Upstream version 10.39.225.0
[platform/framework/web/crosswalk.git] / src / v8 / src / mips64 / regexp-macro-assembler-mips64.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #if V8_TARGET_ARCH_MIPS64
8
9 #include "src/code-stubs.h"
10 #include "src/log.h"
11 #include "src/macro-assembler.h"
12 #include "src/regexp-macro-assembler.h"
13 #include "src/regexp-stack.h"
14 #include "src/unicode.h"
15
16 #include "src/mips64/regexp-macro-assembler-mips64.h"
17
18 namespace v8 {
19 namespace internal {
20
21 #ifndef V8_INTERPRETED_REGEXP
22 /*
23  * This assembler uses the following register assignment convention
24  * - t3 : Temporarily stores the index of capture start after a matching pass
25  *        for a global regexp.
26  * - a5 : Pointer to current code object (Code*) including heap object tag.
27  * - a6 : Current position in input, as negative offset from end of string.
28  *        Please notice that this is the byte offset, not the character offset!
29  * - a7 : Currently loaded character. Must be loaded using
30  *        LoadCurrentCharacter before using any of the dispatch methods.
31  * - t0 : Points to tip of backtrack stack
32  * - t1 : Unused.
33  * - t2 : End of input (points to byte after last character in input).
34  * - fp : Frame pointer. Used to access arguments, local variables and
35  *         RegExp registers.
36  * - sp : Points to tip of C stack.
37  *
38  * The remaining registers are free for computations.
39  * Each call to a public method should retain this convention.
40  *
41  * TODO(plind): O32 documented here with intent of having single 32/64 codebase
42  *              in the future.
43  *
44  * The O32 stack will have the following structure:
45  *
46  *  - fp[76]  Isolate* isolate   (address of the current isolate)
47  *  - fp[72]  direct_call  (if 1, direct call from JavaScript code,
48  *                          if 0, call through the runtime system).
49  *  - fp[68]  stack_area_base (High end of the memory area to use as
50  *                             backtracking stack).
51  *  - fp[64]  capture array size (may fit multiple sets of matches)
52  *  - fp[60]  int* capture_array (int[num_saved_registers_], for output).
53  *  - fp[44..59]  MIPS O32 four argument slots
54  *  - fp[40]  secondary link/return address used by native call.
55  *  --- sp when called ---
56  *  - fp[36]  return address      (lr).
57  *  - fp[32]  old frame pointer   (r11).
58  *  - fp[0..31]  backup of registers s0..s7.
59  *  --- frame pointer ----
60  *  - fp[-4]  end of input       (address of end of string).
61  *  - fp[-8]  start of input     (address of first character in string).
62  *  - fp[-12] start index        (character index of start).
63  *  - fp[-16] void* input_string (location of a handle containing the string).
64  *  - fp[-20] success counter    (only for global regexps to count matches).
65  *  - fp[-24] Offset of location before start of input (effectively character
66  *            position -1). Used to initialize capture registers to a
67  *            non-position.
68  *  - fp[-28] At start (if 1, we are starting at the start of the
69  *    string, otherwise 0)
70  *  - fp[-32] register 0         (Only positions must be stored in the first
71  *  -         register 1          num_saved_registers_ registers)
72  *  -         ...
73  *  -         register num_registers-1
74  *  --- sp ---
75  *
76  *
77  * The N64 stack will have the following structure:
78  *
79  *  - fp[88]  Isolate* isolate   (address of the current isolate)               kIsolate
80  *  - fp[80]  secondary link/return address used by exit frame on native call.  kSecondaryReturnAddress
81                                                                                 kStackFrameHeader
82  *  --- sp when called ---
83  *  - fp[72]  ra                 Return from RegExp code (ra).                  kReturnAddress
84  *  - fp[64]  s9, old-fp         Old fp, callee saved(s9).
85  *  - fp[0..63]  s0..s7          Callee-saved registers s0..s7.
86  *  --- frame pointer ----
87  *  - fp[-8]  direct_call        (1 = direct call from JS, 0 = from runtime)    kDirectCall
88  *  - fp[-16] stack_base         (Top of backtracking stack).                   kStackHighEnd
89  *  - fp[-24] capture array size (may fit multiple sets of matches)             kNumOutputRegisters
90  *  - fp[-32] int* capture_array (int[num_saved_registers_], for output).       kRegisterOutput
91  *  - fp[-40] end of input       (address of end of string).                    kInputEnd
92  *  - fp[-48] start of input     (address of first character in string).        kInputStart
93  *  - fp[-56] start index        (character index of start).                    kStartIndex
94  *  - fp[-64] void* input_string (location of a handle containing the string).  kInputString
95  *  - fp[-72] success counter    (only for global regexps to count matches).    kSuccessfulCaptures
96  *  - fp[-80] Offset of location before start of input (effectively character   kInputStartMinusOne
97  *            position -1). Used to initialize capture registers to a
98  *            non-position.
99  *  --------- The following output registers are 32-bit values. ---------
100  *  - fp[-88] register 0         (Only positions must be stored in the first    kRegisterZero
101  *  -         register 1          num_saved_registers_ registers)
102  *  -         ...
103  *  -         register num_registers-1
104  *  --- sp ---
105  *
106  * The first num_saved_registers_ registers are initialized to point to
107  * "character -1" in the string (i.e., char_size() bytes before the first
108  * character of the string). The remaining registers start out as garbage.
109  *
110  * The data up to the return address must be placed there by the calling
111  * code and the remaining arguments are passed in registers, e.g. by calling the
112  * code entry as cast to a function with the signature:
113  * int (*match)(String* input_string,
114  *              int start_index,
115  *              Address start,
116  *              Address end,
117  *              Address secondary_return_address,  // Only used by native call.
118  *              int* capture_output_array,
119  *              byte* stack_area_base,
120  *              bool direct_call = false,
121  *              void* return_address,
122  *              Isolate* isolate);
123  * The call is performed by NativeRegExpMacroAssembler::Execute()
124  * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
125  * in mips/simulator-mips.h.
126  * When calling as a non-direct call (i.e., from C++ code), the return address
127  * area is overwritten with the ra register by the RegExp code. When doing a
128  * direct call from generated code, the return address is placed there by
129  * the calling code, as in a normal exit frame.
