Upstream version 7.36.149.0
[platform/framework/web/crosswalk.git] / src / v8 / src / gdb-jit.cc
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifdef ENABLE_GDB_JIT_INTERFACE
6 #include "v8.h"
7 #include "gdb-jit.h"
8
9 #include "bootstrapper.h"
10 #include "compiler.h"
11 #include "frames.h"
12 #include "frames-inl.h"
13 #include "global-handles.h"
14 #include "messages.h"
15 #include "natives.h"
16 #include "platform.h"
17 #include "scopes.h"
18
19 namespace v8 {
20 namespace internal {
21
22 #ifdef __APPLE__
23 #define __MACH_O
24 class MachO;
25 class MachOSection;
26 typedef MachO DebugObject;
27 typedef MachOSection DebugSection;
28 #else
29 #define __ELF
30 class ELF;
31 class ELFSection;
32 typedef ELF DebugObject;
33 typedef ELFSection DebugSection;
34 #endif
35
36 class Writer BASE_EMBEDDED {
37  public:
38   explicit Writer(DebugObject* debug_object)
39       : debug_object_(debug_object),
40         position_(0),
41         capacity_(1024),
42         buffer_(reinterpret_cast<byte*>(malloc(capacity_))) {
43   }
44
45   ~Writer() {
46     free(buffer_);
47   }
48
49   uintptr_t position() const {
50     return position_;
51   }
52
53   template<typename T>
54   class Slot {
55    public:
56     Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) { }
57
58     T* operator-> () {
59       return w_->RawSlotAt<T>(offset_);
60     }
61
62     void set(const T& value) {
63       *w_->RawSlotAt<T>(offset_) = value;
64     }
65
66     Slot<T> at(int i) {
67       return Slot<T>(w_, offset_ + sizeof(T) * i);
68     }
69
70    private:
71     Writer* w_;
72     uintptr_t offset_;
73   };
74
75   template<typename T>
76   void Write(const T& val) {
77     Ensure(position_ + sizeof(T));
78     *RawSlotAt<T>(position_) = val;
79     position_ += sizeof(T);
80   }
81
82   template<typename T>
83   Slot<T> SlotAt(uintptr_t offset) {
84     Ensure(offset + sizeof(T));
85     return Slot<T>(this, offset);
86   }
87
88   template<typename T>
89   Slot<T> CreateSlotHere() {
90     return CreateSlotsHere<T>(1);
91   }
92
93   template<typename T>
94   Slot<T> CreateSlotsHere(uint32_t count) {
95     uintptr_t slot_position = position_;
96     position_ += sizeof(T) * count;
97     Ensure(position_);
98     return SlotAt<T>(slot_position);
99   }
100
101   void Ensure(uintptr_t pos) {
102     if (capacity_ < pos) {
103       while (capacity_ < pos) capacity_ *= 2;
104       buffer_ = reinterpret_cast<byte*>(realloc(buffer_, capacity_));
105     }
106   }
107
108   DebugObject* debug_object() { return debug_object_; }
109
110   byte* buffer() { return buffer_; }
111
112   void Align(uintptr_t align) {
113     uintptr_t delta = position_ % align;
114     if (delta == 0) return;
115     uintptr_t padding = align - delta;
116     Ensure(position_ += padding);
117     ASSERT((position_ % align) == 0);
118   }
119
120   void WriteULEB128(uintptr_t value) {
121     do {
122       uint8_t byte = value & 0x7F;
123       value >>= 7;
124       if (value != 0) byte |= 0x80;
125       Write<uint8_t>(byte);
126     } while (value != 0);
127   }
128
129   void WriteSLEB128(intptr_t value) {
130     bool more = true;
131     while (more) {
132       int8_t byte = value & 0x7F;
133       bool byte_sign = byte & 0x40;
134       value >>= 7;
135
136       if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) {
137         more = false;
138       } else {
139         byte |= 0x80;
140       }
141
142       Write<int8_t>(byte);
143     }
144   }
145
146   void WriteString(const char* str) {
147     do {
148       Write<char>(*str);
149     } while (*str++);
150   }
151
152  private:
153   template<typename T> friend class Slot;
154
155   template<typename T>
156   T* RawSlotAt(uintptr_t offset) {
157     ASSERT(offset < capacity_ && offset + sizeof(T) <= capacity_);
158     return reinterpret_cast<T*>(&buffer_[offset]);
159   }
160
161   DebugObject* debug_object_;
162   uintptr_t position_;
163   uintptr_t capacity_;
164   byte* buffer_;
165 };
166
167 class ELFStringTable;
168
169 template<typename THeader>
170 class DebugSectionBase : public ZoneObject {
171  public:
172   virtual ~DebugSectionBase() { }
173
174   virtual void WriteBody(Writer::Slot<THeader> header, Writer* writer) {
175     uintptr_t start = writer->position();
176     if (WriteBodyInternal(writer)) {
177       uintptr_t end = writer->position();
178       header->offset = start;
179 #if defined(__MACH_O)
180       header->addr = 0;
181 #endif
182       header->size = end - start;
183     }
184   }
185
186   virtual bool WriteBodyInternal(Writer* writer) {
187     return false;
188   }
189
190   typedef THeader Header;
191 };
192
193
194 struct MachOSectionHeader {
195   char sectname[16];
196   char segname[16];
197 #if V8_TARGET_ARCH_IA32
198   uint32_t addr;
199   uint32_t size;
200 #else
201   uint64_t addr;
202   uint64_t size;
203 #endif
204   uint32_t offset;
205   uint32_t align;
206   uint32_t reloff;
207   uint32_t nreloc;
208   uint32_t flags;
209   uint32_t reserved1;
210   uint32_t reserved2;
211 };
212
213
214 class MachOSection : public DebugSectionBase<MachOSectionHeader> {
215  public:
216   enum Type {
217     S_REGULAR = 0x0u,
218     S_ATTR_COALESCED = 0xbu,
219     S_ATTR_SOME_INSTRUCTIONS = 0x400u,
220     S_ATTR_DEBUG = 0x02000000u,
221     S_ATTR_PURE_INSTRUCTIONS = 0x80000000u
222   };
223
224   MachOSection(const char* name,
225                const char* segment,
226                uintptr_t align,
227                uint32_t flags)
228     : name_(name),
229       segment_(segment),
230       align_(align),
231       flags_(flags) {
232     if (align_ != 0) {
233       ASSERT(IsPowerOf2(align));
234       align_ = WhichPowerOf2(align_);
235     }
236   }
237
238   virtual ~MachOSection() { }
239
240   virtual void PopulateHeader(Writer::Slot<Header> header) {
241     header->addr = 0;
242     header->size = 0;
243     header->offset = 0;
244     header->align = align_;
245     header->reloff = 0;
246     header->nreloc = 0;
247     header->flags = flags_;
248     header->reserved1 = 0;
249     header->reserved2 = 0;
250     memset(header->sectname, 0, sizeof(header->sectname));
251     memset(header->segname, 0, sizeof(header->segname));
252     ASSERT(strlen(name_) < sizeof(header->sectname));
253     ASSERT(strlen(segment_) < sizeof(header->segname));
254     strncpy(header->sectname, name_, sizeof(header->sectname));
255     strncpy(header->segname, segment_, sizeof(header->segname));
256   }
257
258  private:
259   const char* name_;
260   const char* segment_;
261   uintptr_t align_;
262   uint32_t flags_;
263 };
264
265
266 struct ELFSectionHeader {
267   uint32_t name;
268   uint32_t type;
269   uintptr_t flags;
270   uintptr_t address;
271   uintptr_t offset;
272   uintptr_t size;
273   uint32_t link;
274   uint32_t info;
275   uintptr_t alignment;
276   uintptr_t entry_size;
277 };
278
279
280 #if defined(__ELF)
281 class ELFSection : public DebugSectionBase<ELFSectionHeader> {
282  public:
283   enum Type {
284     TYPE_NULL = 0,
285     TYPE_PROGBITS = 1,
286     TYPE_SYMTAB = 2,
287     TYPE_STRTAB = 3,
288     TYPE_RELA = 4,
289     TYPE_HASH = 5,
290     TYPE_DYNAMIC = 6,
291     TYPE_NOTE = 7,
292     TYPE_NOBITS = 8,
293     TYPE_REL = 9,
294     TYPE_SHLIB = 10,
295     TYPE_DYNSYM = 11,
296     TYPE_LOPROC = 0x70000000,
297     TYPE_X86_64_UNWIND = 0x70000001,
298     TYPE_HIPROC = 0x7fffffff,
299     TYPE_LOUSER = 0x80000000,
300     TYPE_HIUSER = 0xffffffff
301   };
302
303   enum Flags {
304     FLAG_WRITE = 1,
305     FLAG_ALLOC = 2,
306     FLAG_EXEC = 4
307   };
308
309   enum SpecialIndexes {
310     INDEX_ABSOLUTE = 0xfff1
311   };
312
313   ELFSection(const char* name, Type type, uintptr_t align)
314       : name_(name), type_(type), align_(align) { }
315
316   virtual ~ELFSection() { }
317
318   void PopulateHeader(Writer::Slot<Header> header, ELFStringTable* strtab);
319
320   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
321     uintptr_t start = w->position();
322     if (WriteBodyInternal(w)) {
323       uintptr_t end = w->position();
324       header->offset = start;
325       header->size = end - start;
326     }
327   }
328
329   virtual bool WriteBodyInternal(Writer* w) {
330     return false;
331   }
332
333   uint16_t index() const { return index_; }
334   void set_index(uint16_t index) { index_ = index; }
335
336  protected:
337   virtual void PopulateHeader(Writer::Slot<Header> header) {
338     header->flags = 0;
339     header->address = 0;
340     header->offset = 0;
341     header->size = 0;
342     header->link = 0;
343     header->info = 0;
344     header->entry_size = 0;
345   }
346
347  private:
348   const char* name_;
349   Type type_;
350   uintptr_t align_;
351   uint16_t index_;
352 };
353 #endif  // defined(__ELF)
354
355
356 #if defined(__MACH_O)
357 class MachOTextSection : public MachOSection {
358  public:
359   MachOTextSection(uintptr_t align,
360                    uintptr_t addr,
361                    uintptr_t size)
362       : MachOSection("__text",
363                      "__TEXT",
364                      align,
365                      MachOSection::S_REGULAR |
366                          MachOSection::S_ATTR_SOME_INSTRUCTIONS |
367                          MachOSection::S_ATTR_PURE_INSTRUCTIONS),
368         addr_(addr),
369         size_(size) { }
370
371  protected:
372   virtual void PopulateHeader(Writer::Slot<Header> header) {
373     MachOSection::PopulateHeader(header);
374     header->addr = addr_;
375     header->size = size_;
376   }
377
378  private:
379   uintptr_t addr_;
380   uintptr_t size_;
381 };
382 #endif  // defined(__MACH_O)
383
384
385 #if defined(__ELF)
386 class FullHeaderELFSection : public ELFSection {
387  public:
388   FullHeaderELFSection(const char* name,
389                        Type type,
390                        uintptr_t align,
391                        uintptr_t addr,
392                        uintptr_t offset,
393                        uintptr_t size,
394                        uintptr_t flags)
395       : ELFSection(name, type, align),
396         addr_(addr),
397         offset_(offset),
398         size_(size),
399         flags_(flags) { }
400
401  protected:
402   virtual void PopulateHeader(Writer::Slot<Header> header) {
403     ELFSection::PopulateHeader(header);
404     header->address = addr_;
405     header->offset = offset_;
406     header->size = size_;
407     header->flags = flags_;
408   }
409
410  private:
411   uintptr_t addr_;
412   uintptr_t offset_;
413   uintptr_t size_;
414   uintptr_t flags_;
415 };
416
417
418 class ELFStringTable : public ELFSection {
419  public:
420   explicit ELFStringTable(const char* name)
421       : ELFSection(name, TYPE_STRTAB, 1), writer_(NULL), offset_(0), size_(0) {
422   }
423
424   uintptr_t Add(const char* str) {
425     if (*str == '\0') return 0;
426
427     uintptr_t offset = size_;
428     WriteString(str);
429     return offset;
430   }
431
432   void AttachWriter(Writer* w) {
433     writer_ = w;
434     offset_ = writer_->position();
435
436     // First entry in the string table should be an empty string.
