUNCTION(Runtime_NumberToJSUint32) {
6994   HandleScope scope(isolate);
6995   DCHECK(args.length() == 1);
6996
6997   CONVERT_NUMBER_CHECKED(int32_t, number, Uint32, args[0]);
6998   return *isolate->factory()->NewNumberFromUint(number);
6999 }
7000
7001
7002 RUNTIME_FUNCTION(Runtime_NumberToJSInt32) {
7003   HandleScope scope(isolate);
7004   DCHECK(args.length() == 1);
7005
7006   CONVERT_DOUBLE_ARG_CHECKED(number, 0);
7007   return *isolate->factory()->NewNumberFromInt(DoubleToInt32(number));
7008 }
7009
7010
7011 // Converts a Number to a Smi, if possible. Returns NaN if the number is not
7012 // a small integer.
7013 RUNTIME_FUNCTION(Runtime_NumberToSmi) {
7014   SealHandleScope shs(isolate);
7015   DCHECK(args.length() == 1);
7016   CONVERT_ARG_CHECKED(Object, obj, 0);
7017   if (obj->IsSmi()) {
7018     return obj;
7019   }
7020   if (obj->IsHeapNumber()) {
7021     double value = HeapNumber::cast(obj)->value();
7022     int int_value = FastD2I(value);
7023     if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
7024       return Smi::FromInt(int_value);
7025     }
7026   }
7027   return isolate->heap()->nan_value();
7028 }
7029
7030
7031 RUNTIME_FUNCTION(Runtime_AllocateHeapNumber) {
7032   HandleScope scope(isolate);
7033   DCHECK(args.length() == 0);
7034   return *isolate->factory()->NewHeapNumber(0);
7035 }
7036
7037
7038 RUNTIME_FUNCTION(Runtime_NumberAdd) {
7039   HandleScope scope(isolate);
7040   DCHECK(args.length() == 2);
7041
7042   CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7043   CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7044   return *isolate->factory()->NewNumber(x + y);
7045 }
7046
7047
7048 RUNTIME_FUNCTION(Runtime_NumberSub) {
7049   HandleScope scope(isolate);
7050   DCHECK(args.length() == 2);
7051
7052   CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7053   CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7054   return *isolate->factory()->NewNumber(x - y);
7055 }
7056
7057
7058 RUNTIME_FUNCTION(Runtime_NumberMul) {
7059   HandleScope scope(isolate);
7060   DCHECK(args.length() == 2);
7061
7062   CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7063   CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7064   return *isolate->factory()->NewNumber(x * y);
7065 }
7066
7067
7068 RUNTIME_FUNCTION(Runtime_NumberUnaryMinus) {
7069   HandleScope scope(isolate);
7070   DCHECK(args.length() == 1);
7071
7072   CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7073   return *isolate->factory()->NewNumber(-x);
7074 }
7075
7076
7077 RUNTIME_FUNCTION(Runtime_NumberDiv) {
7078   HandleScope scope(isolate);
7079   DCHECK(args.length() == 2);
7080
7081   CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7082   CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7083   return *isolate->factory()->NewNumber(x / y);
7084 }
7085
7086
7087 RUNTIME_FUNCTION(Runtime_NumberMod) {
7088   HandleScope scope(isolate);
7089   DCHECK(args.length() == 2);
7090
7091   CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7092   CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7093   return *isolate->factory()->NewNumber(modulo(x, y));
7094 }
7095
7096
7097 RUNTIME_FUNCTION(Runtime_NumberImul) {
7098   HandleScope scope(isolate);
7099   DCHECK(args.length() == 2);
7100
7101   // We rely on implementation-defined behavior below, but at least not on
7102   // undefined behavior.
7103   CONVERT_NUMBER_CHECKED(uint32_t, x, Int32, args[0]);
7104   CONVERT_NUMBER_CHECKED(uint32_t, y, Int32, args[1]);
7105   int32_t product = static_cast<int32_t>(x * y);
7106   return *isolate->factory()->NewNumberFromInt(product);
7107 }
7108
7109
7110 RUNTIME_FUNCTION(Runtime_StringAdd) {
7111   HandleScope scope(isolate);
7112   DCHECK(args.length() == 2);
7113   CONVERT_ARG_HANDLE_CHECKED(String, str1, 0);
7114   CONVERT_ARG_HANDLE_CHECKED(String, str2, 1);
7115   isolate->counters()->string_add_runtime()->Increment();
7116   Handle<String> result;
7117   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
7118       isolate, result, isolate->factory()->NewConsString(str1, str2));
7119   return *result;
7120 }
7121
7122
7123 template <typename sinkchar>
7124 static inline void StringBuilderConcatHelper(String* special,
7125                                              sinkchar* sink,
7126                                              FixedArray* fixed_array,
7127                                              int array_length) {
7128   DisallowHeapAllocation no_gc;
7129   int position = 0;
7130   for (int i = 0; i < array_length; i++) {
7131     Object* element = fixed_array->get(i);
7132     if (element->IsSmi()) {
7133       // Smi encoding of position and length.
7134       int encoded_slice = Smi::cast(element)->value();
7135       int pos;
7136       int len;
7137       if (encoded_slice > 0) {
7138         // Position and length encoded in one smi.
7139         pos = StringBuilderSubstringPosition::decode(encoded_slice);
7140         len = StringBuilderSubstringLength::decode(encoded_slice);
7141       } else {
7142         // Position and length encoded in two smis.
7143         Object* obj = fixed_array->get(++i);
7144         DCHECK(obj->IsSmi());
7145         pos = Smi::cast(obj)->value();
7146         len = -encoded_slice;
7147       }
7148       String::WriteToFlat(special,
7149                           sink + position,
7150                           pos,
7151                           pos + len);
7152       position += len;
7153     } else {
7154       String* string = String::cast(element);
7155       int element_length = string->length();
7156       String::WriteToFlat(string, sink + position, 0, element_length);
7157       position += element_length;
7158     }
7159   }
7160 }
7161
7162
7163 // Returns the result length of the concatenation.
7164 // On illegal argument, -1 is returned.
7165 static inline int StringBuilderConcatLength(int special_length,
7166                                             FixedArray* fixed_array,
7167                                             int array_length,
7168                                             bool* one_byte) {
7169   DisallowHeapAllocation no_gc;
7170   int position = 0;
7171   for (int i = 0; i < array_length; i++) {
7172     int increment = 0;
7173     Object* elt = fixed_array->get(i);
7174     if (elt->IsSmi()) {
7175       // Smi encoding of position and length.
7176       int smi_value = Smi::cast(elt)->value();
7177       int pos;
7178       int len;
7179       if (smi_value > 0) {
7180         // Position and length encoded in one smi.
7181         pos = StringBuilderSubstringPosition::decode(smi_value);
7182         len = StringBuilderSubstringLength::decode(smi_value);
7183       } else {
7184         // Position and length encoded in two smis.
7185         len = -smi_value;
7186         // Get the position and check that it is a positive smi.
7187         i++;
7188         if (i >= array_length) return -1;
7189         Object* next_smi = fixed_array->get(i);
7190         if (!next_smi->IsSmi()) return -1;
7191         pos = Smi::cast(next_smi)->value();
7192         if (pos < 0) return -1;
7193       }
7194       DCHECK(pos >= 0);
7195       DCHECK(len >= 0);
7196       if (pos > special_length || len > special_length - pos) return -1;
7197       increment = len;
7198     } else if (elt->IsString()) {
7199       String* element = String::cast(elt);
7200       int element_length = element->length();
7201       increment = element_length;
7202       if (*one_byte && !element->HasOnlyOneByteChars()) {
7203         *one_byte = false;
7204       }
7205     } else {
7206       return -1;
7207     }
7208     if (increment > String::kMaxLength - position) {
7209       return kMaxInt;  // Provoke throw on allocation.
7210     }
7211     position += increment;
7212   }
7213   return position;
7214 }
7215
7216
7217 RUNTIME_FUNCTION(Runtime_StringBuilderConcat) {
7218   HandleScope scope(isolate);
7219   DCHECK(args.length() == 3);
7220   CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
7221   int32_t array_length;
7222   if (!args[1]->ToInt32(&array_length)) {
7223     THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
7224   }
7225   CONVERT_ARG_HANDLE_CHECKED(String, special, 2);
7226
7227   size_t actual_array_length = 0;
7228   RUNTIME_ASSERT(
7229       TryNumberToSize(isolate, array->length(), &actual_array_length));
7230   RUNTIME_ASSERT(array_length >= 0);
7231   RUNTIME_ASSERT(static_cast<size_t>(array_length) <= actual_array_length);
7232
7233   // This assumption is used by the slice encoding in one or two smis.
7234   DCHECK(Smi::kMaxValue >= String::kMaxLength);
7235
7236   RUNTIME_ASSERT(array->HasFastElements());
7237   JSObject::EnsureCanContainHeapObjectElements(array);
7238
7239   int special_length = special->length();
7240   if (!array->HasFastObjectElements()) {
7241     return isolate->Throw(isolate->heap()->illegal_argument_string());
7242   }
7243
7244   int length;
7245   bool one_byte = special->HasOnlyOneByteChars();
7246
7247   { DisallowHeapAllocation no_gc;
7248     FixedArray* fixed_array = FixedArray::cast(array->elements());
7249     if (fixed_array->length() < array_length) {
7250       array_length = fixed_array->length();
7251     }
7252
7253     if (array_length == 0) {
7254       return isolate->heap()->empty_string();
7255     } else if (array_length == 1) {
7256       Object* first = fixed_array->get(0);
7257       if (first->IsString()) return first;
7258     }
7259     length = StringBuilderConcatLength(
7260         special_length, fixed_array, array_length, &one_byte);
7261   }
7262
7263   if (length == -1) {
7264     return isolate->Throw(isolate->heap()->illegal_argument_string());
7265   }
7266
7267   if (one_byte) {
7268     Handle<SeqOneByteString> answer;
7269     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
7270         isolate, answer,
7271         isolate->factory()->NewRawOneByteString(length));
7272     StringBuilderConcatHelper(*special,
7273                               answer->GetChars(),
7274                               FixedArray::cast(array->elements()),
7275                               array_length);
7276     return *answer;
7277   } else {
7278     Handle<SeqTwoByteString> answer;
7279     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
7280         isolate, answer,
7281         isolate->factory()->NewRawTwoByteString(length));
7282     StringBuilderConcatHelper(*special,
7283                               answer->GetChars(),
7284                               FixedArray::cast(array->elements()),
7285                               array_length);
7286     return *answer;
7287   }
7288 }
7289
7290
7291 RUNTIME_FUNCTION(Runtime_StringBuilderJoin) {
7292   HandleScope scope(isolate);
7293   DCHECK(args.length() == 3);
7294   CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
7295   int32_t array_length;
7296   if (!args[1]->ToInt32(&array_length)) {
7297     THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
7298   }
7299   CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
7300   RUNTIME_ASSERT(array->HasFastObjectElements());
7301   RUNTIME_ASSERT(array_length >= 0);
7302
7303   Handle<FixedArray> fixed_array(FixedArray::cast(array->elements()));
7304   if (fixed_array->length() < array_length) {
7305     array_length = fixed_array->length();
7306   }
7307
7308   if (array_length == 0) {
7309     return isolate->heap()->empty_string();
7310   } else if (array_length == 1) {
7311     Object* first = fixed_array->get(0);
7312     RUNTIME_ASSERT(first->IsString());
7313     return first;
7314   }
7315
7316   int separator_length = separator->length();
7317   RUNTIME_ASSERT(separator_length > 0);
7318   int max_nof_separators =
7319       (String::kMaxLength + separator_length - 1) / separator_length;
7320   if (max_nof_separators < (array_length - 1)) {
7321     THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
7322   }
7323   int length = (array_length - 1) * separator_length;
7324   for (int i = 0; i < array_length; i++) {
7325     Object* element_obj = fixed_array->get(i);
7326     RUNTIME_ASSERT(element_obj->IsString());
7327     String* element = String::cast(element_obj);
7328     int increment = element->length();
7329     if (increment > String::kMaxLength - length) {
7330       STATIC_ASSERT(String::kMaxLength < kMaxInt);
7331       length = kMaxInt;  // Provoke exception;
7332       break;
7333     }
7334     length += increment;
7335   }
7336
7337   Handle<SeqTwoByteString> answer;
7338   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
7339       isolate, answer,
7340       isolate->factory()->NewRawTwoByteString(length));
7341
7342   DisallowHeapAllocation no_gc;
7343
7344   uc16* sink = answer->GetChars();
7345 #ifdef DEBUG
7346   uc16* end = sink + length;
7347 #endif
7348
7349   RUNTIME_ASSERT(fixed_array->get(0)->IsString());
7350   String* first = String::cast(fixed_array->get(0));
7351   String* separator_raw = *separator;
7352   int first_length = first->length();
7353   String::WriteToFlat(first, sink, 0, first_length);
7354   sink += first_length;
7355
7356   for (int i = 1; i < array_length; i++) {
7357     DCHECK(sink + separator_length <= end);
7358     String::WriteToFlat(separator_raw, sink, 0, separator_length);
7359     sink += separator_length;
7360
7361     RUNTIME_ASSERT(fixed_array->get(i)->IsString());
7362     String* element = String::cast(fixed_array->get(i));
7363     int element_length = element->length();
7364     DCHECK(sink + element_length <= end);
7365     String::WriteToFlat(element, sink, 0, element_length);
7366     sink += element_length;
7367   }
7368   DCHECK(sink == end);
7369
7370   // Use %_FastOneByteArrayJoin instead.
7371   DCHECK(!answer->IsOneByteRepresentation());
7372   return *answer;
7373 }
7374
7375 template <typename Char>
7376 static void JoinSparseArrayWithSeparator(FixedArray* elements,
7377                                          int elements_length,
7378                                          uint32_t array_length,
7379                                          String* separator,
7380                                          Vector<Char> buffer) {
7381   DisallowHeapAllocation no_gc;
7382   int previous_separator_position = 0;
7383   int separator_length = separator->length();
7384   int cursor = 0;
7385   for (int i = 0; i < elements_length; i += 2) {
7386     int position = NumberToInt32(elements->get(i));
7387     String* string = String::cast(elements->get(i + 1));
7388     int string_length = string->length();
7389     if (string->length() > 0) {
7390       while (previous_separator_position < position) {
7391         String::WriteToFlat<Char>(separator, &buffer[cursor],
7392                                   0, separator_length);
7393         cursor += separator_length;
7394         previous_separator_position++;
7395       }
7396       String::WriteToFlat<Char>(string, &buffer[cursor],
7397                                 0, string_length);
7398       cursor += string->length();
7399     }
7400   }
7401   if (separator_length > 0) {
7402     // Array length must be representable as a signed 32-bit number,
7403     // otherwise the total string length would have been too large.
7404     DCHECK(array_length <= 0x7fffffff);  // Is int32_t.
7405     int last_array_index = static_cast<int>(array_length - 1);
7406     while (previous_separator_position < last_array_index) {
7407       String::WriteToFlat<Char>(separator, &buffer[cursor],
7408                                 0, separator_length);
7409       cursor += separator_length;
7410       previous_separator_position++;
7411     }
7412   }
7413   DCHECK(cursor <= buffer.length());
7414 }
7415
7416
7417 RUNTIME_FUNCTION(Runtime_SparseJoinWithSeparator) {
7418   HandleScope scope(isolate);
7419   DCHECK(args.length() == 3);
7420   CONVERT_ARG_HANDLE_CHECKED(JSArray, elements_array, 0);
7421   CONVERT_NUMBER_CHECKED(uint32_t, array_length, Uint32, args[1]);
7422   CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
7423   // elements_array is fast-mode JSarray of alternating positions
7424   // (increasing order) and strings.
7425   RUNTIME_ASSERT(elements_array->HasFastSmiOrObjectElements());
7426   // array_length is length of original array (used to add separators);
7427   // separator is string to put between elements. Assumed to be non-empty.
7428   RUNTIME_ASSERT(array_length > 0);
7429
7430   // Find total length of join result.
7431   int string_length = 0;
7432   bool is_one_byte = separator->IsOneByteRepresentation();
7433   bool overflow = false;
7434   CONVERT_NUMBER_CHECKED(int, elements_length, Int32, elements_array->length());
7435   RUNTIME_ASSERT(elements_length <= elements_array->elements()->length());
7436   RUNTIME_ASSERT((elements_length & 1) == 0);  // Even length.
7437   FixedArray* elements = FixedArray::cast(elements_array->elements());
7438   for (int i = 0; i < elements_length; i += 2) {
7439     RUNTIME_ASSERT(elements->get(i)->IsNumber());
7440     CONVERT_NUMBER_CHECKED(uint32_t, position, Uint32, elements->get(i));
7441     RUNTIME_ASSERT(position < array_length);
7442     RUNTIME_ASSERT(elements->get(i + 1)->IsString());
7443   }
7444
7445   { DisallowHeapAllocation no_gc;
7446     for (int i = 0; i < elements_length; i += 2) {
7447       String* string = String::cast(elements->get(i + 1));
7448       int length = string->length();
7449       if (is_one_byte && !string->IsOneByteRepresentation()) {
7450         is_one_byte = false;
7451       }
7452       if (length > String::kMaxLength ||
7453           String::kMaxLength - length < string_length) {
7454         overflow = true;
7455         break;
7456       }
7457       string_length += length;
7458     }
7459   }
7460
7461   int separator_length = separator->length();
7462   if (!overflow && separator_length > 0) {
7463     if (array_length <= 0x7fffffffu) {
7464       int separator_count = static_cast<int>(array_length) - 1;
7465       int remaining_length = String::kMaxLength - string_length;
7466       if ((remaining_length / separator_length) >= separator_count) {
7467         string_length += separator_length * (array_length - 1);
7468       } else {
7469         // Not room for the separators within the maximal string length.
7470         overflow = true;
7471       }
7472     } else {
7473       // Nonempty separator and at least 2^31-1 separators necessary
7474       // means that the string is too large to create.
7475       STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
7476       overflow = true;
7477     }
7478   }
7479   if (overflow) {
7480     // Throw an exception if the resulting string is too large. See
7481     // https://code.google.com/p/chromium/issues/detail?id=336820
7482     // for details.
7483     THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
7484   }
7485
7486   if (is_one_byte) {
7487     Handle<SeqOneByteString> result = isolate->factory()->NewRawOneByteString(
7488         string_length).ToHandleChecked();
7489     JoinSparseArrayWithSeparator<uint8_t>(
7490         FixedArray::cast(elements_array->elements()),
7491         elements_length,
7492         array_length,
7493         *separator,
7494         Vector<uint8_t>(result->GetChars(), string_length));
7495     return *result;
7496   } else {
7497     Handle<SeqTwoByteString> result = isolate->factory()->NewRawTwoByteString(
7498         string_length).ToHandleChecked();
7499     JoinSparseArrayWithSeparator<uc16>(
7500         FixedArray::cast(elements_array->elements()),
7501         elements_length,
7502         array_length,
7503         *separator,
7504         Vector<uc16>(result->GetChars(), string_length));
7505     return *result;
7506   }
7507 }
7508
7509
7510 RUNTIME_FUNCTION(Runtime_NumberOr) {
7511   HandleScope scope(isolate);
7512   DCHECK(args.length() == 2);
7513
7514   CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
7515   CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
7516   return *isolate->factory()->NewNumberFromInt(x | y);
7517 }
7518
7519
7520 RUNTIME_FUNCTION(Runtime_NumberAnd) {
7521   HandleScope scope(isolate);
7522   DCHECK(args.length() == 2);
7523
7524   CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
7525   CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
7526   return *isolate->factory()->NewNumberFromInt(x & y);
7527 }
7528
7529
7530 RUNTIME_FUNCTION(Runtime_NumberXor) {
7531   HandleScope scope(isolate);
7532   DCHECK(args.length() == 2);
7533
7534   CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
7535   CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
7536   return *isolate->factory()->NewNumberFromInt(x ^ y);
7537 }
7538
7539
7540 RUNTIME_FUNCTION(Runtime_NumberShl) {
7541   HandleScope scope(isolate);
7542   DCHECK(args.length() == 2);
7543
7544   CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
7545   CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
7546   return *isolate->factory()->NewNumberFromInt(x << (y & 0x1f));
7547 }
7548
7549
7550 RUNTIME_FUNCTION(Runtime_NumberShr) {
7551   HandleScope scope(isolate);
7552   DCHECK(args.length() == 2);
7553
7554   CONVERT_NUMBER_CHECKED(uint32_t, x, Uint32, args[0]);
7555   CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
7556   return *isolate->factory()->NewNumberFromUint(x >> (y & 0x1f));
7557 }
7558
7559
7560 RUNTIME_FUNCTION(Runtime_NumberSar) {
7561   HandleScope scope(isolate);
7562   DCHECK(args.length() == 2);
7563
7564   CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
7565   CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
7566   return *isolate->factory()->NewNumberFromInt(
7567       ArithmeticShiftRight(x, y & 0x1f));
7568 }
7569
7570
7571 RUNTIME_FUNCTION(Runtime_NumberEquals) {
7572   SealHandleScope shs(isolate);
7573   DCHECK(args.length() == 2);
7574
7575   CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7576   CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7577   if (std::isnan(x)) return Smi::FromInt(NOT_EQUAL);
7578   if (std::isnan(y)) return Smi::FromInt(NOT_EQUAL);
7579   if (x == y) return Smi::FromInt(EQUAL);
7580   Object* result;
7581   if ((fpclassify(x) == FP_ZERO) && (fpclassify(y) == FP_ZERO)) {
7582     result = Smi::FromInt(EQUAL);
7583   } else {
7584     result = Smi::FromInt(NOT_EQUAL);
7585   }
7586   return result;
7587 }
7588
7589
7590 RUNTIME_FUNCTION(Runtime_StringEquals) {
7591   HandleScope handle_scope(isolate);
7592   DCHECK(args.length() == 2);
7593
7594   CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
7595   CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
7596
7597   bool not_equal = !String::Equals(x, y);
7598   // This is slightly convoluted because the value that signifies
7599   // equality is 0 and inequality is 1 so we have to negate the result
7600   // from String::Equals.
7601   DCHECK(not_equal == 0 || not_equal == 1);
7602   STATIC_ASSERT(EQUAL == 0);
7603   STATIC_ASSERT(NOT_EQUAL == 1);
7604   return Smi::FromInt(not_equal);
7605 }
7606
7607
7608 RUNTIME_FUNCTION(Runtime_NumberCompare) {
7609   SealHandleScope shs(isolate);
7610   DCHECK(args.length() == 3);
7611
7612   CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7613   CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7614   CONVERT_ARG_HANDLE_CHECKED(Object, uncomparable_result, 2)
7615   if (std::isnan(x) || std::isnan(y)) return *uncomparable_result;
7616   if (x == y) return Smi::FromInt(EQUAL);
7617   if (isless(x, y)) return Smi::FromInt(LESS);
7618   return Smi::FromInt(GREATER);
7619 }
7620
7621
7622 // Compare two Smis as if they were converted to strings and then
7623 // compared lexicographically.
7624 RUNTIME_FUNCTION(Runtime_SmiLexicographicCompare) {
7625   SealHandleScope shs(isolate);
7626   DCHECK(args.length() == 2);
7627   CONVERT_SMI_ARG_CHECKED(x_value, 0);
7628   CONVERT_SMI_ARG_CHECKED(y_value, 1);
7629
7630   // If the integers are equal so are the string representations.
7631   if (x_value == y_value) return Smi::FromInt(EQUAL);
7632
7633   // If one of the integers is zero the normal integer order is the
7634   // same as the lexicographic order of the string representations.
7635   if (x_value == 0 || y_value == 0)
7636     return Smi::FromInt(x_value < y_value ? LESS : GREATER);
7637
7638   // If only one of the integers is negative the negative number is
7639   // smallest because the char code of '-' is less than the char code
7640   // of any digit.  Otherwise, we make both values positive.
7641
7642   // Use unsigned values otherwise the logic is incorrect for -MIN_INT on
7643   // architectures using 32-bit Smis.
7644   uint32_t x_scaled = x_value;
7645   uint32_t y_scaled = y_value;
7646   if (x_value < 0 || y_value < 0) {
7647     if (y_value >= 0) return Smi::FromInt(LESS);
7648     if (x_value >= 0) return Smi::FromInt(GREATER);
7649     x_scaled = -x_value;
7650     y_scaled = -y_value;
7651   }
7652
7653   static const uint32_t kPowersOf10[] = {
7654     1, 10, 100, 1000, 10*1000, 100*1000,
7655     1000*1000, 10*1000*1000, 100*1000*1000,
7656     1000*1000*1000
7657   };
7658
7659   // If the integers have the same number of decimal digits they can be
7660   // compared directly as the numeric order is the same as the
7661   // lexicographic order.  If one integer has fewer digits, it is scaled
7662   // by some power of 10 to have the same number of digits as the longer
7663   // integer.  If the scaled integers are equal it means the shorter
7664   // integer comes first in the lexicographic order.
7665
7666   // From http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
7667   int x_log2 = IntegerLog2(x_scaled);
7668   int x_log10 = ((x_log2 + 1) * 1233) >> 12;
7669   x_log10 -= x_scaled < kPowersOf10[x_log10];
7670
7671   int y_log2 = IntegerLog2(y_scaled);
7672   int y_log10 = ((y_log2 + 1) * 1233) >> 12;
7673   y_log10 -= y_scaled < kPowersOf10[y_log10];
7674
7675   int tie = EQUAL;
7676
7677   if (x_log10 < y_log10) {
7678     // X has fewer digits.  We would like to simply scale up X but that
7679     // might overflow, e.g when comparing 9 with 1_000_000_000, 9 would
7680     // be scaled up to 9_000_000_000. So we scale up by the next
7681     // smallest power and scale down Y to drop one digit. It is OK to
7682     // drop one digit from the longer integer since the final digit is
7683     // past the length of the shorter integer.
7684     x_scaled *= kPowersOf10[y_log10 - x_log10 - 1];
7685     y_scaled /= 10;
7686     tie = LESS;
7687   } else if (y_log10 < x_log10) {
7688     y_scaled *= kPowersOf10[x_log10 - y_log10 - 1];
7689     x_scaled /= 10;
7690     tie = GREATER;
7691   }
7692
7693   if (x_scaled < y_scaled) return Smi::FromInt(LESS);
7694   if (x_scaled > y_scaled) return Smi::FromInt(GREATER);
7695   return Smi::FromInt(tie);
7696 }
7697
7698
7699 RUNTIME_FUNCTION(Runtime_StringCompare) {
7700   HandleScope handle_scope(isolate);
7701   DCHECK(args.length() == 2);
7702
7703   CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
7704   CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
7705
7706   isolate->counters()->string_compare_runtime()->Increment();
7707
7708   // A few fast case tests before we flatten.
7709   if (x.is_identical_to(y)) return Smi::FromInt(EQUAL);
7710   if (y->length() == 0) {
7711     if (x->length() == 0) return Smi::FromInt(EQUAL);
7712     return Smi::FromInt(GREATER);
7713   } else if (x->length() == 0) {
7714     return Smi::FromInt(LESS);
7715   }
7716
7717   int d = x->Get(0) - y->Get(0);
7718   if (d < 0) return Smi::FromInt(LESS);
7719   else if (d > 0) return Smi::FromInt(GREATER);
7720
7721   // Slow case.
7722   x = String::Flatten(x);
7723   y = String::Flatten(y);
7724
7725   DisallowHeapAllocation no_gc;
7726   Object* equal_prefix_result = Smi::FromInt(EQUAL);
7727   int prefix_length = x->length();
7728   if (y->length() < prefix_length) {
7729     prefix_length = y->length();
7730     equal_prefix_result = Smi::FromInt(GREATER);
7731   } else if (y->length() > prefix_length) {
7732     equal_prefix_result = Smi::FromInt(LESS);
7733   }
7734   int r;
7735   String::FlatContent x_content = x->GetFlatContent();
7736   String::FlatContent y_content = y->GetFlatContent();
7737   if (x_content.IsOneByte()) {
7738     Vector<const uint8_t> x_chars = x_content.ToOneByteVector();
7739     if (y_content.IsOneByte()) {
7740       Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
7741       r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
7742     } else {
7743       Vector<const uc16> y_chars = y_content.ToUC16Vector();
7744       r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
7745     }
7746   } else {
7747     Vector<const uc16> x_chars = x_content.ToUC16Vector();
7748     if (y_content.IsOneByte()) {
7749       Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
7750       r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
7751     } else {
7752       Vector<const uc16> y_chars = y_content.ToUC16Vector();
7753       r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
7754     }
7755   }
7756   Object* result;
7757   if (r == 0) {
7758     result = equal_prefix_result;
7759   } else {
7760     result = (r < 0) ? Smi::FromInt(LESS) : Smi::FromInt(GREATER);
7761   }
7762   return result;
7763 }
7764
7765
7766 #define RUNTIME_UNARY_MATH(Name, name)                                         \
7767 RUNTIME_FUNCTION(Runtime_Math##Name) {                           \
7768   HandleScope scope(isolate);                                                  \
7769   DCHECK(args.length() == 1);                                                  \
7770   isolate->counters()->math_##name()->Increment();                             \
7771   CONVERT_DOUBLE_ARG_CHECKED(x, 0);                                            \
7772   return *isolate->factory()->NewHeapNumber(std::name(x));                     \
7773 }
7774
7775 RUNTIME_UNARY_MATH(Acos, acos)
7776 RUNTIME_UNARY_MATH(Asin, asin)
7777 RUNTIME_UNARY_MATH(Atan, atan)
7778 RUNTIME_UNARY_MATH(LogRT, log)
7779 #undef RUNTIME_UNARY_MATH
7780
7781
7782 RUNTIME_FUNCTION(Runtime_DoubleHi) {
7783   HandleScope scope(isolate);
7784   DCHECK(args.length() == 1);
7785   CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7786   uint64_t integer = double_to_uint64(x);
7787   integer = (integer >> 32) & 0xFFFFFFFFu;
7788   return *isolate->factory()->NewNumber(static_cast<int32_t>(integer));
7789 }
7790
7791
7792 RUNTIME_FUNCTION(Runtime_DoubleLo) {
7793   HandleScope scope(isolate);
7794   DCHECK(args.length() == 1);
7795   CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7796   return *isolate->factory()->NewNumber(
7797       static_cast<int32_t>(double_to_uint64(x) & 0xFFFFFFFFu));
7798 }
7799
7800
7801 RUNTIME_FUNCTION(Runtime_ConstructDouble) {
7802   HandleScope scope(isolate);
7803   DCHECK(args.length() == 2);
7804   CONVERT_NUMBER_CHECKED(uint32_t, hi, Uint32, args[0]);
7805   CONVERT_NUMBER_CHECKED(uint32_t, lo, Uint32, args[1]);
7806   uint64_t result = (static_cast<uint64_t>(hi) << 32) | lo;
7807   return *isolate->factory()->NewNumber(uint64_to_double(result));
7808 }
7809
7810
7811 RUNTIME_FUNCTION(Runtime_RemPiO2) {
7812   HandleScope handle_scope(isolate);
7813   DCHECK(args.length() == 1);
7814   CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7815   Factory* factory = isolate->factory();
7816   double y[2];
7817   int n = fdlibm::rempio2(x, y);
7818   Handle<FixedArray> array = factory->NewFixedArray(3);
7819   Handle<HeapNumber> y0 = factory->NewHeapNumber(y[0]);
7820   Handle<HeapNumber> y1 = factory->NewHeapNumber(y[1]);
7821   array->set(0, Smi::FromInt(n));
7822   array->set(1, *y0);
7823   array->set(2, *y1);
7824   return *factory->NewJSArrayWithElements(array);
7825 }
7826
7827
7828 static const double kPiDividedBy4 = 0.78539816339744830962;
7829
7830
7831 RUNTIME_FUNCTION(Runtime_MathAtan2) {
7832   HandleScope scope(isolate);
7833   DCHECK(args.length() == 2);
7834   isolate->counters()->math_atan2()->Increment();
7835
7836   CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7837   CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7838   double result;
7839   if (std::isinf(x) && std::isinf(y)) {
7840     // Make sure that the result in case of two infinite arguments
7841     // is a multiple of Pi / 4. The sign of the result is determined
7842     // by the first argument (x) and the sign of the second argument
7843     // determines the multiplier: one or three.
7844     int multiplier = (x < 0) ? -1 : 1;
7845     if (y < 0) multiplier *= 3;
7846     result = multiplier * kPiDividedBy4;
7847   } else {
7848     result = std::atan2(x, y);
7849   }
7850   return *isolate->factory()->NewNumber(result);
7851 }
7852
7853
7854 RUNTIME_FUNCTION(Runtime_MathExpRT) {
7855   HandleScope scope(isolate);
7856   DCHECK(args.length() == 1);
7857   isolate->counters()->math_exp()->Increment();
7858
7859   CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7860   lazily_initialize_fast_exp();
7861   return *isolate->factory()->NewNumber(fast_exp(x));
7862 }
7863
7864
7865 RUNTIME_FUNCTION(Runtime_MathFloorRT) {
7866   HandleScope scope(isolate);
7867   DCHECK(args.length() == 1);
7868   isolate->counters()->math_floor()->Increment();
7869
7870   CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7871   return *isolate->factory()->NewNumber(Floor(x));
7872 }
7873
7874
7875 // Slow version of Math.pow.  We check for fast paths for special cases.
7876 // Used if VFP3 is not available.
7877 RUNTIME_FUNCTION(Runtime_MathPowSlow) {
7878   HandleScope scope(isolate);
7879   DCHECK(args.length() == 2);
7880   isolate->counters()->math_pow()->Increment();
7881
7882   CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7883
7884   // If the second argument is a smi, it is much faster to call the
7885   // custom powi() function than the generic pow().
7886   if (args[1]->IsSmi()) {
7887     int y = args.smi_at(1);
7888     return *isolate->factory()->NewNumber(power_double_int(x, y));
7889   }
7890
7891   CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7892   double result = power_helper(x, y);
7893   if (std::isnan(result)) return isolate->heap()->nan_value();
7894   return *isolate->factory()->NewNumber(result);
7895 }
7896
7897
7898 // Fast version of Math.pow if we know that y is not an integer and y is not
7899 // -0.5 or 0.5.  Used as slow case from full codegen.
7900 RUNTIME_FUNCTION(Runtime_MathPowRT) {
7901   HandleScope scope(isolate);
7902   DCHECK(args.length() == 2);
7903   isolate->counters()->math_pow()->Increment();
7904
7905   CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7906   CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7907   if (y == 0) {
7908     return Smi::FromInt(1);
7909   } else {
7910     double result = power_double_double(x, y);
7911     if (std::isnan(result)) return isolate->heap()->nan_value();
7912     return *isolate->factory()->NewNumber(result);
7913   }
7914 }
7915
7916
7917 RUNTIME_FUNCTION(Runtime_RoundNumber) {
7918   HandleScope scope(isolate);
7919   DCHECK(args.length() == 1);
7920   CONVERT_NUMBER_ARG_HANDLE_CHECKED(input, 0);
7921   isolate->counters()->math_round()->Increment();
7922
7923   if (!input->IsHeapNumber()) {
7924     DCHECK(input->IsSmi());
7925     return *input;
7926   }
7927
7928   Handle<HeapNumber> number = Handle<HeapNumber>::cast(input);
7929
7930   double value = number->value();
7931   int exponent = number->get_exponent();
7932   int sign = number->get_sign();
7933
7934   if (exponent < -1) {
7935     // Number in range ]-0.5..0.5[. These always round to +/-zero.
7936     if (sign) return isolate->heap()->minus_zero_value();
7937     return Smi::FromInt(0);
7938   }
7939
7940   // We compare with kSmiValueSize - 2 because (2^30 - 0.1) has exponent 29 and
7941   // should be rounded to 2^30, which is not smi (for 31-bit smis, similar
7942   // argument holds for 32-bit smis).
7943   if (!sign && exponent < kSmiValueSize - 2) {
7944     return Smi::FromInt(static_cast<int>(value + 0.5));
7945   }
7946
7947   // If the magnitude is big enough, there's no place for fraction part. If we
7948   // try to add 0.5 to this number, 1.0 will be added instead.
7949   if (exponent >= 52) {
7950     return *number;
7951   }
7952
7953   if (sign && value >= -0.5) return isolate->heap()->minus_zero_value();
7954
7955   // Do not call NumberFromDouble() to avoid extra checks.
7956   return *isolate->factory()->NewNumber(Floor(value + 0.5));
7957 }
7958
7959
7960 RUNTIME_FUNCTION(Runtime_MathSqrtRT) {
7961   HandleScope scope(isolate);
7962   DCHECK(args.length() == 1);
7963   isolate->counters()->math_sqrt()->Increment();
7964
7965   CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7966   return *isolate->factory()->NewNumber(fast_sqrt(x));
7967 }
7968
7969
7970 RUNTIME_FUNCTION(Runtime_MathFround) {
7971   HandleScope scope(isolate);
7972   DCHECK(args.length() == 1);
7973
7974   CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7975   float xf = DoubleToFloat32(x);
7976   return *isolate->factory()->NewNumber(xf);
7977 }
7978
7979
7980 RUNTIME_FUNCTION(Runtime_DateMakeDay) {
7981   SealHandleScope shs(isolate);
7982   DCHECK(args.length() == 2);
7983
7984   CONVERT_SMI_ARG_CHECKED(year, 0);
7985   CONVERT_SMI_ARG_CHECKED(month, 1);
7986
7987   int days = isolate->date_cache()->DaysFromYearMonth(year, month);
7988   RUNTIME_ASSERT(Smi::IsValid(days));
7989   return Smi::FromInt(days);
7990 }
7991
7992
7993 RUNTIME_FUNCTION(Runtime_DateSetValue) {
7994   HandleScope scope(isolate);
7995   DCHECK(args.length() == 3);
7996
7997   CONVERT_ARG_HANDLE_CHECKED(JSDate, date, 0);
7998   CONVERT_DOUBLE_ARG_CHECKED(time, 1);
7999   CONVERT_SMI_ARG_CHECKED(is_utc, 2);
8000
8001   DateCache* date_cache = isolate->date_cache();
8002
8003   Handle<Object> value;;
8004   bool is_value_nan = false;
8005   if (std::isnan(time)) {
8006     value = isolate->factory()->nan_value();
8007     is_value_nan = true;
8008   } else if (!is_utc &&
8009              (time < -DateCache::kMaxTimeBeforeUTCInMs ||
8010               time > DateCache::kMaxTimeBeforeUTCInMs)) {
8011     value = isolate->factory()->nan_value();
8012     is_value_nan = true;
8013   } else {
8014     time = is_utc ? time : date_cache->ToUTC(static_cast<int64_t>(time));
8015     if (time < -DateCache::kMaxTimeInMs ||
8016         time > DateCache::kMaxTimeInMs) {
8017       value = isolate->factory()->nan_value();
8018       is_value_nan = true;
8019     } else  {
8020       value = isolate->factory()->NewNumber(DoubleToInteger(time));
8021     }
8022   }
8023   date->SetValue(*value, is_value_nan);
8024   return *value;
8025 }
8026
8027
8028 static Handle<JSObject> NewSloppyArguments(Isolate* isolate,
8029                                            Handle<JSFunction> callee,
8030                                            Object** parameters,
8031                                            int argument_count) {
8032   Handle<JSObject> result =
8033       isolate->factory()->NewArgumentsObject(callee, argument_count);
8034
8035   // Allocate the elements if needed.
8036   int parameter_count = callee->shared()->formal_parameter_count();
8037   if (argument_count > 0) {
8038     if (parameter_count > 0) {
8039       int mapped_count = Min(argument_count, parameter_count);
8040       Handle<FixedArray> parameter_map =
8041           isolate->factory()->NewFixedArray(mapped_count + 2, NOT_TENURED);
8042       parameter_map->set_map(
8043           isolate->heap()->sloppy_arguments_elements_map());
8044
8045       Handle<Map> map = Map::Copy(handle(result->map()));
8046       map->set_elements_kind(SLOPPY_ARGUMENTS_ELEMENTS);
8047
8048       result->set_map(*map);
8049       result->set_elements(*parameter_map);
8050
8051       // Store the context and the arguments array at the beginning of the
8052       // parameter map.
8053       Handle<Context> context(isolate->context());
8054       Handle<FixedArray> arguments =
8055           isolate->factory()->NewFixedArray(argument_count, NOT_TENURED);
8056       parameter_map->set(0, *context);
8057       parameter_map->set(1, *arguments);
8058
8059       // Loop over the actual parameters backwards.
8060       int index = argument_count - 1;
8061       while (index >= mapped_count) {
8062         // These go directly in the arguments array and have no
8063         // corresponding slot in the parameter map.
8064         arguments->set(index, *(parameters - index - 1));
8065         --index;
8066       }
8067
8068       Handle<ScopeInfo> scope_info(callee->shared()->scope_info());
8069       while (index >= 0) {
8070         // Detect duplicate names to the right in the parameter list.
8071         Handle<String> name(scope_info->ParameterName(index));
8072         int context_local_count = scope_info->ContextLocalCount();
8073         bool duplicate = false;
8074         for (int j = index + 1; j < parameter_count; ++j) {
8075           if (scope_info->ParameterName(j) == *name) {
8076             duplicate = true;
8077             break;
8078           }
8079         }
8080
8081         if (duplicate) {
8082           // This goes directly in the arguments array with a hole in the
8083           // parameter map.
8084           arguments->set(index, *(parameters - index - 1));
8085           parameter_map->set_the_hole(index + 2);
8086         } else {
8087           // The context index goes in the parameter map with a hole in the
8088           // arguments array.
8089           int context_index = -1;
8090           for (int j = 0; j < context_local_count; ++j) {
8091             if (scope_info->ContextLocalName(j) == *name) {
8092               context_index = j;
8093               break;
8094             }
8095           }
8096           DCHECK(context_index >= 0);
8097           arguments->set_the_hole(index);
8098           parameter_map->set(index + 2, Smi::FromInt(
8099               Context::MIN_CONTEXT_SLOTS + context_index));
8100         }
8101
8102         --index;
8103       }
8104     } else {
8105       // If there is no aliasing, the arguments object elements are not
8106       // special in any way.
8107       Handle<FixedArray> elements =
8108           isolate->factory()->NewFixedArray(argument_count, NOT_TENURED);
8109       result->set_elements(*elements);
8110       for (int i = 0; i < argument_count; ++i) {
8111         elements->set(i, *(parameters - i - 1));
8112       }
8113     }
8114   }
8115   return result;
8116 }
8117
8118
8119 static Handle<JSObject> NewStrictArguments(Isolate* isolate,
8120                                            Handle<JSFunction> callee,
8121                                            Object** parameters,
8122                                            int argument_count) {
8123   Handle<JSObject> result =
8124       isolate->factory()->NewArgumentsObject(callee, argument_count);
8125
8126   if (argument_count > 0) {
8127     Handle<FixedArray> array =
8128         isolate->factory()->NewUninitializedFixedArray(argument_count);
8129     DisallowHeapAllocation no_gc;
8130     WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc);
8131     for (int i = 0; i < argument_count; i++) {
8132       array->set(i, *--parameters, mode);
8133     }
8134     result->set_elements(*array);
8135   }
8136   return result;
8137 }
8138
8139
8140 RUNTIME_FUNCTION(Runtime_NewArguments) {
8141   HandleScope scope(isolate);
8142   DCHECK(args.length() == 1);
8143   CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0);
8144   JavaScriptFrameIterator it(isolate);
8145
8146   // Find the frame that holds the actual arguments passed to the function.
8147   it.AdvanceToArgumentsFrame();
8148   JavaScriptFrame* frame = it.frame();
8149
8150   // Determine parameter location on the stack and dispatch on language mode.