130  */
131
132 #define __ ACCESS_MASM(masm_)
133
134 RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(
135     Mode mode,
136     int registers_to_save,
137     Zone* zone)
138     : NativeRegExpMacroAssembler(zone),
139       masm_(new MacroAssembler(zone->isolate(), NULL, kRegExpCodeSize)),
140       mode_(mode),
141       num_registers_(registers_to_save),
142       num_saved_registers_(registers_to_save),
143       entry_label_(),
144       start_label_(),
145       success_label_(),
146       backtrack_label_(),
147       exit_label_(),
148       internal_failure_label_() {
149   DCHECK_EQ(0, registers_to_save % 2);
150   __ jmp(&entry_label_);   // We'll write the entry code later.
151   // If the code gets too big or corrupted, an internal exception will be
152   // raised, and we will exit right away.
153   __ bind(&internal_failure_label_);
154   __ li(v0, Operand(FAILURE));
155   __ Ret();
156   __ bind(&start_label_);  // And then continue from here.
157 }
158
159
160 RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() {
161   delete masm_;
162   // Unuse labels in case we throw away the assembler without calling GetCode.
163   entry_label_.Unuse();
164   start_label_.Unuse();
165   success_label_.Unuse();
166   backtrack_label_.Unuse();
167   exit_label_.Unuse();
168   check_preempt_label_.Unuse();
169   stack_overflow_label_.Unuse();
170   internal_failure_label_.Unuse();
171 }
172
173
174 int RegExpMacroAssemblerMIPS::stack_limit_slack()  {
175   return RegExpStack::kStackLimitSlack;
176 }
177
178
179 void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) {
180   if (by != 0) {
181     __ Daddu(current_input_offset(),
182             current_input_offset(), Operand(by * char_size()));
183   }
184 }
185
186
187 void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) {
188   DCHECK(reg >= 0);
189   DCHECK(reg < num_registers_);
190   if (by != 0) {
191     __ ld(a0, register_location(reg));
192     __ Daddu(a0, a0, Operand(by));
193     __ sd(a0, register_location(reg));
194   }
195 }
196
197
198 void RegExpMacroAssemblerMIPS::Backtrack() {
199   CheckPreemption();
200   // Pop Code* offset from backtrack stack, add Code* and jump to location.
201   Pop(a0);
202   __ Daddu(a0, a0, code_pointer());
203   __ Jump(a0);
204 }
205
206
207 void RegExpMacroAssemblerMIPS::Bind(Label* label) {
208   __ bind(label);
209 }
210
211
212 void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
213   BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
214 }
215
216
217 void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) {
218   BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
219 }
220
221
222 void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) {
223   Label not_at_start;
224   // Did we start the match at the start of the string at all?
225   __ lw(a0, MemOperand(frame_pointer(), kStartIndex));
226   BranchOrBacktrack(&not_at_start, ne, a0, Operand(zero_reg));
227
228   // If we did, are we still at the start of the input?
229   __ ld(a1, MemOperand(frame_pointer(), kInputStart));
230   __ Daddu(a0, end_of_input_address(), Operand(current_input_offset()));
231   BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
232   __ bind(&not_at_start);
233 }
234
235
236 void RegExpMacroAssemblerMIPS::CheckNotAtStart(Label* on_not_at_start) {
237   // Did we start the match at the start of the string at all?
238   __ lw(a0, MemOperand(frame_pointer(), kStartIndex));
239   BranchOrBacktrack(on_not_at_start, ne, a0, Operand(zero_reg));
240   // If we did, are we still at the start of the input?
241   __ ld(a1, MemOperand(frame_pointer(), kInputStart));
242   __ Daddu(a0, end_of_input_address(), Operand(current_input_offset()));
243   BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
244 }
245
246
247 void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) {
248   BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
249 }
250
251
252 void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
253   Label backtrack_non_equal;
254   __ lw(a0, MemOperand(backtrack_stackpointer(), 0));
255   __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
256   __ Daddu(backtrack_stackpointer(),
257           backtrack_stackpointer(),
258           Operand(kIntSize));
259   __ bind(&backtrack_non_equal);
260   BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
261 }
262
263
264 void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase(
265     int start_reg,
266     Label* on_no_match) {
267   Label fallthrough;
268   __ ld(a0, register_location(start_reg));  // Index of start of capture.
269   __ ld(a1, register_location(start_reg + 1));  // Index of end of capture.
270   __ Dsubu(a1, a1, a0);  // Length of capture.
271
272   // If length is zero, either the capture is empty or it is not participating.
273   // In either case succeed immediately.
274   __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
275
276   __ Daddu(t1, a1, current_input_offset());
277   // Check that there are enough characters left in the input.
278   BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
279
280   if (mode_ == LATIN1) {
281     Label success;
282     Label fail;
283     Label loop_check;
284
285     // a0 - offset of start of capture.
286     // a1 - length of capture.
287     __ Daddu(a0, a0, Operand(end_of_input_address()));
288     __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
289     __ Daddu(a1, a0, Operand(a1));
290
291     // a0 - Address of start of capture.
292     // a1 - Address of end of capture.
293     // a2 - Address of current input position.
294
295     Label loop;
296     __ bind(&loop);
297     __ lbu(a3, MemOperand(a0, 0));
298     __ daddiu(a0, a0, char_size());
299     __ lbu(a4, MemOperand(a2, 0));
300     __ daddiu(a2, a2, char_size());
301
302     __ Branch(&loop_check, eq, a4, Operand(a3));
303
304     // Mismatch, try case-insensitive match (converting letters to lower-case).
305     __ Or(a3, a3, Operand(0x20));  // Convert capture character to lower-case.
306     __ Or(a4, a4, Operand(0x20));  // Also convert input character.
307     __ Branch(&fail, ne, a4, Operand(a3));
308     __ Dsubu(a3, a3, Operand('a'));
309     __ Branch(&loop_check, ls, a3, Operand('z' - 'a'));
310     // Latin-1: Check for values in range [224,254] but not 247.
311     __ Dsubu(a3, a3, Operand(224 - 'a'));
312     // Weren't Latin-1 letters.
