Upstream version 7.36.149.0
[platform/framework/web/crosswalk.git] / src / v8 / src / fast-dtoa.cc
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "../include/v8stdint.h"
6 #include "checks.h"
7 #include "utils.h"
8
9 #include "fast-dtoa.h"
10
11 #include "cached-powers.h"
12 #include "diy-fp.h"
13 #include "double.h"
14
15 namespace v8 {
16 namespace internal {
17
18 // The minimal and maximal target exponent define the range of w's binary
19 // exponent, where 'w' is the result of multiplying the input by a cached power
20 // of ten.
21 //
22 // A different range might be chosen on a different platform, to optimize digit
23 // generation, but a smaller range requires more powers of ten to be cached.
24 static const int kMinimalTargetExponent = -60;
25 static const int kMaximalTargetExponent = -32;
26
27
28 // Adjusts the last digit of the generated number, and screens out generated
29 // solutions that may be inaccurate. A solution may be inaccurate if it is
30 // outside the safe interval, or if we ctannot prove that it is closer to the
31 // input than a neighboring representation of the same length.
32 //
33 // Input: * buffer containing the digits of too_high / 10^kappa
34 //        * the buffer's length
35 //        * distance_too_high_w == (too_high - w).f() * unit
36 //        * unsafe_interval == (too_high - too_low).f() * unit
37 //        * rest = (too_high - buffer * 10^kappa).f() * unit
38 //        * ten_kappa = 10^kappa * unit
39 //        * unit = the common multiplier
40 // Output: returns true if the buffer is guaranteed to contain the closest
41 //    representable number to the input.
42 //  Modifies the generated digits in the buffer to approach (round towards) w.
43 static bool RoundWeed(Vector<char> buffer,
44                       int length,
45                       uint64_t distance_too_high_w,
46                       uint64_t unsafe_interval,
47                       uint64_t rest,
48                       uint64_t ten_kappa,
49                       uint64_t unit) {
50   uint64_t small_distance = distance_too_high_w - unit;
51   uint64_t big_distance = distance_too_high_w + unit;
52   // Let w_low  = too_high - big_distance, and
53   //     w_high = too_high - small_distance.
54   // Note: w_low < w < w_high
55   //
56   // The real w (* unit) must lie somewhere inside the interval
57   // ]w_low; w_high[ (often written as "(w_low; w_high)")
58
59   // Basically the buffer currently contains a number in the unsafe interval
60   // ]too_low; too_high[ with too_low < w < too_high
61   //
62   //  too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
63   //                     ^v 1 unit            ^      ^                 ^      ^
64   //  boundary_high ---------------------     .      .                 .      .
65   //                     ^v 1 unit            .      .                 .      .
66   //   - - - - - - - - - - - - - - - - - - -  +  - - + - - - - - -     .      .
67   //                                          .      .         ^       .      .
68   //                                          .  big_distance  .       .      .
69   //                                          .      .         .       .    rest
70   //                              small_distance     .         .       .      .
71   //                                          v      .         .       .      .
72   //  w_high - - - - - - - - - - - - - - - - - -     .         .       .      .
73   //                     ^v 1 unit                   .         .       .      .
74   //  w ----------------------------------------     .         .       .      .
75   //                     ^v 1 unit                   v         .       .      .
76   //  w_low  - - - - - - - - - - - - - - - - - - - - -         .       .      .
77   //                                                           .       .      v
78   //  buffer --------------------------------------------------+-------+--------
79   //                                                           .       .
80   //                                                  safe_interval    .
81   //                                                           v       .
82   //   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -     .
83   //                     ^v 1 unit                                     .
84   //  boundary_low -------------------------                     unsafe_interval
85   //                     ^v 1 unit                                     v
86   //  too_low  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
87   //
88   //
89   // Note that the value of buffer could lie anywhere inside the range too_low
90   // to too_high.
