Update To 11.40.268.0
[platform/framework/web/crosswalk.git] / src / v8 / src / elements.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #include "src/arguments.h"
8 #include "src/conversions.h"
9 #include "src/elements.h"
10 #include "src/objects.h"
11 #include "src/utils.h"
12
13 // Each concrete ElementsAccessor can handle exactly one ElementsKind,
14 // several abstract ElementsAccessor classes are used to allow sharing
15 // common code.
16 //
17 // Inheritance hierarchy:
18 // - ElementsAccessorBase                        (abstract)
19 //   - FastElementsAccessor                      (abstract)
20 //     - FastSmiOrObjectElementsAccessor
21 //       - FastPackedSmiElementsAccessor
22 //       - FastHoleySmiElementsAccessor
23 //       - FastPackedObjectElementsAccessor
24 //       - FastHoleyObjectElementsAccessor
25 //     - FastDoubleElementsAccessor
26 //       - FastPackedDoubleElementsAccessor
27 //       - FastHoleyDoubleElementsAccessor
28 //   - TypedElementsAccessor: template, with instantiations:
29 //     - ExternalInt8ElementsAccessor
30 //     - ExternalUint8ElementsAccessor
31 //     - ExternalInt16ElementsAccessor
32 //     - ExternalUint16ElementsAccessor
33 //     - ExternalInt32ElementsAccessor
34 //     - ExternalUint32ElementsAccessor
35 //     - ExternalFloat32ElementsAccessor
36 //     - ExternalFloat64ElementsAccessor
37 //     - ExternalUint8ClampedElementsAccessor
38 //     - FixedUint8ElementsAccessor
39 //     - FixedInt8ElementsAccessor
40 //     - FixedUint16ElementsAccessor
41 //     - FixedInt16ElementsAccessor
42 //     - FixedUint32ElementsAccessor
43 //     - FixedInt32ElementsAccessor
44 //     - FixedFloat32ElementsAccessor
45 //     - FixedFloat64ElementsAccessor
46 //     - FixedUint8ClampedElementsAccessor
47 //   - DictionaryElementsAccessor
48 //   - SloppyArgumentsElementsAccessor
49
50
51 namespace v8 {
52 namespace internal {
53
54
55 static const int kPackedSizeNotKnown = -1;
56
57
58 // First argument in list is the accessor class, the second argument is the
59 // accessor ElementsKind, and the third is the backing store class.  Use the
60 // fast element handler for smi-only arrays.  The implementation is currently
61 // identical.  Note that the order must match that of the ElementsKind enum for
62 // the |accessor_array[]| below to work.
63 #define ELEMENTS_LIST(V)                                                \
64   V(FastPackedSmiElementsAccessor, FAST_SMI_ELEMENTS, FixedArray)       \
65   V(FastHoleySmiElementsAccessor, FAST_HOLEY_SMI_ELEMENTS,              \
66     FixedArray)                                                         \
67   V(FastPackedObjectElementsAccessor, FAST_ELEMENTS, FixedArray)        \
68   V(FastHoleyObjectElementsAccessor, FAST_HOLEY_ELEMENTS, FixedArray)   \
69   V(FastPackedDoubleElementsAccessor, FAST_DOUBLE_ELEMENTS,             \
70     FixedDoubleArray)                                                   \
71   V(FastHoleyDoubleElementsAccessor, FAST_HOLEY_DOUBLE_ELEMENTS,        \
72     FixedDoubleArray)                                                   \
73   V(DictionaryElementsAccessor, DICTIONARY_ELEMENTS,                    \
74     SeededNumberDictionary)                                             \
75   V(SloppyArgumentsElementsAccessor, SLOPPY_ARGUMENTS_ELEMENTS,         \
76     FixedArray)                                                         \
77   V(ExternalInt8ElementsAccessor, EXTERNAL_INT8_ELEMENTS,               \
78     ExternalInt8Array)                                                  \
79   V(ExternalUint8ElementsAccessor,                                      \
80     EXTERNAL_UINT8_ELEMENTS, ExternalUint8Array)                        \
81   V(ExternalInt16ElementsAccessor, EXTERNAL_INT16_ELEMENTS,             \
82     ExternalInt16Array)                                                 \