313     __ Branch(&fail, hi, a3, Operand(254 - 224));
314     // Check for 247.
315     __ Branch(&fail, eq, a3, Operand(247 - 224));
316
317     __ bind(&loop_check);
318     __ Branch(&loop, lt, a0, Operand(a1));
319     __ jmp(&success);
320
321     __ bind(&fail);
322     GoTo(on_no_match);
323
324     __ bind(&success);
325     // Compute new value of character position after the matched part.
326     __ Dsubu(current_input_offset(), a2, end_of_input_address());
327   } else {
328     DCHECK(mode_ == UC16);
329     // Put regexp engine registers on stack.
330     RegList regexp_registers_to_retain = current_input_offset().bit() |
331         current_character().bit() | backtrack_stackpointer().bit();
332     __ MultiPush(regexp_registers_to_retain);
333
334     int argument_count = 4;
335     __ PrepareCallCFunction(argument_count, a2);
336
337     // a0 - offset of start of capture.
338     // a1 - length of capture.
339
340     // Put arguments into arguments registers.
341     // Parameters are
342     //   a0: Address byte_offset1 - Address captured substring's start.
343     //   a1: Address byte_offset2 - Address of current character position.
344     //   a2: size_t byte_length - length of capture in bytes(!).
345     //   a3: Isolate* isolate.
346
347     // Address of start of capture.
348     __ Daddu(a0, a0, Operand(end_of_input_address()));
349     // Length of capture.
350     __ mov(a2, a1);
351     // Save length in callee-save register for use on return.
352     __ mov(s3, a1);
353     // Address of current input position.
354     __ Daddu(a1, current_input_offset(), Operand(end_of_input_address()));
355     // Isolate.
356     __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
357
358     {
359       AllowExternalCallThatCantCauseGC scope(masm_);
360       ExternalReference function =
361           ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate());
362       __ CallCFunction(function, argument_count);
363     }
364
365     // Restore regexp engine registers.
366     __ MultiPop(regexp_registers_to_retain);
367     __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
368     __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
369
370     // Check if function returned non-zero for success or zero for failure.
371     BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg));
372     // On success, increment position by length of capture.
373     __ Daddu(current_input_offset(), current_input_offset(), Operand(s3));
374   }
375
376   __ bind(&fallthrough);
377 }
378
379
380 void RegExpMacroAssemblerMIPS::CheckNotBackReference(
381     int start_reg,
382     Label* on_no_match) {
383   Label fallthrough;
384   Label success;
385
386   // Find length of back-referenced capture.
387   __ ld(a0, register_location(start_reg));
388   __ ld(a1, register_location(start_reg + 1));
389   __ Dsubu(a1, a1, a0);  // Length to check.
390   // Succeed on empty capture (including no capture).
391   __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
392
393   __ Daddu(t1, a1, current_input_offset());
394   // Check that there are enough characters left in the input.
395   BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
396
397   // Compute pointers to match string and capture string.
398   __ Daddu(a0, a0, Operand(end_of_input_address()));
399   __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
400   __ Daddu(a1, a1, Operand(a0));
401
402   Label loop;
403   __ bind(&loop);
404   if (mode_ == LATIN1) {
405     __ lbu(a3, MemOperand(a0, 0));
406     __ daddiu(a0, a0, char_size());
407     __ lbu(a4, MemOperand(a2, 0));
408     __ daddiu(a2, a2, char_size());
409   } else {
410     DCHECK(mode_ == UC16);
411     __ lhu(a3, MemOperand(a0, 0));
412     __ daddiu(a0, a0, char_size());
413     __ lhu(a4, MemOperand(a2, 0));
414     __ daddiu(a2, a2, char_size());
415   }
416   BranchOrBacktrack(on_no_match, ne, a3, Operand(a4));
417   __ Branch(&loop, lt, a0, Operand(a1));
418
419   // Move current character position to position after match.
420   __ Dsubu(current_input_offset(), a2, end_of_input_address());
421   __ bind(&fallthrough);
422 }
423
424
425 void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c,
426                                                  Label* on_not_equal) {
427   BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
428 }
429
430
431 void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c,
432                                                       uint32_t mask,
433                                                       Label* on_equal) {
434   __ And(a0, current_character(), Operand(mask));
435   Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
436   BranchOrBacktrack(on_equal, eq, a0, rhs);
437 }
438
439
440 void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
441                                                          uint32_t mask,
442                                                          Label* on_not_equal) {
443   __ And(a0, current_character(), Operand(mask));
444   Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
445   BranchOrBacktrack(on_not_equal, ne, a0, rhs);
446 }
447
448
449 void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
450     uc16 c,
451     uc16 minus,
452     uc16 mask,
453     Label* on_not_equal) {
454   DCHECK(minus < String::kMaxUtf16CodeUnit);
455   __ Dsubu(a0, current_character(), Operand(minus));
456   __ And(a0, a0, Operand(mask));
457   BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
458 }
459
460
461 void RegExpMacroAssemblerMIPS::CheckCharacterInRange(
462     uc16 from,
463     uc16 to,
464     Label* on_in_range) {
465   __ Dsubu(a0, current_character(), Operand(from));
466   // Unsigned lower-or-same condition.
467   BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
468 }
469
470
471 void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
472     uc16 from,
473     uc16 to,
474     Label* on_not_in_range) {
475   __ Dsubu(a0, current_character(), Operand(from));
476   // Unsigned higher condition.
477   BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
478 }
479
480
481 void RegExpMacroAssemblerMIPS::CheckBitInTable(
482     Handle<ByteArray> table,
483     Label* on_bit_set) {
484   __ li(a0, Operand(table));
485   if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
486     __ And(a1, current_character(), Operand(kTableSize - 1));
487     __ Daddu(a0, a0, a1);
488   } else {
489     __ Daddu(a0, a0, current_character());
490   }
491
492   __ lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
493   BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
494 }
495
496
497 bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
498                                                           Label* on_no_match) {
499   // Range checks (c in min..max) are generally implemented by an unsigned
500   // (c - min) <= (max - min) check.
501   switch (type) {
502   case 's':
503     // Match space-characters.
504     if (mode_ == LATIN1) {
505       // One byte space characters are '\t'..'\r', ' ' and \u00a0.
