Upstream version 10.39.233.0
[platform/framework/web/crosswalk.git] / src / v8 / src / factory.cc
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/factory.h"
6
7 #include "src/allocation-site-scopes.h"
8 #include "src/base/bits.h"
9 #include "src/conversions.h"
10 #include "src/isolate-inl.h"
11 #include "src/macro-assembler.h"
12
13 namespace v8 {
14 namespace internal {
15
16
17 template<typename T>
18 Handle<T> Factory::New(Handle<Map> map, AllocationSpace space) {
19   CALL_HEAP_FUNCTION(
20       isolate(),
21       isolate()->heap()->Allocate(*map, space),
22       T);
23 }
24
25
26 template<typename T>
27 Handle<T> Factory::New(Handle<Map> map,
28                        AllocationSpace space,
29                        Handle<AllocationSite> allocation_site) {
30   CALL_HEAP_FUNCTION(
31       isolate(),
32       isolate()->heap()->Allocate(*map, space, *allocation_site),
33       T);
34 }
35
36
37 Handle<HeapObject> Factory::NewFillerObject(int size,
38                                             bool double_align,
39                                             AllocationSpace space) {
40   CALL_HEAP_FUNCTION(
41       isolate(),
42       isolate()->heap()->AllocateFillerObject(size, double_align, space),
43       HeapObject);
44 }
45
46
47 Handle<Box> Factory::NewBox(Handle<Object> value) {
48   Handle<Box> result = Handle<Box>::cast(NewStruct(BOX_TYPE));
49   result->set_value(*value);
50   return result;
51 }
52
53
54 Handle<Oddball> Factory::NewOddball(Handle<Map> map,
55                                     const char* to_string,
56                                     Handle<Object> to_number,
57                                     byte kind) {
58   Handle<Oddball> oddball = New<Oddball>(map, OLD_POINTER_SPACE);
59   Oddball::Initialize(isolate(), oddball, to_string, to_number, kind);
60   return oddball;
61 }
62
63
64 Handle<FixedArray> Factory::NewFixedArray(int size, PretenureFlag pretenure) {
65   DCHECK(0 <= size);
66   CALL_HEAP_FUNCTION(
67       isolate(),
68       isolate()->heap()->AllocateFixedArray(size, pretenure),
69       FixedArray);
70 }
71
72
73 Handle<FixedArray> Factory::NewFixedArrayWithHoles(int size,
74                                                    PretenureFlag pretenure) {
75   DCHECK(0 <= size);
76   CALL_HEAP_FUNCTION(
77       isolate(),
78       isolate()->heap()->AllocateFixedArrayWithFiller(size,
79                                                       pretenure,
80                                                       *the_hole_value()),
81       FixedArray);
82 }
83
84
85 Handle<FixedArray> Factory::NewUninitializedFixedArray(int size) {
86   CALL_HEAP_FUNCTION(
87       isolate(),
88       isolate()->heap()->AllocateUninitializedFixedArray(size),
89       FixedArray);
90 }
91
92
93 Handle<FixedArrayBase> Factory::NewFixedDoubleArray(int size,
94                                                     PretenureFlag pretenure) {
95   DCHECK(0 <= size);
96   CALL_HEAP_FUNCTION(
97       isolate(),
98       isolate()->heap()->AllocateUninitializedFixedDoubleArray(size, pretenure),
99       FixedArrayBase);
100 }
101
102
103 Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(
104     int size,
105     PretenureFlag pretenure) {
106   DCHECK(0 <= size);
107   Handle<FixedArrayBase> array = NewFixedDoubleArray(size, pretenure);
108   if (size > 0) {
109     Handle<FixedDoubleArray> double_array =
110         Handle<FixedDoubleArray>::cast(array);
111     for (int i = 0; i < size; ++i) {
112       double_array->set_the_hole(i);
113     }
114   }
115   return array;
116 }
117
118
119 Handle<ConstantPoolArray> Factory::NewConstantPoolArray(
120     const ConstantPoolArray::NumberOfEntries& small) {
121   DCHECK(small.total_count() > 0);
122   CALL_HEAP_FUNCTION(
123       isolate(),
124       isolate()->heap()->AllocateConstantPoolArray(small),
125       ConstantPoolArray);
126 }
127
128
129 Handle<ConstantPoolArray> Factory::NewExtendedConstantPoolArray(
130     const ConstantPoolArray::NumberOfEntries& small,
131     const ConstantPoolArray::NumberOfEntries& extended) {
132   DCHECK(small.total_count() > 0);
133   DCHECK(extended.total_count() > 0);
134   CALL_HEAP_FUNCTION(
135       isolate(),
136       isolate()->heap()->AllocateExtendedConstantPoolArray(small, extended),
137       ConstantPoolArray);
138 }
139
140
141 Handle<OrderedHashSet> Factory::NewOrderedHashSet() {
142   return OrderedHashSet::Allocate(isolate(), 4);
143 }
144
145
146 Handle<OrderedHashMap> Factory::NewOrderedHashMap() {
147   return OrderedHashMap::Allocate(isolate(), 4);
148 }
149
150
151 Handle<AccessorPair> Factory::NewAccessorPair() {
152   Handle<AccessorPair> accessors =
153       Handle<AccessorPair>::cast(NewStruct(ACCESSOR_PAIR_TYPE));
154   accessors->set_getter(*the_hole_value(), SKIP_WRITE_BARRIER);
155   accessors->set_setter(*the_hole_value(), SKIP_WRITE_BARRIER);
156   return accessors;
157 }
158
159
160 Handle<TypeFeedbackInfo> Factory::NewTypeFeedbackInfo() {
161   Handle<TypeFeedbackInfo> info =
162       Handle<TypeFeedbackInfo>::cast(NewStruct(TYPE_FEEDBACK_INFO_TYPE));
163   info->initialize_storage();
164   return info;
165 }
166
167
168 // Internalized strings are created in the old generation (data space).
169 Handle<String> Factory::InternalizeUtf8String(Vector<const char> string) {
170   Utf8StringKey key(string, isolate()->heap()->HashSeed());
171   return InternalizeStringWithKey(&key);
172 }
173
174
175 // Internalized strings are created in the old generation (data space).
176 Handle<String> Factory::InternalizeString(Handle<String> string) {
177   if (string->IsInternalizedString()) return string;
178   return StringTable::LookupString(isolate(), string);
179 }
180
181
182 Handle<String> Factory::InternalizeOneByteString(Vector<const uint8_t> string) {
183   OneByteStringKey key(string, isolate()->heap()->HashSeed());
184   return InternalizeStringWithKey(&key);
185 }
186
187
188 Handle<String> Factory::InternalizeOneByteString(
189     Handle<SeqOneByteString> string, int from, int length) {
190   SeqOneByteSubStringKey key(string, from, length);
191   return InternalizeStringWithKey(&key);
192 }
193
194
195 Handle<String> Factory::InternalizeTwoByteString(Vector<const uc16> string) {
196   TwoByteStringKey key(string, isolate()->heap()->HashSeed());
197   return InternalizeStringWithKey(&key);
198 }
199
200
201 template<class StringTableKey>
202 Handle<String> Factory::InternalizeStringWithKey(StringTableKey* key) {
203   return StringTable::LookupKey(isolate(), key);
204 }
205
206
207 MaybeHandle<String> Factory::NewStringFromOneByte(Vector<const uint8_t> string,
208                                                   PretenureFlag pretenure) {
209   int length = string.length();
210   if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
211   Handle<SeqOneByteString> result;
212   ASSIGN_RETURN_ON_EXCEPTION(
213       isolate(),
214       result,
215       NewRawOneByteString(string.length(), pretenure),
216       String);
217
218   DisallowHeapAllocation no_gc;
219   // Copy the characters into the new object.
220   CopyChars(SeqOneByteString::cast(*result)->GetChars(),
221             string.start(),
222             length);
223   return result;
224 }
225
226 MaybeHandle<String> Factory::NewStringFromUtf8(Vector<const char> string,
227                                                PretenureFlag pretenure) {
228   // Check for ASCII first since this is the common case.
229   const char* start = string.start();
230   int length = string.length();
231   int non_ascii_start = String::NonAsciiStart(start, length);
232   if (non_ascii_start >= length) {
233     // If the string is ASCII, we do not need to convert the characters
234     // since UTF8 is backwards compatible with ASCII.
235     return NewStringFromOneByte(Vector<const uint8_t>::cast(string), pretenure);
236   }
237
238   // Non-ASCII and we need to decode.
239   Access<UnicodeCache::Utf8Decoder>
240       decoder(isolate()->unicode_cache()->utf8_decoder());
241   decoder->Reset(string.start() + non_ascii_start,
242                  length - non_ascii_start);
243   int utf16_length = decoder->Utf16Length();
244   DCHECK(utf16_length > 0);
245   // Allocate string.
246   Handle<SeqTwoByteString> result;
247   ASSIGN_RETURN_ON_EXCEPTION(
248       isolate(), result,
249       NewRawTwoByteString(non_ascii_start + utf16_length, pretenure),
250       String);
251   // Copy ASCII portion.
252   uint16_t* data = result->GetChars();
253   const char* ascii_data = string.start();
254   for (int i = 0; i < non_ascii_start; i++) {
255     *data++ = *ascii_data++;
256   }
257   // Now write the remainder.
258   decoder->WriteUtf16(data, utf16_length);
259   return result;
260 }
261
262
263 MaybeHandle<String> Factory::NewStringFromTwoByte(Vector<const uc16> string,
264                                                   PretenureFlag pretenure) {
265   int length = string.length();
266   const uc16* start = string.start();
267   if (String::IsOneByte(start, length)) {
268     if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
269     Handle<SeqOneByteString> result;
270     ASSIGN_RETURN_ON_EXCEPTION(
271         isolate(),
272         result,
273         NewRawOneByteString(length, pretenure),
274         String);
275     CopyChars(result->GetChars(), start, length);
276     return result;
277   } else {
278     Handle<SeqTwoByteString> result;
279     ASSIGN_RETURN_ON_EXCEPTION(
280         isolate(),
281         result,
282         NewRawTwoByteString(length, pretenure),
283         String);
284     CopyChars(result->GetChars(), start, length);
285     return result;
286   }
287 }
288
289
290 Handle<String> Factory::NewInternalizedStringFromUtf8(Vector<const char> str,
291                                                       int chars,
292                                                       uint32_t hash_field) {
293   CALL_HEAP_FUNCTION(
294       isolate(),
295       isolate()->heap()->AllocateInternalizedStringFromUtf8(
296           str, chars, hash_field),
297       String);
298 }
299
300
301 MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedString(
302       Vector<const uint8_t> str,
303       uint32_t hash_field) {
304   CALL_HEAP_FUNCTION(
305       isolate(),
306       isolate()->heap()->AllocateOneByteInternalizedString(str, hash_field),
307       String);
308 }
309
310
311 MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedSubString(
312     Handle<SeqOneByteString> string, int offset, int length,
313     uint32_t hash_field) {
314   CALL_HEAP_FUNCTION(
315       isolate(), isolate()->heap()->AllocateOneByteInternalizedString(
316                      Vector<const uint8_t>(string->GetChars() + offset, length),
317                      hash_field),
318       String);
319 }
320
321
322 MUST_USE_RESULT Handle<String> Factory::NewTwoByteInternalizedString(
323       Vector<const uc16> str,
324       uint32_t hash_field) {
325   CALL_HEAP_FUNCTION(
326       isolate(),
327       isolate()->heap()->AllocateTwoByteInternalizedString(str, hash_field),
328       String);
329 }
330
331
332 Handle<String> Factory::NewInternalizedStringImpl(
333     Handle<String> string, int chars, uint32_t hash_field) {
334   CALL_HEAP_FUNCTION(
335       isolate(),
336       isolate()->heap()->AllocateInternalizedStringImpl(
337           *string, chars, hash_field),
338       String);
339 }
340
341
342 MaybeHandle<Map> Factory::InternalizedStringMapForString(
343     Handle<String> string) {
344   // If the string is in new space it cannot be used as internalized.