8151   int argument_count = frame->GetArgumentsLength();
8152   Object** parameters = reinterpret_cast<Object**>(frame->GetParameterSlot(-1));
8153   return callee->shared()->strict_mode() == STRICT
8154              ? *NewStrictArguments(isolate, callee, parameters, argument_count)
8155              : *NewSloppyArguments(isolate, callee, parameters, argument_count);
8156 }
8157
8158
8159 RUNTIME_FUNCTION(Runtime_NewSloppyArguments) {
8160   HandleScope scope(isolate);
8161   DCHECK(args.length() == 3);
8162   CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0);
8163   Object** parameters = reinterpret_cast<Object**>(args[1]);
8164   CONVERT_SMI_ARG_CHECKED(argument_count, 2);
8165   return *NewSloppyArguments(isolate, callee, parameters, argument_count);
8166 }
8167
8168
8169 RUNTIME_FUNCTION(Runtime_NewStrictArguments) {
8170   HandleScope scope(isolate);
8171   DCHECK(args.length() == 3);
8172   CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0)
8173   Object** parameters = reinterpret_cast<Object**>(args[1]);
8174   CONVERT_SMI_ARG_CHECKED(argument_count, 2);
8175   return *NewStrictArguments(isolate, callee, parameters, argument_count);
8176 }
8177
8178
8179 RUNTIME_FUNCTION(Runtime_NewClosureFromStubFailure) {
8180   HandleScope scope(isolate);
8181   DCHECK(args.length() == 1);
8182   CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared, 0);
8183   Handle<Context> context(isolate->context());
8184   PretenureFlag pretenure_flag = NOT_TENURED;
8185   return *isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context,
8186                                                                 pretenure_flag);
8187 }
8188
8189
8190 RUNTIME_FUNCTION(Runtime_NewClosure) {
8191   HandleScope scope(isolate);
8192   DCHECK(args.length() == 3);
8193   CONVERT_ARG_HANDLE_CHECKED(Context, context, 0);
8194   CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared, 1);
8195   CONVERT_BOOLEAN_ARG_CHECKED(pretenure, 2);
8196
8197   // The caller ensures that we pretenure closures that are assigned
8198   // directly to properties.
8199   PretenureFlag pretenure_flag = pretenure ? TENURED : NOT_TENURED;
8200   return *isolate->factory()->NewFunctionFromSharedFunctionInfo(
8201       shared, context, pretenure_flag);
8202 }
8203
8204
8205 // Find the arguments of the JavaScript function invocation that called
8206 // into C++ code. Collect these in a newly allocated array of handles (possibly
8207 // prefixed by a number of empty handles).
8208 static SmartArrayPointer<Handle<Object> > GetCallerArguments(
8209     Isolate* isolate,
8210     int prefix_argc,
8211     int* total_argc) {
8212   // Find frame containing arguments passed to the caller.
8213   JavaScriptFrameIterator it(isolate);
8214   JavaScriptFrame* frame = it.frame();
8215   List<JSFunction*> functions(2);
8216   frame->GetFunctions(&functions);
8217   if (functions.length() > 1) {
8218     int inlined_jsframe_index = functions.length() - 1;
8219     JSFunction* inlined_function = functions[inlined_jsframe_index];
8220     SlotRefValueBuilder slot_refs(
8221         frame,
8222         inlined_jsframe_index,
8223         inlined_function->shared()->formal_parameter_count());
8224
8225     int args_count = slot_refs.args_length();
8226
8227     *total_argc = prefix_argc + args_count;
8228     SmartArrayPointer<Handle<Object> > param_data(
8229         NewArray<Handle<Object> >(*total_argc));
8230     slot_refs.Prepare(isolate);
8231     for (int i = 0; i < args_count; i++) {
8232       Handle<Object> val = slot_refs.GetNext(isolate, 0);
8233       param_data[prefix_argc + i] = val;
8234     }
8235     slot_refs.Finish(isolate);
8236
8237     return param_data;
8238   } else {
8239     it.AdvanceToArgumentsFrame();
8240     frame = it.frame();
8241     int args_count = frame->ComputeParametersCount();
8242
8243     *total_argc = prefix_argc + args_count;
8244     SmartArrayPointer<Handle<Object> > param_data(
8245         NewArray<Handle<Object> >(*total_argc));
8246     for (int i = 0; i < args_count; i++) {
8247       Handle<Object> val = Handle<Object>(frame->GetParameter(i), isolate);
8248       param_data[prefix_argc + i] = val;
8249     }
8250     return param_data;
8251   }
8252 }
8253
8254
8255 RUNTIME_FUNCTION(Runtime_FunctionBindArguments) {
8256   HandleScope scope(isolate);
8257   DCHECK(args.length() == 4);
8258   CONVERT_ARG_HANDLE_CHECKED(JSFunction, bound_function, 0);
8259   CONVERT_ARG_HANDLE_CHECKED(Object, bindee, 1);
8260   CONVERT_ARG_HANDLE_CHECKED(Object, this_object, 2);
8261   CONVERT_NUMBER_ARG_HANDLE_CHECKED(new_length, 3);
8262
8263   // TODO(lrn): Create bound function in C++ code from premade shared info.
8264   bound_function->shared()->set_bound(true);
8265   // Get all arguments of calling function (Function.prototype.bind).
8266   int argc = 0;
8267   SmartArrayPointer<Handle<Object> > arguments =
8268       GetCallerArguments(isolate, 0, &argc);
8269   // Don't count the this-arg.
8270   if (argc > 0) {
8271     RUNTIME_ASSERT(arguments[0].is_identical_to(this_object));
8272     argc--;
8273   } else {
8274     RUNTIME_ASSERT(this_object->IsUndefined());
8275   }
8276   // Initialize array of bindings (function, this, and any existing arguments
8277   // if the function was already bound).
8278   Handle<FixedArray> new_bindings;
8279   int i;
8280   if (bindee->IsJSFunction() && JSFunction::cast(*bindee)->shared()->bound()) {
8281     Handle<FixedArray> old_bindings(
8282         JSFunction::cast(*bindee)->function_bindings());
8283     RUNTIME_ASSERT(old_bindings->length() > JSFunction::kBoundFunctionIndex);
8284     new_bindings =
8285         isolate->factory()->NewFixedArray(old_bindings->length() + argc);
8286     bindee = Handle<Object>(old_bindings->get(JSFunction::kBoundFunctionIndex),
8287                             isolate);
8288     i = 0;
8289     for (int n = old_bindings->length(); i < n; i++) {
8290       new_bindings->set(i, old_bindings->get(i));
8291     }
8292   } else {
8293     int array_size = JSFunction::kBoundArgumentsStartIndex + argc;
8294     new_bindings = isolate->factory()->NewFixedArray(array_size);
8295     new_bindings->set(JSFunction::kBoundFunctionIndex, *bindee);
8296     new_bindings->set(JSFunction::kBoundThisIndex, *this_object);
8297     i = 2;
8298   }
8299   // Copy arguments, skipping the first which is "this_arg".
8300   for (int j = 0; j < argc; j++, i++) {
8301     new_bindings->set(i, *arguments[j + 1]);
8302   }
8303   new_bindings->set_map_no_write_barrier(
8304       isolate->heap()->fixed_cow_array_map());
8305   bound_function->set_function_bindings(*new_bindings);
8306
8307   // Update length. Have to remove the prototype first so that map migration
8308   // is happy about the number of fields.
8309   RUNTIME_ASSERT(bound_function->RemovePrototype());
8310   Handle<Map> bound_function_map(
8311       isolate->native_context()->bound_function_map());
8312   JSObject::MigrateToMap(bound_function, bound_function_map);
8313   Handle<String> length_string = isolate->factory()->length_string();
8314   PropertyAttributes attr =
8315       static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY);
8316   RETURN_FAILURE_ON_EXCEPTION(
8317       isolate,
8318       JSObject::SetOwnPropertyIgnoreAttributes(
8319           bound_function, length_string, new_length, attr));
8320   return *bound_function;
8321 }
8322
8323
8324 RUNTIME_FUNCTION(Runtime_BoundFunctionGetBindings) {
8325   HandleScope handles(isolate);
8326   DCHECK(args.length() == 1);
8327   CONVERT_ARG_HANDLE_CHECKED(JSReceiver, callable, 0);
8328   if (callable->IsJSFunction()) {
8329     Handle<JSFunction> function = Handle<JSFunction>::cast(callable);
8330     if (function->shared()->bound()) {
8331       Handle<FixedArray> bindings(function->function_bindings());
8332       RUNTIME_ASSERT(bindings->map() == isolate->heap()->fixed_cow_array_map());
8333       return *isolate->factory()->NewJSArrayWithElements(bindings);
8334     }
8335   }
8336   return isolate->heap()->undefined_value();
8337 }
8338
8339
8340 RUNTIME_FUNCTION(Runtime_NewObjectFromBound) {
8341   HandleScope scope(isolate);
8342   DCHECK(args.length() == 1);
8343   // First argument is a function to use as a constructor.
8344   CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8345   RUNTIME_ASSERT(function->shared()->bound());
8346
8347   // The argument is a bound function. Extract its bound arguments
8348   // and callable.
8349   Handle<FixedArray> bound_args =
8350       Handle<FixedArray>(FixedArray::cast(function->function_bindings()));
8351   int bound_argc = bound_args->length() - JSFunction::kBoundArgumentsStartIndex;
8352   Handle<Object> bound_function(
8353       JSReceiver::cast(bound_args->get(JSFunction::kBoundFunctionIndex)),
8354       isolate);
8355   DCHECK(!bound_function->IsJSFunction() ||
8356          !Handle<JSFunction>::cast(bound_function)->shared()->bound());
8357
8358   int total_argc = 0;
8359   SmartArrayPointer<Handle<Object> > param_data =
8360       GetCallerArguments(isolate, bound_argc, &total_argc);
8361   for (int i = 0; i < bound_argc; i++) {
8362     param_data[i] = Handle<Object>(bound_args->get(
8363         JSFunction::kBoundArgumentsStartIndex + i), isolate);
8364   }
8365
8366   if (!bound_function->IsJSFunction()) {
8367     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
8368         isolate, bound_function,
8369         Execution::TryGetConstructorDelegate(isolate, bound_function));
8370   }
8371   DCHECK(bound_function->IsJSFunction());
8372
8373   Handle<Object> result;
8374   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
8375       isolate, result,
8376       Execution::New(Handle<JSFunction>::cast(bound_function),
8377                      total_argc, param_data.get()));
8378   return *result;
8379 }
8380
8381
8382 static Object* Runtime_NewObjectHelper(Isolate* isolate,
8383                                             Handle<Object> constructor,
8384                                             Handle<AllocationSite> site) {
8385   // If the constructor isn't a proper function we throw a type error.
8386   if (!constructor->IsJSFunction()) {
8387     Vector< Handle<Object> > arguments = HandleVector(&constructor, 1);
8388     THROW_NEW_ERROR_RETURN_FAILURE(isolate,
8389                                    NewTypeError("not_constructor", arguments));
8390   }
8391
8392   Handle<JSFunction> function = Handle<JSFunction>::cast(constructor);
8393
8394   // If function should not have prototype, construction is not allowed. In this
8395   // case generated code bailouts here, since function has no initial_map.
8396   if (!function->should_have_prototype() && !function->shared()->bound()) {
8397     Vector< Handle<Object> > arguments = HandleVector(&constructor, 1);
8398     THROW_NEW_ERROR_RETURN_FAILURE(isolate,
8399                                    NewTypeError("not_constructor", arguments));
8400   }
8401
8402   Debug* debug = isolate->debug();
8403   // Handle stepping into constructors if step into is active.
8404   if (debug->StepInActive()) {
8405     debug->HandleStepIn(function, Handle<Object>::null(), 0, true);
8406   }
8407
8408   if (function->has_initial_map()) {
8409     if (function->initial_map()->instance_type() == JS_FUNCTION_TYPE) {
8410       // The 'Function' function ignores the receiver object when
8411       // called using 'new' and creates a new JSFunction object that
8412       // is returned.  The receiver object is only used for error
8413       // reporting if an error occurs when constructing the new
8414       // JSFunction. Factory::NewJSObject() should not be used to
8415       // allocate JSFunctions since it does not properly initialize
8416       // the shared part of the function. Since the receiver is
8417       // ignored anyway, we use the global object as the receiver
8418       // instead of a new JSFunction object. This way, errors are
8419       // reported the same way whether or not 'Function' is called
8420       // using 'new'.
8421       return isolate->global_proxy();
8422     }
8423   }
8424
8425   // The function should be compiled for the optimization hints to be
8426   // available.
8427   Compiler::EnsureCompiled(function, CLEAR_EXCEPTION);
8428
8429   Handle<JSObject> result;
8430   if (site.is_null()) {
8431     result = isolate->factory()->NewJSObject(function);
8432   } else {
8433     result = isolate->factory()->NewJSObjectWithMemento(function, site);
8434   }
8435
8436   isolate->counters()->constructed_objects()->Increment();
8437   isolate->counters()->constructed_objects_runtime()->Increment();
8438
8439   return *result;
8440 }
8441
8442
8443 RUNTIME_FUNCTION(Runtime_NewObject) {
8444   HandleScope scope(isolate);
8445   DCHECK(args.length() == 1);
8446   CONVERT_ARG_HANDLE_CHECKED(Object, constructor, 0);
8447   return Runtime_NewObjectHelper(isolate,
8448                                  constructor,
8449                                  Handle<AllocationSite>::null());
8450 }
8451
8452
8453 RUNTIME_FUNCTION(Runtime_NewObjectWithAllocationSite) {
8454   HandleScope scope(isolate);
8455   DCHECK(args.length() == 2);
8456   CONVERT_ARG_HANDLE_CHECKED(Object, constructor, 1);
8457   CONVERT_ARG_HANDLE_CHECKED(Object, feedback, 0);
8458   Handle<AllocationSite> site;
8459   if (feedback->IsAllocationSite()) {
8460     // The feedback can be an AllocationSite or undefined.
8461     site = Handle<AllocationSite>::cast(feedback);
8462   }
8463   return Runtime_NewObjectHelper(isolate, constructor, site);
8464 }
8465
8466
8467 RUNTIME_FUNCTION(Runtime_FinalizeInstanceSize) {
8468   HandleScope scope(isolate);
8469   DCHECK(args.length() == 1);
8470
8471   CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8472   function->CompleteInobjectSlackTracking();
8473
8474   return isolate->heap()->undefined_value();
8475 }
8476
8477
8478 RUNTIME_FUNCTION(Runtime_CompileLazy) {
8479   HandleScope scope(isolate);
8480   DCHECK(args.length() == 1);
8481   CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8482 #ifdef DEBUG
8483   if (FLAG_trace_lazy && !function->shared()->is_compiled()) {
8484     PrintF("[unoptimized: ");
8485     function->PrintName();
8486     PrintF("]\n");
8487   }
8488 #endif
8489
8490   // Compile the target function.
8491   DCHECK(function->shared()->allows_lazy_compilation());
8492
8493   Handle<Code> code;
8494   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, code,
8495                                      Compiler::GetLazyCode(function));
8496   DCHECK(code->kind() == Code::FUNCTION ||
8497          code->kind() == Code::OPTIMIZED_FUNCTION);
8498   function->ReplaceCode(*code);
8499   return *code;
8500 }
8501
8502
8503 RUNTIME_FUNCTION(Runtime_CompileOptimized) {
8504   HandleScope scope(isolate);
8505   DCHECK(args.length() == 2);
8506   CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8507   CONVERT_BOOLEAN_ARG_CHECKED(concurrent, 1);
8508
8509   Handle<Code> unoptimized(function->shared()->code());
8510   if (!isolate->use_crankshaft() ||
8511       function->shared()->optimization_disabled() ||
8512       isolate->DebuggerHasBreakPoints()) {
8513     // If the function is not optimizable or debugger is active continue
8514     // using the code from the full compiler.
8515     if (FLAG_trace_opt) {
8516       PrintF("[failed to optimize ");
8517       function->PrintName();
8518       PrintF(": is code optimizable: %s, is debugger enabled: %s]\n",
8519           function->shared()->optimization_disabled() ? "F" : "T",
8520           isolate->DebuggerHasBreakPoints() ? "T" : "F");
8521     }
8522     function->ReplaceCode(*unoptimized);
8523     return function->code();
8524   }
8525
8526   Compiler::ConcurrencyMode mode =
8527       concurrent ? Compiler::CONCURRENT : Compiler::NOT_CONCURRENT;
8528   Handle<Code> code;
8529   if (Compiler::GetOptimizedCode(function, unoptimized, mode).ToHandle(&code)) {
8530     function->ReplaceCode(*code);
8531   } else {
8532     function->ReplaceCode(function->shared()->code());
8533   }
8534
8535   DCHECK(function->code()->kind() == Code::FUNCTION ||
8536          function->code()->kind() == Code::OPTIMIZED_FUNCTION ||
8537          function->IsInOptimizationQueue());
8538   return function->code();
8539 }
8540
8541
8542 class ActivationsFinder : public ThreadVisitor {
8543  public:
8544   Code* code_;
8545   bool has_code_activations_;
8546
8547   explicit ActivationsFinder(Code* code)
8548     : code_(code),
8549       has_code_activations_(false) { }
8550
8551   void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
8552     JavaScriptFrameIterator it(isolate, top);
8553     VisitFrames(&it);
8554   }
8555
8556   void VisitFrames(JavaScriptFrameIterator* it) {
8557     for (; !it->done(); it->Advance()) {
8558       JavaScriptFrame* frame = it->frame();
8559       if (code_->contains(frame->pc())) has_code_activations_ = true;
8560     }
8561   }
8562 };
8563
8564
8565 RUNTIME_FUNCTION(Runtime_NotifyStubFailure) {
8566   HandleScope scope(isolate);
8567   DCHECK(args.length() == 0);
8568   Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate);
8569   DCHECK(AllowHeapAllocation::IsAllowed());
8570   delete deoptimizer;
8571   return isolate->heap()->undefined_value();
8572 }
8573
8574
8575 RUNTIME_FUNCTION(Runtime_NotifyDeoptimized) {
8576   HandleScope scope(isolate);
8577   DCHECK(args.length() == 1);
8578   CONVERT_SMI_ARG_CHECKED(type_arg, 0);
8579   Deoptimizer::BailoutType type =
8580       static_cast<Deoptimizer::BailoutType>(type_arg);
8581   Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate);
8582   DCHECK(AllowHeapAllocation::IsAllowed());
8583
8584   Handle<JSFunction> function = deoptimizer->function();
8585   Handle<Code> optimized_code = deoptimizer->compiled_code();
8586
8587   DCHECK(optimized_code->kind() == Code::OPTIMIZED_FUNCTION);
8588   DCHECK(type == deoptimizer->bailout_type());
8589
8590   // Make sure to materialize objects before causing any allocation.
8591   JavaScriptFrameIterator it(isolate);
8592   deoptimizer->MaterializeHeapObjects(&it);
8593   delete deoptimizer;
8594
8595   JavaScriptFrame* frame = it.frame();
8596   RUNTIME_ASSERT(frame->function()->IsJSFunction());
8597   DCHECK(frame->function() == *function);
8598
8599   // Avoid doing too much work when running with --always-opt and keep
8600   // the optimized code around.
8601   if (FLAG_always_opt || type == Deoptimizer::LAZY) {
8602     return isolate->heap()->undefined_value();
8603   }
8604
8605   // Search for other activations of the same function and code.
8606   ActivationsFinder activations_finder(*optimized_code);
8607   activations_finder.VisitFrames(&it);
8608   isolate->thread_manager()->IterateArchivedThreads(&activations_finder);
8609
8610   if (!activations_finder.has_code_activations_) {
8611     if (function->code() == *optimized_code) {
8612       if (FLAG_trace_deopt) {
8613         PrintF("[removing optimized code for: ");
8614         function->PrintName();
8615         PrintF("]\n");
8616       }
8617       function->ReplaceCode(function->shared()->code());
8618       // Evict optimized code for this function from the cache so that it
8619       // doesn't get used for new closures.
8620       function->shared()->EvictFromOptimizedCodeMap(*optimized_code,
8621                                                     "notify deoptimized");
8622     }
8623   } else {
8624     // TODO(titzer): we should probably do DeoptimizeCodeList(code)
8625     // unconditionally if the code is not already marked for deoptimization.
8626     // If there is an index by shared function info, all the better.
8627     Deoptimizer::DeoptimizeFunction(*function);
8628   }
8629
8630   return isolate->heap()->undefined_value();
8631 }
8632
8633
8634 RUNTIME_FUNCTION(Runtime_DeoptimizeFunction) {
8635   HandleScope scope(isolate);
8636   DCHECK(args.length() == 1);
8637   CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8638   if (!function->IsOptimized()) return isolate->heap()->undefined_value();
8639
8640   // TODO(turbofan): Deoptimization is not supported yet.
8641   if (function->code()->is_turbofanned() && !FLAG_turbo_deoptimization) {
8642     return isolate->heap()->undefined_value();
8643   }
8644
8645   Deoptimizer::DeoptimizeFunction(*function);
8646
8647   return isolate->heap()->undefined_value();
8648 }
8649
8650
8651 RUNTIME_FUNCTION(Runtime_ClearFunctionTypeFeedback) {
8652   HandleScope scope(isolate);
8653   DCHECK(args.length() == 1);
8654   CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8655   function->shared()->ClearTypeFeedbackInfo();
8656   Code* unoptimized = function->shared()->code();
8657   if (unoptimized->kind() == Code::FUNCTION) {
8658     unoptimized->ClearInlineCaches();
8659   }
8660   return isolate->heap()->undefined_value();
8661 }
8662
8663
8664 RUNTIME_FUNCTION(Runtime_RunningInSimulator) {
8665   SealHandleScope shs(isolate);
8666   DCHECK(args.length() == 0);
8667 #if defined(USE_SIMULATOR)
8668   return isolate->heap()->true_value();
8669 #else
8670   return isolate->heap()->false_value();
8671 #endif
8672 }
8673
8674
8675 RUNTIME_FUNCTION(Runtime_IsConcurrentRecompilationSupported) {
8676   SealHandleScope shs(isolate);
8677   DCHECK(args.length() == 0);
8678   return isolate->heap()->ToBoolean(
8679       isolate->concurrent_recompilation_enabled());
8680 }
8681
8682
8683 RUNTIME_FUNCTION(Runtime_OptimizeFunctionOnNextCall) {
8684   HandleScope scope(isolate);
8685   RUNTIME_ASSERT(args.length() == 1 || args.length() == 2);
8686   CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8687   // The following two assertions are lifted from the DCHECKs inside
8688   // JSFunction::MarkForOptimization().
8689   RUNTIME_ASSERT(!function->shared()->is_generator());
8690   RUNTIME_ASSERT(function->shared()->allows_lazy_compilation() ||
8691                  (function->code()->kind() == Code::FUNCTION &&
8692                   function->code()->optimizable()));
8693
8694   // If the function is optimized, just return.
8695   if (function->IsOptimized()) return isolate->heap()->undefined_value();
8696
8697   function->MarkForOptimization();
8698
8699   Code* unoptimized = function->shared()->code();
8700   if (args.length() == 2 &&
8701       unoptimized->kind() == Code::FUNCTION) {
8702     CONVERT_ARG_HANDLE_CHECKED(String, type, 1);
8703     if (type->IsOneByteEqualTo(STATIC_CHAR_VECTOR("osr")) && FLAG_use_osr) {
8704       // Start patching from the currently patched loop nesting level.
8705       DCHECK(BackEdgeTable::Verify(isolate, unoptimized));
8706       isolate->runtime_profiler()->AttemptOnStackReplacement(
8707           *function, Code::kMaxLoopNestingMarker);
8708     } else if (type->IsOneByteEqualTo(STATIC_CHAR_VECTOR("concurrent")) &&
8709                isolate->concurrent_recompilation_enabled()) {
8710       function->MarkForConcurrentOptimization();
8711     }
8712   }
8713
8714   return isolate->heap()->undefined_value();
8715 }
8716
8717
8718 RUNTIME_FUNCTION(Runtime_NeverOptimizeFunction) {
8719   HandleScope scope(isolate);
8720   DCHECK(args.length() == 1);
8721   CONVERT_ARG_CHECKED(JSFunction, function, 0);
8722   function->shared()->set_optimization_disabled(true);
8723   return isolate->heap()->undefined_value();
8724 }
8725
8726
8727 RUNTIME_FUNCTION(Runtime_GetOptimizationStatus) {
8728   HandleScope scope(isolate);
8729   RUNTIME_ASSERT(args.length() == 1 || args.length() == 2);
8730   if (!isolate->use_crankshaft()) {
8731     return Smi::FromInt(4);  // 4 == "never".
8732   }
8733   bool sync_with_compiler_thread = true;
8734   if (args.length() == 2) {
8735     CONVERT_ARG_HANDLE_CHECKED(String, sync, 1);
8736     if (sync->IsOneByteEqualTo(STATIC_CHAR_VECTOR("no sync"))) {
8737       sync_with_compiler_thread = false;
8738     }
8739   }
8740   CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8741   if (isolate->concurrent_recompilation_enabled() &&
8742       sync_with_compiler_thread) {
8743     while (function->IsInOptimizationQueue()) {
8744       isolate->optimizing_compiler_thread()->InstallOptimizedFunctions();
8745       base::OS::Sleep(50);
8746     }
8747   }
8748   if (FLAG_always_opt) {
8749     // We may have always opt, but that is more best-effort than a real
8750     // promise, so we still say "no" if it is not optimized.
8751     return function->IsOptimized() ? Smi::FromInt(3)   // 3 == "always".
8752                                    : Smi::FromInt(2);  // 2 == "no".
8753   }
8754   if (FLAG_deopt_every_n_times) {
8755     return Smi::FromInt(6);  // 6 == "maybe deopted".
8756   }
8757   if (function->IsOptimized() && function->code()->is_turbofanned()) {
8758     return Smi::FromInt(7);  // 7 == "TurboFan compiler".
8759   }
8760   return function->IsOptimized() ? Smi::FromInt(1)   // 1 == "yes".
8761                                  : Smi::FromInt(2);  // 2 == "no".
8762 }
8763
8764
8765 RUNTIME_FUNCTION(Runtime_UnblockConcurrentRecompilation) {
8766   DCHECK(args.length() == 0);
8767   RUNTIME_ASSERT(FLAG_block_concurrent_recompilation);
8768   RUNTIME_ASSERT(isolate->concurrent_recompilation_enabled());
8769   isolate->optimizing_compiler_thread()->Unblock();
8770   return isolate->heap()->undefined_value();
8771 }
8772
8773
8774 RUNTIME_FUNCTION(Runtime_GetOptimizationCount) {
8775   HandleScope scope(isolate);
8776   DCHECK(args.length() == 1);
8777   CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8778   return Smi::FromInt(function->shared()->opt_count());
8779 }
8780
8781
8782 static bool IsSuitableForOnStackReplacement(Isolate* isolate,
8783                                             Handle<JSFunction> function,
8784                                             Handle<Code> current_code) {
8785   // Keep track of whether we've succeeded in optimizing.
8786   if (!isolate->use_crankshaft() || !current_code->optimizable()) return false;
8787   // If we are trying to do OSR when there are already optimized
8788   // activations of the function, it means (a) the function is directly or
8789   // indirectly recursive and (b) an optimized invocation has been
8790   // deoptimized so that we are currently in an unoptimized activation.
8791   // Check for optimized activations of this function.
8792   for (JavaScriptFrameIterator it(isolate); !it.done(); it.Advance()) {
8793     JavaScriptFrame* frame = it.frame();
8794     if (frame->is_optimized() && frame->function() == *function) return false;
8795   }
8796
8797   return true;
8798 }
8799
8800
8801 RUNTIME_FUNCTION(Runtime_CompileForOnStackReplacement) {
8802   HandleScope scope(isolate);
8803   DCHECK(args.length() == 1);
8804   CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8805   Handle<Code> caller_code(function->shared()->code());
8806
8807   // We're not prepared to handle a function with arguments object.
8808   DCHECK(!function->shared()->uses_arguments());
8809
8810   RUNTIME_ASSERT(FLAG_use_osr);
8811
8812   // Passing the PC in the javascript frame from the caller directly is
8813   // not GC safe, so we walk the stack to get it.
8814   JavaScriptFrameIterator it(isolate);
8815   JavaScriptFrame* frame = it.frame();
8816   if (!caller_code->contains(frame->pc())) {
8817     // Code on the stack may not be the code object referenced by the shared
8818     // function info.  It may have been replaced to include deoptimization data.
8819     caller_code = Handle<Code>(frame->LookupCode());
8820   }
8821
8822   uint32_t pc_offset = static_cast<uint32_t>(
8823       frame->pc() - caller_code->instruction_start());
8824
8825 #ifdef DEBUG
8826   DCHECK_EQ(frame->function(), *function);
8827   DCHECK_EQ(frame->LookupCode(), *caller_code);
8828   DCHECK(caller_code->contains(frame->pc()));
8829 #endif  // DEBUG
8830
8831
8832   BailoutId ast_id = caller_code->TranslatePcOffsetToAstId(pc_offset);
8833   DCHECK(!ast_id.IsNone());
8834
8835   Compiler::ConcurrencyMode mode =
8836       isolate->concurrent_osr_enabled() &&
8837       (function->shared()->ast_node_count() > 512) ? Compiler::CONCURRENT
8838                                                    : Compiler::NOT_CONCURRENT;
8839   Handle<Code> result = Handle<Code>::null();
8840
8841   OptimizedCompileJob* job = NULL;
8842   if (mode == Compiler::CONCURRENT) {
8843     // Gate the OSR entry with a stack check.
8844     BackEdgeTable::AddStackCheck(caller_code, pc_offset);
8845     // Poll already queued compilation jobs.
8846     OptimizingCompilerThread* thread = isolate->optimizing_compiler_thread();
8847     if (thread->IsQueuedForOSR(function, ast_id)) {
8848       if (FLAG_trace_osr) {
8849         PrintF("[OSR - Still waiting for queued: ");
8850         function->PrintName();
8851         PrintF(" at AST id %d]\n", ast_id.ToInt());
8852       }
8853       return NULL;
8854     }
8855
8856     job = thread->FindReadyOSRCandidate(function, ast_id);
8857   }
8858
8859   if (job != NULL) {
8860     if (FLAG_trace_osr) {
8861       PrintF("[OSR - Found ready: ");
8862       function->PrintName();
8863       PrintF(" at AST id %d]\n", ast_id.ToInt());
8864     }
8865     result = Compiler::GetConcurrentlyOptimizedCode(job);
8866   } else if (IsSuitableForOnStackReplacement(isolate, function, caller_code)) {
8867     if (FLAG_trace_osr) {
8868       PrintF("[OSR - Compiling: ");
8869       function->PrintName();
8870       PrintF(" at AST id %d]\n", ast_id.ToInt());
8871     }
8872     MaybeHandle<Code> maybe_result = Compiler::GetOptimizedCode(
8873         function, caller_code, mode, ast_id);
8874     if (maybe_result.ToHandle(&result) &&
8875         result.is_identical_to(isolate->builtins()->InOptimizationQueue())) {
8876       // Optimization is queued.  Return to check later.
8877       return NULL;
8878     }
8879   }
8880
8881   // Revert the patched back edge table, regardless of whether OSR succeeds.
8882   BackEdgeTable::Revert(isolate, *caller_code);
8883
8884   // Check whether we ended up with usable optimized code.
8885   if (!result.is_null() && result->kind() == Code::OPTIMIZED_FUNCTION) {
8886     DeoptimizationInputData* data =
8887         DeoptimizationInputData::cast(result->deoptimization_data());
8888
8889     if (data->OsrPcOffset()->value() >= 0) {
8890       DCHECK(BailoutId(data->OsrAstId()->value()) == ast_id);
8891       if (FLAG_trace_osr) {
8892         PrintF("[OSR - Entry at AST id %d, offset %d in optimized code]\n",
8893                ast_id.ToInt(), data->OsrPcOffset()->value());
8894       }
8895       // TODO(titzer): this is a massive hack to make the deopt counts
8896       // match. Fix heuristics for reenabling optimizations!
8897       function->shared()->increment_deopt_count();
8898
8899       // TODO(titzer): Do not install code into the function.
8900       function->ReplaceCode(*result);
8901       return *result;
8902     }
8903   }
8904
8905   // Failed.
8906   if (FLAG_trace_osr) {
8907     PrintF("[OSR - Failed: ");
8908     function->PrintName();
8909     PrintF(" at AST id %d]\n", ast_id.ToInt());
8910   }
8911
8912   if (!function->IsOptimized()) {
8913     function->ReplaceCode(function->shared()->code());
8914   }
8915   return NULL;
8916 }
8917
8918
8919 RUNTIME_FUNCTION(Runtime_SetAllocationTimeout) {
8920   SealHandleScope shs(isolate);
8921   DCHECK(args.length() == 2 || args.length() == 3);
8922 #ifdef DEBUG
8923   CONVERT_SMI_ARG_CHECKED(interval, 0);
8924   CONVERT_SMI_ARG_CHECKED(timeout, 1);
8925   isolate->heap()->set_allocation_timeout(timeout);
8926   FLAG_gc_interval = interval;
8927   if (args.length() == 3) {
8928     // Enable/disable inline allocation if requested.
8929     CONVERT_BOOLEAN_ARG_CHECKED(inline_allocation, 2);
8930     if (inline_allocation) {
8931       isolate->heap()->EnableInlineAllocation();
8932     } else {
8933       isolate->heap()->DisableInlineAllocation();
8934     }
8935   }
8936 #endif
8937   return isolate->heap()->undefined_value();
8938 }
8939
8940
8941 RUNTIME_FUNCTION(Runtime_CheckIsBootstrapping) {
8942   SealHandleScope shs(isolate);
8943   DCHECK(args.length() == 0);
8944   RUNTIME_ASSERT(isolate->bootstrapper()->IsActive());
8945   return isolate->heap()->undefined_value();
8946 }
8947
8948
8949 RUNTIME_FUNCTION(Runtime_GetRootNaN) {
8950   SealHandleScope shs(isolate);
8951   DCHECK(args.length() == 0);
8952   RUNTIME_ASSERT(isolate->bootstrapper()->IsActive());
8953   return isolate->heap()->nan_value();
8954 }
8955
8956
8957 RUNTIME_FUNCTION(Runtime_Call) {
8958   HandleScope scope(isolate);
8959   DCHECK(args.length() >= 2);
8960   int argc = args.length() - 2;
8961   CONVERT_ARG_CHECKED(JSReceiver, fun, argc + 1);
8962   Object* receiver = args[0];
8963
8964   // If there are too many arguments, allocate argv via malloc.
8965   const int argv_small_size = 10;
8966   Handle<Object> argv_small_buffer[argv_small_size];
8967   SmartArrayPointer<Handle<Object> > argv_large_buffer;
8968   Handle<Object>* argv = argv_small_buffer;
8969   if (argc > argv_small_size) {
8970     argv = new Handle<Object>[argc];
8971     if (argv == NULL) return isolate->StackOverflow();
8972     argv_large_buffer = SmartArrayPointer<Handle<Object> >(argv);
8973   }
8974
8975   for (int i = 0; i < argc; ++i) {
8976      argv[i] = Handle<Object>(args[1 + i], isolate);
8977   }
8978
8979   Handle<JSReceiver> hfun(fun);
8980   Handle<Object> hreceiver(receiver, isolate);
8981   Handle<Object> result;
8982   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
8983       isolate, result,
8984       Execution::Call(isolate, hfun, hreceiver, argc, argv, true));
8985   return *result;
8986 }
8987
8988
8989 RUNTIME_FUNCTION(Runtime_Apply) {
8990   HandleScope scope(isolate);
8991   DCHECK(args.length() == 5);
8992   CONVERT_ARG_HANDLE_CHECKED(JSReceiver, fun, 0);
8993   CONVERT_ARG_HANDLE_CHECKED(Object, receiver, 1);
8994   CONVERT_ARG_HANDLE_CHECKED(JSObject, arguments, 2);
8995   CONVERT_INT32_ARG_CHECKED(offset, 3);
8996   CONVERT_INT32_ARG_CHECKED(argc, 4);
8997   RUNTIME_ASSERT(offset >= 0);
8998   // Loose upper bound to allow fuzzing. We'll most likely run out of
8999   // stack space before hitting this limit.
9000   static int kMaxArgc = 1000000;
9001   RUNTIME_ASSERT(argc >= 0 && argc <= kMaxArgc);
9002
9003   // If there are too many arguments, allocate argv via malloc.
9004   const int argv_small_size = 10;
9005   Handle<Object> argv_small_buffer[argv_small_size];
9006   SmartArrayPointer<Handle<Object> > argv_large_buffer;
9007   Handle<Object>* argv = argv_small_buffer;
9008   if (argc > argv_small_size) {
9009     argv = new Handle<Object>[argc];
9010     if (argv == NULL) return isolate->StackOverflow();
9011     argv_large_buffer = SmartArrayPointer<Handle<Object> >(argv);
9012   }
9013
9014   for (int i = 0; i < argc; ++i) {
9015     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
9016         isolate, argv[i],
9017         Object::GetElement(isolate, arguments, offset + i));
9018   }
9019
9020   Handle<Object> result;
9021   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
9022       isolate, result,
9023       Execution::Call(isolate, fun, receiver, argc, argv, true));
9024   return *result;
9025 }
9026
9027
9028 RUNTIME_FUNCTION(Runtime_GetFunctionDelegate) {
9029   HandleScope scope(isolate);
9030   DCHECK(args.length() == 1);
9031   CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
9032   RUNTIME_ASSERT(!object->IsJSFunction());
9033   return *Execution::GetFunctionDelegate(isolate, object);
9034 }
9035
9036
9037 RUNTIME_FUNCTION(Runtime_GetConstructorDelegate) {
9038   HandleScope scope(isolate);
9039   DCHECK(args.length() == 1);
9040   CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
9041   RUNTIME_ASSERT(!object->IsJSFunction());
9042   return *Execution::GetConstructorDelegate(isolate, object);
9043 }
9044
9045
9046 RUNTIME_FUNCTION(Runtime_NewGlobalContext) {
9047   HandleScope scope(isolate);
9048   DCHECK(args.length() == 2);
9049
9050   CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
9051   CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 1);
9052   Handle<Context> result =
9053       isolate->factory()->NewGlobalContext(function, scope_info);
9054
9055   DCHECK(function->context() == isolate->context());
9056   DCHECK(function->context()->global_object() == result->global_object());
9057   result->global_object()->set_global_context(*result);
9058   return *result;
9059 }
9060
9061
9062 RUNTIME_FUNCTION(Runtime_NewFunctionContext) {
9063   HandleScope scope(isolate);
9064   DCHECK(args.length() == 1);
9065
9066   CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
9067
9068   DCHECK(function->context() == isolate->context());
9069   int length = function->shared()->scope_info()->ContextLength();
9070   return *isolate->factory()->NewFunctionContext(length, function);
9071 }
9072
9073
9074 RUNTIME_FUNCTION(Runtime_PushWithContext) {
9075   HandleScope scope(isolate);
9076   DCHECK(args.length() == 2);
9077   Handle<JSReceiver> extension_object;
9078   if (args[0]->IsJSReceiver()) {
9079     extension_object = args.at<JSReceiver>(0);
9080   } else {
9081     // Try to convert the object to a proper JavaScript object.
9082     MaybeHandle<JSReceiver> maybe_object =
9083         Object::ToObject(isolate, args.at<Object>(0));
9084     if (!maybe_object.ToHandle(&extension_object)) {
9085       Handle<Object> handle = args.at<Object>(0);
9086       THROW_NEW_ERROR_RETURN_FAILURE(
9087           isolate, NewTypeError("with_expression", HandleVector(&handle, 1)));
9088     }
9089   }
9090
9091   Handle<JSFunction> function;
9092   if (args[1]->IsSmi()) {
9093     // A smi sentinel indicates a context nested inside global code rather
9094     // than some function.  There is a canonical empty function that can be
9095     // gotten from the native context.
9096     function = handle(isolate->native_context()->closure());
9097   } else {
9098     function = args.at<JSFunction>(1);
9099   }
9100
9101   Handle<Context> current(isolate->context());
9102   Handle<Context> context = isolate->factory()->NewWithContext(
9103       function, current, extension_object);
9104   isolate->set_context(*context);
9105   return *context;
9106 }
9107
9108
9109 RUNTIME_FUNCTION(Runtime_PushCatchContext) {
9110   HandleScope scope(isolate);
9111   DCHECK(args.length() == 3);
9112   CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
9113   CONVERT_ARG_HANDLE_CHECKED(Object, thrown_object, 1);
9114   Handle<JSFunction> function;
9115   if (args[2]->IsSmi()) {
9116     // A smi sentinel indicates a context nested inside global code rather
9117     // than some function.  There is a canonical empty function that can be
9118     // gotten from the native context.
9119     function = handle(isolate->native_context()->closure());
9120   } else {
9121     function = args.at<JSFunction>(2);
9122   }
9123   Handle<Context> current(isolate->context());
9124   Handle<Context> context = isolate->factory()->NewCatchContext(
9125       function, current, name, thrown_object);
9126   isolate->set_context(*context);
9127   return *context;
9128 }
9129
9130
9131 RUNTIME_FUNCTION(Runtime_PushBlockContext) {
9132   HandleScope scope(isolate);
9133   DCHECK(args.length() == 2);
9134   CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 0);
9135   Handle<JSFunction> function;
9136   if (args[1]->IsSmi()) {
9137     // A smi sentinel indicates a context nested inside global code rather
9138     // than some function.  There is a canonical empty function that can be
9139     // gotten from the native context.
9140     function = handle(isolate->native_context()->closure());
9141   } else {
9142     function = args.at<JSFunction>(1);
9143   }
9144   Handle<Context> current(isolate->context());
9145   Handle<Context> context = isolate->factory()->NewBlockContext(
9146       function, current, scope_info);
9147   isolate->set_context(*context);
9148   return *context;
9149 }
9150
9151
9152 RUNTIME_FUNCTION(Runtime_IsJSModule) {
9153   SealHandleScope shs(isolate);
9154   DCHECK(args.length() == 1);
9155   CONVERT_ARG_CHECKED(Object, obj, 0);
9156   return isolate->heap()->ToBoolean(obj->IsJSModule());
9157 }
9158
9159
9160 RUNTIME_FUNCTION(Runtime_PushModuleContext) {
9161   SealHandleScope shs(isolate);
9162   DCHECK(args.length() == 2);
9163   CONVERT_SMI_ARG_CHECKED(index, 0);
9164
9165   if (!args[1]->IsScopeInfo()) {
9166     // Module already initialized. Find hosting context and retrieve context.
9167     Context* host = Context::cast(isolate->context())->global_context();
9168     Context* context = Context::cast(host->get(index));
9169     DCHECK(context->previous() == isolate->context());
9170     isolate->set_context(context);
9171     return context;
9172   }
9173
9174   CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 1);
9175
9176   // Allocate module context.
9177   HandleScope scope(isolate);
9178   Factory* factory = isolate->factory();
9179   Handle<Context> context = factory->NewModuleContext(scope_info);
9180   Handle<JSModule> module = factory->NewJSModule(context, scope_info);
9181   context->set_module(*module);
9182   Context* previous = isolate->context();
9183   context->set_previous(previous);
9184   context->set_closure(previous->closure());
9185   context->set_global_object(previous->global_object());
9186   isolate->set_context(*context);
9187
9188   // Find hosting scope and initialize internal variable holding module there.
