Upstream version 10.39.225.0
[platform/framework/web/crosswalk.git] / src / v8 / src / execution.cc
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/execution.h"
6
7 #include "src/bootstrapper.h"
8 #include "src/codegen.h"
9 #include "src/deoptimizer.h"
10 #include "src/isolate-inl.h"
11 #include "src/vm-state-inl.h"
12
13 namespace v8 {
14 namespace internal {
15
16 StackGuard::StackGuard()
17     : isolate_(NULL) {
18 }
19
20
21 void StackGuard::set_interrupt_limits(const ExecutionAccess& lock) {
22   DCHECK(isolate_ != NULL);
23   thread_local_.jslimit_ = kInterruptLimit;
24   thread_local_.climit_ = kInterruptLimit;
25   isolate_->heap()->SetStackLimits();
26 }
27
28
29 void StackGuard::reset_limits(const ExecutionAccess& lock) {
30   DCHECK(isolate_ != NULL);
31   thread_local_.jslimit_ = thread_local_.real_jslimit_;
32   thread_local_.climit_ = thread_local_.real_climit_;
33   isolate_->heap()->SetStackLimits();
34 }
35
36
37 MUST_USE_RESULT static MaybeHandle<Object> Invoke(
38     bool is_construct,
39     Handle<JSFunction> function,
40     Handle<Object> receiver,
41     int argc,
42     Handle<Object> args[]) {
43   Isolate* isolate = function->GetIsolate();
44
45   // Entering JavaScript.
46   VMState<JS> state(isolate);
47   CHECK(AllowJavascriptExecution::IsAllowed(isolate));
48   if (!ThrowOnJavascriptExecution::IsAllowed(isolate)) {
49     isolate->ThrowIllegalOperation();
50     isolate->ReportPendingMessages();
51     return MaybeHandle<Object>();
52   }
53
54   // Placeholder for return value.
55   Object* value = NULL;
56
57   typedef Object* (*JSEntryFunction)(byte* entry,
58                                      Object* function,
59                                      Object* receiver,
60                                      int argc,
61                                      Object*** args);
62
63   Handle<Code> code = is_construct
64       ? isolate->factory()->js_construct_entry_code()
65       : isolate->factory()->js_entry_code();
66
67   // Convert calls on global objects to be calls on the global
68   // receiver instead to avoid having a 'this' pointer which refers
69   // directly to a global object.
70   if (receiver->IsGlobalObject()) {
71     receiver = handle(Handle<GlobalObject>::cast(receiver)->global_proxy());
72   }
73
74   // Make sure that the global object of the context we're about to
75   // make the current one is indeed a global object.
76   DCHECK(function->context()->global_object()->IsGlobalObject());
77
78   {
79     // Save and restore context around invocation and block the
80     // allocation of handles without explicit handle scopes.
81     SaveContext save(isolate);
82     SealHandleScope shs(isolate);
83     JSEntryFunction stub_entry = FUNCTION_CAST<JSEntryFunction>(code->entry());
84
85     // Call the function through the right JS entry stub.
86     byte* function_entry = function->code()->entry();
87     JSFunction* func = *function;
88     Object* recv = *receiver;
89     Object*** argv = reinterpret_cast<Object***>(args);
90     value =
91         CALL_GENERATED_CODE(stub_entry, function_entry, func, recv, argc, argv);
92   }
93
94 #ifdef VERIFY_HEAP
95   value->ObjectVerify();
96 #endif
97
98   // Update the pending exception flag and return the value.
99   bool has_exception = value->IsException();
100   DCHECK(has_exception == isolate->has_pending_exception());
101   if (has_exception) {
102     isolate->ReportPendingMessages();
103     // Reset stepping state when script exits with uncaught exception.