437     WriteString("");
438   }
439
440   void DetachWriter() {
441     writer_ = NULL;
442   }
443
444   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
445     ASSERT(writer_ == NULL);
446     header->offset = offset_;
447     header->size = size_;
448   }
449
450  private:
451   void WriteString(const char* str) {
452     uintptr_t written = 0;
453     do {
454       writer_->Write(*str);
455       written++;
456     } while (*str++);
457     size_ += written;
458   }
459
460   Writer* writer_;
461
462   uintptr_t offset_;
463   uintptr_t size_;
464 };
465
466
467 void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header,
468                                 ELFStringTable* strtab) {
469   header->name = strtab->Add(name_);
470   header->type = type_;
471   header->alignment = align_;
472   PopulateHeader(header);
473 }
474 #endif  // defined(__ELF)
475
476
477 #if defined(__MACH_O)
478 class MachO BASE_EMBEDDED {
479  public:
480   explicit MachO(Zone* zone) : zone_(zone), sections_(6, zone) { }
481
482   uint32_t AddSection(MachOSection* section) {
483     sections_.Add(section, zone_);
484     return sections_.length() - 1;
485   }
486
487   void Write(Writer* w, uintptr_t code_start, uintptr_t code_size) {
488     Writer::Slot<MachOHeader> header = WriteHeader(w);
489     uintptr_t load_command_start = w->position();
490     Writer::Slot<MachOSegmentCommand> cmd = WriteSegmentCommand(w,
491                                                                 code_start,
492                                                                 code_size);
493     WriteSections(w, cmd, header, load_command_start);
494   }
495
496  private:
497   struct MachOHeader {
498     uint32_t magic;
499     uint32_t cputype;
500     uint32_t cpusubtype;
501     uint32_t filetype;
502     uint32_t ncmds;
503     uint32_t sizeofcmds;
504     uint32_t flags;
505 #if V8_TARGET_ARCH_X64
506     uint32_t reserved;
507 #endif
508   };
509
510   struct MachOSegmentCommand {
511     uint32_t cmd;
512     uint32_t cmdsize;
513     char segname[16];
514 #if V8_TARGET_ARCH_IA32
515     uint32_t vmaddr;
516     uint32_t vmsize;
517     uint32_t fileoff;
518     uint32_t filesize;
519 #else
520     uint64_t vmaddr;
521     uint64_t vmsize;
522     uint64_t fileoff;
523     uint64_t filesize;
524 #endif
525     uint32_t maxprot;
526     uint32_t initprot;
527     uint32_t nsects;
528     uint32_t flags;
529   };
530
531   enum MachOLoadCommandCmd {
532     LC_SEGMENT_32 = 0x00000001u,
533     LC_SEGMENT_64 = 0x00000019u
534   };
535
536
537   Writer::Slot<MachOHeader> WriteHeader(Writer* w) {
538     ASSERT(w->position() == 0);
539     Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>();
540 #if V8_TARGET_ARCH_IA32
541     header->magic = 0xFEEDFACEu;
542     header->cputype = 7;  // i386
543     header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
544 #elif V8_TARGET_ARCH_X64
545     header->magic = 0xFEEDFACFu;
546     header->cputype = 7 | 0x01000000;  // i386 | 64-bit ABI
547     header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
548     header->reserved = 0;
549 #else
550 #error Unsupported target architecture.
551 #endif
552     header->filetype = 0x1;  // MH_OBJECT
553     header->ncmds = 1;
554     header->sizeofcmds = 0;
555     header->flags = 0;
556     return header;
557   }
558
559
560   Writer::Slot<MachOSegmentCommand> WriteSegmentCommand(Writer* w,
561                                                         uintptr_t code_start,
562                                                         uintptr_t code_size) {
563     Writer::Slot<MachOSegmentCommand> cmd =
564         w->CreateSlotHere<MachOSegmentCommand>();
565 #if V8_TARGET_ARCH_IA32
566     cmd->cmd = LC_SEGMENT_32;
567 #else
568     cmd->cmd = LC_SEGMENT_64;
569 #endif
570     cmd->vmaddr = code_start;
571     cmd->vmsize = code_size;
572     cmd->fileoff = 0;
573     cmd->filesize = 0;
574     cmd->maxprot = 7;
575     cmd->initprot = 7;
576     cmd->flags = 0;
577     cmd->nsects = sections_.length();
578     memset(cmd->segname, 0, 16);
579     cmd->cmdsize = sizeof(MachOSegmentCommand) + sizeof(MachOSection::Header) *
580         cmd->nsects;
581     return cmd;
582   }
583
584
585   void WriteSections(Writer* w,
586                      Writer::Slot<MachOSegmentCommand> cmd,
587                      Writer::Slot<MachOHeader> header,
588                      uintptr_t load_command_start) {
589     Writer::Slot<MachOSection::Header> headers =
590         w->CreateSlotsHere<MachOSection::Header>(sections_.length());
591     cmd->fileoff = w->position();
592     header->sizeofcmds = w->position() - load_command_start;
593     for (int section = 0; section < sections_.length(); ++section) {
594       sections_[section]->PopulateHeader(headers.at(section));
595       sections_[section]->WriteBody(headers.at(section), w);
596     }
597     cmd->filesize = w->position() - (uintptr_t)cmd->fileoff;
598   }
599
600   Zone* zone_;
601   ZoneList<MachOSection*> sections_;
602 };
603 #endif  // defined(__MACH_O)
604
605
606 #if defined(__ELF)
607 class ELF BASE_EMBEDDED {
608  public:
609   explicit ELF(Zone* zone) : zone_(zone), sections_(6, zone) {
610     sections_.Add(new(zone) ELFSection("", ELFSection::TYPE_NULL, 0), zone);
611     sections_.Add(new(zone) ELFStringTable(".shstrtab"), zone);
612   }
613
614   void Write(Writer* w) {
615     WriteHeader(w);
616     WriteSectionTable(w);
617     WriteSections(w);
618   }
619
620   ELFSection* SectionAt(uint32_t index) {
621     return sections_[index];
622   }
623
624   uint32_t AddSection(ELFSection* section) {
625     sections_.Add(section, zone_);
626     section->set_index(sections_.length() - 1);
627     return sections_.length() - 1;
628   }
629
630  private:
631   struct ELFHeader {
632     uint8_t ident[16];
633     uint16_t type;
634     uint16_t machine;
635     uint32_t version;
636     uintptr_t entry;
637     uintptr_t pht_offset;
638     uintptr_t sht_offset;
639     uint32_t flags;
640     uint16_t header_size;
641     uint16_t pht_entry_size;
642     uint16_t pht_entry_num;
643     uint16_t sht_entry_size;
644     uint16_t sht_entry_num;
645     uint16_t sht_strtab_index;
646   };
647
648
649   void WriteHeader(Writer* w) {
650     ASSERT(w->position() == 0);
651     Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>();
652 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM
653     const uint8_t ident[16] =
654         { 0x7f, 'E', 'L', 'F', 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
655 #elif V8_TARGET_ARCH_X64
656     const uint8_t ident[16] =
657         { 0x7f, 'E', 'L', 'F', 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
658 #else
659 #error Unsupported target architecture.