9189   previous->global_context()->set(index, *context);
9190
9191   return *context;
9192 }
9193
9194
9195 RUNTIME_FUNCTION(Runtime_DeclareModules) {
9196   HandleScope scope(isolate);
9197   DCHECK(args.length() == 1);
9198   CONVERT_ARG_HANDLE_CHECKED(FixedArray, descriptions, 0);
9199   Context* host_context = isolate->context();
9200
9201   for (int i = 0; i < descriptions->length(); ++i) {
9202     Handle<ModuleInfo> description(ModuleInfo::cast(descriptions->get(i)));
9203     int host_index = description->host_index();
9204     Handle<Context> context(Context::cast(host_context->get(host_index)));
9205     Handle<JSModule> module(context->module());
9206
9207     for (int j = 0; j < description->length(); ++j) {
9208       Handle<String> name(description->name(j));
9209       VariableMode mode = description->mode(j);
9210       int index = description->index(j);
9211       switch (mode) {
9212         case VAR:
9213         case LET:
9214         case CONST:
9215         case CONST_LEGACY: {
9216           PropertyAttributes attr =
9217               IsImmutableVariableMode(mode) ? FROZEN : SEALED;
9218           Handle<AccessorInfo> info =
9219               Accessors::MakeModuleExport(name, index, attr);
9220           Handle<Object> result =
9221               JSObject::SetAccessor(module, info).ToHandleChecked();
9222           DCHECK(!result->IsUndefined());
9223           USE(result);
9224           break;
9225         }
9226         case MODULE: {
9227           Object* referenced_context = Context::cast(host_context)->get(index);
9228           Handle<JSModule> value(Context::cast(referenced_context)->module());
9229           JSObject::SetOwnPropertyIgnoreAttributes(module, name, value, FROZEN)
9230               .Assert();
9231           break;
9232         }
9233         case INTERNAL:
9234         case TEMPORARY:
9235         case DYNAMIC:
9236         case DYNAMIC_GLOBAL:
9237         case DYNAMIC_LOCAL:
9238           UNREACHABLE();
9239       }
9240     }
9241
9242     JSObject::PreventExtensions(module).Assert();
9243   }
9244
9245   DCHECK(!isolate->has_pending_exception());
9246   return isolate->heap()->undefined_value();
9247 }
9248
9249
9250 RUNTIME_FUNCTION(Runtime_DeleteLookupSlot) {
9251   HandleScope scope(isolate);
9252   DCHECK(args.length() == 2);
9253
9254   CONVERT_ARG_HANDLE_CHECKED(Context, context, 0);
9255   CONVERT_ARG_HANDLE_CHECKED(String, name, 1);
9256
9257   int index;
9258   PropertyAttributes attributes;
9259   ContextLookupFlags flags = FOLLOW_CHAINS;
9260   BindingFlags binding_flags;
9261   Handle<Object> holder = context->Lookup(name,
9262                                           flags,
9263                                           &index,
9264                                           &attributes,
9265                                           &binding_flags);
9266
9267   // If the slot was not found the result is true.
9268   if (holder.is_null()) {
9269     return isolate->heap()->true_value();
9270   }
9271
9272   // If the slot was found in a context, it should be DONT_DELETE.
9273   if (holder->IsContext()) {
9274     return isolate->heap()->false_value();
9275   }
9276
9277   // The slot was found in a JSObject, either a context extension object,
9278   // the global object, or the subject of a with.  Try to delete it
9279   // (respecting DONT_DELETE).
9280   Handle<JSObject> object = Handle<JSObject>::cast(holder);
9281   Handle<Object> result;
9282   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
9283       isolate, result,
9284       JSReceiver::DeleteProperty(object, name));
9285   return *result;
9286 }
9287
9288
9289 // A mechanism to return a pair of Object pointers in registers (if possible).
9290 // How this is achieved is calling convention-dependent.
9291 // All currently supported x86 compiles uses calling conventions that are cdecl
9292 // variants where a 64-bit value is returned in two 32-bit registers
9293 // (edx:eax on ia32, r1:r0 on ARM).
9294 // In AMD-64 calling convention a struct of two pointers is returned in rdx:rax.
9295 // In Win64 calling convention, a struct of two pointers is returned in memory,
9296 // allocated by the caller, and passed as a pointer in a hidden first parameter.
9297 #ifdef V8_HOST_ARCH_64_BIT
9298 struct ObjectPair {
9299   Object* x;
9300   Object* y;
9301 };
9302
9303
9304 static inline ObjectPair MakePair(Object* x, Object* y) {
9305   ObjectPair result = {x, y};
9306   // Pointers x and y returned in rax and rdx, in AMD-x64-abi.
9307   // In Win64 they are assigned to a hidden first argument.
9308   return result;
9309 }
9310 #elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
9311 // For x32 a 128-bit struct return is done as rax and rdx from the ObjectPair
9312 // are used in the full codegen and Crankshaft compiler. An alternative is
9313 // using uint64_t and modifying full codegen and Crankshaft compiler.
9314 struct ObjectPair {
9315   Object* x;
9316   uint32_t x_upper;
9317   Object* y;
9318   uint32_t y_upper;
9319 };
9320
9321
9322 static inline ObjectPair MakePair(Object* x, Object* y) {
9323   ObjectPair result = {x, 0, y, 0};
9324   // Pointers x and y returned in rax and rdx, in x32-abi.
9325   return result;
9326 }
9327 #else
9328 typedef uint64_t ObjectPair;
9329 static inline ObjectPair MakePair(Object* x, Object* y) {
9330 #if defined(V8_TARGET_LITTLE_ENDIAN)
9331   return reinterpret_cast<uint32_t>(x) |
9332       (reinterpret_cast<ObjectPair>(y) << 32);
9333 #elif defined(V8_TARGET_BIG_ENDIAN)
9334     return reinterpret_cast<uint32_t>(y) |
9335         (reinterpret_cast<ObjectPair>(x) << 32);
9336 #else
9337 #error Unknown endianness
9338 #endif
9339 }
9340 #endif
9341
9342
9343 static Object* ComputeReceiverForNonGlobal(Isolate* isolate,
9344                                            JSObject* holder) {
9345   DCHECK(!holder->IsGlobalObject());
9346   Context* top = isolate->context();
9347   // Get the context extension function.
9348   JSFunction* context_extension_function =
9349       top->native_context()->context_extension_function();
9350   // If the holder isn't a context extension object, we just return it
9351   // as the receiver. This allows arguments objects to be used as
9352   // receivers, but only if they are put in the context scope chain
9353   // explicitly via a with-statement.
9354   Object* constructor = holder->map()->constructor();
9355   if (constructor != context_extension_function) return holder;
9356   // Fall back to using the global object as the implicit receiver if
9357   // the property turns out to be a local variable allocated in a
9358   // context extension object - introduced via eval.
9359   return isolate->heap()->undefined_value();
9360 }
9361
9362
9363 static ObjectPair LoadLookupSlotHelper(Arguments args, Isolate* isolate,
9364                                        bool throw_error) {
9365   HandleScope scope(isolate);
9366   DCHECK_EQ(2, args.length());
9367
9368   if (!args[0]->IsContext() || !args[1]->IsString()) {
9369     return MakePair(isolate->ThrowIllegalOperation(), NULL);
9370   }
9371   Handle<Context> context = args.at<Context>(0);
9372   Handle<String> name = args.at<String>(1);
9373
9374   int index;
9375   PropertyAttributes attributes;
9376   ContextLookupFlags flags = FOLLOW_CHAINS;
9377   BindingFlags binding_flags;
9378   Handle<Object> holder = context->Lookup(name,
9379                                           flags,
9380                                           &index,
9381                                           &attributes,
9382                                           &binding_flags);
9383   if (isolate->has_pending_exception()) {
9384     return MakePair(isolate->heap()->exception(), NULL);
9385   }
9386
9387   // If the index is non-negative, the slot has been found in a context.
9388   if (index >= 0) {
9389     DCHECK(holder->IsContext());
9390     // If the "property" we were looking for is a local variable, the
9391     // receiver is the global object; see ECMA-262, 3rd., 10.1.6 and 10.2.3.
9392     Handle<Object> receiver = isolate->factory()->undefined_value();
9393     Object* value = Context::cast(*holder)->get(index);
9394     // Check for uninitialized bindings.
9395     switch (binding_flags) {
9396       case MUTABLE_CHECK_INITIALIZED:
9397       case IMMUTABLE_CHECK_INITIALIZED_HARMONY:
9398         if (value->IsTheHole()) {
9399           Handle<Object> error;
9400           MaybeHandle<Object> maybe_error =
9401               isolate->factory()->NewReferenceError("not_defined",
9402                                                     HandleVector(&name, 1));
9403           if (maybe_error.ToHandle(&error)) isolate->Throw(*error);
9404           return MakePair(isolate->heap()->exception(), NULL);
9405         }
9406         // FALLTHROUGH
9407       case MUTABLE_IS_INITIALIZED:
9408       case IMMUTABLE_IS_INITIALIZED:
9409       case IMMUTABLE_IS_INITIALIZED_HARMONY:
9410         DCHECK(!value->IsTheHole());
9411         return MakePair(value, *receiver);
9412       case IMMUTABLE_CHECK_INITIALIZED:
9413         if (value->IsTheHole()) {
9414           DCHECK((attributes & READ_ONLY) != 0);
9415           value = isolate->heap()->undefined_value();
9416         }
9417         return MakePair(value, *receiver);
9418       case MISSING_BINDING:
9419         UNREACHABLE();
9420         return MakePair(NULL, NULL);
9421     }
9422   }
9423
9424   // Otherwise, if the slot was found the holder is a context extension
9425   // object, subject of a with, or a global object.  We read the named
9426   // property from it.
9427   if (!holder.is_null()) {
9428     Handle<JSReceiver> object = Handle<JSReceiver>::cast(holder);
9429 #ifdef DEBUG
9430     if (!object->IsJSProxy()) {
9431       Maybe<bool> maybe = JSReceiver::HasProperty(object, name);
9432       DCHECK(maybe.has_value);
9433       DCHECK(maybe.value);
9434     }
9435 #endif
9436     // GetProperty below can cause GC.
9437     Handle<Object> receiver_handle(
9438         object->IsGlobalObject()
9439             ? Object::cast(isolate->heap()->undefined_value())
9440             : object->IsJSProxy() ? static_cast<Object*>(*object)
9441                 : ComputeReceiverForNonGlobal(isolate, JSObject::cast(*object)),
9442         isolate);
9443
9444     // No need to unhole the value here.  This is taken care of by the
9445     // GetProperty function.
9446     Handle<Object> value;
9447     ASSIGN_RETURN_ON_EXCEPTION_VALUE(
9448         isolate, value,
9449         Object::GetProperty(object, name),
9450         MakePair(isolate->heap()->exception(), NULL));
9451     return MakePair(*value, *receiver_handle);
9452   }
9453
9454   if (throw_error) {
9455     // The property doesn't exist - throw exception.
9456     Handle<Object> error;
9457     MaybeHandle<Object> maybe_error = isolate->factory()->NewReferenceError(
9458         "not_defined", HandleVector(&name, 1));
9459     if (maybe_error.ToHandle(&error)) isolate->Throw(*error);
9460     return MakePair(isolate->heap()->exception(), NULL);
9461   } else {
9462     // The property doesn't exist - return undefined.
9463     return MakePair(isolate->heap()->undefined_value(),
9464                     isolate->heap()->undefined_value());
9465   }
9466 }
9467
9468
9469 RUNTIME_FUNCTION_RETURN_PAIR(Runtime_LoadLookupSlot) {
9470   return LoadLookupSlotHelper(args, isolate, true);
9471 }
9472
9473
9474 RUNTIME_FUNCTION_RETURN_PAIR(Runtime_LoadLookupSlotNoReferenceError) {
9475   return LoadLookupSlotHelper(args, isolate, false);
9476 }
9477
9478
9479 RUNTIME_FUNCTION(Runtime_StoreLookupSlot) {
9480   HandleScope scope(isolate);
9481   DCHECK(args.length() == 4);
9482
9483   CONVERT_ARG_HANDLE_CHECKED(Object, value, 0);
9484   CONVERT_ARG_HANDLE_CHECKED(Context, context, 1);
9485   CONVERT_ARG_HANDLE_CHECKED(String, name, 2);
9486   CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 3);
9487
9488   int index;
9489   PropertyAttributes attributes;
9490   ContextLookupFlags flags = FOLLOW_CHAINS;
9491   BindingFlags binding_flags;
9492   Handle<Object> holder = context->Lookup(name,
9493                                           flags,
9494                                           &index,
9495                                           &attributes,
9496                                           &binding_flags);
9497   // In case of JSProxy, an exception might have been thrown.
9498   if (isolate->has_pending_exception()) return isolate->heap()->exception();
9499
9500   // The property was found in a context slot.
9501   if (index >= 0) {
9502     if ((attributes & READ_ONLY) == 0) {
9503       Handle<Context>::cast(holder)->set(index, *value);
9504     } else if (strict_mode == STRICT) {
9505       // Setting read only property in strict mode.
9506       THROW_NEW_ERROR_RETURN_FAILURE(
9507           isolate,
9508           NewTypeError("strict_cannot_assign", HandleVector(&name, 1)));
9509     }
9510     return *value;
9511   }
9512
9513   // Slow case: The property is not in a context slot.  It is either in a
9514   // context extension object, a property of the subject of a with, or a
9515   // property of the global object.
9516   Handle<JSReceiver> object;
9517   if (attributes != ABSENT) {
9518     // The property exists on the holder.
9519     object = Handle<JSReceiver>::cast(holder);
9520   } else if (strict_mode == STRICT) {
9521     // If absent in strict mode: throw.
9522     THROW_NEW_ERROR_RETURN_FAILURE(
9523         isolate, NewReferenceError("not_defined", HandleVector(&name, 1)));
9524   } else {
9525     // If absent in sloppy mode: add the property to the global object.
9526     object = Handle<JSReceiver>(context->global_object());
9527   }
9528
9529   RETURN_FAILURE_ON_EXCEPTION(
9530       isolate, Object::SetProperty(object, name, value, strict_mode));
9531
9532   return *value;
9533 }
9534
9535
9536 RUNTIME_FUNCTION(Runtime_Throw) {
9537   HandleScope scope(isolate);
9538   DCHECK(args.length() == 1);
9539
9540   return isolate->Throw(args[0]);
9541 }
9542
9543
9544 RUNTIME_FUNCTION(Runtime_ReThrow) {
9545   HandleScope scope(isolate);
9546   DCHECK(args.length() == 1);
9547
9548   return isolate->ReThrow(args[0]);
9549 }
9550
9551
9552 RUNTIME_FUNCTION(Runtime_PromoteScheduledException) {
9553   SealHandleScope shs(isolate);
9554   DCHECK(args.length() == 0);
9555   return isolate->PromoteScheduledException();
9556 }
9557
9558
9559 RUNTIME_FUNCTION(Runtime_ThrowReferenceError) {
9560   HandleScope scope(isolate);
9561   DCHECK(args.length() == 1);
9562   CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
9563   THROW_NEW_ERROR_RETURN_FAILURE(
9564       isolate, NewReferenceError("not_defined", HandleVector(&name, 1)));
9565 }
9566
9567
9568 RUNTIME_FUNCTION(Runtime_ThrowNonMethodError) {
9569   HandleScope scope(isolate);
9570   DCHECK(args.length() == 0);
9571   THROW_NEW_ERROR_RETURN_FAILURE(
9572       isolate, NewReferenceError("non_method", HandleVector<Object>(NULL, 0)));
9573 }
9574
9575
9576 RUNTIME_FUNCTION(Runtime_ThrowUnsupportedSuperError) {
9577   HandleScope scope(isolate);
9578   DCHECK(args.length() == 0);
9579   THROW_NEW_ERROR_RETURN_FAILURE(
9580       isolate,
9581       NewReferenceError("unsupported_super", HandleVector<Object>(NULL, 0)));
9582 }
9583
9584
9585 RUNTIME_FUNCTION(Runtime_ThrowNotDateError) {
9586   HandleScope scope(isolate);
9587   DCHECK(args.length() == 0);
9588   THROW_NEW_ERROR_RETURN_FAILURE(
9589       isolate, NewTypeError("not_date_object", HandleVector<Object>(NULL, 0)));
9590 }
9591
9592
9593 RUNTIME_FUNCTION(Runtime_StackGuard) {
9594   SealHandleScope shs(isolate);
9595   DCHECK(args.length() == 0);
9596
9597   // First check if this is a real stack overflow.
9598   StackLimitCheck check(isolate);
9599   if (check.JsHasOverflowed()) {
9600     return isolate->StackOverflow();
9601   }
9602
9603   return isolate->stack_guard()->HandleInterrupts();
9604 }
9605
9606
9607 RUNTIME_FUNCTION(Runtime_TryInstallOptimizedCode) {
9608   HandleScope scope(isolate);
9609   DCHECK(args.length() == 1);
9610   CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
9611
9612   // First check if this is a real stack overflow.
9613   StackLimitCheck check(isolate);
9614   if (check.JsHasOverflowed()) {
9615     SealHandleScope shs(isolate);
9616     return isolate->StackOverflow();
9617   }
9618
9619   isolate->optimizing_compiler_thread()->InstallOptimizedFunctions();
9620   return (function->IsOptimized()) ? function->code()
9621                                    : function->shared()->code();
9622 }
9623
9624
9625 RUNTIME_FUNCTION(Runtime_Interrupt) {
9626   SealHandleScope shs(isolate);
9627   DCHECK(args.length() == 0);
9628   return isolate->stack_guard()->HandleInterrupts();
9629 }
9630
9631
9632 static int StackSize(Isolate* isolate) {
9633   int n = 0;
9634   for (JavaScriptFrameIterator it(isolate); !it.done(); it.Advance()) n++;
9635   return n;
9636 }
9637
9638
9639 static void PrintTransition(Isolate* isolate, Object* result) {
9640   // indentation
9641   { const int nmax = 80;
9642     int n = StackSize(isolate);
9643     if (n <= nmax)
9644       PrintF("%4d:%*s", n, n, "");
9645     else
9646       PrintF("%4d:%*s", n, nmax, "...");
9647   }
9648
9649   if (result == NULL) {
9650     JavaScriptFrame::PrintTop(isolate, stdout, true, false);
9651     PrintF(" {\n");
9652   } else {
9653     // function result
9654     PrintF("} -> ");
9655     result->ShortPrint();
9656     PrintF("\n");
9657   }
9658 }
9659
9660
9661 RUNTIME_FUNCTION(Runtime_TraceEnter) {
9662   SealHandleScope shs(isolate);
9663   DCHECK(args.length() == 0);
9664   PrintTransition(isolate, NULL);
9665   return isolate->heap()->undefined_value();
9666 }
9667
9668
9669 RUNTIME_FUNCTION(Runtime_TraceExit) {
9670   SealHandleScope shs(isolate);
9671   DCHECK(args.length() == 1);
9672   CONVERT_ARG_CHECKED(Object, obj, 0);
9673   PrintTransition(isolate, obj);
9674   return obj;  // return TOS
9675 }
9676
9677
9678 RUNTIME_FUNCTION(Runtime_DebugPrint) {
9679   SealHandleScope shs(isolate);
9680   DCHECK(args.length() == 1);
9681
9682   OFStream os(stdout);
9683 #ifdef DEBUG
9684   if (args[0]->IsString()) {
9685     // If we have a string, assume it's a code "marker"
9686     // and print some interesting cpu debugging info.
9687     JavaScriptFrameIterator it(isolate);
9688     JavaScriptFrame* frame = it.frame();
9689     os << "fp = " << frame->fp() << ", sp = " << frame->sp()
9690        << ", caller_sp = " << frame->caller_sp() << ": ";
9691   } else {
9692     os << "DebugPrint: ";
9693   }
9694   args[0]->Print(os);
9695   if (args[0]->IsHeapObject()) {
9696     os << "\n";
9697     HeapObject::cast(args[0])->map()->Print(os);
9698   }
9699 #else
9700   // ShortPrint is available in release mode. Print is not.
9701   os << Brief(args[0]);
9702 #endif
9703   os << endl;
9704
9705   return args[0];  // return TOS
9706 }
9707
9708
9709 RUNTIME_FUNCTION(Runtime_DebugTrace) {
9710   SealHandleScope shs(isolate);
9711   DCHECK(args.length() == 0);
9712   isolate->PrintStack(stdout);
9713   return isolate->heap()->undefined_value();
9714 }
9715
9716
9717 RUNTIME_FUNCTION(Runtime_DateCurrentTime) {
9718   HandleScope scope(isolate);
9719   DCHECK(args.length() == 0);
9720   if (FLAG_log_timer_events) LOG(isolate, CurrentTimeEvent());
9721
9722   // According to ECMA-262, section 15.9.1, page 117, the precision of
9723   // the number in a Date object representing a particular instant in
9724   // time is milliseconds. Therefore, we floor the result of getting
9725   // the OS time.
9726   double millis;
9727   if (FLAG_verify_predictable) {
9728     millis = 1388534400000.0;  // Jan 1 2014 00:00:00 GMT+0000
9729     millis += Floor(isolate->heap()->synthetic_time());
9730   } else {
9731     millis = Floor(base::OS::TimeCurrentMillis());
9732   }
9733   return *isolate->factory()->NewNumber(millis);
9734 }
9735
9736
9737 RUNTIME_FUNCTION(Runtime_DateParseString) {
9738   HandleScope scope(isolate);
9739   DCHECK(args.length() == 2);
9740   CONVERT_ARG_HANDLE_CHECKED(String, str, 0);
9741   CONVERT_ARG_HANDLE_CHECKED(JSArray, output, 1);
9742
9743   RUNTIME_ASSERT(output->HasFastElements());
9744   JSObject::EnsureCanContainHeapObjectElements(output);
9745   RUNTIME_ASSERT(output->HasFastObjectElements());
9746   Handle<FixedArray> output_array(FixedArray::cast(output->elements()));
9747   RUNTIME_ASSERT(output_array->length() >= DateParser::OUTPUT_SIZE);
9748
9749   str = String::Flatten(str);
9750   DisallowHeapAllocation no_gc;
9751
9752   bool result;
9753   String::FlatContent str_content = str->GetFlatContent();
9754   if (str_content.IsOneByte()) {
9755     result = DateParser::Parse(str_content.ToOneByteVector(),
9756                                *output_array,
9757                                isolate->unicode_cache());
9758   } else {
9759     DCHECK(str_content.IsTwoByte());
9760     result = DateParser::Parse(str_content.ToUC16Vector(),
9761                                *output_array,
9762                                isolate->unicode_cache());
9763   }
9764
9765   if (result) {
9766     return *output;
9767   } else {
9768     return isolate->heap()->null_value();
9769   }
9770 }
9771
9772
9773 RUNTIME_FUNCTION(Runtime_DateLocalTimezone) {
9774   HandleScope scope(isolate);
9775   DCHECK(args.length() == 1);
9776
9777   CONVERT_DOUBLE_ARG_CHECKED(x, 0);
9778   RUNTIME_ASSERT(x >= -DateCache::kMaxTimeBeforeUTCInMs &&
9779                  x <= DateCache::kMaxTimeBeforeUTCInMs);
9780   const char* zone =
9781       isolate->date_cache()->LocalTimezone(static_cast<int64_t>(x));
9782   Handle<String> result = isolate->factory()->NewStringFromUtf8(
9783       CStrVector(zone)).ToHandleChecked();
9784   return *result;
9785 }
9786
9787
9788 RUNTIME_FUNCTION(Runtime_DateToUTC) {
9789   HandleScope scope(isolate);
9790   DCHECK(args.length() == 1);
9791
9792   CONVERT_DOUBLE_ARG_CHECKED(x, 0);
9793   RUNTIME_ASSERT(x >= -DateCache::kMaxTimeBeforeUTCInMs &&
9794                  x <= DateCache::kMaxTimeBeforeUTCInMs);
9795   int64_t time = isolate->date_cache()->ToUTC(static_cast<int64_t>(x));
9796
9797   return *isolate->factory()->NewNumber(static_cast<double>(time));
9798 }
9799
9800
9801 RUNTIME_FUNCTION(Runtime_DateCacheVersion) {
9802   HandleScope hs(isolate);
9803   DCHECK(args.length() == 0);
9804   if (!isolate->eternal_handles()->Exists(EternalHandles::DATE_CACHE_VERSION)) {
9805     Handle<FixedArray> date_cache_version =
9806         isolate->factory()->NewFixedArray(1, TENURED);
9807     date_cache_version->set(0, Smi::FromInt(0));
9808     isolate->eternal_handles()->CreateSingleton(
9809         isolate, *date_cache_version, EternalHandles::DATE_CACHE_VERSION);
9810   }
9811   Handle<FixedArray> date_cache_version =
9812       Handle<FixedArray>::cast(isolate->eternal_handles()->GetSingleton(
9813           EternalHandles::DATE_CACHE_VERSION));
9814   // Return result as a JS array.
9815   Handle<JSObject> result =
9816       isolate->factory()->NewJSObject(isolate->array_function());
9817   JSArray::SetContent(Handle<JSArray>::cast(result), date_cache_version);
9818   return *result;
9819 }
9820
9821
9822 RUNTIME_FUNCTION(Runtime_GlobalProxy) {
9823   SealHandleScope shs(isolate);
9824   DCHECK(args.length() == 1);
9825   CONVERT_ARG_CHECKED(Object, global, 0);
9826   if (!global->IsJSGlobalObject()) return isolate->heap()->null_value();
9827   return JSGlobalObject::cast(global)->global_proxy();
9828 }
9829
9830
9831 RUNTIME_FUNCTION(Runtime_IsAttachedGlobal) {
9832   SealHandleScope shs(isolate);
9833   DCHECK(args.length() == 1);
9834   CONVERT_ARG_CHECKED(Object, global, 0);
9835   if (!global->IsJSGlobalObject()) return isolate->heap()->false_value();
9836   return isolate->heap()->ToBoolean(
9837       !JSGlobalObject::cast(global)->IsDetached());
9838 }
9839
9840
9841 RUNTIME_FUNCTION(Runtime_ParseJson) {
9842   HandleScope scope(isolate);
9843   DCHECK(args.length() == 1);
9844   CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
9845
9846   source = String::Flatten(source);
9847   // Optimized fast case where we only have Latin1 characters.
9848   Handle<Object> result;
9849   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
9850       isolate, result,
9851       source->IsSeqOneByteString() ? JsonParser<true>::Parse(source)
9852                                    : JsonParser<false>::Parse(source));
9853   return *result;
9854 }
9855
9856
9857 bool CodeGenerationFromStringsAllowed(Isolate* isolate,
9858                                       Handle<Context> context) {
9859   DCHECK(context->allow_code_gen_from_strings()->IsFalse());
9860   // Check with callback if set.
9861   AllowCodeGenerationFromStringsCallback callback =
9862       isolate->allow_code_gen_callback();
9863   if (callback == NULL) {
9864     // No callback set and code generation disallowed.
9865     return false;
9866   } else {
9867     // Callback set. Let it decide if code generation is allowed.
9868     VMState<EXTERNAL> state(isolate);
9869     return callback(v8::Utils::ToLocal(context));
9870   }
9871 }
9872
9873
9874 RUNTIME_FUNCTION(Runtime_CompileString) {
9875   HandleScope scope(isolate);
9876   DCHECK(args.length() == 2);
9877   CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
9878   CONVERT_BOOLEAN_ARG_CHECKED(function_literal_only, 1);
9879
9880   // Extract native context.
9881   Handle<Context> context(isolate->native_context());
9882
9883   // Check if native context allows code generation from
9884   // strings. Throw an exception if it doesn't.
9885   if (context->allow_code_gen_from_strings()->IsFalse() &&
9886       !CodeGenerationFromStringsAllowed(isolate, context)) {
9887     Handle<Object> error_message =
9888         context->ErrorMessageForCodeGenerationFromStrings();
9889     THROW_NEW_ERROR_RETURN_FAILURE(
9890         isolate, NewEvalError("code_gen_from_strings",
9891                               HandleVector<Object>(&error_message, 1)));
9892   }
9893
9894   // Compile source string in the native context.
9895   ParseRestriction restriction = function_literal_only
9896       ? ONLY_SINGLE_FUNCTION_LITERAL : NO_PARSE_RESTRICTION;
9897   Handle<JSFunction> fun;
9898   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
9899       isolate, fun,
9900       Compiler::GetFunctionFromEval(
9901           source, context, SLOPPY, restriction, RelocInfo::kNoPosition));
9902   return *fun;
9903 }
9904
9905
9906 static ObjectPair CompileGlobalEval(Isolate* isolate,
9907                                     Handle<String> source,
9908                                     Handle<Object> receiver,
9909                                     StrictMode strict_mode,
9910                                     int scope_position) {
9911   Handle<Context> context = Handle<Context>(isolate->context());
9912   Handle<Context> native_context = Handle<Context>(context->native_context());
9913
9914   // Check if native context allows code generation from
9915   // strings. Throw an exception if it doesn't.
9916   if (native_context->allow_code_gen_from_strings()->IsFalse() &&
9917       !CodeGenerationFromStringsAllowed(isolate, native_context)) {
9918     Handle<Object> error_message =
9919         native_context->ErrorMessageForCodeGenerationFromStrings();
9920     Handle<Object> error;
9921     MaybeHandle<Object> maybe_error = isolate->factory()->NewEvalError(
9922         "code_gen_from_strings", HandleVector<Object>(&error_message, 1));
9923     if (maybe_error.ToHandle(&error)) isolate->Throw(*error);
9924     return MakePair(isolate->heap()->exception(), NULL);
9925   }
9926
9927   // Deal with a normal eval call with a string argument. Compile it
9928   // and return the compiled function bound in the local context.
9929   static const ParseRestriction restriction = NO_PARSE_RESTRICTION;
9930   Handle<JSFunction> compiled;
9931   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
9932       isolate, compiled,
9933       Compiler::GetFunctionFromEval(
9934           source, context, strict_mode, restriction, scope_position),
9935       MakePair(isolate->heap()->exception(), NULL));
9936   return MakePair(*compiled, *receiver);
9937 }
9938
9939
9940 RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ResolvePossiblyDirectEval) {
9941   HandleScope scope(isolate);
9942   DCHECK(args.length() == 5);
9943
9944   Handle<Object> callee = args.at<Object>(0);
9945
9946   // If "eval" didn't refer to the original GlobalEval, it's not a
9947   // direct call to eval.
9948   // (And even if it is, but the first argument isn't a string, just let
9949   // execution default to an indirect call to eval, which will also return
9950   // the first argument without doing anything).
9951   if (*callee != isolate->native_context()->global_eval_fun() ||
9952       !args[1]->IsString()) {
9953     return MakePair(*callee, isolate->heap()->undefined_value());
9954   }
9955
9956   DCHECK(args[3]->IsSmi());
9957   DCHECK(args.smi_at(3) == SLOPPY || args.smi_at(3) == STRICT);
9958   StrictMode strict_mode = static_cast<StrictMode>(args.smi_at(3));
9959   DCHECK(args[4]->IsSmi());
9960   return CompileGlobalEval(isolate,
9961                            args.at<String>(1),
9962                            args.at<Object>(2),
9963                            strict_mode,
9964                            args.smi_at(4));
9965 }
9966
9967
9968 RUNTIME_FUNCTION(Runtime_AllocateInNewSpace) {
9969   HandleScope scope(isolate);
9970   DCHECK(args.length() == 1);
9971   CONVERT_SMI_ARG_CHECKED(size, 0);
9972   RUNTIME_ASSERT(IsAligned(size, kPointerSize));
9973   RUNTIME_ASSERT(size > 0);
9974   RUNTIME_ASSERT(size <= Page::kMaxRegularHeapObjectSize);
9975   return *isolate->factory()->NewFillerObject(size, false, NEW_SPACE);
9976 }
9977
9978
9979 RUNTIME_FUNCTION(Runtime_AllocateInTargetSpace) {
9980   HandleScope scope(isolate);
9981   DCHECK(args.length() == 2);
9982   CONVERT_SMI_ARG_CHECKED(size, 0);
9983   CONVERT_SMI_ARG_CHECKED(flags, 1);
9984   RUNTIME_ASSERT(IsAligned(size, kPointerSize));
9985   RUNTIME_ASSERT(size > 0);
9986   RUNTIME_ASSERT(size <= Page::kMaxRegularHeapObjectSize);
9987   bool double_align = AllocateDoubleAlignFlag::decode(flags);
9988   AllocationSpace space = AllocateTargetSpace::decode(flags);
9989   return *isolate->factory()->NewFillerObject(size, double_align, space);
9990 }
9991
9992
9993 // Push an object unto an array of objects if it is not already in the
9994 // array.  Returns true if the element was pushed on the stack and
9995 // false otherwise.
9996 RUNTIME_FUNCTION(Runtime_PushIfAbsent) {
9997   HandleScope scope(isolate);
9998   DCHECK(args.length() == 2);
9999   CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
10000   CONVERT_ARG_HANDLE_CHECKED(JSReceiver, element, 1);
10001   RUNTIME_ASSERT(array->HasFastSmiOrObjectElements());
10002   int length = Smi::cast(array->length())->value();
10003   FixedArray* elements = FixedArray::cast(array->elements());
10004   for (int i = 0; i < length; i++) {
10005     if (elements->get(i) == *element) return isolate->heap()->false_value();
10006   }
10007
10008   // Strict not needed. Used for cycle detection in Array join implementation.
10009   RETURN_FAILURE_ON_EXCEPTION(
10010       isolate,
10011       JSObject::SetFastElement(array, length, element, SLOPPY, true));
10012   return isolate->heap()->true_value();
10013 }
10014
10015
10016 /**
10017  * A simple visitor visits every element of Array's.
10018  * The backend storage can be a fixed array for fast elements case,
10019  * or a dictionary for sparse array. Since Dictionary is a subtype
10020  * of FixedArray, the class can be used by both fast and slow cases.
10021  * The second parameter of the constructor, fast_elements, specifies
10022  * whether the storage is a FixedArray or Dictionary.
10023  *
10024  * An index limit is used to deal with the situation that a result array
10025  * length overflows 32-bit non-negative integer.
10026  */
10027 class ArrayConcatVisitor {
10028  public:
10029   ArrayConcatVisitor(Isolate* isolate,
10030                      Handle<FixedArray> storage,
10031                      bool fast_elements) :
10032       isolate_(isolate),
10033       storage_(Handle<FixedArray>::cast(
10034           isolate->global_handles()->Create(*storage))),
10035       index_offset_(0u),
10036       fast_elements_(fast_elements),
10037       exceeds_array_limit_(false) { }
10038
10039   ~ArrayConcatVisitor() {
10040     clear_storage();
10041   }
10042
10043   void visit(uint32_t i, Handle<Object> elm) {
10044     if (i > JSObject::kMaxElementCount - index_offset_) {
10045       exceeds_array_limit_ = true;
10046       return;
10047     }
10048     uint32_t index = index_offset_ + i;
10049
10050     if (fast_elements_) {
10051       if (index < static_cast<uint32_t>(storage_->length())) {
10052         storage_->set(index, *elm);
10053         return;
10054       }
10055       // Our initial estimate of length was foiled, possibly by
10056       // getters on the arrays increasing the length of later arrays
10057       // during iteration.
10058       // This shouldn't happen in anything but pathological cases.
10059       SetDictionaryMode();
10060       // Fall-through to dictionary mode.
10061     }
10062     DCHECK(!fast_elements_);
10063     Handle<SeededNumberDictionary> dict(
10064         SeededNumberDictionary::cast(*storage_));
10065     Handle<SeededNumberDictionary> result =
10066         SeededNumberDictionary::AtNumberPut(dict, index, elm);
10067     if (!result.is_identical_to(dict)) {
10068       // Dictionary needed to grow.
10069       clear_storage();
10070       set_storage(*result);
10071     }
10072   }
10073
10074   void increase_index_offset(uint32_t delta) {
10075     if (JSObject::kMaxElementCount - index_offset_ < delta) {
10076       index_offset_ = JSObject::kMaxElementCount;
10077     } else {
10078       index_offset_ += delta;
10079     }
10080     // If the initial length estimate was off (see special case in visit()),
10081     // but the array blowing the limit didn't contain elements beyond the
10082     // provided-for index range, go to dictionary mode now.
10083     if (fast_elements_ &&
10084         index_offset_ >
10085             static_cast<uint32_t>(FixedArrayBase::cast(*storage_)->length())) {
10086       SetDictionaryMode();
10087     }
10088   }
10089
10090   bool exceeds_array_limit() {
10091     return exceeds_array_limit_;
10092   }
10093
10094   Handle<JSArray> ToArray() {
10095     Handle<JSArray> array = isolate_->factory()->NewJSArray(0);
10096     Handle<Object> length =
10097         isolate_->factory()->NewNumber(static_cast<double>(index_offset_));
10098     Handle<Map> map = JSObject::GetElementsTransitionMap(
10099         array,
10100         fast_elements_ ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS);
10101     array->set_map(*map);
10102     array->set_length(*length);
10103     array->set_elements(*storage_);
10104     return array;
10105   }
10106
10107  private:
10108   // Convert storage to dictionary mode.
10109   void SetDictionaryMode() {
10110     DCHECK(fast_elements_);
10111     Handle<FixedArray> current_storage(*storage_);
10112     Handle<SeededNumberDictionary> slow_storage(
10113         SeededNumberDictionary::New(isolate_, current_storage->length()));
10114     uint32_t current_length = static_cast<uint32_t>(current_storage->length());
10115     for (uint32_t i = 0; i < current_length; i++) {
10116       HandleScope loop_scope(isolate_);
10117       Handle<Object> element(current_storage->get(i), isolate_);
10118       if (!element->IsTheHole()) {
10119         Handle<SeededNumberDictionary> new_storage =
10120             SeededNumberDictionary::AtNumberPut(slow_storage, i, element);
10121         if (!new_storage.is_identical_to(slow_storage)) {
10122           slow_storage = loop_scope.CloseAndEscape(new_storage);
10123         }
10124       }
10125     }
10126     clear_storage();
10127     set_storage(*slow_storage);
10128     fast_elements_ = false;
10129   }
10130
10131   inline void clear_storage() {
10132     GlobalHandles::Destroy(Handle<Object>::cast(storage_).location());
10133   }
10134
10135   inline void set_storage(FixedArray* storage) {
10136     storage_ = Handle<FixedArray>::cast(
10137         isolate_->global_handles()->Create(storage));
10138   }
10139
10140   Isolate* isolate_;
10141   Handle<FixedArray> storage_;  // Always a global handle.
10142   // Index after last seen index. Always less than or equal to
10143   // JSObject::kMaxElementCount.
10144   uint32_t index_offset_;
10145   bool fast_elements_ : 1;
10146   bool exceeds_array_limit_ : 1;
10147 };
10148
10149
10150 static uint32_t EstimateElementCount(Handle<JSArray> array) {
10151   uint32_t length = static_cast<uint32_t>(array->length()->Number());
10152   int element_count = 0;
10153   switch (array->GetElementsKind()) {
10154     case FAST_SMI_ELEMENTS:
10155     case FAST_HOLEY_SMI_ELEMENTS:
10156     case FAST_ELEMENTS:
10157     case FAST_HOLEY_ELEMENTS: {
10158       // Fast elements can't have lengths that are not representable by
10159       // a 32-bit signed integer.
10160       DCHECK(static_cast<int32_t>(FixedArray::kMaxLength) >= 0);
10161       int fast_length = static_cast<int>(length);
10162       Handle<FixedArray> elements(FixedArray::cast(array->elements()));
10163       for (int i = 0; i < fast_length; i++) {
10164         if (!elements->get(i)->IsTheHole()) element_count++;
10165       }
10166       break;
10167     }
10168     case FAST_DOUBLE_ELEMENTS:
10169     case FAST_HOLEY_DOUBLE_ELEMENTS: {
10170       // Fast elements can't have lengths that are not representable by
10171       // a 32-bit signed integer.
10172       DCHECK(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0);
10173       int fast_length = static_cast<int>(length);
10174       if (array->elements()->IsFixedArray()) {
10175         DCHECK(FixedArray::cast(array->elements())->length() == 0);
10176         break;
10177       }
10178       Handle<FixedDoubleArray> elements(
10179           FixedDoubleArray::cast(array->elements()));
10180       for (int i = 0; i < fast_length; i++) {
10181         if (!elements->is_the_hole(i)) element_count++;
10182       }
10183       break;
10184     }
10185     case DICTIONARY_ELEMENTS: {
10186       Handle<SeededNumberDictionary> dictionary(
10187           SeededNumberDictionary::cast(array->elements()));
10188       int capacity = dictionary->Capacity();
10189       for (int i = 0; i < capacity; i++) {
10190         Handle<Object> key(dictionary->KeyAt(i), array->GetIsolate());
10191         if (dictionary->IsKey(*key)) {
10192           element_count++;
10193         }
10194       }
10195       break;
10196     }
10197     case SLOPPY_ARGUMENTS_ELEMENTS:
10198 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size)                      \
10199     case EXTERNAL_##TYPE##_ELEMENTS:                                         \
10200     case TYPE##_ELEMENTS:                                                    \
10201
10202     TYPED_ARRAYS(TYPED_ARRAY_CASE)
10203 #undef TYPED_ARRAY_CASE
10204       // External arrays are always dense.
10205       return length;
10206   }
10207   // As an estimate, we assume that the prototype doesn't contain any
10208   // inherited elements.
10209   return element_count;
10210 }
10211
10212
10213
10214 template<class ExternalArrayClass, class ElementType>
10215 static void IterateExternalArrayElements(Isolate* isolate,
10216                                          Handle<JSObject> receiver,
10217                                          bool elements_are_ints,
10218                                          bool elements_are_guaranteed_smis,
10219                                          ArrayConcatVisitor* visitor) {
10220   Handle<ExternalArrayClass> array(
10221       ExternalArrayClass::cast(receiver->elements()));
10222   uint32_t len = static_cast<uint32_t>(array->length());
10223
10224   DCHECK(visitor != NULL);
10225   if (elements_are_ints) {
10226     if (elements_are_guaranteed_smis) {
10227       for (uint32_t j = 0; j < len; j++) {
10228         HandleScope loop_scope(isolate);
10229         Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get_scalar(j))),
10230                       isolate);
10231         visitor->visit(j, e);
10232       }
10233     } else {
10234       for (uint32_t j = 0; j < len; j++) {
10235         HandleScope loop_scope(isolate);
10236         int64_t val = static_cast<int64_t>(array->get_scalar(j));
10237         if (Smi::IsValid(static_cast<intptr_t>(val))) {
10238           Handle<Smi> e(Smi::FromInt(static_cast<int>(val)), isolate);
10239           visitor->visit(j, e);
10240         } else {
10241           Handle<Object> e =
10242               isolate->factory()->NewNumber(static_cast<ElementType>(val));
10243           visitor->visit(j, e);
10244         }
10245       }
10246     }
10247   } else {
10248     for (uint32_t j = 0; j < len; j++) {
10249       HandleScope loop_scope(isolate);
10250       Handle<Object> e = isolate->factory()->NewNumber(array->get_scalar(j));
10251       visitor->visit(j, e);
10252     }
10253   }
10254 }
10255
10256
10257 // Used for sorting indices in a List<uint32_t>.
