Update To 11.40.268.0
[platform/framework/web/crosswalk.git] / src / v8 / src / gdb-jit.cc
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifdef ENABLE_GDB_JIT_INTERFACE
6 #include "src/v8.h"
7
8 #include "src/base/bits.h"
9 #include "src/base/platform/platform.h"
10 #include "src/bootstrapper.h"
11 #include "src/compiler.h"
12 #include "src/frames-inl.h"
13 #include "src/frames.h"
14 #include "src/gdb-jit.h"
15 #include "src/global-handles.h"
16 #include "src/messages.h"
17 #include "src/natives.h"
18 #include "src/ostreams.h"
19 #include "src/scopes.h"
20
21 namespace v8 {
22 namespace internal {
23
24 #ifdef __APPLE__
25 #define __MACH_O
26 class MachO;
27 class MachOSection;
28 typedef MachO DebugObject;
29 typedef MachOSection DebugSection;
30 #else
31 #define __ELF
32 class ELF;
33 class ELFSection;
34 typedef ELF DebugObject;
35 typedef ELFSection DebugSection;
36 #endif
37
38 class Writer BASE_EMBEDDED {
39  public:
40   explicit Writer(DebugObject* debug_object)
41       : debug_object_(debug_object),
42         position_(0),
43         capacity_(1024),
44         buffer_(reinterpret_cast<byte*>(malloc(capacity_))) {
45   }
46
47   ~Writer() {
48     free(buffer_);
49   }
50
51   uintptr_t position() const {
52     return position_;
53   }
54
55   template<typename T>
56   class Slot {
57    public:
58     Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) { }
59
60     T* operator-> () {
61       return w_->RawSlotAt<T>(offset_);
62     }
63
64     void set(const T& value) {
65       *w_->RawSlotAt<T>(offset_) = value;
66     }
67
68     Slot<T> at(int i) {
69       return Slot<T>(w_, offset_ + sizeof(T) * i);
70     }
71
72    private:
73     Writer* w_;
74     uintptr_t offset_;
75   };
76
77   template<typename T>
78   void Write(const T& val) {
79     Ensure(position_ + sizeof(T));
80     *RawSlotAt<T>(position_) = val;
81     position_ += sizeof(T);
82   }
83
84   template<typename T>
85   Slot<T> SlotAt(uintptr_t offset) {
86     Ensure(offset + sizeof(T));
87     return Slot<T>(this, offset);
88   }
89
90   template<typename T>
91   Slot<T> CreateSlotHere() {
92     return CreateSlotsHere<T>(1);
93   }
94
95   template<typename T>
96   Slot<T> CreateSlotsHere(uint32_t count) {
97     uintptr_t slot_position = position_;
98     position_ += sizeof(T) * count;
99     Ensure(position_);
100     return SlotAt<T>(slot_position);
101   }
102
103   void Ensure(uintptr_t pos) {
104     if (capacity_ < pos) {
105       while (capacity_ < pos) capacity_ *= 2;
106       buffer_ = reinterpret_cast<byte*>(realloc(buffer_, capacity_));
107     }
108   }
109
110   DebugObject* debug_object() { return debug_object_; }
111
112   byte* buffer() { return buffer_; }
113
114   void Align(uintptr_t align) {
115     uintptr_t delta = position_ % align;
116     if (delta == 0) return;
117     uintptr_t padding = align - delta;
118     Ensure(position_ += padding);
119     DCHECK((position_ % align) == 0);
120   }
121
122   void WriteULEB128(uintptr_t value) {
123     do {
124       uint8_t byte = value & 0x7F;
125       value >>= 7;
126       if (value != 0) byte |= 0x80;
127       Write<uint8_t>(byte);
128     } while (value != 0);
129   }
130
131   void WriteSLEB128(intptr_t value) {
132     bool more = true;
133     while (more) {
134       int8_t byte = value & 0x7F;
135       bool byte_sign = byte & 0x40;
136       value >>= 7;
137
138       if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) {
139         more = false;
140       } else {
141         byte |= 0x80;
142       }
143
144       Write<int8_t>(byte);
145     }
146   }
147
148   void WriteString(const char* str) {
149     do {
150       Write<char>(*str);
151     } while (*str++);
152   }
153
154  private:
155   template<typename T> friend class Slot;
156
157   template<typename T>
158   T* RawSlotAt(uintptr_t offset) {
159     DCHECK(offset < capacity_ && offset + sizeof(T) <= capacity_);
160     return reinterpret_cast<T*>(&buffer_[offset]);
161   }
162
163   DebugObject* debug_object_;
164   uintptr_t position_;
165   uintptr_t capacity_;
166   byte* buffer_;
167 };
168
169 class ELFStringTable;
170
171 template<typename THeader>
172 class DebugSectionBase : public ZoneObject {
173  public:
174   virtual ~DebugSectionBase() { }
175
176   virtual void WriteBody(Writer::Slot<THeader> header, Writer* writer) {
177     uintptr_t start = writer->position();
178     if (WriteBodyInternal(writer)) {
179       uintptr_t end = writer->position();
180       header->offset = start;
181 #if defined(__MACH_O)
182       header->addr = 0;
183 #endif
184       header->size = end - start;
185     }
186   }
187
188   virtual bool WriteBodyInternal(Writer* writer) {
189     return false;
190   }
191
192   typedef THeader Header;
193 };
194
195
196 struct MachOSectionHeader {
197   char sectname[16];
198   char segname[16];
199 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
200   uint32_t addr;
201   uint32_t size;
202 #else
203   uint64_t addr;
204   uint64_t size;
205 #endif
206   uint32_t offset;
207   uint32_t align;
208   uint32_t reloff;
209   uint32_t nreloc;
210   uint32_t flags;
211   uint32_t reserved1;
212   uint32_t reserved2;
213 };
214
215
216 class MachOSection : public DebugSectionBase<MachOSectionHeader> {
217  public:
218   enum Type {
219     S_REGULAR = 0x0u,
220     S_ATTR_COALESCED = 0xbu,
221     S_ATTR_SOME_INSTRUCTIONS = 0x400u,
222     S_ATTR_DEBUG = 0x02000000u,
223     S_ATTR_PURE_INSTRUCTIONS = 0x80000000u
224   };
225
226   MachOSection(const char* name, const char* segment, uint32_t align,
227                uint32_t flags)
228       : name_(name), segment_(segment), align_(align), flags_(flags) {
229     if (align_ != 0) {
230       DCHECK(base::bits::IsPowerOfTwo32(align));
231       align_ = WhichPowerOf2(align_);
232     }
233   }
234
235   virtual ~MachOSection() { }
236
237   virtual void PopulateHeader(Writer::Slot<Header> header) {
238     header->addr = 0;
239     header->size = 0;
240     header->offset = 0;
241     header->align = align_;
242     header->reloff = 0;
243     header->nreloc = 0;
244     header->flags = flags_;
245     header->reserved1 = 0;
246     header->reserved2 = 0;
247     memset(header->sectname, 0, sizeof(header->sectname));
248     memset(header->segname, 0, sizeof(header->segname));
249     DCHECK(strlen(name_) < sizeof(header->sectname));
250     DCHECK(strlen(segment_) < sizeof(header->segname));
251     strncpy(header->sectname, name_, sizeof(header->sectname));
252     strncpy(header->segname, segment_, sizeof(header->segname));
253   }
254
255  private:
256   const char* name_;
257   const char* segment_;
258   uint32_t align_;
259   uint32_t flags_;
260 };
261
262
263 struct ELFSectionHeader {
264   uint32_t name;
265   uint32_t type;
266   uintptr_t flags;
267   uintptr_t address;
268   uintptr_t offset;
269   uintptr_t size;
270   uint32_t link;
271   uint32_t info;
272   uintptr_t alignment;
273   uintptr_t entry_size;
274 };
275
276
277 #if defined(__ELF)
278 class ELFSection : public DebugSectionBase<ELFSectionHeader> {
279  public:
280   enum Type {
281     TYPE_NULL = 0,
282     TYPE_PROGBITS = 1,
283     TYPE_SYMTAB = 2,
284     TYPE_STRTAB = 3,
285     TYPE_RELA = 4,
286     TYPE_HASH = 5,
287     TYPE_DYNAMIC = 6,
288     TYPE_NOTE = 7,
289     TYPE_NOBITS = 8,
290     TYPE_REL = 9,
291     TYPE_SHLIB = 10,
292     TYPE_DYNSYM = 11,
293     TYPE_LOPROC = 0x70000000,
294     TYPE_X86_64_UNWIND = 0x70000001,
295     TYPE_HIPROC = 0x7fffffff,
296     TYPE_LOUSER = 0x80000000,
297     TYPE_HIUSER = 0xffffffff
298   };
299
300   enum Flags {
301     FLAG_WRITE = 1,
302     FLAG_ALLOC = 2,
303     FLAG_EXEC = 4
304   };
305
306   enum SpecialIndexes {
307     INDEX_ABSOLUTE = 0xfff1
308   };
309
310   ELFSection(const char* name, Type type, uintptr_t align)
311       : name_(name), type_(type), align_(align) { }
312
313   virtual ~ELFSection() { }
314
315   void PopulateHeader(Writer::Slot<Header> header, ELFStringTable* strtab);
316
317   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
318     uintptr_t start = w->position();
319     if (WriteBodyInternal(w)) {
320       uintptr_t end = w->position();
321       header->offset = start;
322       header->size = end - start;
323     }
324   }
325
326   virtual bool WriteBodyInternal(Writer* w) {
327     return false;
328   }
329
330   uint16_t index() const { return index_; }
331   void set_index(uint16_t index) { index_ = index; }
332
333  protected:
334   virtual void PopulateHeader(Writer::Slot<Header> header) {
335     header->flags = 0;
336     header->address = 0;
337     header->offset = 0;
338     header->size = 0;
339     header->link = 0;
340     header->info = 0;
341     header->entry_size = 0;
342   }
343
344  private:
345   const char* name_;
346   Type type_;
347   uintptr_t align_;
348   uint16_t index_;
349 };
350 #endif  // defined(__ELF)
351
352
353 #if defined(__MACH_O)
354 class MachOTextSection : public MachOSection {
355  public:
356   MachOTextSection(uintptr_t align,
357                    uintptr_t addr,
358                    uintptr_t size)
359       : MachOSection("__text",
360                      "__TEXT",
361                      align,
362                      MachOSection::S_REGULAR |
363                          MachOSection::S_ATTR_SOME_INSTRUCTIONS |
364                          MachOSection::S_ATTR_PURE_INSTRUCTIONS),
365         addr_(addr),
366         size_(size) { }
367
368  protected:
369   virtual void PopulateHeader(Writer::Slot<Header> header) {
370     MachOSection::PopulateHeader(header);
371     header->addr = addr_;
372     header->size = size_;
373   }
374
375  private:
376   uintptr_t addr_;
377   uintptr_t size_;
378 };
379 #endif  // defined(__MACH_O)
380
381
382 #if defined(__ELF)
383 class FullHeaderELFSection : public ELFSection {
384  public:
385   FullHeaderELFSection(const char* name,
386                        Type type,
387                        uintptr_t align,
388                        uintptr_t addr,
389                        uintptr_t offset,
390                        uintptr_t size,
391                        uintptr_t flags)
392       : ELFSection(name, type, align),
393         addr_(addr),
394         offset_(offset),
395         size_(size),
396         flags_(flags) { }
397
398  protected:
399   virtual void PopulateHeader(Writer::Slot<Header> header) {
400     ELFSection::PopulateHeader(header);
401     header->address = addr_;
402     header->offset = offset_;
403     header->size = size_;
404     header->flags = flags_;
405   }
406
407  private:
408   uintptr_t addr_;
409   uintptr_t offset_;
410   uintptr_t size_;
411   uintptr_t flags_;
412 };
413
414
415 class ELFStringTable : public ELFSection {
416  public:
417   explicit ELFStringTable(const char* name)
418       : ELFSection(name, TYPE_STRTAB, 1), writer_(NULL), offset_(0), size_(0) {
419   }
420
421   uintptr_t Add(const char* str) {
422     if (*str == '\0') return 0;
423
424     uintptr_t offset = size_;
425     WriteString(str);
426     return offset;
427   }
428
429   void AttachWriter(Writer* w) {
430     writer_ = w;
431     offset_ = writer_->position();
432
433     // First entry in the string table should be an empty string.