104     if (isolate->debug()->is_active()) {
105       isolate->debug()->ClearStepping();
106     }
107     return MaybeHandle<Object>();
108   } else {
109     isolate->clear_pending_message();
110   }
111
112   return Handle<Object>(value, isolate);
113 }
114
115
116 MaybeHandle<Object> Execution::Call(Isolate* isolate,
117                                     Handle<Object> callable,
118                                     Handle<Object> receiver,
119                                     int argc,
120                                     Handle<Object> argv[],
121                                     bool convert_receiver) {
122   if (!callable->IsJSFunction()) {
123     ASSIGN_RETURN_ON_EXCEPTION(
124         isolate, callable, TryGetFunctionDelegate(isolate, callable), Object);
125   }
126   Handle<JSFunction> func = Handle<JSFunction>::cast(callable);
127
128   // In sloppy mode, convert receiver.
129   if (convert_receiver && !receiver->IsJSReceiver() &&
130       !func->shared()->native() &&
131       func->shared()->strict_mode() == SLOPPY) {
132     if (receiver->IsUndefined() || receiver->IsNull()) {
133       receiver = handle(func->global_proxy());
134       DCHECK(!receiver->IsJSBuiltinsObject());
135     } else {
136       ASSIGN_RETURN_ON_EXCEPTION(
137           isolate, receiver, ToObject(isolate, receiver), Object);
138     }
139   }
140
141   return Invoke(false, func, receiver, argc, argv);
142 }
143
144
145 MaybeHandle<Object> Execution::New(Handle<JSFunction> func,
146                                    int argc,
147                                    Handle<Object> argv[]) {
148   return Invoke(true, func, handle(func->global_proxy()), argc, argv);
149 }
150
151
152 MaybeHandle<Object> Execution::TryCall(Handle<JSFunction> func,
153                                        Handle<Object> receiver, int argc,
154                                        Handle<Object> args[],
155                                        MaybeHandle<Object>* exception_out) {
156   bool is_termination = false;
157   Isolate* isolate = func->GetIsolate();
158   MaybeHandle<Object> maybe_result;
159   if (exception_out != NULL) *exception_out = MaybeHandle<Object>();
160   // Enter a try-block while executing the JavaScript code. To avoid
161   // duplicate error printing it must be non-verbose.  Also, to avoid
162   // creating message objects during stack overflow we shouldn't
163   // capture messages.
164   {
165     v8::TryCatch catcher;
166     catcher.SetVerbose(false);
167     catcher.SetCaptureMessage(false);
168
169     maybe_result = Invoke(false, func, receiver, argc, args);
170
171     if (maybe_result.is_null()) {
172       DCHECK(catcher.HasCaught());
173       DCHECK(isolate->has_pending_exception());
174       DCHECK(isolate->external_caught_exception());
175       if (exception_out != NULL) {
176         if (isolate->pending_exception() ==
177             isolate->heap()->termination_exception()) {
178           is_termination = true;
179         } else {
180           *exception_out = v8::Utils::OpenHandle(*catcher.Exception());
181         }
182       }
183       isolate->OptionalRescheduleException(true);
184     }
185
186     DCHECK(!isolate->has_pending_exception());
187     DCHECK(!isolate->external_caught_exception());
188   }
189   if (is_termination) isolate->TerminateExecution();
190   return maybe_result;
191 }
192
193
194 Handle<Object> Execution::GetFunctionDelegate(Isolate* isolate,
195                                               Handle<Object> object) {
196   DCHECK(!object->IsJSFunction());
197   Factory* factory = isolate->factory();
198
199   // If you return a function from here, it will be called when an
200   // attempt is made to call the given object as a function.
201
202   // If object is a function proxy, get its handler. Iterate if necessary.
203   Object* fun = *object;
204   while (fun->IsJSFunctionProxy()) {
205     fun = JSFunctionProxy::cast(fun)->call_trap();
206   }
207   if (fun->IsJSFunction()) return Handle<Object>(fun, isolate);
208
209   // Objects created through the API can have an instance-call handler
210   // that should be used when calling the object as a function.