83   V(ExternalUint16ElementsAccessor,                                     \
84     EXTERNAL_UINT16_ELEMENTS, ExternalUint16Array)                      \
85   V(ExternalInt32ElementsAccessor, EXTERNAL_INT32_ELEMENTS,             \
86     ExternalInt32Array)                                                 \
87   V(ExternalUint32ElementsAccessor,                                     \
88     EXTERNAL_UINT32_ELEMENTS, ExternalUint32Array)                      \
89   V(ExternalFloat32ElementsAccessor,                                    \
90     EXTERNAL_FLOAT32_ELEMENTS, ExternalFloat32Array)                    \
91   V(ExternalFloat64ElementsAccessor,                                    \
92     EXTERNAL_FLOAT64_ELEMENTS, ExternalFloat64Array)                    \
93   V(ExternalUint8ClampedElementsAccessor,                               \
94     EXTERNAL_UINT8_CLAMPED_ELEMENTS,                                    \
95     ExternalUint8ClampedArray)                                          \
96   V(FixedUint8ElementsAccessor, UINT8_ELEMENTS, FixedUint8Array)        \
97   V(FixedInt8ElementsAccessor, INT8_ELEMENTS, FixedInt8Array)           \
98   V(FixedUint16ElementsAccessor, UINT16_ELEMENTS, FixedUint16Array)     \
99   V(FixedInt16ElementsAccessor, INT16_ELEMENTS, FixedInt16Array)        \
100   V(FixedUint32ElementsAccessor, UINT32_ELEMENTS, FixedUint32Array)     \
101   V(FixedInt32ElementsAccessor, INT32_ELEMENTS, FixedInt32Array)        \
102   V(FixedFloat32ElementsAccessor, FLOAT32_ELEMENTS, FixedFloat32Array)  \
103   V(FixedFloat64ElementsAccessor, FLOAT64_ELEMENTS, FixedFloat64Array)  \
104   V(FixedUint8ClampedElementsAccessor, UINT8_CLAMPED_ELEMENTS,          \
105     FixedUint8ClampedArray)
106
107
108 template<ElementsKind Kind> class ElementsKindTraits {
109  public:
110   typedef FixedArrayBase BackingStore;
111 };
112
113 #define ELEMENTS_TRAITS(Class, KindParam, Store)               \
114 template<> class ElementsKindTraits<KindParam> {               \
115  public:   /* NOLINT */                                        \
116   static const ElementsKind Kind = KindParam;                  \
117   typedef Store BackingStore;                                  \
118 };
119 ELEMENTS_LIST(ELEMENTS_TRAITS)
120 #undef ELEMENTS_TRAITS
121
122
123 ElementsAccessor** ElementsAccessor::elements_accessors_ = NULL;
124
125
126 static bool HasKey(Handle<FixedArray> array, Handle<Object> key_handle) {
127   DisallowHeapAllocation no_gc;
128   Object* key = *key_handle;
129   int len0 = array->length();
130   for (int i = 0; i < len0; i++) {
131     Object* element = array->get(i);
132     if (element->IsSmi() && element == key) return true;
133     if (element->IsString() &&
134         key->IsString() && String::cast(element)->Equals(String::cast(key))) {
135       return true;
136     }
137   }
138   return false;
139 }
140
141
142 MUST_USE_RESULT
143 static MaybeHandle<Object> ThrowArrayLengthRangeError(Isolate* isolate) {
144   THROW_NEW_ERROR(isolate, NewRangeError("invalid_array_length",
145                                          HandleVector<Object>(NULL, 0)),
146                   Object);
147 }
148
149
150 static void CopyObjectToObjectElements(FixedArrayBase* from_base,
151                                        ElementsKind from_kind,
152                                        uint32_t from_start,
153                                        FixedArrayBase* to_base,
154                                        ElementsKind to_kind, uint32_t to_start,
155                                        int raw_copy_size) {
156   DCHECK(to_base->map() !=
157       from_base->GetIsolate()->heap()->fixed_cow_array_map());
158   DisallowHeapAllocation no_allocation;
159   int copy_size = raw_copy_size;
160   if (raw_copy_size < 0) {
161     DCHECK(raw_copy_size == ElementsAccessor::kCopyToEnd ||
162            raw_copy_size == ElementsAccessor::kCopyToEndAndInitializeToHole);