345   if (isolate()->heap()->InNewSpace(*string)) return MaybeHandle<Map>();
346
347   // Find the corresponding internalized string map for strings.
348   switch (string->map()->instance_type()) {
349     case STRING_TYPE: return internalized_string_map();
350     case ONE_BYTE_STRING_TYPE:
351       return one_byte_internalized_string_map();
352     case EXTERNAL_STRING_TYPE: return external_internalized_string_map();
353     case EXTERNAL_ONE_BYTE_STRING_TYPE:
354       return external_one_byte_internalized_string_map();
355     case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
356       return external_internalized_string_with_one_byte_data_map();
357     case SHORT_EXTERNAL_STRING_TYPE:
358       return short_external_internalized_string_map();
359     case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE:
360       return short_external_one_byte_internalized_string_map();
361     case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
362       return short_external_internalized_string_with_one_byte_data_map();
363     default: return MaybeHandle<Map>();  // No match found.
364   }
365 }
366
367
368 MaybeHandle<SeqOneByteString> Factory::NewRawOneByteString(
369     int length, PretenureFlag pretenure) {
370   if (length > String::kMaxLength || length < 0) {
371     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqOneByteString);
372   }
373   CALL_HEAP_FUNCTION(
374       isolate(),
375       isolate()->heap()->AllocateRawOneByteString(length, pretenure),
376       SeqOneByteString);
377 }
378
379
380 MaybeHandle<SeqTwoByteString> Factory::NewRawTwoByteString(
381     int length, PretenureFlag pretenure) {
382   if (length > String::kMaxLength || length < 0) {
383     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqTwoByteString);
384   }
385   CALL_HEAP_FUNCTION(
386       isolate(),
387       isolate()->heap()->AllocateRawTwoByteString(length, pretenure),
388       SeqTwoByteString);
389 }
390
391
392 Handle<String> Factory::LookupSingleCharacterStringFromCode(uint32_t code) {
393   if (code <= String::kMaxOneByteCharCodeU) {
394     {
395       DisallowHeapAllocation no_allocation;
396       Object* value = single_character_string_cache()->get(code);
397       if (value != *undefined_value()) {
398         return handle(String::cast(value), isolate());
399       }
400     }
401     uint8_t buffer[1];
402     buffer[0] = static_cast<uint8_t>(code);
403     Handle<String> result =
404         InternalizeOneByteString(Vector<const uint8_t>(buffer, 1));
405     single_character_string_cache()->set(code, *result);
406     return result;
407   }
408   DCHECK(code <= String::kMaxUtf16CodeUnitU);
409
410   Handle<SeqTwoByteString> result = NewRawTwoByteString(1).ToHandleChecked();
411   result->SeqTwoByteStringSet(0, static_cast<uint16_t>(code));
412   return result;
413 }
414
415
416 // Returns true for a character in a range.  Both limits are inclusive.
417 static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
418   // This makes uses of the the unsigned wraparound.
419   return character - from <= to - from;
420 }
421
422
423 static inline Handle<String> MakeOrFindTwoCharacterString(Isolate* isolate,
424                                                           uint16_t c1,
425                                                           uint16_t c2) {
426   // Numeric strings have a different hash algorithm not known by
427   // LookupTwoCharsStringIfExists, so we skip this step for such strings.
428   if (!Between(c1, '0', '9') || !Between(c2, '0', '9')) {
429     Handle<String> result;
430     if (StringTable::LookupTwoCharsStringIfExists(isolate, c1, c2).
431         ToHandle(&result)) {
432       return result;
433     }
434   }
435
436   // Now we know the length is 2, we might as well make use of that fact
437   // when building the new string.
438   if (static_cast<unsigned>(c1 | c2) <= String::kMaxOneByteCharCodeU) {
439     // We can do this.
440     DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU +
441                                       1));  // because of this.
442     Handle<SeqOneByteString> str =
443         isolate->factory()->NewRawOneByteString(2).ToHandleChecked();
444     uint8_t* dest = str->GetChars();
445     dest[0] = static_cast<uint8_t>(c1);
446     dest[1] = static_cast<uint8_t>(c2);
447     return str;
448   } else {
449     Handle<SeqTwoByteString> str =
450         isolate->factory()->NewRawTwoByteString(2).ToHandleChecked();
451     uc16* dest = str->GetChars();
452     dest[0] = c1;
453     dest[1] = c2;
454     return str;
455   }
456 }
457
458
459 template<typename SinkChar, typename StringType>
460 Handle<String> ConcatStringContent(Handle<StringType> result,
461                                    Handle<String> first,
462                                    Handle<String> second) {
463   DisallowHeapAllocation pointer_stays_valid;
464   SinkChar* sink = result->GetChars();
465   String::WriteToFlat(*first, sink, 0, first->length());
466   String::WriteToFlat(*second, sink + first->length(), 0, second->length());
467   return result;
468 }
469
470
471 MaybeHandle<String> Factory::NewConsString(Handle<String> left,
472                                            Handle<String> right) {
473   int left_length = left->length();
474   if (left_length == 0) return right;
475   int right_length = right->length();
476   if (right_length == 0) return left;
477
478   int length = left_length + right_length;
479
480   if (length == 2) {
481     uint16_t c1 = left->Get(0);
482     uint16_t c2 = right->Get(0);
483     return MakeOrFindTwoCharacterString(isolate(), c1, c2);
484   }
485
486   // Make sure that an out of memory exception is thrown if the length
487   // of the new cons string is too large.
488   if (length > String::kMaxLength || length < 0) {
489     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
490   }
491
492   bool left_is_one_byte = left->IsOneByteRepresentation();
493   bool right_is_one_byte = right->IsOneByteRepresentation();
494   bool is_one_byte = left_is_one_byte && right_is_one_byte;
495   bool is_one_byte_data_in_two_byte_string = false;
496   if (!is_one_byte) {
497     // At least one of the strings uses two-byte representation so we
498     // can't use the fast case code for short one-byte strings below, but
499     // we can try to save memory if all chars actually fit in one-byte.
500     is_one_byte_data_in_two_byte_string =
501         left->HasOnlyOneByteChars() && right->HasOnlyOneByteChars();
502     if (is_one_byte_data_in_two_byte_string) {
503       isolate()->counters()->string_add_runtime_ext_to_one_byte()->Increment();
504     }
505   }
506
507   // If the resulting string is small make a flat string.
508   if (length < ConsString::kMinLength) {
509     // Note that neither of the two inputs can be a slice because:
510     STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength);
511     DCHECK(left->IsFlat());
512     DCHECK(right->IsFlat());
513
514     STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength);
515     if (is_one_byte) {
516       Handle<SeqOneByteString> result =
517           NewRawOneByteString(length).ToHandleChecked();
518       DisallowHeapAllocation no_gc;
519       uint8_t* dest = result->GetChars();
520       // Copy left part.
521       const uint8_t* src =
522           left->IsExternalString()
523               ? Handle<ExternalOneByteString>::cast(left)->GetChars()
524               : Handle<SeqOneByteString>::cast(left)->GetChars();
525       for (int i = 0; i < left_length; i++) *dest++ = src[i];
526       // Copy right part.
527       src = right->IsExternalString()
528                 ? Handle<ExternalOneByteString>::cast(right)->GetChars()
529                 : Handle<SeqOneByteString>::cast(right)->GetChars();
530       for (int i = 0; i < right_length; i++) *dest++ = src[i];
531       return result;
532     }
533
534     return (is_one_byte_data_in_two_byte_string)
535         ? ConcatStringContent<uint8_t>(
536             NewRawOneByteString(length).ToHandleChecked(), left, right)
537         : ConcatStringContent<uc16>(
538             NewRawTwoByteString(length).ToHandleChecked(), left, right);
539   }
540
541   Handle<Map> map = (is_one_byte || is_one_byte_data_in_two_byte_string)
542                         ? cons_one_byte_string_map()
543                         : cons_string_map();
544   Handle<ConsString> result =  New<ConsString>(map, NEW_SPACE);
545
546   DisallowHeapAllocation no_gc;
547   WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
548
549   result->set_hash_field(String::kEmptyHashField);
550   result->set_length(length);
551   result->set_first(*left, mode);
552   result->set_second(*right, mode);
553   return result;
554 }
555
556
557 Handle<String> Factory::NewProperSubString(Handle<String> str,
558                                            int begin,
559                                            int end) {
560 #if VERIFY_HEAP
561   if (FLAG_verify_heap) str->StringVerify();
562 #endif
563   DCHECK(begin > 0 || end < str->length());
564
565   str = String::Flatten(str);
566
567   int length = end - begin;
568   if (length <= 0) return empty_string();
569   if (length == 1) {
570     return LookupSingleCharacterStringFromCode(str->Get(begin));
571   }
572   if (length == 2) {
573     // Optimization for 2-byte strings often used as keys in a decompression
574     // dictionary.  Check whether we already have the string in the string
575     // table to prevent creation of many unnecessary strings.
576     uint16_t c1 = str->Get(begin);
577     uint16_t c2 = str->Get(begin + 1);
578     return MakeOrFindTwoCharacterString(isolate(), c1, c2);
579   }
580
581   if (!FLAG_string_slices || length < SlicedString::kMinLength) {
582     if (str->IsOneByteRepresentation()) {
583       Handle<SeqOneByteString> result =
584           NewRawOneByteString(length).ToHandleChecked();
585       uint8_t* dest = result->GetChars();
586       DisallowHeapAllocation no_gc;
587       String::WriteToFlat(*str, dest, begin, end);
588       return result;
589     } else {
590       Handle<SeqTwoByteString> result =
591           NewRawTwoByteString(length).ToHandleChecked();
592       uc16* dest = result->GetChars();
593       DisallowHeapAllocation no_gc;
594       String::WriteToFlat(*str, dest, begin, end);
595       return result;
596     }
597   }
598
599   int offset = begin;
600
601   if (str->IsSlicedString()) {
602     Handle<SlicedString> slice = Handle<SlicedString>::cast(str);
603     str = Handle<String>(slice->parent(), isolate());
604     offset += slice->offset();
605   }
606
607   DCHECK(str->IsSeqString() || str->IsExternalString());
608   Handle<Map> map = str->IsOneByteRepresentation()
609                         ? sliced_one_byte_string_map()
610                         : sliced_string_map();
611   Handle<SlicedString> slice = New<SlicedString>(map, NEW_SPACE);
612
613   slice->set_hash_field(String::kEmptyHashField);
614   slice->set_length(length);
615   slice->set_parent(*str);
616   slice->set_offset(offset);
617   return slice;
618 }
619
620
621 MaybeHandle<String> Factory::NewExternalStringFromOneByte(
622     const ExternalOneByteString::Resource* resource) {
623   size_t length = resource->length();
624   if (length > static_cast<size_t>(String::kMaxLength)) {
625     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
626   }
627
628   Handle<Map> map = external_one_byte_string_map();
629   Handle<ExternalOneByteString> external_string =
630       New<ExternalOneByteString>(map, NEW_SPACE);
631   external_string->set_length(static_cast<int>(length));
632   external_string->set_hash_field(String::kEmptyHashField);
633   external_string->set_resource(resource);
634
635   return external_string;
636 }
637
638
639 MaybeHandle<String> Factory::NewExternalStringFromTwoByte(
640     const ExternalTwoByteString::Resource* resource) {
641   size_t length = resource->length();
642   if (length > static_cast<size_t>(String::kMaxLength)) {
643     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
644   }
645
646   // For small strings we check whether the resource contains only
647   // one byte characters.  If yes, we use a different string map.
