Upstream version 11.40.271.0
[platform/framework/web/crosswalk.git] / src / v8 / src / factory.cc
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/factory.h"
6
7 #include "src/allocation-site-scopes.h"
8 #include "src/base/bits.h"
9 #include "src/conversions.h"
10 #include "src/isolate-inl.h"
11 #include "src/macro-assembler.h"
12
13 namespace v8 {
14 namespace internal {
15
16
17 template<typename T>
18 Handle<T> Factory::New(Handle<Map> map, AllocationSpace space) {
19   CALL_HEAP_FUNCTION(
20       isolate(),
21       isolate()->heap()->Allocate(*map, space),
22       T);
23 }
24
25
26 template<typename T>
27 Handle<T> Factory::New(Handle<Map> map,
28                        AllocationSpace space,
29                        Handle<AllocationSite> allocation_site) {
30   CALL_HEAP_FUNCTION(
31       isolate(),
32       isolate()->heap()->Allocate(*map, space, *allocation_site),
33       T);
34 }
35
36
37 Handle<HeapObject> Factory::NewFillerObject(int size,
38                                             bool double_align,
39                                             AllocationSpace space) {
40   CALL_HEAP_FUNCTION(
41       isolate(),
42       isolate()->heap()->AllocateFillerObject(size, double_align, space),
43       HeapObject);
44 }
45
46
47 Handle<Box> Factory::NewBox(Handle<Object> value) {
48   Handle<Box> result = Handle<Box>::cast(NewStruct(BOX_TYPE));
49   result->set_value(*value);
50   return result;
51 }
52
53
54 Handle<Oddball> Factory::NewOddball(Handle<Map> map,
55                                     const char* to_string,
56                                     Handle<Object> to_number,
57                                     byte kind) {
58   Handle<Oddball> oddball = New<Oddball>(map, OLD_POINTER_SPACE);
59   Oddball::Initialize(isolate(), oddball, to_string, to_number, kind);
60   return oddball;
61 }
62
63
64 Handle<FixedArray> Factory::NewFixedArray(int size, PretenureFlag pretenure) {
65   DCHECK(0 <= size);
66   CALL_HEAP_FUNCTION(
67       isolate(),
68       isolate()->heap()->AllocateFixedArray(size, pretenure),
69       FixedArray);
70 }
71
72
73 Handle<FixedArray> Factory::NewFixedArrayWithHoles(int size,
74                                                    PretenureFlag pretenure) {
75   DCHECK(0 <= size);
76   CALL_HEAP_FUNCTION(
77       isolate(),
78       isolate()->heap()->AllocateFixedArrayWithFiller(size,
79                                                       pretenure,
80                                                       *the_hole_value()),
81       FixedArray);
82 }
83
84
85 Handle<FixedArray> Factory::NewUninitializedFixedArray(int size) {
86   CALL_HEAP_FUNCTION(
87       isolate(),
88       isolate()->heap()->AllocateUninitializedFixedArray(size),
89       FixedArray);
90 }
91
92
93 Handle<FixedArrayBase> Factory::NewFixedDoubleArray(int size,
94                                                     PretenureFlag pretenure) {
95   DCHECK(0 <= size);
96   CALL_HEAP_FUNCTION(
97       isolate(),
98       isolate()->heap()->AllocateUninitializedFixedDoubleArray(size, pretenure),
99       FixedArrayBase);
100 }
101
102
103 Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(
104     int size,
105     PretenureFlag pretenure) {
106   DCHECK(0 <= size);
107   Handle<FixedArrayBase> array = NewFixedDoubleArray(size, pretenure);
108   if (size > 0) {
109     Handle<FixedDoubleArray> double_array =
110         Handle<FixedDoubleArray>::cast(array);
111     for (int i = 0; i < size; ++i) {
112       double_array->set_the_hole(i);
113     }
114   }
115   return array;
116 }
117
118
119 Handle<ConstantPoolArray> Factory::NewConstantPoolArray(
120     const ConstantPoolArray::NumberOfEntries& small) {
121   DCHECK(small.total_count() > 0);
122   CALL_HEAP_FUNCTION(
123       isolate(),
124       isolate()->heap()->AllocateConstantPoolArray(small),
125       ConstantPoolArray);
126 }
127
128
129 Handle<ConstantPoolArray> Factory::NewExtendedConstantPoolArray(
130     const ConstantPoolArray::NumberOfEntries& small,
131     const ConstantPoolArray::NumberOfEntries& extended) {
132   DCHECK(small.total_count() > 0);
133   DCHECK(extended.total_count() > 0);
134   CALL_HEAP_FUNCTION(
135       isolate(),
136       isolate()->heap()->AllocateExtendedConstantPoolArray(small, extended),
137       ConstantPoolArray);
138 }
139
140
141 Handle<OrderedHashSet> Factory::NewOrderedHashSet() {
142   return OrderedHashSet::Allocate(isolate(), 4);
143 }
144
145
146 Handle<OrderedHashMap> Factory::NewOrderedHashMap() {
147   return OrderedHashMap::Allocate(isolate(), 4);
148 }
149
150
151 Handle<AccessorPair> Factory::NewAccessorPair() {
152   Handle<AccessorPair> accessors =
153       Handle<AccessorPair>::cast(NewStruct(ACCESSOR_PAIR_TYPE));
154   accessors->set_getter(*the_hole_value(), SKIP_WRITE_BARRIER);
155   accessors->set_setter(*the_hole_value(), SKIP_WRITE_BARRIER);
156   return accessors;
157 }
158
159
160 Handle<TypeFeedbackInfo> Factory::NewTypeFeedbackInfo() {
161   Handle<TypeFeedbackInfo> info =
162       Handle<TypeFeedbackInfo>::cast(NewStruct(TYPE_FEEDBACK_INFO_TYPE));
163   info->initialize_storage();
164   return info;
165 }
166
167
168 // Internalized strings are created in the old generation (data space).
169 Handle<String> Factory::InternalizeUtf8String(Vector<const char> string) {
170   Utf8StringKey key(string, isolate()->heap()->HashSeed());
171   return InternalizeStringWithKey(&key);
172 }
173
174
175 // Internalized strings are created in the old generation (data space).
176 Handle<String> Factory::InternalizeString(Handle<String> string) {
177   if (string->IsInternalizedString()) return string;
178   return StringTable::LookupString(isolate(), string);
179 }
180
181
182 Handle<String> Factory::InternalizeOneByteString(Vector<const uint8_t> string) {
183   OneByteStringKey key(string, isolate()->heap()->HashSeed());
184   return InternalizeStringWithKey(&key);
185 }
186
187
188 Handle<String> Factory::InternalizeOneByteString(
189     Handle<SeqOneByteString> string, int from, int length) {
190   SeqOneByteSubStringKey key(string, from, length);
191   return InternalizeStringWithKey(&key);
192 }
193
194
195 Handle<String> Factory::InternalizeTwoByteString(Vector<const uc16> string) {
196   TwoByteStringKey key(string, isolate()->heap()->HashSeed());
197   return InternalizeStringWithKey(&key);
198 }
199
200
201 template<class StringTableKey>
202 Handle<String> Factory::InternalizeStringWithKey(StringTableKey* key) {
203   return StringTable::LookupKey(isolate(), key);
204 }
205
206
207 MaybeHandle<String> Factory::NewStringFromOneByte(Vector<const uint8_t> string,
208                                                   PretenureFlag pretenure) {
209   int length = string.length();
210   if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
211   Handle<SeqOneByteString> result;
212   ASSIGN_RETURN_ON_EXCEPTION(
213       isolate(),
214       result,
215       NewRawOneByteString(string.length(), pretenure),
216       String);
217
218   DisallowHeapAllocation no_gc;
219   // Copy the characters into the new object.
220   CopyChars(SeqOneByteString::cast(*result)->GetChars(),
221             string.start(),
222             length);
223   return result;
224 }
225
226 MaybeHandle<String> Factory::NewStringFromUtf8(Vector<const char> string,
227                                                PretenureFlag pretenure) {
228   // Check for ASCII first since this is the common case.
229   const char* start = string.start();
230   int length = string.length();
231   int non_ascii_start = String::NonAsciiStart(start, length);
232   if (non_ascii_start >= length) {
233     // If the string is ASCII, we do not need to convert the characters
234     // since UTF8 is backwards compatible with ASCII.
235     return NewStringFromOneByte(Vector<const uint8_t>::cast(string), pretenure);
236   }
237
238   // Non-ASCII and we need to decode.
239   Access<UnicodeCache::Utf8Decoder>
240       decoder(isolate()->unicode_cache()->utf8_decoder());
241   decoder->Reset(string.start() + non_ascii_start,
242                  length - non_ascii_start);
243   int utf16_length = decoder->Utf16Length();
244   DCHECK(utf16_length > 0);
245   // Allocate string.
246   Handle<SeqTwoByteString> result;
247   ASSIGN_RETURN_ON_EXCEPTION(
248       isolate(), result,
249       NewRawTwoByteString(non_ascii_start + utf16_length, pretenure),
250       String);
251   // Copy ASCII portion.
252   uint16_t* data = result->GetChars();
253   const char* ascii_data = string.start();
254   for (int i = 0; i < non_ascii_start; i++) {
255     *data++ = *ascii_data++;
256   }
257   // Now write the remainder.
258   decoder->WriteUtf16(data, utf16_length);
259   return result;
260 }
261
262
263 MaybeHandle<String> Factory::NewStringFromTwoByte(Vector<const uc16> string,
264                                                   PretenureFlag pretenure) {
265   int length = string.length();
266   const uc16* start = string.start();
267   if (String::IsOneByte(start, length)) {
268     if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
269     Handle<SeqOneByteString> result;
270     ASSIGN_RETURN_ON_EXCEPTION(
271         isolate(),
272         result,
273         NewRawOneByteString(length, pretenure),
274         String);
275     CopyChars(result->GetChars(), start, length);
276     return result;
277   } else {
278     Handle<SeqTwoByteString> result;
279     ASSIGN_RETURN_ON_EXCEPTION(
280         isolate(),
281         result,
282         NewRawTwoByteString(length, pretenure),
283         String);
284     CopyChars(result->GetChars(), start, length);
285     return result;
286   }
287 }
288
289
290 Handle<String> Factory::NewInternalizedStringFromUtf8(Vector<const char> str,
291                                                       int chars,
292                                                       uint32_t hash_field) {
293   CALL_HEAP_FUNCTION(
294       isolate(),
295       isolate()->heap()->AllocateInternalizedStringFromUtf8(
296           str, chars, hash_field),
297       String);
298 }
299
300
301 MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedString(
302       Vector<const uint8_t> str,
303       uint32_t hash_field) {
304   CALL_HEAP_FUNCTION(
305       isolate(),
306       isolate()->heap()->AllocateOneByteInternalizedString(str, hash_field),
307       String);
308 }
309
310
311 MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedSubString(
312     Handle<SeqOneByteString> string, int offset, int length,
313     uint32_t hash_field) {
314   CALL_HEAP_FUNCTION(
315       isolate(), isolate()->heap()->AllocateOneByteInternalizedString(
316                      Vector<const uint8_t>(string->GetChars() + offset, length),
317                      hash_field),
318       String);
319 }
320
321
322 MUST_USE_RESULT Handle<String> Factory::NewTwoByteInternalizedString(
323       Vector<const uc16> str,
324       uint32_t hash_field) {
325   CALL_HEAP_FUNCTION(
326       isolate(),
327       isolate()->heap()->AllocateTwoByteInternalizedString(str, hash_field),
328       String);
329 }
330
331
332 Handle<String> Factory::NewInternalizedStringImpl(
333     Handle<String> string, int chars, uint32_t hash_field) {
334   CALL_HEAP_FUNCTION(
335       isolate(),
336       isolate()->heap()->AllocateInternalizedStringImpl(
337           *string, chars, hash_field),
338       String);
339 }
340
341
342 MaybeHandle<Map> Factory::InternalizedStringMapForString(
343     Handle<String> string) {
344   // If the string is in new space it cannot be used as internalized.
345   if (isolate()->heap()->InNewSpace(*string)) return MaybeHandle<Map>();
346
347   // Find the corresponding internalized string map for strings.