434     WriteString("");
435   }
436
437   void DetachWriter() {
438     writer_ = NULL;
439   }
440
441   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
442     DCHECK(writer_ == NULL);
443     header->offset = offset_;
444     header->size = size_;
445   }
446
447  private:
448   void WriteString(const char* str) {
449     uintptr_t written = 0;
450     do {
451       writer_->Write(*str);
452       written++;
453     } while (*str++);
454     size_ += written;
455   }
456
457   Writer* writer_;
458
459   uintptr_t offset_;
460   uintptr_t size_;
461 };
462
463
464 void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header,
465                                 ELFStringTable* strtab) {
466   header->name = strtab->Add(name_);
467   header->type = type_;
468   header->alignment = align_;
469   PopulateHeader(header);
470 }
471 #endif  // defined(__ELF)
472
473
474 #if defined(__MACH_O)
475 class MachO BASE_EMBEDDED {
476  public:
477   explicit MachO(Zone* zone) : zone_(zone), sections_(6, zone) { }
478
479   uint32_t AddSection(MachOSection* section) {
480     sections_.Add(section, zone_);
481     return sections_.length() - 1;
482   }
483
484   void Write(Writer* w, uintptr_t code_start, uintptr_t code_size) {
485     Writer::Slot<MachOHeader> header = WriteHeader(w);
486     uintptr_t load_command_start = w->position();
487     Writer::Slot<MachOSegmentCommand> cmd = WriteSegmentCommand(w,
488                                                                 code_start,
489                                                                 code_size);
490     WriteSections(w, cmd, header, load_command_start);
491   }
492
493  private:
494   struct MachOHeader {
495     uint32_t magic;
496     uint32_t cputype;
497     uint32_t cpusubtype;
498     uint32_t filetype;
499     uint32_t ncmds;
500     uint32_t sizeofcmds;
501     uint32_t flags;
502 #if V8_TARGET_ARCH_X64
503     uint32_t reserved;
504 #endif
505   };
506
507   struct MachOSegmentCommand {
508     uint32_t cmd;
509     uint32_t cmdsize;
510     char segname[16];
511 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
512     uint32_t vmaddr;
513     uint32_t vmsize;
514     uint32_t fileoff;
515     uint32_t filesize;
516 #else
517     uint64_t vmaddr;
518     uint64_t vmsize;
519     uint64_t fileoff;
520     uint64_t filesize;
521 #endif
522     uint32_t maxprot;
523     uint32_t initprot;
524     uint32_t nsects;
525     uint32_t flags;
526   };
527
528   enum MachOLoadCommandCmd {
529     LC_SEGMENT_32 = 0x00000001u,
530     LC_SEGMENT_64 = 0x00000019u
531   };
532
533
534   Writer::Slot<MachOHeader> WriteHeader(Writer* w) {
535     DCHECK(w->position() == 0);
536     Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>();
537 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
538     header->magic = 0xFEEDFACEu;
539     header->cputype = 7;  // i386
540     header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
541 #elif V8_TARGET_ARCH_X64
542     header->magic = 0xFEEDFACFu;
543     header->cputype = 7 | 0x01000000;  // i386 | 64-bit ABI
544     header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
545     header->reserved = 0;
546 #else
547 #error Unsupported target architecture.
548 #endif
549     header->filetype = 0x1;  // MH_OBJECT
550     header->ncmds = 1;
551     header->sizeofcmds = 0;
552     header->flags = 0;
553     return header;
554   }
555
556
557   Writer::Slot<MachOSegmentCommand> WriteSegmentCommand(Writer* w,
558                                                         uintptr_t code_start,
559                                                         uintptr_t code_size) {
560     Writer::Slot<MachOSegmentCommand> cmd =
561         w->CreateSlotHere<MachOSegmentCommand>();
562 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
563     cmd->cmd = LC_SEGMENT_32;
564 #else
565     cmd->cmd = LC_SEGMENT_64;
566 #endif
567     cmd->vmaddr = code_start;
568     cmd->vmsize = code_size;
569     cmd->fileoff = 0;
570     cmd->filesize = 0;
571     cmd->maxprot = 7;
572     cmd->initprot = 7;
573     cmd->flags = 0;
574     cmd->nsects = sections_.length();
575     memset(cmd->segname, 0, 16);
576     cmd->cmdsize = sizeof(MachOSegmentCommand) + sizeof(MachOSection::Header) *
577         cmd->nsects;
578     return cmd;
579   }
580
581
582   void WriteSections(Writer* w,
583                      Writer::Slot<MachOSegmentCommand> cmd,
584                      Writer::Slot<MachOHeader> header,
585                      uintptr_t load_command_start) {
586     Writer::Slot<MachOSection::Header> headers =
587         w->CreateSlotsHere<MachOSection::Header>(sections_.length());
588     cmd->fileoff = w->position();
589     header->sizeofcmds = w->position() - load_command_start;
590     for (int section = 0; section < sections_.length(); ++section) {
591       sections_[section]->PopulateHeader(headers.at(section));
592       sections_[section]->WriteBody(headers.at(section), w);
593     }
594     cmd->filesize = w->position() - (uintptr_t)cmd->fileoff;
595   }
596
597   Zone* zone_;
598   ZoneList<MachOSection*> sections_;
599 };
600 #endif  // defined(__MACH_O)
601
602
603 #if defined(__ELF)
604 class ELF BASE_EMBEDDED {
605  public:
606   explicit ELF(Zone* zone) : zone_(zone), sections_(6, zone) {
607     sections_.Add(new(zone) ELFSection("", ELFSection::TYPE_NULL, 0), zone);
608     sections_.Add(new(zone) ELFStringTable(".shstrtab"), zone);
609   }
610
611   void Write(Writer* w) {
612     WriteHeader(w);
613     WriteSectionTable(w);
614     WriteSections(w);
615   }
616
617   ELFSection* SectionAt(uint32_t index) {
618     return sections_[index];
619   }
620
621   uint32_t AddSection(ELFSection* section) {
622     sections_.Add(section, zone_);
623     section->set_index(sections_.length() - 1);
624     return sections_.length() - 1;
625   }
626
627  private:
628   struct ELFHeader {
629     uint8_t ident[16];
630     uint16_t type;
631     uint16_t machine;
632     uint32_t version;
633     uintptr_t entry;
634     uintptr_t pht_offset;
635     uintptr_t sht_offset;
636     uint32_t flags;
637     uint16_t header_size;
638     uint16_t pht_entry_size;
639     uint16_t pht_entry_num;
640     uint16_t sht_entry_size;
641     uint16_t sht_entry_num;
642     uint16_t sht_strtab_index;
643   };
644
645
646   void WriteHeader(Writer* w) {
647     DCHECK(w->position() == 0);
648     Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>();
649 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \
650      (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT))
651     const uint8_t ident[16] =
652         { 0x7f, 'E', 'L', 'F', 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
653 #elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT
654     const uint8_t ident[16] =
655         { 0x7f, 'E', 'L', 'F', 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
656 #else
657 #error Unsupported target architecture.