660 #endif
661     OS::MemCopy(header->ident, ident, 16);
662     header->type = 1;
663 #if V8_TARGET_ARCH_IA32
664     header->machine = 3;
665 #elif V8_TARGET_ARCH_X64
666     // Processor identification value for x64 is 62 as defined in
667     //    System V ABI, AMD64 Supplement
668     //    http://www.x86-64.org/documentation/abi.pdf
669     header->machine = 62;
670 #elif V8_TARGET_ARCH_ARM
671     // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at
672     // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf
673     header->machine = 40;
674 #else
675 #error Unsupported target architecture.
676 #endif
677     header->version = 1;
678     header->entry = 0;
679     header->pht_offset = 0;
680     header->sht_offset = sizeof(ELFHeader);  // Section table follows header.
681     header->flags = 0;
682     header->header_size = sizeof(ELFHeader);
683     header->pht_entry_size = 0;
684     header->pht_entry_num = 0;
685     header->sht_entry_size = sizeof(ELFSection::Header);
686     header->sht_entry_num = sections_.length();
687     header->sht_strtab_index = 1;
688   }
689
690   void WriteSectionTable(Writer* w) {
691     // Section headers table immediately follows file header.
692     ASSERT(w->position() == sizeof(ELFHeader));
693
694     Writer::Slot<ELFSection::Header> headers =
695         w->CreateSlotsHere<ELFSection::Header>(sections_.length());
696
697     // String table for section table is the first section.
698     ELFStringTable* strtab = static_cast<ELFStringTable*>(SectionAt(1));
699     strtab->AttachWriter(w);
700     for (int i = 0, length = sections_.length();
701          i < length;
702          i++) {
703       sections_[i]->PopulateHeader(headers.at(i), strtab);
704     }
705     strtab->DetachWriter();
706   }
707
708   int SectionHeaderPosition(uint32_t section_index) {
709     return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index;
710   }
711
712   void WriteSections(Writer* w) {
713     Writer::Slot<ELFSection::Header> headers =
714         w->SlotAt<ELFSection::Header>(sizeof(ELFHeader));
715
716     for (int i = 0, length = sections_.length();
717          i < length;
718          i++) {
719       sections_[i]->WriteBody(headers.at(i), w);
720     }
721   }
722
723   Zone* zone_;
724   ZoneList<ELFSection*> sections_;
725 };
726
727
728 class ELFSymbol BASE_EMBEDDED {
729  public:
730   enum Type {
731     TYPE_NOTYPE = 0,
732     TYPE_OBJECT = 1,
733     TYPE_FUNC = 2,
734     TYPE_SECTION = 3,
735     TYPE_FILE = 4,
736     TYPE_LOPROC = 13,
737     TYPE_HIPROC = 15
738   };
739
740   enum Binding {
741     BIND_LOCAL = 0,
742     BIND_GLOBAL = 1,
743     BIND_WEAK = 2,
744     BIND_LOPROC = 13,
745     BIND_HIPROC = 15
746   };
747
748   ELFSymbol(const char* name,
749             uintptr_t value,
750             uintptr_t size,
751             Binding binding,
752             Type type,
753             uint16_t section)
754       : name(name),
755         value(value),
756         size(size),
757         info((binding << 4) | type),
758         other(0),
759         section(section) {
760   }
761
762   Binding binding() const {
763     return static_cast<Binding>(info >> 4);
764   }
765 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM
766   struct SerializedLayout {
767     SerializedLayout(uint32_t name,
768                      uintptr_t value,
769                      uintptr_t size,
770                      Binding binding,
771                      Type type,
772                      uint16_t section)
773         : name(name),
774           value(value),
775           size(size),
776           info((binding << 4) | type),
777           other(0),
778           section(section) {
779     }
780
781     uint32_t name;
782     uintptr_t value;
783     uintptr_t size;
784     uint8_t info;
785     uint8_t other;
786     uint16_t section;
787   };
788 #elif V8_TARGET_ARCH_X64
789   struct SerializedLayout {
790     SerializedLayout(uint32_t name,
791                      uintptr_t value,
792                      uintptr_t size,
793                      Binding binding,
794                      Type type,
795                      uint16_t section)
796         : name(name),
797           info((binding << 4) | type),
798           other(0),
799           section(section),
800           value(value),
801           size(size) {
802     }
803
804     uint32_t name;
805     uint8_t info;
806     uint8_t other;
807     uint16_t section;
808     uintptr_t value;
809     uintptr_t size;
810   };
811 #endif
812
813   void Write(Writer::Slot<SerializedLayout> s, ELFStringTable* t) {
814     // Convert symbol names from strings to indexes in the string table.
815     s->name = t->Add(name);
816     s->value = value;
817     s->size = size;
818     s->info = info;
819     s->other = other;
820     s->section = section;
821   }
822
823  private:
824   const char* name;
825   uintptr_t value;
826   uintptr_t size;
827   uint8_t info;
828   uint8_t other;
829   uint16_t section;
830 };
831
832
833 class ELFSymbolTable : public ELFSection {
834  public:
835   ELFSymbolTable(const char* name, Zone* zone)
836       : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)),
837         locals_(1, zone),
838         globals_(1, zone) {
839   }
840
841   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
842     w->Align(header->alignment);
843     int total_symbols = locals_.length() + globals_.length() + 1;
844     header->offset = w->position();
845
846     Writer::Slot<ELFSymbol::SerializedLayout> symbols =
847         w->CreateSlotsHere<ELFSymbol::SerializedLayout>(total_symbols);
848
849     header->size = w->position() - header->offset;
850
851     // String table for this symbol table should follow it in the section table.
852     ELFStringTable* strtab =
853         static_cast<ELFStringTable*>(w->debug_object()->SectionAt(index() + 1));
854     strtab->AttachWriter(w);
855     symbols.at(0).set(ELFSymbol::SerializedLayout(0,
856                                                   0,
857                                                   0,
858                                                   ELFSymbol::BIND_LOCAL,
859                                                   ELFSymbol::TYPE_NOTYPE,
860                                                   0));
861     WriteSymbolsList(&locals_, symbols.at(1), strtab);
862     WriteSymbolsList(&globals_, symbols.at(locals_.length() + 1), strtab);
863     strtab->DetachWriter();
864   }
865
866   void Add(const ELFSymbol& symbol, Zone* zone) {
867     if (symbol.binding() == ELFSymbol::BIND_LOCAL) {
868       locals_.Add(symbol, zone);
869     } else {
870       globals_.Add(symbol, zone);
871     }
872   }
873
874  protected:
875   virtual void PopulateHeader(Writer::Slot<Header> header) {
876     ELFSection::PopulateHeader(header);
877     // We are assuming that string table will follow symbol table.
878     header->link = index() + 1;
879     header->info = locals_.length() + 1;
880     header->entry_size = sizeof(ELFSymbol::SerializedLayout);
881   }
882
883  private:
884   void WriteSymbolsList(const ZoneList<ELFSymbol>* src,
885                         Writer::Slot<ELFSymbol::SerializedLayout> dst,
886                         ELFStringTable* strtab) {
887     for (int i = 0, len = src->length();
888          i < len;
889          i++) {
890       src->at(i).Write(dst.at(i), strtab);
891     }
892   }
893
894   ZoneList<ELFSymbol> locals_;
895   ZoneList<ELFSymbol> globals_;
896 };
897 #endif  // defined(__ELF)
898
899
900 class CodeDescription BASE_EMBEDDED {
901  public:
902 #if V8_TARGET_ARCH_X64
903   enum StackState {
904     POST_RBP_PUSH,
905     POST_RBP_SET,
906     POST_RBP_POP,
907     STACK_STATE_MAX
908   };
909 #endif
910
911   CodeDescription(const char* name,
912                   Code* code,
913                   Handle<Script> script,
914                   GDBJITLineInfo* lineinfo,
915                   GDBJITInterface::CodeTag tag,
916                   CompilationInfo* info)
917       : name_(name),
918         code_(code),
919         script_(script),
920         lineinfo_(lineinfo),
921         tag_(tag),
922         info_(info) {
923   }
924
925   const char* name() const {
926     return name_;
927   }
928
929   GDBJITLineInfo* lineinfo() const {
930     return lineinfo_;
931   }
932
933   GDBJITInterface::CodeTag tag() const {
934     return tag_;
935   }
936
937   CompilationInfo* info() const {
938     return info_;
939   }
940
941   bool IsInfoAvailable() const {
942     return info_ != NULL;
943   }
944
945   uintptr_t CodeStart() const {
946     return reinterpret_cast<uintptr_t>(code_->instruction_start());
947   }
948
949   uintptr_t CodeEnd() const {
950     return reinterpret_cast<uintptr_t>(code_->instruction_end());
951   }
952
953   uintptr_t CodeSize() const {
954     return CodeEnd() - CodeStart();
955   }
956
957   bool IsLineInfoAvailable() {
958     return !script_.is_null() &&
959         script_->source()->IsString() &&
960         script_->HasValidSource() &&
961         script_->name()->IsString() &&
962         lineinfo_ != NULL;
963   }
964
965 #if V8_TARGET_ARCH_X64
966   uintptr_t GetStackStateStartAddress(StackState state) const {
967     ASSERT(state < STACK_STATE_MAX);
968     return stack_state_start_addresses_[state];
969   }
970
971   void SetStackStateStartAddress(StackState state, uintptr_t addr) {
972     ASSERT(state < STACK_STATE_MAX);
973     stack_state_start_addresses_[state] = addr;
974   }
975 #endif
976
977   SmartArrayPointer<char> GetFilename() {
978     return String::cast(script_->name())->ToCString();
979   }
980
981   int GetScriptLineNumber(int pos) {
982     return script_->GetLineNumber(pos) + 1;
983   }
984
985
986  private:
987   const char* name_;
988   Code* code_;
989   Handle<Script> script_;
990   GDBJITLineInfo* lineinfo_;
991   GDBJITInterface::CodeTag tag_;
992   CompilationInfo* info_;
993 #if V8_TARGET_ARCH_X64
994   uintptr_t stack_state_start_addresses_[STACK_STATE_MAX];
995 #endif
996 };
997
998 #if defined(__ELF)
999 static void CreateSymbolsTable(CodeDescription* desc,
1000                                Zone* zone,
1001                                ELF* elf,
1002                                int text_section_index) {
1003   ELFSymbolTable* symtab = new(zone) ELFSymbolTable(".symtab", zone);
1004   ELFStringTable* strtab = new(zone) ELFStringTable(".strtab");
1005
1006   // Symbol table should be followed by the linked string table.