506       Label success;
507       __ Branch(&success, eq, current_character(), Operand(' '));
508       // Check range 0x09..0x0d.
509       __ Dsubu(a0, current_character(), Operand('\t'));
510       __ Branch(&success, ls, a0, Operand('\r' - '\t'));
511       // \u00a0 (NBSP).
512       BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00a0 - '\t'));
513       __ bind(&success);
514       return true;
515     }
516     return false;
517   case 'S':
518     // The emitted code for generic character classes is good enough.
519     return false;
520   case 'd':
521     // Match Latin1 digits ('0'..'9').
522     __ Dsubu(a0, current_character(), Operand('0'));
523     BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0'));
524     return true;
525   case 'D':
526     // Match non Latin1-digits.
527     __ Dsubu(a0, current_character(), Operand('0'));
528     BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0'));
529     return true;
530   case '.': {
531     // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
532     __ Xor(a0, current_character(), Operand(0x01));
533     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
534     __ Dsubu(a0, a0, Operand(0x0b));
535     BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0c - 0x0b));
536     if (mode_ == UC16) {
537       // Compare original value to 0x2028 and 0x2029, using the already
538       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
539       // 0x201d (0x2028 - 0x0b) or 0x201e.
540       __ Dsubu(a0, a0, Operand(0x2028 - 0x0b));
541       BranchOrBacktrack(on_no_match, ls, a0, Operand(1));
542     }
543     return true;
544   }
545   case 'n': {
546     // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
547     __ Xor(a0, current_character(), Operand(0x01));
548     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
549     __ Dsubu(a0, a0, Operand(0x0b));
550     if (mode_ == LATIN1) {
551       BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0c - 0x0b));
552     } else {
553       Label done;
554       BranchOrBacktrack(&done, ls, a0, Operand(0x0c - 0x0b));
555       // Compare original value to 0x2028 and 0x2029, using the already
556       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
557       // 0x201d (0x2028 - 0x0b) or 0x201e.
558       __ Dsubu(a0, a0, Operand(0x2028 - 0x0b));
559       BranchOrBacktrack(on_no_match, hi, a0, Operand(1));
560       __ bind(&done);
561     }
562     return true;
563   }
564   case 'w': {
565     if (mode_ != LATIN1) {
566       // Table is 256 entries, so all Latin1 characters can be tested.
567       BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z'));
568     }
569     ExternalReference map = ExternalReference::re_word_character_map();
570     __ li(a0, Operand(map));
571     __ Daddu(a0, a0, current_character());
572     __ lbu(a0, MemOperand(a0, 0));
573     BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
574     return true;
575   }
576   case 'W': {
577     Label done;
578     if (mode_ != LATIN1) {
579       // Table is 256 entries, so all Latin1 characters can be tested.
580       __ Branch(&done, hi, current_character(), Operand('z'));
581     }
582     ExternalReference map = ExternalReference::re_word_character_map();
583     __ li(a0, Operand(map));
584     __ Daddu(a0, a0, current_character());
585     __ lbu(a0, MemOperand(a0, 0));
586     BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
587     if (mode_ != LATIN1) {
588       __ bind(&done);
589     }
590     return true;
591   }
592   case '*':
593     // Match any character.
594     return true;
595   // No custom implementation (yet): s(UC16), S(UC16).
596   default:
597     return false;
598   }
599 }
600
601
602 void RegExpMacroAssemblerMIPS::Fail() {
603   __ li(v0, Operand(FAILURE));
604   __ jmp(&exit_label_);
605 }
606
607
608 Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
609   Label return_v0;
610   if (masm_->has_exception()) {
611     // If the code gets corrupted due to long regular expressions and lack of
612     // space on trampolines, an internal exception flag is set. If this case
613     // is detected, we will jump into exit sequence right away.
614     __ bind_to(&entry_label_, internal_failure_label_.pos());
615   } else {
616     // Finalize code - write the entry point code now we know how many
617     // registers we need.
618
619     // Entry code:
620     __ bind(&entry_label_);
621
622     // Tell the system that we have a stack frame.  Because the type is MANUAL,
623     // no is generated.
624     FrameScope scope(masm_, StackFrame::MANUAL);
625
626     // Actually emit code to start a new stack frame.
627     // Push arguments
628     // Save callee-save registers.
629     // Start new stack frame.
630     // Store link register in existing stack-cell.
631     // Order here should correspond to order of offset constants in header file.
632     // TODO(plind): we save s0..s7, but ONLY use s3 here - use the regs
633     // or dont save.
634     RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() |
635         s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit();
636     RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit();
637
638     if (kMipsAbi == kN64) {
639       // TODO(plind): Should probably alias a4-a7, for clarity.
640       argument_registers |= a4.bit() | a5.bit() | a6.bit() | a7.bit();
641     }
642
643     __ MultiPush(argument_registers | registers_to_retain | ra.bit());
644     // Set frame pointer in space for it if this is not a direct call
645     // from generated code.
646     // TODO(plind): this 8 is the # of argument regs, should have definition.
647     __ Daddu(frame_pointer(), sp, Operand(8 * kPointerSize));
648     __ mov(a0, zero_reg);
649     __ push(a0);  // Make room for success counter and initialize it to 0.
650     __ push(a0);  // Make room for "position - 1" constant (value irrelevant).
651
652     // Check if we have space on the stack for registers.
653     Label stack_limit_hit;
654     Label stack_ok;
655
656     ExternalReference stack_limit =
657         ExternalReference::address_of_stack_limit(masm_->isolate());
658     __ li(a0, Operand(stack_limit));
659     __ ld(a0, MemOperand(a0));
660     __ Dsubu(a0, sp, a0);
661     // Handle it if the stack pointer is already below the stack limit.
662     __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
663     // Check if there is room for the variable number of registers above
664     // the stack limit.
665     __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize));
666     // Exit with OutOfMemory exception. There is not enough space on the stack
667     // for our working registers.
668     __ li(v0, Operand(EXCEPTION));
669     __ jmp(&return_v0);
670
671     __ bind(&stack_limit_hit);
672     CallCheckStackGuardState(a0);
673     // If returned value is non-zero, we exit with the returned value as result.
