Upstream version 10.39.225.0
[platform/framework/web/crosswalk.git] / src / v8 / src / hydrogen-instructions.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #include "src/base/bits.h"
8 #include "src/double.h"
9 #include "src/factory.h"
10 #include "src/hydrogen-infer-representation.h"
11 #include "src/property-details-inl.h"
12
13 #if V8_TARGET_ARCH_IA32
14 #include "src/ia32/lithium-ia32.h"  // NOLINT
15 #elif V8_TARGET_ARCH_X64
16 #include "src/x64/lithium-x64.h"  // NOLINT
17 #elif V8_TARGET_ARCH_ARM64
18 #include "src/arm64/lithium-arm64.h"  // NOLINT
19 #elif V8_TARGET_ARCH_ARM
20 #include "src/arm/lithium-arm.h"  // NOLINT
21 #elif V8_TARGET_ARCH_MIPS
22 #include "src/mips/lithium-mips.h"  // NOLINT
23 #elif V8_TARGET_ARCH_MIPS64
24 #include "src/mips64/lithium-mips64.h"  // NOLINT
25 #elif V8_TARGET_ARCH_X87
26 #include "src/x87/lithium-x87.h"  // NOLINT
27 #else
28 #error Unsupported target architecture.
29 #endif
30
31 #include "src/base/safe_math.h"
32
33 namespace v8 {
34 namespace internal {
35
36 #define DEFINE_COMPILE(type)                                         \
37   LInstruction* H##type::CompileToLithium(LChunkBuilder* builder) {  \
38     return builder->Do##type(this);                                  \
39   }
40 HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
41 #undef DEFINE_COMPILE
42
43
44 Isolate* HValue::isolate() const {
45   DCHECK(block() != NULL);
46   return block()->isolate();
47 }
48
49
50 void HValue::AssumeRepresentation(Representation r) {
51   if (CheckFlag(kFlexibleRepresentation)) {
52     ChangeRepresentation(r);
53     // The representation of the value is dictated by type feedback and
54     // will not be changed later.
55     ClearFlag(kFlexibleRepresentation);
56   }
57 }
58
59
60 void HValue::InferRepresentation(HInferRepresentationPhase* h_infer) {
61   DCHECK(CheckFlag(kFlexibleRepresentation));
62   Representation new_rep = RepresentationFromInputs();
63   UpdateRepresentation(new_rep, h_infer, "inputs");
64   new_rep = RepresentationFromUses();
65   UpdateRepresentation(new_rep, h_infer, "uses");
66   if (representation().IsSmi() && HasNonSmiUse()) {
67     UpdateRepresentation(
68         Representation::Integer32(), h_infer, "use requirements");
69   }
70 }
71
72
73 Representation HValue::RepresentationFromUses() {
74   if (HasNoUses()) return Representation::None();
75
76   // Array of use counts for each representation.
77   int use_count[Representation::kNumRepresentations] = { 0 };
78
79   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
80     HValue* use = it.value();
81     Representation rep = use->observed_input_representation(it.index());
82     if (rep.IsNone()) continue;
83     if (FLAG_trace_representation) {
84       PrintF("#%d %s is used by #%d %s as %s%s\n",
85              id(), Mnemonic(), use->id(), use->Mnemonic(), rep.Mnemonic(),
86              (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
87     }
88     use_count[rep.kind()] += 1;
89   }
90   if (IsPhi()) HPhi::cast(this)->AddIndirectUsesTo(&use_count[0]);
91   int tagged_count = use_count[Representation::kTagged];
92   int double_count = use_count[Representation::kDouble];
93   int int32_count = use_count[Representation::kInteger32];
94   int smi_count = use_count[Representation::kSmi];
95
96   if (tagged_count > 0) return Representation::Tagged();
97   if (double_count > 0) return Representation::Double();
98   if (int32_count > 0) return Representation::Integer32();
99   if (smi_count > 0) return Representation::Smi();
100
101   return Representation::None();
102 }
103
104
105 void HValue::UpdateRepresentation(Representation new_rep,
106                                   HInferRepresentationPhase* h_infer,
107                                   const char* reason) {
108   Representation r = representation();
109   if (new_rep.is_more_general_than(r)) {
110     if (CheckFlag(kCannotBeTagged) && new_rep.IsTagged()) return;
111     if (FLAG_trace_representation) {
112       PrintF("Changing #%d %s representation %s -> %s based on %s\n",
113              id(), Mnemonic(), r.Mnemonic(), new_rep.Mnemonic(), reason);
114     }
115     ChangeRepresentation(new_rep);
116     AddDependantsToWorklist(h_infer);
117   }
118 }
119
120
121 void HValue::AddDependantsToWorklist(HInferRepresentationPhase* h_infer) {
122   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
123     h_infer->AddToWorklist(it.value());
124   }
125   for (int i = 0; i < OperandCount(); ++i) {
126     h_infer->AddToWorklist(OperandAt(i));
127   }
128 }
129
130
131 static int32_t ConvertAndSetOverflow(Representation r,
132                                      int64_t result,
133                                      bool* overflow) {
134   if (r.IsSmi()) {
135     if (result > Smi::kMaxValue) {
136       *overflow = true;
137       return Smi::kMaxValue;
138     }
139     if (result < Smi::kMinValue) {
140       *overflow = true;
141       return Smi::kMinValue;
142     }
143   } else {
144     if (result > kMaxInt) {
145       *overflow = true;
146       return kMaxInt;
147     }
148     if (result < kMinInt) {
149       *overflow = true;
150       return kMinInt;
151     }
152   }
153   return static_cast<int32_t>(result);
154 }
155
156
157 static int32_t AddWithoutOverflow(Representation r,
158                                   int32_t a,
159                                   int32_t b,
160                                   bool* overflow) {
161   int64_t result = static_cast<int64_t>(a) + static_cast<int64_t>(b);
162   return ConvertAndSetOverflow(r, result, overflow);
163 }
164
165
166 static int32_t SubWithoutOverflow(Representation r,
167                                   int32_t a,
168                                   int32_t b,
169                                   bool* overflow) {
170   int64_t result = static_cast<int64_t>(a) - static_cast<int64_t>(b);
171   return ConvertAndSetOverflow(r, result, overflow);
172 }
173
174
175 static int32_t MulWithoutOverflow(const Representation& r,
176                                   int32_t a,
177                                   int32_t b,
178                                   bool* overflow) {
179   int64_t result = static_cast<int64_t>(a) * static_cast<int64_t>(b);
180   return ConvertAndSetOverflow(r, result, overflow);
181 }
182
183
184 int32_t Range::Mask() const {
185   if (lower_ == upper_) return lower_;
186   if (lower_ >= 0) {
187     int32_t res = 1;
188     while (res < upper_) {
189       res = (res << 1) | 1;
190     }
191     return res;
192   }
193   return 0xffffffff;
194 }
195
196
197 void Range::AddConstant(int32_t value) {
198   if (value == 0) return;
199   bool may_overflow = false;  // Overflow is ignored here.
200   Representation r = Representation::Integer32();
201   lower_ = AddWithoutOverflow(r, lower_, value, &may_overflow);
202   upper_ = AddWithoutOverflow(r, upper_, value, &may_overflow);
203 #ifdef DEBUG
204   Verify();
205 #endif
206 }
207
208
209 void Range::Intersect(Range* other) {
210   upper_ = Min(upper_, other->upper_);
211   lower_ = Max(lower_, other->lower_);
212   bool b = CanBeMinusZero() && other->CanBeMinusZero();
213   set_can_be_minus_zero(b);
214 }
215
216
217 void Range::Union(Range* other) {
218   upper_ = Max(upper_, other->upper_);
219   lower_ = Min(lower_, other->lower_);
220   bool b = CanBeMinusZero() || other->CanBeMinusZero();
221   set_can_be_minus_zero(b);
222 }
223
224
225 void Range::CombinedMax(Range* other) {
226   upper_ = Max(upper_, other->upper_);
227   lower_ = Max(lower_, other->lower_);
228   set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
229 }
230
231
232 void Range::CombinedMin(Range* other) {
233   upper_ = Min(upper_, other->upper_);
234   lower_ = Min(lower_, other->lower_);
235   set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
236 }
237
238
239 void Range::Sar(int32_t value) {
240   int32_t bits = value & 0x1F;
241   lower_ = lower_ >> bits;
242   upper_ = upper_ >> bits;
243   set_can_be_minus_zero(false);
244 }
245
246
247 void Range::Shl(int32_t value) {
248   int32_t bits = value & 0x1F;
249   int old_lower = lower_;
250   int old_upper = upper_;
251   lower_ = lower_ << bits;
252   upper_ = upper_ << bits;
253   if (old_lower != lower_ >> bits || old_upper != upper_ >> bits) {
254     upper_ = kMaxInt;
255     lower_ = kMinInt;
256   }
257   set_can_be_minus_zero(false);
258 }
259
260
261 bool Range::AddAndCheckOverflow(const Representation& r, Range* other) {
262   bool may_overflow = false;
263   lower_ = AddWithoutOverflow(r, lower_, other->lower(), &may_overflow);
264   upper_ = AddWithoutOverflow(r, upper_, other->upper(), &may_overflow);
265   KeepOrder();
266 #ifdef DEBUG
267   Verify();
268 #endif
269   return may_overflow;
270 }
271
272
273 bool Range::SubAndCheckOverflow(const Representation& r, Range* other) {
274   bool may_overflow = false;
275   lower_ = SubWithoutOverflow(r, lower_, other->upper(), &may_overflow);
276   upper_ = SubWithoutOverflow(r, upper_, other->lower(), &may_overflow);
277   KeepOrder();
278 #ifdef DEBUG
279   Verify();
280 #endif
281   return may_overflow;
282 }
283
284
285 void Range::KeepOrder() {
286   if (lower_ > upper_) {
287     int32_t tmp = lower_;
288     lower_ = upper_;
289     upper_ = tmp;
290   }
291 }
292
293
294 #ifdef DEBUG
295 void Range::Verify() const {
296   DCHECK(lower_ <= upper_);
297 }
298 #endif
299
300
301 bool Range::MulAndCheckOverflow(const Representation& r, Range* other) {
302   bool may_overflow = false;
303   int v1 = MulWithoutOverflow(r, lower_, other->lower(), &may_overflow);
304   int v2 = MulWithoutOverflow(r, lower_, other->upper(), &may_overflow);
305   int v3 = MulWithoutOverflow(r, upper_, other->lower(), &may_overflow);
306   int v4 = MulWithoutOverflow(r, upper_, other->upper(), &may_overflow);
307   lower_ = Min(Min(v1, v2), Min(v3, v4));
308   upper_ = Max(Max(v1, v2), Max(v3, v4));
309 #ifdef DEBUG
310   Verify();
311 #endif
312   return may_overflow;
313 }
314
315
316 bool HValue::IsDefinedAfter(HBasicBlock* other) const {
317   return block()->block_id() > other->block_id();
318 }
319
320
321 HUseListNode* HUseListNode::tail() {
322   // Skip and remove dead items in the use list.
323   while (tail_ != NULL && tail_->value()->CheckFlag(HValue::kIsDead)) {
324     tail_ = tail_->tail_;
325   }
326   return tail_;
327 }
328
329
330 bool HValue::CheckUsesForFlag(Flag f) const {
331   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
332     if (it.value()->IsSimulate()) continue;
333     if (!it.value()->CheckFlag(f)) return false;
334   }
335   return true;
336 }
337
338
339 bool HValue::CheckUsesForFlag(Flag f, HValue** value) const {
340   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
341     if (it.value()->IsSimulate()) continue;
342     if (!it.value()->CheckFlag(f)) {
343       *value = it.value();
344       return false;
345     }
346   }
347   return true;
348 }
349
350
351 bool HValue::HasAtLeastOneUseWithFlagAndNoneWithout(Flag f) const {
352   bool return_value = false;
353   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
354     if (it.value()->IsSimulate()) continue;
355     if (!it.value()->CheckFlag(f)) return false;
356     return_value = true;
357   }
358   return return_value;
359 }
360
361
362 HUseIterator::HUseIterator(HUseListNode* head) : next_(head) {
363   Advance();
364 }
365
366
367 void HUseIterator::Advance() {
368   current_ = next_;
369   if (current_ != NULL) {
370     next_ = current_->tail();
371     value_ = current_->value();
372     index_ = current_->index();
373   }
374 }
375
376
377 int HValue::UseCount() const {
378   int count = 0;
379   for (HUseIterator it(uses()); !it.Done(); it.Advance()) ++count;
380   return count;
381 }
382
383
384 HUseListNode* HValue::RemoveUse(HValue* value, int index) {
385   HUseListNode* previous = NULL;
386   HUseListNode* current = use_list_;
387   while (current != NULL) {
388     if (current->value() == value && current->index() == index) {
389       if (previous == NULL) {
390         use_list_ = current->tail();
391       } else {
392         previous->set_tail(current->tail());
393       }
394       break;
395     }
396
397     previous = current;
398     current = current->tail();
399   }
400
401 #ifdef DEBUG
402   // Do not reuse use list nodes in debug mode, zap them.
403   if (current != NULL) {
404     HUseListNode* temp =
405         new(block()->zone())
406         HUseListNode(current->value(), current->index(), NULL);
407     current->Zap();
408     current = temp;
409   }
410 #endif
411   return current;
412 }
413
414
415 bool HValue::Equals(HValue* other) {
416   if (other->opcode() != opcode()) return false;
417   if (!other->representation().Equals(representation())) return false;
418   if (!other->type_.Equals(type_)) return false;
419   if (other->flags() != flags()) return false;
420   if (OperandCount() != other->OperandCount()) return false;
421   for (int i = 0; i < OperandCount(); ++i) {
422     if (OperandAt(i)->id() != other->OperandAt(i)->id()) return false;
423   }
424   bool result = DataEquals(other);
425   DCHECK(!result || Hashcode() == other->Hashcode());
426   return result;
427 }
428
429
430 intptr_t HValue::Hashcode() {
431   intptr_t result = opcode();
432   int count = OperandCount();
433   for (int i = 0; i < count; ++i) {
434     result = result * 19 + OperandAt(i)->id() + (result >> 7);
435   }
436   return result;
437 }
438
439
440 const char* HValue::Mnemonic() const {
441   switch (opcode()) {
442 #define MAKE_CASE(type) case k##type: return #type;
443     HYDROGEN_CONCRETE_INSTRUCTION_LIST(MAKE_CASE)
444 #undef MAKE_CASE
445     case kPhi: return "Phi";
446     default: return "";
447   }
448 }
449
450
451 bool HValue::CanReplaceWithDummyUses() {
452   return FLAG_unreachable_code_elimination &&
453       !(block()->IsReachable() ||
454         IsBlockEntry() ||
455         IsControlInstruction() ||
456         IsArgumentsObject() ||
457         IsCapturedObject() ||
458         IsSimulate() ||
459         IsEnterInlined() ||
460         IsLeaveInlined());
461 }
462
463
464 bool HValue::IsInteger32Constant() {
465   return IsConstant() && HConstant::cast(this)->HasInteger32Value();
466 }
467
468
469 int32_t HValue::GetInteger32Constant() {
470   return HConstant::cast(this)->Integer32Value();
471 }
472
473
474 bool HValue::EqualsInteger32Constant(int32_t value) {
475   return IsInteger32Constant() && GetInteger32Constant() == value;
476 }
477
478
479 void HValue::SetOperandAt(int index, HValue* value) {
480   RegisterUse(index, value);
481   InternalSetOperandAt(index, value);
482 }
483
484
485 void HValue::DeleteAndReplaceWith(HValue* other) {
486   // We replace all uses first, so Delete can assert that there are none.
487   if (other != NULL) ReplaceAllUsesWith(other);
488   Kill();
489   DeleteFromGraph();
490 }
491
492
493 void HValue::ReplaceAllUsesWith(HValue* other) {
494   while (use_list_ != NULL) {
495     HUseListNode* list_node = use_list_;
496     HValue* value = list_node->value();
497     DCHECK(!value->block()->IsStartBlock());
498     value->InternalSetOperandAt(list_node->index(), other);
499     use_list_ = list_node->tail();
500     list_node->set_tail(other->use_list_);
501     other->use_list_ = list_node;
502   }
503 }
504
505
506 void HValue::Kill() {
507   // Instead of going through the entire use list of each operand, we only
508   // check the first item in each use list and rely on the tail() method to
509   // skip dead items, removing them lazily next time we traverse the list.
510   SetFlag(kIsDead);
511   for (int i = 0; i < OperandCount(); ++i) {
512     HValue* operand = OperandAt(i);
513     if (operand == NULL) continue;
514     HUseListNode* first = operand->use_list_;
515     if (first != NULL && first->value()->CheckFlag(kIsDead)) {
516       operand->use_list_ = first->tail();
517     }
518   }
519 }
520
521
522 void HValue::SetBlock(HBasicBlock* block) {
523   DCHECK(block_ == NULL || block == NULL);
524   block_ = block;
525   if (id_ == kNoNumber && block != NULL) {
526     id_ = block->graph()->GetNextValueID(this);
527   }
528 }
529
530
531 OStream& operator<<(OStream& os, const HValue& v) { return v.PrintTo(os); }
532
533
534 OStream& operator<<(OStream& os, const TypeOf& t) {
535   if (t.value->representation().IsTagged() &&
536       !t.value->type().Equals(HType::Tagged()))
537     return os;
538   return os << " type:" << t.value->type();
539 }
540
541
542 OStream& operator<<(OStream& os, const ChangesOf& c) {
543   GVNFlagSet changes_flags = c.value->ChangesFlags();
544   if (changes_flags.IsEmpty()) return os;
545   os << " changes[";
546   if (changes_flags == c.value->AllSideEffectsFlagSet()) {
547     os << "*";
548   } else {
549     bool add_comma = false;
550 #define PRINT_DO(Type)                   \
551   if (changes_flags.Contains(k##Type)) { \
552     if (add_comma) os << ",";            \
553     add_comma = true;                    \
554     os << #Type;                         \
555   }
556     GVN_TRACKED_FLAG_LIST(PRINT_DO);
557     GVN_UNTRACKED_FLAG_LIST(PRINT_DO);
558 #undef PRINT_DO
559   }
560   return os << "]";
561 }
562
563
564 bool HValue::HasMonomorphicJSObjectType() {
565   return !GetMonomorphicJSObjectMap().is_null();
566 }
567
568
569 bool HValue::UpdateInferredType() {
570   HType type = CalculateInferredType();
571   bool result = (!type.Equals(type_));
572   type_ = type;
573   return result;
574 }
575
576
577 void HValue::RegisterUse(int index, HValue* new_value) {
578   HValue* old_value = OperandAt(index);
579   if (old_value == new_value) return;
580
581   HUseListNode* removed = NULL;
582   if (old_value != NULL) {
583     removed = old_value->RemoveUse(this, index);
584   }
585
586   if (new_value != NULL) {
587     if (removed == NULL) {
588       new_value->use_list_ = new(new_value->block()->zone()) HUseListNode(
589           this, index, new_value->use_list_);
590     } else {
591       removed->set_tail(new_value->use_list_);
592       new_value->use_list_ = removed;
593     }
594   }
595 }
596
597
598 void HValue::AddNewRange(Range* r, Zone* zone) {
599   if (!HasRange()) ComputeInitialRange(zone);
600   if (!HasRange()) range_ = new(zone) Range();
601   DCHECK(HasRange());
602   r->StackUpon(range_);
603   range_ = r;
604 }
605
606
607 void HValue::RemoveLastAddedRange() {
608   DCHECK(HasRange());
609   DCHECK(range_->next() != NULL);
610   range_ = range_->next();
611 }
612
613
614 void HValue::ComputeInitialRange(Zone* zone) {
615   DCHECK(!HasRange());
616   range_ = InferRange(zone);
617   DCHECK(HasRange());
618 }
619
620
621 OStream& operator<<(OStream& os, const HSourcePosition& p) {
622   if (p.IsUnknown()) {
623     return os << "<?>";
624   } else if (FLAG_hydrogen_track_positions) {
625     return os << "<" << p.inlining_id() << ":" << p.position() << ">";
626   } else {
627     return os << "<0:" << p.raw() << ">";
628   }
629 }
630
631
632 OStream& HInstruction::PrintTo(OStream& os) const {  // NOLINT
633   os << Mnemonic() << " ";
634   PrintDataTo(os) << ChangesOf(this) << TypeOf(this);
635   if (CheckFlag(HValue::kHasNoObservableSideEffects)) os << " [noOSE]";
636   if (CheckFlag(HValue::kIsDead)) os << " [dead]";
637   return os;
638 }
639
640
641 OStream& HInstruction::PrintDataTo(OStream& os) const {  // NOLINT
642   for (int i = 0; i < OperandCount(); ++i) {
643     if (i > 0) os << " ";
644     os << NameOf(OperandAt(i));
645   }
646   return os;
647 }
648
649
650 void HInstruction::Unlink() {
651   DCHECK(IsLinked());
652   DCHECK(!IsControlInstruction());  // Must never move control instructions.
653   DCHECK(!IsBlockEntry());  // Doesn't make sense to delete these.
654   DCHECK(previous_ != NULL);
655   previous_->next_ = next_;
656   if (next_ == NULL) {
657     DCHECK(block()->last() == this);
658     block()->set_last(previous_);
659   } else {
660     next_->previous_ = previous_;
661   }
662   clear_block();
663 }
664
665
666 void HInstruction::InsertBefore(HInstruction* next) {
667   DCHECK(!IsLinked());
668   DCHECK(!next->IsBlockEntry());
669   DCHECK(!IsControlInstruction());
670   DCHECK(!next->block()->IsStartBlock());
671   DCHECK(next->previous_ != NULL);
672   HInstruction* prev = next->previous();
673   prev->next_ = this;
674   next->previous_ = this;
675   next_ = next;
676   previous_ = prev;
677   SetBlock(next->block());
678   if (!has_position() && next->has_position()) {
679     set_position(next->position());
680   }
681 }
682
683
684 void HInstruction::InsertAfter(HInstruction* previous) {
685   DCHECK(!IsLinked());
686   DCHECK(!previous->IsControlInstruction());
687   DCHECK(!IsControlInstruction() || previous->next_ == NULL);
688   HBasicBlock* block = previous->block();
689   // Never insert anything except constants into the start block after finishing
690   // it.