211   if (fun->IsHeapObject() &&
212       HeapObject::cast(fun)->map()->has_instance_call_handler()) {
213     return Handle<JSFunction>(
214         isolate->native_context()->call_as_function_delegate());
215   }
216
217   return factory->undefined_value();
218 }
219
220
221 MaybeHandle<Object> Execution::TryGetFunctionDelegate(Isolate* isolate,
222                                                       Handle<Object> object) {
223   DCHECK(!object->IsJSFunction());
224
225   // If object is a function proxy, get its handler. Iterate if necessary.
226   Object* fun = *object;
227   while (fun->IsJSFunctionProxy()) {
228     fun = JSFunctionProxy::cast(fun)->call_trap();
229   }
230   if (fun->IsJSFunction()) return Handle<Object>(fun, isolate);
231
232   // Objects created through the API can have an instance-call handler
233   // that should be used when calling the object as a function.
234   if (fun->IsHeapObject() &&
235       HeapObject::cast(fun)->map()->has_instance_call_handler()) {
236     return Handle<JSFunction>(
237         isolate->native_context()->call_as_function_delegate());
238   }
239
240   // If the Object doesn't have an instance-call handler we should
241   // throw a non-callable exception.
242   THROW_NEW_ERROR(isolate, NewTypeError("called_non_callable",
243                                         i::HandleVector<i::Object>(&object, 1)),
244                   Object);
245 }
246
247
248 Handle<Object> Execution::GetConstructorDelegate(Isolate* isolate,
249                                                  Handle<Object> object) {
250   DCHECK(!object->IsJSFunction());
251
252   // If you return a function from here, it will be called when an
253   // attempt is made to call the given object as a constructor.
254
255   // If object is a function proxies, get its handler. Iterate if necessary.
256   Object* fun = *object;
257   while (fun->IsJSFunctionProxy()) {
258     fun = JSFunctionProxy::cast(fun)->call_trap();
259   }
260   if (fun->IsJSFunction()) return Handle<Object>(fun, isolate);
261
262   // Objects created through the API can have an instance-call handler
263   // that should be used when calling the object as a function.
264   if (fun->IsHeapObject() &&
265       HeapObject::cast(fun)->map()->has_instance_call_handler()) {
266     return Handle<JSFunction>(
267         isolate->native_context()->call_as_constructor_delegate());
268   }
269
270   return isolate->factory()->undefined_value();
271 }
272
273
274 MaybeHandle<Object> Execution::TryGetConstructorDelegate(
275     Isolate* isolate, Handle<Object> object) {
276   DCHECK(!object->IsJSFunction());
277
278   // If you return a function from here, it will be called when an
279   // attempt is made to call the given object as a constructor.
280
281   // If object is a function proxies, get its handler. Iterate if necessary.
282   Object* fun = *object;
283   while (fun->IsJSFunctionProxy()) {
284     fun = JSFunctionProxy::cast(fun)->call_trap();
285   }
286   if (fun->IsJSFunction()) return Handle<Object>(fun, isolate);
287
288   // Objects created through the API can have an instance-call handler
289   // that should be used when calling the object as a function.
290   if (fun->IsHeapObject() &&
291       HeapObject::cast(fun)->map()->has_instance_call_handler()) {
292     return Handle<JSFunction>(
293         isolate->native_context()->call_as_constructor_delegate());
294   }
295
296   // If the Object doesn't have an instance-call handler we should
297   // throw a non-callable exception.
298   THROW_NEW_ERROR(isolate, NewTypeError("called_non_callable",
299                                         i::HandleVector<i::Object>(&object, 1)),
300                   Object);
301 }
302
303
304 void StackGuard::EnableInterrupts() {
305   ExecutionAccess access(isolate_);
306   if (has_pending_interrupts(access)) {
307     set_interrupt_limits(access);
308   }
309 }
310
311
312 void StackGuard::SetStackLimit(uintptr_t limit) {
313   ExecutionAccess access(isolate_);
314   // If the current limits are special (e.g. due to a pending interrupt) then
315   // leave them alone.