674     __ Branch(&return_v0, ne, v0, Operand(zero_reg));
675
676     __ bind(&stack_ok);
677     // Allocate space on stack for registers.
678     __ Dsubu(sp, sp, Operand(num_registers_ * kPointerSize));
679     // Load string end.
680     __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
681     // Load input start.
682     __ ld(a0, MemOperand(frame_pointer(), kInputStart));
683     // Find negative length (offset of start relative to end).
684     __ Dsubu(current_input_offset(), a0, end_of_input_address());
685     // Set a0 to address of char before start of the input string
686     // (effectively string position -1).
687     __ ld(a1, MemOperand(frame_pointer(), kStartIndex));
688     __ Dsubu(a0, current_input_offset(), Operand(char_size()));
689     __ dsll(t1, a1, (mode_ == UC16) ? 1 : 0);
690     __ Dsubu(a0, a0, t1);
691     // Store this value in a local variable, for use when clearing
692     // position registers.
693     __ sd(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
694
695     // Initialize code pointer register
696     __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
697
698     Label load_char_start_regexp, start_regexp;
699     // Load newline if index is at start, previous character otherwise.
700     __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
701     __ li(current_character(), Operand('\n'));
702     __ jmp(&start_regexp);
703
704     // Global regexp restarts matching here.
705     __ bind(&load_char_start_regexp);
706     // Load previous char as initial value of current character register.
707     LoadCurrentCharacterUnchecked(-1, 1);
708     __ bind(&start_regexp);
709
710     // Initialize on-stack registers.
711     if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
712       // Fill saved registers with initial value = start offset - 1.
713       if (num_saved_registers_ > 8) {
714         // Address of register 0.
715         __ Daddu(a1, frame_pointer(), Operand(kRegisterZero));
716         __ li(a2, Operand(num_saved_registers_));
717         Label init_loop;
718         __ bind(&init_loop);
719         __ sd(a0, MemOperand(a1));
720         __ Daddu(a1, a1, Operand(-kPointerSize));
721         __ Dsubu(a2, a2, Operand(1));
722         __ Branch(&init_loop, ne, a2, Operand(zero_reg));
723       } else {
724         for (int i = 0; i < num_saved_registers_; i++) {
725           __ sd(a0, register_location(i));
726         }
727       }
728     }
729
730     // Initialize backtrack stack pointer.
731     __ ld(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
732
733     __ jmp(&start_label_);
734
735
736     // Exit code:
737     if (success_label_.is_linked()) {
738       // Save captures when successful.
739       __ bind(&success_label_);
740       if (num_saved_registers_ > 0) {
741         // Copy captures to output.
742         __ ld(a1, MemOperand(frame_pointer(), kInputStart));
743         __ ld(a0, MemOperand(frame_pointer(), kRegisterOutput));
744         __ ld(a2, MemOperand(frame_pointer(), kStartIndex));
745         __ Dsubu(a1, end_of_input_address(), a1);
746         // a1 is length of input in bytes.
747         if (mode_ == UC16) {
748           __ dsrl(a1, a1, 1);
749         }
750         // a1 is length of input in characters.
751         __ Daddu(a1, a1, Operand(a2));
752         // a1 is length of string in characters.
753
754         DCHECK_EQ(0, num_saved_registers_ % 2);
755         // Always an even number of capture registers. This allows us to
756         // unroll the loop once to add an operation between a load of a register
757         // and the following use of that register.
758         for (int i = 0; i < num_saved_registers_; i += 2) {
759           __ ld(a2, register_location(i));
760           __ ld(a3, register_location(i + 1));
761           if (i == 0 && global_with_zero_length_check()) {
762             // Keep capture start in a4 for the zero-length check later.
763             __ mov(t3, a2);
764           }
765           if (mode_ == UC16) {
766             __ dsra(a2, a2, 1);
767             __ Daddu(a2, a2, a1);
768             __ dsra(a3, a3, 1);
769             __ Daddu(a3, a3, a1);
770           } else {
771             __ Daddu(a2, a1, Operand(a2));
772             __ Daddu(a3, a1, Operand(a3));
773           }
774           // V8 expects the output to be an int32_t array.
775           __ sw(a2, MemOperand(a0));
776           __ Daddu(a0, a0, kIntSize);
777           __ sw(a3, MemOperand(a0));
778           __ Daddu(a0, a0, kIntSize);
779         }
780       }
781
782       if (global()) {
783         // Restart matching if the regular expression is flagged as global.
784         __ ld(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
785         __ lw(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
786         __ ld(a2, MemOperand(frame_pointer(), kRegisterOutput));
787         // Increment success counter.
788         __ Daddu(a0, a0, 1);
789         __ sd(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
790         // Capture results have been stored, so the number of remaining global
791         // output registers is reduced by the number of stored captures.
792         __ Dsubu(a1, a1, num_saved_registers_);
793         // Check whether we have enough room for another set of capture results.
794         __ mov(v0, a0);
795         __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_));
796
797         __ sd(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
798         // Advance the location for output.
799         __ Daddu(a2, a2, num_saved_registers_ * kIntSize);
800         __ sd(a2, MemOperand(frame_pointer(), kRegisterOutput));
801
802         // Prepare a0 to initialize registers with its value in the next run.
803         __ ld(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
804
805         if (global_with_zero_length_check()) {
806           // Special case for zero-length matches.
807           // t3: capture start index
808           // Not a zero-length match, restart.
809           __ Branch(
810               &load_char_start_regexp, ne, current_input_offset(), Operand(t3));
811           // Offset from the end is zero if we already reached the end.
812           __ Branch(&exit_label_, eq, current_input_offset(),
813                     Operand(zero_reg));
814           // Advance current position after a zero-length match.
815           __ Daddu(current_input_offset(),
816                   current_input_offset(),
817                   Operand((mode_ == UC16) ? 2 : 1));
818         }
819
820         __ Branch(&load_char_start_regexp);
821       } else {
822         __ li(v0, Operand(SUCCESS));
823       }
824     }
825     // Exit and return v0.
826     __ bind(&exit_label_);
827     if (global()) {
828       __ ld(v0, MemOperand(frame_pointer(), kSuccessfulCaptures));
829     }
830
831     __ bind(&return_v0);
832     // Skip sp past regexp registers and local variables..