648   static const size_t kOneByteCheckLengthLimit = 32;
649   bool is_one_byte = length <= kOneByteCheckLengthLimit &&
650       String::IsOneByte(resource->data(), static_cast<int>(length));
651   Handle<Map> map = is_one_byte ?
652       external_string_with_one_byte_data_map() : external_string_map();
653   Handle<ExternalTwoByteString> external_string =
654       New<ExternalTwoByteString>(map, NEW_SPACE);
655   external_string->set_length(static_cast<int>(length));
656   external_string->set_hash_field(String::kEmptyHashField);
657   external_string->set_resource(resource);
658
659   return external_string;
660 }
661
662
663 Handle<Symbol> Factory::NewSymbol() {
664   CALL_HEAP_FUNCTION(
665       isolate(),
666       isolate()->heap()->AllocateSymbol(),
667       Symbol);
668 }
669
670
671 Handle<Symbol> Factory::NewPrivateSymbol() {
672   Handle<Symbol> symbol = NewSymbol();
673   symbol->set_is_private(true);
674   return symbol;
675 }
676
677
678 Handle<Symbol> Factory::NewPrivateOwnSymbol() {
679   Handle<Symbol> symbol = NewSymbol();
680   symbol->set_is_private(true);
681   symbol->set_is_own(true);
682   return symbol;
683 }
684
685
686 Handle<Context> Factory::NewNativeContext() {
687   Handle<FixedArray> array = NewFixedArray(Context::NATIVE_CONTEXT_SLOTS);
688   array->set_map_no_write_barrier(*native_context_map());
689   Handle<Context> context = Handle<Context>::cast(array);
690   context->set_js_array_maps(*undefined_value());
691   DCHECK(context->IsNativeContext());
692   return context;
693 }
694
695
696 Handle<Context> Factory::NewGlobalContext(Handle<JSFunction> function,
697                                           Handle<ScopeInfo> scope_info) {
698   Handle<FixedArray> array =
699       NewFixedArray(scope_info->ContextLength(), TENURED);
700   array->set_map_no_write_barrier(*global_context_map());
701   Handle<Context> context = Handle<Context>::cast(array);
702   context->set_closure(*function);
703   context->set_previous(function->context());
704   context->set_extension(*scope_info);
705   context->set_global_object(function->context()->global_object());
706   DCHECK(context->IsGlobalContext());
707   return context;
708 }
709
710
711 Handle<Context> Factory::NewModuleContext(Handle<ScopeInfo> scope_info) {
712   Handle<FixedArray> array =
713       NewFixedArray(scope_info->ContextLength(), TENURED);
714   array->set_map_no_write_barrier(*module_context_map());
715   // Instance link will be set later.
716   Handle<Context> context = Handle<Context>::cast(array);
717   context->set_extension(Smi::FromInt(0));
718   return context;
719 }
720
721
722 Handle<Context> Factory::NewFunctionContext(int length,
723                                             Handle<JSFunction> function) {
724   DCHECK(length >= Context::MIN_CONTEXT_SLOTS);
725   Handle<FixedArray> array = NewFixedArray(length);
726   array->set_map_no_write_barrier(*function_context_map());
727   Handle<Context> context = Handle<Context>::cast(array);
728   context->set_closure(*function);
729   context->set_previous(function->context());
730   context->set_extension(Smi::FromInt(0));
731   context->set_global_object(function->context()->global_object());
732   return context;
733 }
734
735
736 Handle<Context> Factory::NewCatchContext(Handle<JSFunction> function,
737                                          Handle<Context> previous,
738                                          Handle<String> name,
739                                          Handle<Object> thrown_object) {
740   STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
741   Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 1);
742   array->set_map_no_write_barrier(*catch_context_map());
743   Handle<Context> context = Handle<Context>::cast(array);
744   context->set_closure(*function);
745   context->set_previous(*previous);
746   context->set_extension(*name);
747   context->set_global_object(previous->global_object());
748   context->set(Context::THROWN_OBJECT_INDEX, *thrown_object);
749   return context;
750 }
751
752
753 Handle<Context> Factory::NewWithContext(Handle<JSFunction> function,
754                                         Handle<Context> previous,
755                                         Handle<JSReceiver> extension) {
756   Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS);
757   array->set_map_no_write_barrier(*with_context_map());
758   Handle<Context> context = Handle<Context>::cast(array);
759   context->set_closure(*function);
760   context->set_previous(*previous);
761   context->set_extension(*extension);
762   context->set_global_object(previous->global_object());
763   return context;
764 }
765
766
767 Handle<Context> Factory::NewBlockContext(Handle<JSFunction> function,
768                                          Handle<Context> previous,
769                                          Handle<ScopeInfo> scope_info) {
770   Handle<FixedArray> array =
771       NewFixedArrayWithHoles(scope_info->ContextLength());
772   array->set_map_no_write_barrier(*block_context_map());
773   Handle<Context> context = Handle<Context>::cast(array);
774   context->set_closure(*function);
775   context->set_previous(*previous);
776   context->set_extension(*scope_info);
777   context->set_global_object(previous->global_object());
778   return context;
779 }
780
781
782 Handle<Struct> Factory::NewStruct(InstanceType type) {
783   CALL_HEAP_FUNCTION(
784       isolate(),
785       isolate()->heap()->AllocateStruct(type),
786       Struct);
787 }
788
789
790 Handle<CodeCache> Factory::NewCodeCache() {
791   Handle<CodeCache> code_cache =
792       Handle<CodeCache>::cast(NewStruct(CODE_CACHE_TYPE));
793   code_cache->set_default_cache(*empty_fixed_array(), SKIP_WRITE_BARRIER);
794   code_cache->set_normal_type_cache(*undefined_value(), SKIP_WRITE_BARRIER);
795   return code_cache;
796 }
797
798
799 Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry(
800     int aliased_context_slot) {
801   Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast(
802       NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE));
803   entry->set_aliased_context_slot(aliased_context_slot);
804   return entry;
805 }
806
807
808 Handle<DeclaredAccessorDescriptor> Factory::NewDeclaredAccessorDescriptor() {
809   return Handle<DeclaredAccessorDescriptor>::cast(
810       NewStruct(DECLARED_ACCESSOR_DESCRIPTOR_TYPE));
811 }
812
813
814 Handle<DeclaredAccessorInfo> Factory::NewDeclaredAccessorInfo() {
815   Handle<DeclaredAccessorInfo> info =
816       Handle<DeclaredAccessorInfo>::cast(
817           NewStruct(DECLARED_ACCESSOR_INFO_TYPE));
818   info->set_flag(0);  // Must clear the flag, it was initialized as undefined.
819   return info;
820 }
821
822
823 Handle<ExecutableAccessorInfo> Factory::NewExecutableAccessorInfo() {
824   Handle<ExecutableAccessorInfo> info =
825       Handle<ExecutableAccessorInfo>::cast(
826           NewStruct(EXECUTABLE_ACCESSOR_INFO_TYPE));
827   info->set_flag(0);  // Must clear the flag, it was initialized as undefined.
828   return info;
829 }
830
831
832 Handle<Script> Factory::NewScript(Handle<String> source) {
833   // Generate id for this script.
834   Heap* heap = isolate()->heap();
835   int id = heap->last_script_id()->value() + 1;
836   if (!Smi::IsValid(id) || id < 0) id = 1;
837   heap->set_last_script_id(Smi::FromInt(id));
838
839   // Create and initialize script object.
840   Handle<Foreign> wrapper = NewForeign(0, TENURED);
841   Handle<Script> script = Handle<Script>::cast(NewStruct(SCRIPT_TYPE));
842   script->set_source(*source);
843   script->set_name(heap->undefined_value());
844   script->set_id(Smi::FromInt(id));
845   script->set_line_offset(Smi::FromInt(0));
846   script->set_column_offset(Smi::FromInt(0));
847   script->set_context_data(heap->undefined_value());
848   script->set_type(Smi::FromInt(Script::TYPE_NORMAL));
849   script->set_wrapper(*wrapper);
850   script->set_line_ends(heap->undefined_value());
851   script->set_eval_from_shared(heap->undefined_value());
852   script->set_eval_from_instructions_offset(Smi::FromInt(0));
853   script->set_flags(Smi::FromInt(0));
854
855   return script;
856 }
857
858
859 Handle<Foreign> Factory::NewForeign(Address addr, PretenureFlag pretenure) {
860   CALL_HEAP_FUNCTION(isolate(),
861                      isolate()->heap()->AllocateForeign(addr, pretenure),
862                      Foreign);
863 }
864
865
866 Handle<Foreign> Factory::NewForeign(const AccessorDescriptor* desc) {
867   return NewForeign((Address) desc, TENURED);
868 }
869
870
871 Handle<ByteArray> Factory::NewByteArray(int length, PretenureFlag pretenure) {
872   DCHECK(0 <= length);
873   CALL_HEAP_FUNCTION(
874       isolate(),
875       isolate()->heap()->AllocateByteArray(length, pretenure),
876       ByteArray);
877 }
878
879
880 Handle<ExternalArray> Factory::NewExternalArray(int length,
881                                                 ExternalArrayType array_type,
882                                                 void* external_pointer,
883                                                 PretenureFlag pretenure) {
884   DCHECK(0 <= length && length <= Smi::kMaxValue);
885   CALL_HEAP_FUNCTION(
886       isolate(),
887       isolate()->heap()->AllocateExternalArray(length,
888                                                array_type,
889                                                external_pointer,
890                                                pretenure),
891       ExternalArray);
892 }
893
894
895 Handle<FixedTypedArrayBase> Factory::NewFixedTypedArray(
896     int length,
897     ExternalArrayType array_type,
898     PretenureFlag pretenure) {
899   DCHECK(0 <= length && length <= Smi::kMaxValue);
900   CALL_HEAP_FUNCTION(
901       isolate(),
902       isolate()->heap()->AllocateFixedTypedArray(length,
903                                                  array_type,
904                                                  pretenure),
905       FixedTypedArrayBase);
906 }
907
908
909 Handle<Cell> Factory::NewCell(Handle<Object> value) {
910   AllowDeferredHandleDereference convert_to_cell;
911   CALL_HEAP_FUNCTION(
912       isolate(),
913       isolate()->heap()->AllocateCell(*value),
914       Cell);
915 }
916
917
918 Handle<PropertyCell> Factory::NewPropertyCellWithHole() {
919   CALL_HEAP_FUNCTION(
920       isolate(),
921       isolate()->heap()->AllocatePropertyCell(),
922       PropertyCell);
923 }
924
925
926 Handle<PropertyCell> Factory::NewPropertyCell(Handle<Object> value) {
927   AllowDeferredHandleDereference convert_to_cell;
928   Handle<PropertyCell> cell = NewPropertyCellWithHole();
929   PropertyCell::SetValueInferType(cell, value);
930   return cell;
931 }
932
933
934 Handle<AllocationSite> Factory::NewAllocationSite() {
935   Handle<Map> map = allocation_site_map();
936   Handle<AllocationSite> site = New<AllocationSite>(map, OLD_POINTER_SPACE);
937   site->Initialize();
938
939   // Link the site
940   site->set_weak_next(isolate()->heap()->allocation_sites_list());
941   isolate()->heap()->set_allocation_sites_list(*site);
942   return site;
943 }
944
945
946 Handle<Map> Factory::NewMap(InstanceType type,
947                             int instance_size,
948                             ElementsKind elements_kind) {
949   CALL_HEAP_FUNCTION(
950       isolate(),
951       isolate()->heap()->AllocateMap(type, instance_size, elements_kind),
952       Map);
953 }
954
955
956 Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> object) {
957   CALL_HEAP_FUNCTION(isolate(),
958                      isolate()->heap()->CopyJSObject(*object, NULL),
959                      JSObject);
960 }
961
962
963 Handle<JSObject> Factory::CopyJSObjectWithAllocationSite(
964     Handle<JSObject> object,
965     Handle<AllocationSite> site) {
966   CALL_HEAP_FUNCTION(isolate(),
967                      isolate()->heap()->CopyJSObject(
968                          *object,
969                          site.is_null() ? NULL : *site),
970                      JSObject);
971 }
972
973
974 Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array,
975                                                   Handle<Map> map) {
976   CALL_HEAP_FUNCTION(isolate(),
977                      isolate()->heap()->CopyFixedArrayWithMap(*array, *map),
978                      FixedArray);
979 }
980
981
982 Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) {
983   CALL_HEAP_FUNCTION(isolate(),
984                      isolate()->heap()->CopyFixedArray(*array),
985                      FixedArray);
986 }
987
988
989 Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray(
990     Handle<FixedArray> array) {
991   DCHECK(isolate()->heap()->InNewSpace(*array));
992   CALL_HEAP_FUNCTION(isolate(),
993                      isolate()->heap()->CopyAndTenureFixedCOWArray(*array),
994                      FixedArray);
995 }
996
997
998 Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray(
999     Handle<FixedDoubleArray> array) {
1000   CALL_HEAP_FUNCTION(isolate(),
1001                      isolate()->heap()->CopyFixedDoubleArray(*array),
1002                      FixedDoubleArray);
1003 }
1004
1005
1006 Handle<ConstantPoolArray> Factory::CopyConstantPoolArray(
1007     Handle<ConstantPoolArray> array) {
1008   CALL_HEAP_FUNCTION(isolate(),
1009                      isolate()->heap()->CopyConstantPoolArray(*array),
1010                      ConstantPoolArray);
1011 }
1012
1013
1014 Handle<Object> Factory::NewNumber(double value,
1015                                   PretenureFlag pretenure) {
1016   // We need to distinguish the minus zero value and this cannot be
1017   // done after conversion to int. Doing this by comparing bit
1018   // patterns is faster than using fpclassify() et al.