348   switch (string->map()->instance_type()) {
349     case STRING_TYPE: return internalized_string_map();
350     case ONE_BYTE_STRING_TYPE:
351       return one_byte_internalized_string_map();
352     case EXTERNAL_STRING_TYPE: return external_internalized_string_map();
353     case EXTERNAL_ONE_BYTE_STRING_TYPE:
354       return external_one_byte_internalized_string_map();
355     case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
356       return external_internalized_string_with_one_byte_data_map();
357     case SHORT_EXTERNAL_STRING_TYPE:
358       return short_external_internalized_string_map();
359     case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE:
360       return short_external_one_byte_internalized_string_map();
361     case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
362       return short_external_internalized_string_with_one_byte_data_map();
363     default: return MaybeHandle<Map>();  // No match found.
364   }
365 }
366
367
368 MaybeHandle<SeqOneByteString> Factory::NewRawOneByteString(
369     int length, PretenureFlag pretenure) {
370   if (length > String::kMaxLength || length < 0) {
371     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqOneByteString);
372   }
373   CALL_HEAP_FUNCTION(
374       isolate(),
375       isolate()->heap()->AllocateRawOneByteString(length, pretenure),
376       SeqOneByteString);
377 }
378
379
380 MaybeHandle<SeqTwoByteString> Factory::NewRawTwoByteString(
381     int length, PretenureFlag pretenure) {
382   if (length > String::kMaxLength || length < 0) {
383     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqTwoByteString);
384   }
385   CALL_HEAP_FUNCTION(
386       isolate(),
387       isolate()->heap()->AllocateRawTwoByteString(length, pretenure),
388       SeqTwoByteString);
389 }
390
391
392 Handle<String> Factory::LookupSingleCharacterStringFromCode(uint32_t code) {
393   if (code <= String::kMaxOneByteCharCodeU) {
394     {
395       DisallowHeapAllocation no_allocation;
396       Object* value = single_character_string_cache()->get(code);
397       if (value != *undefined_value()) {
398         return handle(String::cast(value), isolate());
399       }
400     }
401     uint8_t buffer[1];
402     buffer[0] = static_cast<uint8_t>(code);
403     Handle<String> result =
404         InternalizeOneByteString(Vector<const uint8_t>(buffer, 1));
405     single_character_string_cache()->set(code, *result);
406     return result;
407   }
408   DCHECK(code <= String::kMaxUtf16CodeUnitU);
409
410   Handle<SeqTwoByteString> result = NewRawTwoByteString(1).ToHandleChecked();
411   result->SeqTwoByteStringSet(0, static_cast<uint16_t>(code));
412   return result;
413 }
414
415
416 // Returns true for a character in a range.  Both limits are inclusive.
417 static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
418   // This makes uses of the the unsigned wraparound.
419   return character - from <= to - from;
420 }
421
422
423 static inline Handle<String> MakeOrFindTwoCharacterString(Isolate* isolate,
424                                                           uint16_t c1,
425                                                           uint16_t c2) {
426   // Numeric strings have a different hash algorithm not known by
427   // LookupTwoCharsStringIfExists, so we skip this step for such strings.
428   if (!Between(c1, '0', '9') || !Between(c2, '0', '9')) {
429     Handle<String> result;
430     if (StringTable::LookupTwoCharsStringIfExists(isolate, c1, c2).
431         ToHandle(&result)) {
432       return result;
433     }
434   }
435
436   // Now we know the length is 2, we might as well make use of that fact
437   // when building the new string.
438   if (static_cast<unsigned>(c1 | c2) <= String::kMaxOneByteCharCodeU) {
439     // We can do this.
440     DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU +
441                                       1));  // because of this.
442     Handle<SeqOneByteString> str =
443         isolate->factory()->NewRawOneByteString(2).ToHandleChecked();
444     uint8_t* dest = str->GetChars();
445     dest[0] = static_cast<uint8_t>(c1);
446     dest[1] = static_cast<uint8_t>(c2);
447     return str;
448   } else {
449     Handle<SeqTwoByteString> str =
450         isolate->factory()->NewRawTwoByteString(2).ToHandleChecked();
451     uc16* dest = str->GetChars();
452     dest[0] = c1;
453     dest[1] = c2;
454     return str;
455   }
456 }
457
458
459 template<typename SinkChar, typename StringType>
460 Handle<String> ConcatStringContent(Handle<StringType> result,
461                                    Handle<String> first,
462                                    Handle<String> second) {
463   DisallowHeapAllocation pointer_stays_valid;
464   SinkChar* sink = result->GetChars();
465   String::WriteToFlat(*first, sink, 0, first->length());
466   String::WriteToFlat(*second, sink + first->length(), 0, second->length());
467   return result;
468 }
469
470
471 MaybeHandle<String> Factory::NewConsString(Handle<String> left,
472                                            Handle<String> right) {
473   int left_length = left->length();
474   if (left_length == 0) return right;
475   int right_length = right->length();
476   if (right_length == 0) return left;
477
478   int length = left_length + right_length;
479
480   if (length == 2) {
481     uint16_t c1 = left->Get(0);
482     uint16_t c2 = right->Get(0);
483     return MakeOrFindTwoCharacterString(isolate(), c1, c2);
484   }
485
486   // Make sure that an out of memory exception is thrown if the length
487   // of the new cons string is too large.
488   if (length > String::kMaxLength || length < 0) {
489     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
490   }
491
492   bool left_is_one_byte = left->IsOneByteRepresentation();
493   bool right_is_one_byte = right->IsOneByteRepresentation();
494   bool is_one_byte = left_is_one_byte && right_is_one_byte;
495   bool is_one_byte_data_in_two_byte_string = false;
496   if (!is_one_byte) {
497     // At least one of the strings uses two-byte representation so we
498     // can't use the fast case code for short one-byte strings below, but
499     // we can try to save memory if all chars actually fit in one-byte.
500     is_one_byte_data_in_two_byte_string =
501         left->HasOnlyOneByteChars() && right->HasOnlyOneByteChars();
502     if (is_one_byte_data_in_two_byte_string) {
503       isolate()->counters()->string_add_runtime_ext_to_one_byte()->Increment();
504     }
505   }
506
507   // If the resulting string is small make a flat string.
508   if (length < ConsString::kMinLength) {
509     // Note that neither of the two inputs can be a slice because:
510     STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength);
511     DCHECK(left->IsFlat());
512     DCHECK(right->IsFlat());
513
514     STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength);
515     if (is_one_byte) {
516       Handle<SeqOneByteString> result =
517           NewRawOneByteString(length).ToHandleChecked();
518       DisallowHeapAllocation no_gc;
519       uint8_t* dest = result->GetChars();
520       // Copy left part.
521       const uint8_t* src =
522           left->IsExternalString()
523               ? Handle<ExternalOneByteString>::cast(left)->GetChars()
524               : Handle<SeqOneByteString>::cast(left)->GetChars();
525       for (int i = 0; i < left_length; i++) *dest++ = src[i];
526       // Copy right part.
527       src = right->IsExternalString()
528                 ? Handle<ExternalOneByteString>::cast(right)->GetChars()
529                 : Handle<SeqOneByteString>::cast(right)->GetChars();
530       for (int i = 0; i < right_length; i++) *dest++ = src[i];
531       return result;
532     }
533
534     return (is_one_byte_data_in_two_byte_string)
535         ? ConcatStringContent<uint8_t>(
536             NewRawOneByteString(length).ToHandleChecked(), left, right)
537         : ConcatStringContent<uc16>(
538             NewRawTwoByteString(length).ToHandleChecked(), left, right);
539   }
540
541   Handle<Map> map = (is_one_byte || is_one_byte_data_in_two_byte_string)
542                         ? cons_one_byte_string_map()
543                         : cons_string_map();
544   Handle<ConsString> result =  New<ConsString>(map, NEW_SPACE);
545
546   DisallowHeapAllocation no_gc;
547   WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
548
549   result->set_hash_field(String::kEmptyHashField);
550   result->set_length(length);
551   result->set_first(*left, mode);
552   result->set_second(*right, mode);
553   return result;
554 }
555
556
557 Handle<String> Factory::NewProperSubString(Handle<String> str,
558                                            int begin,
559                                            int end) {
560 #if VERIFY_HEAP
561   if (FLAG_verify_heap) str->StringVerify();
562 #endif
563   DCHECK(begin > 0 || end < str->length());
564
565   str = String::Flatten(str);
566
567   int length = end - begin;
568   if (length <= 0) return empty_string();
569   if (length == 1) {
570     return LookupSingleCharacterStringFromCode(str->Get(begin));
571   }
572   if (length == 2) {
573     // Optimization for 2-byte strings often used as keys in a decompression
574     // dictionary.  Check whether we already have the string in the string
575     // table to prevent creation of many unnecessary strings.
576     uint16_t c1 = str->Get(begin);
577     uint16_t c2 = str->Get(begin + 1);
578     return MakeOrFindTwoCharacterString(isolate(), c1, c2);
579   }
580
581   if (!FLAG_string_slices || length < SlicedString::kMinLength) {
582     if (str->IsOneByteRepresentation()) {
583       Handle<SeqOneByteString> result =
584           NewRawOneByteString(length).ToHandleChecked();
585       uint8_t* dest = result->GetChars();
586       DisallowHeapAllocation no_gc;
587       String::WriteToFlat(*str, dest, begin, end);
588       return result;
589     } else {
590       Handle<SeqTwoByteString> result =
591           NewRawTwoByteString(length).ToHandleChecked();
592       uc16* dest = result->GetChars();
593       DisallowHeapAllocation no_gc;
594       String::WriteToFlat(*str, dest, begin, end);
595       return result;
596     }
597   }
598
599   int offset = begin;
600
601   if (str->IsSlicedString()) {
602     Handle<SlicedString> slice = Handle<SlicedString>::cast(str);
603     str = Handle<String>(slice->parent(), isolate());
604     offset += slice->offset();
605   }
606
607   DCHECK(str->IsSeqString() || str->IsExternalString());
608   Handle<Map> map = str->IsOneByteRepresentation()
609                         ? sliced_one_byte_string_map()
610                         : sliced_string_map();
611   Handle<SlicedString> slice = New<SlicedString>(map, NEW_SPACE);
612
613   slice->set_hash_field(String::kEmptyHashField);
614   slice->set_length(length);
615   slice->set_parent(*str);
616   slice->set_offset(offset);
617   return slice;
618 }
619
620
621 MaybeHandle<String> Factory::NewExternalStringFromOneByte(
622     const ExternalOneByteString::Resource* resource) {
623   size_t length = resource->length();
624   if (length > static_cast<size_t>(String::kMaxLength)) {
625     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
626   }
627
628   Handle<Map> map = external_one_byte_string_map();
629   Handle<ExternalOneByteString> external_string =
630       New<ExternalOneByteString>(map, NEW_SPACE);
631   external_string->set_length(static_cast<int>(length));
632   external_string->set_hash_field(String::kEmptyHashField);
633   external_string->set_resource(resource);
634
635   return external_string;
636 }
637
638
639 MaybeHandle<String> Factory::NewExternalStringFromTwoByte(
640     const ExternalTwoByteString::Resource* resource) {
641   size_t length = resource->length();
642   if (length > static_cast<size_t>(String::kMaxLength)) {
643     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
644   }
645
646   // For small strings we check whether the resource contains only
647   // one byte characters.  If yes, we use a different string map.