658 #endif
659     memcpy(header->ident, ident, 16);
660     header->type = 1;
661 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
662     header->machine = 3;
663 #elif V8_TARGET_ARCH_X64
664     // Processor identification value for x64 is 62 as defined in
665     //    System V ABI, AMD64 Supplement
666     //    http://www.x86-64.org/documentation/abi.pdf
667     header->machine = 62;
668 #elif V8_TARGET_ARCH_ARM
669     // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at
670     // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf
671     header->machine = 40;
672 #else
673 #error Unsupported target architecture.
674 #endif
675     header->version = 1;
676     header->entry = 0;
677     header->pht_offset = 0;
678     header->sht_offset = sizeof(ELFHeader);  // Section table follows header.
679     header->flags = 0;
680     header->header_size = sizeof(ELFHeader);
681     header->pht_entry_size = 0;
682     header->pht_entry_num = 0;
683     header->sht_entry_size = sizeof(ELFSection::Header);
684     header->sht_entry_num = sections_.length();
685     header->sht_strtab_index = 1;
686   }
687
688   void WriteSectionTable(Writer* w) {
689     // Section headers table immediately follows file header.
690     DCHECK(w->position() == sizeof(ELFHeader));
691
692     Writer::Slot<ELFSection::Header> headers =
693         w->CreateSlotsHere<ELFSection::Header>(sections_.length());
694
695     // String table for section table is the first section.
696     ELFStringTable* strtab = static_cast<ELFStringTable*>(SectionAt(1));
697     strtab->AttachWriter(w);
698     for (int i = 0, length = sections_.length();
699          i < length;
700          i++) {
701       sections_[i]->PopulateHeader(headers.at(i), strtab);
702     }
703     strtab->DetachWriter();
704   }
705
706   int SectionHeaderPosition(uint32_t section_index) {
707     return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index;
708   }
709
710   void WriteSections(Writer* w) {
711     Writer::Slot<ELFSection::Header> headers =
712         w->SlotAt<ELFSection::Header>(sizeof(ELFHeader));
713
714     for (int i = 0, length = sections_.length();
715          i < length;
716          i++) {
717       sections_[i]->WriteBody(headers.at(i), w);
718     }
719   }
720
721   Zone* zone_;
722   ZoneList<ELFSection*> sections_;
723 };
724
725
726 class ELFSymbol BASE_EMBEDDED {
727  public:
728   enum Type {
729     TYPE_NOTYPE = 0,
730     TYPE_OBJECT = 1,
731     TYPE_FUNC = 2,
732     TYPE_SECTION = 3,
733     TYPE_FILE = 4,
734     TYPE_LOPROC = 13,
735     TYPE_HIPROC = 15
736   };
737
738   enum Binding {
739     BIND_LOCAL = 0,
740     BIND_GLOBAL = 1,
741     BIND_WEAK = 2,
742     BIND_LOPROC = 13,
743     BIND_HIPROC = 15
744   };
745
746   ELFSymbol(const char* name,
747             uintptr_t value,
748             uintptr_t size,
749             Binding binding,
750             Type type,
751             uint16_t section)
752       : name(name),
753         value(value),
754         size(size),
755         info((binding << 4) | type),
756         other(0),
757         section(section) {
758   }
759
760   Binding binding() const {
761     return static_cast<Binding>(info >> 4);
762   }
763 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \
764      (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT))
765   struct SerializedLayout {
766     SerializedLayout(uint32_t name,
767                      uintptr_t value,
768                      uintptr_t size,
769                      Binding binding,
770                      Type type,
771                      uint16_t section)
772         : name(name),
773           value(value),
774           size(size),
775           info((binding << 4) | type),
776           other(0),
777           section(section) {
778     }
779
780     uint32_t name;
781     uintptr_t value;
782     uintptr_t size;
783     uint8_t info;
784     uint8_t other;
785     uint16_t section;
786   };
787 #elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT
788   struct SerializedLayout {
789     SerializedLayout(uint32_t name,
790                      uintptr_t value,
791                      uintptr_t size,
792                      Binding binding,
793                      Type type,
794                      uint16_t section)
795         : name(name),
796           info((binding << 4) | type),
797           other(0),
798           section(section),
799           value(value),
800           size(size) {
801     }
802
803     uint32_t name;
804     uint8_t info;
805     uint8_t other;
806     uint16_t section;
807     uintptr_t value;
808     uintptr_t size;
809   };
810 #endif
811
812   void Write(Writer::Slot<SerializedLayout> s, ELFStringTable* t) {
813     // Convert symbol names from strings to indexes in the string table.
814     s->name = t->Add(name);
815     s->value = value;
816     s->size = size;
817     s->info = info;
818     s->other = other;
819     s->section = section;
820   }
821
822  private:
823   const char* name;
824   uintptr_t value;
825   uintptr_t size;
826   uint8_t info;
827   uint8_t other;
828   uint16_t section;
829 };
830
831
832 class ELFSymbolTable : public ELFSection {
833  public:
834   ELFSymbolTable(const char* name, Zone* zone)
835       : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)),
836         locals_(1, zone),
837         globals_(1, zone) {
838   }
839
840   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
841     w->Align(header->alignment);
842     int total_symbols = locals_.length() + globals_.length() + 1;
843     header->offset = w->position();
844
845     Writer::Slot<ELFSymbol::SerializedLayout> symbols =
846         w->CreateSlotsHere<ELFSymbol::SerializedLayout>(total_symbols);
847
848     header->size = w->position() - header->offset;
849
850     // String table for this symbol table should follow it in the section table.
851     ELFStringTable* strtab =
852         static_cast<ELFStringTable*>(w->debug_object()->SectionAt(index() + 1));
853     strtab->AttachWriter(w);
854     symbols.at(0).set(ELFSymbol::SerializedLayout(0,
855                                                   0,
856                                                   0,
857                                                   ELFSymbol::BIND_LOCAL,
858                                                   ELFSymbol::TYPE_NOTYPE,
859                                                   0));
860     WriteSymbolsList(&locals_, symbols.at(1), strtab);
861     WriteSymbolsList(&globals_, symbols.at(locals_.length() + 1), strtab);
862     strtab->DetachWriter();
863   }
864
865   void Add(const ELFSymbol& symbol, Zone* zone) {
866     if (symbol.binding() == ELFSymbol::BIND_LOCAL) {
867       locals_.Add(symbol, zone);
868     } else {
869       globals_.Add(symbol, zone);
870     }
871   }
872
873  protected:
874   virtual void PopulateHeader(Writer::Slot<Header> header) {
875     ELFSection::PopulateHeader(header);
876     // We are assuming that string table will follow symbol table.
877     header->link = index() + 1;
878     header->info = locals_.length() + 1;
879     header->entry_size = sizeof(ELFSymbol::SerializedLayout);
880   }
881
882  private:
883   void WriteSymbolsList(const ZoneList<ELFSymbol>* src,
884                         Writer::Slot<ELFSymbol::SerializedLayout> dst,
885                         ELFStringTable* strtab) {
886     for (int i = 0, len = src->length();
887          i < len;
888          i++) {
889       src->at(i).Write(dst.at(i), strtab);
890     }
891   }
892
893   ZoneList<ELFSymbol> locals_;
894   ZoneList<ELFSymbol> globals_;
895 };
896 #endif  // defined(__ELF)
897
898
899 class LineInfo : public Malloced {
900  public:
901   LineInfo() : pc_info_(10) {}
902
903   void SetPosition(intptr_t pc, int pos, bool is_statement) {
904     AddPCInfo(PCInfo(pc, pos, is_statement));
905   }
906
907   struct PCInfo {
908     PCInfo(intptr_t pc, int pos, bool is_statement)
909         : pc_(pc), pos_(pos), is_statement_(is_statement) {}
910
911     intptr_t pc_;
912     int pos_;
913     bool is_statement_;
914   };
915
916   List<PCInfo>* pc_info() { return &pc_info_; }
917
918  private:
919   void AddPCInfo(const PCInfo& pc_info) { pc_info_.Add(pc_info); }
920
921   List<PCInfo> pc_info_;
922 };
923
924
925 class CodeDescription BASE_EMBEDDED {
926  public:
927 #if V8_TARGET_ARCH_X64
928   enum StackState {
929     POST_RBP_PUSH,
930     POST_RBP_SET,
931     POST_RBP_POP,
932     STACK_STATE_MAX
933   };
934 #endif
935
936   CodeDescription(const char* name, Code* code, Handle<Script> script,
937                   LineInfo* lineinfo, GDBJITInterface::CodeTag tag,
938                   CompilationInfo* info)
939       : name_(name),
940         code_(code),
941         script_(script),
942         lineinfo_(lineinfo),
943         tag_(tag),
944         info_(info) {}
945
946   const char* name() const {
947     return name_;
948   }
949
950   LineInfo* lineinfo() const { return lineinfo_; }
951
952   GDBJITInterface::CodeTag tag() const {
953     return tag_;
954   }
955
956   CompilationInfo* info() const {
957     return info_;
958   }
959
960   bool IsInfoAvailable() const {
961     return info_ != NULL;
962   }
963
964   uintptr_t CodeStart() const {
965     return reinterpret_cast<uintptr_t>(code_->instruction_start());
966   }
967
968   uintptr_t CodeEnd() const {
969     return reinterpret_cast<uintptr_t>(code_->instruction_end());
970   }
971
972   uintptr_t CodeSize() const {
973     return CodeEnd() - CodeStart();
974   }
975
976   bool IsLineInfoAvailable() {
977     return !script_.is_null() &&
978         script_->source()->IsString() &&
979         script_->HasValidSource() &&
980         script_->name()->IsString() &&
981         lineinfo_ != NULL;
982   }
983
984 #if V8_TARGET_ARCH_X64
985   uintptr_t GetStackStateStartAddress(StackState state) const {
986     DCHECK(state < STACK_STATE_MAX);
987     return stack_state_start_addresses_[state];
988   }
989
990   void SetStackStateStartAddress(StackState state, uintptr_t addr) {
991     DCHECK(state < STACK_STATE_MAX);
992     stack_state_start_addresses_[state] = addr;
993   }
994 #endif
995
996   SmartArrayPointer<char> GetFilename() {
997     return String::cast(script_->name())->ToCString();
998   }
999
1000   int GetScriptLineNumber(int pos) {
1001     return script_->GetLineNumber(pos) + 1;
1002   }
1003
1004
1005  private:
1006   const char* name_;
1007   Code* code_;
1008   Handle<Script> script_;
1009   LineInfo* lineinfo_;
1010   GDBJITInterface::CodeTag tag_;
1011   CompilationInfo* info_;
1012 #if V8_TARGET_ARCH_X64
1013   uintptr_t stack_state_start_addresses_[STACK_STATE_MAX];
1014 #endif
1015 };
1016
1017 #if defined(__ELF)
1018 static void CreateSymbolsTable(CodeDescription* desc,
1019                                Zone* zone,
1020                                ELF* elf,
1021                                int text_section_index) {
1022   ELFSymbolTable* symtab = new(zone) ELFSymbolTable(".symtab", zone);
1023   ELFStringTable* strtab = new(zone) ELFStringTable(".strtab");
1024
1025   // Symbol table should be followed by the linked string table.