1007   elf->AddSection(symtab);
1008   elf->AddSection(strtab);
1009
1010   symtab->Add(ELFSymbol("V8 Code",
1011                         0,
1012                         0,
1013                         ELFSymbol::BIND_LOCAL,
1014                         ELFSymbol::TYPE_FILE,
1015                         ELFSection::INDEX_ABSOLUTE),
1016               zone);
1017
1018   symtab->Add(ELFSymbol(desc->name(),
1019                         0,
1020                         desc->CodeSize(),
1021                         ELFSymbol::BIND_GLOBAL,
1022                         ELFSymbol::TYPE_FUNC,
1023                         text_section_index),
1024               zone);
1025 }
1026 #endif  // defined(__ELF)
1027
1028
1029 class DebugInfoSection : public DebugSection {
1030  public:
1031   explicit DebugInfoSection(CodeDescription* desc)
1032 #if defined(__ELF)
1033       : ELFSection(".debug_info", TYPE_PROGBITS, 1),
1034 #else
1035       : MachOSection("__debug_info",
1036                      "__DWARF",
1037                      1,
1038                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
1039 #endif
1040         desc_(desc) { }
1041
1042   // DWARF2 standard
1043   enum DWARF2LocationOp {
1044     DW_OP_reg0 = 0x50,
1045     DW_OP_reg1 = 0x51,
1046     DW_OP_reg2 = 0x52,
1047     DW_OP_reg3 = 0x53,
1048     DW_OP_reg4 = 0x54,
1049     DW_OP_reg5 = 0x55,
1050     DW_OP_reg6 = 0x56,
1051     DW_OP_reg7 = 0x57,
1052     DW_OP_fbreg = 0x91  // 1 param: SLEB128 offset
1053   };
1054
1055   enum DWARF2Encoding {
1056     DW_ATE_ADDRESS = 0x1,
1057     DW_ATE_SIGNED = 0x5
1058   };
1059
1060   bool WriteBodyInternal(Writer* w) {
1061     uintptr_t cu_start = w->position();
1062     Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>();
1063     uintptr_t start = w->position();
1064     w->Write<uint16_t>(2);  // DWARF version.
1065     w->Write<uint32_t>(0);  // Abbreviation table offset.
1066     w->Write<uint8_t>(sizeof(intptr_t));
1067
1068     w->WriteULEB128(1);  // Abbreviation code.
1069     w->WriteString(desc_->GetFilename().get());
1070     w->Write<intptr_t>(desc_->CodeStart());
1071     w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
1072     w->Write<uint32_t>(0);
1073
1074     uint32_t ty_offset = static_cast<uint32_t>(w->position() - cu_start);
1075     w->WriteULEB128(3);
1076     w->Write<uint8_t>(kPointerSize);
1077     w->WriteString("v8value");
1078
1079     if (desc_->IsInfoAvailable()) {
1080       Scope* scope = desc_->info()->scope();
1081       w->WriteULEB128(2);
1082       w->WriteString(desc_->name());
1083       w->Write<intptr_t>(desc_->CodeStart());
1084       w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
1085       Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>();
1086       uintptr_t fb_block_start = w->position();
1087 #if V8_TARGET_ARCH_IA32
1088       w->Write<uint8_t>(DW_OP_reg5);  // The frame pointer's here on ia32
1089 #elif V8_TARGET_ARCH_X64
1090       w->Write<uint8_t>(DW_OP_reg6);  // and here on x64.
1091 #elif V8_TARGET_ARCH_ARM
1092       UNIMPLEMENTED();
1093 #elif V8_TARGET_ARCH_MIPS
1094       UNIMPLEMENTED();
1095 #else
1096 #error Unsupported target architecture.
1097 #endif
1098       fb_block_size.set(static_cast<uint32_t>(w->position() - fb_block_start));
1099
1100       int params = scope->num_parameters();
1101       int slots = scope->num_stack_slots();
1102       int context_slots = scope->ContextLocalCount();
1103       // The real slot ID is internal_slots + context_slot_id.
1104       int internal_slots = Context::MIN_CONTEXT_SLOTS;
1105       int locals = scope->StackLocalCount();
1106       int current_abbreviation = 4;
1107
1108       for (int param = 0; param < params; ++param) {
1109         w->WriteULEB128(current_abbreviation++);
1110         w->WriteString(
1111             scope->parameter(param)->name()->ToCString(DISALLOW_NULLS).get());
1112         w->Write<uint32_t>(ty_offset);
1113         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
1114         uintptr_t block_start = w->position();
1115         w->Write<uint8_t>(DW_OP_fbreg);
1116         w->WriteSLEB128(
1117           JavaScriptFrameConstants::kLastParameterOffset +
1118               kPointerSize * (params - param - 1));
1119         block_size.set(static_cast<uint32_t>(w->position() - block_start));
1120       }
1121
1122       EmbeddedVector<char, 256> buffer;
1123       StringBuilder builder(buffer.start(), buffer.length());
1124
1125       for (int slot = 0; slot < slots; ++slot) {
1126         w->WriteULEB128(current_abbreviation++);
1127         builder.Reset();
1128         builder.AddFormatted("slot%d", slot);
1129         w->WriteString(builder.Finalize());
1130       }
1131
1132       // See contexts.h for more information.
1133       ASSERT(Context::MIN_CONTEXT_SLOTS == 4);
1134       ASSERT(Context::CLOSURE_INDEX == 0);
1135       ASSERT(Context::PREVIOUS_INDEX == 1);
1136       ASSERT(Context::EXTENSION_INDEX == 2);
1137       ASSERT(Context::GLOBAL_OBJECT_INDEX == 3);
1138       w->WriteULEB128(current_abbreviation++);
1139       w->WriteString(".closure");
1140       w->WriteULEB128(current_abbreviation++);
1141       w->WriteString(".previous");
1142       w->WriteULEB128(current_abbreviation++);
1143       w->WriteString(".extension");
1144       w->WriteULEB128(current_abbreviation++);
1145       w->WriteString(".global");
1146
1147       for (int context_slot = 0;
1148            context_slot < context_slots;
1149            ++context_slot) {
1150         w->WriteULEB128(current_abbreviation++);
1151         builder.Reset();
1152         builder.AddFormatted("context_slot%d", context_slot + internal_slots);
1153         w->WriteString(builder.Finalize());
1154       }
1155
1156       ZoneList<Variable*> stack_locals(locals, scope->zone());
1157       ZoneList<Variable*> context_locals(context_slots, scope->zone());
1158       scope->CollectStackAndContextLocals(&stack_locals, &context_locals);
1159       for (int local = 0; local < locals; ++local) {
1160         w->WriteULEB128(current_abbreviation++);
1161         w->WriteString(
1162             stack_locals[local]->name()->ToCString(DISALLOW_NULLS).get());
1163         w->Write<uint32_t>(ty_offset);
1164         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
1165         uintptr_t block_start = w->position();
1166         w->Write<uint8_t>(DW_OP_fbreg);
1167         w->WriteSLEB128(
1168           JavaScriptFrameConstants::kLocal0Offset -
1169               kPointerSize * local);
1170         block_size.set(static_cast<uint32_t>(w->position() - block_start));
1171       }
1172
1173       {
1174         w->WriteULEB128(current_abbreviation++);
1175         w->WriteString("__function");
1176         w->Write<uint32_t>(ty_offset);
1177         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
1178         uintptr_t block_start = w->position();
1179         w->Write<uint8_t>(DW_OP_fbreg);
1180         w->WriteSLEB128(JavaScriptFrameConstants::kFunctionOffset);
1181         block_size.set(static_cast<uint32_t>(w->position() - block_start));
1182       }
1183
1184       {
1185         w->WriteULEB128(current_abbreviation++);
1186         w->WriteString("__context");
1187         w->Write<uint32_t>(ty_offset);
1188         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
1189         uintptr_t block_start = w->position();
1190         w->Write<uint8_t>(DW_OP_fbreg);
1191         w->WriteSLEB128(StandardFrameConstants::kContextOffset);
1192         block_size.set(static_cast<uint32_t>(w->position() - block_start));
1193       }
1194
1195       w->WriteULEB128(0);  // Terminate the sub program.
1196     }
1197
1198     w->WriteULEB128(0);  // Terminate the compile unit.