91   //
92   // boundary_low, boundary_high and w are approximations of the real boundaries
93   // and v (the input number). They are guaranteed to be precise up to one unit.
94   // In fact the error is guaranteed to be strictly less than one unit.
95   //
96   // Anything that lies outside the unsafe interval is guaranteed not to round
97   // to v when read again.
98   // Anything that lies inside the safe interval is guaranteed to round to v
99   // when read again.
100   // If the number inside the buffer lies inside the unsafe interval but not
101   // inside the safe interval then we simply do not know and bail out (returning
102   // false).
103   //
104   // Similarly we have to take into account the imprecision of 'w' when finding
105   // the closest representation of 'w'. If we have two potential
106   // representations, and one is closer to both w_low and w_high, then we know
107   // it is closer to the actual value v.
108   //
109   // By generating the digits of too_high we got the largest (closest to
110   // too_high) buffer that is still in the unsafe interval. In the case where
111   // w_high < buffer < too_high we try to decrement the buffer.
112   // This way the buffer approaches (rounds towards) w.
113   // There are 3 conditions that stop the decrementation process:
114   //   1) the buffer is already below w_high
115   //   2) decrementing the buffer would make it leave the unsafe interval
116   //   3) decrementing the buffer would yield a number below w_high and farther
117   //      away than the current number. In other words:
118   //              (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
119   // Instead of using the buffer directly we use its distance to too_high.
120   // Conceptually rest ~= too_high - buffer
121   // We need to do the following tests in this order to avoid over- and
122   // underflows.
123   ASSERT(rest <= unsafe_interval);
124   while (rest < small_distance &&  // Negated condition 1
125          unsafe_interval - rest >= ten_kappa &&  // Negated condition 2
126          (rest + ten_kappa < small_distance ||  // buffer{-1} > w_high
127           small_distance - rest >= rest + ten_kappa - small_distance)) {
128     buffer[length - 1]--;
129     rest += ten_kappa;
130   }
131
132   // We have approached w+ as much as possible. We now test if approaching w-
133   // would require changing the buffer. If yes, then we have two possible
134   // representations close to w, but we cannot decide which one is closer.
135   if (rest < big_distance &&
136       unsafe_interval - rest >= ten_kappa &&
137       (rest + ten_kappa < big_distance ||
138        big_distance - rest > rest + ten_kappa - big_distance)) {
139     return false;
140   }
141
142   // Weeding test.
143   //   The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
144   //   Since too_low = too_high - unsafe_interval this is equivalent to
145   //      [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
146   //   Conceptually we have: rest ~= too_high - buffer
147   return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
148 }
149
150
151 // Rounds the buffer upwards if the result is closer to v by possibly adding
152 // 1 to the buffer. If the precision of the calculation is not sufficient to
153 // round correctly, return false.
154 // The rounding might shift the whole buffer in which case the kappa is
155 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
156 //
157 // If 2*rest > ten_kappa then the buffer needs to be round up.
158 // rest can have an error of +/- 1 unit. This function accounts for the
159 // imprecision and returns false, if the rounding direction cannot be
160 // unambiguously determined.
161 //
162 // Precondition: rest < ten_kappa.
163 static bool RoundWeedCounted(Vector<char> buffer,
164                              int length,
165                              uint64_t rest,
166                              uint64_t ten_kappa,
167                              uint64_t unit,
168                              int* kappa) {
169   ASSERT(rest < ten_kappa);
170   // The following tests are done in a specific order to avoid overflows. They
171   // will work correctly with any uint64 values of rest < ten_kappa and unit.
172   //
173   // If the unit is too big, then we don't know which way to round. For example
174   // a unit of 50 means that the real number lies within rest +/- 50. If
175   // 10^kappa == 40 then there is no way to tell which way to round.
176   if (unit >= ten_kappa) return false;
177   // Even if unit is just half the size of 10^kappa we are already completely
178   // lost. (And after the previous test we know that the expression will not
179   // over/underflow.)