691   if (block->IsStartBlock() && block->IsFinished() && !IsConstant()) {
692     DCHECK(block->end()->SecondSuccessor() == NULL);
693     InsertAfter(block->end()->FirstSuccessor()->first());
694     return;
695   }
696
697   // If we're inserting after an instruction with side-effects that is
698   // followed by a simulate instruction, we need to insert after the
699   // simulate instruction instead.
700   HInstruction* next = previous->next_;
701   if (previous->HasObservableSideEffects() && next != NULL) {
702     DCHECK(next->IsSimulate());
703     previous = next;
704     next = previous->next_;
705   }
706
707   previous_ = previous;
708   next_ = next;
709   SetBlock(block);
710   previous->next_ = this;
711   if (next != NULL) next->previous_ = this;
712   if (block->last() == previous) {
713     block->set_last(this);
714   }
715   if (!has_position() && previous->has_position()) {
716     set_position(previous->position());
717   }
718 }
719
720
721 bool HInstruction::Dominates(HInstruction* other) {
722   if (block() != other->block()) {
723     return block()->Dominates(other->block());
724   }
725   // Both instructions are in the same basic block. This instruction
726   // should precede the other one in order to dominate it.
727   for (HInstruction* instr = next(); instr != NULL; instr = instr->next()) {
728     if (instr == other) {
729       return true;
730     }
731   }
732   return false;
733 }
734
735
736 #ifdef DEBUG
737 void HInstruction::Verify() {
738   // Verify that input operands are defined before use.
739   HBasicBlock* cur_block = block();
740   for (int i = 0; i < OperandCount(); ++i) {
741     HValue* other_operand = OperandAt(i);
742     if (other_operand == NULL) continue;
743     HBasicBlock* other_block = other_operand->block();
744     if (cur_block == other_block) {
745       if (!other_operand->IsPhi()) {
746         HInstruction* cur = this->previous();
747         while (cur != NULL) {
748           if (cur == other_operand) break;
749           cur = cur->previous();
750         }
751         // Must reach other operand in the same block!
752         DCHECK(cur == other_operand);
753       }
754     } else {
755       // If the following assert fires, you may have forgotten an
756       // AddInstruction.
757       DCHECK(other_block->Dominates(cur_block));
758     }
759   }
760
761   // Verify that instructions that may have side-effects are followed
762   // by a simulate instruction.
763   if (HasObservableSideEffects() && !IsOsrEntry()) {
764     DCHECK(next()->IsSimulate());
765   }
766
767   // Verify that instructions that can be eliminated by GVN have overridden
768   // HValue::DataEquals.  The default implementation is UNREACHABLE.  We
769   // don't actually care whether DataEquals returns true or false here.
770   if (CheckFlag(kUseGVN)) DataEquals(this);
771
772   // Verify that all uses are in the graph.
773   for (HUseIterator use = uses(); !use.Done(); use.Advance()) {
774     if (use.value()->IsInstruction()) {
775       DCHECK(HInstruction::cast(use.value())->IsLinked());
776     }
777   }
778 }
779 #endif
780
781
782 bool HInstruction::CanDeoptimize() {
783   // TODO(titzer): make this a virtual method?
784   switch (opcode()) {
785     case HValue::kAbnormalExit:
786     case HValue::kAccessArgumentsAt:
787     case HValue::kAllocate:
788     case HValue::kArgumentsElements:
789     case HValue::kArgumentsLength:
790     case HValue::kArgumentsObject:
791     case HValue::kBlockEntry:
792     case HValue::kBoundsCheckBaseIndexInformation:
793     case HValue::kCallFunction:
794     case HValue::kCallNew:
795     case HValue::kCallNewArray:
796     case HValue::kCallStub:
797     case HValue::kCallWithDescriptor:
798     case HValue::kCapturedObject:
799     case HValue::kClassOfTestAndBranch:
800     case HValue::kCompareGeneric:
801     case HValue::kCompareHoleAndBranch:
802     case HValue::kCompareMap:
803     case HValue::kCompareMinusZeroAndBranch:
804     case HValue::kCompareNumericAndBranch:
805     case HValue::kCompareObjectEqAndBranch:
806     case HValue::kConstant:
807     case HValue::kConstructDouble:
808     case HValue::kContext:
809     case HValue::kDebugBreak:
810     case HValue::kDeclareGlobals:
811     case HValue::kDoubleBits:
812     case HValue::kDummyUse:
813     case HValue::kEnterInlined:
814     case HValue::kEnvironmentMarker:
815     case HValue::kForceRepresentation:
816     case HValue::kGetCachedArrayIndex:
817     case HValue::kGoto:
818     case HValue::kHasCachedArrayIndexAndBranch:
819     case HValue::kHasInstanceTypeAndBranch:
820     case HValue::kInnerAllocatedObject:
821     case HValue::kInstanceOf:
822     case HValue::kInstanceOfKnownGlobal:
823     case HValue::kIsConstructCallAndBranch:
824     case HValue::kIsObjectAndBranch:
825     case HValue::kIsSmiAndBranch:
826     case HValue::kIsStringAndBranch:
827     case HValue::kIsUndetectableAndBranch:
828     case HValue::kLeaveInlined:
829     case HValue::kLoadFieldByIndex:
830     case HValue::kLoadGlobalGeneric:
831     case HValue::kLoadNamedField:
832     case HValue::kLoadNamedGeneric:
833     case HValue::kLoadRoot:
834     case HValue::kMapEnumLength:
835     case HValue::kMathMinMax:
836     case HValue::kParameter:
837     case HValue::kPhi:
838     case HValue::kPushArguments:
839     case HValue::kRegExpLiteral:
840     case HValue::kReturn:
841     case HValue::kSeqStringGetChar:
842     case HValue::kStoreCodeEntry:
843     case HValue::kStoreFrameContext:
844     case HValue::kStoreKeyed:
845     case HValue::kStoreNamedField:
846     case HValue::kStoreNamedGeneric:
847     case HValue::kStringCharCodeAt:
848     case HValue::kStringCharFromCode:
849     case HValue::kTailCallThroughMegamorphicCache:
850     case HValue::kThisFunction:
851     case HValue::kTypeofIsAndBranch:
852     case HValue::kUnknownOSRValue:
853     case HValue::kUseConst:
854       return false;
855
856     case HValue::kAdd:
857     case HValue::kAllocateBlockContext:
858     case HValue::kApplyArguments:
859     case HValue::kBitwise:
860     case HValue::kBoundsCheck:
861     case HValue::kBranch:
862     case HValue::kCallJSFunction:
863     case HValue::kCallRuntime:
864     case HValue::kChange:
865     case HValue::kCheckHeapObject:
866     case HValue::kCheckInstanceType:
867     case HValue::kCheckMapValue:
868     case HValue::kCheckMaps:
869     case HValue::kCheckSmi:
870     case HValue::kCheckValue:
871     case HValue::kClampToUint8:
872     case HValue::kDateField:
873     case HValue::kDeoptimize:
874     case HValue::kDiv:
875     case HValue::kForInCacheArray:
876     case HValue::kForInPrepareMap:
877     case HValue::kFunctionLiteral:
878     case HValue::kInvokeFunction:
879     case HValue::kLoadContextSlot:
880     case HValue::kLoadFunctionPrototype:
881     case HValue::kLoadGlobalCell:
882     case HValue::kLoadKeyed:
883     case HValue::kLoadKeyedGeneric:
884     case HValue::kMathFloorOfDiv:
885     case HValue::kMod:
886     case HValue::kMul:
887     case HValue::kOsrEntry:
888     case HValue::kPower:
889     case HValue::kRor:
890     case HValue::kSar:
891     case HValue::kSeqStringSetChar:
892     case HValue::kShl:
893     case HValue::kShr:
894     case HValue::kSimulate:
895     case HValue::kStackCheck:
896     case HValue::kStoreContextSlot:
897     case HValue::kStoreGlobalCell:
898     case HValue::kStoreKeyedGeneric:
899     case HValue::kStringAdd:
900     case HValue::kStringCompareAndBranch:
901     case HValue::kSub:
902     case HValue::kToFastProperties:
903     case HValue::kTransitionElementsKind:
904     case HValue::kTrapAllocationMemento:
905     case HValue::kTypeof:
906     case HValue::kUnaryMathOperation:
907     case HValue::kWrapReceiver:
908       return true;
909   }
910   UNREACHABLE();
911   return true;
912 }
913
914
915 OStream& operator<<(OStream& os, const NameOf& v) {
916   return os << v.value->representation().Mnemonic() << v.value->id();
917 }
918
919 OStream& HDummyUse::PrintDataTo(OStream& os) const {  // NOLINT
920   return os << NameOf(value());
921 }
922
923
924 OStream& HEnvironmentMarker::PrintDataTo(OStream& os) const {  // NOLINT
925   return os << (kind() == BIND ? "bind" : "lookup") << " var[" << index()
926             << "]";
927 }
928
929
930 OStream& HUnaryCall::PrintDataTo(OStream& os) const {  // NOLINT
931   return os << NameOf(value()) << " #" << argument_count();
932 }
933
934
935 OStream& HCallJSFunction::PrintDataTo(OStream& os) const {  // NOLINT
936   return os << NameOf(function()) << " #" << argument_count();
937 }
938
939
940 HCallJSFunction* HCallJSFunction::New(
941     Zone* zone,
942     HValue* context,
943     HValue* function,
944     int argument_count,
945     bool pass_argument_count) {
946   bool has_stack_check = false;
947   if (function->IsConstant()) {
948     HConstant* fun_const = HConstant::cast(function);
949     Handle<JSFunction> jsfun =
950         Handle<JSFunction>::cast(fun_const->handle(zone->isolate()));
951     has_stack_check = !jsfun.is_null() &&
952         (jsfun->code()->kind() == Code::FUNCTION ||
953          jsfun->code()->kind() == Code::OPTIMIZED_FUNCTION);
954   }
955
956   return new(zone) HCallJSFunction(
957       function, argument_count, pass_argument_count,
958       has_stack_check);
959 }
960
961
962 OStream& HBinaryCall::PrintDataTo(OStream& os) const {  // NOLINT
963   return os << NameOf(first()) << " " << NameOf(second()) << " #"
964             << argument_count();
965 }
966
967
968 void HBoundsCheck::ApplyIndexChange() {
969   if (skip_check()) return;
970
971   DecompositionResult decomposition;
972   bool index_is_decomposable = index()->TryDecompose(&decomposition);
973   if (index_is_decomposable) {
974     DCHECK(decomposition.base() == base());
975     if (decomposition.offset() == offset() &&
976         decomposition.scale() == scale()) return;
977   } else {
978     return;
979   }
980
981   ReplaceAllUsesWith(index());
982
983   HValue* current_index = decomposition.base();
984   int actual_offset = decomposition.offset() + offset();
985   int actual_scale = decomposition.scale() + scale();
986
987   Zone* zone = block()->graph()->zone();
988   HValue* context = block()->graph()->GetInvalidContext();
989   if (actual_offset != 0) {
990     HConstant* add_offset = HConstant::New(zone, context, actual_offset);
991     add_offset->InsertBefore(this);
992     HInstruction* add = HAdd::New(zone, context,
993                                   current_index, add_offset);
994     add->InsertBefore(this);
995     add->AssumeRepresentation(index()->representation());
996     add->ClearFlag(kCanOverflow);
997     current_index = add;
998   }
999
1000   if (actual_scale != 0) {
1001     HConstant* sar_scale = HConstant::New(zone, context, actual_scale);
1002     sar_scale->InsertBefore(this);
1003     HInstruction* sar = HSar::New(zone, context,
1004                                   current_index, sar_scale);
1005     sar->InsertBefore(this);
1006     sar->AssumeRepresentation(index()->representation());
1007     current_index = sar;
1008   }
1009
1010   SetOperandAt(0, current_index);
1011
1012   base_ = NULL;
1013   offset_ = 0;
1014   scale_ = 0;
1015 }
1016
1017
1018 OStream& HBoundsCheck::PrintDataTo(OStream& os) const {  // NOLINT
1019   os << NameOf(index()) << " " << NameOf(length());
1020   if (base() != NULL && (offset() != 0 || scale() != 0)) {
1021     os << " base: ((";
1022     if (base() != index()) {
1023       os << NameOf(index());
1024     } else {
1025       os << "index";
1026     }
1027     os << " + " << offset() << ") >> " << scale() << ")";
1028   }
1029   if (skip_check()) os << " [DISABLED]";
1030   return os;
1031 }
1032
1033
1034 void HBoundsCheck::InferRepresentation(HInferRepresentationPhase* h_infer) {
1035   DCHECK(CheckFlag(kFlexibleRepresentation));
1036   HValue* actual_index = index()->ActualValue();
1037   HValue* actual_length = length()->ActualValue();
1038   Representation index_rep = actual_index->representation();
1039   Representation length_rep = actual_length->representation();
1040   if (index_rep.IsTagged() && actual_index->type().IsSmi()) {
1041     index_rep = Representation::Smi();
1042   }
1043   if (length_rep.IsTagged() && actual_length->type().IsSmi()) {
1044     length_rep = Representation::Smi();
1045   }
1046   Representation r = index_rep.generalize(length_rep);
1047   if (r.is_more_general_than(Representation::Integer32())) {
1048     r = Representation::Integer32();
1049   }
1050   UpdateRepresentation(r, h_infer, "boundscheck");
1051 }
1052
1053
1054 Range* HBoundsCheck::InferRange(Zone* zone) {
1055   Representation r = representation();
1056   if (r.IsSmiOrInteger32() && length()->HasRange()) {
1057     int upper = length()->range()->upper() - (allow_equality() ? 0 : 1);
1058     int lower = 0;
1059
1060     Range* result = new(zone) Range(lower, upper);
1061     if (index()->HasRange()) {
1062       result->Intersect(index()->range());
1063     }
1064
1065     // In case of Smi representation, clamp result to Smi::kMaxValue.
1066     if (r.IsSmi()) result->ClampToSmi();
1067     return result;
1068   }
1069   return HValue::InferRange(zone);
1070 }
1071
1072
1073 OStream& HBoundsCheckBaseIndexInformation::PrintDataTo(
1074     OStream& os) const {  // NOLINT
1075   // TODO(svenpanne) This 2nd base_index() looks wrong...
1076   return os << "base: " << NameOf(base_index())
1077             << ", check: " << NameOf(base_index());
1078 }
1079
1080
1081 OStream& HCallWithDescriptor::PrintDataTo(OStream& os) const {  // NOLINT
1082   for (int i = 0; i < OperandCount(); i++) {
1083     os << NameOf(OperandAt(i)) << " ";
1084   }
1085   return os << "#" << argument_count();
1086 }
1087
1088
1089 OStream& HCallNewArray::PrintDataTo(OStream& os) const {  // NOLINT
1090   os << ElementsKindToString(elements_kind()) << " ";
1091   return HBinaryCall::PrintDataTo(os);
1092 }
1093
1094
1095 OStream& HCallRuntime::PrintDataTo(OStream& os) const {  // NOLINT
1096   os << name()->ToCString().get() << " ";
1097   if (save_doubles() == kSaveFPRegs) os << "[save doubles] ";
1098   return os << "#" << argument_count();
1099 }
1100
1101
1102 OStream& HClassOfTestAndBranch::PrintDataTo(OStream& os) const {  // NOLINT
1103   return os << "class_of_test(" << NameOf(value()) << ", \""
1104             << class_name()->ToCString().get() << "\")";
1105 }
1106
1107
1108 OStream& HWrapReceiver::PrintDataTo(OStream& os) const {  // NOLINT
1109   return os << NameOf(receiver()) << " " << NameOf(function());
1110 }
1111
1112
1113 OStream& HAccessArgumentsAt::PrintDataTo(OStream& os) const {  // NOLINT
1114   return os << NameOf(arguments()) << "[" << NameOf(index()) << "], length "
1115             << NameOf(length());
1116 }
1117
1118
1119 OStream& HAllocateBlockContext::PrintDataTo(OStream& os) const {  // NOLINT
1120   return os << NameOf(context()) << " " << NameOf(function());
1121 }
1122
1123
1124 OStream& HControlInstruction::PrintDataTo(OStream& os) const {  // NOLINT
1125   os << " goto (";
1126   bool first_block = true;
1127   for (HSuccessorIterator it(this); !it.Done(); it.Advance()) {
1128     if (!first_block) os << ", ";
1129     os << *it.Current();
1130     first_block = false;
1131   }
1132   return os << ")";
1133 }
1134
1135
1136 OStream& HUnaryControlInstruction::PrintDataTo(OStream& os) const {  // NOLINT
1137   os << NameOf(value());
1138   return HControlInstruction::PrintDataTo(os);
1139 }
1140
1141
1142 OStream& HReturn::PrintDataTo(OStream& os) const {  // NOLINT
1143   return os << NameOf(value()) << " (pop " << NameOf(parameter_count())
1144             << " values)";
1145 }
1146
1147
1148 Representation HBranch::observed_input_representation(int index) {
1149   static const ToBooleanStub::Types tagged_types(
1150       ToBooleanStub::NULL_TYPE |
1151       ToBooleanStub::SPEC_OBJECT |
1152       ToBooleanStub::STRING |
1153       ToBooleanStub::SYMBOL);
1154   if (expected_input_types_.ContainsAnyOf(tagged_types)) {
1155     return Representation::Tagged();
1156   }
1157   if (expected_input_types_.Contains(ToBooleanStub::UNDEFINED)) {
1158     if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) {
1159       return Representation::Double();
1160     }
1161     return Representation::Tagged();
1162   }
1163   if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) {
1164     return Representation::Double();
1165   }
1166   if (expected_input_types_.Contains(ToBooleanStub::SMI)) {
1167     return Representation::Smi();
1168   }
1169   return Representation::None();
1170 }
1171
1172
1173 bool HBranch::KnownSuccessorBlock(HBasicBlock** block) {
1174   HValue* value = this->value();
1175   if (value->EmitAtUses()) {
1176     DCHECK(value->IsConstant());
1177     DCHECK(!value->representation().IsDouble());
1178     *block = HConstant::cast(value)->BooleanValue()
1179         ? FirstSuccessor()
1180         : SecondSuccessor();
1181     return true;
1182   }
1183   *block = NULL;
1184   return false;
1185 }
1186
1187
1188 OStream& HBranch::PrintDataTo(OStream& os) const {  // NOLINT
1189   return HUnaryControlInstruction::PrintDataTo(os) << " "
1190                                                    << expected_input_types();
1191 }
1192
1193
1194 OStream& HCompareMap::PrintDataTo(OStream& os) const {  // NOLINT
1195   os << NameOf(value()) << " (" << *map().handle() << ")";
1196   HControlInstruction::PrintDataTo(os);
1197   if (known_successor_index() == 0) {
1198     os << " [true]";
1199   } else if (known_successor_index() == 1) {
1200     os << " [false]";
1201   }
1202   return os;
1203 }
1204
1205
1206 const char* HUnaryMathOperation::OpName() const {
1207   switch (op()) {
1208     case kMathFloor:
1209       return "floor";
1210     case kMathFround:
1211       return "fround";
1212     case kMathRound:
1213       return "round";
1214     case kMathAbs:
1215       return "abs";
1216     case kMathLog:
1217       return "log";
1218     case kMathExp:
1219       return "exp";
1220     case kMathSqrt:
1221       return "sqrt";
1222     case kMathPowHalf:
1223       return "pow-half";
1224     case kMathClz32:
1225       return "clz32";
1226     default:
1227       UNREACHABLE();
1228       return NULL;
1229   }
1230 }
1231
1232
1233 Range* HUnaryMathOperation::InferRange(Zone* zone) {
1234   Representation r = representation();
1235   if (op() == kMathClz32) return new(zone) Range(0, 32);
1236   if (r.IsSmiOrInteger32() && value()->HasRange()) {
1237     if (op() == kMathAbs) {
1238       int upper = value()->range()->upper();
1239       int lower = value()->range()->lower();
1240       bool spans_zero = value()->range()->CanBeZero();
1241       // Math.abs(kMinInt) overflows its representation, on which the
1242       // instruction deopts. Hence clamp it to kMaxInt.
1243       int abs_upper = upper == kMinInt ? kMaxInt : abs(upper);
1244       int abs_lower = lower == kMinInt ? kMaxInt : abs(lower);
1245       Range* result =
1246           new(zone) Range(spans_zero ? 0 : Min(abs_lower, abs_upper),
1247                           Max(abs_lower, abs_upper));
1248       // In case of Smi representation, clamp Math.abs(Smi::kMinValue) to
1249       // Smi::kMaxValue.