1026   elf->AddSection(symtab);
1027   elf->AddSection(strtab);
1028
1029   symtab->Add(ELFSymbol("V8 Code",
1030                         0,
1031                         0,
1032                         ELFSymbol::BIND_LOCAL,
1033                         ELFSymbol::TYPE_FILE,
1034                         ELFSection::INDEX_ABSOLUTE),
1035               zone);
1036
1037   symtab->Add(ELFSymbol(desc->name(),
1038                         0,
1039                         desc->CodeSize(),
1040                         ELFSymbol::BIND_GLOBAL,
1041                         ELFSymbol::TYPE_FUNC,
1042                         text_section_index),
1043               zone);
1044 }
1045 #endif  // defined(__ELF)
1046
1047
1048 class DebugInfoSection : public DebugSection {
1049  public:
1050   explicit DebugInfoSection(CodeDescription* desc)
1051 #if defined(__ELF)
1052       : ELFSection(".debug_info", TYPE_PROGBITS, 1),
1053 #else
1054       : MachOSection("__debug_info",
1055                      "__DWARF",
1056                      1,
1057                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
1058 #endif
1059         desc_(desc) { }
1060
1061   // DWARF2 standard
1062   enum DWARF2LocationOp {
1063     DW_OP_reg0 = 0x50,
1064     DW_OP_reg1 = 0x51,
1065     DW_OP_reg2 = 0x52,
1066     DW_OP_reg3 = 0x53,
1067     DW_OP_reg4 = 0x54,
1068     DW_OP_reg5 = 0x55,
1069     DW_OP_reg6 = 0x56,
1070     DW_OP_reg7 = 0x57,
1071     DW_OP_fbreg = 0x91  // 1 param: SLEB128 offset
1072   };
1073
1074   enum DWARF2Encoding {
1075     DW_ATE_ADDRESS = 0x1,
1076     DW_ATE_SIGNED = 0x5
1077   };
1078
1079   bool WriteBodyInternal(Writer* w) {
1080     uintptr_t cu_start = w->position();
1081     Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>();
1082     uintptr_t start = w->position();
1083     w->Write<uint16_t>(2);  // DWARF version.
1084     w->Write<uint32_t>(0);  // Abbreviation table offset.
1085     w->Write<uint8_t>(sizeof(intptr_t));
1086
1087     w->WriteULEB128(1);  // Abbreviation code.
1088     w->WriteString(desc_->GetFilename().get());
1089     w->Write<intptr_t>(desc_->CodeStart());
1090     w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
1091     w->Write<uint32_t>(0);
1092
1093     uint32_t ty_offset = static_cast<uint32_t>(w->position() - cu_start);
1094     w->WriteULEB128(3);
1095     w->Write<uint8_t>(kPointerSize);
1096     w->WriteString("v8value");
1097
1098     if (desc_->IsInfoAvailable()) {
1099       Scope* scope = desc_->info()->scope();
1100       w->WriteULEB128(2);
1101       w->WriteString(desc_->name());
1102       w->Write<intptr_t>(desc_->CodeStart());
1103       w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
1104       Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>();
1105       uintptr_t fb_block_start = w->position();
1106 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
1107       w->Write<uint8_t>(DW_OP_reg5);  // The frame pointer's here on ia32
1108 #elif V8_TARGET_ARCH_X64
1109       w->Write<uint8_t>(DW_OP_reg6);  // and here on x64.
1110 #elif V8_TARGET_ARCH_ARM
1111       UNIMPLEMENTED();
1112 #elif V8_TARGET_ARCH_MIPS
1113       UNIMPLEMENTED();
1114 #elif V8_TARGET_ARCH_MIPS64
1115       UNIMPLEMENTED();
1116 #else
1117 #error Unsupported target architecture.
1118 #endif
1119       fb_block_size.set(static_cast<uint32_t>(w->position() - fb_block_start));
1120
1121       int params = scope->num_parameters();
1122       int slots = scope->num_stack_slots();
1123       int context_slots = scope->ContextLocalCount();
1124       // The real slot ID is internal_slots + context_slot_id.
1125       int internal_slots = Context::MIN_CONTEXT_SLOTS;
1126       int locals = scope->StackLocalCount();
1127       int current_abbreviation = 4;
1128
1129       for (int param = 0; param < params; ++param) {
1130         w->WriteULEB128(current_abbreviation++);
1131         w->WriteString(
1132             scope->parameter(param)->name()->ToCString(DISALLOW_NULLS).get());
1133         w->Write<uint32_t>(ty_offset);
1134         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
1135         uintptr_t block_start = w->position();
1136         w->Write<uint8_t>(DW_OP_fbreg);
1137         w->WriteSLEB128(
1138           JavaScriptFrameConstants::kLastParameterOffset +
1139               kPointerSize * (params - param - 1));
1140         block_size.set(static_cast<uint32_t>(w->position() - block_start));
1141       }
1142
1143       EmbeddedVector<char, 256> buffer;
1144       StringBuilder builder(buffer.start(), buffer.length());
1145
1146       for (int slot = 0; slot < slots; ++slot) {
1147         w->WriteULEB128(current_abbreviation++);
1148         builder.Reset();
1149         builder.AddFormatted("slot%d", slot);
1150         w->WriteString(builder.Finalize());
1151       }
1152
1153       // See contexts.h for more information.
1154       DCHECK(Context::MIN_CONTEXT_SLOTS == 4);
1155       DCHECK(Context::CLOSURE_INDEX == 0);
1156       DCHECK(Context::PREVIOUS_INDEX == 1);
1157       DCHECK(Context::EXTENSION_INDEX == 2);
1158       DCHECK(Context::GLOBAL_OBJECT_INDEX == 3);
1159       w->WriteULEB128(current_abbreviation++);
1160       w->WriteString(".closure");
1161       w->WriteULEB128(current_abbreviation++);
1162       w->WriteString(".previous");
1163       w->WriteULEB128(current_abbreviation++);
1164       w->WriteString(".extension");
1165       w->WriteULEB128(current_abbreviation++);
1166       w->WriteString(".global");
1167
1168       for (int context_slot = 0;
1169            context_slot < context_slots;
1170            ++context_slot) {
1171         w->WriteULEB128(current_abbreviation++);
1172         builder.Reset();
1173         builder.AddFormatted("context_slot%d", context_slot + internal_slots);
1174         w->WriteString(builder.Finalize());
1175       }
1176
1177       ZoneList<Variable*> stack_locals(locals, scope->zone());
1178       ZoneList<Variable*> context_locals(context_slots, scope->zone());
1179       scope->CollectStackAndContextLocals(&stack_locals, &context_locals);
1180       for (int local = 0; local < locals; ++local) {
1181         w->WriteULEB128(current_abbreviation++);
1182         w->WriteString(
1183             stack_locals[local]->name()->ToCString(DISALLOW_NULLS).get());
1184         w->Write<uint32_t>(ty_offset);
1185         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
1186         uintptr_t block_start = w->position();
1187         w->Write<uint8_t>(DW_OP_fbreg);
1188         w->WriteSLEB128(
1189           JavaScriptFrameConstants::kLocal0Offset -
1190               kPointerSize * local);
1191         block_size.set(static_cast<uint32_t>(w->position() - block_start));
1192       }
1193
1194       {
1195         w->WriteULEB128(current_abbreviation++);
1196         w->WriteString("__function");
1197         w->Write<uint32_t>(ty_offset);
1198         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
1199         uintptr_t block_start = w->position();
1200         w->Write<uint8_t>(DW_OP_fbreg);
1201         w->WriteSLEB128(JavaScriptFrameConstants::kFunctionOffset);
1202         block_size.set(static_cast<uint32_t>(w->position() - block_start));
1203       }
1204
1205       {
1206         w->WriteULEB128(current_abbreviation++);
1207         w->WriteString("__context");
1208         w->Write<uint32_t>(ty_offset);
1209         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
1210         uintptr_t block_start = w->position();
1211         w->Write<uint8_t>(DW_OP_fbreg);
1212         w->WriteSLEB128(StandardFrameConstants::kContextOffset);
1213         block_size.set(static_cast<uint32_t>(w->position() - block_start));
1214       }
1215
1216       w->WriteULEB128(0);  // Terminate the sub program.