180   if (ten_kappa - unit <= unit) return false;
181   // If 2 * (rest + unit) <= 10^kappa we can safely round down.
182   if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
183     return true;
184   }
185   // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
186   if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
187     // Increment the last digit recursively until we find a non '9' digit.
188     buffer[length - 1]++;
189     for (int i = length - 1; i > 0; --i) {
190       if (buffer[i] != '0' + 10) break;
191       buffer[i] = '0';
192       buffer[i - 1]++;
193     }
194     // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
195     // exception of the first digit all digits are now '0'. Simply switch the
196     // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
197     // the power (the kappa) is increased.
198     if (buffer[0] == '0' + 10) {
199       buffer[0] = '1';
200       (*kappa) += 1;
201     }
202     return true;
203   }
204   return false;
205 }
206
207
208 static const uint32_t kTen4 = 10000;
209 static const uint32_t kTen5 = 100000;
210 static const uint32_t kTen6 = 1000000;
211 static const uint32_t kTen7 = 10000000;
212 static const uint32_t kTen8 = 100000000;
213 static const uint32_t kTen9 = 1000000000;
214
215 // Returns the biggest power of ten that is less than or equal than the given
216 // number. We furthermore receive the maximum number of bits 'number' has.
217 // If number_bits == 0 then 0^-1 is returned
218 // The number of bits must be <= 32.
219 // Precondition: number < (1 << (number_bits + 1)).
220 static void BiggestPowerTen(uint32_t number,
221                             int number_bits,
222                             uint32_t* power,
223                             int* exponent) {
224   switch (number_bits) {
225     case 32:
226     case 31:
227     case 30:
228       if (kTen9 <= number) {
229         *power = kTen9;
230         *exponent = 9;
231         break;
232       }  // else fallthrough
233     case 29:
234     case 28:
235     case 27:
236       if (kTen8 <= number) {
237         *power = kTen8;
238         *exponent = 8;
239         break;
240       }  // else fallthrough
241     case 26:
242     case 25:
243     case 24:
244       if (kTen7 <= number) {
245         *power = kTen7;
246         *exponent = 7;
247         break;
248       }  // else fallthrough
249     case 23:
250     case 22:
251     case 21:
252     case 20:
253       if (kTen6 <= number) {
254         *power = kTen6;
255         *exponent = 6;
256         break;
257       }  // else fallthrough
258     case 19:
259     case 18:
260     case 17:
261       if (kTen5 <= number) {
262         *power = kTen5;
263         *exponent = 5;
264         break;
265       }  // else fallthrough
266     case 16:
267     case 15:
268     case 14:
269       if (kTen4 <= number) {
270         *power = kTen4;
271         *exponent = 4;
272         break;
273       }  // else fallthrough
274     case 13:
275     case 12:
276     case 11:
277     case 10:
278       if (1000 <= number) {
279         *power = 1000;
280         *exponent = 3;
281         break;
282       }  // else fallthrough
283     case 9:
284     case 8:
285     case 7:
286       if (100 <= number) {
287         *power = 100;
288         *exponent = 2;
289         break;
290       }  // else fallthrough
291     case 6:
292     case 5:
293     case 4:
294       if (10 <= number) {
295         *power = 10;
296         *exponent = 1;
297         break;
298       }  // else fallthrough
299     case 3:
300     case 2:
301     case 1:
302       if (1 <= number) {
303         *power = 1;
304         *exponent = 0;
305         break;
306       }  // else fallthrough
307     case 0:
308       *power = 0;
309       *exponent = -1;
310       break;
311     default:
312       // Following assignments are here to silence compiler warnings.
313       *power = 0;
314       *exponent = 0;
315       UNREACHABLE();
316   }
317 }
318
319
320 // Generates the digits of input number w.
321 // w is a floating-point number (DiyFp), consisting of a significand and an
322 // exponent. Its exponent is bounded by kMinimalTargetExponent and
323 // kMaximalTargetExponent.