648   static const size_t kOneByteCheckLengthLimit = 32;
649   bool is_one_byte = length <= kOneByteCheckLengthLimit &&
650       String::IsOneByte(resource->data(), static_cast<int>(length));
651   Handle<Map> map = is_one_byte ?
652       external_string_with_one_byte_data_map() : external_string_map();
653   Handle<ExternalTwoByteString> external_string =
654       New<ExternalTwoByteString>(map, NEW_SPACE);
655   external_string->set_length(static_cast<int>(length));
656   external_string->set_hash_field(String::kEmptyHashField);
657   external_string->set_resource(resource);
658
659   return external_string;
660 }
661
662
663 Handle<Symbol> Factory::NewSymbol() {
664   CALL_HEAP_FUNCTION(
665       isolate(),
666       isolate()->heap()->AllocateSymbol(),
667       Symbol);
668 }
669
670
671 Handle<Symbol> Factory::NewPrivateSymbol() {
672   Handle<Symbol> symbol = NewSymbol();
673   symbol->set_is_private(true);
674   return symbol;
675 }
676
677
678 Handle<Symbol> Factory::NewPrivateOwnSymbol() {
679   Handle<Symbol> symbol = NewSymbol();
680   symbol->set_is_private(true);
681   symbol->set_is_own(true);
682   return symbol;
683 }
684
685
686 Handle<Context> Factory::NewNativeContext() {
687   Handle<FixedArray> array = NewFixedArray(Context::NATIVE_CONTEXT_SLOTS);
688   array->set_map_no_write_barrier(*native_context_map());
689   Handle<Context> context = Handle<Context>::cast(array);
690   context->set_js_array_maps(*undefined_value());
691   DCHECK(context->IsNativeContext());
692   return context;
693 }
694
695
696 Handle<Context> Factory::NewGlobalContext(Handle<JSFunction> function,
697                                           Handle<ScopeInfo> scope_info) {
698   Handle<FixedArray> array =
699       NewFixedArray(scope_info->ContextLength(), TENURED);
700   array->set_map_no_write_barrier(*global_context_map());
701   Handle<Context> context = Handle<Context>::cast(array);
702   context->set_closure(*function);
703   context->set_previous(function->context());
704   context->set_extension(*scope_info);
705   context->set_global_object(function->context()->global_object());
706   DCHECK(context->IsGlobalContext());
707   return context;
708 }
709
710
711 Handle<Context> Factory::NewModuleContext(Handle<ScopeInfo> scope_info) {
712   Handle<FixedArray> array =
713       NewFixedArray(scope_info->ContextLength(), TENURED);
714   array->set_map_no_write_barrier(*module_context_map());
715   // Instance link will be set later.
716   Handle<Context> context = Handle<Context>::cast(array);
717   context->set_extension(Smi::FromInt(0));
718   return context;
719 }
720
721
722 Handle<Context> Factory::NewFunctionContext(int length,
723                                             Handle<JSFunction> function) {
724   DCHECK(length >= Context::MIN_CONTEXT_SLOTS);
725   Handle<FixedArray> array = NewFixedArray(length);
726   array->set_map_no_write_barrier(*function_context_map());
727   Handle<Context> context = Handle<Context>::cast(array);
728   context->set_closure(*function);
729   context->set_previous(function->context());
730   context->set_extension(Smi::FromInt(0));
731   context->set_global_object(function->context()->global_object());
732   return context;
733 }
734
735
736 Handle<Context> Factory::NewCatchContext(Handle<JSFunction> function,
737                                          Handle<Context> previous,
738                                          Handle<String> name,
739                                          Handle<Object> thrown_object) {
740   STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
741   Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 1);
742   array->set_map_no_write_barrier(*catch_context_map());
743   Handle<Context> context = Handle<Context>::cast(array);
744   context->set_closure(*function);
745   context->set_previous(*previous);
746   context->set_extension(*name);
747   context->set_global_object(previous->global_object());
748   context->set(Context::THROWN_OBJECT_INDEX, *thrown_object);
749   return context;
750 }
751
752
753 Handle<Context> Factory::NewWithContext(Handle<JSFunction> function,
754                                         Handle<Context> previous,
755                                         Handle<JSReceiver> extension) {
756   Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS);
757   array->set_map_no_write_barrier(*with_context_map());
758   Handle<Context> context = Handle<Context>::cast(array);
759   context->set_closure(*function);
760   context->set_previous(*previous);
761   context->set_extension(*extension);
762   context->set_global_object(previous->global_object());
763   return context;
764 }
765
766
767 Handle<Context> Factory::NewBlockContext(Handle<JSFunction> function,
768                                          Handle<Context> previous,
769                                          Handle<ScopeInfo> scope_info) {
770   Handle<FixedArray> array =
771       NewFixedArrayWithHoles(scope_info->ContextLength());
772   array->set_map_no_write_barrier(*block_context_map());
773   Handle<Context> context = Handle<Context>::cast(array);
774   context->set_closure(*function);
775   context->set_previous(*previous);
776   context->set_extension(*scope_info);
777   context->set_global_object(previous->global_object());
778   return context;
779 }
780
781
782 Handle<Struct> Factory::NewStruct(InstanceType type) {
783   CALL_HEAP_FUNCTION(
784       isolate(),
785       isolate()->heap()->AllocateStruct(type),
786       Struct);
787 }
788
789
790 Handle<CodeCache> Factory::NewCodeCache() {
791   Handle<CodeCache> code_cache =
792       Handle<CodeCache>::cast(NewStruct(CODE_CACHE_TYPE));
793   code_cache->set_default_cache(*empty_fixed_array(), SKIP_WRITE_BARRIER);
794   code_cache->set_normal_type_cache(*undefined_value(), SKIP_WRITE_BARRIER);
795   return code_cache;
796 }
797
798
799 Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry(
800     int aliased_context_slot) {
801   Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast(
802       NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE));
803   entry->set_aliased_context_slot(aliased_context_slot);
804   return entry;
805 }
806
807
808 Handle<DeclaredAccessorDescriptor> Factory::NewDeclaredAccessorDescriptor() {
809   return Handle<DeclaredAccessorDescriptor>::cast(
810       NewStruct(DECLARED_ACCESSOR_DESCRIPTOR_TYPE));
811 }
812
813
814 Handle<DeclaredAccessorInfo> Factory::NewDeclaredAccessorInfo() {
815   Handle<DeclaredAccessorInfo> info =
816       Handle<DeclaredAccessorInfo>::cast(
817           NewStruct(DECLARED_ACCESSOR_INFO_TYPE));
818   info->set_flag(0);  // Must clear the flag, it was initialized as undefined.
819   return info;
820 }
821
822
823 Handle<ExecutableAccessorInfo> Factory::NewExecutableAccessorInfo() {
824   Handle<ExecutableAccessorInfo> info =
825       Handle<ExecutableAccessorInfo>::cast(
826           NewStruct(EXECUTABLE_ACCESSOR_INFO_TYPE));
827   info->set_flag(0);  // Must clear the flag, it was initialized as undefined.
828   return info;
829 }
830
831
832 Handle<Script> Factory::NewScript(Handle<String> source) {
833   // Generate id for this script.
834   Heap* heap = isolate()->heap();
835   int id = heap->last_script_id()->value() + 1;
836   if (!Smi::IsValid(id) || id < 0) id = 1;
837   heap->set_last_script_id(Smi::FromInt(id));
838
839   // Create and initialize script object.
840   Handle<Script> script = Handle<Script>::cast(NewStruct(SCRIPT_TYPE));
841   script->set_source(*source);
842   script->set_name(heap->undefined_value());
843   script->set_id(Smi::FromInt(id));
844   script->set_line_offset(Smi::FromInt(0));
845   script->set_column_offset(Smi::FromInt(0));
846   script->set_context_data(heap->undefined_value());
847   script->set_type(Smi::FromInt(Script::TYPE_NORMAL));
848   script->set_wrapper(heap->undefined_value());
849   script->set_line_ends(heap->undefined_value());
850   script->set_eval_from_shared(heap->undefined_value());
851   script->set_eval_from_instructions_offset(Smi::FromInt(0));
852   script->set_flags(Smi::FromInt(0));
853
854   return script;
855 }
856
857
858 Handle<Foreign> Factory::NewForeign(Address addr, PretenureFlag pretenure) {
859   CALL_HEAP_FUNCTION(isolate(),
860                      isolate()->heap()->AllocateForeign(addr, pretenure),
861                      Foreign);
862 }
863
864
865 Handle<Foreign> Factory::NewForeign(const AccessorDescriptor* desc) {
866   return NewForeign((Address) desc, TENURED);
867 }
868
869
870 Handle<ByteArray> Factory::NewByteArray(int length, PretenureFlag pretenure) {
871   DCHECK(0 <= length);
872   CALL_HEAP_FUNCTION(
873       isolate(),
874       isolate()->heap()->AllocateByteArray(length, pretenure),
875       ByteArray);
876 }
877
878
879 Handle<ExternalArray> Factory::NewExternalArray(int length,
880                                                 ExternalArrayType array_type,
881                                                 void* external_pointer,
882                                                 PretenureFlag pretenure) {
883   DCHECK(0 <= length && length <= Smi::kMaxValue);
884   CALL_HEAP_FUNCTION(
885       isolate(),
886       isolate()->heap()->AllocateExternalArray(length,
887                                                array_type,
888                                                external_pointer,
889                                                pretenure),
890       ExternalArray);
891 }
892
893
894 Handle<FixedTypedArrayBase> Factory::NewFixedTypedArray(
895     int length,
896     ExternalArrayType array_type,
897     PretenureFlag pretenure) {
898   DCHECK(0 <= length && length <= Smi::kMaxValue);
899   CALL_HEAP_FUNCTION(
900       isolate(),
901       isolate()->heap()->AllocateFixedTypedArray(length,
902                                                  array_type,
903                                                  pretenure),
904       FixedTypedArrayBase);
905 }
906
907
908 Handle<Cell> Factory::NewCell(Handle<Object> value) {
909   AllowDeferredHandleDereference convert_to_cell;
910   CALL_HEAP_FUNCTION(
911       isolate(),
912       isolate()->heap()->AllocateCell(*value),
913       Cell);
914 }
915
916
917 Handle<PropertyCell> Factory::NewPropertyCellWithHole() {
918   CALL_HEAP_FUNCTION(
919       isolate(),
920       isolate()->heap()->AllocatePropertyCell(),
921       PropertyCell);
922 }
923
924
925 Handle<PropertyCell> Factory::NewPropertyCell(Handle<Object> value) {
926   AllowDeferredHandleDereference convert_to_cell;
927   Handle<PropertyCell> cell = NewPropertyCellWithHole();
928   PropertyCell::SetValueInferType(cell, value);
929   return cell;
930 }
931
932
933 Handle<WeakCell> Factory::NewWeakCell(Handle<HeapObject> value) {
934   AllowDeferredHandleDereference convert_to_cell;
935   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateWeakCell(*value),
936                      WeakCell);
937 }
938
939
940 Handle<AllocationSite> Factory::NewAllocationSite() {
941   Handle<Map> map = allocation_site_map();
942   Handle<AllocationSite> site = New<AllocationSite>(map, OLD_POINTER_SPACE);
943   site->Initialize();
944
945   // Link the site
946   site->set_weak_next(isolate()->heap()->allocation_sites_list());
947   isolate()->heap()->set_allocation_sites_list(*site);
948   return site;
949 }
950
951
952 Handle<Map> Factory::NewMap(InstanceType type,
953                             int instance_size,
954                             ElementsKind elements_kind) {
955   CALL_HEAP_FUNCTION(
956       isolate(),
957       isolate()->heap()->AllocateMap(type, instance_size, elements_kind),
958       Map);
959 }
960
961
962 Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> object) {
963   CALL_HEAP_FUNCTION(isolate(),
964                      isolate()->heap()->CopyJSObject(*object, NULL),
965                      JSObject);
966 }
967
968
969 Handle<JSObject> Factory::CopyJSObjectWithAllocationSite(
970     Handle<JSObject> object,
971     Handle<AllocationSite> site) {
972   CALL_HEAP_FUNCTION(isolate(),
973                      isolate()->heap()->CopyJSObject(
974                          *object,
975                          site.is_null() ? NULL : *site),
976                      JSObject);
977 }
978
979
980 Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array,
981                                                   Handle<Map> map) {
982   CALL_HEAP_FUNCTION(isolate(),
983                      isolate()->heap()->CopyFixedArrayWithMap(*array, *map),
984                      FixedArray);
985 }
986
987
988 Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) {
989   CALL_HEAP_FUNCTION(isolate(),
990                      isolate()->heap()->CopyFixedArray(*array),
991                      FixedArray);
992 }
993
994
995 Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray(
996     Handle<FixedArray> array) {
997   DCHECK(isolate()->heap()->InNewSpace(*array));
998   CALL_HEAP_FUNCTION(isolate(),
999                      isolate()->heap()->CopyAndTenureFixedCOWArray(*array),
1000                      FixedArray);
1001 }
1002
1003
1004 Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray(
1005     Handle<FixedDoubleArray> array) {
1006   CALL_HEAP_FUNCTION(isolate(),
1007                      isolate()->heap()->CopyFixedDoubleArray(*array),
1008                      FixedDoubleArray);
1009 }
1010
1011
1012 Handle<ConstantPoolArray> Factory::CopyConstantPoolArray(
1013     Handle<ConstantPoolArray> array) {
1014   CALL_HEAP_FUNCTION(isolate(),
1015                      isolate()->heap()->CopyConstantPoolArray(*array),
1016                      ConstantPoolArray);
1017 }
1018
1019
1020 Handle<Object> Factory::NewNumber(double value,
1021                                   PretenureFlag pretenure) {
1022   // We need to distinguish the minus zero value and this cannot be
1023   // done after conversion to int. Doing this by comparing bit
1024   // patterns is faster than using fpclassify() et al.