10258 static int compareUInt32(const uint32_t* ap, const uint32_t* bp) {
10259   uint32_t a = *ap;
10260   uint32_t b = *bp;
10261   return (a == b) ? 0 : (a < b) ? -1 : 1;
10262 }
10263
10264
10265 static void CollectElementIndices(Handle<JSObject> object,
10266                                   uint32_t range,
10267                                   List<uint32_t>* indices) {
10268   Isolate* isolate = object->GetIsolate();
10269   ElementsKind kind = object->GetElementsKind();
10270   switch (kind) {
10271     case FAST_SMI_ELEMENTS:
10272     case FAST_ELEMENTS:
10273     case FAST_HOLEY_SMI_ELEMENTS:
10274     case FAST_HOLEY_ELEMENTS: {
10275       Handle<FixedArray> elements(FixedArray::cast(object->elements()));
10276       uint32_t length = static_cast<uint32_t>(elements->length());
10277       if (range < length) length = range;
10278       for (uint32_t i = 0; i < length; i++) {
10279         if (!elements->get(i)->IsTheHole()) {
10280           indices->Add(i);
10281         }
10282       }
10283       break;
10284     }
10285     case FAST_HOLEY_DOUBLE_ELEMENTS:
10286     case FAST_DOUBLE_ELEMENTS: {
10287       if (object->elements()->IsFixedArray()) {
10288         DCHECK(object->elements()->length() == 0);
10289         break;
10290       }
10291       Handle<FixedDoubleArray> elements(
10292           FixedDoubleArray::cast(object->elements()));
10293       uint32_t length = static_cast<uint32_t>(elements->length());
10294       if (range < length) length = range;
10295       for (uint32_t i = 0; i < length; i++) {
10296         if (!elements->is_the_hole(i)) {
10297           indices->Add(i);
10298         }
10299       }
10300       break;
10301     }
10302     case DICTIONARY_ELEMENTS: {
10303       Handle<SeededNumberDictionary> dict(
10304           SeededNumberDictionary::cast(object->elements()));
10305       uint32_t capacity = dict->Capacity();
10306       for (uint32_t j = 0; j < capacity; j++) {
10307         HandleScope loop_scope(isolate);
10308         Handle<Object> k(dict->KeyAt(j), isolate);
10309         if (dict->IsKey(*k)) {
10310           DCHECK(k->IsNumber());
10311           uint32_t index = static_cast<uint32_t>(k->Number());
10312           if (index < range) {
10313             indices->Add(index);
10314           }
10315         }
10316       }
10317       break;
10318     }
10319 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
10320     case TYPE##_ELEMENTS:                               \
10321     case EXTERNAL_##TYPE##_ELEMENTS:
10322
10323       TYPED_ARRAYS(TYPED_ARRAY_CASE)
10324 #undef TYPED_ARRAY_CASE
10325     {
10326       uint32_t length = static_cast<uint32_t>(
10327           FixedArrayBase::cast(object->elements())->length());
10328       if (range <= length) {
10329         length = range;
10330         // We will add all indices, so we might as well clear it first
10331         // and avoid duplicates.
10332         indices->Clear();
10333       }
10334       for (uint32_t i = 0; i < length; i++) {
10335         indices->Add(i);
10336       }
10337       if (length == range) return;  // All indices accounted for already.
10338       break;
10339     }
10340     case SLOPPY_ARGUMENTS_ELEMENTS: {
10341       MaybeHandle<Object> length_obj =
10342           Object::GetProperty(object, isolate->factory()->length_string());
10343       double length_num = length_obj.ToHandleChecked()->Number();
10344       uint32_t length = static_cast<uint32_t>(DoubleToInt32(length_num));
10345       ElementsAccessor* accessor = object->GetElementsAccessor();
10346       for (uint32_t i = 0; i < length; i++) {
10347         if (accessor->HasElement(object, object, i)) {
10348           indices->Add(i);
10349         }
10350       }
10351       break;
10352     }
10353   }
10354
10355   PrototypeIterator iter(isolate, object);
10356   if (!iter.IsAtEnd()) {
10357     // The prototype will usually have no inherited element indices,
10358     // but we have to check.
10359     CollectElementIndices(
10360         Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), range,
10361         indices);
10362   }
10363 }
10364
10365
10366 /**
10367  * A helper function that visits elements of a JSArray in numerical
10368  * order.
10369  *
10370  * The visitor argument called for each existing element in the array
10371  * with the element index and the element's value.
10372  * Afterwards it increments the base-index of the visitor by the array
10373  * length.
10374  * Returns false if any access threw an exception, otherwise true.
10375  */
10376 static bool IterateElements(Isolate* isolate,
10377                             Handle<JSArray> receiver,
10378                             ArrayConcatVisitor* visitor) {
10379   uint32_t length = static_cast<uint32_t>(receiver->length()->Number());
10380   switch (receiver->GetElementsKind()) {
10381     case FAST_SMI_ELEMENTS:
10382     case FAST_ELEMENTS:
10383     case FAST_HOLEY_SMI_ELEMENTS:
10384     case FAST_HOLEY_ELEMENTS: {
10385       // Run through the elements FixedArray and use HasElement and GetElement
10386       // to check the prototype for missing elements.
10387       Handle<FixedArray> elements(FixedArray::cast(receiver->elements()));
10388       int fast_length = static_cast<int>(length);
10389       DCHECK(fast_length <= elements->length());
10390       for (int j = 0; j < fast_length; j++) {
10391         HandleScope loop_scope(isolate);
10392         Handle<Object> element_value(elements->get(j), isolate);
10393         if (!element_value->IsTheHole()) {
10394           visitor->visit(j, element_value);
10395         } else {
10396           Maybe<bool> maybe = JSReceiver::HasElement(receiver, j);
10397           if (!maybe.has_value) return false;
10398           if (maybe.value) {
10399             // Call GetElement on receiver, not its prototype, or getters won't
10400             // have the correct receiver.
10401             ASSIGN_RETURN_ON_EXCEPTION_VALUE(
10402                 isolate, element_value,
10403                 Object::GetElement(isolate, receiver, j), false);
10404             visitor->visit(j, element_value);
10405           }
10406         }
10407       }
10408       break;
10409     }
10410     case FAST_HOLEY_DOUBLE_ELEMENTS:
10411     case FAST_DOUBLE_ELEMENTS: {
10412       // Empty array is FixedArray but not FixedDoubleArray.
10413       if (length == 0) break;
10414       // Run through the elements FixedArray and use HasElement and GetElement
10415       // to check the prototype for missing elements.
10416       if (receiver->elements()->IsFixedArray()) {
10417         DCHECK(receiver->elements()->length() == 0);
10418         break;
10419       }
10420       Handle<FixedDoubleArray> elements(
10421           FixedDoubleArray::cast(receiver->elements()));
10422       int fast_length = static_cast<int>(length);
10423       DCHECK(fast_length <= elements->length());
10424       for (int j = 0; j < fast_length; j++) {
10425         HandleScope loop_scope(isolate);
10426         if (!elements->is_the_hole(j)) {
10427           double double_value = elements->get_scalar(j);
10428           Handle<Object> element_value =
10429               isolate->factory()->NewNumber(double_value);
10430           visitor->visit(j, element_value);
10431         } else {
10432           Maybe<bool> maybe = JSReceiver::HasElement(receiver, j);
10433           if (!maybe.has_value) return false;
10434           if (maybe.value) {
10435             // Call GetElement on receiver, not its prototype, or getters won't
10436             // have the correct receiver.
10437             Handle<Object> element_value;
10438             ASSIGN_RETURN_ON_EXCEPTION_VALUE(
10439                 isolate, element_value,
10440                 Object::GetElement(isolate, receiver, j), false);
10441             visitor->visit(j, element_value);
10442           }
10443         }
10444       }
10445       break;
10446     }
10447     case DICTIONARY_ELEMENTS: {
10448       Handle<SeededNumberDictionary> dict(receiver->element_dictionary());
10449       List<uint32_t> indices(dict->Capacity() / 2);
10450       // Collect all indices in the object and the prototypes less
10451       // than length. This might introduce duplicates in the indices list.
10452       CollectElementIndices(receiver, length, &indices);
10453       indices.Sort(&compareUInt32);
10454       int j = 0;
10455       int n = indices.length();
10456       while (j < n) {
10457         HandleScope loop_scope(isolate);
10458         uint32_t index = indices[j];
10459         Handle<Object> element;
10460         ASSIGN_RETURN_ON_EXCEPTION_VALUE(
10461             isolate, element,
10462             Object::GetElement(isolate, receiver, index),
10463             false);
10464         visitor->visit(index, element);
10465         // Skip to next different index (i.e., omit duplicates).
10466         do {
10467           j++;
10468         } while (j < n && indices[j] == index);
10469       }
10470       break;
10471     }
10472     case EXTERNAL_UINT8_CLAMPED_ELEMENTS: {
10473       Handle<ExternalUint8ClampedArray> pixels(ExternalUint8ClampedArray::cast(
10474           receiver->elements()));
10475       for (uint32_t j = 0; j < length; j++) {
10476         Handle<Smi> e(Smi::FromInt(pixels->get_scalar(j)), isolate);
10477         visitor->visit(j, e);
10478       }
10479       break;
10480     }
10481     case EXTERNAL_INT8_ELEMENTS: {
10482       IterateExternalArrayElements<ExternalInt8Array, int8_t>(
10483           isolate, receiver, true, true, visitor);
10484       break;
10485     }
10486     case EXTERNAL_UINT8_ELEMENTS: {
10487       IterateExternalArrayElements<ExternalUint8Array, uint8_t>(
10488           isolate, receiver, true, true, visitor);
10489       break;
10490     }
10491     case EXTERNAL_INT16_ELEMENTS: {
10492       IterateExternalArrayElements<ExternalInt16Array, int16_t>(
10493           isolate, receiver, true, true, visitor);
10494       break;
10495     }
10496     case EXTERNAL_UINT16_ELEMENTS: {
10497       IterateExternalArrayElements<ExternalUint16Array, uint16_t>(
10498           isolate, receiver, true, true, visitor);
10499       break;
10500     }
10501     case EXTERNAL_INT32_ELEMENTS: {
10502       IterateExternalArrayElements<ExternalInt32Array, int32_t>(
10503           isolate, receiver, true, false, visitor);
10504       break;
10505     }
10506     case EXTERNAL_UINT32_ELEMENTS: {
10507       IterateExternalArrayElements<ExternalUint32Array, uint32_t>(
10508           isolate, receiver, true, false, visitor);
10509       break;
10510     }
10511     case EXTERNAL_FLOAT32_ELEMENTS: {
10512       IterateExternalArrayElements<ExternalFloat32Array, float>(
10513           isolate, receiver, false, false, visitor);
10514       break;
10515     }
10516     case EXTERNAL_FLOAT64_ELEMENTS: {
10517       IterateExternalArrayElements<ExternalFloat64Array, double>(
10518           isolate, receiver, false, false, visitor);
10519       break;
10520     }
10521     default:
10522       UNREACHABLE();
10523       break;
10524   }
10525   visitor->increase_index_offset(length);
10526   return true;
10527 }
10528
10529
10530 /**
10531  * Array::concat implementation.
10532  * See ECMAScript 262, 15.4.4.4.
10533  * TODO(581): Fix non-compliance for very large concatenations and update to
10534  * following the ECMAScript 5 specification.
10535  */
10536 RUNTIME_FUNCTION(Runtime_ArrayConcat) {
10537   HandleScope handle_scope(isolate);
10538   DCHECK(args.length() == 1);
10539
10540   CONVERT_ARG_HANDLE_CHECKED(JSArray, arguments, 0);
10541   int argument_count = static_cast<int>(arguments->length()->Number());
10542   RUNTIME_ASSERT(arguments->HasFastObjectElements());
10543   Handle<FixedArray> elements(FixedArray::cast(arguments->elements()));
10544
10545   // Pass 1: estimate the length and number of elements of the result.
10546   // The actual length can be larger if any of the arguments have getters
10547   // that mutate other arguments (but will otherwise be precise).
10548   // The number of elements is precise if there are no inherited elements.
10549
10550   ElementsKind kind = FAST_SMI_ELEMENTS;
10551
10552   uint32_t estimate_result_length = 0;
10553   uint32_t estimate_nof_elements = 0;
10554   for (int i = 0; i < argument_count; i++) {
10555     HandleScope loop_scope(isolate);
10556     Handle<Object> obj(elements->get(i), isolate);
10557     uint32_t length_estimate;
10558     uint32_t element_estimate;
10559     if (obj->IsJSArray()) {
10560       Handle<JSArray> array(Handle<JSArray>::cast(obj));
10561       length_estimate = static_cast<uint32_t>(array->length()->Number());
10562       if (length_estimate != 0) {
10563         ElementsKind array_kind =
10564             GetPackedElementsKind(array->map()->elements_kind());
10565         if (IsMoreGeneralElementsKindTransition(kind, array_kind)) {
10566           kind = array_kind;
10567         }
10568       }
10569       element_estimate = EstimateElementCount(array);
10570     } else {
10571       if (obj->IsHeapObject()) {
10572         if (obj->IsNumber()) {
10573           if (IsMoreGeneralElementsKindTransition(kind, FAST_DOUBLE_ELEMENTS)) {
10574             kind = FAST_DOUBLE_ELEMENTS;
10575           }
10576         } else if (IsMoreGeneralElementsKindTransition(kind, FAST_ELEMENTS)) {
10577           kind = FAST_ELEMENTS;
10578         }
10579       }
10580       length_estimate = 1;
10581       element_estimate = 1;
10582     }
10583     // Avoid overflows by capping at kMaxElementCount.
10584     if (JSObject::kMaxElementCount - estimate_result_length <
10585         length_estimate) {
10586       estimate_result_length = JSObject::kMaxElementCount;
10587     } else {
10588       estimate_result_length += length_estimate;
10589     }
10590     if (JSObject::kMaxElementCount - estimate_nof_elements <
10591         element_estimate) {
10592       estimate_nof_elements = JSObject::kMaxElementCount;
10593     } else {
10594       estimate_nof_elements += element_estimate;
10595     }
10596   }
10597
10598   // If estimated number of elements is more than half of length, a
10599   // fixed array (fast case) is more time and space-efficient than a
10600   // dictionary.
10601   bool fast_case = (estimate_nof_elements * 2) >= estimate_result_length;
10602
10603   if (fast_case && kind == FAST_DOUBLE_ELEMENTS) {
10604     Handle<FixedArrayBase> storage =
10605         isolate->factory()->NewFixedDoubleArray(estimate_result_length);
10606     int j = 0;
10607     bool failure = false;
10608     if (estimate_result_length > 0) {
10609       Handle<FixedDoubleArray> double_storage =
10610           Handle<FixedDoubleArray>::cast(storage);
10611       for (int i = 0; i < argument_count; i++) {
10612         Handle<Object> obj(elements->get(i), isolate);
10613         if (obj->IsSmi()) {
10614           double_storage->set(j, Smi::cast(*obj)->value());
10615           j++;
10616         } else if (obj->IsNumber()) {
10617           double_storage->set(j, obj->Number());
10618           j++;
10619         } else {
10620           JSArray* array = JSArray::cast(*obj);
10621           uint32_t length = static_cast<uint32_t>(array->length()->Number());
10622           switch (array->map()->elements_kind()) {
10623             case FAST_HOLEY_DOUBLE_ELEMENTS:
10624             case FAST_DOUBLE_ELEMENTS: {
10625               // Empty array is FixedArray but not FixedDoubleArray.
10626               if (length == 0) break;
10627               FixedDoubleArray* elements =
10628                   FixedDoubleArray::cast(array->elements());
10629               for (uint32_t i = 0; i < length; i++) {
10630                 if (elements->is_the_hole(i)) {
10631                   // TODO(jkummerow/verwaest): We could be a bit more clever
10632                   // here: Check if there are no elements/getters on the
10633                   // prototype chain, and if so, allow creation of a holey
10634                   // result array.
10635                   // Same thing below (holey smi case).
10636                   failure = true;
10637                   break;
10638                 }
10639                 double double_value = elements->get_scalar(i);
10640                 double_storage->set(j, double_value);
10641                 j++;
10642               }
10643               break;
10644             }
10645             case FAST_HOLEY_SMI_ELEMENTS:
10646             case FAST_SMI_ELEMENTS: {
10647               FixedArray* elements(
10648                   FixedArray::cast(array->elements()));
10649               for (uint32_t i = 0; i < length; i++) {
10650                 Object* element = elements->get(i);
10651                 if (element->IsTheHole()) {
10652                   failure = true;
10653                   break;
10654                 }
10655                 int32_t int_value = Smi::cast(element)->value();
10656                 double_storage->set(j, int_value);
10657                 j++;
10658               }
10659               break;
10660             }
10661             case FAST_HOLEY_ELEMENTS:
10662             case FAST_ELEMENTS:
10663               DCHECK_EQ(0, length);
10664               break;
10665             default:
10666               UNREACHABLE();
10667           }
10668         }
10669         if (failure) break;
10670       }
10671     }
10672     if (!failure) {
10673       Handle<JSArray> array = isolate->factory()->NewJSArray(0);
10674       Smi* length = Smi::FromInt(j);
10675       Handle<Map> map;
10676       map = JSObject::GetElementsTransitionMap(array, kind);
10677       array->set_map(*map);
10678       array->set_length(length);
10679       array->set_elements(*storage);
10680       return *array;
10681     }
10682     // In case of failure, fall through.
10683   }
10684
10685   Handle<FixedArray> storage;
10686   if (fast_case) {
10687     // The backing storage array must have non-existing elements to preserve
10688     // holes across concat operations.
10689     storage = isolate->factory()->NewFixedArrayWithHoles(
10690         estimate_result_length);
10691   } else {
10692     // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate
10693     uint32_t at_least_space_for = estimate_nof_elements +
10694                                   (estimate_nof_elements >> 2);
10695     storage = Handle<FixedArray>::cast(
10696         SeededNumberDictionary::New(isolate, at_least_space_for));
10697   }
10698
10699   ArrayConcatVisitor visitor(isolate, storage, fast_case);
10700
10701   for (int i = 0; i < argument_count; i++) {
10702     Handle<Object> obj(elements->get(i), isolate);
10703     if (obj->IsJSArray()) {
10704       Handle<JSArray> array = Handle<JSArray>::cast(obj);
10705       if (!IterateElements(isolate, array, &visitor)) {
10706         return isolate->heap()->exception();
10707       }
10708     } else {
10709       visitor.visit(0, obj);
10710       visitor.increase_index_offset(1);
10711     }
10712   }
10713
10714   if (visitor.exceeds_array_limit()) {
10715     THROW_NEW_ERROR_RETURN_FAILURE(
10716         isolate,
10717         NewRangeError("invalid_array_length", HandleVector<Object>(NULL, 0)));
10718   }
10719   return *visitor.ToArray();
10720 }
10721
10722
10723 // This will not allocate (flatten the string), but it may run
10724 // very slowly for very deeply nested ConsStrings.  For debugging use only.
10725 RUNTIME_FUNCTION(Runtime_GlobalPrint) {
10726   SealHandleScope shs(isolate);
10727   DCHECK(args.length() == 1);
10728
10729   CONVERT_ARG_CHECKED(String, string, 0);
10730   ConsStringIteratorOp op;
10731   StringCharacterStream stream(string, &op);
10732   while (stream.HasMore()) {
10733     uint16_t character = stream.GetNext();
10734     PrintF("%c", character);
10735   }
10736   return string;
10737 }
10738
10739
10740 // Moves all own elements of an object, that are below a limit, to positions
10741 // starting at zero. All undefined values are placed after non-undefined values,
10742 // and are followed by non-existing element. Does not change the length
10743 // property.
10744 // Returns the number of non-undefined elements collected.
10745 // Returns -1 if hole removal is not supported by this method.
10746 RUNTIME_FUNCTION(Runtime_RemoveArrayHoles) {
10747   HandleScope scope(isolate);
10748   DCHECK(args.length() == 2);
10749   CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
10750   CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
10751   return *JSObject::PrepareElementsForSort(object, limit);
10752 }
10753
10754
10755 // Move contents of argument 0 (an array) to argument 1 (an array)
10756 RUNTIME_FUNCTION(Runtime_MoveArrayContents) {
10757   HandleScope scope(isolate);
10758   DCHECK(args.length() == 2);
10759   CONVERT_ARG_HANDLE_CHECKED(JSArray, from, 0);
10760   CONVERT_ARG_HANDLE_CHECKED(JSArray, to, 1);
10761   JSObject::ValidateElements(from);
10762   JSObject::ValidateElements(to);
10763
10764   Handle<FixedArrayBase> new_elements(from->elements());
10765   ElementsKind from_kind = from->GetElementsKind();
10766   Handle<Map> new_map = JSObject::GetElementsTransitionMap(to, from_kind);
10767   JSObject::SetMapAndElements(to, new_map, new_elements);
10768   to->set_length(from->length());
10769
10770   JSObject::ResetElements(from);
10771   from->set_length(Smi::FromInt(0));
10772
10773   JSObject::ValidateElements(to);
10774   return *to;
10775 }
10776
10777
10778 // How many elements does this object/array have?
10779 RUNTIME_FUNCTION(Runtime_EstimateNumberOfElements) {
10780   HandleScope scope(isolate);
10781   DCHECK(args.length() == 1);
10782   CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
10783   Handle<FixedArrayBase> elements(array->elements(), isolate);
10784   SealHandleScope shs(isolate);
10785   if (elements->IsDictionary()) {
10786     int result =
10787         Handle<SeededNumberDictionary>::cast(elements)->NumberOfElements();
10788     return Smi::FromInt(result);
10789   } else {
10790     DCHECK(array->length()->IsSmi());
10791     // For packed elements, we know the exact number of elements
10792     int length = elements->length();
10793     ElementsKind kind = array->GetElementsKind();
10794     if (IsFastPackedElementsKind(kind)) {
10795       return Smi::FromInt(length);
10796     }
10797     // For holey elements, take samples from the buffer checking for holes
10798     // to generate the estimate.
10799     const int kNumberOfHoleCheckSamples = 97;
10800     int increment = (length < kNumberOfHoleCheckSamples)
10801                         ? 1
10802                         : static_cast<int>(length / kNumberOfHoleCheckSamples);
10803     ElementsAccessor* accessor = array->GetElementsAccessor();
10804     int holes = 0;
10805     for (int i = 0; i < length; i += increment) {
10806       if (!accessor->HasElement(array, array, i, elements)) {
10807         ++holes;
10808       }
10809     }
10810     int estimate = static_cast<int>((kNumberOfHoleCheckSamples - holes) /
10811                                     kNumberOfHoleCheckSamples * length);
10812     return Smi::FromInt(estimate);
10813   }
10814 }
10815
10816
10817 // Returns an array that tells you where in the [0, length) interval an array
10818 // might have elements.  Can either return an array of keys (positive integers
10819 // or undefined) or a number representing the positive length of an interval
10820 // starting at index 0.
10821 // Intervals can span over some keys that are not in the object.
10822 RUNTIME_FUNCTION(Runtime_GetArrayKeys) {
10823   HandleScope scope(isolate);
10824   DCHECK(args.length() == 2);
10825   CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0);
10826   CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]);
10827   if (array->elements()->IsDictionary()) {
10828     Handle<FixedArray> keys = isolate->factory()->empty_fixed_array();
10829     for (PrototypeIterator iter(isolate, array,
10830                                 PrototypeIterator::START_AT_RECEIVER);
10831          !iter.IsAtEnd(); iter.Advance()) {
10832       if (PrototypeIterator::GetCurrent(iter)->IsJSProxy() ||
10833           JSObject::cast(*PrototypeIterator::GetCurrent(iter))
10834               ->HasIndexedInterceptor()) {
10835         // Bail out if we find a proxy or interceptor, likely not worth
10836         // collecting keys in that case.
10837         return *isolate->factory()->NewNumberFromUint(length);
10838       }
10839       Handle<JSObject> current =
10840           Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
10841       Handle<FixedArray> current_keys =
10842           isolate->factory()->NewFixedArray(current->NumberOfOwnElements(NONE));
10843       current->GetOwnElementKeys(*current_keys, NONE);
10844       ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
10845           isolate, keys, FixedArray::UnionOfKeys(keys, current_keys));
10846     }
10847     // Erase any keys >= length.
10848     // TODO(adamk): Remove this step when the contract of %GetArrayKeys
10849     // is changed to let this happen on the JS side.
10850     for (int i = 0; i < keys->length(); i++) {
10851       if (NumberToUint32(keys->get(i)) >= length) keys->set_undefined(i);
10852     }
10853     return *isolate->factory()->NewJSArrayWithElements(keys);
10854   } else {
10855     RUNTIME_ASSERT(array->HasFastSmiOrObjectElements() ||
10856                    array->HasFastDoubleElements());
10857     uint32_t actual_length = static_cast<uint32_t>(array->elements()->length());
10858     return *isolate->factory()->NewNumberFromUint(Min(actual_length, length));
10859   }
10860 }
10861
10862
10863 RUNTIME_FUNCTION(Runtime_LookupAccessor) {
10864   HandleScope scope(isolate);
10865   DCHECK(args.length() == 3);
10866   CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0);
10867   CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
10868   CONVERT_SMI_ARG_CHECKED(flag, 2);
10869   AccessorComponent component = flag == 0 ? ACCESSOR_GETTER : ACCESSOR_SETTER;
10870   if (!receiver->IsJSObject()) return isolate->heap()->undefined_value();
10871   Handle<Object> result;
10872   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
10873       isolate, result,
10874       JSObject::GetAccessor(Handle<JSObject>::cast(receiver), name, component));
10875   return *result;
10876 }
10877
10878
10879 RUNTIME_FUNCTION(Runtime_DebugBreak) {
10880   SealHandleScope shs(isolate);
10881   DCHECK(args.length() == 0);
10882   isolate->debug()->HandleDebugBreak();
10883   return isolate->heap()->undefined_value();
10884 }
10885
10886
10887 // Helper functions for wrapping and unwrapping stack frame ids.
10888 static Smi* WrapFrameId(StackFrame::Id id) {
10889   DCHECK(IsAligned(OffsetFrom(id), static_cast<intptr_t>(4)));
10890   return Smi::FromInt(id >> 2);
10891 }
10892
10893
10894 static StackFrame::Id UnwrapFrameId(int wrapped) {
10895   return static_cast<StackFrame::Id>(wrapped << 2);
10896 }
10897
10898
10899 // Adds a JavaScript function as a debug event listener.
10900 // args[0]: debug event listener function to set or null or undefined for
10901 //          clearing the event listener function
10902 // args[1]: object supplied during callback
10903 RUNTIME_FUNCTION(Runtime_SetDebugEventListener) {
10904   SealHandleScope shs(isolate);
10905   DCHECK(args.length() == 2);
10906   RUNTIME_ASSERT(args[0]->IsJSFunction() ||
10907                  args[0]->IsUndefined() ||
10908                  args[0]->IsNull());
10909   CONVERT_ARG_HANDLE_CHECKED(Object, callback, 0);
10910   CONVERT_ARG_HANDLE_CHECKED(Object, data, 1);
10911   isolate->debug()->SetEventListener(callback, data);
10912
10913   return isolate->heap()->undefined_value();
10914 }
10915
10916
10917 RUNTIME_FUNCTION(Runtime_Break) {
10918   SealHandleScope shs(isolate);
10919   DCHECK(args.length() == 0);
10920   isolate->stack_guard()->RequestDebugBreak();
10921   return isolate->heap()->undefined_value();
10922 }
10923
10924
10925 static Handle<Object> DebugGetProperty(LookupIterator* it,
10926                                        bool* has_caught = NULL) {
10927   for (; it->IsFound(); it->Next()) {
10928     switch (it->state()) {
10929       case LookupIterator::NOT_FOUND:
10930       case LookupIterator::TRANSITION:
10931         UNREACHABLE();
10932       case LookupIterator::ACCESS_CHECK:
10933         // Ignore access checks.
10934         break;
10935       case LookupIterator::INTERCEPTOR:
10936       case LookupIterator::JSPROXY:
10937         return it->isolate()->factory()->undefined_value();
10938       case LookupIterator::ACCESSOR: {
10939         Handle<Object> accessors = it->GetAccessors();
10940         if (!accessors->IsAccessorInfo()) {
10941           return it->isolate()->factory()->undefined_value();
10942         }
10943         MaybeHandle<Object> maybe_result = JSObject::GetPropertyWithAccessor(
10944             it->GetReceiver(), it->name(), it->GetHolder<JSObject>(),
10945             accessors);
10946         Handle<Object> result;
10947         if (!maybe_result.ToHandle(&result)) {
10948           result = handle(it->isolate()->pending_exception(), it->isolate());
10949           it->isolate()->clear_pending_exception();
10950           if (has_caught != NULL) *has_caught = true;
10951         }
10952         return result;
10953       }
10954
10955       case LookupIterator::DATA:
10956         return it->GetDataValue();
10957     }
10958   }
10959
10960   return it->isolate()->factory()->undefined_value();
10961 }
10962
10963
10964 // Get debugger related details for an object property, in the following format:
10965 // 0: Property value
10966 // 1: Property details
10967 // 2: Property value is exception
10968 // 3: Getter function if defined
10969 // 4: Setter function if defined
10970 // Items 2-4 are only filled if the property has either a getter or a setter.
10971 RUNTIME_FUNCTION(Runtime_DebugGetPropertyDetails) {
10972   HandleScope scope(isolate);
10973
10974   DCHECK(args.length() == 2);
10975
10976   CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
10977   CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
10978
10979   // Make sure to set the current context to the context before the debugger was
10980   // entered (if the debugger is entered). The reason for switching context here
10981   // is that for some property lookups (accessors and interceptors) callbacks
10982   // into the embedding application can occour, and the embedding application
10983   // could have the assumption that its own native context is the current
10984   // context and not some internal debugger context.
10985   SaveContext save(isolate);
10986   if (isolate->debug()->in_debug_scope()) {
10987     isolate->set_context(*isolate->debug()->debugger_entry()->GetContext());
10988   }
10989
10990   // Check if the name is trivially convertible to an index and get the element
10991   // if so.
10992   uint32_t index;
10993   if (name->AsArrayIndex(&index)) {
10994     Handle<FixedArray> details = isolate->factory()->NewFixedArray(2);
10995     Handle<Object> element_or_char;
10996     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
10997         isolate, element_or_char,
10998         Runtime::GetElementOrCharAt(isolate, obj, index));
10999     details->set(0, *element_or_char);
11000     details->set(
11001         1, PropertyDetails(NONE, NORMAL, Representation::None()).AsSmi());
11002     return *isolate->factory()->NewJSArrayWithElements(details);
11003   }
11004
11005   LookupIterator it(obj, name, LookupIterator::HIDDEN);
11006   bool has_caught = false;
11007   Handle<Object> value = DebugGetProperty(&it, &has_caught);
11008   if (!it.IsFound()) return isolate->heap()->undefined_value();
11009
11010   Handle<Object> maybe_pair;
11011   if (it.state() == LookupIterator::ACCESSOR) {
11012     maybe_pair = it.GetAccessors();
11013   }
11014
11015   // If the callback object is a fixed array then it contains JavaScript
11016   // getter and/or setter.
11017   bool has_js_accessors = !maybe_pair.is_null() && maybe_pair->IsAccessorPair();
11018   Handle<FixedArray> details =
11019       isolate->factory()->NewFixedArray(has_js_accessors ? 6 : 3);
11020   details->set(0, *value);
11021   // TODO(verwaest): Get rid of this random way of handling interceptors.
11022   PropertyDetails d = it.state() == LookupIterator::INTERCEPTOR
11023                           ? PropertyDetails(NONE, NORMAL, 0)
11024                           : it.property_details();
11025   details->set(1, d.AsSmi());
11026   details->set(
11027       2, isolate->heap()->ToBoolean(it.state() == LookupIterator::INTERCEPTOR));
11028   if (has_js_accessors) {
11029     AccessorPair* accessors = AccessorPair::cast(*maybe_pair);
11030     details->set(3, isolate->heap()->ToBoolean(has_caught));
11031     details->set(4, accessors->GetComponent(ACCESSOR_GETTER));
11032     details->set(5, accessors->GetComponent(ACCESSOR_SETTER));
11033   }
11034
11035   return *isolate->factory()->NewJSArrayWithElements(details);
11036 }
11037
11038
11039 RUNTIME_FUNCTION(Runtime_DebugGetProperty) {
11040   HandleScope scope(isolate);
11041
11042   DCHECK(args.length() == 2);
11043
11044   CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
11045   CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
11046
11047   LookupIterator it(obj, name);
11048   return *DebugGetProperty(&it);
11049 }
11050
11051
11052 // Return the property type calculated from the property details.
11053 // args[0]: smi with property details.
11054 RUNTIME_FUNCTION(Runtime_DebugPropertyTypeFromDetails) {
11055   SealHandleScope shs(isolate);
11056   DCHECK(args.length() == 1);
11057   CONVERT_PROPERTY_DETAILS_CHECKED(details, 0);
11058   return Smi::FromInt(static_cast<int>(details.type()));
11059 }
11060
11061
11062 // Return the property attribute calculated from the property details.
11063 // args[0]: smi with property details.
11064 RUNTIME_FUNCTION(Runtime_DebugPropertyAttributesFromDetails) {
11065   SealHandleScope shs(isolate);
11066   DCHECK(args.length() == 1);
11067   CONVERT_PROPERTY_DETAILS_CHECKED(details, 0);
11068   return Smi::FromInt(static_cast<int>(details.attributes()));
11069 }
11070
11071
11072 // Return the property insertion index calculated from the property details.
11073 // args[0]: smi with property details.
11074 RUNTIME_FUNCTION(Runtime_DebugPropertyIndexFromDetails) {
11075   SealHandleScope shs(isolate);
11076   DCHECK(args.length() == 1);
11077   CONVERT_PROPERTY_DETAILS_CHECKED(details, 0);
11078   // TODO(verwaest): Depends on the type of details.
11079   return Smi::FromInt(details.dictionary_index());
11080 }
11081
11082
11083 // Return property value from named interceptor.
11084 // args[0]: object
11085 // args[1]: property name
11086 RUNTIME_FUNCTION(Runtime_DebugNamedInterceptorPropertyValue) {
11087   HandleScope scope(isolate);
11088   DCHECK(args.length() == 2);
11089   CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
11090   RUNTIME_ASSERT(obj->HasNamedInterceptor());
11091   CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
11092
11093   Handle<Object> result;
11094   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
11095       isolate, result, JSObject::GetProperty(obj, name));
11096   return *result;
11097 }
11098
11099
11100 // Return element value from indexed interceptor.
11101 // args[0]: object
11102 // args[1]: index
11103 RUNTIME_FUNCTION(Runtime_DebugIndexedInterceptorElementValue) {
11104   HandleScope scope(isolate);
11105   DCHECK(args.length() == 2);
11106   CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
11107   RUNTIME_ASSERT(obj->HasIndexedInterceptor());
11108   CONVERT_NUMBER_CHECKED(uint32_t, index, Uint32, args[1]);
11109   Handle<Object> result;
11110   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
11111       isolate, result, JSObject::GetElementWithInterceptor(obj, obj, index));
11112   return *result;
11113 }
11114
11115
11116 static bool CheckExecutionState(Isolate* isolate, int break_id) {
11117   return !isolate->debug()->debug_context().is_null() &&
11118          isolate->debug()->break_id() != 0 &&
11119          isolate->debug()->break_id() == break_id;
11120 }
11121
11122
11123 RUNTIME_FUNCTION(Runtime_CheckExecutionState) {
11124   SealHandleScope shs(isolate);
11125   DCHECK(args.length() == 1);
11126   CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
11127   RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
11128   return isolate->heap()->true_value();
11129 }
11130
11131
11132 RUNTIME_FUNCTION(Runtime_GetFrameCount) {
11133   HandleScope scope(isolate);
11134   DCHECK(args.length() == 1);
11135   CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
11136   RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
11137
11138   // Count all frames which are relevant to debugging stack trace.
11139   int n = 0;
11140   StackFrame::Id id = isolate->debug()->break_frame_id();
11141   if (id == StackFrame::NO_ID) {
11142     // If there is no JavaScript stack frame count is 0.
11143     return Smi::FromInt(0);
11144   }
11145
11146   for (JavaScriptFrameIterator it(isolate, id); !it.done(); it.Advance()) {
11147     List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
11148     it.frame()->Summarize(&frames);
11149     for (int i = frames.length() - 1; i >= 0; i--) {
11150       // Omit functions from native scripts.
11151       if (!frames[i].function()->IsFromNativeScript()) n++;
11152     }
11153   }
11154   return Smi::FromInt(n);
11155 }
11156
11157
11158 class FrameInspector {
11159  public:
11160   FrameInspector(JavaScriptFrame* frame,
11161                  int inlined_jsframe_index,
11162                  Isolate* isolate)
11163       : frame_(frame), deoptimized_frame_(NULL), isolate_(isolate) {
11164     // Calculate the deoptimized frame.
11165     if (frame->is_optimized()) {
11166       deoptimized_frame_ = Deoptimizer::DebuggerInspectableFrame(
11167           frame, inlined_jsframe_index, isolate);
11168     }
11169     has_adapted_arguments_ = frame_->has_adapted_arguments();
11170     is_bottommost_ = inlined_jsframe_index == 0;
11171     is_optimized_ = frame_->is_optimized();
11172   }
11173
11174   ~FrameInspector() {
11175     // Get rid of the calculated deoptimized frame if any.
11176     if (deoptimized_frame_ != NULL) {
11177       Deoptimizer::DeleteDebuggerInspectableFrame(deoptimized_frame_,
11178                                                   isolate_);
11179     }
11180   }
11181
11182   int GetParametersCount() {
11183     return is_optimized_
11184         ? deoptimized_frame_->parameters_count()
11185         : frame_->ComputeParametersCount();
11186   }
11187   int expression_count() { return deoptimized_frame_->expression_count(); }
11188   Object* GetFunction() {
11189     return is_optimized_
11190         ? deoptimized_frame_->GetFunction()
11191         : frame_->function();
11192   }
11193   Object* GetParameter(int index) {
11194     return is_optimized_
11195         ? deoptimized_frame_->GetParameter(index)
11196         : frame_->GetParameter(index);
11197   }
11198   Object* GetExpression(int index) {
11199     return is_optimized_
11200         ? deoptimized_frame_->GetExpression(index)
11201         : frame_->GetExpression(index);
11202   }
11203   int GetSourcePosition() {
11204     return is_optimized_
11205         ? deoptimized_frame_->GetSourcePosition()
11206         : frame_->LookupCode()->SourcePosition(frame_->pc());
11207   }
11208   bool IsConstructor() {
11209     return is_optimized_ && !is_bottommost_
11210         ? deoptimized_frame_->HasConstructStub()
11211         : frame_->IsConstructor();
11212   }
11213   Object* GetContext() {
11214     return is_optimized_ ? deoptimized_frame_->GetContext() : frame_->context();
11215   }
11216
11217   // To inspect all the provided arguments the frame might need to be
11218   // replaced with the arguments frame.
11219   void SetArgumentsFrame(JavaScriptFrame* frame) {
11220     DCHECK(has_adapted_arguments_);
11221     frame_ = frame;
11222     is_optimized_ = frame_->is_optimized();
11223     DCHECK(!is_optimized_);
11224   }
11225
11226  private:
11227   JavaScriptFrame* frame_;
11228   DeoptimizedFrameInfo* deoptimized_frame_;
11229   Isolate* isolate_;
11230   bool is_optimized_;
11231   bool is_bottommost_;
11232   bool has_adapted_arguments_;
11233
11234   DISALLOW_COPY_AND_ASSIGN(FrameInspector);
11235 };
11236
11237
11238 static const int kFrameDetailsFrameIdIndex = 0;
11239 static const int kFrameDetailsReceiverIndex = 1;
11240 static const int kFrameDetailsFunctionIndex = 2;
11241 static const int kFrameDetailsArgumentCountIndex = 3;
11242 static const int kFrameDetailsLocalCountIndex = 4;
11243 static const int kFrameDetailsSourcePositionIndex = 5;
11244 static const int kFrameDetailsConstructCallIndex = 6;
11245 static const int kFrameDetailsAtReturnIndex = 7;
11246 static const int kFrameDetailsFlagsIndex = 8;
11247 static const int kFrameDetailsFirstDynamicIndex = 9;
11248
11249
11250 static SaveContext* FindSavedContextForFrame(Isolate* isolate,
11251                                              JavaScriptFrame* frame) {
11252   SaveContext* save = isolate->save_context();
11253   while (save != NULL && !save->IsBelowFrame(frame)) {
11254     save = save->prev();
11255   }
11256   DCHECK(save != NULL);
11257   return save;
11258 }
11259
11260
11261 // Advances the iterator to the frame that matches the index and returns the
11262 // inlined frame index, or -1 if not found.  Skips native JS functions.
11263 static int FindIndexedNonNativeFrame(JavaScriptFrameIterator* it, int index) {
11264   int count = -1;
11265   for (; !it->done(); it->Advance()) {
11266     List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
11267     it->frame()->Summarize(&frames);
11268     for (int i = frames.length() - 1; i >= 0; i--) {
11269       // Omit functions from native scripts.
11270       if (frames[i].function()->IsFromNativeScript()) continue;
11271       if (++count == index) return i;
11272     }
11273   }
11274   return -1;
11275 }
11276
11277
11278 // Return an array with frame details
11279 // args[0]: number: break id
11280 // args[1]: number: frame index
11281 //
11282 // The array returned contains the following information:
11283 // 0: Frame id
11284 // 1: Receiver
11285 // 2: Function
11286 // 3: Argument count
11287 // 4: Local count
11288 // 5: Source position
11289 // 6: Constructor call
11290 // 7: Is at return
11291 // 8: Flags
11292 // Arguments name, value
11293 // Locals name, value
11294 // Return value if any
11295 RUNTIME_FUNCTION(Runtime_GetFrameDetails) {
11296   HandleScope scope(isolate);
11297   DCHECK(args.length() == 2);
11298   CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
11299   RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
11300
11301   CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
11302   Heap* heap = isolate->heap();
11303
11304   // Find the relevant frame with the requested index.
11305   StackFrame::Id id = isolate->debug()->break_frame_id();
11306   if (id == StackFrame::NO_ID) {
11307     // If there are no JavaScript stack frames return undefined.
11308     return heap->undefined_value();
11309   }
11310
11311   JavaScriptFrameIterator it(isolate, id);
11312   // Inlined frame index in optimized frame, starting from outer function.
11313   int inlined_jsframe_index = FindIndexedNonNativeFrame(&it, index);
11314   if (inlined_jsframe_index == -1) return heap->undefined_value();
11315
11316   FrameInspector frame_inspector(it.frame(), inlined_jsframe_index, isolate);
11317   bool is_optimized = it.frame()->is_optimized();
11318
11319   // Traverse the saved contexts chain to find the active context for the
11320   // selected frame.
11321   SaveContext* save = FindSavedContextForFrame(isolate, it.frame());
11322
11323   // Get the frame id.
11324   Handle<Object> frame_id(WrapFrameId(it.frame()->id()), isolate);
11325
11326   // Find source position in unoptimized code.
11327   int position = frame_inspector.GetSourcePosition();
11328
11329   // Check for constructor frame.
11330   bool constructor = frame_inspector.IsConstructor();
11331
11332   // Get scope info and read from it for local variable information.
11333   Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction()));
11334   Handle<SharedFunctionInfo> shared(function->shared());
11335   Handle<ScopeInfo> scope_info(shared->scope_info());
11336   DCHECK(*scope_info != ScopeInfo::Empty(isolate));
11337
11338   // Get the locals names and values into a temporary array.
11339   int local_count = scope_info->LocalCount();
11340   for (int slot = 0; slot < scope_info->LocalCount(); ++slot) {
11341     // Hide compiler-introduced temporary variables, whether on the stack or on
11342     // the context.
11343     if (scope_info->LocalIsSynthetic(slot))
11344       local_count--;
11345   }
11346
11347   Handle<FixedArray> locals =
11348       isolate->factory()->NewFixedArray(local_count * 2);
11349
11350   // Fill in the values of the locals.
11351   int local = 0;
11352   int i = 0;
11353   for (; i < scope_info->StackLocalCount(); ++i) {
11354     // Use the value from the stack.
11355     if (scope_info->LocalIsSynthetic(i))
11356       continue;
11357     locals->set(local * 2, scope_info->LocalName(i));
11358     locals->set(local * 2 + 1, frame_inspector.GetExpression(i));
11359     local++;
11360   }
11361   if (local < local_count) {
11362     // Get the context containing declarations.
11363     Handle<Context> context(
11364         Context::cast(frame_inspector.GetContext())->declaration_context());
11365     for (; i < scope_info->LocalCount(); ++i) {
11366       if (scope_info->LocalIsSynthetic(i))
11367         continue;
11368       Handle<String> name(scope_info->LocalName(i));
11369       VariableMode mode;
11370       InitializationFlag init_flag;
11371       MaybeAssignedFlag maybe_assigned_flag;
11372       locals->set(local * 2, *name);
11373       int context_slot_index = ScopeInfo::ContextSlotIndex(
11374           scope_info, name, &mode, &init_flag, &maybe_assigned_flag);
11375       Object* value = context->get(context_slot_index);
11376       locals->set(local * 2 + 1, value);
11377       local++;
11378     }
11379   }
11380
11381   // Check whether this frame is positioned at return. If not top
11382   // frame or if the frame is optimized it cannot be at a return.