1217     }
1218
1219     w->WriteULEB128(0);  // Terminate the compile unit.
1220     size.set(static_cast<uint32_t>(w->position() - start));
1221     return true;
1222   }
1223
1224  private:
1225   CodeDescription* desc_;
1226 };
1227
1228
1229 class DebugAbbrevSection : public DebugSection {
1230  public:
1231   explicit DebugAbbrevSection(CodeDescription* desc)
1232 #ifdef __ELF
1233       : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1),
1234 #else
1235       : MachOSection("__debug_abbrev",
1236                      "__DWARF",
1237                      1,
1238                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
1239 #endif
1240         desc_(desc) { }
1241
1242   // DWARF2 standard, figure 14.
1243   enum DWARF2Tags {
1244     DW_TAG_FORMAL_PARAMETER = 0x05,
1245     DW_TAG_POINTER_TYPE = 0xf,
1246     DW_TAG_COMPILE_UNIT = 0x11,
1247     DW_TAG_STRUCTURE_TYPE = 0x13,
1248     DW_TAG_BASE_TYPE = 0x24,
1249     DW_TAG_SUBPROGRAM = 0x2e,
1250     DW_TAG_VARIABLE = 0x34
1251   };
1252
1253   // DWARF2 standard, figure 16.
1254   enum DWARF2ChildrenDetermination {
1255     DW_CHILDREN_NO = 0,
1256     DW_CHILDREN_YES = 1
1257   };
1258
1259   // DWARF standard, figure 17.
1260   enum DWARF2Attribute {
1261     DW_AT_LOCATION = 0x2,
1262     DW_AT_NAME = 0x3,
1263     DW_AT_BYTE_SIZE = 0xb,
1264     DW_AT_STMT_LIST = 0x10,
1265     DW_AT_LOW_PC = 0x11,
1266     DW_AT_HIGH_PC = 0x12,
1267     DW_AT_ENCODING = 0x3e,
1268     DW_AT_FRAME_BASE = 0x40,
1269     DW_AT_TYPE = 0x49
1270   };
1271
1272   // DWARF2 standard, figure 19.
1273   enum DWARF2AttributeForm {
1274     DW_FORM_ADDR = 0x1,
1275     DW_FORM_BLOCK4 = 0x4,
1276     DW_FORM_STRING = 0x8,
1277     DW_FORM_DATA4 = 0x6,
1278     DW_FORM_BLOCK = 0x9,
1279     DW_FORM_DATA1 = 0xb,
1280     DW_FORM_FLAG = 0xc,
1281     DW_FORM_REF4 = 0x13
1282   };
1283
1284   void WriteVariableAbbreviation(Writer* w,
1285                                  int abbreviation_code,
1286                                  bool has_value,
1287                                  bool is_parameter) {
1288     w->WriteULEB128(abbreviation_code);
1289     w->WriteULEB128(is_parameter ? DW_TAG_FORMAL_PARAMETER : DW_TAG_VARIABLE);
1290     w->Write<uint8_t>(DW_CHILDREN_NO);
1291     w->WriteULEB128(DW_AT_NAME);
1292     w->WriteULEB128(DW_FORM_STRING);
1293     if (has_value) {
1294       w->WriteULEB128(DW_AT_TYPE);
1295       w->WriteULEB128(DW_FORM_REF4);
1296       w->WriteULEB128(DW_AT_LOCATION);
1297       w->WriteULEB128(DW_FORM_BLOCK4);
1298     }
1299     w->WriteULEB128(0);
1300     w->WriteULEB128(0);
1301   }
1302
1303   bool WriteBodyInternal(Writer* w) {
1304     int current_abbreviation = 1;
1305     bool extra_info = desc_->IsInfoAvailable();
1306     DCHECK(desc_->IsLineInfoAvailable());
1307     w->WriteULEB128(current_abbreviation++);
1308     w->WriteULEB128(DW_TAG_COMPILE_UNIT);
1309     w->Write<uint8_t>(extra_info ? DW_CHILDREN_YES : DW_CHILDREN_NO);
1310     w->WriteULEB128(DW_AT_NAME);
1311     w->WriteULEB128(DW_FORM_STRING);
1312     w->WriteULEB128(DW_AT_LOW_PC);
1313     w->WriteULEB128(DW_FORM_ADDR);
1314     w->WriteULEB128(DW_AT_HIGH_PC);
1315     w->WriteULEB128(DW_FORM_ADDR);
1316     w->WriteULEB128(DW_AT_STMT_LIST);
1317     w->WriteULEB128(DW_FORM_DATA4);
1318     w->WriteULEB128(0);
1319     w->WriteULEB128(0);
1320
1321     if (extra_info) {
1322       Scope* scope = desc_->info()->scope();
1323       int params = scope->num_parameters();
1324       int slots = scope->num_stack_slots();
1325       int context_slots = scope->ContextLocalCount();
1326       // The real slot ID is internal_slots + context_slot_id.
1327       int internal_slots = Context::MIN_CONTEXT_SLOTS;
1328       int locals = scope->StackLocalCount();
1329       // Total children is params + slots + context_slots + internal_slots +
1330       // locals + 2 (__function and __context).
1331
1332       // The extra duplication below seems to be necessary to keep
1333       // gdb from getting upset on OSX.
1334       w->WriteULEB128(current_abbreviation++);  // Abbreviation code.
1335       w->WriteULEB128(DW_TAG_SUBPROGRAM);
1336       w->Write<uint8_t>(DW_CHILDREN_YES);
1337       w->WriteULEB128(DW_AT_NAME);
1338       w->WriteULEB128(DW_FORM_STRING);
1339       w->WriteULEB128(DW_AT_LOW_PC);
1340       w->WriteULEB128(DW_FORM_ADDR);
1341       w->WriteULEB128(DW_AT_HIGH_PC);
1342       w->WriteULEB128(DW_FORM_ADDR);
1343       w->WriteULEB128(DW_AT_FRAME_BASE);
1344       w->WriteULEB128(DW_FORM_BLOCK4);
1345       w->WriteULEB128(0);
1346       w->WriteULEB128(0);
1347
1348       w->WriteULEB128(current_abbreviation++);
1349       w->WriteULEB128(DW_TAG_STRUCTURE_TYPE);
1350       w->Write<uint8_t>(DW_CHILDREN_NO);
1351       w->WriteULEB128(DW_AT_BYTE_SIZE);
1352       w->WriteULEB128(DW_FORM_DATA1);
1353       w->WriteULEB128(DW_AT_NAME);
1354       w->WriteULEB128(DW_FORM_STRING);
1355       w->WriteULEB128(0);
1356       w->WriteULEB128(0);
1357
1358       for (int param = 0; param < params; ++param) {
1359         WriteVariableAbbreviation(w, current_abbreviation++, true, true);
1360       }
1361
1362       for (int slot = 0; slot < slots; ++slot) {
1363         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
1364       }
1365
1366       for (int internal_slot = 0;
1367            internal_slot < internal_slots;
1368            ++internal_slot) {
1369         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
1370       }
1371
1372       for (int context_slot = 0;
1373            context_slot < context_slots;
1374            ++context_slot) {
1375         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
1376       }
1377
1378       for (int local = 0; local < locals; ++local) {
1379         WriteVariableAbbreviation(w, current_abbreviation++, true, false);
1380       }
1381
1382       // The function.
1383       WriteVariableAbbreviation(w, current_abbreviation++, true, false);
1384
1385       // The context.
1386       WriteVariableAbbreviation(w, current_abbreviation++, true, false);
1387
1388       w->WriteULEB128(0);  // Terminate the sibling list.
1389     }
1390
1391     w->WriteULEB128(0);  // Terminate the table.
1392     return true;
1393   }
1394
1395  private:
1396   CodeDescription* desc_;
1397 };
1398
1399
1400 class DebugLineSection : public DebugSection {
1401  public:
1402   explicit DebugLineSection(CodeDescription* desc)
1403 #ifdef __ELF
1404       : ELFSection(".debug_line", TYPE_PROGBITS, 1),
1405 #else
1406       : MachOSection("__debug_line",
1407                      "__DWARF",
1408                      1,
1409                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
1410 #endif
1411         desc_(desc) { }
1412
1413   // DWARF2 standard, figure 34.
1414   enum DWARF2Opcodes {
1415     DW_LNS_COPY = 1,
1416     DW_LNS_ADVANCE_PC = 2,
1417     DW_LNS_ADVANCE_LINE = 3,
1418     DW_LNS_SET_FILE = 4,
1419     DW_LNS_SET_COLUMN = 5,
1420     DW_LNS_NEGATE_STMT = 6
1421   };
1422
1423   // DWARF2 standard, figure 35.
1424   enum DWARF2ExtendedOpcode {
1425     DW_LNE_END_SEQUENCE = 1,
1426     DW_LNE_SET_ADDRESS = 2,
1427     DW_LNE_DEFINE_FILE = 3
1428   };
1429
1430   bool WriteBodyInternal(Writer* w) {
1431     // Write prologue.
1432     Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>();
1433     uintptr_t start = w->position();
1434
1435     // Used for special opcodes
1436     const int8_t line_base = 1;
1437     const uint8_t line_range = 7;
1438     const int8_t max_line_incr = (line_base + line_range - 1);
1439     const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1;
1440
1441     w->Write<uint16_t>(2);  // Field version.
1442     Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>();
1443     uintptr_t prologue_start = w->position();
1444     w->Write<uint8_t>(1);  // Field minimum_instruction_length.
1445     w->Write<uint8_t>(1);  // Field default_is_stmt.
1446     w->Write<int8_t>(line_base);  // Field line_base.
1447     w->Write<uint8_t>(line_range);  // Field line_range.
1448     w->Write<uint8_t>(opcode_base);  // Field opcode_base.