1199     size.set(static_cast<uint32_t>(w->position() - start));
1200     return true;
1201   }
1202
1203  private:
1204   CodeDescription* desc_;
1205 };
1206
1207
1208 class DebugAbbrevSection : public DebugSection {
1209  public:
1210   explicit DebugAbbrevSection(CodeDescription* desc)
1211 #ifdef __ELF
1212       : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1),
1213 #else
1214       : MachOSection("__debug_abbrev",
1215                      "__DWARF",
1216                      1,
1217                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
1218 #endif
1219         desc_(desc) { }
1220
1221   // DWARF2 standard, figure 14.
1222   enum DWARF2Tags {
1223     DW_TAG_FORMAL_PARAMETER = 0x05,
1224     DW_TAG_POINTER_TYPE = 0xf,
1225     DW_TAG_COMPILE_UNIT = 0x11,
1226     DW_TAG_STRUCTURE_TYPE = 0x13,
1227     DW_TAG_BASE_TYPE = 0x24,
1228     DW_TAG_SUBPROGRAM = 0x2e,
1229     DW_TAG_VARIABLE = 0x34
1230   };
1231
1232   // DWARF2 standard, figure 16.
1233   enum DWARF2ChildrenDetermination {
1234     DW_CHILDREN_NO = 0,
1235     DW_CHILDREN_YES = 1
1236   };
1237
1238   // DWARF standard, figure 17.
1239   enum DWARF2Attribute {
1240     DW_AT_LOCATION = 0x2,
1241     DW_AT_NAME = 0x3,
1242     DW_AT_BYTE_SIZE = 0xb,
1243     DW_AT_STMT_LIST = 0x10,
1244     DW_AT_LOW_PC = 0x11,
1245     DW_AT_HIGH_PC = 0x12,
1246     DW_AT_ENCODING = 0x3e,
1247     DW_AT_FRAME_BASE = 0x40,
1248     DW_AT_TYPE = 0x49
1249   };
1250
1251   // DWARF2 standard, figure 19.
1252   enum DWARF2AttributeForm {
1253     DW_FORM_ADDR = 0x1,
1254     DW_FORM_BLOCK4 = 0x4,
1255     DW_FORM_STRING = 0x8,
1256     DW_FORM_DATA4 = 0x6,
1257     DW_FORM_BLOCK = 0x9,
1258     DW_FORM_DATA1 = 0xb,
1259     DW_FORM_FLAG = 0xc,
1260     DW_FORM_REF4 = 0x13
1261   };
1262
1263   void WriteVariableAbbreviation(Writer* w,
1264                                  int abbreviation_code,
1265                                  bool has_value,
1266                                  bool is_parameter) {
1267     w->WriteULEB128(abbreviation_code);
1268     w->WriteULEB128(is_parameter ? DW_TAG_FORMAL_PARAMETER : DW_TAG_VARIABLE);
1269     w->Write<uint8_t>(DW_CHILDREN_NO);
1270     w->WriteULEB128(DW_AT_NAME);
1271     w->WriteULEB128(DW_FORM_STRING);
1272     if (has_value) {
1273       w->WriteULEB128(DW_AT_TYPE);
1274       w->WriteULEB128(DW_FORM_REF4);
1275       w->WriteULEB128(DW_AT_LOCATION);
1276       w->WriteULEB128(DW_FORM_BLOCK4);
1277     }
1278     w->WriteULEB128(0);
1279     w->WriteULEB128(0);
1280   }
1281
1282   bool WriteBodyInternal(Writer* w) {
1283     int current_abbreviation = 1;
1284     bool extra_info = desc_->IsInfoAvailable();
1285     ASSERT(desc_->IsLineInfoAvailable());
1286     w->WriteULEB128(current_abbreviation++);
1287     w->WriteULEB128(DW_TAG_COMPILE_UNIT);
1288     w->Write<uint8_t>(extra_info ? DW_CHILDREN_YES : DW_CHILDREN_NO);
1289     w->WriteULEB128(DW_AT_NAME);
1290     w->WriteULEB128(DW_FORM_STRING);
1291     w->WriteULEB128(DW_AT_LOW_PC);
1292     w->WriteULEB128(DW_FORM_ADDR);
1293     w->WriteULEB128(DW_AT_HIGH_PC);
1294     w->WriteULEB128(DW_FORM_ADDR);
1295     w->WriteULEB128(DW_AT_STMT_LIST);
1296     w->WriteULEB128(DW_FORM_DATA4);
1297     w->WriteULEB128(0);
1298     w->WriteULEB128(0);
1299
1300     if (extra_info) {
1301       Scope* scope = desc_->info()->scope();
1302       int params = scope->num_parameters();
1303       int slots = scope->num_stack_slots();
1304       int context_slots = scope->ContextLocalCount();
1305       // The real slot ID is internal_slots + context_slot_id.
1306       int internal_slots = Context::MIN_CONTEXT_SLOTS;
1307       int locals = scope->StackLocalCount();
1308       // Total children is params + slots + context_slots + internal_slots +
1309       // locals + 2 (__function and __context).
1310
1311       // The extra duplication below seems to be necessary to keep
1312       // gdb from getting upset on OSX.
1313       w->WriteULEB128(current_abbreviation++);  // Abbreviation code.
1314       w->WriteULEB128(DW_TAG_SUBPROGRAM);
1315       w->Write<uint8_t>(DW_CHILDREN_YES);
1316       w->WriteULEB128(DW_AT_NAME);
1317       w->WriteULEB128(DW_FORM_STRING);
1318       w->WriteULEB128(DW_AT_LOW_PC);
1319       w->WriteULEB128(DW_FORM_ADDR);
1320       w->WriteULEB128(DW_AT_HIGH_PC);
1321       w->WriteULEB128(DW_FORM_ADDR);
1322       w->WriteULEB128(DW_AT_FRAME_BASE);
1323       w->WriteULEB128(DW_FORM_BLOCK4);
1324       w->WriteULEB128(0);
1325       w->WriteULEB128(0);
1326
1327       w->WriteULEB128(current_abbreviation++);
1328       w->WriteULEB128(DW_TAG_STRUCTURE_TYPE);
1329       w->Write<uint8_t>(DW_CHILDREN_NO);
1330       w->WriteULEB128(DW_AT_BYTE_SIZE);
1331       w->WriteULEB128(DW_FORM_DATA1);
1332       w->WriteULEB128(DW_AT_NAME);
1333       w->WriteULEB128(DW_FORM_STRING);
1334       w->WriteULEB128(0);
1335       w->WriteULEB128(0);
1336
1337       for (int param = 0; param < params; ++param) {
1338         WriteVariableAbbreviation(w, current_abbreviation++, true, true);
1339       }
1340
1341       for (int slot = 0; slot < slots; ++slot) {
1342         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
1343       }
1344
1345       for (int internal_slot = 0;
1346            internal_slot < internal_slots;
1347            ++internal_slot) {
1348         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
1349       }
1350
1351       for (int context_slot = 0;
1352            context_slot < context_slots;
1353            ++context_slot) {
1354         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
1355       }
1356
1357       for (int local = 0; local < locals; ++local) {
1358         WriteVariableAbbreviation(w, current_abbreviation++, true, false);
1359       }
1360
1361       // The function.
1362       WriteVariableAbbreviation(w, current_abbreviation++, true, false);
1363
1364       // The context.
1365       WriteVariableAbbreviation(w, current_abbreviation++, true, false);
1366
1367       w->WriteULEB128(0);  // Terminate the sibling list.
1368     }
1369
1370     w->WriteULEB128(0);  // Terminate the table.
1371     return true;
1372   }
1373
1374  private:
1375   CodeDescription* desc_;
1376 };
1377
1378
1379 class DebugLineSection : public DebugSection {
1380  public:
1381   explicit DebugLineSection(CodeDescription* desc)
1382 #ifdef __ELF
1383       : ELFSection(".debug_line", TYPE_PROGBITS, 1),
1384 #else
1385       : MachOSection("__debug_line",
1386                      "__DWARF",
1387                      1,
1388                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
1389 #endif
1390         desc_(desc) { }
1391
1392   // DWARF2 standard, figure 34.
1393   enum DWARF2Opcodes {
1394     DW_LNS_COPY = 1,
1395     DW_LNS_ADVANCE_PC = 2,
1396     DW_LNS_ADVANCE_LINE = 3,
1397     DW_LNS_SET_FILE = 4,
1398     DW_LNS_SET_COLUMN = 5,
1399     DW_LNS_NEGATE_STMT = 6
1400   };
1401
1402   // DWARF2 standard, figure 35.
1403   enum DWARF2ExtendedOpcode {
1404     DW_LNE_END_SEQUENCE = 1,
1405     DW_LNE_SET_ADDRESS = 2,
1406     DW_LNE_DEFINE_FILE = 3
1407   };
1408
1409   bool WriteBodyInternal(Writer* w) {
1410     // Write prologue.
1411     Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>();
1412     uintptr_t start = w->position();
1413
1414     // Used for special opcodes
1415     const int8_t line_base = 1;
1416     const uint8_t line_range = 7;
1417     const int8_t max_line_incr = (line_base + line_range - 1);
1418     const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1;
1419
1420     w->Write<uint16_t>(2);  // Field version.
1421     Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>();
1422     uintptr_t prologue_start = w->position();
1423     w->Write<uint8_t>(1);  // Field minimum_instruction_length.
1424     w->Write<uint8_t>(1);  // Field default_is_stmt.
1425     w->Write<int8_t>(line_base);  // Field line_base.