1250       if (r.IsSmi()) result->ClampToSmi();
1251       return result;
1252     }
1253   }
1254   return HValue::InferRange(zone);
1255 }
1256
1257
1258 OStream& HUnaryMathOperation::PrintDataTo(OStream& os) const {  // NOLINT
1259   return os << OpName() << " " << NameOf(value());
1260 }
1261
1262
1263 OStream& HUnaryOperation::PrintDataTo(OStream& os) const {  // NOLINT
1264   return os << NameOf(value());
1265 }
1266
1267
1268 OStream& HHasInstanceTypeAndBranch::PrintDataTo(OStream& os) const {  // NOLINT
1269   os << NameOf(value());
1270   switch (from_) {
1271     case FIRST_JS_RECEIVER_TYPE:
1272       if (to_ == LAST_TYPE) os << " spec_object";
1273       break;
1274     case JS_REGEXP_TYPE:
1275       if (to_ == JS_REGEXP_TYPE) os << " reg_exp";
1276       break;
1277     case JS_ARRAY_TYPE:
1278       if (to_ == JS_ARRAY_TYPE) os << " array";
1279       break;
1280     case JS_FUNCTION_TYPE:
1281       if (to_ == JS_FUNCTION_TYPE) os << " function";
1282       break;
1283     default:
1284       break;
1285   }
1286   return os;
1287 }
1288
1289
1290 OStream& HTypeofIsAndBranch::PrintDataTo(OStream& os) const {  // NOLINT
1291   os << NameOf(value()) << " == " << type_literal()->ToCString().get();
1292   return HControlInstruction::PrintDataTo(os);
1293 }
1294
1295
1296 static String* TypeOfString(HConstant* constant, Isolate* isolate) {
1297   Heap* heap = isolate->heap();
1298   if (constant->HasNumberValue()) return heap->number_string();
1299   if (constant->IsUndetectable()) return heap->undefined_string();
1300   if (constant->HasStringValue()) return heap->string_string();
1301   switch (constant->GetInstanceType()) {
1302     case ODDBALL_TYPE: {
1303       Unique<Object> unique = constant->GetUnique();
1304       if (unique.IsKnownGlobal(heap->true_value()) ||
1305           unique.IsKnownGlobal(heap->false_value())) {
1306         return heap->boolean_string();
1307       }
1308       if (unique.IsKnownGlobal(heap->null_value())) {
1309         return heap->object_string();
1310       }
1311       DCHECK(unique.IsKnownGlobal(heap->undefined_value()));
1312       return heap->undefined_string();
1313     }
1314     case SYMBOL_TYPE:
1315       return heap->symbol_string();
1316     case JS_FUNCTION_TYPE:
1317     case JS_FUNCTION_PROXY_TYPE:
1318       return heap->function_string();
1319     default:
1320       return heap->object_string();
1321   }
1322 }
1323
1324
1325 bool HTypeofIsAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
1326   if (FLAG_fold_constants && value()->IsConstant()) {
1327     HConstant* constant = HConstant::cast(value());
1328     String* type_string = TypeOfString(constant, isolate());
1329     bool same_type = type_literal_.IsKnownGlobal(type_string);
1330     *block = same_type ? FirstSuccessor() : SecondSuccessor();
1331     return true;
1332   } else if (value()->representation().IsSpecialization()) {
1333     bool number_type =
1334         type_literal_.IsKnownGlobal(isolate()->heap()->number_string());
1335     *block = number_type ? FirstSuccessor() : SecondSuccessor();
1336     return true;
1337   }
1338   *block = NULL;
1339   return false;
1340 }
1341
1342
1343 OStream& HCheckMapValue::PrintDataTo(OStream& os) const {  // NOLINT
1344   return os << NameOf(value()) << " " << NameOf(map());
1345 }
1346
1347
1348 HValue* HCheckMapValue::Canonicalize() {
1349   if (map()->IsConstant()) {
1350     HConstant* c_map = HConstant::cast(map());
1351     return HCheckMaps::CreateAndInsertAfter(
1352         block()->graph()->zone(), value(), c_map->MapValue(),
1353         c_map->HasStableMapValue(), this);
1354   }
1355   return this;
1356 }
1357
1358
1359 OStream& HForInPrepareMap::PrintDataTo(OStream& os) const {  // NOLINT
1360   return os << NameOf(enumerable());
1361 }
1362
1363
1364 OStream& HForInCacheArray::PrintDataTo(OStream& os) const {  // NOLINT
1365   return os << NameOf(enumerable()) << " " << NameOf(map()) << "[" << idx_
1366             << "]";
1367 }
1368
1369
1370 OStream& HLoadFieldByIndex::PrintDataTo(OStream& os) const {  // NOLINT
1371   return os << NameOf(object()) << " " << NameOf(index());
1372 }
1373
1374
1375 static bool MatchLeftIsOnes(HValue* l, HValue* r, HValue** negated) {
1376   if (!l->EqualsInteger32Constant(~0)) return false;
1377   *negated = r;
1378   return true;
1379 }
1380
1381
1382 static bool MatchNegationViaXor(HValue* instr, HValue** negated) {
1383   if (!instr->IsBitwise()) return false;
1384   HBitwise* b = HBitwise::cast(instr);
1385   return (b->op() == Token::BIT_XOR) &&
1386       (MatchLeftIsOnes(b->left(), b->right(), negated) ||
1387        MatchLeftIsOnes(b->right(), b->left(), negated));
1388 }
1389
1390
1391 static bool MatchDoubleNegation(HValue* instr, HValue** arg) {
1392   HValue* negated;
1393   return MatchNegationViaXor(instr, &negated) &&
1394       MatchNegationViaXor(negated, arg);
1395 }
1396
1397
1398 HValue* HBitwise::Canonicalize() {
1399   if (!representation().IsSmiOrInteger32()) return this;
1400   // If x is an int32, then x & -1 == x, x | 0 == x and x ^ 0 == x.
1401   int32_t nop_constant = (op() == Token::BIT_AND) ? -1 : 0;
1402   if (left()->EqualsInteger32Constant(nop_constant) &&
1403       !right()->CheckFlag(kUint32)) {
1404     return right();
1405   }
1406   if (right()->EqualsInteger32Constant(nop_constant) &&
1407       !left()->CheckFlag(kUint32)) {
1408     return left();
1409   }
1410   // Optimize double negation, a common pattern used for ToInt32(x).
1411   HValue* arg;
1412   if (MatchDoubleNegation(this, &arg) && !arg->CheckFlag(kUint32)) {
1413     return arg;
1414   }
1415   return this;
1416 }
1417
1418
1419 Representation HAdd::RepresentationFromInputs() {
1420   Representation left_rep = left()->representation();
1421   if (left_rep.IsExternal()) {
1422     return Representation::External();
1423   }
1424   return HArithmeticBinaryOperation::RepresentationFromInputs();
1425 }
1426
1427
1428 Representation HAdd::RequiredInputRepresentation(int index) {
1429   if (index == 2) {
1430     Representation left_rep = left()->representation();
1431     if (left_rep.IsExternal()) {
1432       return Representation::Integer32();
1433     }
1434   }
1435   return HArithmeticBinaryOperation::RequiredInputRepresentation(index);
1436 }
1437
1438
1439 static bool IsIdentityOperation(HValue* arg1, HValue* arg2, int32_t identity) {
1440   return arg1->representation().IsSpecialization() &&
1441     arg2->EqualsInteger32Constant(identity);
1442 }
1443
1444
1445 HValue* HAdd::Canonicalize() {
1446   // Adding 0 is an identity operation except in case of -0: -0 + 0 = +0
1447   if (IsIdentityOperation(left(), right(), 0) &&
1448       !left()->representation().IsDouble()) {  // Left could be -0.
1449     return left();
1450   }
1451   if (IsIdentityOperation(right(), left(), 0) &&
1452       !left()->representation().IsDouble()) {  // Right could be -0.
1453     return right();
1454   }
1455   return this;
1456 }
1457
1458
1459 HValue* HSub::Canonicalize() {
1460   if (IsIdentityOperation(left(), right(), 0)) return left();
1461   return this;
1462 }
1463
1464
1465 HValue* HMul::Canonicalize() {
1466   if (IsIdentityOperation(left(), right(), 1)) return left();
1467   if (IsIdentityOperation(right(), left(), 1)) return right();
1468   return this;
1469 }
1470
1471
1472 bool HMul::MulMinusOne() {
1473   if (left()->EqualsInteger32Constant(-1) ||
1474       right()->EqualsInteger32Constant(-1)) {
1475     return true;
1476   }
1477
1478   return false;
1479 }
1480
1481
1482 HValue* HMod::Canonicalize() {
1483   return this;
1484 }
1485
1486
1487 HValue* HDiv::Canonicalize() {
1488   if (IsIdentityOperation(left(), right(), 1)) return left();
1489   return this;
1490 }
1491
1492
1493 HValue* HChange::Canonicalize() {
1494   return (from().Equals(to())) ? value() : this;
1495 }
1496
1497
1498 HValue* HWrapReceiver::Canonicalize() {
1499   if (HasNoUses()) return NULL;
1500   if (receiver()->type().IsJSObject()) {
1501     return receiver();
1502   }
1503   return this;
1504 }
1505
1506
1507 OStream& HTypeof::PrintDataTo(OStream& os) const {  // NOLINT
1508   return os << NameOf(value());
1509 }
1510
1511
1512 HInstruction* HForceRepresentation::New(Zone* zone, HValue* context,
1513        HValue* value, Representation representation) {
1514   if (FLAG_fold_constants && value->IsConstant()) {
1515     HConstant* c = HConstant::cast(value);
1516     c = c->CopyToRepresentation(representation, zone);
1517     if (c != NULL) return c;
1518   }
1519   return new(zone) HForceRepresentation(value, representation);
1520 }
1521
1522
1523 OStream& HForceRepresentation::PrintDataTo(OStream& os) const {  // NOLINT
1524   return os << representation().Mnemonic() << " " << NameOf(value());
1525 }
1526
1527
1528 OStream& HChange::PrintDataTo(OStream& os) const {  // NOLINT
1529   HUnaryOperation::PrintDataTo(os);
1530   os << " " << from().Mnemonic() << " to " << to().Mnemonic();
1531
1532   if (CanTruncateToSmi()) os << " truncating-smi";
1533   if (CanTruncateToInt32()) os << " truncating-int32";
1534   if (CheckFlag(kBailoutOnMinusZero)) os << " -0?";
1535   if (CheckFlag(kAllowUndefinedAsNaN)) os << " allow-undefined-as-nan";
1536   return os;
1537 }
1538
1539
1540 HValue* HUnaryMathOperation::Canonicalize() {
1541   if (op() == kMathRound || op() == kMathFloor) {
1542     HValue* val = value();
1543     if (val->IsChange()) val = HChange::cast(val)->value();
1544     if (val->representation().IsSmiOrInteger32()) {
1545       if (val->representation().Equals(representation())) return val;
1546       return Prepend(new(block()->zone()) HChange(
1547           val, representation(), false, false));
1548     }
1549   }
1550   if (op() == kMathFloor && value()->IsDiv() && value()->HasOneUse()) {
1551     HDiv* hdiv = HDiv::cast(value());
1552
1553     HValue* left = hdiv->left();
1554     if (left->representation().IsInteger32()) {
1555       // A value with an integer representation does not need to be transformed.
1556     } else if (left->IsChange() && HChange::cast(left)->from().IsInteger32()) {
1557       // A change from an integer32 can be replaced by the integer32 value.
1558       left = HChange::cast(left)->value();
1559     } else if (hdiv->observed_input_representation(1).IsSmiOrInteger32()) {
1560       left = Prepend(new(block()->zone()) HChange(
1561           left, Representation::Integer32(), false, false));
1562     } else {
1563       return this;
1564     }
1565
1566     HValue* right = hdiv->right();
1567     if (right->IsInteger32Constant()) {
1568       right = Prepend(HConstant::cast(right)->CopyToRepresentation(
1569           Representation::Integer32(), right->block()->zone()));
1570     } else if (right->representation().IsInteger32()) {
1571       // A value with an integer representation does not need to be transformed.
1572     } else if (right->IsChange() &&
1573                HChange::cast(right)->from().IsInteger32()) {
1574       // A change from an integer32 can be replaced by the integer32 value.
1575       right = HChange::cast(right)->value();
1576     } else if (hdiv->observed_input_representation(2).IsSmiOrInteger32()) {
1577       right = Prepend(new(block()->zone()) HChange(
1578           right, Representation::Integer32(), false, false));
1579     } else {
1580       return this;
1581     }
1582
1583     return Prepend(HMathFloorOfDiv::New(
1584         block()->zone(), context(), left, right));
1585   }
1586   return this;
1587 }
1588
1589
1590 HValue* HCheckInstanceType::Canonicalize() {
1591   if ((check_ == IS_SPEC_OBJECT && value()->type().IsJSObject()) ||
1592       (check_ == IS_JS_ARRAY && value()->type().IsJSArray()) ||
1593       (check_ == IS_STRING && value()->type().IsString())) {
1594     return value();
1595   }
1596
1597   if (check_ == IS_INTERNALIZED_STRING && value()->IsConstant()) {
1598     if (HConstant::cast(value())->HasInternalizedStringValue()) {
1599       return value();
1600     }
1601   }
1602   return this;
1603 }
1604
1605
1606 void HCheckInstanceType::GetCheckInterval(InstanceType* first,
1607                                           InstanceType* last) {
1608   DCHECK(is_interval_check());
1609   switch (check_) {
1610     case IS_SPEC_OBJECT:
1611       *first = FIRST_SPEC_OBJECT_TYPE;
1612       *last = LAST_SPEC_OBJECT_TYPE;
1613       return;
1614     case IS_JS_ARRAY:
1615       *first = *last = JS_ARRAY_TYPE;
1616       return;
1617     default:
1618       UNREACHABLE();
1619   }
1620 }
1621
1622
1623 void HCheckInstanceType::GetCheckMaskAndTag(uint8_t* mask, uint8_t* tag) {
1624   DCHECK(!is_interval_check());
1625   switch (check_) {
1626     case IS_STRING:
1627       *mask = kIsNotStringMask;
1628       *tag = kStringTag;
1629       return;
1630     case IS_INTERNALIZED_STRING:
1631       *mask = kIsNotStringMask | kIsNotInternalizedMask;
1632       *tag = kInternalizedTag;
1633       return;
1634     default:
1635       UNREACHABLE();
1636   }
1637 }
1638
1639
1640 OStream& HCheckMaps::PrintDataTo(OStream& os) const {  // NOLINT
1641   os << NameOf(value()) << " [" << *maps()->at(0).handle();
1642   for (int i = 1; i < maps()->size(); ++i) {
1643     os << "," << *maps()->at(i).handle();
1644   }
1645   os << "]";
1646   if (IsStabilityCheck()) os << "(stability-check)";
1647   return os;
1648 }
1649
1650
1651 HValue* HCheckMaps::Canonicalize() {
1652   if (!IsStabilityCheck() && maps_are_stable() && value()->IsConstant()) {
1653     HConstant* c_value = HConstant::cast(value());
1654     if (c_value->HasObjectMap()) {
1655       for (int i = 0; i < maps()->size(); ++i) {
1656         if (c_value->ObjectMap() == maps()->at(i)) {
1657           if (maps()->size() > 1) {
1658             set_maps(new(block()->graph()->zone()) UniqueSet<Map>(
1659                     maps()->at(i), block()->graph()->zone()));
1660           }
1661           MarkAsStabilityCheck();
1662           break;
1663         }
1664       }
1665     }
1666   }
1667   return this;
1668 }
1669
1670
1671 OStream& HCheckValue::PrintDataTo(OStream& os) const {  // NOLINT
1672   return os << NameOf(value()) << " " << Brief(*object().handle());
1673 }
1674
1675
1676 HValue* HCheckValue::Canonicalize() {
1677   return (value()->IsConstant() &&
1678           HConstant::cast(value())->EqualsUnique(object_)) ? NULL : this;
1679 }
1680
1681
1682 const char* HCheckInstanceType::GetCheckName() const {
1683   switch (check_) {
1684     case IS_SPEC_OBJECT: return "object";
1685     case IS_JS_ARRAY: return "array";
1686     case IS_STRING: return "string";
1687     case IS_INTERNALIZED_STRING: return "internalized_string";
1688   }
1689   UNREACHABLE();
1690   return "";
1691 }
1692
1693
1694 OStream& HCheckInstanceType::PrintDataTo(OStream& os) const {  // NOLINT
1695   os << GetCheckName() << " ";
1696   return HUnaryOperation::PrintDataTo(os);
1697 }
1698
1699
1700 OStream& HCallStub::PrintDataTo(OStream& os) const {  // NOLINT
1701   os << CodeStub::MajorName(major_key_, false) << " ";
1702   return HUnaryCall::PrintDataTo(os);
1703 }
1704
1705
1706 OStream& HTailCallThroughMegamorphicCache::PrintDataTo(
1707     OStream& os) const {  // NOLINT
1708   for (int i = 0; i < OperandCount(); i++) {
1709     os << NameOf(OperandAt(i)) << " ";
1710   }
1711   return os << "flags: " << flags();
1712 }
1713
1714
1715 OStream& HUnknownOSRValue::PrintDataTo(OStream& os) const {  // NOLINT
1716   const char* type = "expression";
1717   if (environment_->is_local_index(index_)) type = "local";
1718   if (environment_->is_special_index(index_)) type = "special";
1719   if (environment_->is_parameter_index(index_)) type = "parameter";
1720   return os << type << " @ " << index_;
1721 }
1722
1723
1724 OStream& HInstanceOf::PrintDataTo(OStream& os) const {  // NOLINT
1725   return os << NameOf(left()) << " " << NameOf(right()) << " "
1726             << NameOf(context());
1727 }
1728
1729
1730 Range* HValue::InferRange(Zone* zone) {
1731   Range* result;
1732   if (representation().IsSmi() || type().IsSmi()) {
1733     result = new(zone) Range(Smi::kMinValue, Smi::kMaxValue);
1734     result->set_can_be_minus_zero(false);
1735   } else {
1736     result = new(zone) Range();
1737     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32));
1738     // TODO(jkummerow): The range cannot be minus zero when the upper type
1739     // bound is Integer32.
1740   }
1741   return result;
1742 }
1743
1744
1745 Range* HChange::InferRange(Zone* zone) {
1746   Range* input_range = value()->range();
1747   if (from().IsInteger32() && !value()->CheckFlag(HInstruction::kUint32) &&
1748       (to().IsSmi() ||
1749        (to().IsTagged() &&
1750         input_range != NULL &&
1751         input_range->IsInSmiRange()))) {
1752     set_type(HType::Smi());
1753     ClearChangesFlag(kNewSpacePromotion);
1754   }
1755   if (to().IsSmiOrTagged() &&
1756       input_range != NULL &&
1757       input_range->IsInSmiRange() &&
1758       (!SmiValuesAre32Bits() ||
1759        !value()->CheckFlag(HValue::kUint32) ||
1760        input_range->upper() != kMaxInt)) {
1761     // The Range class can't express upper bounds in the (kMaxInt, kMaxUint32]
1762     // interval, so we treat kMaxInt as a sentinel for this entire interval.
1763     ClearFlag(kCanOverflow);
1764   }
1765   Range* result = (input_range != NULL)
1766       ? input_range->Copy(zone)
1767       : HValue::InferRange(zone);
1768   result->set_can_be_minus_zero(!to().IsSmiOrInteger32() ||
1769                                 !(CheckFlag(kAllUsesTruncatingToInt32) ||
1770                                   CheckFlag(kAllUsesTruncatingToSmi)));
1771   if (to().IsSmi()) result->ClampToSmi();
1772   return result;
1773 }
1774
1775
1776 Range* HConstant::InferRange(Zone* zone) {
1777   if (has_int32_value_) {
1778     Range* result = new(zone) Range(int32_value_, int32_value_);
1779     result->set_can_be_minus_zero(false);
1780     return result;
1781   }
1782   return HValue::InferRange(zone);
1783 }
1784
1785
1786 HSourcePosition HPhi::position() const {
1787   return block()->first()->position();
1788 }
1789
1790
1791 Range* HPhi::InferRange(Zone* zone) {
1792   Representation r = representation();
1793   if (r.IsSmiOrInteger32()) {
1794     if (block()->IsLoopHeader()) {
1795       Range* range = r.IsSmi()
1796           ? new(zone) Range(Smi::kMinValue, Smi::kMaxValue)
1797           : new(zone) Range(kMinInt, kMaxInt);
1798       return range;
1799     } else {
1800       Range* range = OperandAt(0)->range()->Copy(zone);
1801       for (int i = 1; i < OperandCount(); ++i) {
1802         range->Union(OperandAt(i)->range());
1803       }
1804       return range;
1805     }
1806   } else {
1807     return HValue::InferRange(zone);
1808   }
1809 }
1810
1811
1812 Range* HAdd::InferRange(Zone* zone) {
1813   Representation r = representation();
1814   if (r.IsSmiOrInteger32()) {
1815     Range* a = left()->range();
1816     Range* b = right()->range();
1817     Range* res = a->Copy(zone);
1818     if (!res->AddAndCheckOverflow(r, b) ||
1819         (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
1820         (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
1821       ClearFlag(kCanOverflow);
1822     }
1823     res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
1824                                !CheckFlag(kAllUsesTruncatingToInt32) &&
1825                                a->CanBeMinusZero() && b->CanBeMinusZero());
1826     return res;
1827   } else {
1828     return HValue::InferRange(zone);
1829   }
1830 }
1831
1832
1833 Range* HSub::InferRange(Zone* zone) {
1834   Representation r = representation();
1835   if (r.IsSmiOrInteger32()) {
1836     Range* a = left()->range();
1837     Range* b = right()->range();
1838     Range* res = a->Copy(zone);
1839     if (!res->SubAndCheckOverflow(r, b) ||
1840         (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
1841         (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
1842       ClearFlag(kCanOverflow);
1843     }
1844     res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
1845                                !CheckFlag(kAllUsesTruncatingToInt32) &&
1846                                a->CanBeMinusZero() && b->CanBeZero());
1847     return res;
1848   } else {
1849     return HValue::InferRange(zone);
1850   }
1851 }
1852
1853
1854 Range* HMul::InferRange(Zone* zone) {
1855   Representation r = representation();
1856   if (r.IsSmiOrInteger32()) {
1857     Range* a = left()->range();
1858     Range* b = right()->range();
1859     Range* res = a->Copy(zone);
1860     if (!res->MulAndCheckOverflow(r, b) ||
1861         (((r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
1862          (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) &&
1863          MulMinusOne())) {
1864       // Truncated int multiplication is too precise and therefore not the
1865       // same as converting to Double and back.
1866       // Handle truncated integer multiplication by -1 special.
1867       ClearFlag(kCanOverflow);
1868     }
1869     res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
1870                                !CheckFlag(kAllUsesTruncatingToInt32) &&
1871                                ((a->CanBeZero() && b->CanBeNegative()) ||
1872                                 (a->CanBeNegative() && b->CanBeZero())));
1873     return res;
1874   } else {
1875     return HValue::InferRange(zone);
1876   }
1877 }
1878
1879
1880 Range* HDiv::InferRange(Zone* zone) {
1881   if (representation().IsInteger32()) {
1882     Range* a = left()->range();
1883     Range* b = right()->range();
1884     Range* result = new(zone) Range();
1885     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
1886                                   (a->CanBeMinusZero() ||
1887                                    (a->CanBeZero() && b->CanBeNegative())));
1888     if (!a->Includes(kMinInt) || !b->Includes(-1)) {
1889       ClearFlag(kCanOverflow);
1890     }
1891
1892     if (!b->CanBeZero()) {
1893       ClearFlag(kCanBeDivByZero);
1894     }
1895     return result;
1896   } else {
1897     return HValue::InferRange(zone);
1898   }
1899 }
1900
1901
1902 Range* HMathFloorOfDiv::InferRange(Zone* zone) {
1903   if (representation().IsInteger32()) {
1904     Range* a = left()->range();
1905     Range* b = right()->range();
1906     Range* result = new(zone) Range();
1907     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
1908                                   (a->CanBeMinusZero() ||
1909                                    (a->CanBeZero() && b->CanBeNegative())));
1910     if (!a->Includes(kMinInt)) {
1911       ClearFlag(kLeftCanBeMinInt);
1912     }
1913
1914     if (!a->CanBeNegative()) {
1915       ClearFlag(HValue::kLeftCanBeNegative);
1916     }
1917
1918     if (!a->CanBePositive()) {
1919       ClearFlag(HValue::kLeftCanBePositive);
1920     }
1921
1922     if (!a->Includes(kMinInt) || !b->Includes(-1)) {
1923       ClearFlag(kCanOverflow);
1924     }
1925
1926     if (!b->CanBeZero()) {
1927       ClearFlag(kCanBeDivByZero);
1928     }
1929     return result;
1930   } else {
1931     return HValue::InferRange(zone);
1932   }
1933 }
1934
1935
1936 // Returns the absolute value of its argument minus one, avoiding undefined
1937 // behavior at kMinInt.