324 //       Hence -60 <= w.e() <= -32.
325 //
326 // Returns false if it fails, in which case the generated digits in the buffer
327 // should not be used.
328 // Preconditions:
329 //  * low, w and high are correct up to 1 ulp (unit in the last place). That
330 //    is, their error must be less than a unit of their last digits.
331 //  * low.e() == w.e() == high.e()
332 //  * low < w < high, and taking into account their error: low~ <= high~
333 //  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
334 // Postconditions: returns false if procedure fails.
335 //   otherwise:
336 //     * buffer is not null-terminated, but len contains the number of digits.
337 //     * buffer contains the shortest possible decimal digit-sequence
338 //       such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
339 //       correct values of low and high (without their error).
340 //     * if more than one decimal representation gives the minimal number of
341 //       decimal digits then the one closest to W (where W is the correct value
342 //       of w) is chosen.
343 // Remark: this procedure takes into account the imprecision of its input
344 //   numbers. If the precision is not enough to guarantee all the postconditions
345 //   then false is returned. This usually happens rarely (~0.5%).
346 //
347 // Say, for the sake of example, that
348 //   w.e() == -48, and w.f() == 0x1234567890abcdef
349 // w's value can be computed by w.f() * 2^w.e()
350 // We can obtain w's integral digits by simply shifting w.f() by -w.e().
351 //  -> w's integral part is 0x1234
352 //  w's fractional part is therefore 0x567890abcdef.
353 // Printing w's integral part is easy (simply print 0x1234 in decimal).
354 // In order to print its fraction we repeatedly multiply the fraction by 10 and
355 // get each digit. Example the first digit after the point would be computed by
356 //   (0x567890abcdef * 10) >> 48. -> 3
357 // The whole thing becomes slightly more complicated because we want to stop
358 // once we have enough digits. That is, once the digits inside the buffer
359 // represent 'w' we can stop. Everything inside the interval low - high
360 // represents w. However we have to pay attention to low, high and w's
361 // imprecision.
362 static bool DigitGen(DiyFp low,
363                      DiyFp w,
364                      DiyFp high,
365                      Vector<char> buffer,
366                      int* length,
367                      int* kappa) {
368   ASSERT(low.e() == w.e() && w.e() == high.e());
369   ASSERT(low.f() + 1 <= high.f() - 1);
370   ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
371   // low, w and high are imprecise, but by less than one ulp (unit in the last
372   // place).
373   // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
374   // the new numbers are outside of the interval we want the final
375   // representation to lie in.
376   // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
377   // numbers that are certain to lie in the interval. We will use this fact
378   // later on.
379   // We will now start by generating the digits within the uncertain
380   // interval. Later we will weed out representations that lie outside the safe
381   // interval and thus _might_ lie outside the correct interval.
382   uint64_t unit = 1;
383   DiyFp too_low = DiyFp(low.f() - unit, low.e());
384   DiyFp too_high = DiyFp(high.f() + unit, high.e());
385   // too_low and too_high are guaranteed to lie outside the interval we want the
386   // generated number in.
387   DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
388   // We now cut the input number into two parts: the integral digits and the
389   // fractionals. We will not write any decimal separator though, but adapt
390   // kappa instead.
391   // Reminder: we are currently computing the digits (stored inside the buffer)
392   // such that:   too_low < buffer * 10^kappa < too_high
393   // We use too_high for the digit_generation and stop as soon as possible.
394   // If we stop early we effectively round down.
395   DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
396   // Division by one is a shift.
397   uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
398   // Modulo by one is an and.
399   uint64_t fractionals = too_high.f() & (one.f() - 1);
400   uint32_t divisor;
401   int divisor_exponent;
402   BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
403                   &divisor, &divisor_exponent);
404   *kappa = divisor_exponent + 1;
405   *length = 0;
406   // Loop invariant: buffer = too_high / 10^kappa  (integer division)
407   // The invariant holds for the first iteration: kappa has been initialized
408   // with the divisor exponent + 1. And the divisor is the biggest power of ten
409   // that is smaller than integrals.