163     copy_size = Min(from_base->length() - from_start,
164                     to_base->length() - to_start);
165     if (raw_copy_size == ElementsAccessor::kCopyToEndAndInitializeToHole) {
166       int start = to_start + copy_size;
167       int length = to_base->length() - start;
168       if (length > 0) {
169         Heap* heap = from_base->GetHeap();
170         MemsetPointer(FixedArray::cast(to_base)->data_start() + start,
171                       heap->the_hole_value(), length);
172       }
173     }
174   }
175   DCHECK((copy_size + static_cast<int>(to_start)) <= to_base->length() &&
176          (copy_size + static_cast<int>(from_start)) <= from_base->length());
177   if (copy_size == 0) return;
178   FixedArray* from = FixedArray::cast(from_base);
179   FixedArray* to = FixedArray::cast(to_base);
180   DCHECK(IsFastSmiOrObjectElementsKind(from_kind));
181   DCHECK(IsFastSmiOrObjectElementsKind(to_kind));
182   Address to_address = to->address() + FixedArray::kHeaderSize;
183   Address from_address = from->address() + FixedArray::kHeaderSize;
184   CopyWords(reinterpret_cast<Object**>(to_address) + to_start,
185             reinterpret_cast<Object**>(from_address) + from_start,
186             static_cast<size_t>(copy_size));
187   if (IsFastObjectElementsKind(from_kind) &&
188       IsFastObjectElementsKind(to_kind)) {
189     Heap* heap = from->GetHeap();
190     if (!heap->InNewSpace(to)) {
191       heap->RecordWrites(to->address(),
192                          to->OffsetOfElementAt(to_start),
193                          copy_size);
194     }
195     heap->incremental_marking()->RecordWrites(to);
196   }
197 }
198
199
200 static void CopyDictionaryToObjectElements(
201     FixedArrayBase* from_base, uint32_t from_start, FixedArrayBase* to_base,
202     ElementsKind to_kind, uint32_t to_start, int raw_copy_size) {
203   DisallowHeapAllocation no_allocation;
204   SeededNumberDictionary* from = SeededNumberDictionary::cast(from_base);
205   int copy_size = raw_copy_size;
206   Heap* heap = from->GetHeap();
207   if (raw_copy_size < 0) {
208     DCHECK(raw_copy_size == ElementsAccessor::kCopyToEnd ||
209            raw_copy_size == ElementsAccessor::kCopyToEndAndInitializeToHole);
210     copy_size = from->max_number_key() + 1 - from_start;
211     if (raw_copy_size == ElementsAccessor::kCopyToEndAndInitializeToHole) {
212       int start = to_start + copy_size;
213       int length = to_base->length() - start;
214       if (length > 0) {
215         Heap* heap = from->GetHeap();
216         MemsetPointer(FixedArray::cast(to_base)->data_start() + start,
217                       heap->the_hole_value(), length);
218       }
219     }
220   }
221   DCHECK(to_base != from_base);
222   DCHECK(IsFastSmiOrObjectElementsKind(to_kind));
223   if (copy_size == 0) return;
224   FixedArray* to = FixedArray::cast(to_base);
225   uint32_t to_length = to->length();
226   if (to_start + copy_size > to_length) {
227     copy_size = to_length - to_start;
228   }
229   for (int i = 0; i < copy_size; i++) {
230     int entry = from->FindEntry(i + from_start);
231     if (entry != SeededNumberDictionary::kNotFound) {
232       Object* value = from->ValueAt(entry);
233       DCHECK(!value->IsTheHole());
234       to->set(i + to_start, value, SKIP_WRITE_BARRIER);
235     } else {
236       to->set_the_hole(i + to_start);
237     }
238   }
239   if (IsFastObjectElementsKind(to_kind)) {
240     if (!heap->InNewSpace(to)) {
241       heap->RecordWrites(to->address(),
242                          to->OffsetOfElementAt(to_start),
243                          copy_size);
244     }
245     heap->incremental_marking()->RecordWrites(to);
246   }
247 }
248
249
250 // NOTE: this method violates the handlified function signature convention:
251 // raw pointer parameters in the function that allocates.