1938 static int32_t AbsMinus1(int32_t a) { return a < 0 ? -(a + 1) : (a - 1); }
1939
1940
1941 Range* HMod::InferRange(Zone* zone) {
1942   if (representation().IsInteger32()) {
1943     Range* a = left()->range();
1944     Range* b = right()->range();
1945
1946     // The magnitude of the modulus is bounded by the right operand.
1947     int32_t positive_bound = Max(AbsMinus1(b->lower()), AbsMinus1(b->upper()));
1948
1949     // The result of the modulo operation has the sign of its left operand.
1950     bool left_can_be_negative = a->CanBeMinusZero() || a->CanBeNegative();
1951     Range* result = new(zone) Range(left_can_be_negative ? -positive_bound : 0,
1952                                     a->CanBePositive() ? positive_bound : 0);
1953
1954     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
1955                                   left_can_be_negative);
1956
1957     if (!a->CanBeNegative()) {
1958       ClearFlag(HValue::kLeftCanBeNegative);
1959     }
1960
1961     if (!a->Includes(kMinInt) || !b->Includes(-1)) {
1962       ClearFlag(HValue::kCanOverflow);
1963     }
1964
1965     if (!b->CanBeZero()) {
1966       ClearFlag(HValue::kCanBeDivByZero);
1967     }
1968     return result;
1969   } else {
1970     return HValue::InferRange(zone);
1971   }
1972 }
1973
1974
1975 InductionVariableData* InductionVariableData::ExaminePhi(HPhi* phi) {
1976   if (phi->block()->loop_information() == NULL) return NULL;
1977   if (phi->OperandCount() != 2) return NULL;
1978   int32_t candidate_increment;
1979
1980   candidate_increment = ComputeIncrement(phi, phi->OperandAt(0));
1981   if (candidate_increment != 0) {
1982     return new(phi->block()->graph()->zone())
1983         InductionVariableData(phi, phi->OperandAt(1), candidate_increment);
1984   }
1985
1986   candidate_increment = ComputeIncrement(phi, phi->OperandAt(1));
1987   if (candidate_increment != 0) {
1988     return new(phi->block()->graph()->zone())
1989         InductionVariableData(phi, phi->OperandAt(0), candidate_increment);
1990   }
1991
1992   return NULL;
1993 }
1994
1995
1996 /*
1997  * This function tries to match the following patterns (and all the relevant
1998  * variants related to |, & and + being commutative):
1999  * base | constant_or_mask
2000  * base & constant_and_mask
2001  * (base + constant_offset) & constant_and_mask
2002  * (base - constant_offset) & constant_and_mask
2003  */
2004 void InductionVariableData::DecomposeBitwise(
2005     HValue* value,
2006     BitwiseDecompositionResult* result) {
2007   HValue* base = IgnoreOsrValue(value);
2008   result->base = value;
2009
2010   if (!base->representation().IsInteger32()) return;
2011
2012   if (base->IsBitwise()) {
2013     bool allow_offset = false;
2014     int32_t mask = 0;
2015
2016     HBitwise* bitwise = HBitwise::cast(base);
2017     if (bitwise->right()->IsInteger32Constant()) {
2018       mask = bitwise->right()->GetInteger32Constant();
2019       base = bitwise->left();
2020     } else if (bitwise->left()->IsInteger32Constant()) {
2021       mask = bitwise->left()->GetInteger32Constant();
2022       base = bitwise->right();
2023     } else {
2024       return;
2025     }
2026     if (bitwise->op() == Token::BIT_AND) {
2027       result->and_mask = mask;
2028       allow_offset = true;
2029     } else if (bitwise->op() == Token::BIT_OR) {
2030       result->or_mask = mask;
2031     } else {
2032       return;
2033     }
2034
2035     result->context = bitwise->context();
2036
2037     if (allow_offset) {
2038       if (base->IsAdd()) {
2039         HAdd* add = HAdd::cast(base);
2040         if (add->right()->IsInteger32Constant()) {
2041           base = add->left();
2042         } else if (add->left()->IsInteger32Constant()) {
2043           base = add->right();
2044         }
2045       } else if (base->IsSub()) {
2046         HSub* sub = HSub::cast(base);
2047         if (sub->right()->IsInteger32Constant()) {
2048           base = sub->left();
2049         }
2050       }
2051     }
2052
2053     result->base = base;
2054   }
2055 }
2056
2057
2058 void InductionVariableData::AddCheck(HBoundsCheck* check,
2059                                      int32_t upper_limit) {
2060   DCHECK(limit_validity() != NULL);
2061   if (limit_validity() != check->block() &&
2062       !limit_validity()->Dominates(check->block())) return;
2063   if (!phi()->block()->current_loop()->IsNestedInThisLoop(
2064       check->block()->current_loop())) return;
2065
2066   ChecksRelatedToLength* length_checks = checks();
2067   while (length_checks != NULL) {
2068     if (length_checks->length() == check->length()) break;
2069     length_checks = length_checks->next();
2070   }
2071   if (length_checks == NULL) {
2072     length_checks = new(check->block()->zone())
2073         ChecksRelatedToLength(check->length(), checks());
2074     checks_ = length_checks;
2075   }
2076
2077   length_checks->AddCheck(check, upper_limit);
2078 }
2079
2080
2081 void InductionVariableData::ChecksRelatedToLength::CloseCurrentBlock() {
2082   if (checks() != NULL) {
2083     InductionVariableCheck* c = checks();
2084     HBasicBlock* current_block = c->check()->block();
2085     while (c != NULL && c->check()->block() == current_block) {
2086       c->set_upper_limit(current_upper_limit_);
2087       c = c->next();
2088     }
2089   }
2090 }
2091
2092
2093 void InductionVariableData::ChecksRelatedToLength::UseNewIndexInCurrentBlock(
2094     Token::Value token,
2095     int32_t mask,
2096     HValue* index_base,
2097     HValue* context) {
2098   DCHECK(first_check_in_block() != NULL);
2099   HValue* previous_index = first_check_in_block()->index();
2100   DCHECK(context != NULL);
2101
2102   Zone* zone = index_base->block()->graph()->zone();
2103   set_added_constant(HConstant::New(zone, context, mask));
2104   if (added_index() != NULL) {
2105     added_constant()->InsertBefore(added_index());
2106   } else {
2107     added_constant()->InsertBefore(first_check_in_block());
2108   }
2109
2110   if (added_index() == NULL) {
2111     first_check_in_block()->ReplaceAllUsesWith(first_check_in_block()->index());
2112     HInstruction* new_index =  HBitwise::New(zone, context, token, index_base,
2113                                              added_constant());
2114     DCHECK(new_index->IsBitwise());
2115     new_index->ClearAllSideEffects();
2116     new_index->AssumeRepresentation(Representation::Integer32());
2117     set_added_index(HBitwise::cast(new_index));
2118     added_index()->InsertBefore(first_check_in_block());
2119   }
2120   DCHECK(added_index()->op() == token);
2121
2122   added_index()->SetOperandAt(1, index_base);
2123   added_index()->SetOperandAt(2, added_constant());
2124   first_check_in_block()->SetOperandAt(0, added_index());
2125   if (previous_index->HasNoUses()) {
2126     previous_index->DeleteAndReplaceWith(NULL);
2127   }
2128 }
2129
2130 void InductionVariableData::ChecksRelatedToLength::AddCheck(
2131     HBoundsCheck* check,
2132     int32_t upper_limit) {
2133   BitwiseDecompositionResult decomposition;
2134   InductionVariableData::DecomposeBitwise(check->index(), &decomposition);
2135
2136   if (first_check_in_block() == NULL ||
2137       first_check_in_block()->block() != check->block()) {
2138     CloseCurrentBlock();
2139
2140     first_check_in_block_ = check;
2141     set_added_index(NULL);
2142     set_added_constant(NULL);
2143     current_and_mask_in_block_ = decomposition.and_mask;
2144     current_or_mask_in_block_ = decomposition.or_mask;
2145     current_upper_limit_ = upper_limit;
2146
2147     InductionVariableCheck* new_check = new(check->block()->graph()->zone())
2148         InductionVariableCheck(check, checks_, upper_limit);
2149     checks_ = new_check;
2150     return;
2151   }
2152
2153   if (upper_limit > current_upper_limit()) {
2154     current_upper_limit_ = upper_limit;
2155   }
2156
2157   if (decomposition.and_mask != 0 &&
2158       current_or_mask_in_block() == 0) {
2159     if (current_and_mask_in_block() == 0 ||
2160         decomposition.and_mask > current_and_mask_in_block()) {
2161       UseNewIndexInCurrentBlock(Token::BIT_AND,
2162                                 decomposition.and_mask,
2163                                 decomposition.base,
2164                                 decomposition.context);
2165       current_and_mask_in_block_ = decomposition.and_mask;
2166     }
2167     check->set_skip_check();
2168   }
2169   if (current_and_mask_in_block() == 0) {
2170     if (decomposition.or_mask > current_or_mask_in_block()) {
2171       UseNewIndexInCurrentBlock(Token::BIT_OR,
2172                                 decomposition.or_mask,
2173                                 decomposition.base,
2174                                 decomposition.context);
2175       current_or_mask_in_block_ = decomposition.or_mask;
2176     }
2177     check->set_skip_check();
2178   }
2179
2180   if (!check->skip_check()) {
2181     InductionVariableCheck* new_check = new(check->block()->graph()->zone())
2182         InductionVariableCheck(check, checks_, upper_limit);
2183     checks_ = new_check;
2184   }
2185 }
2186
2187
2188 /*
2189  * This method detects if phi is an induction variable, with phi_operand as
2190  * its "incremented" value (the other operand would be the "base" value).
2191  *
2192  * It cheks is phi_operand has the form "phi + constant".
2193  * If yes, the constant is the increment that the induction variable gets at
2194  * every loop iteration.
2195  * Otherwise it returns 0.
2196  */
2197 int32_t InductionVariableData::ComputeIncrement(HPhi* phi,
2198                                                 HValue* phi_operand) {
2199   if (!phi_operand->representation().IsInteger32()) return 0;
2200
2201   if (phi_operand->IsAdd()) {
2202     HAdd* operation = HAdd::cast(phi_operand);
2203     if (operation->left() == phi &&
2204         operation->right()->IsInteger32Constant()) {
2205       return operation->right()->GetInteger32Constant();
2206     } else if (operation->right() == phi &&
2207                operation->left()->IsInteger32Constant()) {
2208       return operation->left()->GetInteger32Constant();
2209     }
2210   } else if (phi_operand->IsSub()) {
2211     HSub* operation = HSub::cast(phi_operand);
2212     if (operation->left() == phi &&
2213         operation->right()->IsInteger32Constant()) {
2214       return -operation->right()->GetInteger32Constant();
2215     }
2216   }
2217
2218   return 0;
2219 }
2220
2221
2222 /*
2223  * Swaps the information in "update" with the one contained in "this".
2224  * The swapping is important because this method is used while doing a
2225  * dominator tree traversal, and "update" will retain the old data that
2226  * will be restored while backtracking.
2227  */
2228 void InductionVariableData::UpdateAdditionalLimit(
2229     InductionVariableLimitUpdate* update) {
2230   DCHECK(update->updated_variable == this);
2231   if (update->limit_is_upper) {
2232     swap(&additional_upper_limit_, &update->limit);
2233     swap(&additional_upper_limit_is_included_, &update->limit_is_included);
2234   } else {
2235     swap(&additional_lower_limit_, &update->limit);
2236     swap(&additional_lower_limit_is_included_, &update->limit_is_included);
2237   }
2238 }
2239
2240
2241 int32_t InductionVariableData::ComputeUpperLimit(int32_t and_mask,
2242                                                  int32_t or_mask) {
2243   // Should be Smi::kMaxValue but it must fit 32 bits; lower is safe anyway.
2244   const int32_t MAX_LIMIT = 1 << 30;
2245
2246   int32_t result = MAX_LIMIT;
2247
2248   if (limit() != NULL &&
2249       limit()->IsInteger32Constant()) {
2250     int32_t limit_value = limit()->GetInteger32Constant();
2251     if (!limit_included()) {
2252       limit_value--;
2253     }
2254     if (limit_value < result) result = limit_value;
2255   }
2256
2257   if (additional_upper_limit() != NULL &&
2258       additional_upper_limit()->IsInteger32Constant()) {
2259     int32_t limit_value = additional_upper_limit()->GetInteger32Constant();
2260     if (!additional_upper_limit_is_included()) {
2261       limit_value--;
2262     }
2263     if (limit_value < result) result = limit_value;
2264   }
2265
2266   if (and_mask > 0 && and_mask < MAX_LIMIT) {
2267     if (and_mask < result) result = and_mask;
2268     return result;
2269   }
2270
2271   // Add the effect of the or_mask.
2272   result |= or_mask;
2273
2274   return result >= MAX_LIMIT ? kNoLimit : result;
2275 }
2276
2277
2278 HValue* InductionVariableData::IgnoreOsrValue(HValue* v) {
2279   if (!v->IsPhi()) return v;
2280   HPhi* phi = HPhi::cast(v);
2281   if (phi->OperandCount() != 2) return v;
2282   if (phi->OperandAt(0)->block()->is_osr_entry()) {
2283     return phi->OperandAt(1);
2284   } else if (phi->OperandAt(1)->block()->is_osr_entry()) {
2285     return phi->OperandAt(0);
2286   } else {
2287     return v;
2288   }
2289 }
2290
2291
2292 InductionVariableData* InductionVariableData::GetInductionVariableData(
2293     HValue* v) {
2294   v = IgnoreOsrValue(v);
2295   if (v->IsPhi()) {
2296     return HPhi::cast(v)->induction_variable_data();
2297   }
2298   return NULL;
2299 }
2300
2301
2302 /*
2303  * Check if a conditional branch to "current_branch" with token "token" is
2304  * the branch that keeps the induction loop running (and, conversely, will
2305  * terminate it if the "other_branch" is taken).
2306  *
2307  * Three conditions must be met:
2308  * - "current_branch" must be in the induction loop.
2309  * - "other_branch" must be out of the induction loop.
2310  * - "token" and the induction increment must be "compatible": the token should
2311  *   be a condition that keeps the execution inside the loop until the limit is
2312  *   reached.
2313  */
2314 bool InductionVariableData::CheckIfBranchIsLoopGuard(
2315     Token::Value token,
2316     HBasicBlock* current_branch,
2317     HBasicBlock* other_branch) {
2318   if (!phi()->block()->current_loop()->IsNestedInThisLoop(
2319       current_branch->current_loop())) {
2320     return false;
2321   }
2322
2323   if (phi()->block()->current_loop()->IsNestedInThisLoop(
2324       other_branch->current_loop())) {
2325     return false;
2326   }
2327
2328   if (increment() > 0 && (token == Token::LT || token == Token::LTE)) {
2329     return true;
2330   }
2331   if (increment() < 0 && (token == Token::GT || token == Token::GTE)) {
2332     return true;
2333   }
2334   if (Token::IsInequalityOp(token) && (increment() == 1 || increment() == -1)) {
2335     return true;
2336   }
2337
2338   return false;
2339 }
2340
2341
2342 void InductionVariableData::ComputeLimitFromPredecessorBlock(
2343     HBasicBlock* block,
2344     LimitFromPredecessorBlock* result) {
2345   if (block->predecessors()->length() != 1) return;
2346   HBasicBlock* predecessor = block->predecessors()->at(0);
2347   HInstruction* end = predecessor->last();
2348
2349   if (!end->IsCompareNumericAndBranch()) return;
2350   HCompareNumericAndBranch* branch = HCompareNumericAndBranch::cast(end);
2351
2352   Token::Value token = branch->token();
2353   if (!Token::IsArithmeticCompareOp(token)) return;
2354
2355   HBasicBlock* other_target;
2356   if (block == branch->SuccessorAt(0)) {
2357     other_target = branch->SuccessorAt(1);
2358   } else {
2359     other_target = branch->SuccessorAt(0);
2360     token = Token::NegateCompareOp(token);
2361     DCHECK(block == branch->SuccessorAt(1));
2362   }
2363
2364   InductionVariableData* data;
2365
2366   data = GetInductionVariableData(branch->left());
2367   HValue* limit = branch->right();
2368   if (data == NULL) {
2369     data = GetInductionVariableData(branch->right());
2370     token = Token::ReverseCompareOp(token);
2371     limit = branch->left();
2372   }
2373
2374   if (data != NULL) {
2375     result->variable = data;
2376     result->token = token;
2377     result->limit = limit;
2378     result->other_target = other_target;
2379   }
2380 }
2381
2382
2383 /*
2384  * Compute the limit that is imposed on an induction variable when entering
2385  * "block" (if any).
2386  * If the limit is the "proper" induction limit (the one that makes the loop
2387  * terminate when the induction variable reaches it) it is stored directly in
2388  * the induction variable data.
2389  * Otherwise the limit is written in "additional_limit" and the method
2390  * returns true.
2391  */
2392 bool InductionVariableData::ComputeInductionVariableLimit(
2393     HBasicBlock* block,
2394     InductionVariableLimitUpdate* additional_limit) {
2395   LimitFromPredecessorBlock limit;
2396   ComputeLimitFromPredecessorBlock(block, &limit);
2397   if (!limit.LimitIsValid()) return false;
2398
2399   if (limit.variable->CheckIfBranchIsLoopGuard(limit.token,
2400                                                block,
2401                                                limit.other_target)) {
2402     limit.variable->limit_ = limit.limit;
2403     limit.variable->limit_included_ = limit.LimitIsIncluded();
2404     limit.variable->limit_validity_ = block;
2405     limit.variable->induction_exit_block_ = block->predecessors()->at(0);
2406     limit.variable->induction_exit_target_ = limit.other_target;
2407     return false;
2408   } else {
2409     additional_limit->updated_variable = limit.variable;
2410     additional_limit->limit = limit.limit;
2411     additional_limit->limit_is_upper = limit.LimitIsUpper();
2412     additional_limit->limit_is_included = limit.LimitIsIncluded();
2413     return true;
2414   }
2415 }
2416
2417
2418 Range* HMathMinMax::InferRange(Zone* zone) {
2419   if (representation().IsSmiOrInteger32()) {
2420     Range* a = left()->range();
2421     Range* b = right()->range();
2422     Range* res = a->Copy(zone);
2423     if (operation_ == kMathMax) {
2424       res->CombinedMax(b);
2425     } else {
2426       DCHECK(operation_ == kMathMin);
2427       res->CombinedMin(b);
2428     }
2429     return res;
2430   } else {
2431     return HValue::InferRange(zone);
2432   }
2433 }
2434
2435
2436 void HPushArguments::AddInput(HValue* value) {
2437   inputs_.Add(NULL, value->block()->zone());
2438   SetOperandAt(OperandCount() - 1, value);
2439 }
2440
2441
2442 OStream& HPhi::PrintTo(OStream& os) const {  // NOLINT
2443   os << "[";
2444   for (int i = 0; i < OperandCount(); ++i) {
2445     os << " " << NameOf(OperandAt(i)) << " ";
2446   }
2447   return os << " uses:" << UseCount() << "_"
2448             << smi_non_phi_uses() + smi_indirect_uses() << "s_"
2449             << int32_non_phi_uses() + int32_indirect_uses() << "i_"
2450             << double_non_phi_uses() + double_indirect_uses() << "d_"
2451             << tagged_non_phi_uses() + tagged_indirect_uses() << "t"
2452             << TypeOf(this) << "]";
2453 }
2454
2455
2456 void HPhi::AddInput(HValue* value) {
2457   inputs_.Add(NULL, value->block()->zone());
2458   SetOperandAt(OperandCount() - 1, value);
2459   // Mark phis that may have 'arguments' directly or indirectly as an operand.
2460   if (!CheckFlag(kIsArguments) && value->CheckFlag(kIsArguments)) {
2461     SetFlag(kIsArguments);
2462   }
2463 }
2464
2465
2466 bool HPhi::HasRealUses() {
2467   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
2468     if (!it.value()->IsPhi()) return true;
2469   }
2470   return false;
2471 }
2472
2473
2474 HValue* HPhi::GetRedundantReplacement() {
2475   HValue* candidate = NULL;
2476   int count = OperandCount();
2477   int position = 0;
2478   while (position < count && candidate == NULL) {
2479     HValue* current = OperandAt(position++);
2480     if (current != this) candidate = current;
2481   }
2482   while (position < count) {
2483     HValue* current = OperandAt(position++);
2484     if (current != this && current != candidate) return NULL;
2485   }
2486   DCHECK(candidate != this);
2487   return candidate;
2488 }
2489
2490
2491 void HPhi::DeleteFromGraph() {
2492   DCHECK(block() != NULL);
2493   block()->RemovePhi(this);
2494   DCHECK(block() == NULL);
2495 }
2496
2497
2498 void HPhi::InitRealUses(int phi_id) {
2499   // Initialize real uses.
2500   phi_id_ = phi_id;
2501   // Compute a conservative approximation of truncating uses before inferring
2502   // representations. The proper, exact computation will be done later, when
2503   // inserting representation changes.