410   while (*kappa > 0) {
411     int digit = integrals / divisor;
412     buffer[*length] = '0' + digit;
413     (*length)++;
414     integrals %= divisor;
415     (*kappa)--;
416     // Note that kappa now equals the exponent of the divisor and that the
417     // invariant thus holds again.
418     uint64_t rest =
419         (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
420     // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
421     // Reminder: unsafe_interval.e() == one.e()
422     if (rest < unsafe_interval.f()) {
423       // Rounding down (by not emitting the remaining digits) yields a number
424       // that lies within the unsafe interval.
425       return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
426                        unsafe_interval.f(), rest,
427                        static_cast<uint64_t>(divisor) << -one.e(), unit);
428     }
429     divisor /= 10;
430   }
431
432   // The integrals have been generated. We are at the point of the decimal
433   // separator. In the following loop we simply multiply the remaining digits by
434   // 10 and divide by one. We just need to pay attention to multiply associated
435   // data (like the interval or 'unit'), too.
436   // Note that the multiplication by 10 does not overflow, because w.e >= -60
437   // and thus one.e >= -60.
438   ASSERT(one.e() >= -60);
439   ASSERT(fractionals < one.f());
440   ASSERT(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
441   while (true) {
442     fractionals *= 10;
443     unit *= 10;
444     unsafe_interval.set_f(unsafe_interval.f() * 10);
445     // Integer division by one.
446     int digit = static_cast<int>(fractionals >> -one.e());
447     buffer[*length] = '0' + digit;
448     (*length)++;
449     fractionals &= one.f() - 1;  // Modulo by one.
450     (*kappa)--;
451     if (fractionals < unsafe_interval.f()) {
452       return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
453                        unsafe_interval.f(), fractionals, one.f(), unit);
454     }
455   }
456 }
457
458
459
460 // Generates (at most) requested_digits of input number w.
461 // w is a floating-point number (DiyFp), consisting of a significand and an
462 // exponent. Its exponent is bounded by kMinimalTargetExponent and
463 // kMaximalTargetExponent.
464 //       Hence -60 <= w.e() <= -32.
465 //
466 // Returns false if it fails, in which case the generated digits in the buffer
467 // should not be used.
468 // Preconditions:
469 //  * w is correct up to 1 ulp (unit in the last place). That
470 //    is, its error must be strictly less than a unit of its last digit.
471 //  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
472 //
473 // Postconditions: returns false if procedure fails.
474 //   otherwise:
475 //     * buffer is not null-terminated, but length contains the number of
476 //       digits.
477 //     * the representation in buffer is the most precise representation of
478 //       requested_digits digits.
479 //     * buffer contains at most requested_digits digits of w. If there are less
480 //       than requested_digits digits then some trailing '0's have been removed.
481 //     * kappa is such that
482 //            w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
483 //
484 // Remark: This procedure takes into account the imprecision of its input
485 //   numbers. If the precision is not enough to guarantee all the postconditions
486 //   then false is returned. This usually happens rarely, but the failure-rate
487 //   increases with higher requested_digits.
488 static bool DigitGenCounted(DiyFp w,
489                             int requested_digits,
490                             Vector<char> buffer,
491                             int* length,
492                             int* kappa) {
493   ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
494   ASSERT(kMinimalTargetExponent >= -60);
495   ASSERT(kMaximalTargetExponent <= -32);
496   // w is assumed to have an error less than 1 unit. Whenever w is scaled we
497   // also scale its error.
498   uint64_t w_error = 1;
499   // We cut the input number into two parts: the integral digits and the
500   // fractional digits. We don't emit any decimal separator, but adapt kappa
501   // instead. Example: instead of writing "1.2" we put "12" into the buffer and
502   // increase kappa by 1.
503   DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
504   // Division by one is a shift.