316   uintptr_t jslimit = SimulatorStack::JsLimitFromCLimit(isolate_, limit);
317   if (thread_local_.jslimit_ == thread_local_.real_jslimit_) {
318     thread_local_.jslimit_ = jslimit;
319   }
320   if (thread_local_.climit_ == thread_local_.real_climit_) {
321     thread_local_.climit_ = limit;
322   }
323   thread_local_.real_climit_ = limit;
324   thread_local_.real_jslimit_ = jslimit;
325 }
326
327
328 void StackGuard::DisableInterrupts() {
329   ExecutionAccess access(isolate_);
330   reset_limits(access);
331 }
332
333
334 void StackGuard::PushPostponeInterruptsScope(PostponeInterruptsScope* scope) {
335   ExecutionAccess access(isolate_);
336   // Intercept already requested interrupts.
337   int intercepted = thread_local_.interrupt_flags_ & scope->intercept_mask_;
338   scope->intercepted_flags_ = intercepted;
339   thread_local_.interrupt_flags_ &= ~intercepted;
340   if (!has_pending_interrupts(access)) reset_limits(access);
341   // Add scope to the chain.
342   scope->prev_ = thread_local_.postpone_interrupts_;
343   thread_local_.postpone_interrupts_ = scope;
344 }
345
346
347 void StackGuard::PopPostponeInterruptsScope() {
348   ExecutionAccess access(isolate_);
349   PostponeInterruptsScope* top = thread_local_.postpone_interrupts_;
350   // Make intercepted interrupts active.
351   DCHECK((thread_local_.interrupt_flags_ & top->intercept_mask_) == 0);
352   thread_local_.interrupt_flags_ |= top->intercepted_flags_;
353   if (has_pending_interrupts(access)) set_interrupt_limits(access);
354   // Remove scope from chain.
355   thread_local_.postpone_interrupts_ = top->prev_;
356 }
357
358
359 bool StackGuard::CheckInterrupt(InterruptFlag flag) {
360   ExecutionAccess access(isolate_);
361   return thread_local_.interrupt_flags_ & flag;
362 }
363
364
365 void StackGuard::RequestInterrupt(InterruptFlag flag) {
366   ExecutionAccess access(isolate_);
367   // Check the chain of PostponeInterruptsScopes for interception.
368   if (thread_local_.postpone_interrupts_ &&
369       thread_local_.postpone_interrupts_->Intercept(flag)) {
370     return;
371   }
372
373   // Not intercepted.  Set as active interrupt flag.
374   thread_local_.interrupt_flags_ |= flag;
375   set_interrupt_limits(access);
376 }
377
378
379 void StackGuard::ClearInterrupt(InterruptFlag flag) {
380   ExecutionAccess access(isolate_);
381   // Clear the interrupt flag from the chain of PostponeInterruptsScopes.
382   for (PostponeInterruptsScope* current = thread_local_.postpone_interrupts_;
383        current != NULL;
384        current = current->prev_) {
385     current->intercepted_flags_ &= ~flag;
386   }
387
388   // Clear the interrupt flag from the active interrupt flags.
389   thread_local_.interrupt_flags_ &= ~flag;
390   if (!has_pending_interrupts(access)) reset_limits(access);
391 }
392
393
394 bool StackGuard::CheckAndClearInterrupt(InterruptFlag flag) {
395   ExecutionAccess access(isolate_);
396   bool result = (thread_local_.interrupt_flags_ & flag);
397   thread_local_.interrupt_flags_ &= ~flag;
398   if (!has_pending_interrupts(access)) reset_limits(access);
399   return result;
400 }
401
402
403 char* StackGuard::ArchiveStackGuard(char* to) {
404   ExecutionAccess access(isolate_);
405   MemCopy(to, reinterpret_cast<char*>(&thread_local_), sizeof(ThreadLocal));
406   ThreadLocal blank;
407
408   // Set the stack limits using the old thread_local_.