2504   SetFlag(kTruncatingToSmi);
2505   SetFlag(kTruncatingToInt32);
2506   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
2507     HValue* value = it.value();
2508     if (!value->IsPhi()) {
2509       Representation rep = value->observed_input_representation(it.index());
2510       non_phi_uses_[rep.kind()] += 1;
2511       if (FLAG_trace_representation) {
2512         PrintF("#%d Phi is used by real #%d %s as %s\n",
2513                id(), value->id(), value->Mnemonic(), rep.Mnemonic());
2514       }
2515       if (!value->IsSimulate()) {
2516         if (!value->CheckFlag(kTruncatingToSmi)) {
2517           ClearFlag(kTruncatingToSmi);
2518         }
2519         if (!value->CheckFlag(kTruncatingToInt32)) {
2520           ClearFlag(kTruncatingToInt32);
2521         }
2522       }
2523     }
2524   }
2525 }
2526
2527
2528 void HPhi::AddNonPhiUsesFrom(HPhi* other) {
2529   if (FLAG_trace_representation) {
2530     PrintF("adding to #%d Phi uses of #%d Phi: s%d i%d d%d t%d\n",
2531            id(), other->id(),
2532            other->non_phi_uses_[Representation::kSmi],
2533            other->non_phi_uses_[Representation::kInteger32],
2534            other->non_phi_uses_[Representation::kDouble],
2535            other->non_phi_uses_[Representation::kTagged]);
2536   }
2537
2538   for (int i = 0; i < Representation::kNumRepresentations; i++) {
2539     indirect_uses_[i] += other->non_phi_uses_[i];
2540   }
2541 }
2542
2543
2544 void HPhi::AddIndirectUsesTo(int* dest) {
2545   for (int i = 0; i < Representation::kNumRepresentations; i++) {
2546     dest[i] += indirect_uses_[i];
2547   }
2548 }
2549
2550
2551 void HSimulate::MergeWith(ZoneList<HSimulate*>* list) {
2552   while (!list->is_empty()) {
2553     HSimulate* from = list->RemoveLast();
2554     ZoneList<HValue*>* from_values = &from->values_;
2555     for (int i = 0; i < from_values->length(); ++i) {
2556       if (from->HasAssignedIndexAt(i)) {
2557         int index = from->GetAssignedIndexAt(i);
2558         if (HasValueForIndex(index)) continue;
2559         AddAssignedValue(index, from_values->at(i));
2560       } else {
2561         if (pop_count_ > 0) {
2562           pop_count_--;
2563         } else {
2564           AddPushedValue(from_values->at(i));
2565         }
2566       }
2567     }
2568     pop_count_ += from->pop_count_;
2569     from->DeleteAndReplaceWith(NULL);
2570   }
2571 }
2572
2573
2574 OStream& HSimulate::PrintDataTo(OStream& os) const {  // NOLINT
2575   os << "id=" << ast_id().ToInt();
2576   if (pop_count_ > 0) os << " pop " << pop_count_;
2577   if (values_.length() > 0) {
2578     if (pop_count_ > 0) os << " /";
2579     for (int i = values_.length() - 1; i >= 0; --i) {
2580       if (HasAssignedIndexAt(i)) {
2581         os << " var[" << GetAssignedIndexAt(i) << "] = ";
2582       } else {
2583         os << " push ";
2584       }
2585       os << NameOf(values_[i]);
2586       if (i > 0) os << ",";
2587     }
2588   }
2589   return os;
2590 }
2591
2592
2593 void HSimulate::ReplayEnvironment(HEnvironment* env) {
2594   if (done_with_replay_) return;
2595   DCHECK(env != NULL);
2596   env->set_ast_id(ast_id());
2597   env->Drop(pop_count());
2598   for (int i = values()->length() - 1; i >= 0; --i) {
2599     HValue* value = values()->at(i);
2600     if (HasAssignedIndexAt(i)) {
2601       env->Bind(GetAssignedIndexAt(i), value);
2602     } else {
2603       env->Push(value);
2604     }
2605   }
2606   done_with_replay_ = true;
2607 }
2608
2609
2610 static void ReplayEnvironmentNested(const ZoneList<HValue*>* values,
2611                                     HCapturedObject* other) {
2612   for (int i = 0; i < values->length(); ++i) {
2613     HValue* value = values->at(i);
2614     if (value->IsCapturedObject()) {
2615       if (HCapturedObject::cast(value)->capture_id() == other->capture_id()) {
2616         values->at(i) = other;
2617       } else {
2618         ReplayEnvironmentNested(HCapturedObject::cast(value)->values(), other);
2619       }
2620     }
2621   }
2622 }
2623
2624
2625 // Replay captured objects by replacing all captured objects with the
2626 // same capture id in the current and all outer environments.
2627 void HCapturedObject::ReplayEnvironment(HEnvironment* env) {
2628   DCHECK(env != NULL);
2629   while (env != NULL) {
2630     ReplayEnvironmentNested(env->values(), this);
2631     env = env->outer();
2632   }
2633 }
2634
2635
2636 OStream& HCapturedObject::PrintDataTo(OStream& os) const {  // NOLINT
2637   os << "#" << capture_id() << " ";
2638   return HDematerializedObject::PrintDataTo(os);
2639 }
2640
2641
2642 void HEnterInlined::RegisterReturnTarget(HBasicBlock* return_target,
2643                                          Zone* zone) {
2644   DCHECK(return_target->IsInlineReturnTarget());
2645   return_targets_.Add(return_target, zone);
2646 }
2647
2648
2649 OStream& HEnterInlined::PrintDataTo(OStream& os) const {  // NOLINT
2650   return os << function()->debug_name()->ToCString().get()
2651             << ", id=" << function()->id().ToInt();
2652 }
2653
2654
2655 static bool IsInteger32(double value) {
2656   double roundtrip_value = static_cast<double>(static_cast<int32_t>(value));
2657   return bit_cast<int64_t>(roundtrip_value) == bit_cast<int64_t>(value);
2658 }
2659
2660
2661 HConstant::HConstant(Handle<Object> object, Representation r)
2662   : HTemplateInstruction<0>(HType::FromValue(object)),
2663     object_(Unique<Object>::CreateUninitialized(object)),
2664     object_map_(Handle<Map>::null()),
2665     has_stable_map_value_(false),
2666     has_smi_value_(false),
2667     has_int32_value_(false),
2668     has_double_value_(false),
2669     has_external_reference_value_(false),
2670     is_not_in_new_space_(true),
2671     boolean_value_(object->BooleanValue()),
2672     is_undetectable_(false),
2673     instance_type_(kUnknownInstanceType) {
2674   if (object->IsHeapObject()) {
2675     Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
2676     Isolate* isolate = heap_object->GetIsolate();
2677     Handle<Map> map(heap_object->map(), isolate);
2678     is_not_in_new_space_ = !isolate->heap()->InNewSpace(*object);
2679     instance_type_ = map->instance_type();
2680     is_undetectable_ = map->is_undetectable();
2681     if (map->is_stable()) object_map_ = Unique<Map>::CreateImmovable(map);
2682     has_stable_map_value_ = (instance_type_ == MAP_TYPE &&
2683                              Handle<Map>::cast(heap_object)->is_stable());
2684   }
2685   if (object->IsNumber()) {
2686     double n = object->Number();
2687     has_int32_value_ = IsInteger32(n);
2688     int32_value_ = DoubleToInt32(n);
2689     has_smi_value_ = has_int32_value_ && Smi::IsValid(int32_value_);
2690     double_value_ = n;
2691     has_double_value_ = true;
2692     // TODO(titzer): if this heap number is new space, tenure a new one.
2693   }
2694
2695   Initialize(r);
2696 }
2697
2698
2699 HConstant::HConstant(Unique<Object> object,
2700                      Unique<Map> object_map,
2701                      bool has_stable_map_value,
2702                      Representation r,
2703                      HType type,
2704                      bool is_not_in_new_space,
2705                      bool boolean_value,
2706                      bool is_undetectable,
2707                      InstanceType instance_type)
2708   : HTemplateInstruction<0>(type),
2709     object_(object),
2710     object_map_(object_map),
2711     has_stable_map_value_(has_stable_map_value),
2712     has_smi_value_(false),
2713     has_int32_value_(false),
2714     has_double_value_(false),
2715     has_external_reference_value_(false),
2716     is_not_in_new_space_(is_not_in_new_space),
2717     boolean_value_(boolean_value),
2718     is_undetectable_(is_undetectable),
2719     instance_type_(instance_type) {
2720   DCHECK(!object.handle().is_null());
2721   DCHECK(!type.IsTaggedNumber() || type.IsNone());
2722   Initialize(r);
2723 }
2724
2725
2726 HConstant::HConstant(int32_t integer_value,
2727                      Representation r,
2728                      bool is_not_in_new_space,
2729                      Unique<Object> object)
2730   : object_(object),
2731     object_map_(Handle<Map>::null()),
2732     has_stable_map_value_(false),
2733     has_smi_value_(Smi::IsValid(integer_value)),
2734     has_int32_value_(true),
2735     has_double_value_(true),
2736     has_external_reference_value_(false),
2737     is_not_in_new_space_(is_not_in_new_space),
2738     boolean_value_(integer_value != 0),
2739     is_undetectable_(false),
2740     int32_value_(integer_value),
2741     double_value_(FastI2D(integer_value)),
2742     instance_type_(kUnknownInstanceType) {
2743   // It's possible to create a constant with a value in Smi-range but stored
2744   // in a (pre-existing) HeapNumber. See crbug.com/349878.
2745   bool could_be_heapobject = r.IsTagged() && !object.handle().is_null();
2746   bool is_smi = has_smi_value_ && !could_be_heapobject;
2747   set_type(is_smi ? HType::Smi() : HType::TaggedNumber());
2748   Initialize(r);
2749 }
2750
2751
2752 HConstant::HConstant(double double_value,
2753                      Representation r,
2754                      bool is_not_in_new_space,
2755                      Unique<Object> object)
2756   : object_(object),
2757     object_map_(Handle<Map>::null()),
2758     has_stable_map_value_(false),
2759     has_int32_value_(IsInteger32(double_value)),
2760     has_double_value_(true),
2761     has_external_reference_value_(false),
2762     is_not_in_new_space_(is_not_in_new_space),
2763     boolean_value_(double_value != 0 && !std::isnan(double_value)),
2764     is_undetectable_(false),
2765     int32_value_(DoubleToInt32(double_value)),
2766     double_value_(double_value),
2767     instance_type_(kUnknownInstanceType) {
2768   has_smi_value_ = has_int32_value_ && Smi::IsValid(int32_value_);
2769   // It's possible to create a constant with a value in Smi-range but stored
2770   // in a (pre-existing) HeapNumber. See crbug.com/349878.
2771   bool could_be_heapobject = r.IsTagged() && !object.handle().is_null();
2772   bool is_smi = has_smi_value_ && !could_be_heapobject;
2773   set_type(is_smi ? HType::Smi() : HType::TaggedNumber());
2774   Initialize(r);
2775 }
2776
2777
2778 HConstant::HConstant(ExternalReference reference)
2779   : HTemplateInstruction<0>(HType::Any()),
2780     object_(Unique<Object>(Handle<Object>::null())),
2781     object_map_(Handle<Map>::null()),
2782     has_stable_map_value_(false),
2783     has_smi_value_(false),
2784     has_int32_value_(false),
2785     has_double_value_(false),
2786     has_external_reference_value_(true),
2787     is_not_in_new_space_(true),
2788     boolean_value_(true),
2789     is_undetectable_(false),
2790     external_reference_value_(reference),
2791     instance_type_(kUnknownInstanceType) {
2792   Initialize(Representation::External());
2793 }
2794
2795
2796 void HConstant::Initialize(Representation r) {
2797   if (r.IsNone()) {
2798     if (has_smi_value_ && SmiValuesAre31Bits()) {
2799       r = Representation::Smi();
2800     } else if (has_int32_value_) {
2801       r = Representation::Integer32();
2802     } else if (has_double_value_) {
2803       r = Representation::Double();
2804     } else if (has_external_reference_value_) {
2805       r = Representation::External();
2806     } else {
2807       Handle<Object> object = object_.handle();
2808       if (object->IsJSObject()) {
2809         // Try to eagerly migrate JSObjects that have deprecated maps.
2810         Handle<JSObject> js_object = Handle<JSObject>::cast(object);
2811         if (js_object->map()->is_deprecated()) {
2812           JSObject::TryMigrateInstance(js_object);
2813         }
2814       }
2815       r = Representation::Tagged();
2816     }
2817   }
2818   if (r.IsSmi()) {
2819     // If we have an existing handle, zap it, because it might be a heap
2820     // number which we must not re-use when copying this HConstant to
2821     // Tagged representation later, because having Smi representation now
2822     // could cause heap object checks not to get emitted.
2823     object_ = Unique<Object>(Handle<Object>::null());
2824   }
2825   set_representation(r);
2826   SetFlag(kUseGVN);
2827 }
2828
2829
2830 bool HConstant::ImmortalImmovable() const {
2831   if (has_int32_value_) {
2832     return false;
2833   }
2834   if (has_double_value_) {
2835     if (IsSpecialDouble()) {
2836       return true;
2837     }
2838     return false;
2839   }
2840   if (has_external_reference_value_) {
2841     return false;
2842   }
2843
2844   DCHECK(!object_.handle().is_null());
2845   Heap* heap = isolate()->heap();
2846   DCHECK(!object_.IsKnownGlobal(heap->minus_zero_value()));
2847   DCHECK(!object_.IsKnownGlobal(heap->nan_value()));
2848   return
2849 #define IMMORTAL_IMMOVABLE_ROOT(name) \
2850       object_.IsKnownGlobal(heap->name()) ||
2851       IMMORTAL_IMMOVABLE_ROOT_LIST(IMMORTAL_IMMOVABLE_ROOT)
2852 #undef IMMORTAL_IMMOVABLE_ROOT
2853 #define INTERNALIZED_STRING(name, value) \
2854       object_.IsKnownGlobal(heap->name()) ||
2855       INTERNALIZED_STRING_LIST(INTERNALIZED_STRING)
2856 #undef INTERNALIZED_STRING
2857 #define STRING_TYPE(NAME, size, name, Name) \
2858       object_.IsKnownGlobal(heap->name##_map()) ||
2859       STRING_TYPE_LIST(STRING_TYPE)
2860 #undef STRING_TYPE
2861       false;
2862 }
2863
2864
2865 bool HConstant::EmitAtUses() {
2866   DCHECK(IsLinked());
2867   if (block()->graph()->has_osr() &&
2868       block()->graph()->IsStandardConstant(this)) {
2869     // TODO(titzer): this seems like a hack that should be fixed by custom OSR.
2870     return true;
2871   }
2872   if (HasNoUses()) return true;
2873   if (IsCell()) return false;
2874   if (representation().IsDouble()) return false;
2875   if (representation().IsExternal()) return false;
2876   return true;
2877 }
2878
2879
2880 HConstant* HConstant::CopyToRepresentation(Representation r, Zone* zone) const {
2881   if (r.IsSmi() && !has_smi_value_) return NULL;
2882   if (r.IsInteger32() && !has_int32_value_) return NULL;
2883   if (r.IsDouble() && !has_double_value_) return NULL;
2884   if (r.IsExternal() && !has_external_reference_value_) return NULL;
2885   if (has_int32_value_) {
2886     return new(zone) HConstant(int32_value_, r, is_not_in_new_space_, object_);
2887   }
2888   if (has_double_value_) {
2889     return new(zone) HConstant(double_value_, r, is_not_in_new_space_, object_);
2890   }
2891   if (has_external_reference_value_) {
2892     return new(zone) HConstant(external_reference_value_);
2893   }
2894   DCHECK(!object_.handle().is_null());
2895   return new(zone) HConstant(object_,
2896                              object_map_,
2897                              has_stable_map_value_,
2898                              r,
2899                              type_,
2900                              is_not_in_new_space_,
2901                              boolean_value_,
2902                              is_undetectable_,
2903                              instance_type_);
2904 }
2905
2906
2907 Maybe<HConstant*> HConstant::CopyToTruncatedInt32(Zone* zone) {
2908   HConstant* res = NULL;
2909   if (has_int32_value_) {
2910     res = new(zone) HConstant(int32_value_,
2911                               Representation::Integer32(),
2912                               is_not_in_new_space_,
2913                               object_);
2914   } else if (has_double_value_) {
2915     res = new(zone) HConstant(DoubleToInt32(double_value_),
2916                               Representation::Integer32(),
2917                               is_not_in_new_space_,
2918                               object_);
2919   }
2920   return Maybe<HConstant*>(res != NULL, res);
2921 }
2922
2923
2924 Maybe<HConstant*> HConstant::CopyToTruncatedNumber(Zone* zone) {
2925   HConstant* res = NULL;
2926   Handle<Object> handle = this->handle(zone->isolate());
2927   if (handle->IsBoolean()) {
2928     res = handle->BooleanValue() ?
2929       new(zone) HConstant(1) : new(zone) HConstant(0);
2930   } else if (handle->IsUndefined()) {
2931     res = new(zone) HConstant(base::OS::nan_value());
2932   } else if (handle->IsNull()) {
2933     res = new(zone) HConstant(0);
2934   }
2935   return Maybe<HConstant*>(res != NULL, res);
2936 }
2937
2938
2939 OStream& HConstant::PrintDataTo(OStream& os) const {  // NOLINT
2940   if (has_int32_value_) {
2941     os << int32_value_ << " ";
2942   } else if (has_double_value_) {
2943     os << double_value_ << " ";
2944   } else if (has_external_reference_value_) {
2945     os << reinterpret_cast<void*>(external_reference_value_.address()) << " ";
2946   } else {
2947     // The handle() method is silently and lazily mutating the object.
2948     Handle<Object> h = const_cast<HConstant*>(this)->handle(Isolate::Current());
2949     os << Brief(*h) << " ";
2950     if (HasStableMapValue()) os << "[stable-map] ";
2951     if (HasObjectMap()) os << "[map " << *ObjectMap().handle() << "] ";
2952   }
2953   if (!is_not_in_new_space_) os << "[new space] ";
2954   return os;
2955 }
2956
2957
2958 OStream& HBinaryOperation::PrintDataTo(OStream& os) const {  // NOLINT
2959   os << NameOf(left()) << " " << NameOf(right());
2960   if (CheckFlag(kCanOverflow)) os << " !";
2961   if (CheckFlag(kBailoutOnMinusZero)) os << " -0?";
2962   return os;
2963 }
2964
2965
2966 void HBinaryOperation::InferRepresentation(HInferRepresentationPhase* h_infer) {
2967   DCHECK(CheckFlag(kFlexibleRepresentation));
2968   Representation new_rep = RepresentationFromInputs();
2969   UpdateRepresentation(new_rep, h_infer, "inputs");
2970
2971   if (representation().IsSmi() && HasNonSmiUse()) {
2972     UpdateRepresentation(
2973         Representation::Integer32(), h_infer, "use requirements");
2974   }
2975
2976   if (observed_output_representation_.IsNone()) {
2977     new_rep = RepresentationFromUses();
2978     UpdateRepresentation(new_rep, h_infer, "uses");
2979   } else {
2980     new_rep = RepresentationFromOutput();
2981     UpdateRepresentation(new_rep, h_infer, "output");
2982   }
2983 }
2984
2985
2986 Representation HBinaryOperation::RepresentationFromInputs() {
2987   // Determine the worst case of observed input representations and
2988   // the currently assumed output representation.
2989   Representation rep = representation();
2990   for (int i = 1; i <= 2; ++i) {
2991     rep = rep.generalize(observed_input_representation(i));
2992   }
2993   // If any of the actual input representation is more general than what we
2994   // have so far but not Tagged, use that representation instead.
2995   Representation left_rep = left()->representation();
2996   Representation right_rep = right()->representation();
2997   if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
2998   if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
2999
3000   return rep;
3001 }
3002
3003
3004 bool HBinaryOperation::IgnoreObservedOutputRepresentation(
3005     Representation current_rep) {
3006   return ((current_rep.IsInteger32() && CheckUsesForFlag(kTruncatingToInt32)) ||
3007           (current_rep.IsSmi() && CheckUsesForFlag(kTruncatingToSmi))) &&
3008          // Mul in Integer32 mode would be too precise.
3009          (!this->IsMul() || HMul::cast(this)->MulMinusOne());
3010 }
3011
3012
3013 Representation HBinaryOperation::RepresentationFromOutput() {
3014   Representation rep = representation();
3015   // Consider observed output representation, but ignore it if it's Double,
3016   // this instruction is not a division, and all its uses are truncating
3017   // to Integer32.
3018   if (observed_output_representation_.is_more_general_than(rep) &&
3019       !IgnoreObservedOutputRepresentation(rep)) {
3020     return observed_output_representation_;
3021   }
3022   return Representation::None();
3023 }
3024
3025
3026 void HBinaryOperation::AssumeRepresentation(Representation r) {
3027   set_observed_input_representation(1, r);
3028   set_observed_input_representation(2, r);
3029   HValue::AssumeRepresentation(r);
3030 }
3031
3032
3033 void HMathMinMax::InferRepresentation(HInferRepresentationPhase* h_infer) {
3034   DCHECK(CheckFlag(kFlexibleRepresentation));
3035   Representation new_rep = RepresentationFromInputs();
3036   UpdateRepresentation(new_rep, h_infer, "inputs");
3037   // Do not care about uses.
3038 }
3039
3040
3041 Range* HBitwise::InferRange(Zone* zone) {
3042   if (op() == Token::BIT_XOR) {
3043     if (left()->HasRange() && right()->HasRange()) {
3044       // The maximum value has the high bit, and all bits below, set:
3045       // (1 << high) - 1.
3046       // If the range can be negative, the minimum int is a negative number with
3047       // the high bit, and all bits below, unset:
3048       // -(1 << high).
3049       // If it cannot be negative, conservatively choose 0 as minimum int.