1025   if (IsMinusZero(value)) return NewHeapNumber(-0.0, IMMUTABLE, pretenure);
1026
1027   int int_value = FastD2I(value);
1028   if (value == int_value && Smi::IsValid(int_value)) {
1029     return handle(Smi::FromInt(int_value), isolate());
1030   }
1031
1032   // Materialize the value in the heap.
1033   return NewHeapNumber(value, IMMUTABLE, pretenure);
1034 }
1035
1036
1037 Handle<Object> Factory::NewNumberFromInt(int32_t value,
1038                                          PretenureFlag pretenure) {
1039   if (Smi::IsValid(value)) return handle(Smi::FromInt(value), isolate());
1040   // Bypass NewNumber to avoid various redundant checks.
1041   return NewHeapNumber(FastI2D(value), IMMUTABLE, pretenure);
1042 }
1043
1044
1045 Handle<Object> Factory::NewNumberFromUint(uint32_t value,
1046                                           PretenureFlag pretenure) {
1047   int32_t int32v = static_cast<int32_t>(value);
1048   if (int32v >= 0 && Smi::IsValid(int32v)) {
1049     return handle(Smi::FromInt(int32v), isolate());
1050   }
1051   return NewHeapNumber(FastUI2D(value), IMMUTABLE, pretenure);
1052 }
1053
1054
1055 Handle<HeapNumber> Factory::NewHeapNumber(double value,
1056                                           MutableMode mode,
1057                                           PretenureFlag pretenure) {
1058   CALL_HEAP_FUNCTION(
1059       isolate(),
1060       isolate()->heap()->AllocateHeapNumber(value, mode, pretenure),
1061       HeapNumber);
1062 }
1063
1064
1065 Handle<Float32x4> Factory::NewFloat32x4(float32x4_value_t value,
1066                                         PretenureFlag pretenure) {
1067   CALL_HEAP_FUNCTION(
1068       isolate(),
1069       isolate()->heap()->AllocateFloat32x4(value, pretenure), Float32x4);
1070 }
1071
1072
1073 Handle<Float64x2> Factory::NewFloat64x2(float64x2_value_t value,
1074                                         PretenureFlag pretenure) {
1075   CALL_HEAP_FUNCTION(
1076       isolate(),
1077       isolate()->heap()->AllocateFloat64x2(value, pretenure), Float64x2);
1078 }
1079
1080
1081 Handle<Int32x4> Factory::NewInt32x4(int32x4_value_t value,
1082                                     PretenureFlag pretenure) {
1083   CALL_HEAP_FUNCTION(
1084       isolate(),
1085       isolate()->heap()->AllocateInt32x4(value, pretenure), Int32x4);
1086 }
1087
1088
1089 MaybeHandle<Object> Factory::NewTypeError(const char* message,
1090                                           Vector<Handle<Object> > args) {
1091   return NewError("MakeTypeError", message, args);
1092 }
1093
1094
1095 MaybeHandle<Object> Factory::NewTypeError(Handle<String> message) {
1096   return NewError("$TypeError", message);
1097 }
1098
1099
1100 MaybeHandle<Object> Factory::NewRangeError(const char* message,
1101                                            Vector<Handle<Object> > args) {
1102   return NewError("MakeRangeError", message, args);
1103 }
1104
1105
1106 MaybeHandle<Object> Factory::NewRangeError(Handle<String> message) {
1107   return NewError("$RangeError", message);
1108 }
1109
1110
1111 MaybeHandle<Object> Factory::NewSyntaxError(const char* message,
1112                                             Handle<JSArray> args) {
1113   return NewError("MakeSyntaxError", message, args);
1114 }
1115
1116
1117 MaybeHandle<Object> Factory::NewSyntaxError(Handle<String> message) {
1118   return NewError("$SyntaxError", message);
1119 }
1120
1121
1122 MaybeHandle<Object> Factory::NewReferenceError(const char* message,
1123                                                Vector<Handle<Object> > args) {
1124   return NewError("MakeReferenceError", message, args);
1125 }
1126
1127
1128 MaybeHandle<Object> Factory::NewReferenceError(const char* message,
1129                                                Handle<JSArray> args) {
1130   return NewError("MakeReferenceError", message, args);
1131 }
1132
1133
1134 MaybeHandle<Object> Factory::NewReferenceError(Handle<String> message) {
1135   return NewError("$ReferenceError", message);
1136 }
1137
1138
1139 MaybeHandle<Object> Factory::NewError(const char* maker, const char* message,
1140                                       Vector<Handle<Object> > args) {
1141   // Instantiate a closeable HandleScope for EscapeFrom.
1142   v8::EscapableHandleScope scope(reinterpret_cast<v8::Isolate*>(isolate()));
1143   Handle<FixedArray> array = NewFixedArray(args.length());
1144   for (int i = 0; i < args.length(); i++) {
1145     array->set(i, *args[i]);
1146   }
1147   Handle<JSArray> object = NewJSArrayWithElements(array);
1148   Handle<Object> result;
1149   ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
1150                              NewError(maker, message, object), Object);
1151   return result.EscapeFrom(&scope);
1152 }
1153
1154
1155 MaybeHandle<Object> Factory::NewEvalError(const char* message,
1156                                           Vector<Handle<Object> > args) {
1157   return NewError("MakeEvalError", message, args);
1158 }
1159
1160
1161 MaybeHandle<Object> Factory::NewError(const char* message,
1162                                       Vector<Handle<Object> > args) {
1163   return NewError("MakeError", message, args);
1164 }
1165
1166
1167 Handle<String> Factory::EmergencyNewError(const char* message,
1168                                           Handle<JSArray> args) {
1169   const int kBufferSize = 1000;
1170   char buffer[kBufferSize];
1171   size_t space = kBufferSize;
1172   char* p = &buffer[0];
1173
1174   Vector<char> v(buffer, kBufferSize);
1175   StrNCpy(v, message, space);
1176   space -= Min(space, strlen(message));
1177   p = &buffer[kBufferSize] - space;
1178
1179   for (int i = 0; i < Smi::cast(args->length())->value(); i++) {
1180     if (space > 0) {
1181       *p++ = ' ';
1182       space--;
1183       if (space > 0) {
1184         Handle<String> arg_str = Handle<String>::cast(
1185             Object::GetElement(isolate(), args, i).ToHandleChecked());
1186         SmartArrayPointer<char> arg = arg_str->ToCString();
1187         Vector<char> v2(p, static_cast<int>(space));
1188         StrNCpy(v2, arg.get(), space);
1189         space -= Min(space, strlen(arg.get()));
1190         p = &buffer[kBufferSize] - space;
1191       }
1192     }
1193   }
1194   if (space > 0) {
1195     *p = '\0';
1196   } else {
1197     buffer[kBufferSize - 1] = '\0';
1198   }
1199   return NewStringFromUtf8(CStrVector(buffer), TENURED).ToHandleChecked();
1200 }
1201
1202
1203 MaybeHandle<Object> Factory::NewError(const char* maker, const char* message,
1204                                       Handle<JSArray> args) {
1205   Handle<String> make_str = InternalizeUtf8String(maker);
1206   Handle<Object> fun_obj = Object::GetProperty(
1207       isolate()->js_builtins_object(), make_str).ToHandleChecked();
1208   // If the builtins haven't been properly configured yet this error
1209   // constructor may not have been defined.  Bail out.
1210   if (!fun_obj->IsJSFunction()) {
1211     return EmergencyNewError(message, args);
1212   }
1213   Handle<JSFunction> fun = Handle<JSFunction>::cast(fun_obj);
1214   Handle<Object> message_obj = InternalizeUtf8String(message);
1215   Handle<Object> argv[] = { message_obj, args };
1216
1217   // Invoke the JavaScript factory method. If an exception is thrown while
1218   // running the factory method, use the exception as the result.
1219   Handle<Object> result;
1220   MaybeHandle<Object> exception;
1221   if (!Execution::TryCall(fun,
1222                           isolate()->js_builtins_object(),
1223                           arraysize(argv),
1224                           argv,
1225                           &exception).ToHandle(&result)) {
1226     return exception;
1227   }
1228   return result;
1229 }
1230
1231
1232 MaybeHandle<Object> Factory::NewError(Handle<String> message) {
1233   return NewError("$Error", message);
1234 }
1235
1236
1237 MaybeHandle<Object> Factory::NewError(const char* constructor,
1238                                       Handle<String> message) {
1239   Handle<String> constr = InternalizeUtf8String(constructor);
1240   Handle<JSFunction> fun = Handle<JSFunction>::cast(Object::GetProperty(
1241       isolate()->js_builtins_object(), constr).ToHandleChecked());
1242   Handle<Object> argv[] = { message };
1243
1244   // Invoke the JavaScript factory method. If an exception is thrown while
1245   // running the factory method, use the exception as the result.
1246   Handle<Object> result;
1247   MaybeHandle<Object> exception;
1248   if (!Execution::TryCall(fun,
1249                           isolate()->js_builtins_object(),
1250                           arraysize(argv),
1251                           argv,
1252                           &exception).ToHandle(&result)) {
1253     return exception;
1254   }
1255   return result;
1256 }
1257
1258
1259 void Factory::InitializeFunction(Handle<JSFunction> function,
1260                                  Handle<SharedFunctionInfo> info,
1261                                  Handle<Context> context) {
1262   function->initialize_properties();
1263   function->initialize_elements();
1264   function->set_shared(*info);
1265   function->set_code(info->code());
1266   function->set_context(*context);
1267   function->set_prototype_or_initial_map(*the_hole_value());
1268   function->set_literals_or_bindings(*empty_fixed_array());
1269   function->set_next_function_link(*undefined_value());
1270 }
1271
1272
1273 Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
1274                                         Handle<SharedFunctionInfo> info,
1275                                         Handle<Context> context,
1276                                         PretenureFlag pretenure) {
1277   AllocationSpace space = pretenure == TENURED ? OLD_POINTER_SPACE : NEW_SPACE;
1278   Handle<JSFunction> result = New<JSFunction>(map, space);
1279   InitializeFunction(result, info, context);
1280   return result;
1281 }
1282
1283
1284 Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
1285                                         Handle<String> name,
1286                                         MaybeHandle<Code> code) {
1287   Handle<Context> context(isolate()->native_context());
1288   Handle<SharedFunctionInfo> info = NewSharedFunctionInfo(name, code);
1289   DCHECK((info->strict_mode() == SLOPPY) &&
1290          (map.is_identical_to(isolate()->sloppy_function_map()) ||
1291           map.is_identical_to(
1292               isolate()->sloppy_function_without_prototype_map()) ||
1293           map.is_identical_to(
1294               isolate()->sloppy_function_with_readonly_prototype_map())));
1295   return NewFunction(map, info, context);
1296 }
1297
1298
1299 Handle<JSFunction> Factory::NewFunction(Handle<String> name) {
1300   return NewFunction(
1301       isolate()->sloppy_function_map(), name, MaybeHandle<Code>());
1302 }
1303
1304
1305 Handle<JSFunction> Factory::NewFunctionWithoutPrototype(Handle<String> name,
1306                                                         Handle<Code> code) {
1307   return NewFunction(
1308       isolate()->sloppy_function_without_prototype_map(), name, code);
1309 }
1310
1311
1312 Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1313                                         Handle<Code> code,
1314                                         Handle<Object> prototype,
1315                                         bool read_only_prototype) {
1316   Handle<Map> map = read_only_prototype
1317       ? isolate()->sloppy_function_with_readonly_prototype_map()
1318       : isolate()->sloppy_function_map();
1319   Handle<JSFunction> result = NewFunction(map, name, code);
1320   result->set_prototype_or_initial_map(*prototype);
1321   return result;
1322 }
1323
1324
1325 Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1326                                         Handle<Code> code,
1327                                         Handle<Object> prototype,
1328                                         InstanceType type,
1329                                         int instance_size,
1330                                         bool read_only_prototype) {
1331   // Allocate the function
1332   Handle<JSFunction> function = NewFunction(
1333       name, code, prototype, read_only_prototype);
1334
1335   ElementsKind elements_kind =
1336       type == JS_ARRAY_TYPE ? FAST_SMI_ELEMENTS : FAST_HOLEY_SMI_ELEMENTS;
1337   Handle<Map> initial_map = NewMap(type, instance_size, elements_kind);
1338   if (prototype->IsTheHole() && !function->shared()->is_generator()) {
1339     prototype = NewFunctionPrototype(function);
1340   }
1341
1342   JSFunction::SetInitialMap(function, initial_map,
1343                             Handle<JSReceiver>::cast(prototype));
1344
1345   return function;
1346 }
1347
1348
1349 Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1350                                         Handle<Code> code,
1351                                         InstanceType type,
1352                                         int instance_size) {
1353   return NewFunction(name, code, the_hole_value(), type, instance_size);
1354 }
1355
1356
1357 Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) {
1358   // Make sure to use globals from the function's context, since the function
1359   // can be from a different context.