1019   if (IsMinusZero(value)) return NewHeapNumber(-0.0, IMMUTABLE, pretenure);
1020
1021   int int_value = FastD2I(value);
1022   if (value == int_value && Smi::IsValid(int_value)) {
1023     return handle(Smi::FromInt(int_value), isolate());
1024   }
1025
1026   // Materialize the value in the heap.
1027   return NewHeapNumber(value, IMMUTABLE, pretenure);
1028 }
1029
1030
1031 Handle<Object> Factory::NewNumberFromInt(int32_t value,
1032                                          PretenureFlag pretenure) {
1033   if (Smi::IsValid(value)) return handle(Smi::FromInt(value), isolate());
1034   // Bypass NewNumber to avoid various redundant checks.
1035   return NewHeapNumber(FastI2D(value), IMMUTABLE, pretenure);
1036 }
1037
1038
1039 Handle<Object> Factory::NewNumberFromUint(uint32_t value,
1040                                           PretenureFlag pretenure) {
1041   int32_t int32v = static_cast<int32_t>(value);
1042   if (int32v >= 0 && Smi::IsValid(int32v)) {
1043     return handle(Smi::FromInt(int32v), isolate());
1044   }
1045   return NewHeapNumber(FastUI2D(value), IMMUTABLE, pretenure);
1046 }
1047
1048
1049 Handle<HeapNumber> Factory::NewHeapNumber(double value,
1050                                           MutableMode mode,
1051                                           PretenureFlag pretenure) {
1052   CALL_HEAP_FUNCTION(
1053       isolate(),
1054       isolate()->heap()->AllocateHeapNumber(value, mode, pretenure),
1055       HeapNumber);
1056 }
1057
1058
1059 Handle<Float32x4> Factory::NewFloat32x4(float32x4_value_t value,
1060                                         PretenureFlag pretenure) {
1061   CALL_HEAP_FUNCTION(
1062       isolate(),
1063       isolate()->heap()->AllocateFloat32x4(value, pretenure), Float32x4);
1064 }
1065
1066
1067 Handle<Float64x2> Factory::NewFloat64x2(float64x2_value_t value,
1068                                         PretenureFlag pretenure) {
1069   CALL_HEAP_FUNCTION(
1070       isolate(),
1071       isolate()->heap()->AllocateFloat64x2(value, pretenure), Float64x2);
1072 }
1073
1074
1075 Handle<Int32x4> Factory::NewInt32x4(int32x4_value_t value,
1076                                     PretenureFlag pretenure) {
1077   CALL_HEAP_FUNCTION(
1078       isolate(),
1079       isolate()->heap()->AllocateInt32x4(value, pretenure), Int32x4);
1080 }
1081
1082
1083 MaybeHandle<Object> Factory::NewTypeError(const char* message,
1084                                           Vector<Handle<Object> > args) {
1085   return NewError("MakeTypeError", message, args);
1086 }
1087
1088
1089 MaybeHandle<Object> Factory::NewTypeError(Handle<String> message) {
1090   return NewError("$TypeError", message);
1091 }
1092
1093
1094 MaybeHandle<Object> Factory::NewRangeError(const char* message,
1095                                            Vector<Handle<Object> > args) {
1096   return NewError("MakeRangeError", message, args);
1097 }
1098
1099
1100 MaybeHandle<Object> Factory::NewRangeError(Handle<String> message) {
1101   return NewError("$RangeError", message);
1102 }
1103
1104
1105 MaybeHandle<Object> Factory::NewSyntaxError(const char* message,
1106                                             Handle<JSArray> args) {
1107   return NewError("MakeSyntaxError", message, args);
1108 }
1109
1110
1111 MaybeHandle<Object> Factory::NewSyntaxError(Handle<String> message) {
1112   return NewError("$SyntaxError", message);
1113 }
1114
1115
1116 MaybeHandle<Object> Factory::NewReferenceError(const char* message,
1117                                                Vector<Handle<Object> > args) {
1118   return NewError("MakeReferenceError", message, args);
1119 }
1120
1121
1122 MaybeHandle<Object> Factory::NewReferenceError(const char* message,
1123                                                Handle<JSArray> args) {
1124   return NewError("MakeReferenceError", message, args);
1125 }
1126
1127
1128 MaybeHandle<Object> Factory::NewReferenceError(Handle<String> message) {
1129   return NewError("$ReferenceError", message);
1130 }
1131
1132
1133 MaybeHandle<Object> Factory::NewError(const char* maker, const char* message,
1134                                       Vector<Handle<Object> > args) {
1135   // Instantiate a closeable HandleScope for EscapeFrom.
1136   v8::EscapableHandleScope scope(reinterpret_cast<v8::Isolate*>(isolate()));
1137   Handle<FixedArray> array = NewFixedArray(args.length());
1138   for (int i = 0; i < args.length(); i++) {
1139     array->set(i, *args[i]);
1140   }
1141   Handle<JSArray> object = NewJSArrayWithElements(array);
1142   Handle<Object> result;
1143   ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
1144                              NewError(maker, message, object), Object);
1145   return result.EscapeFrom(&scope);
1146 }
1147
1148
1149 MaybeHandle<Object> Factory::NewEvalError(const char* message,
1150                                           Vector<Handle<Object> > args) {
1151   return NewError("MakeEvalError", message, args);
1152 }
1153
1154
1155 MaybeHandle<Object> Factory::NewError(const char* message,
1156                                       Vector<Handle<Object> > args) {
1157   return NewError("MakeError", message, args);
1158 }
1159
1160
1161 Handle<String> Factory::EmergencyNewError(const char* message,
1162                                           Handle<JSArray> args) {
1163   const int kBufferSize = 1000;
1164   char buffer[kBufferSize];
1165   size_t space = kBufferSize;
1166   char* p = &buffer[0];
1167
1168   Vector<char> v(buffer, kBufferSize);
1169   StrNCpy(v, message, space);
1170   space -= Min(space, strlen(message));
1171   p = &buffer[kBufferSize] - space;
1172
1173   for (int i = 0; i < Smi::cast(args->length())->value(); i++) {
1174     if (space > 0) {
1175       *p++ = ' ';
1176       space--;
1177       if (space > 0) {
1178         Handle<String> arg_str = Handle<String>::cast(
1179             Object::GetElement(isolate(), args, i).ToHandleChecked());
1180         SmartArrayPointer<char> arg = arg_str->ToCString();
1181         Vector<char> v2(p, static_cast<int>(space));
1182         StrNCpy(v2, arg.get(), space);
1183         space -= Min(space, strlen(arg.get()));
1184         p = &buffer[kBufferSize] - space;
1185       }
1186     }
1187   }
1188   if (space > 0) {
1189     *p = '\0';
1190   } else {
1191     buffer[kBufferSize - 1] = '\0';
1192   }
1193   return NewStringFromUtf8(CStrVector(buffer), TENURED).ToHandleChecked();
1194 }
1195
1196
1197 MaybeHandle<Object> Factory::NewError(const char* maker, const char* message,
1198                                       Handle<JSArray> args) {
1199   Handle<String> make_str = InternalizeUtf8String(maker);
1200   Handle<Object> fun_obj = Object::GetProperty(
1201       isolate()->js_builtins_object(), make_str).ToHandleChecked();
1202   // If the builtins haven't been properly configured yet this error
1203   // constructor may not have been defined.  Bail out.
1204   if (!fun_obj->IsJSFunction()) {
1205     return EmergencyNewError(message, args);
1206   }
1207   Handle<JSFunction> fun = Handle<JSFunction>::cast(fun_obj);
1208   Handle<Object> message_obj = InternalizeUtf8String(message);
1209   Handle<Object> argv[] = { message_obj, args };
1210
1211   // Invoke the JavaScript factory method. If an exception is thrown while
1212   // running the factory method, use the exception as the result.
1213   Handle<Object> result;
1214   MaybeHandle<Object> exception;
1215   if (!Execution::TryCall(fun,
1216                           isolate()->js_builtins_object(),
1217                           arraysize(argv),
1218                           argv,
1219                           &exception).ToHandle(&result)) {
1220     return exception;
1221   }
1222   return result;
1223 }
1224
1225
1226 MaybeHandle<Object> Factory::NewError(Handle<String> message) {
1227   return NewError("$Error", message);
1228 }
1229
1230
1231 MaybeHandle<Object> Factory::NewError(const char* constructor,
1232                                       Handle<String> message) {
1233   Handle<String> constr = InternalizeUtf8String(constructor);
1234   Handle<JSFunction> fun = Handle<JSFunction>::cast(Object::GetProperty(
1235       isolate()->js_builtins_object(), constr).ToHandleChecked());
1236   Handle<Object> argv[] = { message };
1237
1238   // Invoke the JavaScript factory method. If an exception is thrown while
1239   // running the factory method, use the exception as the result.