1449     w->Write<uint8_t>(0);  // DW_LNS_COPY operands count.
1450     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_PC operands count.
1451     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_LINE operands count.
1452     w->Write<uint8_t>(1);  // DW_LNS_SET_FILE operands count.
1453     w->Write<uint8_t>(1);  // DW_LNS_SET_COLUMN operands count.
1454     w->Write<uint8_t>(0);  // DW_LNS_NEGATE_STMT operands count.
1455     w->Write<uint8_t>(0);  // Empty include_directories sequence.
1456     w->WriteString(desc_->GetFilename().get());  // File name.
1457     w->WriteULEB128(0);  // Current directory.
1458     w->WriteULEB128(0);  // Unknown modification time.
1459     w->WriteULEB128(0);  // Unknown file size.
1460     w->Write<uint8_t>(0);
1461     prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start));
1462
1463     WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t));
1464     w->Write<intptr_t>(desc_->CodeStart());
1465     w->Write<uint8_t>(DW_LNS_COPY);
1466
1467     intptr_t pc = 0;
1468     intptr_t line = 1;
1469     bool is_statement = true;
1470
1471     List<LineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info();
1472     pc_info->Sort(&ComparePCInfo);
1473
1474     int pc_info_length = pc_info->length();
1475     for (int i = 0; i < pc_info_length; i++) {
1476       LineInfo::PCInfo* info = &pc_info->at(i);
1477       DCHECK(info->pc_ >= pc);
1478
1479       // Reduce bloating in the debug line table by removing duplicate line
1480       // entries (per DWARF2 standard).
1481       intptr_t  new_line = desc_->GetScriptLineNumber(info->pos_);
1482       if (new_line == line) {
1483         continue;
1484       }
1485
1486       // Mark statement boundaries.  For a better debugging experience, mark
1487       // the last pc address in the function as a statement (e.g. "}"), so that
1488       // a user can see the result of the last line executed in the function,
1489       // should control reach the end.
1490       if ((i+1) == pc_info_length) {
1491         if (!is_statement) {
1492           w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
1493         }
1494       } else if (is_statement != info->is_statement_) {
1495         w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
1496         is_statement = !is_statement;
1497       }
1498
1499       // Generate special opcodes, if possible.  This results in more compact
1500       // debug line tables.  See the DWARF 2.0 standard to learn more about
1501       // special opcodes.
1502       uintptr_t pc_diff = info->pc_ - pc;
1503       intptr_t line_diff = new_line - line;
1504
1505       // Compute special opcode (see DWARF 2.0 standard)
1506       intptr_t special_opcode = (line_diff - line_base) +
1507                                 (line_range * pc_diff) + opcode_base;
1508
1509       // If special_opcode is less than or equal to 255, it can be used as a
1510       // special opcode.  If line_diff is larger than the max line increment
1511       // allowed for a special opcode, or if line_diff is less than the minimum
1512       // line that can be added to the line register (i.e. line_base), then
1513       // special_opcode can't be used.
1514       if ((special_opcode >= opcode_base) && (special_opcode <= 255) &&
1515           (line_diff <= max_line_incr) && (line_diff >= line_base)) {
1516         w->Write<uint8_t>(special_opcode);
1517       } else {
1518         w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
1519         w->WriteSLEB128(pc_diff);
1520         w->Write<uint8_t>(DW_LNS_ADVANCE_LINE);
1521         w->WriteSLEB128(line_diff);
1522         w->Write<uint8_t>(DW_LNS_COPY);
1523       }
1524
1525       // Increment the pc and line operands.
1526       pc += pc_diff;
1527       line += line_diff;
1528     }
1529     // Advance the pc to the end of the routine, since the end sequence opcode
1530     // requires this.
1531     w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
1532     w->WriteSLEB128(desc_->CodeSize() - pc);
1533     WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0);
1534     total_length.set(static_cast<uint32_t>(w->position() - start));
1535     return true;
1536   }
1537
1538  private:
1539   void WriteExtendedOpcode(Writer* w,
1540                            DWARF2ExtendedOpcode op,
1541                            size_t operands_size) {
1542     w->Write<uint8_t>(0);
1543     w->WriteULEB128(operands_size + 1);
1544     w->Write<uint8_t>(op);
1545   }
1546
1547   static int ComparePCInfo(const LineInfo::PCInfo* a,
1548                            const LineInfo::PCInfo* b) {
1549     if (a->pc_ == b->pc_) {
1550       if (a->is_statement_ != b->is_statement_) {
1551         return b->is_statement_ ? +1 : -1;
1552       }
1553       return 0;
1554     } else if (a->pc_ > b->pc_) {
1555       return +1;
1556     } else {
1557       return -1;
1558     }
1559   }
1560
1561   CodeDescription* desc_;
1562 };
1563
1564
1565 #if V8_TARGET_ARCH_X64
1566
1567 class UnwindInfoSection : public DebugSection {
1568  public:
1569   explicit UnwindInfoSection(CodeDescription* desc);
1570   virtual bool WriteBodyInternal(Writer* w);
1571
1572   int WriteCIE(Writer* w);
1573   void WriteFDE(Writer* w, int);
1574
1575   void WriteFDEStateOnEntry(Writer* w);
1576   void WriteFDEStateAfterRBPPush(Writer* w);
1577   void WriteFDEStateAfterRBPSet(Writer* w);
1578   void WriteFDEStateAfterRBPPop(Writer* w);
1579
1580   void WriteLength(Writer* w,
1581                    Writer::Slot<uint32_t>* length_slot,
1582                    int initial_position);
1583
1584  private:
1585   CodeDescription* desc_;
1586
1587   // DWARF3 Specification, Table 7.23
1588   enum CFIInstructions {
1589     DW_CFA_ADVANCE_LOC = 0x40,
1590     DW_CFA_OFFSET = 0x80,
1591     DW_CFA_RESTORE = 0xC0,
1592     DW_CFA_NOP = 0x00,
1593     DW_CFA_SET_LOC = 0x01,
1594     DW_CFA_ADVANCE_LOC1 = 0x02,
1595     DW_CFA_ADVANCE_LOC2 = 0x03,
1596     DW_CFA_ADVANCE_LOC4 = 0x04,
1597     DW_CFA_OFFSET_EXTENDED = 0x05,
1598     DW_CFA_RESTORE_EXTENDED = 0x06,
1599     DW_CFA_UNDEFINED = 0x07,
1600     DW_CFA_SAME_VALUE = 0x08,
1601     DW_CFA_REGISTER = 0x09,
1602     DW_CFA_REMEMBER_STATE = 0x0A,
1603     DW_CFA_RESTORE_STATE = 0x0B,
1604     DW_CFA_DEF_CFA = 0x0C,
1605     DW_CFA_DEF_CFA_REGISTER = 0x0D,
1606     DW_CFA_DEF_CFA_OFFSET = 0x0E,
1607
1608     DW_CFA_DEF_CFA_EXPRESSION = 0x0F,
1609     DW_CFA_EXPRESSION = 0x10,
1610     DW_CFA_OFFSET_EXTENDED_SF = 0x11,
1611     DW_CFA_DEF_CFA_SF = 0x12,
1612     DW_CFA_DEF_CFA_OFFSET_SF = 0x13,
1613     DW_CFA_VAL_OFFSET = 0x14,
1614     DW_CFA_VAL_OFFSET_SF = 0x15,
1615     DW_CFA_VAL_EXPRESSION = 0x16
1616   };
1617
1618   // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36
1619   enum RegisterMapping {
1620     // Only the relevant ones have been added to reduce clutter.
1621     AMD64_RBP = 6,
1622     AMD64_RSP = 7,
1623     AMD64_RA = 16
1624   };
1625
1626   enum CFIConstants {
1627     CIE_ID = 0,
1628     CIE_VERSION = 1,
1629     CODE_ALIGN_FACTOR = 1,
1630     DATA_ALIGN_FACTOR = 1,
1631     RETURN_ADDRESS_REGISTER = AMD64_RA
1632   };
1633 };
1634
1635
1636 void UnwindInfoSection::WriteLength(Writer* w,
1637                                     Writer::Slot<uint32_t>* length_slot,
1638                                     int initial_position) {
1639   uint32_t align = (w->position() - initial_position) % kPointerSize;
1640
1641   if (align != 0) {
1642     for (uint32_t i = 0; i < (kPointerSize - align); i++) {
1643       w->Write<uint8_t>(DW_CFA_NOP);
1644     }
1645   }
1646
1647   DCHECK((w->position() - initial_position) % kPointerSize == 0);
1648   length_slot->set(w->position() - initial_position);
1649 }
1650
1651
1652 UnwindInfoSection::UnwindInfoSection(CodeDescription* desc)
1653 #ifdef __ELF
1654     : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1),
1655 #else
1656     : MachOSection("__eh_frame", "__TEXT", sizeof(uintptr_t),
1657                    MachOSection::S_REGULAR),
1658 #endif
1659       desc_(desc) { }
1660
1661 int UnwindInfoSection::WriteCIE(Writer* w) {
1662   Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>();
1663   uint32_t cie_position = w->position();
1664
1665   // Write out the CIE header. Currently no 'common instructions' are
1666   // emitted onto the CIE; every FDE has its own set of instructions.
1667
1668   w->Write<uint32_t>(CIE_ID);
1669   w->Write<uint8_t>(CIE_VERSION);
1670   w->Write<uint8_t>(0);  // Null augmentation string.
1671   w->WriteSLEB128(CODE_ALIGN_FACTOR);
1672   w->WriteSLEB128(DATA_ALIGN_FACTOR);
1673   w->Write<uint8_t>(RETURN_ADDRESS_REGISTER);
1674
1675   WriteLength(w, &cie_length_slot, cie_position);
1676
1677   return cie_position;
1678 }
1679
1680
1681 void UnwindInfoSection::WriteFDE(Writer* w, int cie_position) {
1682   // The only FDE for this function. The CFA is the current RBP.