11383   bool at_return = false;
11384   if (!is_optimized && index == 0) {
11385     at_return = isolate->debug()->IsBreakAtReturn(it.frame());
11386   }
11387
11388   // If positioned just before return find the value to be returned and add it
11389   // to the frame information.
11390   Handle<Object> return_value = isolate->factory()->undefined_value();
11391   if (at_return) {
11392     StackFrameIterator it2(isolate);
11393     Address internal_frame_sp = NULL;
11394     while (!it2.done()) {
11395       if (it2.frame()->is_internal()) {
11396         internal_frame_sp = it2.frame()->sp();
11397       } else {
11398         if (it2.frame()->is_java_script()) {
11399           if (it2.frame()->id() == it.frame()->id()) {
11400             // The internal frame just before the JavaScript frame contains the
11401             // value to return on top. A debug break at return will create an
11402             // internal frame to store the return value (eax/rax/r0) before
11403             // entering the debug break exit frame.
11404             if (internal_frame_sp != NULL) {
11405               return_value =
11406                   Handle<Object>(Memory::Object_at(internal_frame_sp),
11407                                  isolate);
11408               break;
11409             }
11410           }
11411         }
11412
11413         // Indicate that the previous frame was not an internal frame.
11414         internal_frame_sp = NULL;
11415       }
11416       it2.Advance();
11417     }
11418   }
11419
11420   // Now advance to the arguments adapter frame (if any). It contains all
11421   // the provided parameters whereas the function frame always have the number
11422   // of arguments matching the functions parameters. The rest of the
11423   // information (except for what is collected above) is the same.
11424   if ((inlined_jsframe_index == 0) && it.frame()->has_adapted_arguments()) {
11425     it.AdvanceToArgumentsFrame();
11426     frame_inspector.SetArgumentsFrame(it.frame());
11427   }
11428
11429   // Find the number of arguments to fill. At least fill the number of
11430   // parameters for the function and fill more if more parameters are provided.
11431   int argument_count = scope_info->ParameterCount();
11432   if (argument_count < frame_inspector.GetParametersCount()) {
11433     argument_count = frame_inspector.GetParametersCount();
11434   }
11435
11436   // Calculate the size of the result.
11437   int details_size = kFrameDetailsFirstDynamicIndex +
11438                      2 * (argument_count + local_count) +
11439                      (at_return ? 1 : 0);
11440   Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size);
11441
11442   // Add the frame id.
11443   details->set(kFrameDetailsFrameIdIndex, *frame_id);
11444
11445   // Add the function (same as in function frame).
11446   details->set(kFrameDetailsFunctionIndex, frame_inspector.GetFunction());
11447
11448   // Add the arguments count.
11449   details->set(kFrameDetailsArgumentCountIndex, Smi::FromInt(argument_count));
11450
11451   // Add the locals count
11452   details->set(kFrameDetailsLocalCountIndex,
11453                Smi::FromInt(local_count));
11454
11455   // Add the source position.
11456   if (position != RelocInfo::kNoPosition) {
11457     details->set(kFrameDetailsSourcePositionIndex, Smi::FromInt(position));
11458   } else {
11459     details->set(kFrameDetailsSourcePositionIndex, heap->undefined_value());
11460   }
11461
11462   // Add the constructor information.
11463   details->set(kFrameDetailsConstructCallIndex, heap->ToBoolean(constructor));
11464
11465   // Add the at return information.
11466   details->set(kFrameDetailsAtReturnIndex, heap->ToBoolean(at_return));
11467
11468   // Add flags to indicate information on whether this frame is
11469   //   bit 0: invoked in the debugger context.
11470   //   bit 1: optimized frame.
11471   //   bit 2: inlined in optimized frame
11472   int flags = 0;
11473   if (*save->context() == *isolate->debug()->debug_context()) {
11474     flags |= 1 << 0;
11475   }
11476   if (is_optimized) {
11477     flags |= 1 << 1;
11478     flags |= inlined_jsframe_index << 2;
11479   }
11480   details->set(kFrameDetailsFlagsIndex, Smi::FromInt(flags));
11481
11482   // Fill the dynamic part.
11483   int details_index = kFrameDetailsFirstDynamicIndex;
11484
11485   // Add arguments name and value.
11486   for (int i = 0; i < argument_count; i++) {
11487     // Name of the argument.
11488     if (i < scope_info->ParameterCount()) {
11489       details->set(details_index++, scope_info->ParameterName(i));
11490     } else {
11491       details->set(details_index++, heap->undefined_value());
11492     }
11493
11494     // Parameter value.
11495     if (i < frame_inspector.GetParametersCount()) {
11496       // Get the value from the stack.
11497       details->set(details_index++, frame_inspector.GetParameter(i));
11498     } else {
11499       details->set(details_index++, heap->undefined_value());
11500     }
11501   }
11502
11503   // Add locals name and value from the temporary copy from the function frame.
11504   for (int i = 0; i < local_count * 2; i++) {
11505     details->set(details_index++, locals->get(i));
11506   }
11507
11508   // Add the value being returned.
11509   if (at_return) {
11510     details->set(details_index++, *return_value);
11511   }
11512
11513   // Add the receiver (same as in function frame).
11514   // THIS MUST BE DONE LAST SINCE WE MIGHT ADVANCE
11515   // THE FRAME ITERATOR TO WRAP THE RECEIVER.
11516   Handle<Object> receiver(it.frame()->receiver(), isolate);
11517   if (!receiver->IsJSObject() &&
11518       shared->strict_mode() == SLOPPY &&
11519       !function->IsBuiltin()) {
11520     // If the receiver is not a JSObject and the function is not a
11521     // builtin or strict-mode we have hit an optimization where a
11522     // value object is not converted into a wrapped JS objects. To
11523     // hide this optimization from the debugger, we wrap the receiver
11524     // by creating correct wrapper object based on the calling frame's
11525     // native context.
11526     it.Advance();
11527     if (receiver->IsUndefined()) {
11528       receiver = handle(function->global_proxy());
11529     } else {
11530       Context* context = Context::cast(it.frame()->context());
11531       Handle<Context> native_context(Context::cast(context->native_context()));
11532       if (!Object::ToObject(isolate, receiver, native_context)
11533                .ToHandle(&receiver)) {
11534         // This only happens if the receiver is forcibly set in %_CallFunction.
11535         return heap->undefined_value();
11536       }
11537     }
11538   }
11539   details->set(kFrameDetailsReceiverIndex, *receiver);
11540
11541   DCHECK_EQ(details_size, details_index);
11542   return *isolate->factory()->NewJSArrayWithElements(details);
11543 }
11544
11545
11546 static bool ParameterIsShadowedByContextLocal(Handle<ScopeInfo> info,
11547                                               Handle<String> parameter_name) {
11548   VariableMode mode;
11549   InitializationFlag init_flag;
11550   MaybeAssignedFlag maybe_assigned_flag;
11551   return ScopeInfo::ContextSlotIndex(info, parameter_name, &mode, &init_flag,
11552                                      &maybe_assigned_flag) != -1;
11553 }
11554
11555
11556 // Create a plain JSObject which materializes the local scope for the specified
11557 // frame.
11558 MUST_USE_RESULT
11559 static MaybeHandle<JSObject> MaterializeStackLocalsWithFrameInspector(
11560     Isolate* isolate,
11561     Handle<JSObject> target,
11562     Handle<JSFunction> function,
11563     FrameInspector* frame_inspector) {
11564   Handle<SharedFunctionInfo> shared(function->shared());
11565   Handle<ScopeInfo> scope_info(shared->scope_info());
11566
11567   // First fill all parameters.
11568   for (int i = 0; i < scope_info->ParameterCount(); ++i) {
11569     // Do not materialize the parameter if it is shadowed by a context local.
11570     Handle<String> name(scope_info->ParameterName(i));
11571     if (ParameterIsShadowedByContextLocal(scope_info, name)) continue;
11572
11573     HandleScope scope(isolate);
11574     Handle<Object> value(i < frame_inspector->GetParametersCount()
11575                              ? frame_inspector->GetParameter(i)
11576                              : isolate->heap()->undefined_value(),
11577                          isolate);
11578     DCHECK(!value->IsTheHole());
11579
11580     RETURN_ON_EXCEPTION(
11581         isolate,
11582         Runtime::SetObjectProperty(isolate, target, name, value, SLOPPY),
11583         JSObject);
11584   }
11585
11586   // Second fill all stack locals.
11587   for (int i = 0; i < scope_info->StackLocalCount(); ++i) {
11588     if (scope_info->LocalIsSynthetic(i)) continue;
11589     Handle<String> name(scope_info->StackLocalName(i));
11590     Handle<Object> value(frame_inspector->GetExpression(i), isolate);
11591     if (value->IsTheHole()) continue;
11592
11593     RETURN_ON_EXCEPTION(
11594         isolate,
11595         Runtime::SetObjectProperty(isolate, target, name, value, SLOPPY),
11596         JSObject);
11597   }
11598
11599   return target;
11600 }
11601
11602
11603 static void UpdateStackLocalsFromMaterializedObject(Isolate* isolate,
11604                                                     Handle<JSObject> target,
11605                                                     Handle<JSFunction> function,
11606                                                     JavaScriptFrame* frame,
11607                                                     int inlined_jsframe_index) {
11608   if (inlined_jsframe_index != 0 || frame->is_optimized()) {
11609     // Optimized frames are not supported.
11610     // TODO(yangguo): make sure all code deoptimized when debugger is active
11611     //                and assert that this cannot happen.
11612     return;
11613   }
11614
11615   Handle<SharedFunctionInfo> shared(function->shared());
11616   Handle<ScopeInfo> scope_info(shared->scope_info());
11617
11618   // Parameters.
11619   for (int i = 0; i < scope_info->ParameterCount(); ++i) {
11620     // Shadowed parameters were not materialized.
11621     Handle<String> name(scope_info->ParameterName(i));
11622     if (ParameterIsShadowedByContextLocal(scope_info, name)) continue;
11623
11624     DCHECK(!frame->GetParameter(i)->IsTheHole());
11625     HandleScope scope(isolate);
11626     Handle<Object> value =
11627         Object::GetPropertyOrElement(target, name).ToHandleChecked();
11628     frame->SetParameterValue(i, *value);
11629   }
11630
11631   // Stack locals.
11632   for (int i = 0; i < scope_info->StackLocalCount(); ++i) {
11633     if (scope_info->LocalIsSynthetic(i)) continue;
11634     if (frame->GetExpression(i)->IsTheHole()) continue;
11635     HandleScope scope(isolate);
11636     Handle<Object> value = Object::GetPropertyOrElement(
11637         target,
11638         handle(scope_info->StackLocalName(i), isolate)).ToHandleChecked();
11639     frame->SetExpression(i, *value);
11640   }
11641 }
11642
11643
11644 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeLocalContext(
11645     Isolate* isolate,
11646     Handle<JSObject> target,
11647     Handle<JSFunction> function,
11648     JavaScriptFrame* frame) {
11649   HandleScope scope(isolate);
11650   Handle<SharedFunctionInfo> shared(function->shared());
11651   Handle<ScopeInfo> scope_info(shared->scope_info());
11652
11653   if (!scope_info->HasContext()) return target;
11654
11655   // Third fill all context locals.
11656   Handle<Context> frame_context(Context::cast(frame->context()));
11657   Handle<Context> function_context(frame_context->declaration_context());
11658   if (!ScopeInfo::CopyContextLocalsToScopeObject(
11659           scope_info, function_context, target)) {
11660     return MaybeHandle<JSObject>();
11661   }
11662
11663   // Finally copy any properties from the function context extension.
11664   // These will be variables introduced by eval.
11665   if (function_context->closure() == *function) {
11666     if (function_context->has_extension() &&
11667         !function_context->IsNativeContext()) {
11668       Handle<JSObject> ext(JSObject::cast(function_context->extension()));
11669       Handle<FixedArray> keys;
11670       ASSIGN_RETURN_ON_EXCEPTION(
11671           isolate, keys,
11672           JSReceiver::GetKeys(ext, JSReceiver::INCLUDE_PROTOS),
11673           JSObject);
11674
11675       for (int i = 0; i < keys->length(); i++) {
11676         // Names of variables introduced by eval are strings.
11677         DCHECK(keys->get(i)->IsString());
11678         Handle<String> key(String::cast(keys->get(i)));
11679         Handle<Object> value;
11680         ASSIGN_RETURN_ON_EXCEPTION(
11681             isolate, value, Object::GetPropertyOrElement(ext, key), JSObject);
11682         RETURN_ON_EXCEPTION(
11683             isolate,
11684             Runtime::SetObjectProperty(isolate, target, key, value, SLOPPY),
11685             JSObject);
11686       }
11687     }
11688   }
11689
11690   return target;
11691 }
11692
11693
11694 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeLocalScope(
11695     Isolate* isolate,
11696     JavaScriptFrame* frame,
11697     int inlined_jsframe_index) {
11698   FrameInspector frame_inspector(frame, inlined_jsframe_index, isolate);
11699   Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction()));
11700
11701   Handle<JSObject> local_scope =
11702       isolate->factory()->NewJSObject(isolate->object_function());
11703   ASSIGN_RETURN_ON_EXCEPTION(
11704       isolate, local_scope,
11705       MaterializeStackLocalsWithFrameInspector(
11706           isolate, local_scope, function, &frame_inspector),
11707       JSObject);
11708
11709   return MaterializeLocalContext(isolate, local_scope, function, frame);
11710 }
11711
11712
11713 // Set the context local variable value.
11714 static bool SetContextLocalValue(Isolate* isolate,
11715                                  Handle<ScopeInfo> scope_info,
11716                                  Handle<Context> context,
11717                                  Handle<String> variable_name,
11718                                  Handle<Object> new_value) {
11719   for (int i = 0; i < scope_info->ContextLocalCount(); i++) {
11720     Handle<String> next_name(scope_info->ContextLocalName(i));
11721     if (String::Equals(variable_name, next_name)) {
11722       VariableMode mode;
11723       InitializationFlag init_flag;
11724       MaybeAssignedFlag maybe_assigned_flag;
11725       int context_index = ScopeInfo::ContextSlotIndex(
11726           scope_info, next_name, &mode, &init_flag, &maybe_assigned_flag);
11727       context->set(context_index, *new_value);
11728       return true;
11729     }
11730   }
11731
11732   return false;
11733 }
11734
11735
11736 static bool SetLocalVariableValue(Isolate* isolate,
11737                                   JavaScriptFrame* frame,
11738                                   int inlined_jsframe_index,
11739                                   Handle<String> variable_name,
11740                                   Handle<Object> new_value) {
11741   if (inlined_jsframe_index != 0 || frame->is_optimized()) {
11742     // Optimized frames are not supported.
11743     return false;
11744   }
11745
11746   Handle<JSFunction> function(frame->function());
11747   Handle<SharedFunctionInfo> shared(function->shared());
11748   Handle<ScopeInfo> scope_info(shared->scope_info());
11749
11750   bool default_result = false;
11751
11752   // Parameters.
11753   for (int i = 0; i < scope_info->ParameterCount(); ++i) {
11754     HandleScope scope(isolate);
11755     if (String::Equals(handle(scope_info->ParameterName(i)), variable_name)) {
11756       frame->SetParameterValue(i, *new_value);
11757       // Argument might be shadowed in heap context, don't stop here.
11758       default_result = true;
11759     }
11760   }
11761
11762   // Stack locals.
11763   for (int i = 0; i < scope_info->StackLocalCount(); ++i) {
11764     HandleScope scope(isolate);
11765     if (String::Equals(handle(scope_info->StackLocalName(i)), variable_name)) {
11766       frame->SetExpression(i, *new_value);
11767       return true;
11768     }
11769   }
11770
11771   if (scope_info->HasContext()) {
11772     // Context locals.
11773     Handle<Context> frame_context(Context::cast(frame->context()));
11774     Handle<Context> function_context(frame_context->declaration_context());
11775     if (SetContextLocalValue(
11776         isolate, scope_info, function_context, variable_name, new_value)) {
11777       return true;
11778     }
11779
11780     // Function context extension. These are variables introduced by eval.
11781     if (function_context->closure() == *function) {
11782       if (function_context->has_extension() &&
11783           !function_context->IsNativeContext()) {
11784         Handle<JSObject> ext(JSObject::cast(function_context->extension()));
11785
11786         Maybe<bool> maybe = JSReceiver::HasProperty(ext, variable_name);
11787         DCHECK(maybe.has_value);
11788         if (maybe.value) {
11789           // We don't expect this to do anything except replacing
11790           // property value.
11791           Runtime::SetObjectProperty(isolate, ext, variable_name, new_value,
11792                                      SLOPPY).Assert();
11793           return true;
11794         }
11795       }
11796     }
11797   }
11798
11799   return default_result;
11800 }
11801
11802
11803 // Create a plain JSObject which materializes the closure content for the
11804 // context.
11805 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeClosure(
11806     Isolate* isolate,
11807     Handle<Context> context) {
11808   DCHECK(context->IsFunctionContext());
11809
11810   Handle<SharedFunctionInfo> shared(context->closure()->shared());
11811   Handle<ScopeInfo> scope_info(shared->scope_info());
11812
11813   // Allocate and initialize a JSObject with all the content of this function
11814   // closure.
11815   Handle<JSObject> closure_scope =
11816       isolate->factory()->NewJSObject(isolate->object_function());
11817
11818   // Fill all context locals to the context extension.
11819   if (!ScopeInfo::CopyContextLocalsToScopeObject(
11820           scope_info, context, closure_scope)) {
11821     return MaybeHandle<JSObject>();
11822   }
11823
11824   // Finally copy any properties from the function context extension. This will
11825   // be variables introduced by eval.
11826   if (context->has_extension()) {
11827     Handle<JSObject> ext(JSObject::cast(context->extension()));
11828     Handle<FixedArray> keys;
11829     ASSIGN_RETURN_ON_EXCEPTION(
11830         isolate, keys,
11831         JSReceiver::GetKeys(ext, JSReceiver::INCLUDE_PROTOS), JSObject);
11832
11833     for (int i = 0; i < keys->length(); i++) {
11834       HandleScope scope(isolate);
11835       // Names of variables introduced by eval are strings.
11836       DCHECK(keys->get(i)->IsString());
11837       Handle<String> key(String::cast(keys->get(i)));
11838       Handle<Object> value;
11839       ASSIGN_RETURN_ON_EXCEPTION(
11840           isolate, value, Object::GetPropertyOrElement(ext, key), JSObject);
11841       RETURN_ON_EXCEPTION(
11842           isolate,
11843           Runtime::DefineObjectProperty(closure_scope, key, value, NONE),
11844           JSObject);
11845     }
11846   }
11847
11848   return closure_scope;
11849 }
11850
11851
11852 // This method copies structure of MaterializeClosure method above.
11853 static bool SetClosureVariableValue(Isolate* isolate,
11854                                     Handle<Context> context,
11855                                     Handle<String> variable_name,
11856                                     Handle<Object> new_value) {
11857   DCHECK(context->IsFunctionContext());
11858
11859   Handle<SharedFunctionInfo> shared(context->closure()->shared());
11860   Handle<ScopeInfo> scope_info(shared->scope_info());
11861
11862   // Context locals to the context extension.
11863   if (SetContextLocalValue(
11864           isolate, scope_info, context, variable_name, new_value)) {
11865     return true;
11866   }
11867
11868   // Properties from the function context extension. This will
11869   // be variables introduced by eval.
11870   if (context->has_extension()) {
11871     Handle<JSObject> ext(JSObject::cast(context->extension()));
11872     Maybe<bool> maybe = JSReceiver::HasProperty(ext, variable_name);
11873     DCHECK(maybe.has_value);
11874     if (maybe.value) {
11875       // We don't expect this to do anything except replacing property value.
11876       Runtime::DefineObjectProperty(
11877           ext, variable_name, new_value, NONE).Assert();
11878       return true;
11879     }
11880   }
11881
11882   return false;
11883 }
11884
11885
11886 // Create a plain JSObject which materializes the scope for the specified
11887 // catch context.
11888 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeCatchScope(
11889     Isolate* isolate,
11890     Handle<Context> context) {
11891   DCHECK(context->IsCatchContext());
11892   Handle<String> name(String::cast(context->extension()));
11893   Handle<Object> thrown_object(context->get(Context::THROWN_OBJECT_INDEX),
11894                                isolate);
11895   Handle<JSObject> catch_scope =
11896       isolate->factory()->NewJSObject(isolate->object_function());
11897   RETURN_ON_EXCEPTION(
11898       isolate,
11899       Runtime::DefineObjectProperty(catch_scope, name, thrown_object, NONE),
11900       JSObject);
11901   return catch_scope;
11902 }
11903
11904
11905 static bool SetCatchVariableValue(Isolate* isolate,
11906                                   Handle<Context> context,
11907                                   Handle<String> variable_name,
11908                                   Handle<Object> new_value) {
11909   DCHECK(context->IsCatchContext());
11910   Handle<String> name(String::cast(context->extension()));
11911   if (!String::Equals(name, variable_name)) {
11912     return false;
11913   }
11914   context->set(Context::THROWN_OBJECT_INDEX, *new_value);
11915   return true;
11916 }
11917
11918
11919 // Create a plain JSObject which materializes the block scope for the specified
11920 // block context.
11921 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeBlockScope(
11922     Isolate* isolate,
11923     Handle<Context> context) {
11924   DCHECK(context->IsBlockContext());
11925   Handle<ScopeInfo> scope_info(ScopeInfo::cast(context->extension()));
11926
11927   // Allocate and initialize a JSObject with all the arguments, stack locals
11928   // heap locals and extension properties of the debugged function.
11929   Handle<JSObject> block_scope =
11930       isolate->factory()->NewJSObject(isolate->object_function());
11931
11932   // Fill all context locals.
11933   if (!ScopeInfo::CopyContextLocalsToScopeObject(
11934           scope_info, context, block_scope)) {
11935     return MaybeHandle<JSObject>();
11936   }
11937
11938   return block_scope;
11939 }
11940
11941
11942 // Create a plain JSObject which materializes the module scope for the specified
11943 // module context.
11944 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeModuleScope(
11945     Isolate* isolate,
11946     Handle<Context> context) {
11947   DCHECK(context->IsModuleContext());
11948   Handle<ScopeInfo> scope_info(ScopeInfo::cast(context->extension()));
11949
11950   // Allocate and initialize a JSObject with all the members of the debugged
11951   // module.
11952   Handle<JSObject> module_scope =
11953       isolate->factory()->NewJSObject(isolate->object_function());
11954
11955   // Fill all context locals.
11956   if (!ScopeInfo::CopyContextLocalsToScopeObject(
11957           scope_info, context, module_scope)) {
11958     return MaybeHandle<JSObject>();
11959   }
11960
11961   return module_scope;
11962 }
11963
11964
11965 // Iterate over the actual scopes visible from a stack frame or from a closure.
11966 // The iteration proceeds from the innermost visible nested scope outwards.
11967 // All scopes are backed by an actual context except the local scope,
11968 // which is inserted "artificially" in the context chain.
11969 class ScopeIterator {
11970  public:
11971   enum ScopeType {
11972     ScopeTypeGlobal = 0,
11973     ScopeTypeLocal,
11974     ScopeTypeWith,
11975     ScopeTypeClosure,
11976     ScopeTypeCatch,
11977     ScopeTypeBlock,
11978     ScopeTypeModule
11979   };
11980
11981   ScopeIterator(Isolate* isolate,
11982                 JavaScriptFrame* frame,
11983                 int inlined_jsframe_index,
11984                 bool ignore_nested_scopes = false)
11985     : isolate_(isolate),
11986       frame_(frame),
11987       inlined_jsframe_index_(inlined_jsframe_index),
11988       function_(frame->function()),
11989       context_(Context::cast(frame->context())),
11990       nested_scope_chain_(4),
11991       failed_(false) {
11992
11993     // Catch the case when the debugger stops in an internal function.
11994     Handle<SharedFunctionInfo> shared_info(function_->shared());
11995     Handle<ScopeInfo> scope_info(shared_info->scope_info());
11996     if (shared_info->script() == isolate->heap()->undefined_value()) {
11997       while (context_->closure() == *function_) {
11998         context_ = Handle<Context>(context_->previous(), isolate_);
11999       }
12000       return;
12001     }
12002
12003     // Get the debug info (create it if it does not exist).
12004     if (!isolate->debug()->EnsureDebugInfo(shared_info, function_)) {
12005       // Return if ensuring debug info failed.
12006       return;
12007     }
12008
12009     // Currently it takes too much time to find nested scopes due to script
12010     // parsing. Sometimes we want to run the ScopeIterator as fast as possible
12011     // (for example, while collecting async call stacks on every
12012     // addEventListener call), even if we drop some nested scopes.
12013     // Later we may optimize getting the nested scopes (cache the result?)
12014     // and include nested scopes into the "fast" iteration case as well.
12015     if (!ignore_nested_scopes) {
12016       Handle<DebugInfo> debug_info = Debug::GetDebugInfo(shared_info);
12017
12018       // Find the break point where execution has stopped.
12019       BreakLocationIterator break_location_iterator(debug_info,
12020                                                     ALL_BREAK_LOCATIONS);
12021       // pc points to the instruction after the current one, possibly a break
12022       // location as well. So the "- 1" to exclude it from the search.
12023       break_location_iterator.FindBreakLocationFromAddress(frame->pc() - 1);
12024
12025       // Within the return sequence at the moment it is not possible to
12026       // get a source position which is consistent with the current scope chain.
12027       // Thus all nested with, catch and block contexts are skipped and we only
12028       // provide the function scope.
12029       ignore_nested_scopes = break_location_iterator.IsExit();
12030     }
12031
12032     if (ignore_nested_scopes) {
12033       if (scope_info->HasContext()) {
12034         context_ = Handle<Context>(context_->declaration_context(), isolate_);
12035       } else {
12036         while (context_->closure() == *function_) {
12037           context_ = Handle<Context>(context_->previous(), isolate_);
12038         }
12039       }
12040       if (scope_info->scope_type() == FUNCTION_SCOPE) {
12041         nested_scope_chain_.Add(scope_info);
12042       }
12043     } else {
12044       // Reparse the code and analyze the scopes.
12045       Handle<Script> script(Script::cast(shared_info->script()));
12046       Scope* scope = NULL;
12047
12048       // Check whether we are in global, eval or function code.
12049       Handle<ScopeInfo> scope_info(shared_info->scope_info());
12050       if (scope_info->scope_type() != FUNCTION_SCOPE) {
12051         // Global or eval code.
12052         CompilationInfoWithZone info(script);
12053         if (scope_info->scope_type() == GLOBAL_SCOPE) {
12054           info.MarkAsGlobal();
12055         } else {
12056           DCHECK(scope_info->scope_type() == EVAL_SCOPE);
12057           info.MarkAsEval();
12058           info.SetContext(Handle<Context>(function_->context()));
12059         }
12060         if (Parser::Parse(&info) && Scope::Analyze(&info)) {
12061           scope = info.function()->scope();
12062         }
12063         RetrieveScopeChain(scope, shared_info);
12064       } else {
12065         // Function code
12066         CompilationInfoWithZone info(shared_info);
12067         if (Parser::Parse(&info) && Scope::Analyze(&info)) {
12068           scope = info.function()->scope();
12069         }
12070         RetrieveScopeChain(scope, shared_info);
12071       }
12072     }
12073   }
12074
12075   ScopeIterator(Isolate* isolate,
12076                 Handle<JSFunction> function)
12077     : isolate_(isolate),
12078       frame_(NULL),
12079       inlined_jsframe_index_(0),
12080       function_(function),
12081       context_(function->context()),
12082       failed_(false) {
12083     if (function->IsBuiltin()) {
12084       context_ = Handle<Context>();
12085     }
12086   }
12087
12088   // More scopes?
12089   bool Done() {
12090     DCHECK(!failed_);
12091     return context_.is_null();
12092   }
12093
12094   bool Failed() { return failed_; }
12095
12096   // Move to the next scope.
12097   void Next() {
12098     DCHECK(!failed_);
12099     ScopeType scope_type = Type();
12100     if (scope_type == ScopeTypeGlobal) {
12101       // The global scope is always the last in the chain.
12102       DCHECK(context_->IsNativeContext());
12103       context_ = Handle<Context>();
12104       return;
12105     }
12106     if (nested_scope_chain_.is_empty()) {
12107       context_ = Handle<Context>(context_->previous(), isolate_);
12108     } else {
12109       if (nested_scope_chain_.last()->HasContext()) {
12110         DCHECK(context_->previous() != NULL);
12111         context_ = Handle<Context>(context_->previous(), isolate_);
12112       }
12113       nested_scope_chain_.RemoveLast();
12114     }
12115   }
12116
12117   // Return the type of the current scope.
12118   ScopeType Type() {
12119     DCHECK(!failed_);
12120     if (!nested_scope_chain_.is_empty()) {
12121       Handle<ScopeInfo> scope_info = nested_scope_chain_.last();
12122       switch (scope_info->scope_type()) {
12123         case FUNCTION_SCOPE:
12124           DCHECK(context_->IsFunctionContext() ||
12125                  !scope_info->HasContext());
12126           return ScopeTypeLocal;
12127         case MODULE_SCOPE:
12128           DCHECK(context_->IsModuleContext());
12129           return ScopeTypeModule;
12130         case GLOBAL_SCOPE:
12131           DCHECK(context_->IsNativeContext());
12132           return ScopeTypeGlobal;
12133         case WITH_SCOPE:
12134           DCHECK(context_->IsWithContext());
12135           return ScopeTypeWith;
12136         case CATCH_SCOPE:
12137           DCHECK(context_->IsCatchContext());
12138           return ScopeTypeCatch;
12139         case BLOCK_SCOPE:
12140           DCHECK(!scope_info->HasContext() ||
12141                  context_->IsBlockContext());
12142           return ScopeTypeBlock;
12143         case EVAL_SCOPE:
12144           UNREACHABLE();
12145       }
12146     }
12147     if (context_->IsNativeContext()) {
12148       DCHECK(context_->global_object()->IsGlobalObject());
12149       return ScopeTypeGlobal;
12150     }
12151     if (context_->IsFunctionContext()) {
12152       return ScopeTypeClosure;
12153     }
12154     if (context_->IsCatchContext()) {
12155       return ScopeTypeCatch;
12156     }
12157     if (context_->IsBlockContext()) {
12158       return ScopeTypeBlock;
12159     }
12160     if (context_->IsModuleContext()) {
12161       return ScopeTypeModule;
12162     }
12163     DCHECK(context_->IsWithContext());
12164     return ScopeTypeWith;
12165   }
12166
12167   // Return the JavaScript object with the content of the current scope.
12168   MaybeHandle<JSObject> ScopeObject() {
12169     DCHECK(!failed_);
12170     switch (Type()) {
12171       case ScopeIterator::ScopeTypeGlobal:
12172         return Handle<JSObject>(CurrentContext()->global_object());
12173       case ScopeIterator::ScopeTypeLocal:
12174         // Materialize the content of the local scope into a JSObject.
12175         DCHECK(nested_scope_chain_.length() == 1);
12176         return MaterializeLocalScope(isolate_, frame_, inlined_jsframe_index_);
12177       case ScopeIterator::ScopeTypeWith:
12178         // Return the with object.
12179         return Handle<JSObject>(JSObject::cast(CurrentContext()->extension()));
12180       case ScopeIterator::ScopeTypeCatch:
12181         return MaterializeCatchScope(isolate_, CurrentContext());
12182       case ScopeIterator::ScopeTypeClosure:
12183         // Materialize the content of the closure scope into a JSObject.
12184         return MaterializeClosure(isolate_, CurrentContext());
12185       case ScopeIterator::ScopeTypeBlock:
12186         return MaterializeBlockScope(isolate_, CurrentContext());
12187       case ScopeIterator::ScopeTypeModule:
12188         return MaterializeModuleScope(isolate_, CurrentContext());
12189     }
12190     UNREACHABLE();
12191     return Handle<JSObject>();
12192   }
12193
12194   bool SetVariableValue(Handle<String> variable_name,
12195                         Handle<Object> new_value) {
12196     DCHECK(!failed_);
12197     switch (Type()) {
12198       case ScopeIterator::ScopeTypeGlobal:
12199         break;
12200       case ScopeIterator::ScopeTypeLocal:
12201         return SetLocalVariableValue(isolate_, frame_, inlined_jsframe_index_,
12202             variable_name, new_value);
12203       case ScopeIterator::ScopeTypeWith:
12204         break;
12205       case ScopeIterator::ScopeTypeCatch:
12206         return SetCatchVariableValue(isolate_, CurrentContext(),
12207             variable_name, new_value);
12208       case ScopeIterator::ScopeTypeClosure:
12209         return SetClosureVariableValue(isolate_, CurrentContext(),
12210             variable_name, new_value);
12211       case ScopeIterator::ScopeTypeBlock:
12212         // TODO(2399): should we implement it?
12213         break;
12214       case ScopeIterator::ScopeTypeModule:
12215         // TODO(2399): should we implement it?
12216         break;
12217     }
12218     return false;
12219   }
12220
12221   Handle<ScopeInfo> CurrentScopeInfo() {
12222     DCHECK(!failed_);
12223     if (!nested_scope_chain_.is_empty()) {
12224       return nested_scope_chain_.last();
12225     } else if (context_->IsBlockContext()) {
12226       return Handle<ScopeInfo>(ScopeInfo::cast(context_->extension()));
12227     } else if (context_->IsFunctionContext()) {
12228       return Handle<ScopeInfo>(context_->closure()->shared()->scope_info());
12229     }
12230     return Handle<ScopeInfo>::null();
12231   }
12232
12233   // Return the context for this scope. For the local context there might not
12234   // be an actual context.
12235   Handle<Context> CurrentContext() {
12236     DCHECK(!failed_);
12237     if (Type() == ScopeTypeGlobal ||
12238         nested_scope_chain_.is_empty()) {
12239       return context_;
12240     } else if (nested_scope_chain_.last()->HasContext()) {
12241       return context_;
12242     } else {
12243       return Handle<Context>();
12244     }
12245   }
12246
12247 #ifdef DEBUG
12248   // Debug print of the content of the current scope.
12249   void DebugPrint() {
12250     OFStream os(stdout);
12251     DCHECK(!failed_);
12252     switch (Type()) {
12253       case ScopeIterator::ScopeTypeGlobal:
12254         os << "Global:\n";
12255         CurrentContext()->Print(os);
12256         break;
12257
12258       case ScopeIterator::ScopeTypeLocal: {
12259         os << "Local:\n";
12260         function_->shared()->scope_info()->Print();
12261         if (!CurrentContext().is_null()) {
12262           CurrentContext()->Print(os);
12263           if (CurrentContext()->has_extension()) {
12264             Handle<Object> extension(CurrentContext()->extension(), isolate_);
12265             if (extension->IsJSContextExtensionObject()) {
12266               extension->Print(os);
12267             }
12268           }
12269         }
12270         break;
12271       }
12272
12273       case ScopeIterator::ScopeTypeWith:
12274         os << "With:\n";
12275         CurrentContext()->extension()->Print(os);
12276         break;
12277
12278       case ScopeIterator::ScopeTypeCatch:
12279         os << "Catch:\n";
12280         CurrentContext()->extension()->Print(os);
12281         CurrentContext()->get(Context::THROWN_OBJECT_INDEX)->Print(os);
12282         break;
12283
12284       case ScopeIterator::ScopeTypeClosure:
12285         os << "Closure:\n";
12286         CurrentContext()->Print(os);
12287         if (CurrentContext()->has_extension()) {
12288           Handle<Object> extension(CurrentContext()->extension(), isolate_);
12289           if (extension->IsJSContextExtensionObject()) {
12290             extension->Print(os);
12291           }
12292         }
12293         break;
12294
12295       default:
12296         UNREACHABLE();
12297     }
12298     PrintF("\n");
12299   }
12300 #endif
12301
12302  private:
12303   Isolate* isolate_;
12304   JavaScriptFrame* frame_;
12305   int inlined_jsframe_index_;
12306   Handle<JSFunction> function_;
12307   Handle<Context> context_;
12308   List<Handle<ScopeInfo> > nested_scope_chain_;
12309   bool failed_;
12310
12311   void RetrieveScopeChain(Scope* scope,
12312                           Handle<SharedFunctionInfo> shared_info) {
12313     if (scope != NULL) {
12314       int source_position = shared_info->code()->SourcePosition(frame_->pc());
12315       scope->GetNestedScopeChain(&nested_scope_chain_, source_position);
12316     } else {
12317       // A failed reparse indicates that the preparser has diverged from the
12318       // parser or that the preparse data given to the initial parse has been
12319       // faulty. We fail in debug mode but in release mode we only provide the
12320       // information we get from the context chain but nothing about
12321       // completely stack allocated scopes or stack allocated locals.
12322       // Or it could be due to stack overflow.
12323       DCHECK(isolate_->has_pending_exception());
12324       failed_ = true;
12325     }
12326   }
12327
12328   DISALLOW_IMPLICIT_CONSTRUCTORS(ScopeIterator);
12329 };
12330
12331
12332 RUNTIME_FUNCTION(Runtime_GetScopeCount) {
12333   HandleScope scope(isolate);
12334   DCHECK(args.length() == 2);
12335   CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12336   RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12337
12338   CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
12339
12340   // Get the frame where the debugging is performed.
12341   StackFrame::Id id = UnwrapFrameId(wrapped_id);
12342   JavaScriptFrameIterator it(isolate, id);
12343   JavaScriptFrame* frame = it.frame();
12344
12345   // Count the visible scopes.
12346   int n = 0;
12347   for (ScopeIterator it(isolate, frame, 0);
12348        !it.Done();
12349        it.Next()) {
12350     n++;
12351   }
12352
12353   return Smi::FromInt(n);
12354 }
12355
12356
12357 // Returns the list of step-in positions (text offset) in a function of the
12358 // stack frame in a range from the current debug break position to the end
12359 // of the corresponding statement.
12360 RUNTIME_FUNCTION(Runtime_GetStepInPositions) {
12361   HandleScope scope(isolate);
12362   DCHECK(args.length() == 2);
12363   CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12364   RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12365
12366   CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
12367
12368   // Get the frame where the debugging is performed.
12369   StackFrame::Id id = UnwrapFrameId(wrapped_id);
12370   JavaScriptFrameIterator frame_it(isolate, id);
12371   RUNTIME_ASSERT(!frame_it.done());
12372
12373   JavaScriptFrame* frame = frame_it.frame();
12374
12375   Handle<JSFunction> fun =
12376       Handle<JSFunction>(frame->function());
12377   Handle<SharedFunctionInfo> shared =
12378       Handle<SharedFunctionInfo>(fun->shared());
12379
12380   if (!isolate->debug()->EnsureDebugInfo(shared, fun)) {
12381     return isolate->heap()->undefined_value();
12382   }
12383
12384   Handle<DebugInfo> debug_info = Debug::GetDebugInfo(shared);
12385
12386   int len = 0;
12387   Handle<JSArray> array(isolate->factory()->NewJSArray(10));
12388   // Find the break point where execution has stopped.
12389   BreakLocationIterator break_location_iterator(debug_info,
12390                                                 ALL_BREAK_LOCATIONS);
12391
12392   break_location_iterator.FindBreakLocationFromAddress(frame->pc() - 1);
12393   int current_statement_pos = break_location_iterator.statement_position();
12394
12395   while (!break_location_iterator.Done()) {
12396     bool accept;
12397     if (break_location_iterator.pc() > frame->pc()) {
12398       accept = true;
12399     } else {
12400       StackFrame::Id break_frame_id = isolate->debug()->break_frame_id();
12401       // The break point is near our pc. Could be a step-in possibility,
12402       // that is currently taken by active debugger call.
12403       if (break_frame_id == StackFrame::NO_ID) {
12404         // We are not stepping.
12405         accept = false;
12406       } else {
12407         JavaScriptFrameIterator additional_frame_it(isolate, break_frame_id);
12408         // If our frame is a top frame and we are stepping, we can do step-in
12409         // at this place.
12410         accept = additional_frame_it.frame()->id() == id;
12411       }
12412     }
12413     if (accept) {
12414       if (break_location_iterator.IsStepInLocation(isolate)) {
12415         Smi* position_value = Smi::FromInt(break_location_iterator.position());
12416         RETURN_FAILURE_ON_EXCEPTION(
12417             isolate,
12418             JSObject::SetElement(array, len,
12419                                  Handle<Object>(position_value, isolate),
12420                                  NONE, SLOPPY));
12421         len++;
12422       }
12423     }
12424     // Advance iterator.
12425     break_location_iterator.Next();
12426     if (current_statement_pos !=
12427         break_location_iterator.statement_position()) {
12428       break;
12429     }
12430   }
12431   return *array;
12432 }
12433
12434
12435 static const int kScopeDetailsTypeIndex = 0;
12436 static const int kScopeDetailsObjectIndex = 1;
12437 static const int kScopeDetailsSize = 2;
12438
12439
12440 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeScopeDetails(
12441     Isolate* isolate,
12442     ScopeIterator* it) {
12443   // Calculate the size of the result.
12444   int details_size = kScopeDetailsSize;
12445   Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size);
12446
12447   // Fill in scope details.
12448   details->set(kScopeDetailsTypeIndex, Smi::FromInt(it->Type()));
12449   Handle<JSObject> scope_object;
12450   ASSIGN_RETURN_ON_EXCEPTION(
12451       isolate, scope_object, it->ScopeObject(), JSObject);
12452   details->set(kScopeDetailsObjectIndex, *scope_object);
12453
12454   return isolate->factory()->NewJSArrayWithElements(details);
12455 }
12456
12457
12458 // Return an array with scope details
12459 // args[0]: number: break id
12460 // args[1]: number: frame index
12461 // args[2]: number: inlined frame index
12462 // args[3]: number: scope index
12463 //
12464 // The array returned contains the following information:
12465 // 0: Scope type
12466 // 1: Scope object
12467 RUNTIME_FUNCTION(Runtime_GetScopeDetails) {
12468   HandleScope scope(isolate);
12469   DCHECK(args.length() == 4);
12470   CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12471   RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12472
12473   CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
12474   CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
12475   CONVERT_NUMBER_CHECKED(int, index, Int32, args[3]);
12476
12477   // Get the frame where the debugging is performed.
12478   StackFrame::Id id = UnwrapFrameId(wrapped_id);
12479   JavaScriptFrameIterator frame_it(isolate, id);
12480   JavaScriptFrame* frame = frame_it.frame();
12481
12482   // Find the requested scope.
12483   int n = 0;
12484   ScopeIterator it(isolate, frame, inlined_jsframe_index);
12485   for (; !it.Done() && n < index; it.Next()) {
12486     n++;
12487   }
12488   if (it.Done()) {
12489     return isolate->heap()->undefined_value();
12490   }
12491   Handle<JSObject> details;
12492   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
12493       isolate, details, MaterializeScopeDetails(isolate, &it));
12494   return *details;
12495 }
12496
12497
12498 // Return an array of scope details
12499 // args[0]: number: break id
12500 // args[1]: number: frame index
12501 // args[2]: number: inlined frame index
12502 // args[3]: boolean: ignore nested scopes
12503 //
12504 // The array returned contains arrays with the following information:
12505 // 0: Scope type
12506 // 1: Scope object
12507 RUNTIME_FUNCTION(Runtime_GetAllScopesDetails) {
12508   HandleScope scope(isolate);
12509   DCHECK(args.length() == 3 || args.length() == 4);
12510   CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12511   RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12512
12513   CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
12514   CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
12515
12516   bool ignore_nested_scopes = false;
12517   if (args.length() == 4) {
12518     CONVERT_BOOLEAN_ARG_CHECKED(flag, 3);
12519     ignore_nested_scopes = flag;
12520   }
12521
12522   // Get the frame where the debugging is performed.