1360   Handle<Context> native_context(function->context()->native_context());
1361   Handle<Map> new_map;
1362   if (function->shared()->is_generator()) {
1363     // Generator prototypes can share maps since they don't have "constructor"
1364     // properties.
1365     new_map = handle(native_context->generator_object_prototype_map());
1366   } else {
1367     // Each function prototype gets a fresh map to avoid unwanted sharing of
1368     // maps between prototypes of different constructors.
1369     Handle<JSFunction> object_function(native_context->object_function());
1370     DCHECK(object_function->has_initial_map());
1371     new_map = handle(object_function->initial_map());
1372   }
1373
1374   DCHECK(!new_map->is_prototype_map());
1375   Handle<JSObject> prototype = NewJSObjectFromMap(new_map);
1376
1377   if (!function->shared()->is_generator()) {
1378     JSObject::AddProperty(prototype, constructor_string(), function, DONT_ENUM);
1379   }
1380
1381   return prototype;
1382 }
1383
1384
1385 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
1386     Handle<SharedFunctionInfo> info,
1387     Handle<Context> context,
1388     PretenureFlag pretenure) {
1389   int map_index = Context::FunctionMapIndex(info->strict_mode(), info->kind());
1390   Handle<Map> map(Map::cast(context->native_context()->get(map_index)));
1391   Handle<JSFunction> result = NewFunction(map, info, context, pretenure);
1392
1393   if (info->ic_age() != isolate()->heap()->global_ic_age()) {
1394     info->ResetForNewContext(isolate()->heap()->global_ic_age());
1395   }
1396
1397   int index = info->SearchOptimizedCodeMap(context->native_context(),
1398                                            BailoutId::None());
1399   if (!info->bound() && index < 0) {
1400     int number_of_literals = info->num_literals();
1401     Handle<FixedArray> literals = NewFixedArray(number_of_literals, pretenure);
1402     if (number_of_literals > 0) {
1403       // Store the native context in the literals array prefix. This
1404       // context will be used when creating object, regexp and array
1405       // literals in this function.
1406       literals->set(JSFunction::kLiteralNativeContextIndex,
1407                     context->native_context());
1408     }
1409     result->set_literals(*literals);
1410   }
1411
1412   if (index > 0) {
1413     // Caching of optimized code enabled and optimized code found.
1414     FixedArray* literals = info->GetLiteralsFromOptimizedCodeMap(index);
1415     if (literals != NULL) result->set_literals(literals);
1416     Code* code = info->GetCodeFromOptimizedCodeMap(index);
1417     DCHECK(!code->marked_for_deoptimization());
1418     result->ReplaceCode(code);
1419     return result;
1420   }
1421
1422   if (isolate()->use_crankshaft() &&
1423       FLAG_always_opt &&
1424       result->is_compiled() &&
1425       !info->is_toplevel() &&
1426       info->allows_lazy_compilation() &&
1427       !info->optimization_disabled() &&
1428       !isolate()->DebuggerHasBreakPoints()) {
1429     result->MarkForOptimization();
1430   }
1431   return result;
1432 }
1433
1434
1435 Handle<ScopeInfo> Factory::NewScopeInfo(int length) {
1436   Handle<FixedArray> array = NewFixedArray(length, TENURED);
1437   array->set_map_no_write_barrier(*scope_info_map());
1438   Handle<ScopeInfo> scope_info = Handle<ScopeInfo>::cast(array);
1439   return scope_info;
1440 }
1441
1442
1443 Handle<JSObject> Factory::NewExternal(void* value) {
1444   Handle<Foreign> foreign = NewForeign(static_cast<Address>(value));
1445   Handle<JSObject> external = NewJSObjectFromMap(external_map());
1446   external->SetInternalField(0, *foreign);
1447   return external;
1448 }
1449
1450
1451 Handle<Code> Factory::NewCodeRaw(int object_size, bool immovable) {
1452   CALL_HEAP_FUNCTION(isolate(),
1453                      isolate()->heap()->AllocateCode(object_size, immovable),
1454                      Code);
1455 }
1456
1457
1458 Handle<Code> Factory::NewCode(const CodeDesc& desc,
1459                               Code::Flags flags,
1460                               Handle<Object> self_ref,
1461                               bool immovable,
1462                               bool crankshafted,
1463                               int prologue_offset,
1464                               bool is_debug) {
1465   Handle<ByteArray> reloc_info = NewByteArray(desc.reloc_size, TENURED);
1466   Handle<ConstantPoolArray> constant_pool =
1467       desc.origin->NewConstantPool(isolate());
1468
1469   // Compute size.
1470   int body_size = RoundUp(desc.instr_size, kObjectAlignment);
1471   int obj_size = Code::SizeFor(body_size);
1472
1473   Handle<Code> code = NewCodeRaw(obj_size, immovable);
1474   DCHECK(isolate()->code_range() == NULL ||
1475          !isolate()->code_range()->valid() ||
1476          isolate()->code_range()->contains(code->address()));
1477
1478   // The code object has not been fully initialized yet.  We rely on the
1479   // fact that no allocation will happen from this point on.
1480   DisallowHeapAllocation no_gc;
1481   code->set_gc_metadata(Smi::FromInt(0));
1482   code->set_ic_age(isolate()->heap()->global_ic_age());
1483   code->set_instruction_size(desc.instr_size);
1484   code->set_relocation_info(*reloc_info);
1485   code->set_flags(flags);
1486   code->set_raw_kind_specific_flags1(0);
1487   code->set_raw_kind_specific_flags2(0);
1488   code->set_is_crankshafted(crankshafted);
1489   code->set_deoptimization_data(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1490   code->set_raw_type_feedback_info(Smi::FromInt(0));
1491   code->set_next_code_link(*undefined_value());
1492   code->set_handler_table(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1493   code->set_prologue_offset(prologue_offset);
1494   if (code->kind() == Code::OPTIMIZED_FUNCTION) {
1495     code->set_marked_for_deoptimization(false);
1496   }
1497
1498   if (is_debug) {
1499     DCHECK(code->kind() == Code::FUNCTION);
1500     code->set_has_debug_break_slots(true);
1501   }
1502
1503   desc.origin->PopulateConstantPool(*constant_pool);
1504   code->set_constant_pool(*constant_pool);
1505
1506   // Allow self references to created code object by patching the handle to
1507   // point to the newly allocated Code object.
1508   if (!self_ref.is_null()) *(self_ref.location()) = *code;
1509
1510   // Migrate generated code.
1511   // The generated code can contain Object** values (typically from handles)
1512   // that are dereferenced during the copy to point directly to the actual heap
1513   // objects. These pointers can include references to the code object itself,
1514   // through the self_reference parameter.
1515   code->CopyFrom(desc);
1516
1517 #ifdef VERIFY_HEAP
1518   if (FLAG_verify_heap) code->ObjectVerify();
1519 #endif
1520   return code;
1521 }
1522
1523
1524 Handle<Code> Factory::CopyCode(Handle<Code> code) {
1525   CALL_HEAP_FUNCTION(isolate(),
1526                      isolate()->heap()->CopyCode(*code),
1527                      Code);
1528 }
1529
1530
1531 Handle<Code> Factory::CopyCode(Handle<Code> code, Vector<byte> reloc_info) {
1532   CALL_HEAP_FUNCTION(isolate(),
1533                      isolate()->heap()->CopyCode(*code, reloc_info),
1534                      Code);
1535 }
1536
1537
1538 Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor,
1539                                       PretenureFlag pretenure) {
1540   JSFunction::EnsureHasInitialMap(constructor);
1541   CALL_HEAP_FUNCTION(
1542       isolate(),
1543       isolate()->heap()->AllocateJSObject(*constructor, pretenure), JSObject);
1544 }
1545
1546
1547 Handle<JSObject> Factory::NewJSObjectWithMemento(
1548     Handle<JSFunction> constructor,
1549     Handle<AllocationSite> site) {
1550   JSFunction::EnsureHasInitialMap(constructor);
1551   CALL_HEAP_FUNCTION(
1552       isolate(),
1553       isolate()->heap()->AllocateJSObject(*constructor, NOT_TENURED, *site),
1554       JSObject);
1555 }
1556
1557
1558 Handle<JSModule> Factory::NewJSModule(Handle<Context> context,
1559                                       Handle<ScopeInfo> scope_info) {
1560   // Allocate a fresh map. Modules do not have a prototype.
1561   Handle<Map> map = NewMap(JS_MODULE_TYPE, JSModule::kSize);
1562   // Allocate the object based on the map.
1563   Handle<JSModule> module =
1564       Handle<JSModule>::cast(NewJSObjectFromMap(map, TENURED));
1565   module->set_context(*context);
1566   module->set_scope_info(*scope_info);
1567   return module;
1568 }
1569
1570
1571 Handle<GlobalObject> Factory::NewGlobalObject(Handle<JSFunction> constructor) {
1572   DCHECK(constructor->has_initial_map());
1573   Handle<Map> map(constructor->initial_map());
1574   DCHECK(map->is_dictionary_map());
1575
1576   // Make sure no field properties are described in the initial map.
1577   // This guarantees us that normalizing the properties does not
1578   // require us to change property values to PropertyCells.
1579   DCHECK(map->NextFreePropertyIndex() == 0);
1580
1581   // Make sure we don't have a ton of pre-allocated slots in the
1582   // global objects. They will be unused once we normalize the object.
1583   DCHECK(map->unused_property_fields() == 0);
1584   DCHECK(map->inobject_properties() == 0);
1585
1586   // Initial size of the backing store to avoid resize of the storage during
1587   // bootstrapping. The size differs between the JS global object ad the
1588   // builtins object.
1589   int initial_size = map->instance_type() == JS_GLOBAL_OBJECT_TYPE ? 64 : 512;
1590
1591   // Allocate a dictionary object for backing storage.
1592   int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size;
1593   Handle<NameDictionary> dictionary =
1594       NameDictionary::New(isolate(), at_least_space_for);
1595
1596   // The global object might be created from an object template with accessors.
1597   // Fill these accessors into the dictionary.
1598   Handle<DescriptorArray> descs(map->instance_descriptors());
1599   for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
1600     PropertyDetails details = descs->GetDetails(i);
1601     DCHECK(details.type() == CALLBACKS);  // Only accessors are expected.
1602     PropertyDetails d = PropertyDetails(details.attributes(), CALLBACKS, i + 1);
1603     Handle<Name> name(descs->GetKey(i));
1604     Handle<Object> value(descs->GetCallbacksObject(i), isolate());
1605     Handle<PropertyCell> cell = NewPropertyCell(value);
1606     // |dictionary| already contains enough space for all properties.
1607     USE(NameDictionary::Add(dictionary, name, cell, d));
1608   }
1609
1610   // Allocate the global object and initialize it with the backing store.
1611   Handle<GlobalObject> global = New<GlobalObject>(map, OLD_POINTER_SPACE);
1612   isolate()->heap()->InitializeJSObjectFromMap(*global, *dictionary, *map);
1613
1614   // Create a new map for the global object.
1615   Handle<Map> new_map = Map::CopyDropDescriptors(map);
1616   new_map->set_dictionary_map(true);
1617
1618   // Set up the global object as a normalized object.