252 // See ElementsAccessorBase::CopyElements() for details.
253 static void CopyDoubleToObjectElements(FixedArrayBase* from_base,
254                                        uint32_t from_start,
255                                        FixedArrayBase* to_base,
256                                        ElementsKind to_kind, uint32_t to_start,
257                                        int raw_copy_size) {
258   DCHECK(IsFastSmiOrObjectElementsKind(to_kind));
259   int copy_size = raw_copy_size;
260   if (raw_copy_size < 0) {
261     DisallowHeapAllocation no_allocation;
262     DCHECK(raw_copy_size == ElementsAccessor::kCopyToEnd ||
263            raw_copy_size == ElementsAccessor::kCopyToEndAndInitializeToHole);
264     copy_size = Min(from_base->length() - from_start,
265                     to_base->length() - to_start);
266     if (raw_copy_size == ElementsAccessor::kCopyToEndAndInitializeToHole) {
267       // Also initialize the area that will be copied over since HeapNumber
268       // allocation below can cause an incremental marking step, requiring all
269       // existing heap objects to be propertly initialized.
270       int start = to_start;
271       int length = to_base->length() - start;
272       if (length > 0) {
273         Heap* heap = from_base->GetHeap();
274         MemsetPointer(FixedArray::cast(to_base)->data_start() + start,
275                       heap->the_hole_value(), length);
276       }
277     }
278   }
279   DCHECK((copy_size + static_cast<int>(to_start)) <= to_base->length() &&
280          (copy_size + static_cast<int>(from_start)) <= from_base->length());
281   if (copy_size == 0) return;
282
283   // From here on, the code below could actually allocate. Therefore the raw
284   // values are wrapped into handles.
285   Isolate* isolate = from_base->GetIsolate();
286   Handle<FixedDoubleArray> from(FixedDoubleArray::cast(from_base), isolate);
287   Handle<FixedArray> to(FixedArray::cast(to_base), isolate);
288   for (int i = 0; i < copy_size; ++i) {
289     HandleScope scope(isolate);
290     if (IsFastSmiElementsKind(to_kind)) {
291       UNIMPLEMENTED();
292     } else {
293       DCHECK(IsFastObjectElementsKind(to_kind));
294       Handle<Object> value = FixedDoubleArray::get(from, i + from_start);
295       to->set(i + to_start, *value, UPDATE_WRITE_BARRIER);
296     }
297   }
298 }
299
300
301 static void CopyDoubleToDoubleElements(FixedArrayBase* from_base,
302                                        uint32_t from_start,
303                                        FixedArrayBase* to_base,
304                                        uint32_t to_start, int raw_copy_size) {
305   DisallowHeapAllocation no_allocation;
306   int copy_size = raw_copy_size;
307   if (raw_copy_size < 0) {
308     DCHECK(raw_copy_size == ElementsAccessor::kCopyToEnd ||
309            raw_copy_size == ElementsAccessor::kCopyToEndAndInitializeToHole);
310     copy_size = Min(from_base->length() - from_start,
311                     to_base->length() - to_start);
312     if (raw_copy_size == ElementsAccessor::kCopyToEndAndInitializeToHole) {
313       for (int i = to_start + copy_size; i < to_base->length(); ++i) {
314         FixedDoubleArray::cast(to_base)->set_the_hole(i);
315       }
316     }
317   }
318   DCHECK((copy_size + static_cast<int>(to_start)) <= to_base->length() &&
319          (copy_size + static_cast<int>(from_start)) <= from_base->length());
320   if (copy_size == 0) return;
321   FixedDoubleArray* from = FixedDoubleArray::cast(from_base);
322   FixedDoubleArray* to = FixedDoubleArray::cast(to_base);
323   Address to_address = to->address() + FixedDoubleArray::kHeaderSize;
324   Address from_address = from->address() + FixedDoubleArray::kHeaderSize;
325   to_address += kDoubleSize * to_start;
326   from_address += kDoubleSize * from_start;
327   int words_per_double = (kDoubleSize / kPointerSize);
328   CopyWords(reinterpret_cast<Object**>(to_address),