12523   StackFrame::Id id = UnwrapFrameId(wrapped_id);
12524   JavaScriptFrameIterator frame_it(isolate, id);
12525   JavaScriptFrame* frame = frame_it.frame();
12526
12527   List<Handle<JSObject> > result(4);
12528   ScopeIterator it(isolate, frame, inlined_jsframe_index, ignore_nested_scopes);
12529   for (; !it.Done(); it.Next()) {
12530     Handle<JSObject> details;
12531     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
12532         isolate, details, MaterializeScopeDetails(isolate, &it));
12533     result.Add(details);
12534   }
12535
12536   Handle<FixedArray> array = isolate->factory()->NewFixedArray(result.length());
12537   for (int i = 0; i < result.length(); ++i) {
12538     array->set(i, *result[i]);
12539   }
12540   return *isolate->factory()->NewJSArrayWithElements(array);
12541 }
12542
12543
12544 RUNTIME_FUNCTION(Runtime_GetFunctionScopeCount) {
12545   HandleScope scope(isolate);
12546   DCHECK(args.length() == 1);
12547
12548   // Check arguments.
12549   CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
12550
12551   // Count the visible scopes.
12552   int n = 0;
12553   for (ScopeIterator it(isolate, fun); !it.Done(); it.Next()) {
12554     n++;
12555   }
12556
12557   return Smi::FromInt(n);
12558 }
12559
12560
12561 RUNTIME_FUNCTION(Runtime_GetFunctionScopeDetails) {
12562   HandleScope scope(isolate);
12563   DCHECK(args.length() == 2);
12564
12565   // Check arguments.
12566   CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
12567   CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
12568
12569   // Find the requested scope.
12570   int n = 0;
12571   ScopeIterator it(isolate, fun);
12572   for (; !it.Done() && n < index; it.Next()) {
12573     n++;
12574   }
12575   if (it.Done()) {
12576     return isolate->heap()->undefined_value();
12577   }
12578
12579   Handle<JSObject> details;
12580   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
12581       isolate, details, MaterializeScopeDetails(isolate, &it));
12582   return *details;
12583 }
12584
12585
12586 static bool SetScopeVariableValue(ScopeIterator* it, int index,
12587                                   Handle<String> variable_name,
12588                                   Handle<Object> new_value) {
12589   for (int n = 0; !it->Done() && n < index; it->Next()) {
12590     n++;
12591   }
12592   if (it->Done()) {
12593     return false;
12594   }
12595   return it->SetVariableValue(variable_name, new_value);
12596 }
12597
12598
12599 // Change variable value in closure or local scope
12600 // args[0]: number or JsFunction: break id or function
12601 // args[1]: number: frame index (when arg[0] is break id)
12602 // args[2]: number: inlined frame index (when arg[0] is break id)
12603 // args[3]: number: scope index
12604 // args[4]: string: variable name
12605 // args[5]: object: new value
12606 //
12607 // Return true if success and false otherwise
12608 RUNTIME_FUNCTION(Runtime_SetScopeVariableValue) {
12609   HandleScope scope(isolate);
12610   DCHECK(args.length() == 6);
12611
12612   // Check arguments.
12613   CONVERT_NUMBER_CHECKED(int, index, Int32, args[3]);
12614   CONVERT_ARG_HANDLE_CHECKED(String, variable_name, 4);
12615   CONVERT_ARG_HANDLE_CHECKED(Object, new_value, 5);
12616
12617   bool res;
12618   if (args[0]->IsNumber()) {
12619     CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12620     RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12621
12622     CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
12623     CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
12624
12625     // Get the frame where the debugging is performed.
12626     StackFrame::Id id = UnwrapFrameId(wrapped_id);
12627     JavaScriptFrameIterator frame_it(isolate, id);
12628     JavaScriptFrame* frame = frame_it.frame();
12629
12630     ScopeIterator it(isolate, frame, inlined_jsframe_index);
12631     res = SetScopeVariableValue(&it, index, variable_name, new_value);
12632   } else {
12633     CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
12634     ScopeIterator it(isolate, fun);
12635     res = SetScopeVariableValue(&it, index, variable_name, new_value);
12636   }
12637
12638   return isolate->heap()->ToBoolean(res);
12639 }
12640
12641
12642 RUNTIME_FUNCTION(Runtime_DebugPrintScopes) {
12643   HandleScope scope(isolate);
12644   DCHECK(args.length() == 0);
12645
12646 #ifdef DEBUG
12647   // Print the scopes for the top frame.
12648   StackFrameLocator locator(isolate);
12649   JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
12650   for (ScopeIterator it(isolate, frame, 0);
12651        !it.Done();
12652        it.Next()) {
12653     it.DebugPrint();
12654   }
12655 #endif
12656   return isolate->heap()->undefined_value();
12657 }
12658
12659
12660 RUNTIME_FUNCTION(Runtime_GetThreadCount) {
12661   HandleScope scope(isolate);
12662   DCHECK(args.length() == 1);
12663   CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12664   RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12665
12666   // Count all archived V8 threads.
12667   int n = 0;
12668   for (ThreadState* thread =
12669           isolate->thread_manager()->FirstThreadStateInUse();
12670        thread != NULL;
12671        thread = thread->Next()) {
12672     n++;
12673   }
12674
12675   // Total number of threads is current thread and archived threads.
12676   return Smi::FromInt(n + 1);
12677 }
12678
12679
12680 static const int kThreadDetailsCurrentThreadIndex = 0;
12681 static const int kThreadDetailsThreadIdIndex = 1;
12682 static const int kThreadDetailsSize = 2;
12683
12684 // Return an array with thread details
12685 // args[0]: number: break id
12686 // args[1]: number: thread index
12687 //
12688 // The array returned contains the following information:
12689 // 0: Is current thread?
12690 // 1: Thread id
12691 RUNTIME_FUNCTION(Runtime_GetThreadDetails) {
12692   HandleScope scope(isolate);
12693   DCHECK(args.length() == 2);
12694   CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12695   RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12696
12697   CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
12698
12699   // Allocate array for result.
12700   Handle<FixedArray> details =
12701       isolate->factory()->NewFixedArray(kThreadDetailsSize);
12702
12703   // Thread index 0 is current thread.
12704   if (index == 0) {
12705     // Fill the details.
12706     details->set(kThreadDetailsCurrentThreadIndex,
12707                  isolate->heap()->true_value());
12708     details->set(kThreadDetailsThreadIdIndex,
12709                  Smi::FromInt(ThreadId::Current().ToInteger()));
12710   } else {
12711     // Find the thread with the requested index.
12712     int n = 1;
12713     ThreadState* thread =
12714         isolate->thread_manager()->FirstThreadStateInUse();
12715     while (index != n && thread != NULL) {
12716       thread = thread->Next();
12717       n++;
12718     }
12719     if (thread == NULL) {
12720       return isolate->heap()->undefined_value();
12721     }
12722
12723     // Fill the details.
12724     details->set(kThreadDetailsCurrentThreadIndex,
12725                  isolate->heap()->false_value());
12726     details->set(kThreadDetailsThreadIdIndex,
12727                  Smi::FromInt(thread->id().ToInteger()));
12728   }
12729
12730   // Convert to JS array and return.
12731   return *isolate->factory()->NewJSArrayWithElements(details);
12732 }
12733
12734
12735 // Sets the disable break state
12736 // args[0]: disable break state
12737 RUNTIME_FUNCTION(Runtime_SetDisableBreak) {
12738   HandleScope scope(isolate);
12739   DCHECK(args.length() == 1);
12740   CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 0);
12741   isolate->debug()->set_disable_break(disable_break);
12742   return  isolate->heap()->undefined_value();
12743 }
12744
12745
12746 static bool IsPositionAlignmentCodeCorrect(int alignment) {
12747   return alignment == STATEMENT_ALIGNED || alignment == BREAK_POSITION_ALIGNED;
12748 }
12749
12750
12751 RUNTIME_FUNCTION(Runtime_GetBreakLocations) {
12752   HandleScope scope(isolate);
12753   DCHECK(args.length() == 2);
12754
12755   CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
12756   CONVERT_NUMBER_CHECKED(int32_t, statement_aligned_code, Int32, args[1]);
12757
12758   if (!IsPositionAlignmentCodeCorrect(statement_aligned_code)) {
12759     return isolate->ThrowIllegalOperation();
12760   }
12761   BreakPositionAlignment alignment =
12762       static_cast<BreakPositionAlignment>(statement_aligned_code);
12763
12764   Handle<SharedFunctionInfo> shared(fun->shared());
12765   // Find the number of break points
12766   Handle<Object> break_locations =
12767       Debug::GetSourceBreakLocations(shared, alignment);
12768   if (break_locations->IsUndefined()) return isolate->heap()->undefined_value();
12769   // Return array as JS array
12770   return *isolate->factory()->NewJSArrayWithElements(
12771       Handle<FixedArray>::cast(break_locations));
12772 }
12773
12774
12775 // Set a break point in a function.
12776 // args[0]: function
12777 // args[1]: number: break source position (within the function source)
12778 // args[2]: number: break point object
12779 RUNTIME_FUNCTION(Runtime_SetFunctionBreakPoint) {
12780   HandleScope scope(isolate);
12781   DCHECK(args.length() == 3);
12782   CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
12783   CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
12784   RUNTIME_ASSERT(source_position >= function->shared()->start_position() &&
12785                  source_position <= function->shared()->end_position());
12786   CONVERT_ARG_HANDLE_CHECKED(Object, break_point_object_arg, 2);
12787
12788   // Set break point.
12789   RUNTIME_ASSERT(isolate->debug()->SetBreakPoint(
12790       function, break_point_object_arg, &source_position));
12791
12792   return Smi::FromInt(source_position);
12793 }
12794
12795
12796 // Changes the state of a break point in a script and returns source position
12797 // where break point was set. NOTE: Regarding performance see the NOTE for
12798 // GetScriptFromScriptData.
12799 // args[0]: script to set break point in
12800 // args[1]: number: break source position (within the script source)
12801 // args[2]: number, breakpoint position alignment
12802 // args[3]: number: break point object
12803 RUNTIME_FUNCTION(Runtime_SetScriptBreakPoint) {
12804   HandleScope scope(isolate);
12805   DCHECK(args.length() == 4);
12806   CONVERT_ARG_HANDLE_CHECKED(JSValue, wrapper, 0);
12807   CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
12808   RUNTIME_ASSERT(source_position >= 0);
12809   CONVERT_NUMBER_CHECKED(int32_t, statement_aligned_code, Int32, args[2]);
12810   CONVERT_ARG_HANDLE_CHECKED(Object, break_point_object_arg, 3);
12811
12812   if (!IsPositionAlignmentCodeCorrect(statement_aligned_code)) {
12813     return isolate->ThrowIllegalOperation();
12814   }
12815   BreakPositionAlignment alignment =
12816       static_cast<BreakPositionAlignment>(statement_aligned_code);
12817
12818   // Get the script from the script wrapper.
12819   RUNTIME_ASSERT(wrapper->value()->IsScript());
12820   Handle<Script> script(Script::cast(wrapper->value()));
12821
12822   // Set break point.
12823   if (!isolate->debug()->SetBreakPointForScript(script, break_point_object_arg,
12824                                                 &source_position,
12825                                                 alignment)) {
12826     return isolate->heap()->undefined_value();
12827   }
12828
12829   return Smi::FromInt(source_position);
12830 }
12831
12832
12833 // Clear a break point
12834 // args[0]: number: break point object
12835 RUNTIME_FUNCTION(Runtime_ClearBreakPoint) {
12836   HandleScope scope(isolate);
12837   DCHECK(args.length() == 1);
12838   CONVERT_ARG_HANDLE_CHECKED(Object, break_point_object_arg, 0);
12839
12840   // Clear break point.
12841   isolate->debug()->ClearBreakPoint(break_point_object_arg);
12842
12843   return isolate->heap()->undefined_value();
12844 }
12845
12846
12847 // Change the state of break on exceptions.
12848 // args[0]: Enum value indicating whether to affect caught/uncaught exceptions.
12849 // args[1]: Boolean indicating on/off.
12850 RUNTIME_FUNCTION(Runtime_ChangeBreakOnException) {
12851   HandleScope scope(isolate);
12852   DCHECK(args.length() == 2);
12853   CONVERT_NUMBER_CHECKED(uint32_t, type_arg, Uint32, args[0]);
12854   CONVERT_BOOLEAN_ARG_CHECKED(enable, 1);
12855
12856   // If the number doesn't match an enum value, the ChangeBreakOnException
12857   // function will default to affecting caught exceptions.
12858   ExceptionBreakType type = static_cast<ExceptionBreakType>(type_arg);
12859   // Update break point state.
12860   isolate->debug()->ChangeBreakOnException(type, enable);
12861   return isolate->heap()->undefined_value();
12862 }
12863
12864
12865 // Returns the state of break on exceptions
12866 // args[0]: boolean indicating uncaught exceptions
12867 RUNTIME_FUNCTION(Runtime_IsBreakOnException) {
12868   HandleScope scope(isolate);
12869   DCHECK(args.length() == 1);
12870   CONVERT_NUMBER_CHECKED(uint32_t, type_arg, Uint32, args[0]);
12871
12872   ExceptionBreakType type = static_cast<ExceptionBreakType>(type_arg);
12873   bool result = isolate->debug()->IsBreakOnException(type);
12874   return Smi::FromInt(result);
12875 }
12876
12877
12878 // Prepare for stepping
12879 // args[0]: break id for checking execution state
12880 // args[1]: step action from the enumeration StepAction
12881 // args[2]: number of times to perform the step, for step out it is the number
12882 //          of frames to step down.
12883 RUNTIME_FUNCTION(Runtime_PrepareStep) {
12884   HandleScope scope(isolate);
12885   DCHECK(args.length() == 4);
12886   CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12887   RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12888
12889   if (!args[1]->IsNumber() || !args[2]->IsNumber()) {
12890     return isolate->Throw(isolate->heap()->illegal_argument_string());
12891   }
12892
12893   CONVERT_NUMBER_CHECKED(int, wrapped_frame_id, Int32, args[3]);
12894
12895   StackFrame::Id frame_id;
12896   if (wrapped_frame_id == 0) {
12897     frame_id = StackFrame::NO_ID;
12898   } else {
12899     frame_id = UnwrapFrameId(wrapped_frame_id);
12900   }
12901
12902   // Get the step action and check validity.
12903   StepAction step_action = static_cast<StepAction>(NumberToInt32(args[1]));
12904   if (step_action != StepIn &&
12905       step_action != StepNext &&
12906       step_action != StepOut &&
12907       step_action != StepInMin &&
12908       step_action != StepMin) {
12909     return isolate->Throw(isolate->heap()->illegal_argument_string());
12910   }
12911
12912   if (frame_id != StackFrame::NO_ID && step_action != StepNext &&
12913       step_action != StepMin && step_action != StepOut) {
12914     return isolate->ThrowIllegalOperation();
12915   }
12916
12917   // Get the number of steps.
12918   int step_count = NumberToInt32(args[2]);
12919   if (step_count < 1) {
12920     return isolate->Throw(isolate->heap()->illegal_argument_string());
12921   }
12922
12923   // Clear all current stepping setup.
12924   isolate->debug()->ClearStepping();
12925
12926   // Prepare step.
12927   isolate->debug()->PrepareStep(static_cast<StepAction>(step_action),
12928                                 step_count,
12929                                 frame_id);
12930   return isolate->heap()->undefined_value();
12931 }
12932
12933
12934 // Clear all stepping set by PrepareStep.
12935 RUNTIME_FUNCTION(Runtime_ClearStepping) {
12936   HandleScope scope(isolate);
12937   DCHECK(args.length() == 0);
12938   isolate->debug()->ClearStepping();
12939   return isolate->heap()->undefined_value();
12940 }
12941
12942
12943 // Helper function to find or create the arguments object for
12944 // Runtime_DebugEvaluate.
12945 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeArgumentsObject(
12946     Isolate* isolate,
12947     Handle<JSObject> target,
12948     Handle<JSFunction> function) {
12949   // Do not materialize the arguments object for eval or top-level code.
12950   // Skip if "arguments" is already taken.
12951   if (!function->shared()->is_function()) return target;
12952   Maybe<bool> maybe = JSReceiver::HasOwnProperty(
12953       target, isolate->factory()->arguments_string());
12954   if (!maybe.has_value) return MaybeHandle<JSObject>();
12955   if (maybe.value) return target;
12956
12957   // FunctionGetArguments can't throw an exception.
12958   Handle<JSObject> arguments = Handle<JSObject>::cast(
12959       Accessors::FunctionGetArguments(function));
12960   Handle<String> arguments_str = isolate->factory()->arguments_string();
12961   RETURN_ON_EXCEPTION(
12962       isolate,
12963       Runtime::DefineObjectProperty(target, arguments_str, arguments, NONE),
12964       JSObject);
12965   return target;
12966 }
12967
12968
12969 // Compile and evaluate source for the given context.
12970 static MaybeHandle<Object> DebugEvaluate(Isolate* isolate,
12971                                          Handle<Context> context,
12972                                          Handle<Object> context_extension,
12973                                          Handle<Object> receiver,
12974                                          Handle<String> source) {
12975   if (context_extension->IsJSObject()) {
12976     Handle<JSObject> extension = Handle<JSObject>::cast(context_extension);
12977     Handle<JSFunction> closure(context->closure(), isolate);
12978     context = isolate->factory()->NewWithContext(closure, context, extension);
12979   }
12980
12981   Handle<JSFunction> eval_fun;
12982   ASSIGN_RETURN_ON_EXCEPTION(
12983       isolate, eval_fun,
12984       Compiler::GetFunctionFromEval(source,
12985                                     context,
12986                                     SLOPPY,
12987                                     NO_PARSE_RESTRICTION,
12988                                     RelocInfo::kNoPosition),
12989       Object);
12990
12991   Handle<Object> result;
12992   ASSIGN_RETURN_ON_EXCEPTION(
12993       isolate, result,
12994       Execution::Call(isolate, eval_fun, receiver, 0, NULL),
12995       Object);
12996
12997   // Skip the global proxy as it has no properties and always delegates to the
12998   // real global object.
12999   if (result->IsJSGlobalProxy()) {
13000     PrototypeIterator iter(isolate, result);
13001     // TODO(verwaest): This will crash when the global proxy is detached.
13002     result = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
13003   }
13004
13005   // Clear the oneshot breakpoints so that the debugger does not step further.
13006   isolate->debug()->ClearStepping();
13007   return result;
13008 }
13009
13010
13011 static Handle<JSObject> NewJSObjectWithNullProto(Isolate* isolate) {
13012   Handle<JSObject> result =
13013       isolate->factory()->NewJSObject(isolate->object_function());
13014   Handle<Map> new_map = Map::Copy(Handle<Map>(result->map()));
13015   new_map->set_prototype(*isolate->factory()->null_value());
13016   JSObject::MigrateToMap(result, new_map);
13017   return result;
13018 }
13019
13020
13021 // Evaluate a piece of JavaScript in the context of a stack frame for
13022 // debugging.  Things that need special attention are:
13023 // - Parameters and stack-allocated locals need to be materialized.  Altered
13024 //   values need to be written back to the stack afterwards.
13025 // - The arguments object needs to materialized.
13026 RUNTIME_FUNCTION(Runtime_DebugEvaluate) {
13027   HandleScope scope(isolate);
13028
13029   // Check the execution state and decode arguments frame and source to be
13030   // evaluated.
13031   DCHECK(args.length() == 6);
13032   CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
13033   RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
13034
13035   CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
13036   CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
13037   CONVERT_ARG_HANDLE_CHECKED(String, source, 3);
13038   CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 4);
13039   CONVERT_ARG_HANDLE_CHECKED(Object, context_extension, 5);
13040
13041   // Handle the processing of break.
13042   DisableBreak disable_break_scope(isolate->debug(), disable_break);
13043
13044   // Get the frame where the debugging is performed.
13045   StackFrame::Id id = UnwrapFrameId(wrapped_id);
13046   JavaScriptFrameIterator it(isolate, id);
13047   JavaScriptFrame* frame = it.frame();
13048   FrameInspector frame_inspector(frame, inlined_jsframe_index, isolate);
13049   Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction()));
13050
13051   // Traverse the saved contexts chain to find the active context for the
13052   // selected frame.
13053   SaveContext* save = FindSavedContextForFrame(isolate, frame);
13054
13055   SaveContext savex(isolate);
13056   isolate->set_context(*(save->context()));
13057
13058   // Evaluate on the context of the frame.
13059   Handle<Context> context(Context::cast(frame_inspector.GetContext()));
13060   DCHECK(!context.is_null());
13061
13062   // Materialize stack locals and the arguments object.
13063   Handle<JSObject> materialized = NewJSObjectWithNullProto(isolate);
13064
13065   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
13066       isolate, materialized,
13067       MaterializeStackLocalsWithFrameInspector(
13068           isolate, materialized, function, &frame_inspector));
13069
13070   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
13071       isolate, materialized,
13072       MaterializeArgumentsObject(isolate, materialized, function));
13073
13074   // Add the materialized object in a with-scope to shadow the stack locals.
13075   context = isolate->factory()->NewWithContext(function, context, materialized);
13076
13077   Handle<Object> receiver(frame->receiver(), isolate);
13078   Handle<Object> result;
13079   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
13080       isolate, result,
13081       DebugEvaluate(isolate, context, context_extension, receiver, source));
13082
13083   // Write back potential changes to materialized stack locals to the stack.
13084   UpdateStackLocalsFromMaterializedObject(
13085       isolate, materialized, function, frame, inlined_jsframe_index);
13086
13087   return *result;
13088 }
13089
13090
13091 RUNTIME_FUNCTION(Runtime_DebugEvaluateGlobal) {
13092   HandleScope scope(isolate);
13093
13094   // Check the execution state and decode arguments frame and source to be
13095   // evaluated.
13096   DCHECK(args.length() == 4);
13097   CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
13098   RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
13099
13100   CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
13101   CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 2);
13102   CONVERT_ARG_HANDLE_CHECKED(Object, context_extension, 3);
13103
13104   // Handle the processing of break.
13105   DisableBreak disable_break_scope(isolate->debug(), disable_break);
13106
13107   // Enter the top context from before the debugger was invoked.
13108   SaveContext save(isolate);
13109   SaveContext* top = &save;
13110   while (top != NULL && *top->context() == *isolate->debug()->debug_context()) {
13111     top = top->prev();
13112   }
13113   if (top != NULL) {
13114     isolate->set_context(*top->context());
13115   }
13116
13117   // Get the native context now set to the top context from before the
13118   // debugger was invoked.
13119   Handle<Context> context = isolate->native_context();
13120   Handle<JSObject> receiver(context->global_proxy());
13121   Handle<Object> result;
13122   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
13123       isolate, result,
13124       DebugEvaluate(isolate, context, context_extension, receiver, source));
13125   return *result;
13126 }
13127
13128
13129 RUNTIME_FUNCTION(Runtime_DebugGetLoadedScripts) {
13130   HandleScope scope(isolate);
13131   DCHECK(args.length() == 0);
13132
13133   // Fill the script objects.
13134   Handle<FixedArray> instances = isolate->debug()->GetLoadedScripts();
13135
13136   // Convert the script objects to proper JS objects.
13137   for (int i = 0; i < instances->length(); i++) {
13138     Handle<Script> script = Handle<Script>(Script::cast(instances->get(i)));
13139     // Get the script wrapper in a local handle before calling GetScriptWrapper,
13140     // because using
13141     //   instances->set(i, *GetScriptWrapper(script))
13142     // is unsafe as GetScriptWrapper might call GC and the C++ compiler might
13143     // already have dereferenced the instances handle.
13144     Handle<JSObject> wrapper = Script::GetWrapper(script);
13145     instances->set(i, *wrapper);
13146   }
13147
13148   // Return result as a JS array.
13149   Handle<JSObject> result =
13150       isolate->factory()->NewJSObject(isolate->array_function());
13151   JSArray::SetContent(Handle<JSArray>::cast(result), instances);
13152   return *result;
13153 }
13154
13155
13156 // Helper function used by Runtime_DebugReferencedBy below.
13157 static int DebugReferencedBy(HeapIterator* iterator,
13158                              JSObject* target,
13159                              Object* instance_filter, int max_references,
13160                              FixedArray* instances, int instances_size,
13161                              JSFunction* arguments_function) {
13162   Isolate* isolate = target->GetIsolate();
13163   SealHandleScope shs(isolate);
13164   DisallowHeapAllocation no_allocation;
13165
13166   // Iterate the heap.
13167   int count = 0;
13168   JSObject* last = NULL;
13169   HeapObject* heap_obj = NULL;
13170   while (((heap_obj = iterator->next()) != NULL) &&
13171          (max_references == 0 || count < max_references)) {
13172     // Only look at all JSObjects.
13173     if (heap_obj->IsJSObject()) {
13174       // Skip context extension objects and argument arrays as these are
13175       // checked in the context of functions using them.
13176       JSObject* obj = JSObject::cast(heap_obj);
13177       if (obj->IsJSContextExtensionObject() ||
13178           obj->map()->constructor() == arguments_function) {
13179         continue;
13180       }
13181
13182       // Check if the JS object has a reference to the object looked for.
13183       if (obj->ReferencesObject(target)) {
13184         // Check instance filter if supplied. This is normally used to avoid
13185         // references from mirror objects (see Runtime_IsInPrototypeChain).
13186         if (!instance_filter->IsUndefined()) {
13187           for (PrototypeIterator iter(isolate, obj); !iter.IsAtEnd();
13188                iter.Advance()) {
13189             if (iter.GetCurrent() == instance_filter) {
13190               obj = NULL;  // Don't add this object.
13191               break;
13192             }
13193           }
13194         }
13195
13196         if (obj != NULL) {
13197           // Valid reference found add to instance array if supplied an update
13198           // count.
13199           if (instances != NULL && count < instances_size) {
13200             instances->set(count, obj);
13201           }
13202           last = obj;
13203           count++;
13204         }
13205       }
13206     }
13207   }
13208
13209   // Check for circular reference only. This can happen when the object is only
13210   // referenced from mirrors and has a circular reference in which case the
13211   // object is not really alive and would have been garbage collected if not
13212   // referenced from the mirror.
13213   if (count == 1 && last == target) {
13214     count = 0;
13215   }
13216
13217   // Return the number of referencing objects found.
13218   return count;
13219 }
13220
13221
13222 // Scan the heap for objects with direct references to an object
13223 // args[0]: the object to find references to
13224 // args[1]: constructor function for instances to exclude (Mirror)
13225 // args[2]: the the maximum number of objects to return
13226 RUNTIME_FUNCTION(Runtime_DebugReferencedBy) {
13227   HandleScope scope(isolate);
13228   DCHECK(args.length() == 3);
13229
13230   // Check parameters.
13231   CONVERT_ARG_HANDLE_CHECKED(JSObject, target, 0);
13232   CONVERT_ARG_HANDLE_CHECKED(Object, instance_filter, 1);
13233   RUNTIME_ASSERT(instance_filter->IsUndefined() ||
13234                  instance_filter->IsJSObject());
13235   CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[2]);
13236   RUNTIME_ASSERT(max_references >= 0);
13237
13238
13239   // Get the constructor function for context extension and arguments array.
13240   Handle<JSFunction> arguments_function(
13241       JSFunction::cast(isolate->sloppy_arguments_map()->constructor()));
13242
13243   // Get the number of referencing objects.
13244   int count;
13245   // First perform a full GC in order to avoid dead objects and to make the heap
13246   // iterable.
13247   Heap* heap = isolate->heap();
13248   heap->CollectAllGarbage(Heap::kMakeHeapIterableMask, "%DebugConstructedBy");
13249   {
13250     HeapIterator heap_iterator(heap);
13251     count = DebugReferencedBy(&heap_iterator,
13252                               *target, *instance_filter, max_references,
13253                               NULL, 0, *arguments_function);
13254   }
13255
13256   // Allocate an array to hold the result.
13257   Handle<FixedArray> instances = isolate->factory()->NewFixedArray(count);
13258
13259   // Fill the referencing objects.
13260   {
13261     HeapIterator heap_iterator(heap);
13262     count = DebugReferencedBy(&heap_iterator,
13263                               *target, *instance_filter, max_references,
13264                               *instances, count, *arguments_function);
13265   }
13266
13267   // Return result as JS array.
13268   Handle<JSFunction> constructor = isolate->array_function();
13269
13270   Handle<JSObject> result = isolate->factory()->NewJSObject(constructor);
13271   JSArray::SetContent(Handle<JSArray>::cast(result), instances);
13272   return *result;
13273 }
13274
13275
13276 // Helper function used by Runtime_DebugConstructedBy below.
13277 static int DebugConstructedBy(HeapIterator* iterator,
13278                               JSFunction* constructor,
13279                               int max_references,
13280                               FixedArray* instances,
13281                               int instances_size) {
13282   DisallowHeapAllocation no_allocation;
13283
13284   // Iterate the heap.
13285   int count = 0;
13286   HeapObject* heap_obj = NULL;
13287   while (((heap_obj = iterator->next()) != NULL) &&
13288          (max_references == 0 || count < max_references)) {
13289     // Only look at all JSObjects.
13290     if (heap_obj->IsJSObject()) {
13291       JSObject* obj = JSObject::cast(heap_obj);
13292       if (obj->map()->constructor() == constructor) {
13293         // Valid reference found add to instance array if supplied an update
13294         // count.
13295         if (instances != NULL && count < instances_size) {
13296           instances->set(count, obj);
13297         }
13298         count++;
13299       }
13300     }
13301   }
13302
13303   // Return the number of referencing objects found.
13304   return count;
13305 }
13306
13307
13308 // Scan the heap for objects constructed by a specific function.
13309 // args[0]: the constructor to find instances of
13310 // args[1]: the the maximum number of objects to return
13311 RUNTIME_FUNCTION(Runtime_DebugConstructedBy) {
13312   HandleScope scope(isolate);
13313   DCHECK(args.length() == 2);
13314
13315
13316   // Check parameters.
13317   CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, 0);
13318   CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[1]);
13319   RUNTIME_ASSERT(max_references >= 0);
13320
13321   // Get the number of referencing objects.
13322   int count;
13323   // First perform a full GC in order to avoid dead objects and to make the heap
13324   // iterable.
13325   Heap* heap = isolate->heap();
13326   heap->CollectAllGarbage(Heap::kMakeHeapIterableMask, "%DebugConstructedBy");
13327   {
13328     HeapIterator heap_iterator(heap);
13329     count = DebugConstructedBy(&heap_iterator,
13330                                *constructor,
13331                                max_references,
13332                                NULL,
13333                                0);
13334   }
13335
13336   // Allocate an array to hold the result.
13337   Handle<FixedArray> instances = isolate->factory()->NewFixedArray(count);
13338
13339   // Fill the referencing objects.
13340   {
13341     HeapIterator heap_iterator2(heap);
13342     count = DebugConstructedBy(&heap_iterator2,
13343                                *constructor,
13344                                max_references,
13345                                *instances,
13346                                count);
13347   }
13348
13349   // Return result as JS array.
13350   Handle<JSFunction> array_function = isolate->array_function();
13351   Handle<JSObject> result = isolate->factory()->NewJSObject(array_function);
13352   JSArray::SetContent(Handle<JSArray>::cast(result), instances);
13353   return *result;
13354 }
13355
13356
13357 // Find the effective prototype object as returned by __proto__.
13358 // args[0]: the object to find the prototype for.
13359 RUNTIME_FUNCTION(Runtime_DebugGetPrototype) {
13360   HandleScope shs(isolate);
13361   DCHECK(args.length() == 1);
13362   CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
13363   return *GetPrototypeSkipHiddenPrototypes(isolate, obj);
13364 }
13365
13366
13367 // Patches script source (should be called upon BeforeCompile event).
13368 RUNTIME_FUNCTION(Runtime_DebugSetScriptSource) {
13369   HandleScope scope(isolate);
13370   DCHECK(args.length() == 2);
13371
13372   CONVERT_ARG_HANDLE_CHECKED(JSValue, script_wrapper, 0);
13373   CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
13374
13375   RUNTIME_ASSERT(script_wrapper->value()->IsScript());
13376   Handle<Script> script(Script::cast(script_wrapper->value()));
13377
13378   int compilation_state = script->compilation_state();
13379   RUNTIME_ASSERT(compilation_state == Script::COMPILATION_STATE_INITIAL);
13380   script->set_source(*source);
13381
13382   return isolate->heap()->undefined_value();
13383 }
13384
13385
13386 RUNTIME_FUNCTION(Runtime_SystemBreak) {
13387   SealHandleScope shs(isolate);
13388   DCHECK(args.length() == 0);
13389   base::OS::DebugBreak();
13390   return isolate->heap()->undefined_value();
13391 }
13392
13393
13394 RUNTIME_FUNCTION(Runtime_DebugDisassembleFunction) {
13395   HandleScope scope(isolate);
13396 #ifdef DEBUG
13397   DCHECK(args.length() == 1);
13398   // Get the function and make sure it is compiled.
13399   CONVERT_ARG_HANDLE_CHECKED(JSFunction, func, 0);
13400   if (!Compiler::EnsureCompiled(func, KEEP_EXCEPTION)) {
13401     return isolate->heap()->exception();
13402   }
13403   OFStream os(stdout);
13404   func->code()->Print(os);
13405   os << endl;
13406 #endif  // DEBUG
13407   return isolate->heap()->undefined_value();
13408 }
13409
13410
13411 RUNTIME_FUNCTION(Runtime_DebugDisassembleConstructor) {
13412   HandleScope scope(isolate);
13413 #ifdef DEBUG
13414   DCHECK(args.length() == 1);
13415   // Get the function and make sure it is compiled.
13416   CONVERT_ARG_HANDLE_CHECKED(JSFunction, func, 0);
13417   if (!Compiler::EnsureCompiled(func, KEEP_EXCEPTION)) {
13418     return isolate->heap()->exception();
13419   }
13420   OFStream os(stdout);
13421   func->shared()->construct_stub()->Print(os);
13422   os << endl;
13423 #endif  // DEBUG
13424   return isolate->heap()->undefined_value();
13425 }
13426
13427
13428 RUNTIME_FUNCTION(Runtime_FunctionGetInferredName) {
13429   SealHandleScope shs(isolate);
13430   DCHECK(args.length() == 1);
13431
13432   CONVERT_ARG_CHECKED(JSFunction, f, 0);
13433   return f->shared()->inferred_name();
13434 }
13435
13436
13437 static int FindSharedFunctionInfosForScript(HeapIterator* iterator,
13438                                             Script* script,
13439                                             FixedArray* buffer) {
13440   DisallowHeapAllocation no_allocation;
13441   int counter = 0;
13442   int buffer_size = buffer->length();
13443   for (HeapObject* obj = iterator->next();
13444        obj != NULL;
13445        obj = iterator->next()) {
13446     DCHECK(obj != NULL);
13447     if (!obj->IsSharedFunctionInfo()) {
13448       continue;
13449     }
13450     SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj);
13451     if (shared->script() != script) {
13452       continue;
13453     }
13454     if (counter < buffer_size) {
13455       buffer->set(counter, shared);
13456     }
13457     counter++;
13458   }
13459   return counter;
13460 }
13461
13462
13463 // For a script finds all SharedFunctionInfo's in the heap that points
13464 // to this script. Returns JSArray of SharedFunctionInfo wrapped
13465 // in OpaqueReferences.
13466 RUNTIME_FUNCTION(Runtime_LiveEditFindSharedFunctionInfosForScript) {
13467   HandleScope scope(isolate);
13468   CHECK(isolate->debug()->live_edit_enabled());
13469   DCHECK(args.length() == 1);
13470   CONVERT_ARG_CHECKED(JSValue, script_value, 0);
13471
13472   RUNTIME_ASSERT(script_value->value()->IsScript());
13473   Handle<Script> script = Handle<Script>(Script::cast(script_value->value()));
13474
13475   const int kBufferSize = 32;
13476
13477   Handle<FixedArray> array;
13478   array = isolate->factory()->NewFixedArray(kBufferSize);
13479   int number;
13480   Heap* heap = isolate->heap();
13481   {
13482     HeapIterator heap_iterator(heap);
13483     Script* scr = *script;
13484     FixedArray* arr = *array;
13485     number = FindSharedFunctionInfosForScript(&heap_iterator, scr, arr);
13486   }
13487   if (number > kBufferSize) {
13488     array = isolate->factory()->NewFixedArray(number);
13489     HeapIterator heap_iterator(heap);
13490     Script* scr = *script;
13491     FixedArray* arr = *array;
13492     FindSharedFunctionInfosForScript(&heap_iterator, scr, arr);
13493   }
13494
13495   Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(array);
13496   result->set_length(Smi::FromInt(number));
13497
13498   LiveEdit::WrapSharedFunctionInfos(result);
13499
13500   return *result;
13501 }
13502
13503
13504 // For a script calculates compilation information about all its functions.
13505 // The script source is explicitly specified by the second argument.
13506 // The source of the actual script is not used, however it is important that
13507 // all generated code keeps references to this particular instance of script.
13508 // Returns a JSArray of compilation infos. The array is ordered so that
13509 // each function with all its descendant is always stored in a continues range
13510 // with the function itself going first. The root function is a script function.
13511 RUNTIME_FUNCTION(Runtime_LiveEditGatherCompileInfo) {
13512   HandleScope scope(isolate);
13513   CHECK(isolate->debug()->live_edit_enabled());
13514   DCHECK(args.length() == 2);
13515   CONVERT_ARG_CHECKED(JSValue, script, 0);
13516   CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
13517
13518   RUNTIME_ASSERT(script->value()->IsScript());
13519   Handle<Script> script_handle = Handle<Script>(Script::cast(script->value()));
13520
13521   Handle<JSArray> result;
13522   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
13523       isolate, result, LiveEdit::GatherCompileInfo(script_handle, source));
13524   return *result;
13525 }
13526
13527
13528 // Changes the source of the script to a new_source.
13529 // If old_script_name is provided (i.e. is a String), also creates a copy of
13530 // the script with its original source and sends notification to debugger.
13531 RUNTIME_FUNCTION(Runtime_LiveEditReplaceScript) {
13532   HandleScope scope(isolate);
13533   CHECK(isolate->debug()->live_edit_enabled());
13534   DCHECK(args.length() == 3);
13535   CONVERT_ARG_CHECKED(JSValue, original_script_value, 0);
13536   CONVERT_ARG_HANDLE_CHECKED(String, new_source, 1);
13537   CONVERT_ARG_HANDLE_CHECKED(Object, old_script_name, 2);
13538
13539   RUNTIME_ASSERT(original_script_value->value()->IsScript());
13540   Handle<Script> original_script(Script::cast(original_script_value->value()));
13541
13542   Handle<Object> old_script = LiveEdit::ChangeScriptSource(
13543       original_script,  new_source,  old_script_name);
13544
13545   if (old_script->IsScript()) {
13546     Handle<Script> script_handle = Handle<Script>::cast(old_script);
13547     return *Script::GetWrapper(script_handle);
13548   } else {
13549     return isolate->heap()->null_value();
13550   }
13551 }
13552
13553
13554 RUNTIME_FUNCTION(Runtime_LiveEditFunctionSourceUpdated) {
13555   HandleScope scope(isolate);
13556   CHECK(isolate->debug()->live_edit_enabled());
13557   DCHECK(args.length() == 1);
13558   CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_info, 0);
13559   RUNTIME_ASSERT(SharedInfoWrapper::IsInstance(shared_info));
13560
13561   LiveEdit::FunctionSourceUpdated(shared_info);
13562   return isolate->heap()->undefined_value();
13563 }
13564
13565
13566 // Replaces code of SharedFunctionInfo with a new one.
13567 RUNTIME_FUNCTION(Runtime_LiveEditReplaceFunctionCode) {
13568   HandleScope scope(isolate);
13569   CHECK(isolate->debug()->live_edit_enabled());
13570   DCHECK(args.length() == 2);
13571   CONVERT_ARG_HANDLE_CHECKED(JSArray, new_compile_info, 0);
13572   CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_info, 1);
13573   RUNTIME_ASSERT(SharedInfoWrapper::IsInstance(shared_info));
13574
13575   LiveEdit::ReplaceFunctionCode(new_compile_info, shared_info);
13576   return isolate->heap()->undefined_value();
13577 }
13578
13579
13580 // Connects SharedFunctionInfo to another script.
13581 RUNTIME_FUNCTION(Runtime_LiveEditFunctionSetScript) {
13582   HandleScope scope(isolate);
13583   CHECK(isolate->debug()->live_edit_enabled());
13584   DCHECK(args.length() == 2);
13585   CONVERT_ARG_HANDLE_CHECKED(Object, function_object, 0);
13586   CONVERT_ARG_HANDLE_CHECKED(Object, script_object, 1);
13587
13588   if (function_object->IsJSValue()) {
13589     Handle<JSValue> function_wrapper = Handle<JSValue>::cast(function_object);
13590     if (script_object->IsJSValue()) {
13591       RUNTIME_ASSERT(JSValue::cast(*script_object)->value()->IsScript());
13592       Script* script = Script::cast(JSValue::cast(*script_object)->value());
13593       script_object = Handle<Object>(script, isolate);
13594     }
13595     RUNTIME_ASSERT(function_wrapper->value()->IsSharedFunctionInfo());
13596     LiveEdit::SetFunctionScript(function_wrapper, script_object);
13597   } else {
13598     // Just ignore this. We may not have a SharedFunctionInfo for some functions
13599     // and we check it in this function.
13600   }
13601
13602   return isolate->heap()->undefined_value();
13603 }
13604
13605
13606 // In a code of a parent function replaces original function as embedded object
13607 // with a substitution one.
13608 RUNTIME_FUNCTION(Runtime_LiveEditReplaceRefToNestedFunction) {
13609   HandleScope scope(isolate);
13610   CHECK(isolate->debug()->live_edit_enabled());
13611   DCHECK(args.length() == 3);
13612
13613   CONVERT_ARG_HANDLE_CHECKED(JSValue, parent_wrapper, 0);
13614   CONVERT_ARG_HANDLE_CHECKED(JSValue, orig_wrapper, 1);
13615   CONVERT_ARG_HANDLE_CHECKED(JSValue, subst_wrapper, 2);
13616   RUNTIME_ASSERT(parent_wrapper->value()->IsSharedFunctionInfo());
13617   RUNTIME_ASSERT(orig_wrapper->value()->IsSharedFunctionInfo());
13618   RUNTIME_ASSERT(subst_wrapper->value()->IsSharedFunctionInfo());
13619
13620   LiveEdit::ReplaceRefToNestedFunction(
13621       parent_wrapper, orig_wrapper, subst_wrapper);
13622   return isolate->heap()->undefined_value();
13623 }
13624
13625
13626 // Updates positions of a shared function info (first parameter) according
13627 // to script source change. Text change is described in second parameter as
13628 // array of groups of 3 numbers:
13629 // (change_begin, change_end, change_end_new_position).
13630 // Each group describes a change in text; groups are sorted by change_begin.
13631 RUNTIME_FUNCTION(Runtime_LiveEditPatchFunctionPositions) {
13632   HandleScope scope(isolate);
13633   CHECK(isolate->debug()->live_edit_enabled());
13634   DCHECK(args.length() == 2);
13635   CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_array, 0);
13636   CONVERT_ARG_HANDLE_CHECKED(JSArray, position_change_array, 1);
13637   RUNTIME_ASSERT(SharedInfoWrapper::IsInstance(shared_array))
13638
13639   LiveEdit::PatchFunctionPositions(shared_array, position_change_array);
13640   return isolate->heap()->undefined_value();
13641 }
13642
13643
13644 // For array of SharedFunctionInfo's (each wrapped in JSValue)
13645 // checks that none of them have activations on stacks (of any thread).
13646 // Returns array of the same length with corresponding results of
13647 // LiveEdit::FunctionPatchabilityStatus type.