1619   global->set_map(*new_map);
1620   global->set_properties(*dictionary);
1621
1622   // Make sure result is a global object with properties in dictionary.
1623   DCHECK(global->IsGlobalObject() && !global->HasFastProperties());
1624   return global;
1625 }
1626
1627
1628 Handle<JSObject> Factory::NewJSObjectFromMap(
1629     Handle<Map> map,
1630     PretenureFlag pretenure,
1631     bool alloc_props,
1632     Handle<AllocationSite> allocation_site) {
1633   CALL_HEAP_FUNCTION(
1634       isolate(),
1635       isolate()->heap()->AllocateJSObjectFromMap(
1636           *map,
1637           pretenure,
1638           alloc_props,
1639           allocation_site.is_null() ? NULL : *allocation_site),
1640       JSObject);
1641 }
1642
1643
1644 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
1645                                     PretenureFlag pretenure) {
1646   Context* native_context = isolate()->context()->native_context();
1647   JSFunction* array_function = native_context->array_function();
1648   Map* map = array_function->initial_map();
1649   Map* transition_map = isolate()->get_initial_js_array_map(elements_kind);
1650   if (transition_map != NULL) map = transition_map;
1651   return Handle<JSArray>::cast(NewJSObjectFromMap(handle(map), pretenure));
1652 }
1653
1654
1655 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
1656                                     int length,
1657                                     int capacity,
1658                                     ArrayStorageAllocationMode mode,
1659                                     PretenureFlag pretenure) {
1660   Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
1661   NewJSArrayStorage(array, length, capacity, mode);
1662   return array;
1663 }
1664
1665
1666 Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements,
1667                                                 ElementsKind elements_kind,
1668                                                 int length,
1669                                                 PretenureFlag pretenure) {
1670   DCHECK(length <= elements->length());
1671   Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
1672
1673   array->set_elements(*elements);
1674   array->set_length(Smi::FromInt(length));
1675   JSObject::ValidateElements(array);
1676   return array;
1677 }
1678
1679
1680 void Factory::NewJSArrayStorage(Handle<JSArray> array,
1681                                 int length,
1682                                 int capacity,
1683                                 ArrayStorageAllocationMode mode) {
1684   DCHECK(capacity >= length);
1685
1686   if (capacity == 0) {
1687     array->set_length(Smi::FromInt(0));
1688     array->set_elements(*empty_fixed_array());
1689     return;
1690   }
1691
1692   Handle<FixedArrayBase> elms;
1693   ElementsKind elements_kind = array->GetElementsKind();
1694   if (IsFastDoubleElementsKind(elements_kind)) {
1695     if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
1696       elms = NewFixedDoubleArray(capacity);
1697     } else {
1698       DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1699       elms = NewFixedDoubleArrayWithHoles(capacity);
1700     }
1701   } else {
1702     DCHECK(IsFastSmiOrObjectElementsKind(elements_kind));
1703     if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
1704       elms = NewUninitializedFixedArray(capacity);
1705     } else {
1706       DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1707       elms = NewFixedArrayWithHoles(capacity);
1708     }
1709   }
1710
1711   array->set_elements(*elms);
1712   array->set_length(Smi::FromInt(length));
1713 }
1714
1715
1716 Handle<JSGeneratorObject> Factory::NewJSGeneratorObject(
1717     Handle<JSFunction> function) {
1718   DCHECK(function->shared()->is_generator());
1719   JSFunction::EnsureHasInitialMap(function);
1720   Handle<Map> map(function->initial_map());
1721   DCHECK(map->instance_type() == JS_GENERATOR_OBJECT_TYPE);
1722   CALL_HEAP_FUNCTION(
1723       isolate(),
1724       isolate()->heap()->AllocateJSObjectFromMap(*map),
1725       JSGeneratorObject);
1726 }
1727
1728
1729 Handle<JSArrayBuffer> Factory::NewJSArrayBuffer() {
1730   Handle<JSFunction> array_buffer_fun(
1731       isolate()->native_context()->array_buffer_fun());
1732   CALL_HEAP_FUNCTION(
1733       isolate(),
1734       isolate()->heap()->AllocateJSObject(*array_buffer_fun),
1735       JSArrayBuffer);
1736 }
1737
1738
1739 Handle<JSDataView> Factory::NewJSDataView() {
1740   Handle<JSFunction> data_view_fun(
1741       isolate()->native_context()->data_view_fun());
1742   CALL_HEAP_FUNCTION(
1743       isolate(),
1744       isolate()->heap()->AllocateJSObject(*data_view_fun),
1745       JSDataView);
1746 }
1747
1748
1749 Handle<JSMapIterator> Factory::NewJSMapIterator() {
1750   Handle<Map> map(isolate()->native_context()->map_iterator_map());
1751   CALL_HEAP_FUNCTION(isolate(),
1752                      isolate()->heap()->AllocateJSObjectFromMap(*map),
1753                      JSMapIterator);
1754 }
1755
1756
1757 Handle<JSSetIterator> Factory::NewJSSetIterator() {
1758   Handle<Map> map(isolate()->native_context()->set_iterator_map());
1759   CALL_HEAP_FUNCTION(isolate(),
1760                      isolate()->heap()->AllocateJSObjectFromMap(*map),
1761                      JSSetIterator);
1762 }
1763
1764
1765 namespace {
1766
1767 ElementsKind GetExternalArrayElementsKind(ExternalArrayType type) {
1768   switch (type) {
1769 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
1770   case kExternal##Type##Array:                          \
1771     return EXTERNAL_##TYPE##_ELEMENTS;
1772     TYPED_ARRAYS(TYPED_ARRAY_CASE)
1773   }
1774   UNREACHABLE();
1775   return FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND;
1776 #undef TYPED_ARRAY_CASE
1777 }
1778
1779
1780 size_t GetExternalArrayElementSize(ExternalArrayType type) {
1781   switch (type) {
1782 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
1783   case kExternal##Type##Array:                          \
1784     return size;
1785     TYPED_ARRAYS(TYPED_ARRAY_CASE)
1786   }
1787   UNREACHABLE();
1788   return 0;
1789 #undef TYPED_ARRAY_CASE
1790 }
1791
1792
1793 JSFunction* GetTypedArrayFun(ExternalArrayType type, Isolate* isolate) {
1794   Context* native_context = isolate->context()->native_context();
1795   switch (type) {
1796 #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size)                        \
1797     case kExternal##Type##Array:                                              \
1798       return native_context->type##_array_fun();
1799
1800     TYPED_ARRAYS(TYPED_ARRAY_FUN)
1801 #undef TYPED_ARRAY_FUN
1802
1803     default:
1804       UNREACHABLE();
1805       return NULL;
1806   }
1807 }
1808
1809
1810 void SetupArrayBufferView(i::Isolate* isolate,
1811                           i::Handle<i::JSArrayBufferView> obj,
1812                           i::Handle<i::JSArrayBuffer> buffer,
1813                           size_t byte_offset, size_t byte_length) {
1814   DCHECK(byte_offset + byte_length <=
1815          static_cast<size_t>(buffer->byte_length()->Number()));
1816
1817   obj->set_buffer(*buffer);
1818
1819   obj->set_weak_next(buffer->weak_first_view());
1820   buffer->set_weak_first_view(*obj);
1821
1822   i::Handle<i::Object> byte_offset_object =
1823       isolate->factory()->NewNumberFromSize(byte_offset);
1824   obj->set_byte_offset(*byte_offset_object);
1825
1826   i::Handle<i::Object> byte_length_object =
1827       isolate->factory()->NewNumberFromSize(byte_length);
1828   obj->set_byte_length(*byte_length_object);
1829 }
1830
1831
1832 }  // namespace
1833
1834
1835 Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type) {
1836   Handle<JSFunction> typed_array_fun_handle(GetTypedArrayFun(type, isolate()));
1837
1838   CALL_HEAP_FUNCTION(
1839       isolate(),
1840       isolate()->heap()->AllocateJSObject(*typed_array_fun_handle),
1841       JSTypedArray);
1842 }
1843
1844
1845 Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type,
1846                                               Handle<JSArrayBuffer> buffer,
1847                                               size_t byte_offset,
1848                                               size_t length) {
1849   Handle<JSTypedArray> obj = NewJSTypedArray(type);
1850
1851   size_t element_size = GetExternalArrayElementSize(type);
1852   ElementsKind elements_kind = GetExternalArrayElementsKind(type);
1853
1854   CHECK(byte_offset % element_size == 0);
1855
1856   CHECK(length <= (std::numeric_limits<size_t>::max() / element_size));
1857   CHECK(length <= static_cast<size_t>(Smi::kMaxValue));
1858   size_t byte_length = length * element_size;
1859   SetupArrayBufferView(isolate(), obj, buffer, byte_offset, byte_length);
1860
1861   Handle<Object> length_object = NewNumberFromSize(length);
1862   obj->set_length(*length_object);
1863
1864   Handle<ExternalArray> elements = NewExternalArray(
1865       static_cast<int>(length), type,
1866       static_cast<uint8_t*>(buffer->backing_store()) + byte_offset);
1867   Handle<Map> map = JSObject::GetElementsTransitionMap(obj, elements_kind);
1868   JSObject::SetMapAndElements(obj, map, elements);
1869   return obj;
1870 }
1871
1872
1873 Handle<JSDataView> Factory::NewJSDataView(Handle<JSArrayBuffer> buffer,
1874                                           size_t byte_offset,
1875                                           size_t byte_length) {
1876   Handle<JSDataView> obj = NewJSDataView();
1877   SetupArrayBufferView(isolate(), obj, buffer, byte_offset, byte_length);
1878   return obj;
1879 }
1880
1881
1882 Handle<JSProxy> Factory::NewJSProxy(Handle<Object> handler,
1883                                     Handle<Object> prototype) {
1884   // Allocate map.
1885   // TODO(rossberg): Once we optimize proxies, think about a scheme to share
1886   // maps. Will probably depend on the identity of the handler object, too.
1887   Handle<Map> map = NewMap(JS_PROXY_TYPE, JSProxy::kSize);
1888   map->set_prototype(*prototype);
1889
1890   // Allocate the proxy object.
1891   Handle<JSProxy> result = New<JSProxy>(map, NEW_SPACE);
1892   result->InitializeBody(map->instance_size(), Smi::FromInt(0));
1893   result->set_handler(*handler);
1894   result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER);
1895   return result;
1896 }
1897
1898
1899 Handle<JSProxy> Factory::NewJSFunctionProxy(Handle<Object> handler,
1900                                             Handle<Object> call_trap,
1901                                             Handle<Object> construct_trap,
1902                                             Handle<Object> prototype) {
1903   // Allocate map.
1904   // TODO(rossberg): Once we optimize proxies, think about a scheme to share
1905   // maps. Will probably depend on the identity of the handler object, too.
1906   Handle<Map> map = NewMap(JS_FUNCTION_PROXY_TYPE, JSFunctionProxy::kSize);
1907   map->set_prototype(*prototype);
1908
1909   // Allocate the proxy object.
1910   Handle<JSFunctionProxy> result = New<JSFunctionProxy>(map, NEW_SPACE);
1911   result->InitializeBody(map->instance_size(), Smi::FromInt(0));
1912   result->set_handler(*handler);
1913   result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER);
1914   result->set_call_trap(*call_trap);
1915   result->set_construct_trap(*construct_trap);
1916   return result;
1917 }
1918
1919
1920 void Factory::ReinitializeJSProxy(Handle<JSProxy> proxy, InstanceType type,
1921                                   int size) {
1922   DCHECK(type == JS_OBJECT_TYPE || type == JS_FUNCTION_TYPE);
1923
1924   // Allocate fresh map.
1925   // TODO(rossberg): Once we optimize proxies, cache these maps.
1926   Handle<Map> map = NewMap(type, size);
1927
1928   // Check that the receiver has at least the size of the fresh object.
1929   int size_difference = proxy->map()->instance_size() - map->instance_size();
1930   DCHECK(size_difference >= 0);
1931
1932   map->set_prototype(proxy->map()->prototype());
1933
1934   // Allocate the backing storage for the properties.