409   // TODO(isolates): This was the old semantics of constructing a ThreadLocal
410   //                 (as the ctor called SetStackLimits, which looked at the
411   //                 current thread_local_ from StackGuard)-- but is this
412   //                 really what was intended?
413   isolate_->heap()->SetStackLimits();
414   thread_local_ = blank;
415
416   return to + sizeof(ThreadLocal);
417 }
418
419
420 char* StackGuard::RestoreStackGuard(char* from) {
421   ExecutionAccess access(isolate_);
422   MemCopy(reinterpret_cast<char*>(&thread_local_), from, sizeof(ThreadLocal));
423   isolate_->heap()->SetStackLimits();
424   return from + sizeof(ThreadLocal);
425 }
426
427
428 void StackGuard::FreeThreadResources() {
429   Isolate::PerIsolateThreadData* per_thread =
430       isolate_->FindOrAllocatePerThreadDataForThisThread();
431   per_thread->set_stack_limit(thread_local_.real_climit_);
432 }
433
434
435 void StackGuard::ThreadLocal::Clear() {
436   real_jslimit_ = kIllegalLimit;
437   jslimit_ = kIllegalLimit;
438   real_climit_ = kIllegalLimit;
439   climit_ = kIllegalLimit;
440   postpone_interrupts_ = NULL;
441   interrupt_flags_ = 0;
442 }
443
444
445 bool StackGuard::ThreadLocal::Initialize(Isolate* isolate) {
446   bool should_set_stack_limits = false;
447   if (real_climit_ == kIllegalLimit) {
448     const uintptr_t kLimitSize = FLAG_stack_size * KB;
449     DCHECK(GetCurrentStackPosition() > kLimitSize);
450     uintptr_t limit = GetCurrentStackPosition() - kLimitSize;
451     real_jslimit_ = SimulatorStack::JsLimitFromCLimit(isolate, limit);
452     jslimit_ = SimulatorStack::JsLimitFromCLimit(isolate, limit);
453     real_climit_ = limit;
454     climit_ = limit;
455     should_set_stack_limits = true;
456   }
457   postpone_interrupts_ = NULL;
458   interrupt_flags_ = 0;
459   return should_set_stack_limits;
460 }
461
462
463 void StackGuard::ClearThread(const ExecutionAccess& lock) {
464   thread_local_.Clear();
465   isolate_->heap()->SetStackLimits();
466 }
467
468
469 void StackGuard::InitThread(const ExecutionAccess& lock) {
470   if (thread_local_.Initialize(isolate_)) isolate_->heap()->SetStackLimits();
471   Isolate::PerIsolateThreadData* per_thread =
472       isolate_->FindOrAllocatePerThreadDataForThisThread();
473   uintptr_t stored_limit = per_thread->stack_limit();
474   // You should hold the ExecutionAccess lock when you call this.