1240   Handle<Object> result;
1241   MaybeHandle<Object> exception;
1242   if (!Execution::TryCall(fun,
1243                           isolate()->js_builtins_object(),
1244                           arraysize(argv),
1245                           argv,
1246                           &exception).ToHandle(&result)) {
1247     return exception;
1248   }
1249   return result;
1250 }
1251
1252
1253 void Factory::InitializeFunction(Handle<JSFunction> function,
1254                                  Handle<SharedFunctionInfo> info,
1255                                  Handle<Context> context) {
1256   function->initialize_properties();
1257   function->initialize_elements();
1258   function->set_shared(*info);
1259   function->set_code(info->code());
1260   function->set_context(*context);
1261   function->set_prototype_or_initial_map(*the_hole_value());
1262   function->set_literals_or_bindings(*empty_fixed_array());
1263   function->set_next_function_link(*undefined_value());
1264 }
1265
1266
1267 Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
1268                                         Handle<SharedFunctionInfo> info,
1269                                         Handle<Context> context,
1270                                         PretenureFlag pretenure) {
1271   AllocationSpace space = pretenure == TENURED ? OLD_POINTER_SPACE : NEW_SPACE;
1272   Handle<JSFunction> result = New<JSFunction>(map, space);
1273   InitializeFunction(result, info, context);
1274   return result;
1275 }
1276
1277
1278 Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
1279                                         Handle<String> name,
1280                                         MaybeHandle<Code> code) {
1281   Handle<Context> context(isolate()->native_context());
1282   Handle<SharedFunctionInfo> info = NewSharedFunctionInfo(name, code);
1283   DCHECK((info->strict_mode() == SLOPPY) &&
1284          (map.is_identical_to(isolate()->sloppy_function_map()) ||
1285           map.is_identical_to(
1286               isolate()->sloppy_function_without_prototype_map()) ||
1287           map.is_identical_to(
1288               isolate()->sloppy_function_with_readonly_prototype_map())));
1289   return NewFunction(map, info, context);
1290 }
1291
1292
1293 Handle<JSFunction> Factory::NewFunction(Handle<String> name) {
1294   return NewFunction(
1295       isolate()->sloppy_function_map(), name, MaybeHandle<Code>());
1296 }
1297
1298
1299 Handle<JSFunction> Factory::NewFunctionWithoutPrototype(Handle<String> name,
1300                                                         Handle<Code> code) {
1301   return NewFunction(
1302       isolate()->sloppy_function_without_prototype_map(), name, code);
1303 }
1304
1305
1306 Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1307                                         Handle<Code> code,
1308                                         Handle<Object> prototype,
1309                                         bool read_only_prototype) {
1310   Handle<Map> map = read_only_prototype
1311       ? isolate()->sloppy_function_with_readonly_prototype_map()
1312       : isolate()->sloppy_function_map();
1313   Handle<JSFunction> result = NewFunction(map, name, code);
1314   result->set_prototype_or_initial_map(*prototype);
1315   return result;
1316 }
1317
1318
1319 Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1320                                         Handle<Code> code,
1321                                         Handle<Object> prototype,
1322                                         InstanceType type,
1323                                         int instance_size,
1324                                         bool read_only_prototype) {
1325   // Allocate the function
1326   Handle<JSFunction> function = NewFunction(
1327       name, code, prototype, read_only_prototype);
1328
1329   Handle<Map> initial_map = NewMap(
1330       type, instance_size, GetInitialFastElementsKind());
1331   if (prototype->IsTheHole() && !function->shared()->is_generator()) {
1332     prototype = NewFunctionPrototype(function);
1333   }
1334
1335   JSFunction::SetInitialMap(function, initial_map,
1336                             Handle<JSReceiver>::cast(prototype));
1337
1338   return function;
1339 }
1340
1341
1342 Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1343                                         Handle<Code> code,
1344                                         InstanceType type,
1345                                         int instance_size) {
1346   return NewFunction(name, code, the_hole_value(), type, instance_size);
1347 }
1348
1349
1350 Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) {
1351   // Make sure to use globals from the function's context, since the function
1352   // can be from a different context.
1353   Handle<Context> native_context(function->context()->native_context());
1354   Handle<Map> new_map;
1355   if (function->shared()->is_generator()) {
1356     // Generator prototypes can share maps since they don't have "constructor"
1357     // properties.
1358     new_map = handle(native_context->generator_object_prototype_map());
1359   } else {
1360     // Each function prototype gets a fresh map to avoid unwanted sharing of
1361     // maps between prototypes of different constructors.
1362     Handle<JSFunction> object_function(native_context->object_function());
1363     DCHECK(object_function->has_initial_map());
1364     new_map = handle(object_function->initial_map());
1365   }
1366
1367   DCHECK(!new_map->is_prototype_map());
1368   Handle<JSObject> prototype = NewJSObjectFromMap(new_map);
1369
1370   if (!function->shared()->is_generator()) {
1371     JSObject::AddProperty(prototype, constructor_string(), function, DONT_ENUM);
1372   }
1373
1374   return prototype;
1375 }
1376
1377
1378 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
1379     Handle<SharedFunctionInfo> info,
1380     Handle<Context> context,
1381     PretenureFlag pretenure) {
1382   int map_index = Context::FunctionMapIndex(info->strict_mode(), info->kind());
1383   Handle<Map> map(Map::cast(context->native_context()->get(map_index)));
1384   Handle<JSFunction> result = NewFunction(map, info, context, pretenure);
1385
1386   if (info->ic_age() != isolate()->heap()->global_ic_age()) {
1387     info->ResetForNewContext(isolate()->heap()->global_ic_age());
1388   }
1389
1390   int index = info->SearchOptimizedCodeMap(context->native_context(),
1391                                            BailoutId::None());
1392   if (!info->bound() && index < 0) {
1393     int number_of_literals = info->num_literals();
1394     Handle<FixedArray> literals = NewFixedArray(number_of_literals, pretenure);
1395     if (number_of_literals > 0) {
1396       // Store the native context in the literals array prefix. This
1397       // context will be used when creating object, regexp and array
1398       // literals in this function.
1399       literals->set(JSFunction::kLiteralNativeContextIndex,
1400                     context->native_context());
1401     }
1402     result->set_literals(*literals);
1403   }
1404
1405   if (index > 0) {
1406     // Caching of optimized code enabled and optimized code found.
1407     FixedArray* literals = info->GetLiteralsFromOptimizedCodeMap(index);
1408     if (literals != NULL) result->set_literals(literals);
1409     Code* code = info->GetCodeFromOptimizedCodeMap(index);
1410     DCHECK(!code->marked_for_deoptimization());
1411     result->ReplaceCode(code);
1412     return result;
1413   }
1414
1415   if (isolate()->use_crankshaft() &&
1416       FLAG_always_opt &&
1417       result->is_compiled() &&
1418       !info->is_toplevel() &&
1419       info->allows_lazy_compilation() &&
1420       !info->optimization_disabled() &&
1421       !isolate()->DebuggerHasBreakPoints()) {
1422     result->MarkForOptimization();
1423   }
1424   return result;
1425 }
1426
1427
1428 Handle<ScopeInfo> Factory::NewScopeInfo(int length) {
1429   Handle<FixedArray> array = NewFixedArray(length, TENURED);
1430   array->set_map_no_write_barrier(*scope_info_map());
1431   Handle<ScopeInfo> scope_info = Handle<ScopeInfo>::cast(array);
1432   return scope_info;
1433 }
1434
1435
1436 Handle<JSObject> Factory::NewExternal(void* value) {
1437   Handle<Foreign> foreign = NewForeign(static_cast<Address>(value));
1438   Handle<JSObject> external = NewJSObjectFromMap(external_map());
1439   external->SetInternalField(0, *foreign);
1440   return external;
1441 }
1442
1443
1444 Handle<Code> Factory::NewCodeRaw(int object_size, bool immovable) {
1445   CALL_HEAP_FUNCTION(isolate(),
1446                      isolate()->heap()->AllocateCode(object_size, immovable),
1447                      Code);
1448 }
1449
1450
1451 Handle<Code> Factory::NewCode(const CodeDesc& desc,
1452                               Code::Flags flags,
1453                               Handle<Object> self_ref,
1454                               bool immovable,
1455                               bool crankshafted,
1456                               int prologue_offset,
1457                               bool is_debug) {
1458   Handle<ByteArray> reloc_info = NewByteArray(desc.reloc_size, TENURED);
1459   Handle<ConstantPoolArray> constant_pool =
1460       desc.origin->NewConstantPool(isolate());
1461
1462   // Compute size.
1463   int body_size = RoundUp(desc.instr_size, kObjectAlignment);
1464   int obj_size = Code::SizeFor(body_size);
1465
1466   Handle<Code> code = NewCodeRaw(obj_size, immovable);
1467   DCHECK(isolate()->code_range() == NULL ||
1468          !isolate()->code_range()->valid() ||
1469          isolate()->code_range()->contains(code->address()));
1470
1471   // The code object has not been fully initialized yet.  We rely on the
1472   // fact that no allocation will happen from this point on.
1473   DisallowHeapAllocation no_gc;
1474   code->set_gc_metadata(Smi::FromInt(0));
1475   code->set_ic_age(isolate()->heap()->global_ic_age());
1476   code->set_instruction_size(desc.instr_size);
1477   code->set_relocation_info(*reloc_info);
1478   code->set_flags(flags);
1479   code->set_raw_kind_specific_flags1(0);
1480   code->set_raw_kind_specific_flags2(0);
1481   code->set_is_crankshafted(crankshafted);
1482   code->set_deoptimization_data(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1483   code->set_raw_type_feedback_info(Smi::FromInt(0));
1484   code->set_next_code_link(*undefined_value());
1485   code->set_handler_table(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1486   code->set_prologue_offset(prologue_offset);
1487   if (code->kind() == Code::OPTIMIZED_FUNCTION) {
1488     code->set_marked_for_deoptimization(false);
1489   }
1490
1491   if (is_debug) {
1492     DCHECK(code->kind() == Code::FUNCTION);
1493     code->set_has_debug_break_slots(true);
1494   }
1495
1496   desc.origin->PopulateConstantPool(*constant_pool);
1497   code->set_constant_pool(*constant_pool);
1498
1499   // Allow self references to created code object by patching the handle to
1500   // point to the newly allocated Code object.
1501   if (!self_ref.is_null()) *(self_ref.location()) = *code;
1502
1503   // Migrate generated code.
1504   // The generated code can contain Object** values (typically from handles)
1505   // that are dereferenced during the copy to point directly to the actual heap
1506   // objects. These pointers can include references to the code object itself,
1507   // through the self_reference parameter.
1508   code->CopyFrom(desc);
1509
1510 #ifdef VERIFY_HEAP
1511   if (FLAG_verify_heap) code->ObjectVerify();
1512 #endif
1513   return code;
1514 }
1515
1516
1517 Handle<Code> Factory::CopyCode(Handle<Code> code) {
1518   CALL_HEAP_FUNCTION(isolate(),
1519                      isolate()->heap()->CopyCode(*code),
1520                      Code);
1521 }
1522
1523
1524 Handle<Code> Factory::CopyCode(Handle<Code> code, Vector<byte> reloc_info) {
1525   CALL_HEAP_FUNCTION(isolate(),
1526                      isolate()->heap()->CopyCode(*code, reloc_info),
1527                      Code);
1528 }
1529
1530
1531 Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor,
1532                                       PretenureFlag pretenure) {
1533   JSFunction::EnsureHasInitialMap(constructor);
1534   CALL_HEAP_FUNCTION(
1535       isolate(),
1536       isolate()->heap()->AllocateJSObject(*constructor, pretenure), JSObject);
1537 }
1538
1539
1540 Handle<JSObject> Factory::NewJSObjectWithMemento(
1541     Handle<JSFunction> constructor,
1542     Handle<AllocationSite> site) {
1543   JSFunction::EnsureHasInitialMap(constructor);
1544   CALL_HEAP_FUNCTION(
1545       isolate(),
1546       isolate()->heap()->AllocateJSObject(*constructor, NOT_TENURED, *site),
1547       JSObject);
1548 }
1549
1550
1551 Handle<JSModule> Factory::NewJSModule(Handle<Context> context,
1552                                       Handle<ScopeInfo> scope_info) {
1553   // Allocate a fresh map. Modules do not have a prototype.
1554   Handle<Map> map = NewMap(JS_MODULE_TYPE, JSModule::kSize);
1555   // Allocate the object based on the map.
1556   Handle<JSModule> module =
1557       Handle<JSModule>::cast(NewJSObjectFromMap(map, TENURED));
1558   module->set_context(*context);
1559   module->set_scope_info(*scope_info);
1560   return module;
1561 }
1562
1563
1564 Handle<GlobalObject> Factory::NewGlobalObject(Handle<JSFunction> constructor) {
1565   DCHECK(constructor->has_initial_map());
1566   Handle<Map> map(constructor->initial_map());
1567   DCHECK(map->is_dictionary_map());
1568
1569   // Make sure no field properties are described in the initial map.