505   uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
506   // Modulo by one is an and.
507   uint64_t fractionals = w.f() & (one.f() - 1);
508   uint32_t divisor;
509   int divisor_exponent;
510   BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
511                   &divisor, &divisor_exponent);
512   *kappa = divisor_exponent + 1;
513   *length = 0;
514
515   // Loop invariant: buffer = w / 10^kappa  (integer division)
516   // The invariant holds for the first iteration: kappa has been initialized
517   // with the divisor exponent + 1. And the divisor is the biggest power of ten
518   // that is smaller than 'integrals'.
519   while (*kappa > 0) {
520     int digit = integrals / divisor;
521     buffer[*length] = '0' + digit;
522     (*length)++;
523     requested_digits--;
524     integrals %= divisor;
525     (*kappa)--;
526     // Note that kappa now equals the exponent of the divisor and that the
527     // invariant thus holds again.
528     if (requested_digits == 0) break;
529     divisor /= 10;
530   }
531
532   if (requested_digits == 0) {
533     uint64_t rest =
534         (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
535     return RoundWeedCounted(buffer, *length, rest,
536                             static_cast<uint64_t>(divisor) << -one.e(), w_error,
537                             kappa);
538   }
539
540   // The integrals have been generated. We are at the point of the decimal
541   // separator. In the following loop we simply multiply the remaining digits by
542   // 10 and divide by one. We just need to pay attention to multiply associated
543   // data (the 'unit'), too.
544   // Note that the multiplication by 10 does not overflow, because w.e >= -60
545   // and thus one.e >= -60.
546   ASSERT(one.e() >= -60);
547   ASSERT(fractionals < one.f());
548   ASSERT(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
549   while (requested_digits > 0 && fractionals > w_error) {
550     fractionals *= 10;
551     w_error *= 10;
552     // Integer division by one.
553     int digit = static_cast<int>(fractionals >> -one.e());
554     buffer[*length] = '0' + digit;
555     (*length)++;
556     requested_digits--;
557     fractionals &= one.f() - 1;  // Modulo by one.
558     (*kappa)--;
559   }
560   if (requested_digits != 0) return false;
561   return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
562                           kappa);
563 }
564
565
566 // Provides a decimal representation of v.
567 // Returns true if it succeeds, otherwise the result cannot be trusted.
568 // There will be *length digits inside the buffer (not null-terminated).
569 // If the function returns true then
570 //        v == (double) (buffer * 10^decimal_exponent).
571 // The digits in the buffer are the shortest representation possible: no
572 // 0.09999999999999999 instead of 0.1. The shorter representation will even be
573 // chosen even if the longer one would be closer to v.
574 // The last digit will be closest to the actual v. That is, even if several
575 // digits might correctly yield 'v' when read again, the closest will be
576 // computed.
577 static bool Grisu3(double v,
578                    Vector<char> buffer,
579                    int* length,
580                    int* decimal_exponent) {
581   DiyFp w = Double(v).AsNormalizedDiyFp();
582   // boundary_minus and boundary_plus are the boundaries between v and its
583   // closest floating-point neighbors. Any number strictly between
584   // boundary_minus and boundary_plus will round to v when convert to a double.
585   // Grisu3 will never output representations that lie exactly on a boundary.
586   DiyFp boundary_minus, boundary_plus;
587   Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
588   ASSERT(boundary_plus.e() == w.e());
589   DiyFp ten_mk;  // Cached power of ten: 10^-k
590   int mk;        // -k
591   int ten_mk_minimal_binary_exponent =
592      kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
593   int ten_mk_maximal_binary_exponent =
594      kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
595   PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
596       ten_mk_minimal_binary_exponent,
597       ten_mk_maximal_binary_exponent,
598       &ten_mk, &mk);
599   ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
600           DiyFp::kSignificandSize) &&
601          (kMaximalTargetExponent >= w.e() + ten_mk.e() +
602           DiyFp::kSignificandSize));
603   // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
604   // 64 bit significand and ten_mk is thus only precise up to 64 bits.