833     __ mov(sp, frame_pointer());
834     // Restore registers s0..s7 and return (restoring ra to pc).
835     __ MultiPop(registers_to_retain | ra.bit());
836     __ Ret();
837
838     // Backtrack code (branch target for conditional backtracks).
839     if (backtrack_label_.is_linked()) {
840       __ bind(&backtrack_label_);
841       Backtrack();
842     }
843
844     Label exit_with_exception;
845
846     // Preempt-code.
847     if (check_preempt_label_.is_linked()) {
848       SafeCallTarget(&check_preempt_label_);
849       // Put regexp engine registers on stack.
850       RegList regexp_registers_to_retain = current_input_offset().bit() |
851           current_character().bit() | backtrack_stackpointer().bit();
852       __ MultiPush(regexp_registers_to_retain);
853       CallCheckStackGuardState(a0);
854       __ MultiPop(regexp_registers_to_retain);
855       // If returning non-zero, we should end execution with the given
856       // result as return value.
857       __ Branch(&return_v0, ne, v0, Operand(zero_reg));
858
859       // String might have moved: Reload end of string from frame.
860       __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
861       __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
862       SafeReturn();
863     }
864
865     // Backtrack stack overflow code.
866     if (stack_overflow_label_.is_linked()) {
867       SafeCallTarget(&stack_overflow_label_);
868       // Reached if the backtrack-stack limit has been hit.
869       // Put regexp engine registers on stack first.
870       RegList regexp_registers = current_input_offset().bit() |
871           current_character().bit();
872       __ MultiPush(regexp_registers);
873       Label grow_failed;
874       // Call GrowStack(backtrack_stackpointer(), &stack_base)
875       static const int num_arguments = 3;
876       __ PrepareCallCFunction(num_arguments, a0);
877       __ mov(a0, backtrack_stackpointer());
878       __ Daddu(a1, frame_pointer(), Operand(kStackHighEnd));
879       __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate())));
880       ExternalReference grow_stack =
881           ExternalReference::re_grow_stack(masm_->isolate());
882       __ CallCFunction(grow_stack, num_arguments);
883       // Restore regexp registers.
884       __ MultiPop(regexp_registers);
885       // If return NULL, we have failed to grow the stack, and
886       // must exit with a stack-overflow exception.
887       __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg));
888       // Otherwise use return value as new stack pointer.
889       __ mov(backtrack_stackpointer(), v0);
890       // Restore saved registers and continue.
891       __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
892       __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
893       SafeReturn();
894     }
895
896     if (exit_with_exception.is_linked()) {
897       // If any of the code above needed to exit with an exception.
898       __ bind(&exit_with_exception);
899       // Exit with Result EXCEPTION(-1) to signal thrown exception.
900       __ li(v0, Operand(EXCEPTION));
901       __ jmp(&return_v0);
902     }
903   }
904
905   CodeDesc code_desc;
906   masm_->GetCode(&code_desc);
907   Handle<Code> code = isolate()->factory()->NewCode(
908       code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
909   LOG(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
910   return Handle<HeapObject>::cast(code);
911 }
912
913
914 void RegExpMacroAssemblerMIPS::GoTo(Label* to) {
915   if (to == NULL) {
916     Backtrack();
917     return;
918   }
919   __ jmp(to);
920   return;
921 }
922
923
924 void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg,
925                                             int comparand,
926                                             Label* if_ge) {
927   __ ld(a0, register_location(reg));
928     BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
929 }
930
931
932 void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg,
933                                             int comparand,
934                                             Label* if_lt) {
935   __ ld(a0, register_location(reg));
936   BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
937 }
938
939
940 void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg,
941                                                Label* if_eq) {
942   __ ld(a0, register_location(reg));
943   BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
944 }
945
946
947 RegExpMacroAssembler::IrregexpImplementation
948     RegExpMacroAssemblerMIPS::Implementation() {
949   return kMIPSImplementation;
950 }
951
952
953 void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset,
954                                                     Label* on_end_of_input,
955                                                     bool check_bounds,
956                                                     int characters) {
957   DCHECK(cp_offset >= -1);      // ^ and \b can look behind one character.
958   DCHECK(cp_offset < (1<<30));  // Be sane! (And ensure negation works).
959   if (check_bounds) {
960     CheckPosition(cp_offset + characters - 1, on_end_of_input);
961   }
962   LoadCurrentCharacterUnchecked(cp_offset, characters);
963 }
964
965
966 void RegExpMacroAssemblerMIPS::PopCurrentPosition() {
967   Pop(current_input_offset());
968 }
969
970
971 void RegExpMacroAssemblerMIPS::PopRegister(int register_index) {
972   Pop(a0);
973   __ sd(a0, register_location(register_index));
974 }
975
976
977 void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) {
978   if (label->is_bound()) {
979     int target = label->pos();
980     __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag));
981   } else {
982     Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
983     Label after_constant;
984     __ Branch(&after_constant);
985     int offset = masm_->pc_offset();
986     int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag;
987     __ emit(0);
988     masm_->label_at_put(label, offset);
989     __ bind(&after_constant);
990     if (is_int16(cp_offset)) {
991       __ lwu(a0, MemOperand(code_pointer(), cp_offset));
992     } else {
993       __ Daddu(a0, code_pointer(), cp_offset);
994       __ lwu(a0, MemOperand(a0, 0));
995     }
996   }
997   Push(a0);
998   CheckStackLimit();
999 }
1000
1001
1002 void RegExpMacroAssemblerMIPS::PushCurrentPosition() {
1003   Push(current_input_offset());
1004 }
1005
1006
1007 void RegExpMacroAssemblerMIPS::PushRegister(int register_index,
1008                                             StackCheckFlag check_stack_limit) {
1009   __ ld(a0, register_location(register_index));
1010   Push(a0);
1011   if (check_stack_limit) CheckStackLimit();
1012 }
1013
1014
1015 void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) {
1016   __ ld(current_input_offset(), register_location(reg));
1017 }
1018
1019
1020 void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) {
1021   __ ld(backtrack_stackpointer(), register_location(reg));
1022   __ ld(a0, MemOperand(frame_pointer(), kStackHighEnd));
1023   __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0));
1024 }
1025
1026
1027 void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) {
1028   Label after_position;
1029   __ Branch(&after_position,
1030             ge,
1031             current_input_offset(),
1032             Operand(-by * char_size()));
1033   __ li(current_input_offset(), -by * char_size());
1034   // On RegExp code entry (where this operation is used), the character before
1035   // the current position is expected to be already loaded.