1570   // This guarantees us that normalizing the properties does not
1571   // require us to change property values to PropertyCells.
1572   DCHECK(map->NextFreePropertyIndex() == 0);
1573
1574   // Make sure we don't have a ton of pre-allocated slots in the
1575   // global objects. They will be unused once we normalize the object.
1576   DCHECK(map->unused_property_fields() == 0);
1577   DCHECK(map->inobject_properties() == 0);
1578
1579   // Initial size of the backing store to avoid resize of the storage during
1580   // bootstrapping. The size differs between the JS global object ad the
1581   // builtins object.
1582   int initial_size = map->instance_type() == JS_GLOBAL_OBJECT_TYPE ? 64 : 512;
1583
1584   // Allocate a dictionary object for backing storage.
1585   int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size;
1586   Handle<NameDictionary> dictionary =
1587       NameDictionary::New(isolate(), at_least_space_for);
1588
1589   // The global object might be created from an object template with accessors.
1590   // Fill these accessors into the dictionary.
1591   Handle<DescriptorArray> descs(map->instance_descriptors());
1592   for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
1593     PropertyDetails details = descs->GetDetails(i);
1594     DCHECK(details.type() == CALLBACKS);  // Only accessors are expected.
1595     PropertyDetails d = PropertyDetails(details.attributes(), CALLBACKS, i + 1);
1596     Handle<Name> name(descs->GetKey(i));
1597     Handle<Object> value(descs->GetCallbacksObject(i), isolate());
1598     Handle<PropertyCell> cell = NewPropertyCell(value);
1599     // |dictionary| already contains enough space for all properties.
1600     USE(NameDictionary::Add(dictionary, name, cell, d));
1601   }
1602
1603   // Allocate the global object and initialize it with the backing store.
1604   Handle<GlobalObject> global = New<GlobalObject>(map, OLD_POINTER_SPACE);
1605   isolate()->heap()->InitializeJSObjectFromMap(*global, *dictionary, *map);
1606
1607   // Create a new map for the global object.
1608   Handle<Map> new_map = Map::CopyDropDescriptors(map);
1609   new_map->set_dictionary_map(true);
1610
1611   // Set up the global object as a normalized object.
1612   global->set_map(*new_map);
1613   global->set_properties(*dictionary);
1614
1615   // Make sure result is a global object with properties in dictionary.
1616   DCHECK(global->IsGlobalObject() && !global->HasFastProperties());
1617   return global;
1618 }
1619
1620
1621 Handle<JSObject> Factory::NewJSObjectFromMap(
1622     Handle<Map> map,
1623     PretenureFlag pretenure,
1624     bool alloc_props,
1625     Handle<AllocationSite> allocation_site) {
1626   CALL_HEAP_FUNCTION(
1627       isolate(),
1628       isolate()->heap()->AllocateJSObjectFromMap(
1629           *map,
1630           pretenure,
1631           alloc_props,
1632           allocation_site.is_null() ? NULL : *allocation_site),
1633       JSObject);
1634 }
1635
1636
1637 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
1638                                     PretenureFlag pretenure) {
1639   Context* native_context = isolate()->context()->native_context();
1640   JSFunction* array_function = native_context->array_function();
1641   Map* map = array_function->initial_map();
1642   Map* transition_map = isolate()->get_initial_js_array_map(elements_kind);
1643   if (transition_map != NULL) map = transition_map;
1644   return Handle<JSArray>::cast(NewJSObjectFromMap(handle(map), pretenure));
1645 }
1646
1647
1648 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
1649                                     int length,
1650                                     int capacity,
1651                                     ArrayStorageAllocationMode mode,
1652                                     PretenureFlag pretenure) {
1653   Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
1654   NewJSArrayStorage(array, length, capacity, mode);
1655   return array;
1656 }
1657
1658
1659 Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements,
1660                                                 ElementsKind elements_kind,
1661                                                 int length,
1662                                                 PretenureFlag pretenure) {
1663   DCHECK(length <= elements->length());
1664   Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
1665
1666   array->set_elements(*elements);
1667   array->set_length(Smi::FromInt(length));
1668   JSObject::ValidateElements(array);
1669   return array;
1670 }
1671
1672
1673 void Factory::NewJSArrayStorage(Handle<JSArray> array,
1674                                 int length,
1675                                 int capacity,
1676                                 ArrayStorageAllocationMode mode) {
1677   DCHECK(capacity >= length);
1678
1679   if (capacity == 0) {
1680     array->set_length(Smi::FromInt(0));
1681     array->set_elements(*empty_fixed_array());
1682     return;
1683   }
1684
1685   Handle<FixedArrayBase> elms;
1686   ElementsKind elements_kind = array->GetElementsKind();
1687   if (IsFastDoubleElementsKind(elements_kind)) {
1688     if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
1689       elms = NewFixedDoubleArray(capacity);
1690     } else {
1691       DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1692       elms = NewFixedDoubleArrayWithHoles(capacity);
1693     }
1694   } else {
1695     DCHECK(IsFastSmiOrObjectElementsKind(elements_kind));
1696     if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
1697       elms = NewUninitializedFixedArray(capacity);
1698     } else {
1699       DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1700       elms = NewFixedArrayWithHoles(capacity);
1701     }
1702   }
1703
1704   array->set_elements(*elms);
1705   array->set_length(Smi::FromInt(length));
1706 }
1707
1708
1709 Handle<JSGeneratorObject> Factory::NewJSGeneratorObject(
1710     Handle<JSFunction> function) {
1711   DCHECK(function->shared()->is_generator());
1712   JSFunction::EnsureHasInitialMap(function);
1713   Handle<Map> map(function->initial_map());
1714   DCHECK(map->instance_type() == JS_GENERATOR_OBJECT_TYPE);
1715   CALL_HEAP_FUNCTION(
1716       isolate(),
1717       isolate()->heap()->AllocateJSObjectFromMap(*map),
1718       JSGeneratorObject);
1719 }
1720
1721
1722 Handle<JSArrayBuffer> Factory::NewJSArrayBuffer() {
1723   Handle<JSFunction> array_buffer_fun(
1724       isolate()->native_context()->array_buffer_fun());
1725   CALL_HEAP_FUNCTION(
1726       isolate(),
1727       isolate()->heap()->AllocateJSObject(*array_buffer_fun),
1728       JSArrayBuffer);
1729 }
1730
1731
1732 Handle<JSDataView> Factory::NewJSDataView() {
1733   Handle<JSFunction> data_view_fun(
1734       isolate()->native_context()->data_view_fun());
1735   CALL_HEAP_FUNCTION(
1736       isolate(),
1737       isolate()->heap()->AllocateJSObject(*data_view_fun),
1738       JSDataView);
1739 }
1740
1741
1742 static JSFunction* GetTypedArrayFun(ExternalArrayType type,
1743                                     Isolate* isolate) {
1744   Context* native_context = isolate->context()->native_context();
1745   switch (type) {
1746 #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size)                        \
1747     case kExternal##Type##Array:                                              \
1748       return native_context->type##_array_fun();
1749
1750     TYPED_ARRAYS(TYPED_ARRAY_FUN)
1751 #undef TYPED_ARRAY_FUN
1752
1753     default:
1754       UNREACHABLE();
1755       return NULL;
1756   }
1757 }
1758
1759
1760 Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type) {
1761   Handle<JSFunction> typed_array_fun_handle(GetTypedArrayFun(type, isolate()));
1762
1763   CALL_HEAP_FUNCTION(
1764       isolate(),
1765       isolate()->heap()->AllocateJSObject(*typed_array_fun_handle),
1766       JSTypedArray);
1767 }
1768
1769
1770 Handle<JSProxy> Factory::NewJSProxy(Handle<Object> handler,
1771                                     Handle<Object> prototype) {
1772   // Allocate map.
1773   // TODO(rossberg): Once we optimize proxies, think about a scheme to share
1774   // maps. Will probably depend on the identity of the handler object, too.
1775   Handle<Map> map = NewMap(JS_PROXY_TYPE, JSProxy::kSize);
1776   map->set_prototype(*prototype);
1777
1778   // Allocate the proxy object.
1779   Handle<JSProxy> result = New<JSProxy>(map, NEW_SPACE);
1780   result->InitializeBody(map->instance_size(), Smi::FromInt(0));
1781   result->set_handler(*handler);
1782   result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER);
1783   return result;
1784 }
1785
1786
1787 Handle<JSProxy> Factory::NewJSFunctionProxy(Handle<Object> handler,
1788                                             Handle<Object> call_trap,
1789                                             Handle<Object> construct_trap,
1790                                             Handle<Object> prototype) {
1791   // Allocate map.
1792   // TODO(rossberg): Once we optimize proxies, think about a scheme to share
1793   // maps. Will probably depend on the identity of the handler object, too.
1794   Handle<Map> map = NewMap(JS_FUNCTION_PROXY_TYPE, JSFunctionProxy::kSize);
1795   map->set_prototype(*prototype);
1796
1797   // Allocate the proxy object.
1798   Handle<JSFunctionProxy> result = New<JSFunctionProxy>(map, NEW_SPACE);
1799   result->InitializeBody(map->instance_size(), Smi::FromInt(0));
1800   result->set_handler(*handler);
1801   result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER);
1802   result->set_call_trap(*call_trap);
1803   result->set_construct_trap(*construct_trap);
1804   return result;
1805 }
1806
1807
1808 void Factory::ReinitializeJSProxy(Handle<JSProxy> proxy, InstanceType type,
1809                                   int size) {
1810   DCHECK(type == JS_OBJECT_TYPE || type == JS_FUNCTION_TYPE);
1811
1812   // Allocate fresh map.
1813   // TODO(rossberg): Once we optimize proxies, cache these maps.
1814   Handle<Map> map = NewMap(type, size);
1815
1816   // Check that the receiver has at least the size of the fresh object.
1817   int size_difference = proxy->map()->instance_size() - map->instance_size();
1818   DCHECK(size_difference >= 0);
1819
1820   map->set_prototype(proxy->map()->prototype());
1821
1822   // Allocate the backing storage for the properties.
1823   int prop_size = map->InitialPropertiesLength();
1824   Handle<FixedArray> properties = NewFixedArray(prop_size, TENURED);
1825
1826   Heap* heap = isolate()->heap();
1827   MaybeHandle<SharedFunctionInfo> shared;
1828   if (type == JS_FUNCTION_TYPE) {
1829     OneByteStringKey key(STATIC_CHAR_VECTOR("<freezing call trap>"),
1830                          heap->HashSeed());
1831     Handle<String> name = InternalizeStringWithKey(&key);
1832     shared = NewSharedFunctionInfo(name, MaybeHandle<Code>());
1833   }
1834
1835   // In order to keep heap in consistent state there must be no allocations
1836   // before object re-initialization is finished and filler object is installed.
1837   DisallowHeapAllocation no_allocation;
1838
1839   // Put in filler if the new object is smaller than the old.
1840   if (size_difference > 0) {
1841     Address address = proxy->address();
1842     heap->CreateFillerObjectAt(address + map->instance_size(), size_difference);
1843     heap->AdjustLiveBytes(address, -size_difference, Heap::FROM_MUTATOR);
1844   }
1845
1846   // Reset the map for the object.
1847   proxy->synchronized_set_map(*map);
1848   Handle<JSObject> jsobj = Handle<JSObject>::cast(proxy);
1849
1850   // Reinitialize the object from the constructor map.
1851   heap->InitializeJSObjectFromMap(*jsobj, *properties, *map);
1852
1853   // The current native context is used to set up certain bits.
1854   // TODO(adamk): Using the current context seems wrong, it should be whatever
1855   // context the JSProxy originated in. But that context isn't stored anywhere.
1856   Handle<Context> context(isolate()->native_context());
1857
1858   // Functions require some minimal initialization.