1426     w->Write<uint8_t>(line_range);  // Field line_range.
1427     w->Write<uint8_t>(opcode_base);  // Field opcode_base.
1428     w->Write<uint8_t>(0);  // DW_LNS_COPY operands count.
1429     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_PC operands count.
1430     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_LINE operands count.
1431     w->Write<uint8_t>(1);  // DW_LNS_SET_FILE operands count.
1432     w->Write<uint8_t>(1);  // DW_LNS_SET_COLUMN operands count.
1433     w->Write<uint8_t>(0);  // DW_LNS_NEGATE_STMT operands count.
1434     w->Write<uint8_t>(0);  // Empty include_directories sequence.
1435     w->WriteString(desc_->GetFilename().get());  // File name.
1436     w->WriteULEB128(0);  // Current directory.
1437     w->WriteULEB128(0);  // Unknown modification time.
1438     w->WriteULEB128(0);  // Unknown file size.
1439     w->Write<uint8_t>(0);
1440     prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start));
1441
1442     WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t));
1443     w->Write<intptr_t>(desc_->CodeStart());
1444     w->Write<uint8_t>(DW_LNS_COPY);
1445
1446     intptr_t pc = 0;
1447     intptr_t line = 1;
1448     bool is_statement = true;
1449
1450     List<GDBJITLineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info();
1451     pc_info->Sort(&ComparePCInfo);
1452
1453     int pc_info_length = pc_info->length();
1454     for (int i = 0; i < pc_info_length; i++) {
1455       GDBJITLineInfo::PCInfo* info = &pc_info->at(i);
1456       ASSERT(info->pc_ >= pc);
1457
1458       // Reduce bloating in the debug line table by removing duplicate line
1459       // entries (per DWARF2 standard).
1460       intptr_t  new_line = desc_->GetScriptLineNumber(info->pos_);
1461       if (new_line == line) {
1462         continue;
1463       }
1464
1465       // Mark statement boundaries.  For a better debugging experience, mark
1466       // the last pc address in the function as a statement (e.g. "}"), so that
1467       // a user can see the result of the last line executed in the function,
1468       // should control reach the end.
1469       if ((i+1) == pc_info_length) {
1470         if (!is_statement) {
1471           w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
1472         }
1473       } else if (is_statement != info->is_statement_) {
1474         w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
1475         is_statement = !is_statement;
1476       }
1477
1478       // Generate special opcodes, if possible.  This results in more compact
1479       // debug line tables.  See the DWARF 2.0 standard to learn more about
1480       // special opcodes.
1481       uintptr_t pc_diff = info->pc_ - pc;
1482       intptr_t line_diff = new_line - line;
1483
1484       // Compute special opcode (see DWARF 2.0 standard)
1485       intptr_t special_opcode = (line_diff - line_base) +
1486                                 (line_range * pc_diff) + opcode_base;
1487
1488       // If special_opcode is less than or equal to 255, it can be used as a
1489       // special opcode.  If line_diff is larger than the max line increment
1490       // allowed for a special opcode, or if line_diff is less than the minimum
1491       // line that can be added to the line register (i.e. line_base), then
1492       // special_opcode can't be used.
1493       if ((special_opcode >= opcode_base) && (special_opcode <= 255) &&
1494           (line_diff <= max_line_incr) && (line_diff >= line_base)) {
1495         w->Write<uint8_t>(special_opcode);
1496       } else {
1497         w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
1498         w->WriteSLEB128(pc_diff);
1499         w->Write<uint8_t>(DW_LNS_ADVANCE_LINE);
1500         w->WriteSLEB128(line_diff);
1501         w->Write<uint8_t>(DW_LNS_COPY);
1502       }
1503
1504       // Increment the pc and line operands.
1505       pc += pc_diff;
1506       line += line_diff;
1507     }
1508     // Advance the pc to the end of the routine, since the end sequence opcode
1509     // requires this.
1510     w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
1511     w->WriteSLEB128(desc_->CodeSize() - pc);
1512     WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0);
1513     total_length.set(static_cast<uint32_t>(w->position() - start));
1514     return true;
1515   }
1516
1517  private:
1518   void WriteExtendedOpcode(Writer* w,
1519                            DWARF2ExtendedOpcode op,
1520                            size_t operands_size) {
1521     w->Write<uint8_t>(0);
1522     w->WriteULEB128(operands_size + 1);
1523     w->Write<uint8_t>(op);
1524   }
1525
1526   static int ComparePCInfo(const GDBJITLineInfo::PCInfo* a,
1527                            const GDBJITLineInfo::PCInfo* b) {
1528     if (a->pc_ == b->pc_) {
1529       if (a->is_statement_ != b->is_statement_) {
1530         return b->is_statement_ ? +1 : -1;
1531       }
1532       return 0;
1533     } else if (a->pc_ > b->pc_) {
1534       return +1;
1535     } else {
1536       return -1;
1537     }
1538   }
1539
1540   CodeDescription* desc_;
1541 };
1542
1543
1544 #if V8_TARGET_ARCH_X64
1545
1546 class UnwindInfoSection : public DebugSection {
1547  public:
1548   explicit UnwindInfoSection(CodeDescription* desc);
1549   virtual bool WriteBodyInternal(Writer* w);
1550
1551   int WriteCIE(Writer* w);
1552   void WriteFDE(Writer* w, int);
1553
1554   void WriteFDEStateOnEntry(Writer* w);
1555   void WriteFDEStateAfterRBPPush(Writer* w);
1556   void WriteFDEStateAfterRBPSet(Writer* w);
1557   void WriteFDEStateAfterRBPPop(Writer* w);
1558
1559   void WriteLength(Writer* w,
1560                    Writer::Slot<uint32_t>* length_slot,
1561                    int initial_position);
1562
1563  private:
1564   CodeDescription* desc_;
1565
1566   // DWARF3 Specification, Table 7.23
1567   enum CFIInstructions {
1568     DW_CFA_ADVANCE_LOC = 0x40,
1569     DW_CFA_OFFSET = 0x80,
1570     DW_CFA_RESTORE = 0xC0,
1571     DW_CFA_NOP = 0x00,
1572     DW_CFA_SET_LOC = 0x01,
1573     DW_CFA_ADVANCE_LOC1 = 0x02,
1574     DW_CFA_ADVANCE_LOC2 = 0x03,
1575     DW_CFA_ADVANCE_LOC4 = 0x04,
1576     DW_CFA_OFFSET_EXTENDED = 0x05,
1577     DW_CFA_RESTORE_EXTENDED = 0x06,
1578     DW_CFA_UNDEFINED = 0x07,
1579     DW_CFA_SAME_VALUE = 0x08,
1580     DW_CFA_REGISTER = 0x09,
1581     DW_CFA_REMEMBER_STATE = 0x0A,
1582     DW_CFA_RESTORE_STATE = 0x0B,
1583     DW_CFA_DEF_CFA = 0x0C,
1584     DW_CFA_DEF_CFA_REGISTER = 0x0D,
1585     DW_CFA_DEF_CFA_OFFSET = 0x0E,
1586
1587     DW_CFA_DEF_CFA_EXPRESSION = 0x0F,
1588     DW_CFA_EXPRESSION = 0x10,
1589     DW_CFA_OFFSET_EXTENDED_SF = 0x11,
1590     DW_CFA_DEF_CFA_SF = 0x12,
1591     DW_CFA_DEF_CFA_OFFSET_SF = 0x13,
1592     DW_CFA_VAL_OFFSET = 0x14,
1593     DW_CFA_VAL_OFFSET_SF = 0x15,
1594     DW_CFA_VAL_EXPRESSION = 0x16
1595   };
1596
1597   // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36
1598   enum RegisterMapping {
1599     // Only the relevant ones have been added to reduce clutter.
1600     AMD64_RBP = 6,
1601     AMD64_RSP = 7,
1602     AMD64_RA = 16
1603   };
1604
1605   enum CFIConstants {
1606     CIE_ID = 0,
1607     CIE_VERSION = 1,
1608     CODE_ALIGN_FACTOR = 1,
1609     DATA_ALIGN_FACTOR = 1,
1610     RETURN_ADDRESS_REGISTER = AMD64_RA
1611   };
1612 };
1613
1614
1615 void UnwindInfoSection::WriteLength(Writer* w,
1616                                     Writer::Slot<uint32_t>* length_slot,
1617                                     int initial_position) {
1618   uint32_t align = (w->position() - initial_position) % kPointerSize;
1619
1620   if (align != 0) {
1621     for (uint32_t i = 0; i < (kPointerSize - align); i++) {
1622       w->Write<uint8_t>(DW_CFA_NOP);
1623     }
1624   }
1625
1626   ASSERT((w->position() - initial_position) % kPointerSize == 0);
1627   length_slot->set(w->position() - initial_position);
1628 }
1629
1630
1631 UnwindInfoSection::UnwindInfoSection(CodeDescription* desc)
1632 #ifdef __ELF
1633     : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1),
1634 #else
1635     : MachOSection("__eh_frame", "__TEXT", sizeof(uintptr_t),
1636                    MachOSection::S_REGULAR),
1637 #endif
1638       desc_(desc) { }
1639
1640 int UnwindInfoSection::WriteCIE(Writer* w) {
1641   Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>();
1642   uint32_t cie_position = w->position();
1643
1644   // Write out the CIE header. Currently no 'common instructions' are
1645   // emitted onto the CIE; every FDE has its own set of instructions.
1646
1647   w->Write<uint32_t>(CIE_ID);
1648   w->Write<uint8_t>(CIE_VERSION);
1649   w->Write<uint8_t>(0);  // Null augmentation string.