1036   // We have advanced the position, so it's safe to read backwards.
1037   LoadCurrentCharacterUnchecked(-1, 1);
1038   __ bind(&after_position);
1039 }
1040
1041
1042 void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) {
1043   DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
1044   __ li(a0, Operand(to));
1045   __ sd(a0, register_location(register_index));
1046 }
1047
1048
1049 bool RegExpMacroAssemblerMIPS::Succeed() {
1050   __ jmp(&success_label_);
1051   return global();
1052 }
1053
1054
1055 void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg,
1056                                                               int cp_offset) {
1057   if (cp_offset == 0) {
1058     __ sd(current_input_offset(), register_location(reg));
1059   } else {
1060     __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
1061     __ sd(a0, register_location(reg));
1062   }
1063 }
1064
1065
1066 void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) {
1067   DCHECK(reg_from <= reg_to);
1068   __ ld(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
1069   for (int reg = reg_from; reg <= reg_to; reg++) {
1070     __ sd(a0, register_location(reg));
1071   }
1072 }
1073
1074
1075 void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) {
1076   __ ld(a1, MemOperand(frame_pointer(), kStackHighEnd));
1077   __ Dsubu(a0, backtrack_stackpointer(), a1);
1078   __ sd(a0, register_location(reg));
1079 }
1080
1081
1082 bool RegExpMacroAssemblerMIPS::CanReadUnaligned() {
1083   return false;
1084 }
1085
1086
1087 // Private methods:
1088
1089 void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) {
1090   int stack_alignment = base::OS::ActivationFrameAlignment();
1091
1092   // Align the stack pointer and save the original sp value on the stack.
1093   __ mov(scratch, sp);
1094   __ Dsubu(sp, sp, Operand(kPointerSize));
1095   DCHECK(base::bits::IsPowerOfTwo32(stack_alignment));
1096   __ And(sp, sp, Operand(-stack_alignment));
1097   __ sd(scratch, MemOperand(sp));
1098
1099   __ mov(a2, frame_pointer());
1100   // Code* of self.
1101   __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
1102
1103   // We need to make room for the return address on the stack.
1104   DCHECK(IsAligned(stack_alignment, kPointerSize));
1105   __ Dsubu(sp, sp, Operand(stack_alignment));
1106
1107   // Stack pointer now points to cell where return address is to be written.
1108   // Arguments are in registers, meaning we teat the return address as
1109   // argument 5. Since DirectCEntryStub will handleallocating space for the C
1110   // argument slots, we don't need to care about that here. This is how the
1111   // stack will look (sp meaning the value of sp at this moment):
1112   // [sp + 3] - empty slot if needed for alignment.
1113   // [sp + 2] - saved sp.
1114   // [sp + 1] - second word reserved for return value.
1115   // [sp + 0] - first word reserved for return value.
1116
1117   // a0 will point to the return address, placed by DirectCEntry.
1118   __ mov(a0, sp);
1119
1120   ExternalReference stack_guard_check =
1121       ExternalReference::re_check_stack_guard_state(masm_->isolate());
1122   __ li(t9, Operand(stack_guard_check));
1123   DirectCEntryStub stub(isolate());
1124   stub.GenerateCall(masm_, t9);
1125
1126   // DirectCEntryStub allocated space for the C argument slots so we have to
1127   // drop them with the return address from the stack with loading saved sp.
1128   // At this point stack must look:
1129   // [sp + 7] - empty slot if needed for alignment.
1130   // [sp + 6] - saved sp.
1131   // [sp + 5] - second word reserved for return value.
1132   // [sp + 4] - first word reserved for return value.
1133   // [sp + 3] - C argument slot.
1134   // [sp + 2] - C argument slot.
1135   // [sp + 1] - C argument slot.
1136   // [sp + 0] - C argument slot.
1137   __ ld(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
1138
1139   __ li(code_pointer(), Operand(masm_->CodeObject()));
1140 }
1141
1142
1143 // Helper function for reading a value out of a stack frame.
1144 template <typename T>
1145 static T& frame_entry(Address re_frame, int frame_offset) {
1146   return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1147 }
1148
1149
1150 int RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
1151                                                    Code* re_code,
1152                                                    Address re_frame) {
1153   Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate);
1154   StackLimitCheck check(isolate);
1155   if (check.JsHasOverflowed()) {
1156     isolate->StackOverflow();
1157     return EXCEPTION;
1158   }
1159
1160   // If not real stack overflow the stack guard was used to interrupt
1161   // execution for another purpose.
1162
1163   // If this is a direct call from JavaScript retry the RegExp forcing the call
1164   // through the runtime system. Currently the direct call cannot handle a GC.
1165   if (frame_entry<int>(re_frame, kDirectCall) == 1) {
1166     return RETRY;
1167   }
1168
1169   // Prepare for possible GC.
1170   HandleScope handles(isolate);
1171   Handle<Code> code_handle(re_code);
1172
1173   Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
1174   // Current string.
1175   bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
1176
1177   DCHECK(re_code->instruction_start() <= *return_address);
1178   DCHECK(*return_address <=
1179       re_code->instruction_start() + re_code->instruction_size());
1180
1181   Object* result = isolate->stack_guard()->HandleInterrupts();
1182
1183   if (*code_handle != re_code) {  // Return address no longer valid.
1184     int delta = code_handle->address() - re_code->address();
1185     // Overwrite the return address on the stack.
1186     *return_address += delta;
1187   }
1188
1189   if (result->IsException()) {
1190     return EXCEPTION;
1191   }
1192
1193   Handle<String> subject_tmp = subject;
1194   int slice_offset = 0;
1195
1196   // Extract the underlying string and the slice offset.