3050       int64_t left_upper = left()->range()->upper();
3051       int64_t left_lower = left()->range()->lower();
3052       int64_t right_upper = right()->range()->upper();
3053       int64_t right_lower = right()->range()->lower();
3054
3055       if (left_upper < 0) left_upper = ~left_upper;
3056       if (left_lower < 0) left_lower = ~left_lower;
3057       if (right_upper < 0) right_upper = ~right_upper;
3058       if (right_lower < 0) right_lower = ~right_lower;
3059
3060       int high = MostSignificantBit(
3061           static_cast<uint32_t>(
3062               left_upper | left_lower | right_upper | right_lower));
3063
3064       int64_t limit = 1;
3065       limit <<= high;
3066       int32_t min = (left()->range()->CanBeNegative() ||
3067                      right()->range()->CanBeNegative())
3068                     ? static_cast<int32_t>(-limit) : 0;
3069       return new(zone) Range(min, static_cast<int32_t>(limit - 1));
3070     }
3071     Range* result = HValue::InferRange(zone);
3072     result->set_can_be_minus_zero(false);
3073     return result;
3074   }
3075   const int32_t kDefaultMask = static_cast<int32_t>(0xffffffff);
3076   int32_t left_mask = (left()->range() != NULL)
3077       ? left()->range()->Mask()
3078       : kDefaultMask;
3079   int32_t right_mask = (right()->range() != NULL)
3080       ? right()->range()->Mask()
3081       : kDefaultMask;
3082   int32_t result_mask = (op() == Token::BIT_AND)
3083       ? left_mask & right_mask
3084       : left_mask | right_mask;
3085   if (result_mask >= 0) return new(zone) Range(0, result_mask);
3086
3087   Range* result = HValue::InferRange(zone);
3088   result->set_can_be_minus_zero(false);
3089   return result;
3090 }
3091
3092
3093 Range* HSar::InferRange(Zone* zone) {
3094   if (right()->IsConstant()) {
3095     HConstant* c = HConstant::cast(right());
3096     if (c->HasInteger32Value()) {
3097       Range* result = (left()->range() != NULL)
3098           ? left()->range()->Copy(zone)
3099           : new(zone) Range();
3100       result->Sar(c->Integer32Value());
3101       return result;
3102     }
3103   }
3104   return HValue::InferRange(zone);
3105 }
3106
3107
3108 Range* HShr::InferRange(Zone* zone) {
3109   if (right()->IsConstant()) {
3110     HConstant* c = HConstant::cast(right());
3111     if (c->HasInteger32Value()) {
3112       int shift_count = c->Integer32Value() & 0x1f;
3113       if (left()->range()->CanBeNegative()) {
3114         // Only compute bounds if the result always fits into an int32.
3115         return (shift_count >= 1)
3116             ? new(zone) Range(0,
3117                               static_cast<uint32_t>(0xffffffff) >> shift_count)
3118             : new(zone) Range();
3119       } else {
3120         // For positive inputs we can use the >> operator.
3121         Range* result = (left()->range() != NULL)
3122             ? left()->range()->Copy(zone)
3123             : new(zone) Range();
3124         result->Sar(c->Integer32Value());
3125         return result;
3126       }
3127     }
3128   }
3129   return HValue::InferRange(zone);
3130 }
3131
3132
3133 Range* HShl::InferRange(Zone* zone) {
3134   if (right()->IsConstant()) {
3135     HConstant* c = HConstant::cast(right());
3136     if (c->HasInteger32Value()) {
3137       Range* result = (left()->range() != NULL)
3138           ? left()->range()->Copy(zone)
3139           : new(zone) Range();
3140       result->Shl(c->Integer32Value());
3141       return result;
3142     }
3143   }
3144   return HValue::InferRange(zone);
3145 }
3146
3147
3148 Range* HLoadNamedField::InferRange(Zone* zone) {
3149   if (access().representation().IsInteger8()) {
3150     return new(zone) Range(kMinInt8, kMaxInt8);
3151   }
3152   if (access().representation().IsUInteger8()) {
3153     return new(zone) Range(kMinUInt8, kMaxUInt8);
3154   }
3155   if (access().representation().IsInteger16()) {
3156     return new(zone) Range(kMinInt16, kMaxInt16);
3157   }
3158   if (access().representation().IsUInteger16()) {
3159     return new(zone) Range(kMinUInt16, kMaxUInt16);
3160   }
3161   if (access().IsStringLength()) {
3162     return new(zone) Range(0, String::kMaxLength);
3163   }
3164   return HValue::InferRange(zone);
3165 }
3166
3167
3168 Range* HLoadKeyed::InferRange(Zone* zone) {
3169   switch (elements_kind()) {
3170     case EXTERNAL_INT8_ELEMENTS:
3171       return new(zone) Range(kMinInt8, kMaxInt8);
3172     case EXTERNAL_UINT8_ELEMENTS:
3173     case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
3174       return new(zone) Range(kMinUInt8, kMaxUInt8);
3175     case EXTERNAL_INT16_ELEMENTS:
3176       return new(zone) Range(kMinInt16, kMaxInt16);
3177     case EXTERNAL_UINT16_ELEMENTS:
3178       return new(zone) Range(kMinUInt16, kMaxUInt16);
3179     default:
3180       return HValue::InferRange(zone);
3181   }
3182 }
3183
3184
3185 OStream& HCompareGeneric::PrintDataTo(OStream& os) const {  // NOLINT
3186   os << Token::Name(token()) << " ";
3187   return HBinaryOperation::PrintDataTo(os);
3188 }
3189
3190
3191 OStream& HStringCompareAndBranch::PrintDataTo(OStream& os) const {  // NOLINT
3192   os << Token::Name(token()) << " ";
3193   return HControlInstruction::PrintDataTo(os);
3194 }
3195
3196
3197 OStream& HCompareNumericAndBranch::PrintDataTo(OStream& os) const {  // NOLINT
3198   os << Token::Name(token()) << " " << NameOf(left()) << " " << NameOf(right());
3199   return HControlInstruction::PrintDataTo(os);
3200 }
3201
3202
3203 OStream& HCompareObjectEqAndBranch::PrintDataTo(OStream& os) const {  // NOLINT
3204   os << NameOf(left()) << " " << NameOf(right());
3205   return HControlInstruction::PrintDataTo(os);
3206 }
3207
3208
3209 bool HCompareObjectEqAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3210   if (known_successor_index() != kNoKnownSuccessorIndex) {
3211     *block = SuccessorAt(known_successor_index());
3212     return true;
3213   }
3214   if (FLAG_fold_constants && left()->IsConstant() && right()->IsConstant()) {
3215     *block = HConstant::cast(left())->DataEquals(HConstant::cast(right()))
3216         ? FirstSuccessor() : SecondSuccessor();
3217     return true;
3218   }
3219   *block = NULL;
3220   return false;
3221 }
3222
3223
3224 bool ConstantIsObject(HConstant* constant, Isolate* isolate) {
3225   if (constant->HasNumberValue()) return false;
3226   if (constant->GetUnique().IsKnownGlobal(isolate->heap()->null_value())) {
3227     return true;
3228   }
3229   if (constant->IsUndetectable()) return false;
3230   InstanceType type = constant->GetInstanceType();
3231   return (FIRST_NONCALLABLE_SPEC_OBJECT_TYPE <= type) &&
3232          (type <= LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
3233 }
3234
3235
3236 bool HIsObjectAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3237   if (FLAG_fold_constants && value()->IsConstant()) {
3238     *block = ConstantIsObject(HConstant::cast(value()), isolate())
3239         ? FirstSuccessor() : SecondSuccessor();
3240     return true;
3241   }
3242   *block = NULL;
3243   return false;
3244 }
3245
3246
3247 bool HIsStringAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3248   if (known_successor_index() != kNoKnownSuccessorIndex) {
3249     *block = SuccessorAt(known_successor_index());
3250     return true;
3251   }
3252   if (FLAG_fold_constants && value()->IsConstant()) {
3253     *block = HConstant::cast(value())->HasStringValue()
3254         ? FirstSuccessor() : SecondSuccessor();
3255     return true;
3256   }
3257   if (value()->type().IsString()) {
3258     *block = FirstSuccessor();
3259     return true;
3260   }
3261   if (value()->type().IsSmi() ||
3262       value()->type().IsNull() ||
3263       value()->type().IsBoolean() ||
3264       value()->type().IsUndefined() ||
3265       value()->type().IsJSObject()) {
3266     *block = SecondSuccessor();
3267     return true;
3268   }
3269   *block = NULL;
3270   return false;
3271 }
3272
3273
3274 bool HIsUndetectableAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3275   if (FLAG_fold_constants && value()->IsConstant()) {
3276     *block = HConstant::cast(value())->IsUndetectable()
3277         ? FirstSuccessor() : SecondSuccessor();
3278     return true;
3279   }
3280   *block = NULL;
3281   return false;
3282 }
3283
3284
3285 bool HHasInstanceTypeAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3286   if (FLAG_fold_constants && value()->IsConstant()) {
3287     InstanceType type = HConstant::cast(value())->GetInstanceType();
3288     *block = (from_ <= type) && (type <= to_)
3289         ? FirstSuccessor() : SecondSuccessor();
3290     return true;
3291   }
3292   *block = NULL;
3293   return false;
3294 }
3295
3296
3297 void HCompareHoleAndBranch::InferRepresentation(
3298     HInferRepresentationPhase* h_infer) {
3299   ChangeRepresentation(value()->representation());
3300 }
3301
3302
3303 bool HCompareNumericAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3304   if (left() == right() &&
3305       left()->representation().IsSmiOrInteger32()) {
3306     *block = (token() == Token::EQ ||
3307               token() == Token::EQ_STRICT ||
3308               token() == Token::LTE ||
3309               token() == Token::GTE)
3310         ? FirstSuccessor() : SecondSuccessor();
3311     return true;
3312   }
3313   *block = NULL;
3314   return false;
3315 }
3316
3317
3318 bool HCompareMinusZeroAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3319   if (FLAG_fold_constants && value()->IsConstant()) {
3320     HConstant* constant = HConstant::cast(value());
3321     if (constant->HasDoubleValue()) {
3322       *block = IsMinusZero(constant->DoubleValue())
3323           ? FirstSuccessor() : SecondSuccessor();
3324       return true;
3325     }
3326   }
3327   if (value()->representation().IsSmiOrInteger32()) {
3328     // A Smi or Integer32 cannot contain minus zero.
3329     *block = SecondSuccessor();
3330     return true;
3331   }
3332   *block = NULL;
3333   return false;
3334 }
3335
3336
3337 void HCompareMinusZeroAndBranch::InferRepresentation(
3338     HInferRepresentationPhase* h_infer) {
3339   ChangeRepresentation(value()->representation());
3340 }
3341
3342
3343 OStream& HGoto::PrintDataTo(OStream& os) const {  // NOLINT
3344   return os << *SuccessorAt(0);
3345 }
3346
3347
3348 void HCompareNumericAndBranch::InferRepresentation(
3349     HInferRepresentationPhase* h_infer) {
3350   Representation left_rep = left()->representation();
3351   Representation right_rep = right()->representation();
3352   Representation observed_left = observed_input_representation(0);
3353   Representation observed_right = observed_input_representation(1);
3354
3355   Representation rep = Representation::None();
3356   rep = rep.generalize(observed_left);
3357   rep = rep.generalize(observed_right);
3358   if (rep.IsNone() || rep.IsSmiOrInteger32()) {
3359     if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
3360     if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
3361   } else {
3362     rep = Representation::Double();
3363   }
3364
3365   if (rep.IsDouble()) {
3366     // According to the ES5 spec (11.9.3, 11.8.5), Equality comparisons (==, ===
3367     // and !=) have special handling of undefined, e.g. undefined == undefined
3368     // is 'true'. Relational comparisons have a different semantic, first
3369     // calling ToPrimitive() on their arguments.  The standard Crankshaft
3370     // tagged-to-double conversion to ensure the HCompareNumericAndBranch's
3371     // inputs are doubles caused 'undefined' to be converted to NaN. That's
3372     // compatible out-of-the box with ordered relational comparisons (<, >, <=,
3373     // >=). However, for equality comparisons (and for 'in' and 'instanceof'),
3374     // it is not consistent with the spec. For example, it would cause undefined
3375     // == undefined (should be true) to be evaluated as NaN == NaN
3376     // (false). Therefore, any comparisons other than ordered relational
3377     // comparisons must cause a deopt when one of their arguments is undefined.
3378     // See also v8:1434
3379     if (Token::IsOrderedRelationalCompareOp(token_)) {
3380       SetFlag(kAllowUndefinedAsNaN);
3381     }
3382   }
3383   ChangeRepresentation(rep);
3384 }
3385
3386
3387 OStream& HParameter::PrintDataTo(OStream& os) const {  // NOLINT
3388   return os << index();
3389 }
3390
3391
3392 OStream& HLoadNamedField::PrintDataTo(OStream& os) const {  // NOLINT
3393   os << NameOf(object()) << access_;
3394
3395   if (maps() != NULL) {
3396     os << " [" << *maps()->at(0).handle();
3397     for (int i = 1; i < maps()->size(); ++i) {
3398       os << "," << *maps()->at(i).handle();
3399     }
3400     os << "]";
3401   }
3402
3403   if (HasDependency()) os << " " << NameOf(dependency());
3404   return os;
3405 }
3406
3407
3408 OStream& HLoadNamedGeneric::PrintDataTo(OStream& os) const {  // NOLINT
3409   Handle<String> n = Handle<String>::cast(name());
3410   return os << NameOf(object()) << "." << n->ToCString().get();
3411 }
3412
3413
3414 OStream& HLoadKeyed::PrintDataTo(OStream& os) const {  // NOLINT
3415   if (!is_external()) {
3416     os << NameOf(elements());
3417   } else {
3418     DCHECK(elements_kind() >= FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND &&
3419            elements_kind() <= LAST_EXTERNAL_ARRAY_ELEMENTS_KIND);
3420     os << NameOf(elements()) << "." << ElementsKindToString(elements_kind());
3421   }
3422
3423   os << "[" << NameOf(key());
3424   if (IsDehoisted()) os << " + " << base_offset();
3425   os << "]";
3426
3427   if (HasDependency()) os << " " << NameOf(dependency());
3428   if (RequiresHoleCheck()) os << " check_hole";
3429   return os;
3430 }
3431
3432
3433 bool HLoadKeyed::TryIncreaseBaseOffset(uint32_t increase_by_value) {
3434   // The base offset is usually simply the size of the array header, except
3435   // with dehoisting adds an addition offset due to a array index key
3436   // manipulation, in which case it becomes (array header size +
3437   // constant-offset-from-key * kPointerSize)
3438   uint32_t base_offset = BaseOffsetField::decode(bit_field_);
3439   v8::base::internal::CheckedNumeric<uint32_t> addition_result = base_offset;
3440   addition_result += increase_by_value;
3441   if (!addition_result.IsValid()) return false;
3442   base_offset = addition_result.ValueOrDie();
3443   if (!BaseOffsetField::is_valid(base_offset)) return false;
3444   bit_field_ = BaseOffsetField::update(bit_field_, base_offset);
3445   return true;
3446 }
3447
3448
3449 bool HLoadKeyed::UsesMustHandleHole() const {
3450   if (IsFastPackedElementsKind(elements_kind())) {
3451     return false;
3452   }
3453
3454   if (IsExternalArrayElementsKind(elements_kind())) {
3455     return false;
3456   }
3457
3458   if (hole_mode() == ALLOW_RETURN_HOLE) {
3459     if (IsFastDoubleElementsKind(elements_kind())) {
3460       return AllUsesCanTreatHoleAsNaN();
3461     }
3462     return true;
3463   }
3464
3465   if (IsFastDoubleElementsKind(elements_kind())) {
3466     return false;
3467   }
3468
3469   // Holes are only returned as tagged values.
3470   if (!representation().IsTagged()) {
3471     return false;
3472   }
3473
3474   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
3475     HValue* use = it.value();
3476     if (!use->IsChange()) return false;
3477   }
3478
3479   return true;
3480 }
3481
3482
3483 bool HLoadKeyed::AllUsesCanTreatHoleAsNaN() const {
3484   return IsFastDoubleElementsKind(elements_kind()) &&
3485       CheckUsesForFlag(HValue::kAllowUndefinedAsNaN);
3486 }
3487
3488
3489 bool HLoadKeyed::RequiresHoleCheck() const {
3490   if (IsFastPackedElementsKind(elements_kind())) {
3491     return false;
3492   }
3493
3494   if (IsExternalArrayElementsKind(elements_kind())) {
3495     return false;
3496   }
3497
3498   return !UsesMustHandleHole();
3499 }
3500
3501
3502 OStream& HLoadKeyedGeneric::PrintDataTo(OStream& os) const {  // NOLINT
3503   return os << NameOf(object()) << "[" << NameOf(key()) << "]";
3504 }
3505
3506
3507 HValue* HLoadKeyedGeneric::Canonicalize() {
3508   // Recognize generic keyed loads that use property name generated
3509   // by for-in statement as a key and rewrite them into fast property load
3510   // by index.
3511   if (key()->IsLoadKeyed()) {
3512     HLoadKeyed* key_load = HLoadKeyed::cast(key());
3513     if (key_load->elements()->IsForInCacheArray()) {
3514       HForInCacheArray* names_cache =
3515           HForInCacheArray::cast(key_load->elements());
3516
3517       if (names_cache->enumerable() == object()) {
3518         HForInCacheArray* index_cache =
3519             names_cache->index_cache();
3520         HCheckMapValue* map_check =
3521             HCheckMapValue::New(block()->graph()->zone(),
3522                                 block()->graph()->GetInvalidContext(),
3523                                 object(),
3524                                 names_cache->map());
3525         HInstruction* index = HLoadKeyed::New(
3526             block()->graph()->zone(),
3527             block()->graph()->GetInvalidContext(),
3528             index_cache,
3529             key_load->key(),
3530             key_load->key(),
3531             key_load->elements_kind());
3532         map_check->InsertBefore(this);
3533         index->InsertBefore(this);
3534         return Prepend(new(block()->zone()) HLoadFieldByIndex(
3535             object(), index));
3536       }
3537     }
3538   }
3539
3540   return this;
3541 }
3542
3543
3544 OStream& HStoreNamedGeneric::PrintDataTo(OStream& os) const {  // NOLINT
3545   Handle<String> n = Handle<String>::cast(name());
3546   return os << NameOf(object()) << "." << n->ToCString().get() << " = "
3547             << NameOf(value());
3548 }
3549
3550
3551 OStream& HStoreNamedField::PrintDataTo(OStream& os) const {  // NOLINT
3552   os << NameOf(object()) << access_ << " = " << NameOf(value());
3553   if (NeedsWriteBarrier()) os << " (write-barrier)";
3554   if (has_transition()) os << " (transition map " << *transition_map() << ")";
3555   return os;
3556 }
3557
3558
3559 OStream& HStoreKeyed::PrintDataTo(OStream& os) const {  // NOLINT
3560   if (!is_external()) {
3561     os << NameOf(elements());
3562   } else {
3563     DCHECK(elements_kind() >= FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND &&
3564            elements_kind() <= LAST_EXTERNAL_ARRAY_ELEMENTS_KIND);
3565     os << NameOf(elements()) << "." << ElementsKindToString(elements_kind());
3566   }
3567
3568   os << "[" << NameOf(key());
3569   if (IsDehoisted()) os << " + " << base_offset();
3570   return os << "] = " << NameOf(value());
3571 }
3572
3573
3574 OStream& HStoreKeyedGeneric::PrintDataTo(OStream& os) const {  // NOLINT
3575   return os << NameOf(object()) << "[" << NameOf(key())
3576             << "] = " << NameOf(value());
3577 }
3578
3579
3580 OStream& HTransitionElementsKind::PrintDataTo(OStream& os) const {  // NOLINT
3581   os << NameOf(object());
3582   ElementsKind from_kind = original_map().handle()->elements_kind();
3583   ElementsKind to_kind = transitioned_map().handle()->elements_kind();
3584   os << " " << *original_map().handle() << " ["
3585      << ElementsAccessor::ForKind(from_kind)->name() << "] -> "
3586      << *transitioned_map().handle() << " ["
3587      << ElementsAccessor::ForKind(to_kind)->name() << "]";
3588   if (IsSimpleMapChangeTransition(from_kind, to_kind)) os << " (simple)";
3589   return os;
3590 }
3591
3592
3593 OStream& HLoadGlobalCell::PrintDataTo(OStream& os) const {  // NOLINT
3594   os << "[" << *cell().handle() << "]";
3595   if (details_.IsConfigurable()) os << " (configurable)";
3596   if (details_.IsReadOnly()) os << " (read-only)";
3597   return os;
3598 }
3599
3600
3601 bool HLoadGlobalCell::RequiresHoleCheck() const {
3602   if (!details_.IsConfigurable()) return false;
3603   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
3604     HValue* use = it.value();
3605     if (!use->IsChange()) return true;
3606   }
3607   return false;
3608 }
3609
3610
3611 OStream& HLoadGlobalGeneric::PrintDataTo(OStream& os) const {  // NOLINT
3612   return os << name()->ToCString().get() << " ";
3613 }
3614
3615
3616 OStream& HInnerAllocatedObject::PrintDataTo(OStream& os) const {  // NOLINT
3617   os << NameOf(base_object()) << " offset ";
3618   return offset()->PrintTo(os);
3619 }
3620
3621
3622 OStream& HStoreGlobalCell::PrintDataTo(OStream& os) const {  // NOLINT
3623   os << "[" << *cell().handle() << "] = " << NameOf(value());
3624   if (details_.IsConfigurable()) os << " (configurable)";
3625   if (details_.IsReadOnly()) os << " (read-only)";
3626   return os;
3627 }
3628
3629
3630 OStream& HLoadContextSlot::PrintDataTo(OStream& os) const {  // NOLINT
3631   return os << NameOf(value()) << "[" << slot_index() << "]";
3632 }
3633
3634
3635 OStream& HStoreContextSlot::PrintDataTo(OStream& os) const {  // NOLINT
3636   return os << NameOf(context()) << "[" << slot_index()
3637             << "] = " << NameOf(value());
3638 }
3639
3640
3641 // Implementation of type inference and type conversions. Calculates
3642 // the inferred type of this instruction based on the input operands.
3643
3644 HType HValue::CalculateInferredType() {
3645   return type_;
3646 }
3647
3648
3649 HType HPhi::CalculateInferredType() {
3650   if (OperandCount() == 0) return HType::Tagged();
3651   HType result = OperandAt(0)->type();
3652   for (int i = 1; i < OperandCount(); ++i) {
3653     HType current = OperandAt(i)->type();
3654     result = result.Combine(current);
3655   }
3656   return result;
3657 }
3658
3659
3660 HType HChange::CalculateInferredType() {
3661   if (from().IsDouble() && to().IsTagged()) return HType::HeapNumber();
3662   return type();
3663 }
3664
3665
3666 Representation HUnaryMathOperation::RepresentationFromInputs() {
3667   if (SupportsFlexibleFloorAndRound() &&
3668       (op_ == kMathFloor || op_ == kMathRound)) {
3669     // Floor and Round always take a double input. The integral result can be
3670     // used as an integer or a double. Infer the representation from the uses.