475   if (stored_limit != 0) {
476     SetStackLimit(stored_limit);
477   }
478 }
479
480
481 // --- C a l l s   t o   n a t i v e s ---
482
483 #define RETURN_NATIVE_CALL(name, args)                                  \
484   do {                                                                  \
485     Handle<Object> argv[] = args;                                       \
486     return Call(isolate,                                                \
487                 isolate->name##_fun(),                                  \
488                 isolate->js_builtins_object(),                          \
489                 arraysize(argv), argv);                                \
490   } while (false)
491
492
493 MaybeHandle<Object> Execution::ToNumber(
494     Isolate* isolate, Handle<Object> obj) {
495   RETURN_NATIVE_CALL(to_number, { obj });
496 }
497
498
499 MaybeHandle<Object> Execution::ToString(
500     Isolate* isolate, Handle<Object> obj) {
501   RETURN_NATIVE_CALL(to_string, { obj });
502 }
503
504
505 MaybeHandle<Object> Execution::ToDetailString(
506     Isolate* isolate, Handle<Object> obj) {
507   RETURN_NATIVE_CALL(to_detail_string, { obj });
508 }
509
510
511 MaybeHandle<Object> Execution::ToObject(
512     Isolate* isolate, Handle<Object> obj) {
513   if (obj->IsSpecObject()) return obj;
514   RETURN_NATIVE_CALL(to_object, { obj });
515 }
516
517
518 MaybeHandle<Object> Execution::ToInteger(
519     Isolate* isolate, Handle<Object> obj) {
520   RETURN_NATIVE_CALL(to_integer, { obj });
521 }
522
523
524 MaybeHandle<Object> Execution::ToUint32(
525     Isolate* isolate, Handle<Object> obj) {
526   RETURN_NATIVE_CALL(to_uint32, { obj });
527 }
528
529
530 MaybeHandle<Object> Execution::ToInt32(
531     Isolate* isolate, Handle<Object> obj) {
532   RETURN_NATIVE_CALL(to_int32, { obj });
533 }
534
535
536 MaybeHandle<Object> Execution::NewDate(Isolate* isolate, double time) {
537   Handle<Object> time_obj = isolate->factory()->NewNumber(time);
538   RETURN_NATIVE_CALL(create_date, { time_obj });
539 }
540
541
542 #undef RETURN_NATIVE_CALL
543
544
545 MaybeHandle<JSRegExp> Execution::NewJSRegExp(Handle<String> pattern,
546                                              Handle<String> flags) {
547   Isolate* isolate = pattern->GetIsolate();
548   Handle<JSFunction> function = Handle<JSFunction>(
549       isolate->native_context()->regexp_function());
550   Handle<Object> re_obj;
551   ASSIGN_RETURN_ON_EXCEPTION(
552       isolate, re_obj,
553       RegExpImpl::CreateRegExpLiteral(function, pattern, flags),
554       JSRegExp);
555   return Handle<JSRegExp>::cast(re_obj);
556 }
557
558
559 Handle<Object> Execution::CharAt(Handle<String> string, uint32_t index) {
560   Isolate* isolate = string->GetIsolate();
561   Factory* factory = isolate->factory();
562
563   int int_index = static_cast<int>(index);
564   if (int_index < 0 || int_index >= string->length()) {
565     return factory->undefined_value();
566   }
567
568   Handle<Object> char_at = Object::GetProperty(
569       isolate->js_builtins_object(),
570       factory->char_at_string()).ToHandleChecked();
571   if (!char_at->IsJSFunction()) {
572     return factory->undefined_value();
573   }
574
575   Handle<Object> index_object = factory->NewNumberFromInt(int_index);
576   Handle<Object> index_arg[] = { index_object };
577   Handle<Object> result;
578   if (!TryCall(Handle<JSFunction>::cast(char_at),
579                string,
580                arraysize(index_arg),
581                index_arg).ToHandle(&result)) {
582     return factory->undefined_value();
583   }
584   return result;
585 }
586
587
588 MaybeHandle<JSFunction> Execution::InstantiateFunction(
589     Handle<FunctionTemplateInfo> data) {
590   Isolate* isolate = data->GetIsolate();
591   if (!data->do_not_cache()) {
592     // Fast case: see if the function has already been instantiated
593     int serial_number = Smi::cast(data->serial_number())->value();
594     Handle<JSObject> cache(isolate->native_context()->function_cache());
595     Handle<Object> elm =
596         Object::GetElement(isolate, cache, serial_number).ToHandleChecked();
597     if (elm->IsJSFunction()) return Handle<JSFunction>::cast(elm);
598   }
599   // The function has not yet been instantiated in this context; do it.