1859   if (type == JS_FUNCTION_TYPE) {
1860     map->set_function_with_prototype(true);
1861     Handle<JSFunction> js_function = Handle<JSFunction>::cast(proxy);
1862     InitializeFunction(js_function, shared.ToHandleChecked(), context);
1863   } else {
1864     // Provide JSObjects with a constructor.
1865     map->set_constructor(context->object_function());
1866   }
1867 }
1868
1869
1870 void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,
1871                                         Handle<JSFunction> constructor) {
1872   DCHECK(constructor->has_initial_map());
1873   Handle<Map> map(constructor->initial_map(), isolate());
1874
1875   // The proxy's hash should be retained across reinitialization.
1876   Handle<Object> hash(object->hash(), isolate());
1877
1878   // Check that the already allocated object has the same size and type as
1879   // objects allocated using the constructor.
1880   DCHECK(map->instance_size() == object->map()->instance_size());
1881   DCHECK(map->instance_type() == object->map()->instance_type());
1882
1883   // Allocate the backing storage for the properties.
1884   int prop_size = map->InitialPropertiesLength();
1885   Handle<FixedArray> properties = NewFixedArray(prop_size, TENURED);
1886
1887   // In order to keep heap in consistent state there must be no allocations
1888   // before object re-initialization is finished.
1889   DisallowHeapAllocation no_allocation;
1890
1891   // Reset the map for the object.
1892   object->synchronized_set_map(*map);
1893
1894   Heap* heap = isolate()->heap();
1895   // Reinitialize the object from the constructor map.
1896   heap->InitializeJSObjectFromMap(*object, *properties, *map);
1897
1898   // Restore the saved hash.
1899   object->set_hash(*hash);
1900 }
1901
1902
1903 void Factory::BecomeJSObject(Handle<JSProxy> proxy) {
1904   ReinitializeJSProxy(proxy, JS_OBJECT_TYPE, JSObject::kHeaderSize);
1905 }
1906
1907
1908 void Factory::BecomeJSFunction(Handle<JSProxy> proxy) {
1909   ReinitializeJSProxy(proxy, JS_FUNCTION_TYPE, JSFunction::kSize);
1910 }
1911
1912
1913 Handle<TypeFeedbackVector> Factory::NewTypeFeedbackVector(int slot_count) {
1914   // Ensure we can skip the write barrier
1915   DCHECK_EQ(isolate()->heap()->uninitialized_symbol(),
1916             *TypeFeedbackVector::UninitializedSentinel(isolate()));
1917
1918   if (slot_count == 0) {
1919     return Handle<TypeFeedbackVector>::cast(empty_fixed_array());
1920   }
1921
1922   CALL_HEAP_FUNCTION(isolate(),
1923                      isolate()->heap()->AllocateFixedArrayWithFiller(
1924                          slot_count, TENURED,
1925                          *TypeFeedbackVector::UninitializedSentinel(isolate())),
1926                      TypeFeedbackVector);
1927 }
1928
1929
1930 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
1931     Handle<String> name, int number_of_literals, FunctionKind kind,
1932     Handle<Code> code, Handle<ScopeInfo> scope_info,
1933     Handle<TypeFeedbackVector> feedback_vector) {
1934   DCHECK(IsValidFunctionKind(kind));
1935   Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(name, code);
1936   shared->set_scope_info(*scope_info);
1937   shared->set_feedback_vector(*feedback_vector);
1938   shared->set_kind(kind);
1939   int literals_array_size = number_of_literals;
1940   // If the function contains object, regexp or array literals,
1941   // allocate extra space for a literals array prefix containing the
1942   // context.
1943   if (number_of_literals > 0) {
1944     literals_array_size += JSFunction::kLiteralsPrefixSize;
1945   }
1946   shared->set_num_literals(literals_array_size);
1947   if (IsGeneratorFunction(kind)) {
1948     shared->set_instance_class_name(isolate()->heap()->Generator_string());
1949     shared->DisableOptimization(kGenerator);
1950   }
1951   return shared;
1952 }
1953
1954
1955 Handle<JSMessageObject> Factory::NewJSMessageObject(
1956     Handle<String> type,
1957     Handle<JSArray> arguments,
1958     int start_position,
1959     int end_position,
1960     Handle<Object> script,
1961     Handle<Object> stack_frames) {
1962   Handle<Map> map = message_object_map();
1963   Handle<JSMessageObject> message = New<JSMessageObject>(map, NEW_SPACE);
1964   message->set_properties(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1965   message->initialize_elements();
1966   message->set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1967   message->set_type(*type);
1968   message->set_arguments(*arguments);
1969   message->set_start_position(start_position);
1970   message->set_end_position(end_position);
1971   message->set_script(*script);
1972   message->set_stack_frames(*stack_frames);
1973   return message;
1974 }
1975
1976
1977 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
1978     Handle<String> name,
1979     MaybeHandle<Code> maybe_code) {
1980   Handle<Map> map = shared_function_info_map();
1981   Handle<SharedFunctionInfo> share = New<SharedFunctionInfo>(map,
1982                                                              OLD_POINTER_SPACE);
1983
1984   // Set pointer fields.
1985   share->set_name(*name);
1986   Handle<Code> code;
1987   if (!maybe_code.ToHandle(&code)) {
1988     code = handle(isolate()->builtins()->builtin(Builtins::kIllegal));
1989   }
1990   share->set_code(*code);
1991   share->set_optimized_code_map(Smi::FromInt(0));
1992   share->set_scope_info(ScopeInfo::Empty(isolate()));
1993   Code* construct_stub =
1994       isolate()->builtins()->builtin(Builtins::kJSConstructStubGeneric);
1995   share->set_construct_stub(construct_stub);
1996   share->set_instance_class_name(*Object_string());
1997   share->set_function_data(*undefined_value(), SKIP_WRITE_BARRIER);
1998   share->set_script(*undefined_value(), SKIP_WRITE_BARRIER);
1999   share->set_debug_info(*undefined_value(), SKIP_WRITE_BARRIER);
2000   share->set_inferred_name(*empty_string(), SKIP_WRITE_BARRIER);
2001   Handle<TypeFeedbackVector> feedback_vector = NewTypeFeedbackVector(0);
2002   share->set_feedback_vector(*feedback_vector, SKIP_WRITE_BARRIER);
2003   share->set_profiler_ticks(0);
2004   share->set_ast_node_count(0);
2005   share->set_counters(0);
2006
2007   // Set integer fields (smi or int, depending on the architecture).
2008   share->set_length(0);
2009   share->set_formal_parameter_count(0);
2010   share->set_expected_nof_properties(0);
2011   share->set_num_literals(0);
2012   share->set_start_position_and_type(0);
2013   share->set_end_position(0);
2014   share->set_function_token_position(0);
2015   // All compiler hints default to false or 0.
2016   share->set_compiler_hints(0);
2017   share->set_opt_count_and_bailout_reason(0);
2018
2019   return share;
2020 }
2021
2022
2023 static inline int NumberCacheHash(Handle<FixedArray> cache,
2024                                   Handle<Object> number) {
2025   int mask = (cache->length() >> 1) - 1;
2026   if (number->IsSmi()) {
2027     return Handle<Smi>::cast(number)->value() & mask;
2028   } else {
2029     DoubleRepresentation rep(number->Number());
2030     return
2031         (static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32)) & mask;
2032   }
2033 }
2034
2035
2036 Handle<Object> Factory::GetNumberStringCache(Handle<Object> number) {
2037   DisallowHeapAllocation no_gc;
2038   int hash = NumberCacheHash(number_string_cache(), number);
2039   Object* key = number_string_cache()->get(hash * 2);
2040   if (key == *number || (key->IsHeapNumber() && number->IsHeapNumber() &&
2041                          key->Number() == number->Number())) {
2042     return Handle<String>(
2043         String::cast(number_string_cache()->get(hash * 2 + 1)), isolate());
2044   }
2045   return undefined_value();
2046 }
2047
2048
2049 void Factory::SetNumberStringCache(Handle<Object> number,
2050                                    Handle<String> string) {
2051   int hash = NumberCacheHash(number_string_cache(), number);
2052   if (number_string_cache()->get(hash * 2) != *undefined_value()) {
2053     int full_size = isolate()->heap()->FullSizeNumberStringCacheLength();
2054     if (number_string_cache()->length() != full_size) {
2055       // The first time we have a hash collision, we move to the full sized
2056       // number string cache.  The idea is to have a small number string
2057       // cache in the snapshot to keep  boot-time memory usage down.
2058       // If we expand the number string cache already while creating
2059       // the snapshot then that didn't work out.
2060       DCHECK(!isolate()->serializer_enabled() || FLAG_extra_code != NULL);
2061       Handle<FixedArray> new_cache = NewFixedArray(full_size, TENURED);
2062       isolate()->heap()->set_number_string_cache(*new_cache);
2063       return;
2064     }
2065   }
2066   number_string_cache()->set(hash * 2, *number);
2067   number_string_cache()->set(hash * 2 + 1, *string);
2068 }
2069
2070
2071 Handle<String> Factory::NumberToString(Handle<Object> number,
2072                                        bool check_number_string_cache) {
2073   isolate()->counters()->number_to_string_runtime()->Increment();
2074   if (check_number_string_cache) {
2075     Handle<Object> cached = GetNumberStringCache(number);
2076     if (!cached->IsUndefined()) return Handle<String>::cast(cached);
2077   }
2078
2079   char arr[100];
2080   Vector<char> buffer(arr, arraysize(arr));
2081   const char* str;
2082   if (number->IsSmi()) {
2083     int num = Handle<Smi>::cast(number)->value();
2084     str = IntToCString(num, buffer);
2085   } else {
2086     double num = Handle<HeapNumber>::cast(number)->value();
2087     str = DoubleToCString(num, buffer);
2088   }
2089
2090   // We tenure the allocated string since it is referenced from the
2091   // number-string cache which lives in the old space.
2092   Handle<String> js_string = NewStringFromAsciiChecked(str, TENURED);
2093   SetNumberStringCache(number, js_string);
2094   return js_string;
2095 }
2096
2097
2098 Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) {
2099   // Get the original code of the function.
2100   Handle<Code> code(shared->code());
2101
2102   // Create a copy of the code before allocating the debug info object to avoid
2103   // allocation while setting up the debug info object.
2104   Handle<Code> original_code(*Factory::CopyCode(code));
2105
2106   // Allocate initial fixed array for active break points before allocating the
2107   // debug info object to avoid allocation while setting up the debug info
2108   // object.
2109   Handle<FixedArray> break_points(
2110       NewFixedArray(DebugInfo::kEstimatedNofBreakPointsInFunction));
2111
2112   // Create and set up the debug info object. Debug info contains function, a
2113   // copy of the original code, the executing code and initial fixed array for
2114   // active break points.
2115   Handle<DebugInfo> debug_info =
2116       Handle<DebugInfo>::cast(NewStruct(DEBUG_INFO_TYPE));
2117   debug_info->set_shared(*shared);
2118   debug_info->set_original_code(*original_code);
2119   debug_info->set_code(*code);
2120   debug_info->set_break_points(*break_points);
2121
2122   // Link debug info to function.