3671     return Representation::None();
3672   }
3673   Representation rep = representation();
3674   // If any of the actual input representation is more general than what we
3675   // have so far but not Tagged, use that representation instead.
3676   Representation input_rep = value()->representation();
3677   if (!input_rep.IsTagged()) {
3678     rep = rep.generalize(input_rep);
3679   }
3680   return rep;
3681 }
3682
3683
3684 bool HAllocate::HandleSideEffectDominator(GVNFlag side_effect,
3685                                           HValue* dominator) {
3686   DCHECK(side_effect == kNewSpacePromotion);
3687   Zone* zone = block()->zone();
3688   if (!FLAG_use_allocation_folding) return false;
3689
3690   // Try to fold allocations together with their dominating allocations.
3691   if (!dominator->IsAllocate()) {
3692     if (FLAG_trace_allocation_folding) {
3693       PrintF("#%d (%s) cannot fold into #%d (%s)\n",
3694           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3695     }
3696     return false;
3697   }
3698
3699   // Check whether we are folding within the same block for local folding.
3700   if (FLAG_use_local_allocation_folding && dominator->block() != block()) {
3701     if (FLAG_trace_allocation_folding) {
3702       PrintF("#%d (%s) cannot fold into #%d (%s), crosses basic blocks\n",
3703           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3704     }
3705     return false;
3706   }
3707
3708   HAllocate* dominator_allocate = HAllocate::cast(dominator);
3709   HValue* dominator_size = dominator_allocate->size();
3710   HValue* current_size = size();
3711
3712   // TODO(hpayer): Add support for non-constant allocation in dominator.
3713   if (!dominator_size->IsInteger32Constant()) {
3714     if (FLAG_trace_allocation_folding) {
3715       PrintF("#%d (%s) cannot fold into #%d (%s), "
3716              "dynamic allocation size in dominator\n",
3717           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3718     }
3719     return false;
3720   }
3721
3722   dominator_allocate = GetFoldableDominator(dominator_allocate);
3723   if (dominator_allocate == NULL) {
3724     return false;
3725   }
3726
3727   if (!has_size_upper_bound()) {
3728     if (FLAG_trace_allocation_folding) {
3729       PrintF("#%d (%s) cannot fold into #%d (%s), "
3730              "can't estimate total allocation size\n",
3731           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3732     }
3733     return false;
3734   }
3735
3736   if (!current_size->IsInteger32Constant()) {
3737     // If it's not constant then it is a size_in_bytes calculation graph
3738     // like this: (const_header_size + const_element_size * size).
3739     DCHECK(current_size->IsInstruction());
3740
3741     HInstruction* current_instr = HInstruction::cast(current_size);
3742     if (!current_instr->Dominates(dominator_allocate)) {
3743       if (FLAG_trace_allocation_folding) {
3744         PrintF("#%d (%s) cannot fold into #%d (%s), dynamic size "
3745                "value does not dominate target allocation\n",
3746             id(), Mnemonic(), dominator_allocate->id(),
3747             dominator_allocate->Mnemonic());
3748       }
3749       return false;
3750     }
3751   }
3752
3753   DCHECK((IsNewSpaceAllocation() &&
3754          dominator_allocate->IsNewSpaceAllocation()) ||
3755          (IsOldDataSpaceAllocation() &&
3756          dominator_allocate->IsOldDataSpaceAllocation()) ||
3757          (IsOldPointerSpaceAllocation() &&
3758          dominator_allocate->IsOldPointerSpaceAllocation()));
3759
3760   // First update the size of the dominator allocate instruction.
3761   dominator_size = dominator_allocate->size();
3762   int32_t original_object_size =
3763       HConstant::cast(dominator_size)->GetInteger32Constant();
3764   int32_t dominator_size_constant = original_object_size;
3765
3766   if (MustAllocateDoubleAligned()) {
3767     if ((dominator_size_constant & kDoubleAlignmentMask) != 0) {
3768       dominator_size_constant += kDoubleSize / 2;
3769     }
3770   }
3771
3772   int32_t current_size_max_value = size_upper_bound()->GetInteger32Constant();
3773   int32_t new_dominator_size = dominator_size_constant + current_size_max_value;
3774
3775   // Since we clear the first word after folded memory, we cannot use the
3776   // whole Page::kMaxRegularHeapObjectSize memory.
3777   if (new_dominator_size > Page::kMaxRegularHeapObjectSize - kPointerSize) {
3778     if (FLAG_trace_allocation_folding) {
3779       PrintF("#%d (%s) cannot fold into #%d (%s) due to size: %d\n",
3780           id(), Mnemonic(), dominator_allocate->id(),
3781           dominator_allocate->Mnemonic(), new_dominator_size);
3782     }
3783     return false;
3784   }
3785
3786   HInstruction* new_dominator_size_value;
3787
3788   if (current_size->IsInteger32Constant()) {
3789     new_dominator_size_value =
3790         HConstant::CreateAndInsertBefore(zone,
3791                                          context(),
3792                                          new_dominator_size,
3793                                          Representation::None(),
3794                                          dominator_allocate);
3795   } else {
3796     HValue* new_dominator_size_constant =
3797         HConstant::CreateAndInsertBefore(zone,
3798                                          context(),
3799                                          dominator_size_constant,
3800                                          Representation::Integer32(),
3801                                          dominator_allocate);
3802
3803     // Add old and new size together and insert.
3804     current_size->ChangeRepresentation(Representation::Integer32());
3805
3806     new_dominator_size_value = HAdd::New(zone, context(),
3807         new_dominator_size_constant, current_size);
3808     new_dominator_size_value->ClearFlag(HValue::kCanOverflow);
3809     new_dominator_size_value->ChangeRepresentation(Representation::Integer32());
3810
3811     new_dominator_size_value->InsertBefore(dominator_allocate);
3812   }
3813
3814   dominator_allocate->UpdateSize(new_dominator_size_value);
3815
3816   if (MustAllocateDoubleAligned()) {
3817     if (!dominator_allocate->MustAllocateDoubleAligned()) {
3818       dominator_allocate->MakeDoubleAligned();
3819     }
3820   }
3821
3822   bool keep_new_space_iterable = FLAG_log_gc || FLAG_heap_stats;
3823 #ifdef VERIFY_HEAP
3824   keep_new_space_iterable = keep_new_space_iterable || FLAG_verify_heap;
3825 #endif
3826
3827   if (keep_new_space_iterable && dominator_allocate->IsNewSpaceAllocation()) {
3828     dominator_allocate->MakePrefillWithFiller();
3829   } else {
3830     // TODO(hpayer): This is a short-term hack to make allocation mementos
3831     // work again in new space.
3832     dominator_allocate->ClearNextMapWord(original_object_size);
3833   }
3834
3835   dominator_allocate->UpdateClearNextMapWord(MustClearNextMapWord());
3836
3837   // After that replace the dominated allocate instruction.
3838   HInstruction* inner_offset = HConstant::CreateAndInsertBefore(
3839       zone,
3840       context(),
3841       dominator_size_constant,
3842       Representation::None(),
3843       this);
3844
3845   HInstruction* dominated_allocate_instr =
3846       HInnerAllocatedObject::New(zone,
3847                                  context(),
3848                                  dominator_allocate,
3849                                  inner_offset,
3850                                  type());
3851   dominated_allocate_instr->InsertBefore(this);
3852   DeleteAndReplaceWith(dominated_allocate_instr);
3853   if (FLAG_trace_allocation_folding) {
3854     PrintF("#%d (%s) folded into #%d (%s)\n",
3855         id(), Mnemonic(), dominator_allocate->id(),
3856         dominator_allocate->Mnemonic());
3857   }
3858   return true;
3859 }
3860
3861
3862 HAllocate* HAllocate::GetFoldableDominator(HAllocate* dominator) {
3863   if (!IsFoldable(dominator)) {
3864     // We cannot hoist old space allocations over new space allocations.
3865     if (IsNewSpaceAllocation() || dominator->IsNewSpaceAllocation()) {
3866       if (FLAG_trace_allocation_folding) {
3867         PrintF("#%d (%s) cannot fold into #%d (%s), new space hoisting\n",
3868             id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3869       }
3870       return NULL;
3871     }
3872
3873     HAllocate* dominator_dominator = dominator->dominating_allocate_;
3874
3875     // We can hoist old data space allocations over an old pointer space
3876     // allocation and vice versa. For that we have to check the dominator
3877     // of the dominator allocate instruction.
3878     if (dominator_dominator == NULL) {
3879       dominating_allocate_ = dominator;
3880       if (FLAG_trace_allocation_folding) {
3881         PrintF("#%d (%s) cannot fold into #%d (%s), different spaces\n",
3882             id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3883       }
3884       return NULL;
3885     }
3886
3887     // We can just fold old space allocations that are in the same basic block,
3888     // since it is not guaranteed that we fill up the whole allocated old
3889     // space memory.
3890     // TODO(hpayer): Remove this limitation and add filler maps for each each
3891     // allocation as soon as we have store elimination.
3892     if (block()->block_id() != dominator_dominator->block()->block_id()) {
3893       if (FLAG_trace_allocation_folding) {
3894         PrintF("#%d (%s) cannot fold into #%d (%s), different basic blocks\n",
3895             id(), Mnemonic(), dominator_dominator->id(),
3896             dominator_dominator->Mnemonic());
3897       }
3898       return NULL;
3899     }
3900
3901     DCHECK((IsOldDataSpaceAllocation() &&
3902            dominator_dominator->IsOldDataSpaceAllocation()) ||
3903            (IsOldPointerSpaceAllocation() &&
3904            dominator_dominator->IsOldPointerSpaceAllocation()));
3905
3906     int32_t current_size = HConstant::cast(size())->GetInteger32Constant();
3907     HStoreNamedField* dominator_free_space_size =
3908         dominator->filler_free_space_size_;
3909     if (dominator_free_space_size != NULL) {
3910       // We already hoisted one old space allocation, i.e., we already installed
3911       // a filler map. Hence, we just have to update the free space size.
3912       dominator->UpdateFreeSpaceFiller(current_size);
3913     } else {
3914       // This is the first old space allocation that gets hoisted. We have to
3915       // install a filler map since the follwing allocation may cause a GC.
3916       dominator->CreateFreeSpaceFiller(current_size);
3917     }
3918
3919     // We can hoist the old space allocation over the actual dominator.
3920     return dominator_dominator;
3921   }
3922   return dominator;
3923 }
3924
3925
3926 void HAllocate::UpdateFreeSpaceFiller(int32_t free_space_size) {
3927   DCHECK(filler_free_space_size_ != NULL);
3928   Zone* zone = block()->zone();
3929   // We must explicitly force Smi representation here because on x64 we
3930   // would otherwise automatically choose int32, but the actual store
3931   // requires a Smi-tagged value.
3932   HConstant* new_free_space_size = HConstant::CreateAndInsertBefore(
3933       zone,
3934       context(),
3935       filler_free_space_size_->value()->GetInteger32Constant() +
3936           free_space_size,
3937       Representation::Smi(),
3938       filler_free_space_size_);
3939   filler_free_space_size_->UpdateValue(new_free_space_size);
3940 }
3941
3942
3943 void HAllocate::CreateFreeSpaceFiller(int32_t free_space_size) {
3944   DCHECK(filler_free_space_size_ == NULL);
3945   Zone* zone = block()->zone();
3946   HInstruction* free_space_instr =
3947       HInnerAllocatedObject::New(zone, context(), dominating_allocate_,
3948       dominating_allocate_->size(), type());
3949   free_space_instr->InsertBefore(this);
3950   HConstant* filler_map = HConstant::CreateAndInsertAfter(
3951       zone, Unique<Map>::CreateImmovable(
3952           isolate()->factory()->free_space_map()), true, free_space_instr);
3953   HInstruction* store_map = HStoreNamedField::New(zone, context(),
3954       free_space_instr, HObjectAccess::ForMap(), filler_map);
3955   store_map->SetFlag(HValue::kHasNoObservableSideEffects);
3956   store_map->InsertAfter(filler_map);
3957
3958   // We must explicitly force Smi representation here because on x64 we
3959   // would otherwise automatically choose int32, but the actual store
3960   // requires a Smi-tagged value.
3961   HConstant* filler_size = HConstant::CreateAndInsertAfter(
3962       zone, context(), free_space_size, Representation::Smi(), store_map);
3963   // Must force Smi representation for x64 (see comment above).
3964   HObjectAccess access =
3965       HObjectAccess::ForMapAndOffset(isolate()->factory()->free_space_map(),
3966                                      FreeSpace::kSizeOffset,
3967                                      Representation::Smi());
3968   HStoreNamedField* store_size = HStoreNamedField::New(zone, context(),
3969       free_space_instr, access, filler_size);
3970   store_size->SetFlag(HValue::kHasNoObservableSideEffects);
3971   store_size->InsertAfter(filler_size);
3972   filler_free_space_size_ = store_size;
3973 }
3974
3975
3976 void HAllocate::ClearNextMapWord(int offset) {
3977   if (MustClearNextMapWord()) {
3978     Zone* zone = block()->zone();
3979     HObjectAccess access =
3980         HObjectAccess::ForObservableJSObjectOffset(offset);
3981     HStoreNamedField* clear_next_map =
3982         HStoreNamedField::New(zone, context(), this, access,
3983             block()->graph()->GetConstant0());
3984     clear_next_map->ClearAllSideEffects();
3985     clear_next_map->InsertAfter(this);
3986   }
3987 }
3988
3989
3990 OStream& HAllocate::PrintDataTo(OStream& os) const {  // NOLINT
3991   os << NameOf(size()) << " (";
3992   if (IsNewSpaceAllocation()) os << "N";
3993   if (IsOldPointerSpaceAllocation()) os << "P";
3994   if (IsOldDataSpaceAllocation()) os << "D";
3995   if (MustAllocateDoubleAligned()) os << "A";
3996   if (MustPrefillWithFiller()) os << "F";
3997   return os << ")";
3998 }
3999
4000
4001 bool HStoreKeyed::TryIncreaseBaseOffset(uint32_t increase_by_value) {
4002   // The base offset is usually simply the size of the array header, except
4003   // with dehoisting adds an addition offset due to a array index key
4004   // manipulation, in which case it becomes (array header size +
4005   // constant-offset-from-key * kPointerSize)
4006   v8::base::internal::CheckedNumeric<uint32_t> addition_result = base_offset_;
4007   addition_result += increase_by_value;
4008   if (!addition_result.IsValid()) return false;
4009   base_offset_ = addition_result.ValueOrDie();
4010   return true;
4011 }
4012
4013
4014 bool HStoreKeyed::NeedsCanonicalization() {
4015   // If value is an integer or smi or comes from the result of a keyed load or
4016   // constant then it is either be a non-hole value or in the case of a constant
4017   // the hole is only being stored explicitly: no need for canonicalization.
4018   //
4019   // The exception to that is keyed loads from external float or double arrays:
4020   // these can load arbitrary representation of NaN.
4021
4022   if (value()->IsConstant()) {
4023     return false;
4024   }
4025
4026   if (value()->IsLoadKeyed()) {
4027     return IsExternalFloatOrDoubleElementsKind(
4028         HLoadKeyed::cast(value())->elements_kind());
4029   }
4030
4031   if (value()->IsChange()) {
4032     if (HChange::cast(value())->from().IsSmiOrInteger32()) {
4033       return false;
4034     }
4035     if (HChange::cast(value())->value()->type().IsSmi()) {
4036       return false;
4037     }
4038   }
4039   return true;
4040 }
4041
4042
4043 #define H_CONSTANT_INT(val)                                                    \
4044 HConstant::New(zone, context, static_cast<int32_t>(val))
4045 #define H_CONSTANT_DOUBLE(val)                                                 \
4046 HConstant::New(zone, context, static_cast<double>(val))
4047
4048 #define DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HInstr, op)                       \
4049 HInstruction* HInstr::New(                                                     \
4050     Zone* zone, HValue* context, HValue* left, HValue* right) {                \
4051   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {      \
4052     HConstant* c_left = HConstant::cast(left);                                 \
4053     HConstant* c_right = HConstant::cast(right);                               \
4054     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {             \
4055       double double_res = c_left->DoubleValue() op c_right->DoubleValue();     \
4056       if (IsInt32Double(double_res)) {                                         \
4057         return H_CONSTANT_INT(double_res);                                     \
4058       }                                                                        \
4059       return H_CONSTANT_DOUBLE(double_res);                                    \
4060     }                                                                          \
4061   }                                                                            \
4062   return new(zone) HInstr(context, left, right);                               \
4063 }
4064
4065
4066 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HAdd, +)
4067 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HMul, *)
4068 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HSub, -)
4069
4070 #undef DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR
4071
4072
4073 HInstruction* HStringAdd::New(Zone* zone,
4074                               HValue* context,
4075                               HValue* left,
4076                               HValue* right,
4077                               PretenureFlag pretenure_flag,
4078                               StringAddFlags flags,
4079                               Handle<AllocationSite> allocation_site) {
4080   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4081     HConstant* c_right = HConstant::cast(right);
4082     HConstant* c_left = HConstant::cast(left);
4083     if (c_left->HasStringValue() && c_right->HasStringValue()) {
4084       Handle<String> left_string = c_left->StringValue();
4085       Handle<String> right_string = c_right->StringValue();
4086       // Prevent possible exception by invalid string length.
4087       if (left_string->length() + right_string->length() < String::kMaxLength) {
4088         MaybeHandle<String> concat = zone->isolate()->factory()->NewConsString(
4089             c_left->StringValue(), c_right->StringValue());
4090         return HConstant::New(zone, context, concat.ToHandleChecked());
4091       }
4092     }
4093   }
4094   return new(zone) HStringAdd(
4095       context, left, right, pretenure_flag, flags, allocation_site);
4096 }
4097
4098
4099 OStream& HStringAdd::PrintDataTo(OStream& os) const {  // NOLINT
4100   if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_BOTH) {
4101     os << "_CheckBoth";
4102   } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_LEFT) {
4103     os << "_CheckLeft";
4104   } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_RIGHT) {
4105     os << "_CheckRight";
4106   }
4107   HBinaryOperation::PrintDataTo(os);
4108   os << " (";
4109   if (pretenure_flag() == NOT_TENURED)
4110     os << "N";
4111   else if (pretenure_flag() == TENURED)
4112     os << "D";
4113   return os << ")";
4114 }
4115
4116
4117 HInstruction* HStringCharFromCode::New(
4118     Zone* zone, HValue* context, HValue* char_code) {
4119   if (FLAG_fold_constants && char_code->IsConstant()) {
4120     HConstant* c_code = HConstant::cast(char_code);
4121     Isolate* isolate = zone->isolate();
4122     if (c_code->HasNumberValue()) {
4123       if (std::isfinite(c_code->DoubleValue())) {
4124         uint32_t code = c_code->NumberValueAsInteger32() & 0xffff;
4125         return HConstant::New(zone, context,
4126             isolate->factory()->LookupSingleCharacterStringFromCode(code));
4127       }
4128       return HConstant::New(zone, context, isolate->factory()->empty_string());
4129     }
4130   }
4131   return new(zone) HStringCharFromCode(context, char_code);
4132 }
4133
4134
4135 HInstruction* HUnaryMathOperation::New(
4136     Zone* zone, HValue* context, HValue* value, BuiltinFunctionId op) {
4137   do {
4138     if (!FLAG_fold_constants) break;
4139     if (!value->IsConstant()) break;
4140     HConstant* constant = HConstant::cast(value);
4141     if (!constant->HasNumberValue()) break;
4142     double d = constant->DoubleValue();
4143     if (std::isnan(d)) {  // NaN poisons everything.
4144       return H_CONSTANT_DOUBLE(base::OS::nan_value());
4145     }
4146     if (std::isinf(d)) {  // +Infinity and -Infinity.
4147       switch (op) {
4148         case kMathExp:
4149           return H_CONSTANT_DOUBLE((d > 0.0) ? d : 0.0);
4150         case kMathLog:
4151         case kMathSqrt:
4152           return H_CONSTANT_DOUBLE((d > 0.0) ? d : base::OS::nan_value());
4153         case kMathPowHalf:
4154         case kMathAbs:
4155           return H_CONSTANT_DOUBLE((d > 0.0) ? d : -d);
4156         case kMathRound:
4157         case kMathFround:
4158         case kMathFloor:
4159           return H_CONSTANT_DOUBLE(d);
4160         case kMathClz32:
4161           return H_CONSTANT_INT(32);
4162         default:
4163           UNREACHABLE();
4164           break;
4165       }
4166     }
4167     switch (op) {
4168       case kMathExp:
4169         return H_CONSTANT_DOUBLE(fast_exp(d));
4170       case kMathLog:
4171         return H_CONSTANT_DOUBLE(std::log(d));
4172       case kMathSqrt:
4173         return H_CONSTANT_DOUBLE(fast_sqrt(d));
4174       case kMathPowHalf:
4175         return H_CONSTANT_DOUBLE(power_double_double(d, 0.5));
4176       case kMathAbs:
4177         return H_CONSTANT_DOUBLE((d >= 0.0) ? d + 0.0 : -d);
4178       case kMathRound:
4179         // -0.5 .. -0.0 round to -0.0.
4180         if ((d >= -0.5 && Double(d).Sign() < 0)) return H_CONSTANT_DOUBLE(-0.0);
4181         // Doubles are represented as Significant * 2 ^ Exponent. If the
4182         // Exponent is not negative, the double value is already an integer.
4183         if (Double(d).Exponent() >= 0) return H_CONSTANT_DOUBLE(d);
4184         return H_CONSTANT_DOUBLE(Floor(d + 0.5));
4185       case kMathFround:
4186         return H_CONSTANT_DOUBLE(static_cast<double>(static_cast<float>(d)));
4187       case kMathFloor:
4188         return H_CONSTANT_DOUBLE(Floor(d));
4189       case kMathClz32: {
4190         uint32_t i = DoubleToUint32(d);
4191         return H_CONSTANT_INT(base::bits::CountLeadingZeros32(i));
4192       }
4193       default:
4194         UNREACHABLE();
4195         break;
4196     }
4197   } while (false);
4198   return new(zone) HUnaryMathOperation(context, value, op);
4199 }
4200
4201
4202 Representation HUnaryMathOperation::RepresentationFromUses() {
4203   if (op_ != kMathFloor && op_ != kMathRound) {
4204     return HValue::RepresentationFromUses();
4205   }
4206
4207   // The instruction can have an int32 or double output. Prefer a double
4208   // representation if there are double uses.