600   Handle<Object> args[] = { data };
601   Handle<Object> result;
602   ASSIGN_RETURN_ON_EXCEPTION(
603       isolate, result,
604       Call(isolate,
605            isolate->instantiate_fun(),
606            isolate->js_builtins_object(),
607            arraysize(args),
608            args),
609       JSFunction);
610   return Handle<JSFunction>::cast(result);
611 }
612
613
614 MaybeHandle<JSObject> Execution::InstantiateObject(
615     Handle<ObjectTemplateInfo> data) {
616   Isolate* isolate = data->GetIsolate();
617   Handle<Object> result;
618   if (data->property_list()->IsUndefined() &&
619       !data->constructor()->IsUndefined()) {
620     Handle<FunctionTemplateInfo> cons_template =
621         Handle<FunctionTemplateInfo>(
622             FunctionTemplateInfo::cast(data->constructor()));
623     Handle<JSFunction> cons;
624     ASSIGN_RETURN_ON_EXCEPTION(
625         isolate, cons, InstantiateFunction(cons_template), JSObject);
626     ASSIGN_RETURN_ON_EXCEPTION(isolate, result, New(cons, 0, NULL), JSObject);
627   } else {
628     Handle<Object> args[] = { data };
629     ASSIGN_RETURN_ON_EXCEPTION(
630         isolate, result,
631         Call(isolate,
632              isolate->instantiate_fun(),
633              isolate->js_builtins_object(),
634              arraysize(args),
635              args),
636         JSObject);
637   }
638   return Handle<JSObject>::cast(result);
639 }
640
641
642 MaybeHandle<Object> Execution::ConfigureInstance(
643     Isolate* isolate,
644     Handle<Object> instance,
645     Handle<Object> instance_template) {
646   Handle<Object> args[] = { instance, instance_template };
647   return Execution::Call(isolate,
648                          isolate->configure_instance_fun(),
649                          isolate->js_builtins_object(),
650                          arraysize(args),
651                          args);
652 }
653
654
655 Handle<String> Execution::GetStackTraceLine(Handle<Object> recv,
656                                             Handle<JSFunction> fun,
657                                             Handle<Object> pos,
658                                             Handle<Object> is_global) {
659   Isolate* isolate = fun->GetIsolate();
660   Handle<Object> args[] = { recv, fun, pos, is_global };
661   MaybeHandle<Object> maybe_result =
662       TryCall(isolate->get_stack_trace_line_fun(),
663               isolate->js_builtins_object(),
664               arraysize(args),
665               args);
666   Handle<Object> result;
667   if (!maybe_result.ToHandle(&result) || !result->IsString()) {
668     return isolate->factory()->empty_string();
669   }
670
671   return Handle<String>::cast(result);
672 }
673
674
675 Object* StackGuard::HandleInterrupts() {
676   if (CheckAndClearInterrupt(GC_REQUEST)) {
677     isolate_->heap()->CollectAllGarbage(Heap::kNoGCFlags, "GC interrupt");
678   }
679
680   if (CheckDebugBreak() || CheckDebugCommand()) {
681     isolate_->debug()->HandleDebugBreak();
682   }
683
684   if (CheckAndClearInterrupt(TERMINATE_EXECUTION)) {
685     return isolate_->TerminateExecution();
686   }
687
688   if (CheckAndClearInterrupt(DEOPT_MARKED_ALLOCATION_SITES)) {
689     isolate_->heap()->DeoptMarkedAllocationSites();
690   }
691
692   if (CheckAndClearInterrupt(INSTALL_CODE)) {
693     DCHECK(isolate_->concurrent_recompilation_enabled());
694     isolate_->optimizing_compiler_thread()->InstallOptimizedFunctions();
695   }
696
697   if (CheckAndClearInterrupt(API_INTERRUPT)) {
698     // Callback must be invoked outside of ExecusionAccess lock.
699     isolate_->InvokeApiInterruptCallback();
700   }
701
702   isolate_->counters()->stack_interrupts()->Increment();
703   isolate_->counters()->runtime_profiler_ticks()->Increment();
704   isolate_->runtime_profiler()->OptimizeNow();
705
706   return isolate_->heap()->undefined_value();
707 }
708
709 } }  // namespace v8::internal