2123   shared->set_debug_info(*debug_info);
2124
2125   return debug_info;
2126 }
2127
2128
2129 Handle<JSObject> Factory::NewArgumentsObject(Handle<JSFunction> callee,
2130                                              int length) {
2131   bool strict_mode_callee = callee->shared()->strict_mode() == STRICT;
2132   Handle<Map> map = strict_mode_callee ? isolate()->strict_arguments_map()
2133                                        : isolate()->sloppy_arguments_map();
2134
2135   AllocationSiteUsageContext context(isolate(), Handle<AllocationSite>(),
2136                                      false);
2137   DCHECK(!isolate()->has_pending_exception());
2138   Handle<JSObject> result = NewJSObjectFromMap(map);
2139   Handle<Smi> value(Smi::FromInt(length), isolate());
2140   Object::SetProperty(result, length_string(), value, STRICT).Assert();
2141   if (!strict_mode_callee) {
2142     Object::SetProperty(result, callee_string(), callee, STRICT).Assert();
2143   }
2144   return result;
2145 }
2146
2147
2148 Handle<JSFunction> Factory::CreateApiFunction(
2149     Handle<FunctionTemplateInfo> obj,
2150     Handle<Object> prototype,
2151     ApiInstanceType instance_type) {
2152   Handle<Code> code = isolate()->builtins()->HandleApiCall();
2153   Handle<Code> construct_stub = isolate()->builtins()->JSConstructStubApi();
2154
2155   Handle<JSFunction> result;
2156   if (obj->remove_prototype()) {
2157     result = NewFunctionWithoutPrototype(empty_string(), code);
2158   } else {
2159     int internal_field_count = 0;
2160     if (!obj->instance_template()->IsUndefined()) {
2161       Handle<ObjectTemplateInfo> instance_template =
2162           Handle<ObjectTemplateInfo>(
2163               ObjectTemplateInfo::cast(obj->instance_template()));
2164       internal_field_count =
2165           Smi::cast(instance_template->internal_field_count())->value();
2166     }
2167
2168     // TODO(svenpanne) Kill ApiInstanceType and refactor things by generalizing
2169     // JSObject::GetHeaderSize.
2170     int instance_size = kPointerSize * internal_field_count;
2171     InstanceType type;
2172     switch (instance_type) {
2173       case JavaScriptObjectType:
2174         type = JS_OBJECT_TYPE;
2175         instance_size += JSObject::kHeaderSize;
2176         break;
2177       case GlobalObjectType:
2178         type = JS_GLOBAL_OBJECT_TYPE;
2179         instance_size += JSGlobalObject::kSize;
2180         break;
2181       case GlobalProxyType:
2182         type = JS_GLOBAL_PROXY_TYPE;
2183         instance_size += JSGlobalProxy::kSize;
2184         break;
2185       default:
2186         UNREACHABLE();
2187         type = JS_OBJECT_TYPE;  // Keep the compiler happy.
2188         break;
2189     }
2190
2191     result = NewFunction(empty_string(), code, prototype, type,
2192                          instance_size, obj->read_only_prototype());
2193   }
2194
2195   result->shared()->set_length(obj->length());
2196   Handle<Object> class_name(obj->class_name(), isolate());
2197   if (class_name->IsString()) {
2198     result->shared()->set_instance_class_name(*class_name);
2199     result->shared()->set_name(*class_name);
2200   }
2201   result->shared()->set_function_data(*obj);
2202   result->shared()->set_construct_stub(*construct_stub);
2203   result->shared()->DontAdaptArguments();
2204
2205   if (obj->remove_prototype()) {
2206     DCHECK(result->shared()->IsApiFunction());
2207     DCHECK(!result->has_initial_map());
2208     DCHECK(!result->has_prototype());
2209     return result;
2210   }
2211
2212   if (prototype->IsTheHole()) {
2213 #ifdef DEBUG
2214     LookupIterator it(handle(JSObject::cast(result->prototype())),
2215                       constructor_string(),
2216                       LookupIterator::OWN_SKIP_INTERCEPTOR);
2217     MaybeHandle<Object> maybe_prop = Object::GetProperty(&it);
2218     DCHECK(it.IsFound());
2219     DCHECK(maybe_prop.ToHandleChecked().is_identical_to(result));
2220 #endif
2221   } else {
2222     JSObject::AddProperty(handle(JSObject::cast(result->prototype())),
2223                           constructor_string(), result, DONT_ENUM);
2224   }
2225
2226   // Down from here is only valid for API functions that can be used as a
2227   // constructor (don't set the "remove prototype" flag).
2228
2229   Handle<Map> map(result->initial_map());
2230
2231   // Mark as undetectable if needed.
2232   if (obj->undetectable()) {
2233     map->set_is_undetectable();
2234   }
2235
2236   // Mark as hidden for the __proto__ accessor if needed.
2237   if (obj->hidden_prototype()) {
2238     map->set_is_hidden_prototype();
2239   }
2240
2241   // Mark as needs_access_check if needed.
2242   if (obj->needs_access_check()) {
2243     map->set_is_access_check_needed(true);
2244   }
2245
2246   // Set interceptor information in the map.
2247   if (!obj->named_property_handler()->IsUndefined()) {
2248     map->set_has_named_interceptor();
2249   }
2250   if (!obj->indexed_property_handler()->IsUndefined()) {
2251     map->set_has_indexed_interceptor();
2252   }
2253
2254   // Set instance call-as-function information in the map.
2255   if (!obj->instance_call_handler()->IsUndefined()) {
2256     map->set_has_instance_call_handler();
2257   }
2258
2259   // Recursively copy parent instance templates' accessors,
2260   // 'data' may be modified.
2261   int max_number_of_additional_properties = 0;
2262   int max_number_of_static_properties = 0;
2263   FunctionTemplateInfo* info = *obj;
2264   while (true) {
2265     if (!info->instance_template()->IsUndefined()) {
2266       Object* props =
2267           ObjectTemplateInfo::cast(
2268               info->instance_template())->property_accessors();
2269       if (!props->IsUndefined()) {
2270         Handle<Object> props_handle(props, isolate());
2271         NeanderArray props_array(props_handle);
2272         max_number_of_additional_properties += props_array.length();
2273       }
2274     }
2275     if (!info->property_accessors()->IsUndefined()) {
2276       Object* props = info->property_accessors();
2277       if (!props->IsUndefined()) {
2278         Handle<Object> props_handle(props, isolate());
2279         NeanderArray props_array(props_handle);
2280         max_number_of_static_properties += props_array.length();
2281       }
2282     }
2283     Object* parent = info->parent_template();
2284     if (parent->IsUndefined()) break;
2285     info = FunctionTemplateInfo::cast(parent);
2286   }
2287
2288   Map::EnsureDescriptorSlack(map, max_number_of_additional_properties);
2289
2290   // Use a temporary FixedArray to acculumate static accessors
2291   int valid_descriptors = 0;
2292   Handle<FixedArray> array;
2293   if (max_number_of_static_properties > 0) {
2294     array = NewFixedArray(max_number_of_static_properties);
2295   }
2296
2297   while (true) {
2298     // Install instance descriptors
2299     if (!obj->instance_template()->IsUndefined()) {
2300       Handle<ObjectTemplateInfo> instance =
2301           Handle<ObjectTemplateInfo>(
2302               ObjectTemplateInfo::cast(obj->instance_template()), isolate());
2303       Handle<Object> props = Handle<Object>(instance->property_accessors(),
2304                                             isolate());
2305       if (!props->IsUndefined()) {
2306         Map::AppendCallbackDescriptors(map, props);
2307       }
2308     }
2309     // Accumulate static accessors
2310     if (!obj->property_accessors()->IsUndefined()) {
2311       Handle<Object> props = Handle<Object>(obj->property_accessors(),
2312                                             isolate());
2313       valid_descriptors =
2314           AccessorInfo::AppendUnique(props, array, valid_descriptors);
2315     }
2316     // Climb parent chain
2317     Handle<Object> parent = Handle<Object>(obj->parent_template(), isolate());
2318     if (parent->IsUndefined()) break;
2319     obj = Handle<FunctionTemplateInfo>::cast(parent);
2320   }
2321
2322   // Install accumulated static accessors
2323   for (int i = 0; i < valid_descriptors; i++) {
2324     Handle<AccessorInfo> accessor(AccessorInfo::cast(array->get(i)));
2325     JSObject::SetAccessor(result, accessor).Assert();
2326   }
2327
2328   DCHECK(result->shared()->IsApiFunction());
2329   return result;
2330 }
2331
2332
2333 Handle<MapCache> Factory::AddToMapCache(Handle<Context> context,
2334                                         Handle<FixedArray> keys,
2335                                         Handle<Map> map) {
2336   Handle<MapCache> map_cache = handle(MapCache::cast(context->map_cache()));
2337   Handle<MapCache> result = MapCache::Put(map_cache, keys, map);
2338   context->set_map_cache(*result);
2339   return result;
2340 }
2341
2342
2343 Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<Context> context,
2344                                                Handle<FixedArray> keys) {
2345   if (context->map_cache()->IsUndefined()) {
2346     // Allocate the new map cache for the native context.
2347     Handle<MapCache> new_cache = MapCache::New(isolate(), 24);
2348     context->set_map_cache(*new_cache);
2349   }
2350   // Check to see whether there is a matching element in the cache.
2351   Handle<MapCache> cache =
2352       Handle<MapCache>(MapCache::cast(context->map_cache()));
2353   Handle<Object> result = Handle<Object>(cache->Lookup(*keys), isolate());
2354   if (result->IsMap()) return Handle<Map>::cast(result);
2355   int length = keys->length();
2356   // Create a new map and add it to the cache. Reuse the initial map of the
2357   // Object function if the literal has no predeclared properties.
2358   Handle<Map> map = length == 0
2359                         ? handle(context->object_function()->initial_map())
2360                         : Map::Create(isolate(), length);
2361   AddToMapCache(context, keys, map);
2362   return map;
2363 }
2364
2365
2366 void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp,
2367                                 JSRegExp::Type type,
2368                                 Handle<String> source,
2369                                 JSRegExp::Flags flags,
2370                                 Handle<Object> data) {
2371   Handle<FixedArray> store = NewFixedArray(JSRegExp::kAtomDataSize);
2372
2373   store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
2374   store->set(JSRegExp::kSourceIndex, *source);
2375   store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags.value()));
2376   store->set(JSRegExp::kAtomPatternIndex, *data);
2377   regexp->set_data(*store);
2378 }
2379
2380 void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp,
2381                                     JSRegExp::Type type,
2382                                     Handle<String> source,
2383                                     JSRegExp::Flags flags,
2384                                     int capture_count) {
2385   Handle<FixedArray> store = NewFixedArray(JSRegExp::kIrregexpDataSize);
2386   Smi* uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
2387   store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
2388   store->set(JSRegExp::kSourceIndex, *source);
2389   store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags.value()));
2390   store->set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized);
2391   store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
2392   store->set(JSRegExp::kIrregexpLatin1CodeSavedIndex, uninitialized);
2393   store->set(JSRegExp::kIrregexpUC16CodeSavedIndex, uninitialized);
2394   store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(0));
2395   store->set(JSRegExp::kIrregexpCaptureCountIndex,
2396              Smi::FromInt(capture_count));
2397   regexp->set_data(*store);
2398 }
2399
2400
2401
2402 MaybeHandle<FunctionTemplateInfo> Factory::ConfigureInstance(
2403     Handle<FunctionTemplateInfo> desc, Handle<JSObject> instance) {
2404   // Configure the instance by adding the properties specified by the
2405   // instance template.
2406   Handle<Object> instance_template(desc->instance_template(), isolate());
2407   if (!instance_template->IsUndefined()) {
2408       RETURN_ON_EXCEPTION(
2409           isolate(),
2410           Execution::ConfigureInstance(isolate(), instance, instance_template),
2411           FunctionTemplateInfo);
2412   }
2413   return desc;
2414 }
2415
2416
2417 Handle<Object> Factory::GlobalConstantFor(Handle<String> name) {
2418   if (String::Equals(name, undefined_string())) return undefined_value();
2419   if (String::Equals(name, nan_string())) return nan_value();
2420   if (String::Equals(name, infinity_string())) return infinity_value();
2421   return Handle<Object>::null();
2422 }
2423
2424
2425 Handle<Object> Factory::ToBoolean(bool value) {
2426   return value ? true_value() : false_value();
2427 }
2428
2429
2430 } }  // namespace v8::internal