4209   bool use_double = false;
4210
4211   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
4212     HValue* use = it.value();
4213     int use_index = it.index();
4214     Representation rep_observed = use->observed_input_representation(use_index);
4215     Representation rep_required = use->RequiredInputRepresentation(use_index);
4216     use_double |= (rep_observed.IsDouble() || rep_required.IsDouble());
4217     if (use_double && !FLAG_trace_representation) {
4218       // Having seen one double is enough.
4219       break;
4220     }
4221     if (FLAG_trace_representation) {
4222       if (!rep_required.IsDouble() || rep_observed.IsDouble()) {
4223         PrintF("#%d %s is used by #%d %s as %s%s\n",
4224                id(), Mnemonic(), use->id(),
4225                use->Mnemonic(), rep_observed.Mnemonic(),
4226                (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
4227       } else {
4228         PrintF("#%d %s is required by #%d %s as %s%s\n",
4229                id(), Mnemonic(), use->id(),
4230                use->Mnemonic(), rep_required.Mnemonic(),
4231                (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
4232       }
4233     }
4234   }
4235   return use_double ? Representation::Double() : Representation::Integer32();
4236 }
4237
4238
4239 HInstruction* HPower::New(Zone* zone,
4240                           HValue* context,
4241                           HValue* left,
4242                           HValue* right) {
4243   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4244     HConstant* c_left = HConstant::cast(left);
4245     HConstant* c_right = HConstant::cast(right);
4246     if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
4247       double result = power_helper(c_left->DoubleValue(),
4248                                    c_right->DoubleValue());
4249       return H_CONSTANT_DOUBLE(std::isnan(result) ? base::OS::nan_value()
4250                                                   : result);
4251     }
4252   }
4253   return new(zone) HPower(left, right);
4254 }
4255
4256
4257 HInstruction* HMathMinMax::New(
4258     Zone* zone, HValue* context, HValue* left, HValue* right, Operation op) {
4259   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4260     HConstant* c_left = HConstant::cast(left);
4261     HConstant* c_right = HConstant::cast(right);
4262     if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
4263       double d_left = c_left->DoubleValue();
4264       double d_right = c_right->DoubleValue();
4265       if (op == kMathMin) {
4266         if (d_left > d_right) return H_CONSTANT_DOUBLE(d_right);
4267         if (d_left < d_right) return H_CONSTANT_DOUBLE(d_left);
4268         if (d_left == d_right) {
4269           // Handle +0 and -0.
4270           return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_left
4271                                                                  : d_right);
4272         }
4273       } else {
4274         if (d_left < d_right) return H_CONSTANT_DOUBLE(d_right);
4275         if (d_left > d_right) return H_CONSTANT_DOUBLE(d_left);
4276         if (d_left == d_right) {
4277           // Handle +0 and -0.
4278           return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_right
4279                                                                  : d_left);
4280         }
4281       }
4282       // All comparisons failed, must be NaN.
4283       return H_CONSTANT_DOUBLE(base::OS::nan_value());
4284     }
4285   }
4286   return new(zone) HMathMinMax(context, left, right, op);
4287 }
4288
4289
4290 HInstruction* HMod::New(Zone* zone,
4291                         HValue* context,
4292                         HValue* left,
4293                         HValue* right) {
4294   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4295     HConstant* c_left = HConstant::cast(left);
4296     HConstant* c_right = HConstant::cast(right);
4297     if (c_left->HasInteger32Value() && c_right->HasInteger32Value()) {
4298       int32_t dividend = c_left->Integer32Value();
4299       int32_t divisor = c_right->Integer32Value();
4300       if (dividend == kMinInt && divisor == -1) {
4301         return H_CONSTANT_DOUBLE(-0.0);
4302       }
4303       if (divisor != 0) {
4304         int32_t res = dividend % divisor;
4305         if ((res == 0) && (dividend < 0)) {
4306           return H_CONSTANT_DOUBLE(-0.0);
4307         }
4308         return H_CONSTANT_INT(res);
4309       }
4310     }
4311   }
4312   return new(zone) HMod(context, left, right);
4313 }
4314
4315
4316 HInstruction* HDiv::New(
4317     Zone* zone, HValue* context, HValue* left, HValue* right) {
4318   // If left and right are constant values, try to return a constant value.
4319   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4320     HConstant* c_left = HConstant::cast(left);
4321     HConstant* c_right = HConstant::cast(right);
4322     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
4323       if (c_right->DoubleValue() != 0) {
4324         double double_res = c_left->DoubleValue() / c_right->DoubleValue();
4325         if (IsInt32Double(double_res)) {
4326           return H_CONSTANT_INT(double_res);
4327         }
4328         return H_CONSTANT_DOUBLE(double_res);
4329       } else {
4330         int sign = Double(c_left->DoubleValue()).Sign() *
4331                    Double(c_right->DoubleValue()).Sign();  // Right could be -0.
4332         return H_CONSTANT_DOUBLE(sign * V8_INFINITY);
4333       }
4334     }
4335   }
4336   return new(zone) HDiv(context, left, right);
4337 }
4338
4339
4340 HInstruction* HBitwise::New(
4341     Zone* zone, HValue* context, Token::Value op, HValue* left, HValue* right) {
4342   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4343     HConstant* c_left = HConstant::cast(left);
4344     HConstant* c_right = HConstant::cast(right);
4345     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
4346       int32_t result;
4347       int32_t v_left = c_left->NumberValueAsInteger32();
4348       int32_t v_right = c_right->NumberValueAsInteger32();
4349       switch (op) {
4350         case Token::BIT_XOR:
4351           result = v_left ^ v_right;
4352           break;
4353         case Token::BIT_AND:
4354           result = v_left & v_right;
4355           break;
4356         case Token::BIT_OR:
4357           result = v_left | v_right;
4358           break;
4359         default:
4360           result = 0;  // Please the compiler.
4361           UNREACHABLE();
4362       }
4363       return H_CONSTANT_INT(result);
4364     }
4365   }
4366   return new(zone) HBitwise(context, op, left, right);
4367 }
4368
4369
4370 #define DEFINE_NEW_H_BITWISE_INSTR(HInstr, result)                             \
4371 HInstruction* HInstr::New(                                                     \
4372     Zone* zone, HValue* context, HValue* left, HValue* right) {                \
4373   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {      \
4374     HConstant* c_left = HConstant::cast(left);                                 \
4375     HConstant* c_right = HConstant::cast(right);                               \
4376     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {             \
4377       return H_CONSTANT_INT(result);                                           \
4378     }                                                                          \
4379   }                                                                            \
4380   return new(zone) HInstr(context, left, right);                               \
4381 }
4382
4383
4384 DEFINE_NEW_H_BITWISE_INSTR(HSar,
4385 c_left->NumberValueAsInteger32() >> (c_right->NumberValueAsInteger32() & 0x1f))
4386 DEFINE_NEW_H_BITWISE_INSTR(HShl,
4387 c_left->NumberValueAsInteger32() << (c_right->NumberValueAsInteger32() & 0x1f))
4388
4389 #undef DEFINE_NEW_H_BITWISE_INSTR
4390
4391
4392 HInstruction* HShr::New(
4393     Zone* zone, HValue* context, HValue* left, HValue* right) {
4394   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4395     HConstant* c_left = HConstant::cast(left);
4396     HConstant* c_right = HConstant::cast(right);
4397     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
4398       int32_t left_val = c_left->NumberValueAsInteger32();
4399       int32_t right_val = c_right->NumberValueAsInteger32() & 0x1f;
4400       if ((right_val == 0) && (left_val < 0)) {
4401         return H_CONSTANT_DOUBLE(static_cast<uint32_t>(left_val));
4402       }
4403       return H_CONSTANT_INT(static_cast<uint32_t>(left_val) >> right_val);
4404     }
4405   }
4406   return new(zone) HShr(context, left, right);
4407 }
4408
4409
4410 HInstruction* HSeqStringGetChar::New(Zone* zone,
4411                                      HValue* context,
4412                                      String::Encoding encoding,
4413                                      HValue* string,
4414                                      HValue* index) {
4415   if (FLAG_fold_constants && string->IsConstant() && index->IsConstant()) {
4416     HConstant* c_string = HConstant::cast(string);
4417     HConstant* c_index = HConstant::cast(index);
4418     if (c_string->HasStringValue() && c_index->HasInteger32Value()) {
4419       Handle<String> s = c_string->StringValue();
4420       int32_t i = c_index->Integer32Value();
4421       DCHECK_LE(0, i);
4422       DCHECK_LT(i, s->length());
4423       return H_CONSTANT_INT(s->Get(i));
4424     }
4425   }
4426   return new(zone) HSeqStringGetChar(encoding, string, index);
4427 }
4428
4429
4430 #undef H_CONSTANT_INT
4431 #undef H_CONSTANT_DOUBLE
4432
4433
4434 OStream& HBitwise::PrintDataTo(OStream& os) const {  // NOLINT
4435   os << Token::Name(op_) << " ";
4436   return HBitwiseBinaryOperation::PrintDataTo(os);
4437 }
4438
4439
4440 void HPhi::SimplifyConstantInputs() {
4441   // Convert constant inputs to integers when all uses are truncating.
4442   // This must happen before representation inference takes place.
4443   if (!CheckUsesForFlag(kTruncatingToInt32)) return;
4444   for (int i = 0; i < OperandCount(); ++i) {
4445     if (!OperandAt(i)->IsConstant()) return;
4446   }
4447   HGraph* graph = block()->graph();
4448   for (int i = 0; i < OperandCount(); ++i) {
4449     HConstant* operand = HConstant::cast(OperandAt(i));
4450     if (operand->HasInteger32Value()) {
4451       continue;
4452     } else if (operand->HasDoubleValue()) {
4453       HConstant* integer_input =
4454           HConstant::New(graph->zone(), graph->GetInvalidContext(),
4455                          DoubleToInt32(operand->DoubleValue()));
4456       integer_input->InsertAfter(operand);
4457       SetOperandAt(i, integer_input);
4458     } else if (operand->HasBooleanValue()) {
4459       SetOperandAt(i, operand->BooleanValue() ? graph->GetConstant1()
4460                                               : graph->GetConstant0());
4461     } else if (operand->ImmortalImmovable()) {
4462       SetOperandAt(i, graph->GetConstant0());
4463     }
4464   }
4465   // Overwrite observed input representations because they are likely Tagged.
4466   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
4467     HValue* use = it.value();
4468     if (use->IsBinaryOperation()) {
4469       HBinaryOperation::cast(use)->set_observed_input_representation(
4470           it.index(), Representation::Smi());
4471     }
4472   }
4473 }
4474
4475
4476 void HPhi::InferRepresentation(HInferRepresentationPhase* h_infer) {
4477   DCHECK(CheckFlag(kFlexibleRepresentation));
4478   Representation new_rep = RepresentationFromInputs();
4479   UpdateRepresentation(new_rep, h_infer, "inputs");
4480   new_rep = RepresentationFromUses();
4481   UpdateRepresentation(new_rep, h_infer, "uses");
4482   new_rep = RepresentationFromUseRequirements();
4483   UpdateRepresentation(new_rep, h_infer, "use requirements");
4484 }
4485
4486
4487 Representation HPhi::RepresentationFromInputs() {
4488   Representation r = Representation::None();
4489   for (int i = 0; i < OperandCount(); ++i) {
4490     r = r.generalize(OperandAt(i)->KnownOptimalRepresentation());
4491   }
4492   return r;
4493 }
4494
4495
4496 // Returns a representation if all uses agree on the same representation.
4497 // Integer32 is also returned when some uses are Smi but others are Integer32.
4498 Representation HValue::RepresentationFromUseRequirements() {
4499   Representation rep = Representation::None();
4500   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
4501     // Ignore the use requirement from never run code
4502     if (it.value()->block()->IsUnreachable()) continue;
4503
4504     // We check for observed_input_representation elsewhere.
4505     Representation use_rep =
4506         it.value()->RequiredInputRepresentation(it.index());
4507     if (rep.IsNone()) {
4508       rep = use_rep;
4509       continue;
4510     }
4511     if (use_rep.IsNone() || rep.Equals(use_rep)) continue;
4512     if (rep.generalize(use_rep).IsInteger32()) {
4513       rep = Representation::Integer32();
4514       continue;
4515     }
4516     return Representation::None();
4517   }
4518   return rep;
4519 }
4520
4521
4522 bool HValue::HasNonSmiUse() {
4523   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
4524     // We check for observed_input_representation elsewhere.
4525     Representation use_rep =
4526         it.value()->RequiredInputRepresentation(it.index());
4527     if (!use_rep.IsNone() &&
4528         !use_rep.IsSmi() &&
4529         !use_rep.IsTagged()) {
4530       return true;
4531     }
4532   }
4533   return false;
4534 }
4535
4536
4537 // Node-specific verification code is only included in debug mode.
4538 #ifdef DEBUG
4539
4540 void HPhi::Verify() {
4541   DCHECK(OperandCount() == block()->predecessors()->length());
4542   for (int i = 0; i < OperandCount(); ++i) {
4543     HValue* value = OperandAt(i);
4544     HBasicBlock* defining_block = value->block();
4545     HBasicBlock* predecessor_block = block()->predecessors()->at(i);
4546     DCHECK(defining_block == predecessor_block ||
4547            defining_block->Dominates(predecessor_block));
4548   }
4549 }
4550
4551
4552 void HSimulate::Verify() {
4553   HInstruction::Verify();
4554   DCHECK(HasAstId() || next()->IsEnterInlined());
4555 }
4556
4557
4558 void HCheckHeapObject::Verify() {
4559   HInstruction::Verify();
4560   DCHECK(HasNoUses());
4561 }
4562
4563
4564 void HCheckValue::Verify() {
4565   HInstruction::Verify();
4566   DCHECK(HasNoUses());
4567 }
4568
4569 #endif
4570
4571
4572 HObjectAccess HObjectAccess::ForFixedArrayHeader(int offset) {
4573   DCHECK(offset >= 0);
4574   DCHECK(offset < FixedArray::kHeaderSize);
4575   if (offset == FixedArray::kLengthOffset) return ForFixedArrayLength();
4576   return HObjectAccess(kInobject, offset);
4577 }
4578
4579
4580 HObjectAccess HObjectAccess::ForMapAndOffset(Handle<Map> map, int offset,
4581     Representation representation) {
4582   DCHECK(offset >= 0);
4583   Portion portion = kInobject;
4584
4585   if (offset == JSObject::kElementsOffset) {
4586     portion = kElementsPointer;
4587   } else if (offset == JSObject::kMapOffset) {
4588     portion = kMaps;
4589   }
4590   bool existing_inobject_property = true;
4591   if (!map.is_null()) {
4592     existing_inobject_property = (offset <
4593         map->instance_size() - map->unused_property_fields() * kPointerSize);
4594   }
4595   return HObjectAccess(portion, offset, representation, Handle<String>::null(),
4596                        false, existing_inobject_property);
4597 }
4598
4599
4600 HObjectAccess HObjectAccess::ForAllocationSiteOffset(int offset) {
4601   switch (offset) {
4602     case AllocationSite::kTransitionInfoOffset:
4603       return HObjectAccess(kInobject, offset, Representation::Tagged());
4604     case AllocationSite::kNestedSiteOffset:
4605       return HObjectAccess(kInobject, offset, Representation::Tagged());
4606     case AllocationSite::kPretenureDataOffset:
4607       return HObjectAccess(kInobject, offset, Representation::Smi());
4608     case AllocationSite::kPretenureCreateCountOffset:
4609       return HObjectAccess(kInobject, offset, Representation::Smi());
4610     case AllocationSite::kDependentCodeOffset:
4611       return HObjectAccess(kInobject, offset, Representation::Tagged());
4612     case AllocationSite::kWeakNextOffset:
4613       return HObjectAccess(kInobject, offset, Representation::Tagged());
4614     default:
4615       UNREACHABLE();
4616   }
4617   return HObjectAccess(kInobject, offset);
4618 }
4619
4620
4621 HObjectAccess HObjectAccess::ForContextSlot(int index) {
4622   DCHECK(index >= 0);
4623   Portion portion = kInobject;
4624   int offset = Context::kHeaderSize + index * kPointerSize;
4625   DCHECK_EQ(offset, Context::SlotOffset(index) + kHeapObjectTag);
4626   return HObjectAccess(portion, offset, Representation::Tagged());
4627 }
4628
4629
4630 HObjectAccess HObjectAccess::ForJSArrayOffset(int offset) {
4631   DCHECK(offset >= 0);
4632   Portion portion = kInobject;
4633
4634   if (offset == JSObject::kElementsOffset) {
4635     portion = kElementsPointer;
4636   } else if (offset == JSArray::kLengthOffset) {
4637     portion = kArrayLengths;
4638   } else if (offset == JSObject::kMapOffset) {
4639     portion = kMaps;
4640   }
4641   return HObjectAccess(portion, offset);
4642 }
4643
4644
4645 HObjectAccess HObjectAccess::ForBackingStoreOffset(int offset,
4646     Representation representation) {
4647   DCHECK(offset >= 0);
4648   return HObjectAccess(kBackingStore, offset, representation,
4649                        Handle<String>::null(), false, false);
4650 }
4651
4652
4653 HObjectAccess HObjectAccess::ForField(Handle<Map> map, int index,
4654                                       Representation representation,
4655                                       Handle<String> name) {
4656   if (index < 0) {
4657     // Negative property indices are in-object properties, indexed
4658     // from the end of the fixed part of the object.
4659     int offset = (index * kPointerSize) + map->instance_size();
4660     return HObjectAccess(kInobject, offset, representation, name, false, true);
4661   } else {
4662     // Non-negative property indices are in the properties array.
4663     int offset = (index * kPointerSize) + FixedArray::kHeaderSize;
4664     return HObjectAccess(kBackingStore, offset, representation, name,
4665                          false, false);
4666   }
4667 }
4668
4669
4670 HObjectAccess HObjectAccess::ForCellPayload(Isolate* isolate) {
4671   return HObjectAccess(kInobject, Cell::kValueOffset, Representation::Tagged(),
4672                        isolate->factory()->cell_value_string());
4673 }
4674
4675
4676 void HObjectAccess::SetGVNFlags(HValue *instr, PropertyAccessType access_type) {
4677   // set the appropriate GVN flags for a given load or store instruction
4678   if (access_type == STORE) {
4679     // track dominating allocations in order to eliminate write barriers
4680     instr->SetDependsOnFlag(::v8::internal::kNewSpacePromotion);
4681     instr->SetFlag(HValue::kTrackSideEffectDominators);
4682   } else {
4683     // try to GVN loads, but don't hoist above map changes
4684     instr->SetFlag(HValue::kUseGVN);
4685     instr->SetDependsOnFlag(::v8::internal::kMaps);
4686   }
4687
4688   switch (portion()) {
4689     case kArrayLengths:
4690       if (access_type == STORE) {
4691         instr->SetChangesFlag(::v8::internal::kArrayLengths);
4692       } else {
4693         instr->SetDependsOnFlag(::v8::internal::kArrayLengths);
4694       }
4695       break;
4696     case kStringLengths:
4697       if (access_type == STORE) {
4698         instr->SetChangesFlag(::v8::internal::kStringLengths);
4699       } else {
4700         instr->SetDependsOnFlag(::v8::internal::kStringLengths);
4701       }
4702       break;
4703     case kInobject:
4704       if (access_type == STORE) {
4705         instr->SetChangesFlag(::v8::internal::kInobjectFields);
4706       } else {
4707         instr->SetDependsOnFlag(::v8::internal::kInobjectFields);
4708       }
4709       break;
4710     case kDouble:
4711       if (access_type == STORE) {
4712         instr->SetChangesFlag(::v8::internal::kDoubleFields);
4713       } else {
4714         instr->SetDependsOnFlag(::v8::internal::kDoubleFields);
4715       }
4716       break;
4717     case kBackingStore:
4718       if (access_type == STORE) {
4719         instr->SetChangesFlag(::v8::internal::kBackingStoreFields);
4720       } else {
4721         instr->SetDependsOnFlag(::v8::internal::kBackingStoreFields);
4722       }
4723       break;
4724     case kElementsPointer:
4725       if (access_type == STORE) {
4726         instr->SetChangesFlag(::v8::internal::kElementsPointer);
4727       } else {
4728         instr->SetDependsOnFlag(::v8::internal::kElementsPointer);
4729       }
4730       break;
4731     case kMaps:
4732       if (access_type == STORE) {
4733         instr->SetChangesFlag(::v8::internal::kMaps);
4734       } else {
4735         instr->SetDependsOnFlag(::v8::internal::kMaps);
4736       }
4737       break;
4738     case kExternalMemory:
4739       if (access_type == STORE) {
4740         instr->SetChangesFlag(::v8::internal::kExternalMemory);
4741       } else {
4742         instr->SetDependsOnFlag(::v8::internal::kExternalMemory);
4743       }
4744       break;
4745   }
4746 }
4747
4748
4749 OStream& operator<<(OStream& os, const HObjectAccess& access) {
4750   os << ".";
4751
4752   switch (access.portion()) {
4753     case HObjectAccess::kArrayLengths:
4754     case HObjectAccess::kStringLengths:
4755       os << "%length";
4756       break;
4757     case HObjectAccess::kElementsPointer:
4758       os << "%elements";
4759       break;
4760     case HObjectAccess::kMaps:
4761       os << "%map";
4762       break;
4763     case HObjectAccess::kDouble:  // fall through
4764     case HObjectAccess::kInobject:
4765       if (!access.name().is_null()) {
4766         os << Handle<String>::cast(access.name())->ToCString().get();
4767       }
4768       os << "[in-object]";
4769       break;
4770     case HObjectAccess::kBackingStore:
4771       if (!access.name().is_null()) {
4772         os << Handle<String>::cast(access.name())->ToCString().get();
4773       }
4774       os << "[backing-store]";
4775       break;
4776     case HObjectAccess::kExternalMemory:
4777       os << "[external-memory]";
4778       break;
4779   }
4780
4781   return os << "@" << access.offset();
4782 }
4783
4784 } }  // namespace v8::internal