13648 RUNTIME_FUNCTION(Runtime_LiveEditCheckAndDropActivations) {
13649   HandleScope scope(isolate);
13650   CHECK(isolate->debug()->live_edit_enabled());
13651   DCHECK(args.length() == 2);
13652   CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_array, 0);
13653   CONVERT_BOOLEAN_ARG_CHECKED(do_drop, 1);
13654   RUNTIME_ASSERT(shared_array->length()->IsSmi());
13655   RUNTIME_ASSERT(shared_array->HasFastElements())
13656   int array_length = Smi::cast(shared_array->length())->value();
13657   for (int i = 0; i < array_length; i++) {
13658     Handle<Object> element =
13659         Object::GetElement(isolate, shared_array, i).ToHandleChecked();
13660     RUNTIME_ASSERT(
13661         element->IsJSValue() &&
13662         Handle<JSValue>::cast(element)->value()->IsSharedFunctionInfo());
13663   }
13664
13665   return *LiveEdit::CheckAndDropActivations(shared_array, do_drop);
13666 }
13667
13668
13669 // Compares 2 strings line-by-line, then token-wise and returns diff in form
13670 // of JSArray of triplets (pos1, pos1_end, pos2_end) describing list
13671 // of diff chunks.
13672 RUNTIME_FUNCTION(Runtime_LiveEditCompareStrings) {
13673   HandleScope scope(isolate);
13674   CHECK(isolate->debug()->live_edit_enabled());
13675   DCHECK(args.length() == 2);
13676   CONVERT_ARG_HANDLE_CHECKED(String, s1, 0);
13677   CONVERT_ARG_HANDLE_CHECKED(String, s2, 1);
13678
13679   return *LiveEdit::CompareStrings(s1, s2);
13680 }
13681
13682
13683 // Restarts a call frame and completely drops all frames above.
13684 // Returns true if successful. Otherwise returns undefined or an error message.
13685 RUNTIME_FUNCTION(Runtime_LiveEditRestartFrame) {
13686   HandleScope scope(isolate);
13687   CHECK(isolate->debug()->live_edit_enabled());
13688   DCHECK(args.length() == 2);
13689   CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
13690   RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
13691
13692   CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
13693   Heap* heap = isolate->heap();
13694
13695   // Find the relevant frame with the requested index.
13696   StackFrame::Id id = isolate->debug()->break_frame_id();
13697   if (id == StackFrame::NO_ID) {
13698     // If there are no JavaScript stack frames return undefined.
13699     return heap->undefined_value();
13700   }
13701
13702   JavaScriptFrameIterator it(isolate, id);
13703   int inlined_jsframe_index = FindIndexedNonNativeFrame(&it, index);
13704   if (inlined_jsframe_index == -1) return heap->undefined_value();
13705   // We don't really care what the inlined frame index is, since we are
13706   // throwing away the entire frame anyways.
13707   const char* error_message = LiveEdit::RestartFrame(it.frame());
13708   if (error_message) {
13709     return *(isolate->factory()->InternalizeUtf8String(error_message));
13710   }
13711   return heap->true_value();
13712 }
13713
13714
13715 // A testing entry. Returns statement position which is the closest to
13716 // source_position.
13717 RUNTIME_FUNCTION(Runtime_GetFunctionCodePositionFromSource) {
13718   HandleScope scope(isolate);
13719   CHECK(isolate->debug()->live_edit_enabled());
13720   DCHECK(args.length() == 2);
13721   CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
13722   CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
13723
13724   Handle<Code> code(function->code(), isolate);
13725
13726   if (code->kind() != Code::FUNCTION &&
13727       code->kind() != Code::OPTIMIZED_FUNCTION) {
13728     return isolate->heap()->undefined_value();
13729   }
13730
13731   RelocIterator it(*code, RelocInfo::ModeMask(RelocInfo::STATEMENT_POSITION));
13732   int closest_pc = 0;
13733   int distance = kMaxInt;
13734   while (!it.done()) {
13735     int statement_position = static_cast<int>(it.rinfo()->data());
13736     // Check if this break point is closer that what was previously found.
13737     if (source_position <= statement_position &&
13738         statement_position - source_position < distance) {
13739       closest_pc =
13740           static_cast<int>(it.rinfo()->pc() - code->instruction_start());
13741       distance = statement_position - source_position;
13742       // Check whether we can't get any closer.
13743       if (distance == 0) break;
13744     }
13745     it.next();
13746   }
13747
13748   return Smi::FromInt(closest_pc);
13749 }
13750
13751
13752 // Calls specified function with or without entering the debugger.
13753 // This is used in unit tests to run code as if debugger is entered or simply
13754 // to have a stack with C++ frame in the middle.
13755 RUNTIME_FUNCTION(Runtime_ExecuteInDebugContext) {
13756   HandleScope scope(isolate);
13757   DCHECK(args.length() == 2);
13758   CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
13759   CONVERT_BOOLEAN_ARG_CHECKED(without_debugger, 1);
13760
13761   MaybeHandle<Object> maybe_result;
13762   if (without_debugger) {
13763     maybe_result = Execution::Call(isolate,
13764                                    function,
13765                                    handle(function->global_proxy()),
13766                                    0,
13767                                    NULL);
13768   } else {
13769     DebugScope debug_scope(isolate->debug());
13770     maybe_result = Execution::Call(isolate,
13771                                    function,
13772                                    handle(function->global_proxy()),
13773                                    0,
13774                                    NULL);
13775   }
13776   Handle<Object> result;
13777   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, maybe_result);
13778   return *result;
13779 }
13780
13781
13782 // Sets a v8 flag.
13783 RUNTIME_FUNCTION(Runtime_SetFlags) {
13784   SealHandleScope shs(isolate);
13785   DCHECK(args.length() == 1);
13786   CONVERT_ARG_CHECKED(String, arg, 0);
13787   SmartArrayPointer<char> flags =
13788       arg->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
13789   FlagList::SetFlagsFromString(flags.get(), StrLength(flags.get()));
13790   return isolate->heap()->undefined_value();
13791 }
13792
13793
13794 // Performs a GC.
13795 // Presently, it only does a full GC.
13796 RUNTIME_FUNCTION(Runtime_CollectGarbage) {
13797   SealHandleScope shs(isolate);
13798   DCHECK(args.length() == 1);
13799   isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags, "%CollectGarbage");
13800   return isolate->heap()->undefined_value();
13801 }
13802
13803
13804 // Gets the current heap usage.
13805 RUNTIME_FUNCTION(Runtime_GetHeapUsage) {
13806   SealHandleScope shs(isolate);
13807   DCHECK(args.length() == 0);
13808   int usage = static_cast<int>(isolate->heap()->SizeOfObjects());
13809   if (!Smi::IsValid(usage)) {
13810     return *isolate->factory()->NewNumberFromInt(usage);
13811   }
13812   return Smi::FromInt(usage);
13813 }
13814
13815
13816 #ifdef V8_I18N_SUPPORT
13817 RUNTIME_FUNCTION(Runtime_CanonicalizeLanguageTag) {
13818   HandleScope scope(isolate);
13819   Factory* factory = isolate->factory();
13820
13821   DCHECK(args.length() == 1);
13822   CONVERT_ARG_HANDLE_CHECKED(String, locale_id_str, 0);
13823
13824   v8::String::Utf8Value locale_id(v8::Utils::ToLocal(locale_id_str));
13825
13826   // Return value which denotes invalid language tag.
13827   const char* const kInvalidTag = "invalid-tag";
13828
13829   UErrorCode error = U_ZERO_ERROR;
13830   char icu_result[ULOC_FULLNAME_CAPACITY];
13831   int icu_length = 0;
13832
13833   uloc_forLanguageTag(*locale_id, icu_result, ULOC_FULLNAME_CAPACITY,
13834                       &icu_length, &error);
13835   if (U_FAILURE(error) || icu_length == 0) {
13836     return *factory->NewStringFromAsciiChecked(kInvalidTag);
13837   }
13838
13839   char result[ULOC_FULLNAME_CAPACITY];
13840
13841   // Force strict BCP47 rules.
13842   uloc_toLanguageTag(icu_result, result, ULOC_FULLNAME_CAPACITY, TRUE, &error);
13843
13844   if (U_FAILURE(error)) {
13845     return *factory->NewStringFromAsciiChecked(kInvalidTag);
13846   }
13847
13848   return *factory->NewStringFromAsciiChecked(result);
13849 }
13850
13851
13852 RUNTIME_FUNCTION(Runtime_AvailableLocalesOf) {
13853   HandleScope scope(isolate);
13854   Factory* factory = isolate->factory();
13855
13856   DCHECK(args.length() == 1);
13857   CONVERT_ARG_HANDLE_CHECKED(String, service, 0);
13858
13859   const icu::Locale* available_locales = NULL;
13860   int32_t count = 0;
13861
13862   if (service->IsUtf8EqualTo(CStrVector("collator"))) {
13863     available_locales = icu::Collator::getAvailableLocales(count);
13864   } else if (service->IsUtf8EqualTo(CStrVector("numberformat"))) {
13865     available_locales = icu::NumberFormat::getAvailableLocales(count);
13866   } else if (service->IsUtf8EqualTo(CStrVector("dateformat"))) {
13867     available_locales = icu::DateFormat::getAvailableLocales(count);
13868   } else if (service->IsUtf8EqualTo(CStrVector("breakiterator"))) {
13869     available_locales = icu::BreakIterator::getAvailableLocales(count);
13870   }
13871
13872   UErrorCode error = U_ZERO_ERROR;
13873   char result[ULOC_FULLNAME_CAPACITY];
13874   Handle<JSObject> locales =
13875       factory->NewJSObject(isolate->object_function());
13876
13877   for (int32_t i = 0; i < count; ++i) {
13878     const char* icu_name = available_locales[i].getName();
13879
13880     error = U_ZERO_ERROR;
13881     // No need to force strict BCP47 rules.
13882     uloc_toLanguageTag(icu_name, result, ULOC_FULLNAME_CAPACITY, FALSE, &error);
13883     if (U_FAILURE(error)) {
13884       // This shouldn't happen, but lets not break the user.
13885       continue;
13886     }
13887
13888     RETURN_FAILURE_ON_EXCEPTION(isolate,
13889         JSObject::SetOwnPropertyIgnoreAttributes(
13890             locales,
13891             factory->NewStringFromAsciiChecked(result),
13892             factory->NewNumber(i),
13893             NONE));
13894   }
13895
13896   return *locales;
13897 }
13898
13899
13900 RUNTIME_FUNCTION(Runtime_GetDefaultICULocale) {
13901   HandleScope scope(isolate);
13902   Factory* factory = isolate->factory();
13903
13904   DCHECK(args.length() == 0);
13905
13906   icu::Locale default_locale;
13907
13908   // Set the locale
13909   char result[ULOC_FULLNAME_CAPACITY];
13910   UErrorCode status = U_ZERO_ERROR;
13911   uloc_toLanguageTag(
13912       default_locale.getName(), result, ULOC_FULLNAME_CAPACITY, FALSE, &status);
13913   if (U_SUCCESS(status)) {
13914     return *factory->NewStringFromAsciiChecked(result);
13915   }
13916
13917   return *factory->NewStringFromStaticChars("und");
13918 }
13919
13920
13921 RUNTIME_FUNCTION(Runtime_GetLanguageTagVariants) {
13922   HandleScope scope(isolate);
13923   Factory* factory = isolate->factory();
13924
13925   DCHECK(args.length() == 1);
13926
13927   CONVERT_ARG_HANDLE_CHECKED(JSArray, input, 0);
13928
13929   uint32_t length = static_cast<uint32_t>(input->length()->Number());
13930   // Set some limit to prevent fuzz tests from going OOM.
13931   // Can be bumped when callers' requirements change.
13932   RUNTIME_ASSERT(length < 100);
13933   Handle<FixedArray> output = factory->NewFixedArray(length);
13934   Handle<Name> maximized = factory->NewStringFromStaticChars("maximized");
13935   Handle<Name> base = factory->NewStringFromStaticChars("base");
13936   for (unsigned int i = 0; i < length; ++i) {
13937     Handle<Object> locale_id;
13938     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
13939         isolate, locale_id, Object::GetElement(isolate, input, i));
13940     if (!locale_id->IsString()) {
13941       return isolate->Throw(*factory->illegal_argument_string());
13942     }
13943
13944     v8::String::Utf8Value utf8_locale_id(
13945         v8::Utils::ToLocal(Handle<String>::cast(locale_id)));
13946
13947     UErrorCode error = U_ZERO_ERROR;
13948
13949     // Convert from BCP47 to ICU format.
13950     // de-DE-u-co-phonebk -> de_DE@collation=phonebook
13951     char icu_locale[ULOC_FULLNAME_CAPACITY];
13952     int icu_locale_length = 0;
13953     uloc_forLanguageTag(*utf8_locale_id, icu_locale, ULOC_FULLNAME_CAPACITY,
13954                         &icu_locale_length, &error);
13955     if (U_FAILURE(error) || icu_locale_length == 0) {
13956       return isolate->Throw(*factory->illegal_argument_string());
13957     }
13958
13959     // Maximize the locale.
13960     // de_DE@collation=phonebook -> de_Latn_DE@collation=phonebook
13961     char icu_max_locale[ULOC_FULLNAME_CAPACITY];
13962     uloc_addLikelySubtags(
13963         icu_locale, icu_max_locale, ULOC_FULLNAME_CAPACITY, &error);
13964
13965     // Remove extensions from maximized locale.
13966     // de_Latn_DE@collation=phonebook -> de_Latn_DE
13967     char icu_base_max_locale[ULOC_FULLNAME_CAPACITY];
13968     uloc_getBaseName(
13969         icu_max_locale, icu_base_max_locale, ULOC_FULLNAME_CAPACITY, &error);
13970
13971     // Get original name without extensions.
13972     // de_DE@collation=phonebook -> de_DE
13973     char icu_base_locale[ULOC_FULLNAME_CAPACITY];
13974     uloc_getBaseName(
13975         icu_locale, icu_base_locale, ULOC_FULLNAME_CAPACITY, &error);
13976
13977     // Convert from ICU locale format to BCP47 format.
13978     // de_Latn_DE -> de-Latn-DE
13979     char base_max_locale[ULOC_FULLNAME_CAPACITY];
13980     uloc_toLanguageTag(icu_base_max_locale, base_max_locale,
13981                        ULOC_FULLNAME_CAPACITY, FALSE, &error);
13982
13983     // de_DE -> de-DE
13984     char base_locale[ULOC_FULLNAME_CAPACITY];
13985     uloc_toLanguageTag(
13986         icu_base_locale, base_locale, ULOC_FULLNAME_CAPACITY, FALSE, &error);
13987
13988     if (U_FAILURE(error)) {
13989       return isolate->Throw(*factory->illegal_argument_string());
13990     }
13991
13992     Handle<JSObject> result = factory->NewJSObject(isolate->object_function());
13993     Handle<String> value = factory->NewStringFromAsciiChecked(base_max_locale);
13994     JSObject::AddProperty(result, maximized, value, NONE);
13995     value = factory->NewStringFromAsciiChecked(base_locale);
13996     JSObject::AddProperty(result, base, value, NONE);
13997     output->set(i, *result);
13998   }
13999
14000   Handle<JSArray> result = factory->NewJSArrayWithElements(output);
14001   result->set_length(Smi::FromInt(length));
14002   return *result;
14003 }
14004
14005
14006 RUNTIME_FUNCTION(Runtime_IsInitializedIntlObject) {
14007   HandleScope scope(isolate);
14008
14009   DCHECK(args.length() == 1);
14010
14011   CONVERT_ARG_HANDLE_CHECKED(Object, input, 0);
14012
14013   if (!input->IsJSObject()) return isolate->heap()->false_value();
14014   Handle<JSObject> obj = Handle<JSObject>::cast(input);
14015
14016   Handle<String> marker = isolate->factory()->intl_initialized_marker_string();
14017   Handle<Object> tag(obj->GetHiddenProperty(marker), isolate);
14018   return isolate->heap()->ToBoolean(!tag->IsTheHole());
14019 }
14020
14021
14022 RUNTIME_FUNCTION(Runtime_IsInitializedIntlObjectOfType) {
14023   HandleScope scope(isolate);
14024
14025   DCHECK(args.length() == 2);
14026
14027   CONVERT_ARG_HANDLE_CHECKED(Object, input, 0);
14028   CONVERT_ARG_HANDLE_CHECKED(String, expected_type, 1);
14029
14030   if (!input->IsJSObject()) return isolate->heap()->false_value();
14031   Handle<JSObject> obj = Handle<JSObject>::cast(input);
14032
14033   Handle<String> marker = isolate->factory()->intl_initialized_marker_string();
14034   Handle<Object> tag(obj->GetHiddenProperty(marker), isolate);
14035   return isolate->heap()->ToBoolean(
14036       tag->IsString() && String::cast(*tag)->Equals(*expected_type));
14037 }
14038
14039
14040 RUNTIME_FUNCTION(Runtime_MarkAsInitializedIntlObjectOfType) {
14041   HandleScope scope(isolate);
14042
14043   DCHECK(args.length() == 3);
14044
14045   CONVERT_ARG_HANDLE_CHECKED(JSObject, input, 0);
14046   CONVERT_ARG_HANDLE_CHECKED(String, type, 1);
14047   CONVERT_ARG_HANDLE_CHECKED(JSObject, impl, 2);
14048
14049   Handle<String> marker = isolate->factory()->intl_initialized_marker_string();
14050   JSObject::SetHiddenProperty(input, marker, type);
14051
14052   marker = isolate->factory()->intl_impl_object_string();
14053   JSObject::SetHiddenProperty(input, marker, impl);
14054
14055   return isolate->heap()->undefined_value();
14056 }
14057
14058
14059 RUNTIME_FUNCTION(Runtime_GetImplFromInitializedIntlObject) {
14060   HandleScope scope(isolate);
14061
14062   DCHECK(args.length() == 1);
14063
14064   CONVERT_ARG_HANDLE_CHECKED(Object, input, 0);
14065
14066   if (!input->IsJSObject()) {
14067     Vector< Handle<Object> > arguments = HandleVector(&input, 1);
14068     THROW_NEW_ERROR_RETURN_FAILURE(isolate,
14069                                    NewTypeError("not_intl_object", arguments));
14070   }
14071
14072   Handle<JSObject> obj = Handle<JSObject>::cast(input);
14073
14074   Handle<String> marker = isolate->factory()->intl_impl_object_string();
14075   Handle<Object> impl(obj->GetHiddenProperty(marker), isolate);
14076   if (impl->IsTheHole()) {
14077     Vector< Handle<Object> > arguments = HandleVector(&obj, 1);
14078     THROW_NEW_ERROR_RETURN_FAILURE(isolate,
14079                                    NewTypeError("not_intl_object", arguments));
14080   }
14081   return *impl;
14082 }
14083
14084
14085 RUNTIME_FUNCTION(Runtime_CreateDateTimeFormat) {
14086   HandleScope scope(isolate);
14087
14088   DCHECK(args.length() == 3);
14089
14090   CONVERT_ARG_HANDLE_CHECKED(String, locale, 0);
14091   CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1);
14092   CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2);
14093
14094   Handle<ObjectTemplateInfo> date_format_template =
14095       I18N::GetTemplate(isolate);
14096
14097   // Create an empty object wrapper.
14098   Handle<JSObject> local_object;
14099   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14100       isolate, local_object,
14101       Execution::InstantiateObject(date_format_template));
14102
14103   // Set date time formatter as internal field of the resulting JS object.
14104   icu::SimpleDateFormat* date_format = DateFormat::InitializeDateTimeFormat(
14105       isolate, locale, options, resolved);
14106
14107   if (!date_format) return isolate->ThrowIllegalOperation();
14108
14109   local_object->SetInternalField(0, reinterpret_cast<Smi*>(date_format));
14110
14111   Factory* factory = isolate->factory();
14112   Handle<String> key = factory->NewStringFromStaticChars("dateFormat");
14113   Handle<String> value = factory->NewStringFromStaticChars("valid");
14114   JSObject::AddProperty(local_object, key, value, NONE);
14115
14116   // Make object handle weak so we can delete the data format once GC kicks in.
14117   Handle<Object> wrapper = isolate->global_handles()->Create(*local_object);
14118   GlobalHandles::MakeWeak(wrapper.location(),
14119                           reinterpret_cast<void*>(wrapper.location()),
14120                           DateFormat::DeleteDateFormat);
14121   return *local_object;
14122 }
14123
14124
14125 RUNTIME_FUNCTION(Runtime_InternalDateFormat) {
14126   HandleScope scope(isolate);
14127
14128   DCHECK(args.length() == 2);
14129
14130   CONVERT_ARG_HANDLE_CHECKED(JSObject, date_format_holder, 0);
14131   CONVERT_ARG_HANDLE_CHECKED(JSDate, date, 1);
14132
14133   Handle<Object> value;
14134   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14135       isolate, value, Execution::ToNumber(isolate, date));
14136
14137   icu::SimpleDateFormat* date_format =
14138       DateFormat::UnpackDateFormat(isolate, date_format_holder);
14139   if (!date_format) return isolate->ThrowIllegalOperation();
14140
14141   icu::UnicodeString result;
14142   date_format->format(value->Number(), result);
14143
14144   Handle<String> result_str;
14145   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14146       isolate, result_str,
14147       isolate->factory()->NewStringFromTwoByte(
14148           Vector<const uint16_t>(
14149               reinterpret_cast<const uint16_t*>(result.getBuffer()),
14150               result.length())));
14151   return *result_str;
14152 }
14153
14154
14155 RUNTIME_FUNCTION(Runtime_InternalDateParse) {
14156   HandleScope scope(isolate);
14157
14158   DCHECK(args.length() == 2);
14159
14160   CONVERT_ARG_HANDLE_CHECKED(JSObject, date_format_holder, 0);
14161   CONVERT_ARG_HANDLE_CHECKED(String, date_string, 1);
14162
14163   v8::String::Utf8Value utf8_date(v8::Utils::ToLocal(date_string));
14164   icu::UnicodeString u_date(icu::UnicodeString::fromUTF8(*utf8_date));
14165   icu::SimpleDateFormat* date_format =
14166       DateFormat::UnpackDateFormat(isolate, date_format_holder);
14167   if (!date_format) return isolate->ThrowIllegalOperation();
14168
14169   UErrorCode status = U_ZERO_ERROR;
14170   UDate date = date_format->parse(u_date, status);
14171   if (U_FAILURE(status)) return isolate->heap()->undefined_value();
14172
14173   Handle<Object> result;
14174   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14175       isolate, result,
14176       Execution::NewDate(isolate, static_cast<double>(date)));
14177   DCHECK(result->IsJSDate());
14178   return *result;
14179 }
14180
14181
14182 RUNTIME_FUNCTION(Runtime_CreateNumberFormat) {
14183   HandleScope scope(isolate);
14184
14185   DCHECK(args.length() == 3);
14186
14187   CONVERT_ARG_HANDLE_CHECKED(String, locale, 0);
14188   CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1);
14189   CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2);
14190
14191   Handle<ObjectTemplateInfo> number_format_template =
14192       I18N::GetTemplate(isolate);
14193
14194   // Create an empty object wrapper.
14195   Handle<JSObject> local_object;
14196   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14197       isolate, local_object,
14198       Execution::InstantiateObject(number_format_template));
14199
14200   // Set number formatter as internal field of the resulting JS object.
14201   icu::DecimalFormat* number_format = NumberFormat::InitializeNumberFormat(
14202       isolate, locale, options, resolved);
14203
14204   if (!number_format) return isolate->ThrowIllegalOperation();
14205
14206   local_object->SetInternalField(0, reinterpret_cast<Smi*>(number_format));
14207
14208   Factory* factory = isolate->factory();
14209   Handle<String> key = factory->NewStringFromStaticChars("numberFormat");
14210   Handle<String> value = factory->NewStringFromStaticChars("valid");
14211   JSObject::AddProperty(local_object, key, value, NONE);
14212
14213   Handle<Object> wrapper = isolate->global_handles()->Create(*local_object);
14214   GlobalHandles::MakeWeak(wrapper.location(),
14215                           reinterpret_cast<void*>(wrapper.location()),
14216                           NumberFormat::DeleteNumberFormat);
14217   return *local_object;
14218 }
14219
14220
14221 RUNTIME_FUNCTION(Runtime_InternalNumberFormat) {
14222   HandleScope scope(isolate);
14223
14224   DCHECK(args.length() == 2);
14225
14226   CONVERT_ARG_HANDLE_CHECKED(JSObject, number_format_holder, 0);
14227   CONVERT_ARG_HANDLE_CHECKED(Object, number, 1);
14228
14229   Handle<Object> value;
14230   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14231       isolate, value, Execution::ToNumber(isolate, number));
14232
14233   icu::DecimalFormat* number_format =
14234       NumberFormat::UnpackNumberFormat(isolate, number_format_holder);
14235   if (!number_format) return isolate->ThrowIllegalOperation();
14236
14237   icu::UnicodeString result;
14238   number_format->format(value->Number(), result);
14239
14240   Handle<String> result_str;
14241   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14242       isolate, result_str,
14243       isolate->factory()->NewStringFromTwoByte(
14244           Vector<const uint16_t>(
14245               reinterpret_cast<const uint16_t*>(result.getBuffer()),
14246               result.length())));
14247   return *result_str;
14248 }
14249
14250
14251 RUNTIME_FUNCTION(Runtime_InternalNumberParse) {
14252   HandleScope scope(isolate);
14253
14254   DCHECK(args.length() == 2);
14255
14256   CONVERT_ARG_HANDLE_CHECKED(JSObject, number_format_holder, 0);
14257   CONVERT_ARG_HANDLE_CHECKED(String, number_string, 1);
14258
14259   v8::String::Utf8Value utf8_number(v8::Utils::ToLocal(number_string));
14260   icu::UnicodeString u_number(icu::UnicodeString::fromUTF8(*utf8_number));
14261   icu::DecimalFormat* number_format =
14262       NumberFormat::UnpackNumberFormat(isolate, number_format_holder);
14263   if (!number_format) return isolate->ThrowIllegalOperation();
14264
14265   UErrorCode status = U_ZERO_ERROR;
14266   icu::Formattable result;
14267   // ICU 4.6 doesn't support parseCurrency call. We need to wait for ICU49
14268   // to be part of Chrome.
14269   // TODO(cira): Include currency parsing code using parseCurrency call.
14270   // We need to check if the formatter parses all currencies or only the
14271   // one it was constructed with (it will impact the API - how to return ISO
14272   // code and the value).
14273   number_format->parse(u_number, result, status);
14274   if (U_FAILURE(status)) return isolate->heap()->undefined_value();
14275
14276   switch (result.getType()) {
14277   case icu::Formattable::kDouble:
14278     return *isolate->factory()->NewNumber(result.getDouble());
14279   case icu::Formattable::kLong:
14280     return *isolate->factory()->NewNumberFromInt(result.getLong());
14281   case icu::Formattable::kInt64:
14282     return *isolate->factory()->NewNumber(
14283         static_cast<double>(result.getInt64()));
14284   default:
14285     return isolate->heap()->undefined_value();
14286   }
14287 }
14288
14289
14290 RUNTIME_FUNCTION(Runtime_CreateCollator) {
14291   HandleScope scope(isolate);
14292
14293   DCHECK(args.length() == 3);
14294
14295   CONVERT_ARG_HANDLE_CHECKED(String, locale, 0);
14296   CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1);
14297   CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2);
14298
14299   Handle<ObjectTemplateInfo> collator_template = I18N::GetTemplate(isolate);
14300
14301   // Create an empty object wrapper.
14302   Handle<JSObject> local_object;
14303   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14304       isolate, local_object, Execution::InstantiateObject(collator_template));
14305
14306   // Set collator as internal field of the resulting JS object.
14307   icu::Collator* collator = Collator::InitializeCollator(
14308       isolate, locale, options, resolved);
14309
14310   if (!collator) return isolate->ThrowIllegalOperation();
14311
14312   local_object->SetInternalField(0, reinterpret_cast<Smi*>(collator));
14313
14314   Factory* factory = isolate->factory();
14315   Handle<String> key = factory->NewStringFromStaticChars("collator");
14316   Handle<String> value = factory->NewStringFromStaticChars("valid");
14317   JSObject::AddProperty(local_object, key, value, NONE);
14318
14319   Handle<Object> wrapper = isolate->global_handles()->Create(*local_object);
14320   GlobalHandles::MakeWeak(wrapper.location(),
14321                           reinterpret_cast<void*>(wrapper.location()),
14322                           Collator::DeleteCollator);
14323   return *local_object;
14324 }
14325
14326
14327 RUNTIME_FUNCTION(Runtime_InternalCompare) {
14328   HandleScope scope(isolate);
14329
14330   DCHECK(args.length() == 3);
14331
14332   CONVERT_ARG_HANDLE_CHECKED(JSObject, collator_holder, 0);
14333   CONVERT_ARG_HANDLE_CHECKED(String, string1, 1);
14334   CONVERT_ARG_HANDLE_CHECKED(String, string2, 2);
14335
14336   icu::Collator* collator = Collator::UnpackCollator(isolate, collator_holder);
14337   if (!collator) return isolate->ThrowIllegalOperation();
14338
14339   v8::String::Value string_value1(v8::Utils::ToLocal(string1));
14340   v8::String::Value string_value2(v8::Utils::ToLocal(string2));
14341   const UChar* u_string1 = reinterpret_cast<const UChar*>(*string_value1);
14342   const UChar* u_string2 = reinterpret_cast<const UChar*>(*string_value2);
14343   UErrorCode status = U_ZERO_ERROR;
14344   UCollationResult result = collator->compare(u_string1,
14345                                               string_value1.length(),
14346                                               u_string2,
14347                                               string_value2.length(),
14348                                               status);
14349   if (U_FAILURE(status)) return isolate->ThrowIllegalOperation();
14350
14351   return *isolate->factory()->NewNumberFromInt(result);
14352 }
14353
14354
14355 RUNTIME_FUNCTION(Runtime_StringNormalize) {
14356   HandleScope scope(isolate);
14357   static const UNormalizationMode normalizationForms[] =
14358       { UNORM_NFC, UNORM_NFD, UNORM_NFKC, UNORM_NFKD };
14359
14360   DCHECK(args.length() == 2);
14361
14362   CONVERT_ARG_HANDLE_CHECKED(String, stringValue, 0);
14363   CONVERT_NUMBER_CHECKED(int, form_id, Int32, args[1]);
14364   RUNTIME_ASSERT(form_id >= 0 &&
14365                  static_cast<size_t>(form_id) < arraysize(normalizationForms));
14366
14367   v8::String::Value string_value(v8::Utils::ToLocal(stringValue));
14368   const UChar* u_value = reinterpret_cast<const UChar*>(*string_value);
14369
14370   // TODO(mnita): check Normalizer2 (not available in ICU 46)
14371   UErrorCode status = U_ZERO_ERROR;
14372   icu::UnicodeString result;
14373   icu::Normalizer::normalize(u_value, normalizationForms[form_id], 0,
14374       result, status);
14375   if (U_FAILURE(status)) {
14376     return isolate->heap()->undefined_value();
14377   }
14378
14379   Handle<String> result_str;
14380   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14381       isolate, result_str,
14382       isolate->factory()->NewStringFromTwoByte(
14383           Vector<const uint16_t>(
14384               reinterpret_cast<const uint16_t*>(result.getBuffer()),
14385               result.length())));
14386   return *result_str;
14387 }
14388
14389
14390 RUNTIME_FUNCTION(Runtime_CreateBreakIterator) {
14391   HandleScope scope(isolate);
14392
14393   DCHECK(args.length() == 3);
14394
14395   CONVERT_ARG_HANDLE_CHECKED(String, locale, 0);
14396   CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1);
14397   CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2);
14398
14399   Handle<ObjectTemplateInfo> break_iterator_template =
14400       I18N::GetTemplate2(isolate);
14401
14402   // Create an empty object wrapper.
14403   Handle<JSObject> local_object;
14404   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14405       isolate, local_object,
14406       Execution::InstantiateObject(break_iterator_template));
14407
14408   // Set break iterator as internal field of the resulting JS object.
14409   icu::BreakIterator* break_iterator = BreakIterator::InitializeBreakIterator(
14410       isolate, locale, options, resolved);
14411
14412   if (!break_iterator) return isolate->ThrowIllegalOperation();
14413
14414   local_object->SetInternalField(0, reinterpret_cast<Smi*>(break_iterator));
14415   // Make sure that the pointer to adopted text is NULL.
14416   local_object->SetInternalField(1, reinterpret_cast<Smi*>(NULL));
14417
14418   Factory* factory = isolate->factory();
14419   Handle<String> key = factory->NewStringFromStaticChars("breakIterator");
14420   Handle<String> value = factory->NewStringFromStaticChars("valid");
14421   JSObject::AddProperty(local_object, key, value, NONE);
14422
14423   // Make object handle weak so we can delete the break iterator once GC kicks
14424   // in.
14425   Handle<Object> wrapper = isolate->global_handles()->Create(*local_object);
14426   GlobalHandles::MakeWeak(wrapper.location(),
14427                           reinterpret_cast<void*>(wrapper.location()),
14428                           BreakIterator::DeleteBreakIterator);
14429   return *local_object;
14430 }
14431
14432
14433 RUNTIME_FUNCTION(Runtime_BreakIteratorAdoptText) {
14434   HandleScope scope(isolate);
14435
14436   DCHECK(args.length() == 2);
14437
14438   CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0);
14439   CONVERT_ARG_HANDLE_CHECKED(String, text, 1);
14440
14441   icu::BreakIterator* break_iterator =
14442       BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder);
14443   if (!break_iterator) return isolate->ThrowIllegalOperation();
14444
14445   icu::UnicodeString* u_text = reinterpret_cast<icu::UnicodeString*>(
14446       break_iterator_holder->GetInternalField(1));
14447   delete u_text;
14448
14449   v8::String::Value text_value(v8::Utils::ToLocal(text));
14450   u_text = new icu::UnicodeString(
14451       reinterpret_cast<const UChar*>(*text_value), text_value.length());
14452   break_iterator_holder->SetInternalField(1, reinterpret_cast<Smi*>(u_text));
14453
14454   break_iterator->setText(*u_text);
14455
14456   return isolate->heap()->undefined_value();
14457 }
14458
14459
14460 RUNTIME_FUNCTION(Runtime_BreakIteratorFirst) {
14461   HandleScope scope(isolate);
14462
14463   DCHECK(args.length() == 1);
14464
14465   CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0);
14466
14467   icu::BreakIterator* break_iterator =
14468       BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder);
14469   if (!break_iterator) return isolate->ThrowIllegalOperation();
14470
14471   return *isolate->factory()->NewNumberFromInt(break_iterator->first());
14472 }
14473
14474
14475 RUNTIME_FUNCTION(Runtime_BreakIteratorNext) {
14476   HandleScope scope(isolate);
14477
14478   DCHECK(args.length() == 1);
14479
14480   CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0);
14481
14482   icu::BreakIterator* break_iterator =
14483       BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder);
14484   if (!break_iterator) return isolate->ThrowIllegalOperation();
14485
14486   return *isolate->factory()->NewNumberFromInt(break_iterator->next());
14487 }
14488
14489
14490 RUNTIME_FUNCTION(Runtime_BreakIteratorCurrent) {
14491   HandleScope scope(isolate);
14492
14493   DCHECK(args.length() == 1);
14494
14495   CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0);
14496
14497   icu::BreakIterator* break_iterator =
14498       BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder);
14499   if (!break_iterator) return isolate->ThrowIllegalOperation();
14500
14501   return *isolate->factory()->NewNumberFromInt(break_iterator->current());
14502 }
14503
14504
14505 RUNTIME_FUNCTION(Runtime_BreakIteratorBreakType) {
14506   HandleScope scope(isolate);
14507
14508   DCHECK(args.length() == 1);
14509
14510   CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0);
14511
14512   icu::BreakIterator* break_iterator =
14513       BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder);
14514   if (!break_iterator) return isolate->ThrowIllegalOperation();
14515
14516   // TODO(cira): Remove cast once ICU fixes base BreakIterator class.
14517   icu::RuleBasedBreakIterator* rule_based_iterator =
14518       static_cast<icu::RuleBasedBreakIterator*>(break_iterator);
14519   int32_t status = rule_based_iterator->getRuleStatus();
14520   // Keep return values in sync with JavaScript BreakType enum.
14521   if (status >= UBRK_WORD_NONE && status < UBRK_WORD_NONE_LIMIT) {
14522     return *isolate->factory()->NewStringFromStaticChars("none");
14523   } else if (status >= UBRK_WORD_NUMBER && status < UBRK_WORD_NUMBER_LIMIT) {
14524     return *isolate->factory()->number_string();
14525   } else if (status >= UBRK_WORD_LETTER && status < UBRK_WORD_LETTER_LIMIT) {
14526     return *isolate->factory()->NewStringFromStaticChars("letter");
14527   } else if (status >= UBRK_WORD_KANA && status < UBRK_WORD_KANA_LIMIT) {
14528     return *isolate->factory()->NewStringFromStaticChars("kana");
14529   } else if (status >= UBRK_WORD_IDEO && status < UBRK_WORD_IDEO_LIMIT) {
14530     return *isolate->factory()->NewStringFromStaticChars("ideo");
14531   } else {
14532     return *isolate->factory()->NewStringFromStaticChars("unknown");
14533   }
14534 }
14535 #endif  // V8_I18N_SUPPORT
14536
14537
14538 // Finds the script object from the script data. NOTE: This operation uses
14539 // heap traversal to find the function generated for the source position
14540 // for the requested break point. For lazily compiled functions several heap
14541 // traversals might be required rendering this operation as a rather slow
14542 // operation. However for setting break points which is normally done through
14543 // some kind of user interaction the performance is not crucial.
14544 static Handle<Object> Runtime_GetScriptFromScriptName(
14545     Handle<String> script_name) {
14546   // Scan the heap for Script objects to find the script with the requested
14547   // script data.
14548   Handle<Script> script;
14549   Factory* factory = script_name->GetIsolate()->factory();
14550   Heap* heap = script_name->GetHeap();
14551   HeapIterator iterator(heap);
14552   HeapObject* obj = NULL;
14553   while (script.is_null() && ((obj = iterator.next()) != NULL)) {
14554     // If a script is found check if it has the script data requested.
14555     if (obj->IsScript()) {
14556       if (Script::cast(obj)->name()->IsString()) {
14557         if (String::cast(Script::cast(obj)->name())->Equals(*script_name)) {
14558           script = Handle<Script>(Script::cast(obj));
14559         }
14560       }
14561     }
14562   }
14563
14564   // If no script with the requested script data is found return undefined.
14565   if (script.is_null()) return factory->undefined_value();
14566
14567   // Return the script found.
14568   return Script::GetWrapper(script);
14569 }
14570
14571
14572 // Get the script object from script data. NOTE: Regarding performance
14573 // see the NOTE for GetScriptFromScriptData.
14574 // args[0]: script data for the script to find the source for
14575 RUNTIME_FUNCTION(Runtime_GetScript) {
14576   HandleScope scope(isolate);
14577
14578   DCHECK(args.length() == 1);
14579
14580   CONVERT_ARG_CHECKED(String, script_name, 0);
14581
14582   // Find the requested script.
14583   Handle<Object> result =
14584       Runtime_GetScriptFromScriptName(Handle<String>(script_name));
14585   return *result;
14586 }
14587
14588
14589 // Collect the raw data for a stack trace.  Returns an array of 4
14590 // element segments each containing a receiver, function, code and
14591 // native code offset.
14592 RUNTIME_FUNCTION(Runtime_CollectStackTrace) {
14593   HandleScope scope(isolate);
14594   DCHECK(args.length() == 2);
14595   CONVERT_ARG_HANDLE_CHECKED(JSObject, error_object, 0);
14596   CONVERT_ARG_HANDLE_CHECKED(Object, caller, 1);
14597
14598   if (!isolate->bootstrapper()->IsActive()) {
14599     // Optionally capture a more detailed stack trace for the message.
14600     isolate->CaptureAndSetDetailedStackTrace(error_object);
14601     // Capture a simple stack trace for the stack property.
14602     isolate->CaptureAndSetSimpleStackTrace(error_object, caller);
14603   }
14604   return isolate->heap()->undefined_value();
14605 }
14606
14607
14608 // Returns V8 version as a string.
14609 RUNTIME_FUNCTION(Runtime_GetV8Version) {
14610   HandleScope scope(isolate);
14611   DCHECK(args.length() == 0);
14612
14613   const char* version_string = v8::V8::GetVersion();
14614
14615   return *isolate->factory()->NewStringFromAsciiChecked(version_string);
14616 }
14617
14618
14619 // Returns function of generator activation.
14620 RUNTIME_FUNCTION(Runtime_GeneratorGetFunction) {
14621   HandleScope scope(isolate);
14622   DCHECK(args.length() == 1);
14623   CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
14624
14625   return generator->function();
14626 }
14627
14628
14629 // Returns context of generator activation.
14630 RUNTIME_FUNCTION(Runtime_GeneratorGetContext) {
14631   HandleScope scope(isolate);
14632   DCHECK(args.length() == 1);
14633   CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
14634
14635   return generator->context();
14636 }
14637
14638
14639 // Returns receiver of generator activation.
14640 RUNTIME_FUNCTION(Runtime_GeneratorGetReceiver) {
14641   HandleScope scope(isolate);
14642   DCHECK(args.length() == 1);
14643   CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
14644
14645   return generator->receiver();
14646 }
14647
14648
14649 // Returns generator continuation as a PC offset, or the magic -1 or 0 values.
14650 RUNTIME_FUNCTION(Runtime_GeneratorGetContinuation) {
14651   HandleScope scope(isolate);
14652   DCHECK(args.length() == 1);
14653   CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
14654
14655   return Smi::FromInt(generator->continuation());
14656 }
14657
14658
14659 RUNTIME_FUNCTION(Runtime_GeneratorGetSourcePosition) {
14660   HandleScope scope(isolate);
14661   DCHECK(args.length() == 1);
14662   CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
14663
14664   if (generator->is_suspended()) {
14665     Handle<Code> code(generator->function()->code(), isolate);
14666     int offset = generator->continuation();
14667
14668     RUNTIME_ASSERT(0 <= offset && offset < code->Size());
14669     Address pc = code->address() + offset;
14670
14671     return Smi::FromInt(code->SourcePosition(pc));
14672   }
14673
14674   return isolate->heap()->undefined_value();
14675 }
14676
14677
14678 RUNTIME_FUNCTION(Runtime_Abort) {
14679   SealHandleScope shs(isolate);
14680   DCHECK(args.length() == 1);
14681   CONVERT_SMI_ARG_CHECKED(message_id, 0);
14682   const char* message = GetBailoutReason(
14683       static_cast<BailoutReason>(message_id));
14684   base::OS::PrintError("abort: %s\n", message);
14685   isolate->PrintStack(stderr);
14686   base::OS::Abort();
14687   UNREACHABLE();
14688   return NULL;
14689 }
14690
14691
14692 RUNTIME_FUNCTION(Runtime_AbortJS) {
14693   HandleScope scope(isolate);
14694   DCHECK(args.length() == 1);
14695   CONVERT_ARG_HANDLE_CHECKED(String, message, 0);
14696   base::OS::PrintError("abort: %s\n", message->ToCString().get());
14697   isolate->PrintStack(stderr);
14698   base::OS::Abort();
14699   UNREACHABLE();
14700   return NULL;
14701 }
14702
14703
14704 RUNTIME_FUNCTION(Runtime_FlattenString) {
14705   HandleScope scope(isolate);
14706   DCHECK(args.length() == 1);
14707   CONVERT_ARG_HANDLE_CHECKED(String, str, 0);
14708   return *String::Flatten(str);
14709 }
14710
14711
14712 RUNTIME_FUNCTION(Runtime_NotifyContextDisposed) {
14713   HandleScope scope(isolate);
14714   DCHECK(args.length() == 0);
14715   isolate->heap()->NotifyContextDisposed();
14716   return isolate->heap()->undefined_value();
14717 }
14718
14719
14720 RUNTIME_FUNCTION(Runtime_LoadMutableDouble) {
14721   HandleScope scope(isolate);
14722   DCHECK(args.length() == 2);
14723   CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
14724   CONVERT_ARG_HANDLE_CHECKED(Smi, index, 1);
14725   RUNTIME_ASSERT((index->value() & 1) == 1);
14726   FieldIndex field_index =
14727       FieldIndex::ForLoadByFieldIndex(object->map(), index->value());
14728   if (field_index.is_inobject()) {
14729     RUNTIME_ASSERT(field_index.property_index() <
14730                    object->map()->inobject_properties());
14731   } else {
14732     RUNTIME_ASSERT(field_index.outobject_array_index() <
14733                    object->properties()->length());
14734   }
14735   Handle<Object> raw_value(object->RawFastPropertyAt(field_index), isolate);
14736   RUNTIME_ASSERT(raw_value->IsMutableHeapNumber());
14737   return *Object::WrapForRead(isolate, raw_value, Representation::Double());
14738 }
14739
14740
14741 RUNTIME_FUNCTION(Runtime_TryMigrateInstance) {
14742   HandleScope scope(isolate);
14743   DCHECK(args.length() == 1);
14744   CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
14745   if (!object->IsJSObject()) return Smi::FromInt(0);
14746   Handle<JSObject> js_object = Handle<JSObject>::cast(object);
14747   if (!js_object->map()->is_deprecated()) return Smi::FromInt(0);
14748   // This call must not cause lazy deopts, because it's called from deferred
14749   // code where we can't handle lazy deopts for lack of a suitable bailout
14750   // ID. So we just try migration and signal failure if necessary,
14751   // which will also trigger a deopt.