1650   w->WriteSLEB128(CODE_ALIGN_FACTOR);
1651   w->WriteSLEB128(DATA_ALIGN_FACTOR);
1652   w->Write<uint8_t>(RETURN_ADDRESS_REGISTER);
1653
1654   WriteLength(w, &cie_length_slot, cie_position);
1655
1656   return cie_position;
1657 }
1658
1659
1660 void UnwindInfoSection::WriteFDE(Writer* w, int cie_position) {
1661   // The only FDE for this function. The CFA is the current RBP.
1662   Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>();
1663   int fde_position = w->position();
1664   w->Write<int32_t>(fde_position - cie_position + 4);
1665
1666   w->Write<uintptr_t>(desc_->CodeStart());
1667   w->Write<uintptr_t>(desc_->CodeSize());
1668
1669   WriteFDEStateOnEntry(w);
1670   WriteFDEStateAfterRBPPush(w);
1671   WriteFDEStateAfterRBPSet(w);
1672   WriteFDEStateAfterRBPPop(w);
1673
1674   WriteLength(w, &fde_length_slot, fde_position);
1675 }
1676
1677
1678 void UnwindInfoSection::WriteFDEStateOnEntry(Writer* w) {
1679   // The first state, just after the control has been transferred to the the
1680   // function.
1681
1682   // RBP for this function will be the value of RSP after pushing the RBP
1683   // for the previous function. The previous RBP has not been pushed yet.
1684   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
1685   w->WriteULEB128(AMD64_RSP);
1686   w->WriteSLEB128(-kPointerSize);
1687
1688   // The RA is stored at location CFA + kCallerPCOffset. This is an invariant,
1689   // and hence omitted from the next states.
1690   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1691   w->WriteULEB128(AMD64_RA);
1692   w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset);
1693
1694   // The RBP of the previous function is still in RBP.
1695   w->Write<uint8_t>(DW_CFA_SAME_VALUE);
1696   w->WriteULEB128(AMD64_RBP);
1697
1698   // Last location described by this entry.
1699   w->Write<uint8_t>(DW_CFA_SET_LOC);
1700   w->Write<uint64_t>(
1701       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH));
1702 }
1703
1704
1705 void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer* w) {
1706   // The second state, just after RBP has been pushed.
1707
1708   // RBP / CFA for this function is now the current RSP, so just set the
1709   // offset from the previous rule (from -8) to 0.
1710   w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET);
1711   w->WriteULEB128(0);
1712
1713   // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant
1714   // in this and the next state, and hence omitted in the next state.
1715   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1716   w->WriteULEB128(AMD64_RBP);
1717   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
1718
1719   // Last location described by this entry.
1720   w->Write<uint8_t>(DW_CFA_SET_LOC);
1721   w->Write<uint64_t>(
1722       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET));
1723 }
1724
1725
1726 void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer* w) {
1727   // The third state, after the RBP has been set.
1728
1729   // The CFA can now directly be set to RBP.
1730   w->Write<uint8_t>(DW_CFA_DEF_CFA);
1731   w->WriteULEB128(AMD64_RBP);
1732   w->WriteULEB128(0);
1733
1734   // Last location described by this entry.
1735   w->Write<uint8_t>(DW_CFA_SET_LOC);
1736   w->Write<uint64_t>(
1737       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP));
1738 }
1739
1740
1741 void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer* w) {
1742   // The fourth (final) state. The RBP has been popped (just before issuing a
1743   // return).
1744
1745   // The CFA can is now calculated in the same way as in the first state.
1746   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
1747   w->WriteULEB128(AMD64_RSP);
1748   w->WriteSLEB128(-kPointerSize);
1749
1750   // The RBP
1751   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1752   w->WriteULEB128(AMD64_RBP);
1753   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
1754
1755   // Last location described by this entry.
1756   w->Write<uint8_t>(DW_CFA_SET_LOC);
1757   w->Write<uint64_t>(desc_->CodeEnd());
1758 }
1759
1760
1761 bool UnwindInfoSection::WriteBodyInternal(Writer* w) {
1762   uint32_t cie_position = WriteCIE(w);
1763   WriteFDE(w, cie_position);
1764   return true;
1765 }
1766
1767
1768 #endif  // V8_TARGET_ARCH_X64
1769
1770 static void CreateDWARFSections(CodeDescription* desc,
1771                                 Zone* zone,
1772                                 DebugObject* obj) {
1773   if (desc->IsLineInfoAvailable()) {
1774     obj->AddSection(new(zone) DebugInfoSection(desc));
1775     obj->AddSection(new(zone) DebugAbbrevSection(desc));
1776     obj->AddSection(new(zone) DebugLineSection(desc));
1777   }
1778 #if V8_TARGET_ARCH_X64
1779   obj->AddSection(new(zone) UnwindInfoSection(desc));
1780 #endif
1781 }
1782
1783
1784 // -------------------------------------------------------------------
1785 // Binary GDB JIT Interface as described in
1786 //   http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html
1787 extern "C" {
1788   typedef enum {
1789     JIT_NOACTION = 0,
1790     JIT_REGISTER_FN,
1791     JIT_UNREGISTER_FN
1792   } JITAction;
1793
1794   struct JITCodeEntry {
1795     JITCodeEntry* next_;
1796     JITCodeEntry* prev_;
1797     Address symfile_addr_;
1798     uint64_t symfile_size_;
1799   };
1800
1801   struct JITDescriptor {
1802     uint32_t version_;
1803     uint32_t action_flag_;
1804     JITCodeEntry* relevant_entry_;
1805     JITCodeEntry* first_entry_;
1806   };
1807
1808   // GDB will place breakpoint into this function.
1809   // To prevent GCC from inlining or removing it we place noinline attribute
1810   // and inline assembler statement inside.
1811   void __attribute__((noinline)) __jit_debug_register_code() {
1812     __asm__("");
1813   }
1814
1815   // GDB will inspect contents of this descriptor.
1816   // Static initialization is necessary to prevent GDB from seeing
1817   // uninitialized descriptor.
1818   JITDescriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
1819
1820 #ifdef OBJECT_PRINT
1821   void __gdb_print_v8_object(Object* object) {
1822     object->Print();
1823     PrintF(stdout, "\n");
1824   }
1825 #endif
1826 }
1827
1828
1829 static JITCodeEntry* CreateCodeEntry(Address symfile_addr,
1830                                      uintptr_t symfile_size) {
1831   JITCodeEntry* entry = static_cast<JITCodeEntry*>(
1832       malloc(sizeof(JITCodeEntry) + symfile_size));
1833
1834   entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1);
1835   entry->symfile_size_ = symfile_size;
1836   OS::MemCopy(entry->symfile_addr_, symfile_addr, symfile_size);
1837
1838   entry->prev_ = entry->next_ = NULL;
1839
1840   return entry;
1841 }
1842
1843
1844 static void DestroyCodeEntry(JITCodeEntry* entry) {
1845   free(entry);
1846 }
1847
1848
1849 static void RegisterCodeEntry(JITCodeEntry* entry,
1850                               bool dump_if_enabled,
1851                               const char* name_hint) {
1852 #if defined(DEBUG) && !V8_OS_WIN
1853   static int file_num = 0;
1854   if (FLAG_gdbjit_dump && dump_if_enabled) {
1855     static const int kMaxFileNameSize = 64;
1856     static const char* kElfFilePrefix = "/tmp/elfdump";
1857     static const char* kObjFileExt = ".o";
1858     char file_name[64];
1859
1860     OS::SNPrintF(Vector<char>(file_name, kMaxFileNameSize),
1861                  "%s%s%d%s",
1862                  kElfFilePrefix,
1863                  (name_hint != NULL) ? name_hint : "",
1864                  file_num++,
1865                  kObjFileExt);
1866     WriteBytes(file_name, entry->symfile_addr_, entry->symfile_size_);
1867   }
1868 #endif
1869
1870   entry->next_ = __jit_debug_descriptor.first_entry_;
1871   if (entry->next_ != NULL) entry->next_->prev_ = entry;
1872   __jit_debug_descriptor.first_entry_ =
1873       __jit_debug_descriptor.relevant_entry_ = entry;
1874
1875   __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN;
1876   __jit_debug_register_code();
1877 }
1878
1879
1880 static void UnregisterCodeEntry(JITCodeEntry* entry) {
1881   if (entry->prev_ != NULL) {
1882     entry->prev_->next_ = entry->next_;
1883   } else {
1884     __jit_debug_descriptor.first_entry_ = entry->next_;
1885   }
1886
1887   if (entry->next_ != NULL) {
1888     entry->next_->prev_ = entry->prev_;
1889   }
1890
1891   __jit_debug_descriptor.relevant_entry_ = entry;
1892   __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN;
1893   __jit_debug_register_code();
1894 }
1895
1896
1897 static JITCodeEntry* CreateELFObject(CodeDescription* desc, Isolate* isolate) {
1898 #ifdef __MACH_O
1899   Zone zone(isolate);
1900   MachO mach_o(&zone);
1901   Writer w(&mach_o);
1902
1903   mach_o.AddSection(new(&zone) MachOTextSection(kCodeAlignment,
1904                                                 desc->CodeStart(),
1905                                                 desc->CodeSize()));
1906
1907   CreateDWARFSections(desc, &zone, &mach_o);
1908
1909   mach_o.Write(&w, desc->CodeStart(), desc->CodeSize());