605
606   // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
607   // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
608   // off by a small amount.
609   // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
610   // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
611   //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
612   DiyFp scaled_w = DiyFp::Times(w, ten_mk);
613   ASSERT(scaled_w.e() ==
614          boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
615   // In theory it would be possible to avoid some recomputations by computing
616   // the difference between w and boundary_minus/plus (a power of 2) and to
617   // compute scaled_boundary_minus/plus by subtracting/adding from
618   // scaled_w. However the code becomes much less readable and the speed
619   // enhancements are not terriffic.
620   DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
621   DiyFp scaled_boundary_plus  = DiyFp::Times(boundary_plus,  ten_mk);
622
623   // DigitGen will generate the digits of scaled_w. Therefore we have
624   // v == (double) (scaled_w * 10^-mk).
625   // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
626   // integer than it will be updated. For instance if scaled_w == 1.23 then
627   // the buffer will be filled with "123" und the decimal_exponent will be
628   // decreased by 2.
629   int kappa;
630   bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
631                          buffer, length, &kappa);
632   *decimal_exponent = -mk + kappa;
633   return result;
634 }
635
636
637 // The "counted" version of grisu3 (see above) only generates requested_digits
638 // number of digits. This version does not generate the shortest representation,
639 // and with enough requested digits 0.1 will at some point print as 0.9999999...
640 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
641 // therefore the rounding strategy for halfway cases is irrelevant.
642 static bool Grisu3Counted(double v,
643                           int requested_digits,
644                           Vector<char> buffer,
645                           int* length,
646                           int* decimal_exponent) {
647   DiyFp w = Double(v).AsNormalizedDiyFp();
648   DiyFp ten_mk;  // Cached power of ten: 10^-k
649   int mk;        // -k
650   int ten_mk_minimal_binary_exponent =
651      kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
652   int ten_mk_maximal_binary_exponent =
653      kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
654   PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
655       ten_mk_minimal_binary_exponent,
656       ten_mk_maximal_binary_exponent,
657       &ten_mk, &mk);
658   ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
659           DiyFp::kSignificandSize) &&
660          (kMaximalTargetExponent >= w.e() + ten_mk.e() +
661           DiyFp::kSignificandSize));
662   // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
663   // 64 bit significand and ten_mk is thus only precise up to 64 bits.
664
665   // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
666   // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
667   // off by a small amount.
668   // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
669   // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
670   //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
671   DiyFp scaled_w = DiyFp::Times(w, ten_mk);
672
673   // We now have (double) (scaled_w * 10^-mk).
674   // DigitGen will generate the first requested_digits digits of scaled_w and
675   // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
676   // will not always be exactly the same since DigitGenCounted only produces a
677   // limited number of digits.)
678   int kappa;
679   bool result = DigitGenCounted(scaled_w, requested_digits,
680                                 buffer, length, &kappa);
681   *decimal_exponent = -mk + kappa;
682   return result;
683 }
684
685
686 bool FastDtoa(double v,
687               FastDtoaMode mode,
688               int requested_digits,
689               Vector<char> buffer,
690               int* length,
691               int* decimal_point) {
692   ASSERT(v > 0);
693   ASSERT(!Double(v).IsSpecial());
694
695   bool result = false;
696   int decimal_exponent = 0;
697   switch (mode) {
698     case FAST_DTOA_SHORTEST:
699       result = Grisu3(v, buffer, length, &decimal_exponent);
700       break;
701     case FAST_DTOA_PRECISION:
702       result = Grisu3Counted(v, requested_digits,
703                              buffer, length, &decimal_exponent);
704       break;
705     default:
706       UNREACHABLE();
707   }
708   if (result) {
709     *decimal_point = *length + decimal_exponent;
710     buffer[*length] = '\0';
711   }
712   return result;
713 }
714
715 } }  // namespace v8::internal