1935   int prop_size = map->InitialPropertiesLength();
1936   Handle<FixedArray> properties = NewFixedArray(prop_size, TENURED);
1937
1938   Heap* heap = isolate()->heap();
1939   MaybeHandle<SharedFunctionInfo> shared;
1940   if (type == JS_FUNCTION_TYPE) {
1941     OneByteStringKey key(STATIC_CHAR_VECTOR("<freezing call trap>"),
1942                          heap->HashSeed());
1943     Handle<String> name = InternalizeStringWithKey(&key);
1944     shared = NewSharedFunctionInfo(name, MaybeHandle<Code>());
1945   }
1946
1947   // In order to keep heap in consistent state there must be no allocations
1948   // before object re-initialization is finished and filler object is installed.
1949   DisallowHeapAllocation no_allocation;
1950
1951   // Put in filler if the new object is smaller than the old.
1952   if (size_difference > 0) {
1953     Address address = proxy->address();
1954     heap->CreateFillerObjectAt(address + map->instance_size(), size_difference);
1955     heap->AdjustLiveBytes(address, -size_difference, Heap::FROM_MUTATOR);
1956   }
1957
1958   // Reset the map for the object.
1959   proxy->synchronized_set_map(*map);
1960   Handle<JSObject> jsobj = Handle<JSObject>::cast(proxy);
1961
1962   // Reinitialize the object from the constructor map.
1963   heap->InitializeJSObjectFromMap(*jsobj, *properties, *map);
1964
1965   // The current native context is used to set up certain bits.
1966   // TODO(adamk): Using the current context seems wrong, it should be whatever
1967   // context the JSProxy originated in. But that context isn't stored anywhere.
1968   Handle<Context> context(isolate()->native_context());
1969
1970   // Functions require some minimal initialization.
1971   if (type == JS_FUNCTION_TYPE) {
1972     map->set_function_with_prototype(true);
1973     Handle<JSFunction> js_function = Handle<JSFunction>::cast(proxy);
1974     InitializeFunction(js_function, shared.ToHandleChecked(), context);
1975   } else {
1976     // Provide JSObjects with a constructor.
1977     map->set_constructor(context->object_function());
1978   }
1979 }
1980
1981
1982 void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,
1983                                         Handle<JSFunction> constructor) {
1984   DCHECK(constructor->has_initial_map());
1985   Handle<Map> map(constructor->initial_map(), isolate());
1986
1987   // The proxy's hash should be retained across reinitialization.
1988   Handle<Object> hash(object->hash(), isolate());
1989
1990   // Check that the already allocated object has the same size and type as
1991   // objects allocated using the constructor.
1992   DCHECK(map->instance_size() == object->map()->instance_size());
1993   DCHECK(map->instance_type() == object->map()->instance_type());
1994
1995   // Allocate the backing storage for the properties.
1996   int prop_size = map->InitialPropertiesLength();
1997   Handle<FixedArray> properties = NewFixedArray(prop_size, TENURED);
1998
1999   // In order to keep heap in consistent state there must be no allocations
2000   // before object re-initialization is finished.
2001   DisallowHeapAllocation no_allocation;
2002
2003   // Reset the map for the object.
2004   object->synchronized_set_map(*map);
2005
2006   Heap* heap = isolate()->heap();
2007   // Reinitialize the object from the constructor map.
2008   heap->InitializeJSObjectFromMap(*object, *properties, *map);
2009
2010   // Restore the saved hash.
2011   object->set_hash(*hash);
2012 }
2013
2014
2015 void Factory::BecomeJSObject(Handle<JSProxy> proxy) {
2016   ReinitializeJSProxy(proxy, JS_OBJECT_TYPE, JSObject::kHeaderSize);
2017 }
2018
2019
2020 void Factory::BecomeJSFunction(Handle<JSProxy> proxy) {
2021   ReinitializeJSProxy(proxy, JS_FUNCTION_TYPE, JSFunction::kSize);
2022 }
2023
2024
2025 Handle<TypeFeedbackVector> Factory::NewTypeFeedbackVector(int slot_count,
2026                                                           int ic_slot_count) {
2027   return TypeFeedbackVector::Allocate(isolate(), slot_count, ic_slot_count);
2028 }
2029
2030
2031 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
2032     Handle<String> name, int number_of_literals, FunctionKind kind,
2033     Handle<Code> code, Handle<ScopeInfo> scope_info,
2034     Handle<TypeFeedbackVector> feedback_vector) {
2035   DCHECK(IsValidFunctionKind(kind));
2036   Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(name, code);
2037   shared->set_scope_info(*scope_info);
2038   shared->set_feedback_vector(*feedback_vector);
2039   shared->set_kind(kind);
2040   int literals_array_size = number_of_literals;
2041   // If the function contains object, regexp or array literals,
2042   // allocate extra space for a literals array prefix containing the
2043   // context.
2044   if (number_of_literals > 0) {
2045     literals_array_size += JSFunction::kLiteralsPrefixSize;
2046   }
2047   shared->set_num_literals(literals_array_size);
2048   if (IsGeneratorFunction(kind)) {
2049     shared->set_instance_class_name(isolate()->heap()->Generator_string());
2050     shared->DisableOptimization(kGenerator);
2051   }
2052   return shared;
2053 }
2054
2055
2056 Handle<JSMessageObject> Factory::NewJSMessageObject(
2057     Handle<String> type,
2058     Handle<JSArray> arguments,
2059     int start_position,
2060     int end_position,
2061     Handle<Object> script,
2062     Handle<Object> stack_frames) {
2063   Handle<Map> map = message_object_map();
2064   Handle<JSMessageObject> message = New<JSMessageObject>(map, NEW_SPACE);
2065   message->set_properties(*empty_fixed_array(), SKIP_WRITE_BARRIER);
2066   message->initialize_elements();
2067   message->set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER);
2068   message->set_type(*type);
2069   message->set_arguments(*arguments);
2070   message->set_start_position(start_position);
2071   message->set_end_position(end_position);
2072   message->set_script(*script);
2073   message->set_stack_frames(*stack_frames);
2074   return message;
2075 }
2076
2077
2078 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
2079     Handle<String> name,
2080     MaybeHandle<Code> maybe_code) {
2081   Handle<Map> map = shared_function_info_map();
2082   Handle<SharedFunctionInfo> share = New<SharedFunctionInfo>(map,
2083                                                              OLD_POINTER_SPACE);
2084
2085   // Set pointer fields.
2086   share->set_name(*name);
2087   Handle<Code> code;
2088   if (!maybe_code.ToHandle(&code)) {
2089     code = handle(isolate()->builtins()->builtin(Builtins::kIllegal));
2090   }
2091   share->set_code(*code);
2092   share->set_optimized_code_map(Smi::FromInt(0));
2093   share->set_scope_info(ScopeInfo::Empty(isolate()));
2094   Code* construct_stub =
2095       isolate()->builtins()->builtin(Builtins::kJSConstructStubGeneric);
2096   share->set_construct_stub(construct_stub);
2097   share->set_instance_class_name(*Object_string());
2098   share->set_function_data(*undefined_value(), SKIP_WRITE_BARRIER);
2099   share->set_script(*undefined_value(), SKIP_WRITE_BARRIER);
2100   share->set_debug_info(*undefined_value(), SKIP_WRITE_BARRIER);
2101   share->set_inferred_name(*empty_string(), SKIP_WRITE_BARRIER);
2102   Handle<TypeFeedbackVector> feedback_vector = NewTypeFeedbackVector(0, 0);
2103   share->set_feedback_vector(*feedback_vector, SKIP_WRITE_BARRIER);
2104   share->set_profiler_ticks(0);
2105   share->set_ast_node_count(0);
2106   share->set_counters(0);
2107
2108   // Set integer fields (smi or int, depending on the architecture).
2109   share->set_length(0);
2110   share->set_formal_parameter_count(0);
2111   share->set_expected_nof_properties(0);
2112   share->set_num_literals(0);
2113   share->set_start_position_and_type(0);
2114   share->set_end_position(0);
2115   share->set_function_token_position(0);
2116   // All compiler hints default to false or 0.
2117   share->set_compiler_hints(0);
2118   share->set_opt_count_and_bailout_reason(0);
2119
2120   return share;
2121 }
2122
2123
2124 static inline int NumberCacheHash(Handle<FixedArray> cache,
2125                                   Handle<Object> number) {
2126   int mask = (cache->length() >> 1) - 1;
2127   if (number->IsSmi()) {
2128     return Handle<Smi>::cast(number)->value() & mask;
2129   } else {
2130     DoubleRepresentation rep(number->Number());
2131     return
2132         (static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32)) & mask;
2133   }
2134 }
2135
2136
2137 Handle<Object> Factory::GetNumberStringCache(Handle<Object> number) {
2138   DisallowHeapAllocation no_gc;
2139   int hash = NumberCacheHash(number_string_cache(), number);
2140   Object* key = number_string_cache()->get(hash * 2);
2141   if (key == *number || (key->IsHeapNumber() && number->IsHeapNumber() &&
2142                          key->Number() == number->Number())) {
2143     return Handle<String>(
2144         String::cast(number_string_cache()->get(hash * 2 + 1)), isolate());
2145   }
2146   return undefined_value();
2147 }
2148
2149
2150 void Factory::SetNumberStringCache(Handle<Object> number,
2151                                    Handle<String> string) {
2152   int hash = NumberCacheHash(number_string_cache(), number);
2153   if (number_string_cache()->get(hash * 2) != *undefined_value()) {
2154     int full_size = isolate()->heap()->FullSizeNumberStringCacheLength();
2155     if (number_string_cache()->length() != full_size) {
2156       // The first time we have a hash collision, we move to the full sized
2157       // number string cache.  The idea is to have a small number string
2158       // cache in the snapshot to keep  boot-time memory usage down.
2159       // If we expand the number string cache already while creating
2160       // the snapshot then that didn't work out.
2161       DCHECK(!isolate()->serializer_enabled() || FLAG_extra_code != NULL);
2162       Handle<FixedArray> new_cache = NewFixedArray(full_size, TENURED);
2163       isolate()->heap()->set_number_string_cache(*new_cache);
2164       return;
2165     }
2166   }
2167   number_string_cache()->set(hash * 2, *number);
2168   number_string_cache()->set(hash * 2 + 1, *string);
2169 }
2170
2171
2172 Handle<String> Factory::NumberToString(Handle<Object> number,
2173                                        bool check_number_string_cache) {
2174   isolate()->counters()->number_to_string_runtime()->Increment();
2175   if (check_number_string_cache) {
2176     Handle<Object> cached = GetNumberStringCache(number);
2177     if (!cached->IsUndefined()) return Handle<String>::cast(cached);
2178   }
2179
2180   char arr[100];
2181   Vector<char> buffer(arr, arraysize(arr));
2182   const char* str;
2183   if (number->IsSmi()) {
2184     int num = Handle<Smi>::cast(number)->value();
2185     str = IntToCString(num, buffer);
2186   } else {
2187     double num = Handle<HeapNumber>::cast(number)->value();
2188     str = DoubleToCString(num, buffer);
2189   }
2190
2191   // We tenure the allocated string since it is referenced from the
2192   // number-string cache which lives in the old space.
2193   Handle<String> js_string = NewStringFromAsciiChecked(str, TENURED);
2194   SetNumberStringCache(number, js_string);
2195   return js_string;
2196 }
2197
2198
2199 Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) {
2200   // Get the original code of the function.
2201   Handle<Code> code(shared->code());
2202
2203   // Create a copy of the code before allocating the debug info object to avoid
2204   // allocation while setting up the debug info object.
2205   Handle<Code> original_code(*Factory::CopyCode(code));
2206
2207   // Allocate initial fixed array for active break points before allocating the
2208   // debug info object to avoid allocation while setting up the debug info
2209   // object.
2210   Handle<FixedArray> break_points(
2211       NewFixedArray(DebugInfo::kEstimatedNofBreakPointsInFunction));
2212
2213   // Create and set up the debug info object. Debug info contains function, a
2214   // copy of the original code, the executing code and initial fixed array for
2215   // active break points.
2216   Handle<DebugInfo> debug_info =
2217       Handle<DebugInfo>::cast(NewStruct(DEBUG_INFO_TYPE));
2218   debug_info->set_shared(*shared);
2219   debug_info->set_original_code(*original_code);
2220   debug_info->set_code(*code);
2221   debug_info->set_break_points(*break_points);
2222
2223   // Link debug info to function.