1910 #else
1911   Zone zone(isolate);
1912   ELF elf(&zone);
1913   Writer w(&elf);
1914
1915   int text_section_index = elf.AddSection(
1916       new(&zone) FullHeaderELFSection(
1917           ".text",
1918           ELFSection::TYPE_NOBITS,
1919           kCodeAlignment,
1920           desc->CodeStart(),
1921           0,
1922           desc->CodeSize(),
1923           ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC));
1924
1925   CreateSymbolsTable(desc, &zone, &elf, text_section_index);
1926
1927   CreateDWARFSections(desc, &zone, &elf);
1928
1929   elf.Write(&w);
1930 #endif
1931
1932   return CreateCodeEntry(w.buffer(), w.position());
1933 }
1934
1935
1936 static bool SameCodeObjects(void* key1, void* key2) {
1937   return key1 == key2;
1938 }
1939
1940
1941 static HashMap* GetEntries() {
1942   static HashMap* entries = NULL;
1943   if (entries == NULL) {
1944     entries = new HashMap(&SameCodeObjects);
1945   }
1946   return entries;
1947 }
1948
1949
1950 static uint32_t HashForCodeObject(Code* code) {
1951   static const uintptr_t kGoldenRatio = 2654435761u;
1952   uintptr_t hash = reinterpret_cast<uintptr_t>(code->address());
1953   return static_cast<uint32_t>((hash >> kCodeAlignmentBits) * kGoldenRatio);
1954 }
1955
1956
1957 static const intptr_t kLineInfoTag = 0x1;
1958
1959
1960 static bool IsLineInfoTagged(void* ptr) {
1961   return 0 != (reinterpret_cast<intptr_t>(ptr) & kLineInfoTag);
1962 }
1963
1964
1965 static void* TagLineInfo(GDBJITLineInfo* ptr) {
1966   return reinterpret_cast<void*>(
1967       reinterpret_cast<intptr_t>(ptr) | kLineInfoTag);
1968 }
1969
1970
1971 static GDBJITLineInfo* UntagLineInfo(void* ptr) {
1972   return reinterpret_cast<GDBJITLineInfo*>(
1973       reinterpret_cast<intptr_t>(ptr) & ~kLineInfoTag);
1974 }
1975
1976
1977 void GDBJITInterface::AddCode(Handle<Name> name,
1978                               Handle<Script> script,
1979                               Handle<Code> code,
1980                               CompilationInfo* info) {
1981   if (!FLAG_gdbjit) return;
1982
1983   Script::InitLineEnds(script);
1984
1985   if (!name.is_null() && name->IsString()) {
1986     SmartArrayPointer<char> name_cstring =
1987         Handle<String>::cast(name)->ToCString(DISALLOW_NULLS);
1988     AddCode(name_cstring.get(), *code, GDBJITInterface::FUNCTION, *script,
1989             info);
1990   } else {
1991     AddCode("", *code, GDBJITInterface::FUNCTION, *script, info);
1992   }
1993 }
1994
1995
1996 static void AddUnwindInfo(CodeDescription* desc) {
1997 #if V8_TARGET_ARCH_X64
1998   if (desc->tag() == GDBJITInterface::FUNCTION) {
1999     // To avoid propagating unwinding information through
2000     // compilation pipeline we use an approximation.
2001     // For most use cases this should not affect usability.
2002     static const int kFramePointerPushOffset = 1;
2003     static const int kFramePointerSetOffset = 4;
2004     static const int kFramePointerPopOffset = -3;
2005
2006     uintptr_t frame_pointer_push_address =
2007         desc->CodeStart() + kFramePointerPushOffset;
2008
2009     uintptr_t frame_pointer_set_address =
2010         desc->CodeStart() + kFramePointerSetOffset;
2011
2012     uintptr_t frame_pointer_pop_address =
2013         desc->CodeEnd() + kFramePointerPopOffset;
2014
2015     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
2016                                     frame_pointer_push_address);
2017     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
2018                                     frame_pointer_set_address);
2019     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
2020                                     frame_pointer_pop_address);
2021   } else {
2022     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
2023                                     desc->CodeStart());
2024     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
2025                                     desc->CodeStart());
2026     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
2027                                     desc->CodeEnd());
2028   }
2029 #endif  // V8_TARGET_ARCH_X64
2030 }
2031
2032
2033 static LazyMutex mutex = LAZY_MUTEX_INITIALIZER;
2034
2035
2036 void GDBJITInterface::AddCode(const char* name,
2037                               Code* code,
2038                               GDBJITInterface::CodeTag tag,
2039                               Script* script,
2040                               CompilationInfo* info) {
2041   if (!FLAG_gdbjit) return;
2042
2043   LockGuard<Mutex> lock_guard(mutex.Pointer());
2044   DisallowHeapAllocation no_gc;
2045
2046   HashMap::Entry* e = GetEntries()->Lookup(code, HashForCodeObject(code), true);
2047   if (e->value != NULL && !IsLineInfoTagged(e->value)) return;
2048
2049   GDBJITLineInfo* lineinfo = UntagLineInfo(e->value);
2050   CodeDescription code_desc(name,
2051                             code,
2052                             script != NULL ? Handle<Script>(script)
2053                                            : Handle<Script>(),
2054                             lineinfo,
2055                             tag,
2056                             info);
2057
2058   if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) {
2059     delete lineinfo;
2060     GetEntries()->Remove(code, HashForCodeObject(code));
2061     return;
2062   }
2063
2064   AddUnwindInfo(&code_desc);
2065   Isolate* isolate = code->GetIsolate();
2066   JITCodeEntry* entry = CreateELFObject(&code_desc, isolate);
2067   ASSERT(!IsLineInfoTagged(entry));
2068
2069   delete lineinfo;
2070   e->value = entry;
2071
2072   const char* name_hint = NULL;
2073   bool should_dump = false;
2074   if (FLAG_gdbjit_dump) {
2075     if (strlen(FLAG_gdbjit_dump_filter) == 0) {
2076       name_hint = name;
2077       should_dump = true;
2078     } else if (name != NULL) {
2079       name_hint = strstr(name, FLAG_gdbjit_dump_filter);
2080       should_dump = (name_hint != NULL);
2081     }
2082   }
2083   RegisterCodeEntry(entry, should_dump, name_hint);
2084 }
2085
2086
2087 void GDBJITInterface::AddCode(GDBJITInterface::CodeTag tag,
2088                               const char* name,
2089                               Code* code) {
2090   if (!FLAG_gdbjit) return;
2091
2092   EmbeddedVector<char, 256> buffer;
2093   StringBuilder builder(buffer.start(), buffer.length());
2094
2095   builder.AddString(Tag2String(tag));
2096   if ((name != NULL) && (*name != '\0')) {
2097     builder.AddString(": ");
2098     builder.AddString(name);
2099   } else {
2100     builder.AddFormatted(": code object %p", static_cast<void*>(code));
2101   }
2102
2103   AddCode(builder.Finalize(), code, tag, NULL, NULL);
2104 }
2105
2106
2107 void GDBJITInterface::AddCode(GDBJITInterface::CodeTag tag,
2108                               Name* name,
2109                               Code* code) {
2110   if (!FLAG_gdbjit) return;
2111   if (name != NULL && name->IsString()) {
2112     AddCode(tag, String::cast(name)->ToCString(DISALLOW_NULLS).get(), code);
2113   } else {
2114     AddCode(tag, "", code);
2115   }
2116 }
2117
2118
2119 void GDBJITInterface::AddCode(GDBJITInterface::CodeTag tag, Code* code) {
2120   if (!FLAG_gdbjit) return;
2121
2122   AddCode(tag, "", code);
2123 }
2124
2125
2126 void GDBJITInterface::RemoveCode(Code* code) {
2127   if (!FLAG_gdbjit) return;
2128
2129   LockGuard<Mutex> lock_guard(mutex.Pointer());
2130   HashMap::Entry* e = GetEntries()->Lookup(code,
2131                                            HashForCodeObject(code),
2132                                            false);
2133   if (e == NULL) return;
2134
2135   if (IsLineInfoTagged(e->value)) {
2136     delete UntagLineInfo(e->value);
2137   } else {
2138     JITCodeEntry* entry = static_cast<JITCodeEntry*>(e->value);
2139     UnregisterCodeEntry(entry);
2140     DestroyCodeEntry(entry);
2141   }
2142   e->value = NULL;
2143   GetEntries()->Remove(code, HashForCodeObject(code));
2144 }
2145
2146
2147 void GDBJITInterface::RemoveCodeRange(Address start, Address end) {
2148   HashMap* entries = GetEntries();
2149   Zone zone(Isolate::Current());
2150   ZoneList<Code*> dead_codes(1, &zone);
2151
2152   for (HashMap::Entry* e = entries->Start(); e != NULL; e = entries->Next(e)) {
2153     Code* code = reinterpret_cast<Code*>(e->key);
2154     if (code->address() >= start && code->address() < end) {
2155       dead_codes.Add(code, &zone);
2156     }
2157   }
2158
2159   for (int i = 0; i < dead_codes.length(); i++) {
2160     RemoveCode(dead_codes.at(i));
2161   }
2162 }
2163
2164
2165 void GDBJITInterface::RegisterDetailedLineInfo(Code* code,
2166                                                GDBJITLineInfo* line_info) {
2167   LockGuard<Mutex> lock_guard(mutex.Pointer());
2168   ASSERT(!IsLineInfoTagged(line_info));
2169   HashMap::Entry* e = GetEntries()->Lookup(code, HashForCodeObject(code), true);
2170   ASSERT(e->value == NULL);
2171   e->value = TagLineInfo(line_info);
2172 }
2173
2174
2175 } }  // namespace v8::internal
2176 #endif