14752   if (!JSObject::TryMigrateInstance(js_object)) return Smi::FromInt(0);
14753   return *object;
14754 }
14755
14756
14757 RUNTIME_FUNCTION(Runtime_GetFromCache) {
14758   SealHandleScope shs(isolate);
14759   // This is only called from codegen, so checks might be more lax.
14760   CONVERT_ARG_CHECKED(JSFunctionResultCache, cache, 0);
14761   CONVERT_ARG_CHECKED(Object, key, 1);
14762
14763   {
14764     DisallowHeapAllocation no_alloc;
14765
14766     int finger_index = cache->finger_index();
14767     Object* o = cache->get(finger_index);
14768     if (o == key) {
14769       // The fastest case: hit the same place again.
14770       return cache->get(finger_index + 1);
14771     }
14772
14773     for (int i = finger_index - 2;
14774          i >= JSFunctionResultCache::kEntriesIndex;
14775          i -= 2) {
14776       o = cache->get(i);
14777       if (o == key) {
14778         cache->set_finger_index(i);
14779         return cache->get(i + 1);
14780       }
14781     }
14782
14783     int size = cache->size();
14784     DCHECK(size <= cache->length());
14785
14786     for (int i = size - 2; i > finger_index; i -= 2) {
14787       o = cache->get(i);
14788       if (o == key) {
14789         cache->set_finger_index(i);
14790         return cache->get(i + 1);
14791       }
14792     }
14793   }
14794
14795   // There is no value in the cache.  Invoke the function and cache result.
14796   HandleScope scope(isolate);
14797
14798   Handle<JSFunctionResultCache> cache_handle(cache);
14799   Handle<Object> key_handle(key, isolate);
14800   Handle<Object> value;
14801   {
14802     Handle<JSFunction> factory(JSFunction::cast(
14803           cache_handle->get(JSFunctionResultCache::kFactoryIndex)));
14804     // TODO(antonm): consider passing a receiver when constructing a cache.
14805     Handle<JSObject> receiver(isolate->global_proxy());
14806     // This handle is nor shared, nor used later, so it's safe.
14807     Handle<Object> argv[] = { key_handle };
14808     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14809         isolate, value,
14810         Execution::Call(isolate, factory, receiver, arraysize(argv), argv));
14811   }
14812
14813 #ifdef VERIFY_HEAP
14814   if (FLAG_verify_heap) {
14815     cache_handle->JSFunctionResultCacheVerify();
14816   }
14817 #endif
14818
14819   // Function invocation may have cleared the cache.  Reread all the data.
14820   int finger_index = cache_handle->finger_index();
14821   int size = cache_handle->size();
14822
14823   // If we have spare room, put new data into it, otherwise evict post finger
14824   // entry which is likely to be the least recently used.
14825   int index = -1;
14826   if (size < cache_handle->length()) {
14827     cache_handle->set_size(size + JSFunctionResultCache::kEntrySize);
14828     index = size;
14829   } else {
14830     index = finger_index + JSFunctionResultCache::kEntrySize;
14831     if (index == cache_handle->length()) {
14832       index = JSFunctionResultCache::kEntriesIndex;
14833     }
14834   }
14835
14836   DCHECK(index % 2 == 0);
14837   DCHECK(index >= JSFunctionResultCache::kEntriesIndex);
14838   DCHECK(index < cache_handle->length());
14839
14840   cache_handle->set(index, *key_handle);
14841   cache_handle->set(index + 1, *value);
14842   cache_handle->set_finger_index(index);
14843
14844 #ifdef VERIFY_HEAP
14845   if (FLAG_verify_heap) {
14846     cache_handle->JSFunctionResultCacheVerify();
14847   }
14848 #endif
14849
14850   return *value;
14851 }
14852
14853
14854 RUNTIME_FUNCTION(Runtime_MessageGetStartPosition) {
14855   SealHandleScope shs(isolate);
14856   DCHECK(args.length() == 1);
14857   CONVERT_ARG_CHECKED(JSMessageObject, message, 0);
14858   return Smi::FromInt(message->start_position());
14859 }
14860
14861
14862 RUNTIME_FUNCTION(Runtime_MessageGetScript) {
14863   SealHandleScope shs(isolate);
14864   DCHECK(args.length() == 1);
14865   CONVERT_ARG_CHECKED(JSMessageObject, message, 0);
14866   return message->script();
14867 }
14868
14869
14870 #ifdef DEBUG
14871 // ListNatives is ONLY used by the fuzz-natives.js in debug mode
14872 // Exclude the code in release mode.
14873 RUNTIME_FUNCTION(Runtime_ListNatives) {
14874   HandleScope scope(isolate);
14875   DCHECK(args.length() == 0);
14876 #define COUNT_ENTRY(Name, argc, ressize) + 1
14877   int entry_count = 0
14878       RUNTIME_FUNCTION_LIST(COUNT_ENTRY)
14879       INLINE_FUNCTION_LIST(COUNT_ENTRY)
14880       INLINE_OPTIMIZED_FUNCTION_LIST(COUNT_ENTRY);
14881 #undef COUNT_ENTRY
14882   Factory* factory = isolate->factory();
14883   Handle<FixedArray> elements = factory->NewFixedArray(entry_count);
14884   int index = 0;
14885   bool inline_runtime_functions = false;
14886 #define ADD_ENTRY(Name, argc, ressize)                                      \
14887   {                                                                         \
14888     HandleScope inner(isolate);                                             \
14889     Handle<String> name;                                                    \
14890     /* Inline runtime functions have an underscore in front of the name. */ \
14891     if (inline_runtime_functions) {                                         \
14892       name = factory->NewStringFromStaticChars("_" #Name);                  \
14893     } else {                                                                \
14894       name = factory->NewStringFromStaticChars(#Name);                      \
14895     }                                                                       \
14896     Handle<FixedArray> pair_elements = factory->NewFixedArray(2);           \
14897     pair_elements->set(0, *name);                                           \
14898     pair_elements->set(1, Smi::FromInt(argc));                              \
14899     Handle<JSArray> pair = factory->NewJSArrayWithElements(pair_elements);  \
14900     elements->set(index++, *pair);                                          \
14901   }
14902   inline_runtime_functions = false;
14903   RUNTIME_FUNCTION_LIST(ADD_ENTRY)
14904   INLINE_OPTIMIZED_FUNCTION_LIST(ADD_ENTRY)
14905   inline_runtime_functions = true;
14906   INLINE_FUNCTION_LIST(ADD_ENTRY)
14907 #undef ADD_ENTRY
14908   DCHECK_EQ(index, entry_count);
14909   Handle<JSArray> result = factory->NewJSArrayWithElements(elements);
14910   return *result;
14911 }
14912 #endif
14913
14914
14915 RUNTIME_FUNCTION(Runtime_IS_VAR) {
14916   UNREACHABLE();  // implemented as macro in the parser
14917   return NULL;
14918 }
14919
14920
14921 #define ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(Name)        \
14922   RUNTIME_FUNCTION(Runtime_Has##Name) {          \
14923     CONVERT_ARG_CHECKED(JSObject, obj, 0);                \
14924     return isolate->heap()->ToBoolean(obj->Has##Name());  \
14925   }
14926
14927 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastSmiElements)
14928 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastObjectElements)
14929 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastSmiOrObjectElements)
14930 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastDoubleElements)
14931 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastHoleyElements)
14932 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(DictionaryElements)
14933 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(SloppyArgumentsElements)
14934 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalArrayElements)
14935 // Properties test sitting with elements tests - not fooling anyone.
14936 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastProperties)
14937
14938 #undef ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION
14939
14940
14941 #define TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION(Type, type, TYPE, ctype, size)     \
14942   RUNTIME_FUNCTION(Runtime_HasExternal##Type##Elements) {             \
14943     CONVERT_ARG_CHECKED(JSObject, obj, 0);                                     \
14944     return isolate->heap()->ToBoolean(obj->HasExternal##Type##Elements());     \
14945   }
14946
14947 TYPED_ARRAYS(TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION)
14948
14949 #undef TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION
14950
14951
14952 #define FIXED_TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION(Type, type, TYPE, ctype, s)  \
14953   RUNTIME_FUNCTION(Runtime_HasFixed##Type##Elements) {                \
14954     CONVERT_ARG_CHECKED(JSObject, obj, 0);                                     \
14955     return isolate->heap()->ToBoolean(obj->HasFixed##Type##Elements());        \
14956   }
14957
14958 TYPED_ARRAYS(FIXED_TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION)
14959
14960 #undef FIXED_TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION
14961
14962
14963 RUNTIME_FUNCTION(Runtime_HaveSameMap) {
14964   SealHandleScope shs(isolate);
14965   DCHECK(args.length() == 2);
14966   CONVERT_ARG_CHECKED(JSObject, obj1, 0);
14967   CONVERT_ARG_CHECKED(JSObject, obj2, 1);
14968   return isolate->heap()->ToBoolean(obj1->map() == obj2->map());
14969 }
14970
14971
14972 RUNTIME_FUNCTION(Runtime_IsJSGlobalProxy) {
14973   SealHandleScope shs(isolate);
14974   DCHECK(args.length() == 1);
14975   CONVERT_ARG_CHECKED(Object, obj, 0);
14976   return isolate->heap()->ToBoolean(obj->IsJSGlobalProxy());
14977 }
14978
14979
14980 RUNTIME_FUNCTION(Runtime_IsObserved) {
14981   SealHandleScope shs(isolate);
14982   DCHECK(args.length() == 1);
14983
14984   if (!args[0]->IsJSReceiver()) return isolate->heap()->false_value();
14985   CONVERT_ARG_CHECKED(JSReceiver, obj, 0);
14986   DCHECK(!obj->IsJSGlobalProxy() || !obj->map()->is_observed());
14987   return isolate->heap()->ToBoolean(obj->map()->is_observed());
14988 }
14989
14990
14991 RUNTIME_FUNCTION(Runtime_SetIsObserved) {
14992   HandleScope scope(isolate);
14993   DCHECK(args.length() == 1);
14994   CONVERT_ARG_HANDLE_CHECKED(JSReceiver, obj, 0);
14995   RUNTIME_ASSERT(!obj->IsJSGlobalProxy());
14996   if (obj->IsJSProxy()) return isolate->heap()->undefined_value();
14997   RUNTIME_ASSERT(!obj->map()->is_observed());
14998
14999   DCHECK(obj->IsJSObject());
15000   JSObject::SetObserved(Handle<JSObject>::cast(obj));
15001   return isolate->heap()->undefined_value();
15002 }
15003
15004
15005 RUNTIME_FUNCTION(Runtime_EnqueueMicrotask) {
15006   HandleScope scope(isolate);
15007   DCHECK(args.length() == 1);
15008   CONVERT_ARG_HANDLE_CHECKED(JSFunction, microtask, 0);
15009   isolate->EnqueueMicrotask(microtask);
15010   return isolate->heap()->undefined_value();
15011 }
15012
15013
15014 RUNTIME_FUNCTION(Runtime_RunMicrotasks) {
15015   HandleScope scope(isolate);
15016   DCHECK(args.length() == 0);
15017   isolate->RunMicrotasks();
15018   return isolate->heap()->undefined_value();
15019 }
15020
15021
15022 RUNTIME_FUNCTION(Runtime_GetObservationState) {
15023   SealHandleScope shs(isolate);
15024   DCHECK(args.length() == 0);
15025   return isolate->heap()->observation_state();
15026 }
15027
15028
15029 RUNTIME_FUNCTION(Runtime_ObservationWeakMapCreate) {
15030   HandleScope scope(isolate);
15031   DCHECK(args.length() == 0);
15032   // TODO(adamk): Currently this runtime function is only called three times per
15033   // isolate. If it's called more often, the map should be moved into the
15034   // strong root list.
15035   Handle<Map> map =
15036       isolate->factory()->NewMap(JS_WEAK_MAP_TYPE, JSWeakMap::kSize);
15037   Handle<JSWeakMap> weakmap =
15038       Handle<JSWeakMap>::cast(isolate->factory()->NewJSObjectFromMap(map));
15039   return *WeakCollectionInitialize(isolate, weakmap);
15040 }
15041
15042
15043 static bool ContextsHaveSameOrigin(Handle<Context> context1,
15044                                    Handle<Context> context2) {
15045   return context1->security_token() == context2->security_token();
15046 }
15047
15048
15049 RUNTIME_FUNCTION(Runtime_ObserverObjectAndRecordHaveSameOrigin) {
15050   HandleScope scope(isolate);
15051   DCHECK(args.length() == 3);
15052   CONVERT_ARG_HANDLE_CHECKED(JSFunction, observer, 0);
15053   CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 1);
15054   CONVERT_ARG_HANDLE_CHECKED(JSObject, record, 2);
15055
15056   Handle<Context> observer_context(observer->context()->native_context());
15057   Handle<Context> object_context(object->GetCreationContext());
15058   Handle<Context> record_context(record->GetCreationContext());
15059
15060   return isolate->heap()->ToBoolean(
15061       ContextsHaveSameOrigin(object_context, observer_context) &&
15062       ContextsHaveSameOrigin(object_context, record_context));
15063 }
15064
15065
15066 RUNTIME_FUNCTION(Runtime_ObjectWasCreatedInCurrentOrigin) {
15067   HandleScope scope(isolate);
15068   DCHECK(args.length() == 1);
15069   CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
15070
15071   Handle<Context> creation_context(object->GetCreationContext(), isolate);
15072   return isolate->heap()->ToBoolean(
15073       ContextsHaveSameOrigin(creation_context, isolate->native_context()));
15074 }
15075
15076
15077 RUNTIME_FUNCTION(Runtime_GetObjectContextObjectObserve) {
15078   HandleScope scope(isolate);
15079   DCHECK(args.length() == 1);
15080   CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
15081
15082   Handle<Context> context(object->GetCreationContext(), isolate);
15083   return context->native_object_observe();
15084 }
15085
15086
15087 RUNTIME_FUNCTION(Runtime_GetObjectContextObjectGetNotifier) {
15088   HandleScope scope(isolate);
15089   DCHECK(args.length() == 1);
15090   CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
15091
15092   Handle<Context> context(object->GetCreationContext(), isolate);
15093   return context->native_object_get_notifier();
15094 }
15095
15096
15097 RUNTIME_FUNCTION(Runtime_GetObjectContextNotifierPerformChange) {
15098   HandleScope scope(isolate);
15099   DCHECK(args.length() == 1);
15100   CONVERT_ARG_HANDLE_CHECKED(JSObject, object_info, 0);
15101
15102   Handle<Context> context(object_info->GetCreationContext(), isolate);
15103   return context->native_object_notifier_perform_change();
15104 }
15105
15106
15107 static Object* ArrayConstructorCommon(Isolate* isolate,
15108                                            Handle<JSFunction> constructor,
15109                                            Handle<AllocationSite> site,
15110                                            Arguments* caller_args) {
15111   Factory* factory = isolate->factory();
15112
15113   bool holey = false;
15114   bool can_use_type_feedback = true;
15115   if (caller_args->length() == 1) {
15116     Handle<Object> argument_one = caller_args->at<Object>(0);
15117     if (argument_one->IsSmi()) {
15118       int value = Handle<Smi>::cast(argument_one)->value();
15119       if (value < 0 || value >= JSObject::kInitialMaxFastElementArray) {
15120         // the array is a dictionary in this case.
15121         can_use_type_feedback = false;
15122       } else if (value != 0) {
15123         holey = true;
15124       }
15125     } else {
15126       // Non-smi length argument produces a dictionary
15127       can_use_type_feedback = false;
15128     }
15129   }
15130
15131   Handle<JSArray> array;
15132   if (!site.is_null() && can_use_type_feedback) {
15133     ElementsKind to_kind = site->GetElementsKind();
15134     if (holey && !IsFastHoleyElementsKind(to_kind)) {
15135       to_kind = GetHoleyElementsKind(to_kind);
15136       // Update the allocation site info to reflect the advice alteration.
15137       site->SetElementsKind(to_kind);
15138     }
15139
15140     // We should allocate with an initial map that reflects the allocation site
15141     // advice. Therefore we use AllocateJSObjectFromMap instead of passing
15142     // the constructor.
15143     Handle<Map> initial_map(constructor->initial_map(), isolate);
15144     if (to_kind != initial_map->elements_kind()) {
15145       initial_map = Map::AsElementsKind(initial_map, to_kind);
15146     }
15147
15148     // If we don't care to track arrays of to_kind ElementsKind, then
15149     // don't emit a memento for them.
15150     Handle<AllocationSite> allocation_site;
15151     if (AllocationSite::GetMode(to_kind) == TRACK_ALLOCATION_SITE) {
15152       allocation_site = site;
15153     }
15154
15155     array = Handle<JSArray>::cast(factory->NewJSObjectFromMap(
15156         initial_map, NOT_TENURED, true, allocation_site));
15157   } else {
15158     array = Handle<JSArray>::cast(factory->NewJSObject(constructor));
15159
15160     // We might need to transition to holey
15161     ElementsKind kind = constructor->initial_map()->elements_kind();
15162     if (holey && !IsFastHoleyElementsKind(kind)) {
15163       kind = GetHoleyElementsKind(kind);
15164       JSObject::TransitionElementsKind(array, kind);
15165     }
15166   }
15167
15168   factory->NewJSArrayStorage(array, 0, 0, DONT_INITIALIZE_ARRAY_ELEMENTS);
15169
15170   ElementsKind old_kind = array->GetElementsKind();
15171   RETURN_FAILURE_ON_EXCEPTION(
15172       isolate, ArrayConstructInitializeElements(array, caller_args));
15173   if (!site.is_null() &&
15174       (old_kind != array->GetElementsKind() ||
15175        !can_use_type_feedback)) {
15176     // The arguments passed in caused a transition. This kind of complexity
15177     // can't be dealt with in the inlined hydrogen array constructor case.
15178     // We must mark the allocationsite as un-inlinable.
15179     site->SetDoNotInlineCall();
15180   }
15181   return *array;
15182 }
15183
15184
15185 RUNTIME_FUNCTION(Runtime_ArrayConstructor) {
15186   HandleScope scope(isolate);
15187   // If we get 2 arguments then they are the stub parameters (constructor, type
15188   // info).  If we get 4, then the first one is a pointer to the arguments
15189   // passed by the caller, and the last one is the length of the arguments
15190   // passed to the caller (redundant, but useful to check on the deoptimizer
15191   // with an assert).
15192   Arguments empty_args(0, NULL);
15193   bool no_caller_args = args.length() == 2;
15194   DCHECK(no_caller_args || args.length() == 4);
15195   int parameters_start = no_caller_args ? 0 : 1;
15196   Arguments* caller_args = no_caller_args
15197       ? &empty_args
15198       : reinterpret_cast<Arguments*>(args[0]);
15199   CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, parameters_start);
15200   CONVERT_ARG_HANDLE_CHECKED(Object, type_info, parameters_start + 1);
15201 #ifdef DEBUG
15202   if (!no_caller_args) {
15203     CONVERT_SMI_ARG_CHECKED(arg_count, parameters_start + 2);
15204     DCHECK(arg_count == caller_args->length());
15205   }
15206 #endif
15207
15208   Handle<AllocationSite> site;
15209   if (!type_info.is_null() &&
15210       *type_info != isolate->heap()->undefined_value()) {
15211     site = Handle<AllocationSite>::cast(type_info);
15212     DCHECK(!site->SitePointsToLiteral());
15213   }
15214
15215   return ArrayConstructorCommon(isolate,
15216                                 constructor,
15217                                 site,
15218                                 caller_args);
15219 }
15220
15221
15222 RUNTIME_FUNCTION(Runtime_InternalArrayConstructor) {
15223   HandleScope scope(isolate);
15224   Arguments empty_args(0, NULL);
15225   bool no_caller_args = args.length() == 1;
15226   DCHECK(no_caller_args || args.length() == 3);
15227   int parameters_start = no_caller_args ? 0 : 1;
15228   Arguments* caller_args = no_caller_args
15229       ? &empty_args
15230       : reinterpret_cast<Arguments*>(args[0]);
15231   CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, parameters_start);
15232 #ifdef DEBUG
15233   if (!no_caller_args) {
15234     CONVERT_SMI_ARG_CHECKED(arg_count, parameters_start + 1);
15235     DCHECK(arg_count == caller_args->length());
15236   }
15237 #endif
15238   return ArrayConstructorCommon(isolate,
15239                                 constructor,
15240                                 Handle<AllocationSite>::null(),
15241                                 caller_args);
15242 }
15243
15244
15245 RUNTIME_FUNCTION(Runtime_NormalizeElements) {
15246   HandleScope scope(isolate);
15247   DCHECK(args.length() == 1);
15248   CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0);
15249   RUNTIME_ASSERT(!array->HasExternalArrayElements() &&
15250                  !array->HasFixedTypedArrayElements());
15251   JSObject::NormalizeElements(array);
15252   return *array;
15253 }
15254
15255
15256 RUNTIME_FUNCTION(Runtime_MaxSmi) {
15257   SealHandleScope shs(isolate);
15258   DCHECK(args.length() == 0);
15259   return Smi::FromInt(Smi::kMaxValue);
15260 }
15261
15262
15263 // TODO(dcarney): remove this function when TurboFan supports it.
15264 // Takes the object to be iterated over and the result of GetPropertyNamesFast
15265 // Returns pair (cache_array, cache_type).
15266 RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ForInInit) {
15267   SealHandleScope scope(isolate);
15268   DCHECK(args.length() == 2);
15269   // This simulates CONVERT_ARG_HANDLE_CHECKED for calls returning pairs.
15270   // Not worth creating a macro atm as this function should be removed.
15271   if (!args[0]->IsJSReceiver() || !args[1]->IsObject()) {
15272     Object* error = isolate->ThrowIllegalOperation();
15273     return MakePair(error, isolate->heap()->undefined_value());
15274   }
15275   Handle<JSReceiver> object = args.at<JSReceiver>(0);
15276   Handle<Object> cache_type = args.at<Object>(1);
15277   if (cache_type->IsMap()) {
15278     // Enum cache case.
15279     if (Map::EnumLengthBits::decode(Map::cast(*cache_type)->bit_field3()) ==
15280         0) {
15281       // 0 length enum.
15282       // Can't handle this case in the graph builder,
15283       // so transform it into the empty fixed array case.
15284       return MakePair(isolate->heap()->empty_fixed_array(), Smi::FromInt(1));
15285     }
15286     return MakePair(object->map()->instance_descriptors()->GetEnumCache(),
15287                     *cache_type);
15288   } else {
15289     // FixedArray case.
15290     Smi* new_cache_type = Smi::FromInt(object->IsJSProxy() ? 0 : 1);
15291     return MakePair(*Handle<FixedArray>::cast(cache_type), new_cache_type);
15292   }
15293 }
15294
15295
15296 // TODO(dcarney): remove this function when TurboFan supports it.
15297 RUNTIME_FUNCTION(Runtime_ForInCacheArrayLength) {
15298   SealHandleScope shs(isolate);
15299   DCHECK(args.length() == 2);
15300   CONVERT_ARG_HANDLE_CHECKED(Object, cache_type, 0);
15301   CONVERT_ARG_HANDLE_CHECKED(FixedArray, array, 1);
15302   int length = 0;
15303   if (cache_type->IsMap()) {
15304     length = Map::cast(*cache_type)->EnumLength();
15305   } else {
15306     DCHECK(cache_type->IsSmi());
15307     length = array->length();
15308   }
15309   return Smi::FromInt(length);
15310 }
15311
15312
15313 // TODO(dcarney): remove this function when TurboFan supports it.
15314 // Takes (the object to be iterated over,
15315 //        cache_array from ForInInit,
15316 //        cache_type from ForInInit,
15317 //        the current index)
15318 // Returns pair (array[index], needs_filtering).
15319 RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ForInNext) {
15320   SealHandleScope scope(isolate);
15321   DCHECK(args.length() == 4);
15322   int32_t index;
15323   // This simulates CONVERT_ARG_HANDLE_CHECKED for calls returning pairs.
15324   // Not worth creating a macro atm as this function should be removed.
15325   if (!args[0]->IsJSReceiver() || !args[1]->IsFixedArray() ||
15326       !args[2]->IsObject() || !args[3]->ToInt32(&index)) {
15327     Object* error = isolate->ThrowIllegalOperation();
15328     return MakePair(error, isolate->heap()->undefined_value());
15329   }
15330   Handle<JSReceiver> object = args.at<JSReceiver>(0);
15331   Handle<FixedArray> array = args.at<FixedArray>(1);
15332   Handle<Object> cache_type = args.at<Object>(2);
15333   // Figure out first if a slow check is needed for this object.
15334   bool slow_check_needed = false;
15335   if (cache_type->IsMap()) {
15336     if (object->map() != Map::cast(*cache_type)) {
15337       // Object transitioned.  Need slow check.
15338       slow_check_needed = true;
15339     }
15340   } else {
15341     // No slow check needed for proxies.
15342     slow_check_needed = Smi::cast(*cache_type)->value() == 1;
15343   }
15344   return MakePair(array->get(index),
15345                   isolate->heap()->ToBoolean(slow_check_needed));
15346 }
15347
15348
15349 // ----------------------------------------------------------------------------
15350 // Reference implementation for inlined runtime functions.  Only used when the
15351 // compiler does not support a certain intrinsic.  Don't optimize these, but
15352 // implement the intrinsic in the respective compiler instead.
15353
15354 // TODO(mstarzinger): These are place-holder stubs for TurboFan and will
15355 // eventually all have a C++ implementation and this macro will be gone.
15356 #define U(name)                               \
15357   RUNTIME_FUNCTION(RuntimeReference_##name) { \
15358     UNIMPLEMENTED();                          \
15359     return NULL;                              \
15360   }
15361
15362 U(IsStringWrapperSafeForDefaultValueOf)
15363 U(DebugBreakInOptimizedCode)
15364
15365 #undef U
15366
15367
15368 RUNTIME_FUNCTION(RuntimeReference_IsSmi) {
15369   SealHandleScope shs(isolate);
15370   DCHECK(args.length() == 1);
15371   CONVERT_ARG_CHECKED(Object, obj, 0);
15372   return isolate->heap()->ToBoolean(obj->IsSmi());
15373 }
15374
15375
15376 RUNTIME_FUNCTION(RuntimeReference_IsNonNegativeSmi) {
15377   SealHandleScope shs(isolate);
15378   DCHECK(args.length() == 1);
15379   CONVERT_ARG_CHECKED(Object, obj, 0);
15380   return isolate->heap()->ToBoolean(obj->IsSmi() &&
15381                                     Smi::cast(obj)->value() >= 0);
15382 }
15383
15384
15385 RUNTIME_FUNCTION(RuntimeReference_IsArray) {
15386   SealHandleScope shs(isolate);
15387   DCHECK(args.length() == 1);
15388   CONVERT_ARG_CHECKED(Object, obj, 0);
15389   return isolate->heap()->ToBoolean(obj->IsJSArray());
15390 }
15391
15392
15393 RUNTIME_FUNCTION(RuntimeReference_IsRegExp) {
15394   SealHandleScope shs(isolate);
15395   DCHECK(args.length() == 1);
15396   CONVERT_ARG_CHECKED(Object, obj, 0);
15397   return isolate->heap()->ToBoolean(obj->IsJSRegExp());
15398 }
15399
15400
15401 RUNTIME_FUNCTION(RuntimeReference_IsConstructCall) {
15402   SealHandleScope shs(isolate);
15403   DCHECK(args.length() == 0);
15404   JavaScriptFrameIterator it(isolate);
15405   JavaScriptFrame* frame = it.frame();
15406   return isolate->heap()->ToBoolean(frame->IsConstructor());
15407 }
15408
15409
15410 RUNTIME_FUNCTION(RuntimeReference_CallFunction) {
15411   SealHandleScope shs(isolate);
15412   return __RT_impl_Runtime_Call(args, isolate);
15413 }
15414
15415
15416 RUNTIME_FUNCTION(RuntimeReference_ArgumentsLength) {
15417   SealHandleScope shs(isolate);
15418   DCHECK(args.length() == 0);
15419   JavaScriptFrameIterator it(isolate);
15420   JavaScriptFrame* frame = it.frame();
15421   return Smi::FromInt(frame->GetArgumentsLength());
15422 }
15423
15424
15425 RUNTIME_FUNCTION(RuntimeReference_Arguments) {
15426   SealHandleScope shs(isolate);
15427   return __RT_impl_Runtime_GetArgumentsProperty(args, isolate);
15428 }
15429
15430
15431 RUNTIME_FUNCTION(RuntimeReference_ValueOf) {
15432   SealHandleScope shs(isolate);
15433   DCHECK(args.length() == 1);
15434   CONVERT_ARG_CHECKED(Object, obj, 0);
15435   if (!obj->IsJSValue()) return obj;
15436   return JSValue::cast(obj)->value();
15437 }
15438
15439
15440 RUNTIME_FUNCTION(RuntimeReference_SetValueOf) {
15441   SealHandleScope shs(isolate);
15442   DCHECK(args.length() == 2);
15443   CONVERT_ARG_CHECKED(Object, obj, 0);
15444   CONVERT_ARG_CHECKED(Object, value, 1);
15445   if (!obj->IsJSValue()) return value;
15446   JSValue::cast(obj)->set_value(value);
15447   return value;
15448 }
15449
15450
15451 RUNTIME_FUNCTION(RuntimeReference_DateField) {
15452   SealHandleScope shs(isolate);
15453   DCHECK(args.length() == 2);
15454   CONVERT_ARG_CHECKED(Object, obj, 0);
15455   CONVERT_SMI_ARG_CHECKED(index, 1);
15456   if (!obj->IsJSDate()) {
15457     HandleScope scope(isolate);
15458     THROW_NEW_ERROR_RETURN_FAILURE(
15459         isolate,
15460         NewTypeError("not_date_object", HandleVector<Object>(NULL, 0)));
15461   }
15462   JSDate* date = JSDate::cast(obj);
15463   if (index == 0) return date->value();
15464   return JSDate::GetField(date, Smi::FromInt(index));
15465 }
15466
15467
15468 RUNTIME_FUNCTION(RuntimeReference_StringCharFromCode) {
15469   SealHandleScope shs(isolate);
15470   return __RT_impl_Runtime_CharFromCode(args, isolate);
15471 }
15472
15473
15474 RUNTIME_FUNCTION(RuntimeReference_StringCharAt) {
15475   SealHandleScope shs(isolate);
15476   DCHECK(args.length() == 2);
15477   if (!args[0]->IsString()) return Smi::FromInt(0);
15478   if (!args[1]->IsNumber()) return Smi::FromInt(0);
15479   if (std::isinf(args.number_at(1))) return isolate->heap()->empty_string();
15480   Object* code = __RT_impl_Runtime_StringCharCodeAtRT(args, isolate);
15481   if (code->IsNaN()) return isolate->heap()->empty_string();
15482   return __RT_impl_Runtime_CharFromCode(Arguments(1, &code), isolate);
15483 }
15484
15485
15486 RUNTIME_FUNCTION(RuntimeReference_OneByteSeqStringSetChar) {
15487   SealHandleScope shs(isolate);
15488   DCHECK(args.length() == 3);
15489   CONVERT_INT32_ARG_CHECKED(index, 0);
15490   CONVERT_INT32_ARG_CHECKED(value, 1);
15491   CONVERT_ARG_CHECKED(SeqOneByteString, string, 2);
15492   string->SeqOneByteStringSet(index, value);
15493   return string;
15494 }
15495
15496
15497 RUNTIME_FUNCTION(RuntimeReference_TwoByteSeqStringSetChar) {
15498   SealHandleScope shs(isolate);
15499   DCHECK(args.length() == 3);
15500   CONVERT_INT32_ARG_CHECKED(index, 0);
15501   CONVERT_INT32_ARG_CHECKED(value, 1);
15502   CONVERT_ARG_CHECKED(SeqTwoByteString, string, 2);
15503   string->SeqTwoByteStringSet(index, value);
15504   return string;
15505 }
15506
15507
15508 RUNTIME_FUNCTION(RuntimeReference_ObjectEquals) {
15509   SealHandleScope shs(isolate);
15510   DCHECK(args.length() == 2);
15511   CONVERT_ARG_CHECKED(Object, obj1, 0);
15512   CONVERT_ARG_CHECKED(Object, obj2, 1);
15513   return isolate->heap()->ToBoolean(obj1 == obj2);
15514 }
15515
15516
15517 RUNTIME_FUNCTION(RuntimeReference_IsObject) {
15518   SealHandleScope shs(isolate);
15519   DCHECK(args.length() == 1);
15520   CONVERT_ARG_CHECKED(Object, obj, 0);
15521   if (!obj->IsHeapObject()) return isolate->heap()->false_value();
15522   if (obj->IsNull()) return isolate->heap()->true_value();
15523   if (obj->IsUndetectableObject()) return isolate->heap()->false_value();
15524   Map* map = HeapObject::cast(obj)->map();
15525   bool is_non_callable_spec_object =
15526       map->instance_type() >= FIRST_NONCALLABLE_SPEC_OBJECT_TYPE &&
15527       map->instance_type() <= LAST_NONCALLABLE_SPEC_OBJECT_TYPE;
15528   return isolate->heap()->ToBoolean(is_non_callable_spec_object);
15529 }
15530
15531
15532 RUNTIME_FUNCTION(RuntimeReference_IsFunction) {
15533   SealHandleScope shs(isolate);
15534   DCHECK(args.length() == 1);
15535   CONVERT_ARG_CHECKED(Object, obj, 0);
15536   return isolate->heap()->ToBoolean(obj->IsJSFunction());
15537 }
15538
15539
15540 RUNTIME_FUNCTION(RuntimeReference_IsUndetectableObject) {
15541   SealHandleScope shs(isolate);
15542   DCHECK(args.length() == 1);
15543   CONVERT_ARG_CHECKED(Object, obj, 0);
15544   return isolate->heap()->ToBoolean(obj->IsUndetectableObject());
15545 }
15546
15547
15548 RUNTIME_FUNCTION(RuntimeReference_IsSpecObject) {
15549   SealHandleScope shs(isolate);
15550   DCHECK(args.length() == 1);
15551   CONVERT_ARG_CHECKED(Object, obj, 0);
15552   return isolate->heap()->ToBoolean(obj->IsSpecObject());
15553 }
15554
15555
15556 RUNTIME_FUNCTION(RuntimeReference_MathPow) {
15557   SealHandleScope shs(isolate);
15558   return __RT_impl_Runtime_MathPowSlow(args, isolate);
15559 }
15560
15561
15562 RUNTIME_FUNCTION(RuntimeReference_IsMinusZero) {
15563   SealHandleScope shs(isolate);
15564   DCHECK(args.length() == 1);
15565   CONVERT_ARG_CHECKED(Object, obj, 0);
15566   if (!obj->IsHeapNumber()) return isolate->heap()->false_value();
15567   HeapNumber* number = HeapNumber::cast(obj);
15568   return isolate->heap()->ToBoolean(IsMinusZero(number->value()));
15569 }
15570
15571
15572 RUNTIME_FUNCTION(RuntimeReference_HasCachedArrayIndex) {
15573   SealHandleScope shs(isolate);
15574   DCHECK(args.length() == 1);
15575   return isolate->heap()->false_value();
15576 }
15577
15578
15579 RUNTIME_FUNCTION(RuntimeReference_GetCachedArrayIndex) {
15580   SealHandleScope shs(isolate);
15581   DCHECK(args.length() == 1);
15582   return isolate->heap()->undefined_value();
15583 }
15584
15585
15586 RUNTIME_FUNCTION(RuntimeReference_FastOneByteArrayJoin) {
15587   SealHandleScope shs(isolate);
15588   DCHECK(args.length() == 2);
15589   return isolate->heap()->undefined_value();
15590 }
15591
15592
15593 RUNTIME_FUNCTION(RuntimeReference_GeneratorNext) {
15594   UNREACHABLE();  // Optimization disabled in SetUpGenerators().
15595   return NULL;
15596 }
15597
15598
15599 RUNTIME_FUNCTION(RuntimeReference_GeneratorThrow) {
15600   UNREACHABLE();  // Optimization disabled in SetUpGenerators().
15601   return NULL;
15602 }
15603
15604
15605 RUNTIME_FUNCTION(RuntimeReference_ClassOf) {
15606   SealHandleScope shs(isolate);
15607   DCHECK(args.length() == 1);
15608   CONVERT_ARG_CHECKED(Object, obj, 0);
15609   if (!obj->IsJSReceiver()) return isolate->heap()->null_value();
15610   return JSReceiver::cast(obj)->class_name();
15611 }
15612
15613
15614 RUNTIME_FUNCTION(RuntimeReference_StringCharCodeAt) {
15615   SealHandleScope shs(isolate);
15616   DCHECK(args.length() == 2);
15617   if (!args[0]->IsString()) return isolate->heap()->undefined_value();
15618   if (!args[1]->IsNumber()) return isolate->heap()->undefined_value();
15619   if (std::isinf(args.number_at(1))) return isolate->heap()->nan_value();
15620   return __RT_impl_Runtime_StringCharCodeAtRT(args, isolate);
15621 }
15622
15623
15624 RUNTIME_FUNCTION(RuntimeReference_StringAdd) {
15625   SealHandleScope shs(isolate);
15626   return __RT_impl_Runtime_StringAdd(args, isolate);
15627 }
15628
15629
15630 RUNTIME_FUNCTION(RuntimeReference_SubString) {
15631   SealHandleScope shs(isolate);
15632   return __RT_impl_Runtime_SubString(args, isolate);
15633 }
15634
15635
15636 RUNTIME_FUNCTION(RuntimeReference_StringCompare) {
15637   SealHandleScope shs(isolate);
15638   return __RT_impl_Runtime_StringCompare(args, isolate);
15639 }
15640
15641
15642 RUNTIME_FUNCTION(RuntimeReference_RegExpExec) {
15643   SealHandleScope shs(isolate);
15644   return __RT_impl_Runtime_RegExpExecRT(args, isolate);
15645 }
15646
15647
15648 RUNTIME_FUNCTION(RuntimeReference_RegExpConstructResult) {
15649   SealHandleScope shs(isolate);
15650   return __RT_impl_Runtime_RegExpConstructResult(args, isolate);
15651 }
15652
15653
15654 RUNTIME_FUNCTION(RuntimeReference_GetFromCache) {
15655   HandleScope scope(isolate);
15656   DCHECK(args.length() == 2);
15657   CONVERT_SMI_ARG_CHECKED(id, 0);
15658   args[0] = isolate->native_context()->jsfunction_result_caches()->get(id);
15659   return __RT_impl_Runtime_GetFromCache(args, isolate);
15660 }
15661
15662
15663 RUNTIME_FUNCTION(RuntimeReference_NumberToString) {
15664   SealHandleScope shs(isolate);
15665   return __RT_impl_Runtime_NumberToStringRT(args, isolate);
15666 }
15667
15668
15669 RUNTIME_FUNCTION(RuntimeReference_DebugIsActive) {
15670   SealHandleScope shs(isolate);
15671   return Smi::FromInt(isolate->debug()->is_active());
15672 }
15673
15674
15675 // ----------------------------------------------------------------------------
15676 // Implementation of Runtime
15677
15678 #define F(name, number_of_args, result_size)                                  \
15679   {                                                                           \
15680     Runtime::k##name, Runtime::RUNTIME, #name, FUNCTION_ADDR(Runtime_##name), \
15681         number_of_args, result_size                                           \
15682   }                                                                           \
15683   ,
15684
15685
15686 #define I(name, number_of_args, result_size)                                \
15687   {                                                                         \
15688     Runtime::kInline##name, Runtime::INLINE, "_" #name,                     \
15689         FUNCTION_ADDR(RuntimeReference_##name), number_of_args, result_size \
15690   }                                                                         \
15691   ,
15692
15693
15694 #define IO(name, number_of_args, result_size)                              \
15695   {                                                                        \
15696     Runtime::kInlineOptimized##name, Runtime::INLINE_OPTIMIZED, "_" #name, \
15697         FUNCTION_ADDR(Runtime_##name), number_of_args, result_size         \
15698   }                                                                        \
15699   ,
15700
15701
15702 static const Runtime::Function kIntrinsicFunctions[] = {
15703   RUNTIME_FUNCTION_LIST(F)
15704   INLINE_OPTIMIZED_FUNCTION_LIST(F)
15705   INLINE_FUNCTION_LIST(I)
15706   INLINE_OPTIMIZED_FUNCTION_LIST(IO)
15707 };
15708
15709 #undef IO
15710 #undef I
15711 #undef F
15712
15713
15714 void Runtime::InitializeIntrinsicFunctionNames(Isolate* isolate,
15715                                                Handle<NameDictionary> dict) {
15716   DCHECK(dict->NumberOfElements() == 0);
15717   HandleScope scope(isolate);
15718   for (int i = 0; i < kNumFunctions; ++i) {
15719     const char* name = kIntrinsicFunctions[i].name;
15720     if (name == NULL) continue;
15721     Handle<NameDictionary> new_dict = NameDictionary::Add(
15722         dict,
15723         isolate->factory()->InternalizeUtf8String(name),
15724         Handle<Smi>(Smi::FromInt(i), isolate),
15725         PropertyDetails(NONE, NORMAL, Representation::None()));
15726     // The dictionary does not need to grow.
15727     CHECK(new_dict.is_identical_to(dict));
15728   }
15729 }
15730
15731
15732 const Runtime::Function* Runtime::FunctionForName(Handle<String> name) {
15733   Heap* heap = name->GetHeap();
15734   int entry = heap->intrinsic_function_names()->FindEntry(name);
15735   if (entry != kNotFound) {
15736     Object* smi_index = heap->intrinsic_function_names()->ValueAt(entry);
15737     int function_index = Smi::cast(smi_index)->value();
15738     return &(kIntrinsicFunctions[function_index]);
15739   }
15740   return NULL;
15741 }
15742
15743
15744 const Runtime::Function* Runtime::FunctionForEntry(Address entry) {
15745   for (size_t i = 0; i < arraysize(kIntrinsicFunctions); ++i) {
15746     if (entry == kIntrinsicFunctions[i].entry) {
15747       return &(kIntrinsicFunctions[i]);
15748     }
15749   }
15750   return NULL;
15751 }
15752
15753
15754 const Runtime::Function* Runtime::FunctionForId(Runtime::FunctionId id) {
15755   return &(kIntrinsicFunctions[static_cast<int>(id)]);
15756 }
15757
15758 } }  // namespace v8::internal