1683   Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>();
1684   int fde_position = w->position();
1685   w->Write<int32_t>(fde_position - cie_position + 4);
1686
1687   w->Write<uintptr_t>(desc_->CodeStart());
1688   w->Write<uintptr_t>(desc_->CodeSize());
1689
1690   WriteFDEStateOnEntry(w);
1691   WriteFDEStateAfterRBPPush(w);
1692   WriteFDEStateAfterRBPSet(w);
1693   WriteFDEStateAfterRBPPop(w);
1694
1695   WriteLength(w, &fde_length_slot, fde_position);
1696 }
1697
1698
1699 void UnwindInfoSection::WriteFDEStateOnEntry(Writer* w) {
1700   // The first state, just after the control has been transferred to the the
1701   // function.
1702
1703   // RBP for this function will be the value of RSP after pushing the RBP
1704   // for the previous function. The previous RBP has not been pushed yet.
1705   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
1706   w->WriteULEB128(AMD64_RSP);
1707   w->WriteSLEB128(-kPointerSize);
1708
1709   // The RA is stored at location CFA + kCallerPCOffset. This is an invariant,
1710   // and hence omitted from the next states.
1711   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1712   w->WriteULEB128(AMD64_RA);
1713   w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset);
1714
1715   // The RBP of the previous function is still in RBP.
1716   w->Write<uint8_t>(DW_CFA_SAME_VALUE);
1717   w->WriteULEB128(AMD64_RBP);
1718
1719   // Last location described by this entry.
1720   w->Write<uint8_t>(DW_CFA_SET_LOC);
1721   w->Write<uint64_t>(
1722       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH));
1723 }
1724
1725
1726 void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer* w) {
1727   // The second state, just after RBP has been pushed.
1728
1729   // RBP / CFA for this function is now the current RSP, so just set the
1730   // offset from the previous rule (from -8) to 0.
1731   w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET);
1732   w->WriteULEB128(0);
1733
1734   // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant
1735   // in this and the next state, and hence omitted in the next state.
1736   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1737   w->WriteULEB128(AMD64_RBP);
1738   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
1739
1740   // Last location described by this entry.
1741   w->Write<uint8_t>(DW_CFA_SET_LOC);
1742   w->Write<uint64_t>(
1743       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET));
1744 }
1745
1746
1747 void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer* w) {
1748   // The third state, after the RBP has been set.
1749
1750   // The CFA can now directly be set to RBP.
1751   w->Write<uint8_t>(DW_CFA_DEF_CFA);
1752   w->WriteULEB128(AMD64_RBP);
1753   w->WriteULEB128(0);
1754
1755   // Last location described by this entry.
1756   w->Write<uint8_t>(DW_CFA_SET_LOC);
1757   w->Write<uint64_t>(
1758       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP));
1759 }
1760
1761
1762 void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer* w) {
1763   // The fourth (final) state. The RBP has been popped (just before issuing a
1764   // return).
1765
1766   // The CFA can is now calculated in the same way as in the first state.
1767   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
1768   w->WriteULEB128(AMD64_RSP);
1769   w->WriteSLEB128(-kPointerSize);
1770
1771   // The RBP
1772   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1773   w->WriteULEB128(AMD64_RBP);
1774   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
1775
1776   // Last location described by this entry.
1777   w->Write<uint8_t>(DW_CFA_SET_LOC);
1778   w->Write<uint64_t>(desc_->CodeEnd());
1779 }
1780
1781
1782 bool UnwindInfoSection::WriteBodyInternal(Writer* w) {
1783   uint32_t cie_position = WriteCIE(w);
1784   WriteFDE(w, cie_position);
1785   return true;
1786 }
1787
1788
1789 #endif  // V8_TARGET_ARCH_X64
1790
1791 static void CreateDWARFSections(CodeDescription* desc,
1792                                 Zone* zone,
1793                                 DebugObject* obj) {
1794   if (desc->IsLineInfoAvailable()) {
1795     obj->AddSection(new(zone) DebugInfoSection(desc));
1796     obj->AddSection(new(zone) DebugAbbrevSection(desc));
1797     obj->AddSection(new(zone) DebugLineSection(desc));
1798   }
1799 #if V8_TARGET_ARCH_X64
1800   obj->AddSection(new(zone) UnwindInfoSection(desc));
1801 #endif
1802 }
1803
1804
1805 // -------------------------------------------------------------------
1806 // Binary GDB JIT Interface as described in
1807 //   http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html
1808 extern "C" {
1809   typedef enum {
1810     JIT_NOACTION = 0,
1811     JIT_REGISTER_FN,
1812     JIT_UNREGISTER_FN
1813   } JITAction;
1814
1815   struct JITCodeEntry {
1816     JITCodeEntry* next_;
1817     JITCodeEntry* prev_;
1818     Address symfile_addr_;
1819     uint64_t symfile_size_;
1820   };
1821
1822   struct JITDescriptor {
1823     uint32_t version_;
1824     uint32_t action_flag_;
1825     JITCodeEntry* relevant_entry_;
1826     JITCodeEntry* first_entry_;
1827   };
1828
1829   // GDB will place breakpoint into this function.
1830   // To prevent GCC from inlining or removing it we place noinline attribute
1831   // and inline assembler statement inside.
1832   void __attribute__((noinline)) __jit_debug_register_code() {
1833     __asm__("");
1834   }
1835
1836   // GDB will inspect contents of this descriptor.
1837   // Static initialization is necessary to prevent GDB from seeing
1838   // uninitialized descriptor.
1839   JITDescriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
1840
1841 #ifdef OBJECT_PRINT
1842   void __gdb_print_v8_object(Object* object) {
1843     OFStream os(stdout);
1844     object->Print(os);
1845     os << std::flush;
1846   }
1847 #endif
1848 }
1849
1850
1851 static JITCodeEntry* CreateCodeEntry(Address symfile_addr,
1852                                      uintptr_t symfile_size) {
1853   JITCodeEntry* entry = static_cast<JITCodeEntry*>(
1854       malloc(sizeof(JITCodeEntry) + symfile_size));
1855
1856   entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1);
1857   entry->symfile_size_ = symfile_size;
1858   MemCopy(entry->symfile_addr_, symfile_addr, symfile_size);
1859
1860   entry->prev_ = entry->next_ = NULL;
1861
1862   return entry;
1863 }
1864
1865
1866 static void DestroyCodeEntry(JITCodeEntry* entry) {
1867   free(entry);
1868 }
1869
1870
1871 static void RegisterCodeEntry(JITCodeEntry* entry,
1872                               bool dump_if_enabled,
1873                               const char* name_hint) {
1874 #if defined(DEBUG) && !V8_OS_WIN
1875   static int file_num = 0;
1876   if (FLAG_gdbjit_dump && dump_if_enabled) {
1877     static const int kMaxFileNameSize = 64;
1878     static const char* kElfFilePrefix = "/tmp/elfdump";
1879     static const char* kObjFileExt = ".o";
1880     char file_name[64];
1881
1882     SNPrintF(Vector<char>(file_name, kMaxFileNameSize),
1883              "%s%s%d%s",
1884              kElfFilePrefix,
1885              (name_hint != NULL) ? name_hint : "",
1886              file_num++,
1887              kObjFileExt);
1888     WriteBytes(file_name, entry->symfile_addr_, entry->symfile_size_);
1889   }
1890 #endif
1891
1892   entry->next_ = __jit_debug_descriptor.first_entry_;
1893   if (entry->next_ != NULL) entry->next_->prev_ = entry;
1894   __jit_debug_descriptor.first_entry_ =
1895       __jit_debug_descriptor.relevant_entry_ = entry;
1896
1897   __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN;
1898   __jit_debug_register_code();
1899 }
1900
1901
1902 static void UnregisterCodeEntry(JITCodeEntry* entry) {
1903   if (entry->prev_ != NULL) {
1904     entry->prev_->next_ = entry->next_;
1905   } else {
1906     __jit_debug_descriptor.first_entry_ = entry->next_;
1907   }
1908
1909   if (entry->next_ != NULL) {
1910     entry->next_->prev_ = entry->prev_;
1911   }
1912
1913   __jit_debug_descriptor.relevant_entry_ = entry;
1914   __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN;
1915   __jit_debug_register_code();
1916 }
1917
1918
1919 static JITCodeEntry* CreateELFObject(CodeDescription* desc, Isolate* isolate) {
1920 #ifdef __MACH_O
1921   Zone zone(isolate);
1922   MachO mach_o(&zone);
1923   Writer w(&mach_o);
1924
1925   mach_o.AddSection(new(&zone) MachOTextSection(kCodeAlignment,
1926                                                 desc->CodeStart(),
1927                                                 desc->CodeSize()));
1928
1929   CreateDWARFSections(desc, &zone, &mach_o);
1930
1931   mach_o.Write(&w, desc->CodeStart(), desc->CodeSize());
1932 #else
1933   Zone zone(isolate);
1934   ELF elf(&zone);
1935   Writer w(&elf);
1936
1937   int text_section_index = elf.AddSection(
1938       new(&zone) FullHeaderELFSection(
1939           ".text",
1940           ELFSection::TYPE_NOBITS,
1941           kCodeAlignment,
1942           desc->CodeStart(),
1943           0,
1944           desc->CodeSize(),
1945           ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC));
1946
1947   CreateSymbolsTable(desc, &zone, &elf, text_section_index);
1948
1949   CreateDWARFSections(desc, &zone, &elf);
1950
1951   elf.Write(&w);
1952 #endif
1953
1954   return CreateCodeEntry(w.buffer(), w.position());
1955 }
1956
1957
1958 static bool SameCodeObjects(void* key1, void* key2) {
1959   return key1 == key2;
1960 }
1961
1962
1963 static HashMap* GetEntries() {
1964   static HashMap* entries = NULL;
1965   if (entries == NULL) {
1966     entries = new HashMap(&SameCodeObjects);
1967   }
1968   return entries;
1969 }
1970
1971
1972 static uint32_t HashForCodeObject(Code* code) {
1973   static const uintptr_t kGoldenRatio = 2654435761u;
1974   uintptr_t hash = reinterpret_cast<uintptr_t>(code->address());
1975   return static_cast<uint32_t>((hash >> kCodeAlignmentBits) * kGoldenRatio);
1976 }
1977
1978
1979 static const intptr_t kLineInfoTag = 0x1;
1980
1981
1982 static bool IsLineInfoTagged(void* ptr) {
1983   return 0 != (reinterpret_cast<intptr_t>(ptr) & kLineInfoTag);
1984 }
1985
1986
1987 static void* TagLineInfo(LineInfo* ptr) {
1988   return reinterpret_cast<void*>(
1989       reinterpret_cast<intptr_t>(ptr) | kLineInfoTag);
1990 }
1991
1992
1993 static LineInfo* UntagLineInfo(void* ptr) {
1994   return reinterpret_cast<LineInfo*>(reinterpret_cast<intptr_t>(ptr) &
1995                                      ~kLineInfoTag);
1996 }
1997
1998
1999 void GDBJITInterface::AddCode(Handle<Name> name,
2000                               Handle<Script> script,
2001                               Handle<Code> code,
2002                               CompilationInfo* info) {
2003   if (!FLAG_gdbjit) return;
2004
2005   Script::InitLineEnds(script);
2006
2007   if (!name.is_null() && name->IsString()) {
2008     SmartArrayPointer<char> name_cstring =
2009         Handle<String>::cast(name)->ToCString(DISALLOW_NULLS);
2010     AddCode(name_cstring.get(), *code, GDBJITInterface::FUNCTION, *script,
2011             info);
2012   } else {
2013     AddCode("", *code, GDBJITInterface::FUNCTION, *script, info);
2014   }
2015 }
2016
2017
2018 static void AddUnwindInfo(CodeDescription* desc) {
2019 #if V8_TARGET_ARCH_X64
2020   if (desc->tag() == GDBJITInterface::FUNCTION) {
2021     // To avoid propagating unwinding information through
2022     // compilation pipeline we use an approximation.