2224   shared->set_debug_info(*debug_info);
2225
2226   return debug_info;
2227 }
2228
2229
2230 Handle<JSObject> Factory::NewArgumentsObject(Handle<JSFunction> callee,
2231                                              int length) {
2232   bool strict_mode_callee = callee->shared()->strict_mode() == STRICT;
2233   Handle<Map> map = strict_mode_callee ? isolate()->strict_arguments_map()
2234                                        : isolate()->sloppy_arguments_map();
2235
2236   AllocationSiteUsageContext context(isolate(), Handle<AllocationSite>(),
2237                                      false);
2238   DCHECK(!isolate()->has_pending_exception());
2239   Handle<JSObject> result = NewJSObjectFromMap(map);
2240   Handle<Smi> value(Smi::FromInt(length), isolate());
2241   Object::SetProperty(result, length_string(), value, STRICT).Assert();
2242   if (!strict_mode_callee) {
2243     Object::SetProperty(result, callee_string(), callee, STRICT).Assert();
2244   }
2245   return result;
2246 }
2247
2248
2249 Handle<JSFunction> Factory::CreateApiFunction(
2250     Handle<FunctionTemplateInfo> obj,
2251     Handle<Object> prototype,
2252     ApiInstanceType instance_type) {
2253   Handle<Code> code = isolate()->builtins()->HandleApiCall();
2254   Handle<Code> construct_stub = isolate()->builtins()->JSConstructStubApi();
2255
2256   Handle<JSFunction> result;
2257   if (obj->remove_prototype()) {
2258     result = NewFunctionWithoutPrototype(empty_string(), code);
2259   } else {
2260     int internal_field_count = 0;
2261     if (!obj->instance_template()->IsUndefined()) {
2262       Handle<ObjectTemplateInfo> instance_template =
2263           Handle<ObjectTemplateInfo>(
2264               ObjectTemplateInfo::cast(obj->instance_template()));
2265       internal_field_count =
2266           Smi::cast(instance_template->internal_field_count())->value();
2267     }
2268
2269     // TODO(svenpanne) Kill ApiInstanceType and refactor things by generalizing
2270     // JSObject::GetHeaderSize.
2271     int instance_size = kPointerSize * internal_field_count;
2272     InstanceType type;
2273     switch (instance_type) {
2274       case JavaScriptObjectType:
2275         type = JS_OBJECT_TYPE;
2276         instance_size += JSObject::kHeaderSize;
2277         break;
2278       case GlobalObjectType:
2279         type = JS_GLOBAL_OBJECT_TYPE;
2280         instance_size += JSGlobalObject::kSize;
2281         break;
2282       case GlobalProxyType:
2283         type = JS_GLOBAL_PROXY_TYPE;
2284         instance_size += JSGlobalProxy::kSize;
2285         break;
2286       default:
2287         UNREACHABLE();
2288         type = JS_OBJECT_TYPE;  // Keep the compiler happy.
2289         break;
2290     }
2291
2292     result = NewFunction(empty_string(), code, prototype, type,
2293                          instance_size, obj->read_only_prototype());
2294   }
2295
2296   result->shared()->set_length(obj->length());
2297   Handle<Object> class_name(obj->class_name(), isolate());
2298   if (class_name->IsString()) {
2299     result->shared()->set_instance_class_name(*class_name);
2300     result->shared()->set_name(*class_name);
2301   }
2302   result->shared()->set_function_data(*obj);
2303   result->shared()->set_construct_stub(*construct_stub);
2304   result->shared()->DontAdaptArguments();
2305
2306   if (obj->remove_prototype()) {
2307     DCHECK(result->shared()->IsApiFunction());
2308     DCHECK(!result->has_initial_map());
2309     DCHECK(!result->has_prototype());
2310     return result;
2311   }
2312
2313   if (prototype->IsTheHole()) {
2314 #ifdef DEBUG
2315     LookupIterator it(handle(JSObject::cast(result->prototype())),
2316                       constructor_string(),
2317                       LookupIterator::OWN_SKIP_INTERCEPTOR);
2318     MaybeHandle<Object> maybe_prop = Object::GetProperty(&it);
2319     DCHECK(it.IsFound());
2320     DCHECK(maybe_prop.ToHandleChecked().is_identical_to(result));
2321 #endif
2322   } else {
2323     JSObject::AddProperty(handle(JSObject::cast(result->prototype())),
2324                           constructor_string(), result, DONT_ENUM);
2325   }
2326
2327   // Down from here is only valid for API functions that can be used as a
2328   // constructor (don't set the "remove prototype" flag).
2329
2330   Handle<Map> map(result->initial_map());
2331
2332   // Mark as undetectable if needed.
2333   if (obj->undetectable()) {
2334     map->set_is_undetectable();
2335   }
2336
2337   // Mark as hidden for the __proto__ accessor if needed.
2338   if (obj->hidden_prototype()) {
2339     map->set_is_hidden_prototype();
2340   }
2341
2342   // Mark as needs_access_check if needed.
2343   if (obj->needs_access_check()) {
2344     map->set_is_access_check_needed(true);
2345   }
2346
2347   // Set interceptor information in the map.
2348   if (!obj->named_property_handler()->IsUndefined()) {
2349     map->set_has_named_interceptor();
2350   }
2351   if (!obj->indexed_property_handler()->IsUndefined()) {
2352     map->set_has_indexed_interceptor();
2353   }
2354
2355   // Set instance call-as-function information in the map.
2356   if (!obj->instance_call_handler()->IsUndefined()) {
2357     map->set_has_instance_call_handler();
2358   }
2359
2360   // Recursively copy parent instance templates' accessors,
2361   // 'data' may be modified.
2362   int max_number_of_additional_properties = 0;
2363   int max_number_of_static_properties = 0;
2364   FunctionTemplateInfo* info = *obj;
2365   while (true) {
2366     if (!info->instance_template()->IsUndefined()) {
2367       Object* props =
2368           ObjectTemplateInfo::cast(
2369               info->instance_template())->property_accessors();
2370       if (!props->IsUndefined()) {
2371         Handle<Object> props_handle(props, isolate());
2372         NeanderArray props_array(props_handle);
2373         max_number_of_additional_properties += props_array.length();
2374       }
2375     }
2376     if (!info->property_accessors()->IsUndefined()) {
2377       Object* props = info->property_accessors();
2378       if (!props->IsUndefined()) {
2379         Handle<Object> props_handle(props, isolate());
2380         NeanderArray props_array(props_handle);
2381         max_number_of_static_properties += props_array.length();
2382       }
2383     }
2384     Object* parent = info->parent_template();
2385     if (parent->IsUndefined()) break;
2386     info = FunctionTemplateInfo::cast(parent);
2387   }
2388
2389   Map::EnsureDescriptorSlack(map, max_number_of_additional_properties);
2390
2391   // Use a temporary FixedArray to acculumate static accessors
2392   int valid_descriptors = 0;
2393   Handle<FixedArray> array;
2394   if (max_number_of_static_properties > 0) {
2395     array = NewFixedArray(max_number_of_static_properties);
2396   }
2397
2398   while (true) {
2399     // Install instance descriptors
2400     if (!obj->instance_template()->IsUndefined()) {
2401       Handle<ObjectTemplateInfo> instance =
2402           Handle<ObjectTemplateInfo>(
2403               ObjectTemplateInfo::cast(obj->instance_template()), isolate());
2404       Handle<Object> props = Handle<Object>(instance->property_accessors(),
2405                                             isolate());
2406       if (!props->IsUndefined()) {
2407         Map::AppendCallbackDescriptors(map, props);
2408       }
2409     }
2410     // Accumulate static accessors
2411     if (!obj->property_accessors()->IsUndefined()) {
2412       Handle<Object> props = Handle<Object>(obj->property_accessors(),
2413                                             isolate());
2414       valid_descriptors =
2415           AccessorInfo::AppendUnique(props, array, valid_descriptors);
2416     }
2417     // Climb parent chain
2418     Handle<Object> parent = Handle<Object>(obj->parent_template(), isolate());
2419     if (parent->IsUndefined()) break;
2420     obj = Handle<FunctionTemplateInfo>::cast(parent);
2421   }
2422
2423   // Install accumulated static accessors
2424   for (int i = 0; i < valid_descriptors; i++) {
2425     Handle<AccessorInfo> accessor(AccessorInfo::cast(array->get(i)));
2426     JSObject::SetAccessor(result, accessor).Assert();
2427   }
2428
2429   DCHECK(result->shared()->IsApiFunction());
2430   return result;
2431 }
2432
2433
2434 Handle<MapCache> Factory::AddToMapCache(Handle<Context> context,
2435                                         Handle<FixedArray> keys,
2436                                         Handle<Map> map) {
2437   Handle<MapCache> map_cache = handle(MapCache::cast(context->map_cache()));
2438   Handle<MapCache> result = MapCache::Put(map_cache, keys, map);
2439   context->set_map_cache(*result);
2440   return result;
2441 }
2442
2443
2444 Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<Context> context,
2445                                                Handle<FixedArray> keys) {
2446   if (context->map_cache()->IsUndefined()) {
2447     // Allocate the new map cache for the native context.
2448     Handle<MapCache> new_cache = MapCache::New(isolate(), 24);
2449     context->set_map_cache(*new_cache);
2450   }
2451   // Check to see whether there is a matching element in the cache.
2452   Handle<MapCache> cache =
2453       Handle<MapCache>(MapCache::cast(context->map_cache()));
2454   Handle<Object> result = Handle<Object>(cache->Lookup(*keys), isolate());
2455   if (result->IsMap()) return Handle<Map>::cast(result);
2456   int length = keys->length();
2457   // Create a new map and add it to the cache. Reuse the initial map of the
2458   // Object function if the literal has no predeclared properties.
2459   Handle<Map> map = length == 0
2460                         ? handle(context->object_function()->initial_map())
2461                         : Map::Create(isolate(), length);
2462   AddToMapCache(context, keys, map);
2463   return map;
2464 }
2465
2466
2467 void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp,
2468                                 JSRegExp::Type type,
2469                                 Handle<String> source,
2470                                 JSRegExp::Flags flags,
2471                                 Handle<Object> data) {
2472   Handle<FixedArray> store = NewFixedArray(JSRegExp::kAtomDataSize);
2473
2474   store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
2475   store->set(JSRegExp::kSourceIndex, *source);
2476   store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags.value()));
2477   store->set(JSRegExp::kAtomPatternIndex, *data);
2478   regexp->set_data(*store);
2479 }
2480
2481 void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp,
2482                                     JSRegExp::Type type,
2483                                     Handle<String> source,
2484                                     JSRegExp::Flags flags,
2485                                     int capture_count) {
2486   Handle<FixedArray> store = NewFixedArray(JSRegExp::kIrregexpDataSize);
2487   Smi* uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
2488   store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
2489   store->set(JSRegExp::kSourceIndex, *source);
2490   store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags.value()));
2491   store->set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized);
2492   store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
2493   store->set(JSRegExp::kIrregexpLatin1CodeSavedIndex, uninitialized);
2494   store->set(JSRegExp::kIrregexpUC16CodeSavedIndex, uninitialized);
2495   store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(0));
2496   store->set(JSRegExp::kIrregexpCaptureCountIndex,
2497              Smi::FromInt(capture_count));
2498   regexp->set_data(*store);
2499 }
2500
2501
2502
2503 MaybeHandle<FunctionTemplateInfo> Factory::ConfigureInstance(
2504     Handle<FunctionTemplateInfo> desc, Handle<JSObject> instance) {
2505   // Configure the instance by adding the properties specified by the
2506   // instance template.
2507   Handle<Object> instance_template(desc->instance_template(), isolate());
2508   if (!instance_template->IsUndefined()) {
2509       RETURN_ON_EXCEPTION(
2510           isolate(),
2511           Execution::ConfigureInstance(isolate(), instance, instance_template),
2512           FunctionTemplateInfo);
2513   }
2514   return desc;
2515 }
2516
2517
2518 Handle<Object> Factory::GlobalConstantFor(Handle<String> name) {
2519   if (String::Equals(name, undefined_string())) return undefined_value();
2520   if (String::Equals(name, nan_string())) return nan_value();
2521   if (String::Equals(name, infinity_string())) return infinity_value();
2522   return Handle<Object>::null();
2523 }
2524
2525
2526 Handle<Object> Factory::ToBoolean(bool value) {
2527   return value ? true_value() : false_value();
2528 }
2529
2530
2531 } }  // namespace v8::internal