1197   if (StringShape(*subject_tmp).IsCons()) {
1198     subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
1199   } else if (StringShape(*subject_tmp).IsSliced()) {
1200     SlicedString* slice = SlicedString::cast(*subject_tmp);
1201     subject_tmp = Handle<String>(slice->parent());
1202     slice_offset = slice->offset();
1203   }
1204
1205   // String might have changed.
1206   if (subject_tmp->IsOneByteRepresentation() != is_one_byte) {
1207     // If we changed between an Latin1 and an UC16 string, the specialized
1208     // code cannot be used, and we need to restart regexp matching from
1209     // scratch (including, potentially, compiling a new version of the code).
1210     return RETRY;
1211   }
1212
1213   // Otherwise, the content of the string might have moved. It must still
1214   // be a sequential or external string with the same content.
1215   // Update the start and end pointers in the stack frame to the current
1216   // location (whether it has actually moved or not).
1217   DCHECK(StringShape(*subject_tmp).IsSequential() ||
1218       StringShape(*subject_tmp).IsExternal());
1219
1220   // The original start address of the characters to match.
1221   const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
1222
1223   // Find the current start address of the same character at the current string
1224   // position.
1225   int start_index = frame_entry<int>(re_frame, kStartIndex);
1226   const byte* new_address = StringCharacterPosition(*subject_tmp,
1227                                                     start_index + slice_offset);
1228
1229   if (start_address != new_address) {
1230     // If there is a difference, update the object pointer and start and end
1231     // addresses in the RegExp stack frame to match the new value.
1232     const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
1233     int byte_length = static_cast<int>(end_address - start_address);
1234     frame_entry<const String*>(re_frame, kInputString) = *subject;
1235     frame_entry<const byte*>(re_frame, kInputStart) = new_address;
1236     frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
1237   } else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
1238     // Subject string might have been a ConsString that underwent
1239     // short-circuiting during GC. That will not change start_address but
1240     // will change pointer inside the subject handle.
1241     frame_entry<const String*>(re_frame, kInputString) = *subject;
1242   }
1243
1244   return 0;
1245 }
1246
1247
1248 MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) {
1249   DCHECK(register_index < (1<<30));
1250   if (num_registers_ <= register_index) {
1251     num_registers_ = register_index + 1;
1252   }
1253   return MemOperand(frame_pointer(),
1254                     kRegisterZero - register_index * kPointerSize);
1255 }
1256
1257
1258 void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset,
1259                                              Label* on_outside_input) {
1260   BranchOrBacktrack(on_outside_input,
1261                     ge,
1262                     current_input_offset(),
1263                     Operand(-cp_offset * char_size()));
1264 }
1265
1266
1267 void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to,
1268                                                  Condition condition,
1269                                                  Register rs,
1270                                                  const Operand& rt) {
1271   if (condition == al) {  // Unconditional.
1272     if (to == NULL) {
1273       Backtrack();
1274       return;
1275     }
1276     __ jmp(to);
1277     return;
1278   }
1279   if (to == NULL) {
1280     __ Branch(&backtrack_label_, condition, rs, rt);
1281     return;
1282   }
1283   __ Branch(to, condition, rs, rt);
1284 }
1285
1286
1287 void RegExpMacroAssemblerMIPS::SafeCall(Label* to,
1288                                         Condition cond,
1289                                         Register rs,
1290                                         const Operand& rt) {
1291   __ BranchAndLink(to, cond, rs, rt);
1292 }
1293
1294
1295 void RegExpMacroAssemblerMIPS::SafeReturn() {
1296   __ pop(ra);
1297   __ Daddu(t1, ra, Operand(masm_->CodeObject()));
1298   __ Jump(t1);
1299 }
1300
1301
1302 void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) {
1303   __ bind(name);
1304   __ Dsubu(ra, ra, Operand(masm_->CodeObject()));
1305   __ push(ra);
1306 }
1307
1308
1309 void RegExpMacroAssemblerMIPS::Push(Register source) {
1310   DCHECK(!source.is(backtrack_stackpointer()));
1311   __ Daddu(backtrack_stackpointer(),
1312           backtrack_stackpointer(),
1313           Operand(-kIntSize));
1314   __ sw(source, MemOperand(backtrack_stackpointer()));
1315 }
1316
1317
1318 void RegExpMacroAssemblerMIPS::Pop(Register target) {
1319   DCHECK(!target.is(backtrack_stackpointer()));
1320   __ lw(target, MemOperand(backtrack_stackpointer()));
1321   __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), kIntSize);
1322 }
1323
1324
1325 void RegExpMacroAssemblerMIPS::CheckPreemption() {
1326   // Check for preemption.
1327   ExternalReference stack_limit =
1328       ExternalReference::address_of_stack_limit(masm_->isolate());
1329   __ li(a0, Operand(stack_limit));
1330   __ ld(a0, MemOperand(a0));
1331   SafeCall(&check_preempt_label_, ls, sp, Operand(a0));
1332 }
1333
1334
1335 void RegExpMacroAssemblerMIPS::CheckStackLimit() {
1336   ExternalReference stack_limit =
1337       ExternalReference::address_of_regexp_stack_limit(masm_->isolate());
1338
1339   __ li(a0, Operand(stack_limit));
1340   __ ld(a0, MemOperand(a0));
1341   SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0));
1342 }
1343
1344
1345 void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset,
1346                                                              int characters) {
1347   Register offset = current_input_offset();
1348   if (cp_offset != 0) {
1349     // t3 is not being used to store the capture start index at this point.
1350     __ Daddu(t3, current_input_offset(), Operand(cp_offset * char_size()));
1351     offset = t3;
1352   }
1353   // We assume that we cannot do unaligned loads on MIPS, so this function
1354   // must only be used to load a single character at a time.
1355   DCHECK(characters == 1);
1356   __ Daddu(t1, end_of_input_address(), Operand(offset));
1357   if (mode_ == LATIN1) {
1358     __ lbu(current_character(), MemOperand(t1, 0));
1359   } else {
1360     DCHECK(mode_ == UC16);
1361     __ lhu(current_character(), MemOperand(t1, 0));
1362   }
1363 }
1364
1365 #undef __
1366
1367 #endif  // V8_INTERPRETED_REGEXP
1368
1369 }}  // namespace v8::internal
1370
1371 #endif  // V8_TARGET_ARCH_MIPS64