2023     // For most use cases this should not affect usability.
2024     static const int kFramePointerPushOffset = 1;
2025     static const int kFramePointerSetOffset = 4;
2026     static const int kFramePointerPopOffset = -3;
2027
2028     uintptr_t frame_pointer_push_address =
2029         desc->CodeStart() + kFramePointerPushOffset;
2030
2031     uintptr_t frame_pointer_set_address =
2032         desc->CodeStart() + kFramePointerSetOffset;
2033
2034     uintptr_t frame_pointer_pop_address =
2035         desc->CodeEnd() + kFramePointerPopOffset;
2036
2037     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
2038                                     frame_pointer_push_address);
2039     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
2040                                     frame_pointer_set_address);
2041     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
2042                                     frame_pointer_pop_address);
2043   } else {
2044     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
2045                                     desc->CodeStart());
2046     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
2047                                     desc->CodeStart());
2048     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
2049                                     desc->CodeEnd());
2050   }
2051 #endif  // V8_TARGET_ARCH_X64
2052 }
2053
2054
2055 static base::LazyMutex mutex = LAZY_MUTEX_INITIALIZER;
2056
2057
2058 void GDBJITInterface::AddCode(const char* name,
2059                               Code* code,
2060                               GDBJITInterface::CodeTag tag,
2061                               Script* script,
2062                               CompilationInfo* info) {
2063   base::LockGuard<base::Mutex> lock_guard(mutex.Pointer());
2064   DisallowHeapAllocation no_gc;
2065
2066   HashMap::Entry* e = GetEntries()->Lookup(code, HashForCodeObject(code), true);
2067   if (e->value != NULL && !IsLineInfoTagged(e->value)) return;
2068
2069   LineInfo* lineinfo = UntagLineInfo(e->value);
2070   CodeDescription code_desc(name,
2071                             code,
2072                             script != NULL ? Handle<Script>(script)
2073                                            : Handle<Script>(),
2074                             lineinfo,
2075                             tag,
2076                             info);
2077
2078   if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) {
2079     delete lineinfo;
2080     GetEntries()->Remove(code, HashForCodeObject(code));
2081     return;
2082   }
2083
2084   AddUnwindInfo(&code_desc);
2085   Isolate* isolate = code->GetIsolate();
2086   JITCodeEntry* entry = CreateELFObject(&code_desc, isolate);
2087   DCHECK(!IsLineInfoTagged(entry));
2088
2089   delete lineinfo;
2090   e->value = entry;
2091
2092   const char* name_hint = NULL;
2093   bool should_dump = false;
2094   if (FLAG_gdbjit_dump) {
2095     if (strlen(FLAG_gdbjit_dump_filter) == 0) {
2096       name_hint = name;
2097       should_dump = true;
2098     } else if (name != NULL) {
2099       name_hint = strstr(name, FLAG_gdbjit_dump_filter);
2100       should_dump = (name_hint != NULL);
2101     }
2102   }
2103   RegisterCodeEntry(entry, should_dump, name_hint);
2104 }
2105
2106
2107 void GDBJITInterface::RemoveCode(Code* code) {
2108   if (!FLAG_gdbjit) return;
2109
2110   base::LockGuard<base::Mutex> lock_guard(mutex.Pointer());
2111   HashMap::Entry* e = GetEntries()->Lookup(code,
2112                                            HashForCodeObject(code),
2113                                            false);
2114   if (e == NULL) return;
2115
2116   if (IsLineInfoTagged(e->value)) {
2117     delete UntagLineInfo(e->value);
2118   } else {
2119     JITCodeEntry* entry = static_cast<JITCodeEntry*>(e->value);
2120     UnregisterCodeEntry(entry);
2121     DestroyCodeEntry(entry);
2122   }
2123   e->value = NULL;
2124   GetEntries()->Remove(code, HashForCodeObject(code));
2125 }
2126
2127
2128 void GDBJITInterface::RemoveCodeRange(Address start, Address end) {
2129   HashMap* entries = GetEntries();
2130   Zone zone(Isolate::Current());
2131   ZoneList<Code*> dead_codes(1, &zone);
2132
2133   for (HashMap::Entry* e = entries->Start(); e != NULL; e = entries->Next(e)) {
2134     Code* code = reinterpret_cast<Code*>(e->key);
2135     if (code->address() >= start && code->address() < end) {
2136       dead_codes.Add(code, &zone);
2137     }
2138   }
2139
2140   for (int i = 0; i < dead_codes.length(); i++) {
2141     RemoveCode(dead_codes.at(i));
2142   }
2143 }
2144
2145
2146 static void RegisterDetailedLineInfo(Code* code, LineInfo* line_info) {
2147   base::LockGuard<base::Mutex> lock_guard(mutex.Pointer());
2148   DCHECK(!IsLineInfoTagged(line_info));
2149   HashMap::Entry* e = GetEntries()->Lookup(code, HashForCodeObject(code), true);
2150   DCHECK(e->value == NULL);
2151   e->value = TagLineInfo(line_info);
2152 }
2153
2154
2155 void GDBJITInterface::EventHandler(const v8::JitCodeEvent* event) {
2156   if (!FLAG_gdbjit) return;
2157   switch (event->type) {
2158     case v8::JitCodeEvent::CODE_ADDED: {
2159       Code* code = Code::GetCodeFromTargetAddress(
2160           reinterpret_cast<Address>(event->code_start));
2161       if (code->kind() == Code::OPTIMIZED_FUNCTION ||
2162           code->kind() == Code::FUNCTION) {
2163         break;
2164       }
2165       EmbeddedVector<char, 256> buffer;
2166       StringBuilder builder(buffer.start(), buffer.length());
2167       builder.AddSubstring(event->name.str, static_cast<int>(event->name.len));
2168       AddCode(builder.Finalize(), code, NON_FUNCTION, NULL, NULL);
2169       break;
2170     }
2171     case v8::JitCodeEvent::CODE_MOVED:
2172       break;
2173     case v8::JitCodeEvent::CODE_REMOVED: {
2174       Code* code = Code::GetCodeFromTargetAddress(
2175           reinterpret_cast<Address>(event->code_start));
2176       RemoveCode(code);
2177       break;
2178     }
2179     case v8::JitCodeEvent::CODE_ADD_LINE_POS_INFO: {
2180       LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
2181       line_info->SetPosition(static_cast<intptr_t>(event->line_info.offset),
2182                              static_cast<int>(event->line_info.pos),
2183                              event->line_info.position_type ==
2184                                  v8::JitCodeEvent::STATEMENT_POSITION);
2185       break;
2186     }
2187     case v8::JitCodeEvent::CODE_START_LINE_INFO_RECORDING: {
2188       v8::JitCodeEvent* mutable_event = const_cast<v8::JitCodeEvent*>(event);
2189       mutable_event->user_data = new LineInfo();
2190       break;
2191     }
2192     case v8::JitCodeEvent::CODE_END_LINE_INFO_RECORDING: {
2193       LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
2194       Code* code = Code::GetCodeFromTargetAddress(
2195           reinterpret_cast<Address>(event->code_start));
2196       RegisterDetailedLineInfo(code, line_info);
2197       break;
2198     }
2199   }
2200 }
2201
2202
2203 } }  // namespace v8::internal
2204 #endif