329             reinterpret_cast<Object**>(from_address),
330             static_cast<size_t>(words_per_double * copy_size));
331 }
332
333
334 static void CopySmiToDoubleElements(FixedArrayBase* from_base,
335                                     uint32_t from_start,
336                                     FixedArrayBase* to_base, uint32_t to_start,
337                                     int raw_copy_size) {
338   DisallowHeapAllocation no_allocation;
339   int copy_size = raw_copy_size;
340   if (raw_copy_size < 0) {
341     DCHECK(raw_copy_size == ElementsAccessor::kCopyToEnd ||
342            raw_copy_size == ElementsAccessor::kCopyToEndAndInitializeToHole);
343     copy_size = from_base->length() - from_start;
344     if (raw_copy_size == ElementsAccessor::kCopyToEndAndInitializeToHole) {
345       for (int i = to_start + copy_size; i < to_base->length(); ++i) {
346         FixedDoubleArray::cast(to_base)->set_the_hole(i);
347       }
348     }
349   }
350   DCHECK((copy_size + static_cast<int>(to_start)) <= to_base->length() &&
351          (copy_size + static_cast<int>(from_start)) <= from_base->length());
352   if (copy_size == 0) return;
353   FixedArray* from = FixedArray::cast(from_base);
354   FixedDoubleArray* to = FixedDoubleArray::cast(to_base);
355   Object* the_hole = from->GetHeap()->the_hole_value();
356   for (uint32_t from_end = from_start + static_cast<uint32_t>(copy_size);
357        from_start < from_end; from_start++, to_start++) {
358     Object* hole_or_smi = from->get(from_start);
359     if (hole_or_smi == the_hole) {
360       to->set_the_hole(to_start);
361     } else {
362       to->set(to_start, Smi::cast(hole_or_smi)->value());
363     }
364   }
365 }
366
367
368 static void CopyPackedSmiToDoubleElements(FixedArrayBase* from_base,
369                                           uint32_t from_start,
370                                           FixedArrayBase* to_base,
371                                           uint32_t to_start, int packed_size,
372                                           int raw_copy_size) {
373   DisallowHeapAllocation no_allocation;
374   int copy_size = raw_copy_size;
375   uint32_t to_end;
376   if (raw_copy_size < 0) {
377     DCHECK(raw_copy_size == ElementsAccessor::kCopyToEnd ||
378            raw_copy_size == ElementsAccessor::kCopyToEndAndInitializeToHole);
379     copy_size = packed_size - from_start;
380     if (raw_copy_size == ElementsAccessor::kCopyToEndAndInitializeToHole) {
381       to_end = to_base->length();
382       for (uint32_t i = to_start + copy_size; i < to_end; ++i) {
383         FixedDoubleArray::cast(to_base)->set_the_hole(i);
384       }
385     } else {
386       to_end = to_start + static_cast<uint32_t>(copy_size);
387     }
388   } else {
389     to_end = to_start + static_cast<uint32_t>(copy_size);
390   }
391   DCHECK(static_cast<int>(to_end) <= to_base->length());
392   DCHECK(packed_size >= 0 && packed_size <= copy_size);
393   DCHECK((copy_size + static_cast<int>(to_start)) <= to_base->length() &&
394          (copy_size + static_cast<int>(from_start)) <= from_base->length());
395   if (copy_size == 0) return;
396   FixedArray* from = FixedArray::cast(from_base);
397   FixedDoubleArray* to = FixedDoubleArray::cast(to_base);
398   for (uint32_t from_end = from_start + static_cast<uint32_t>(packed_size);
399        from_start < from_end; from_start++, to_start++) {
400     Object* smi = from->get(from_start);
401     DCHECK(!smi->IsTheHole());
402     to->set(to_start, Smi::cast(smi)->value());
403   }
404 }
405
406
407 static void CopyObjectToDoubleElements(FixedArrayBase* from_base,
408                                        uint32_t from_start,
409                                        FixedArrayBase* to_base,
410                                        uint32_t to_start, int raw_copy_size) {
411   DisallowHeapAllocation no_allocation;
412   int copy_size = raw_copy_size;
413   if (raw_copy_size < 0) {
414     DCHECK(raw_copy_size == ElementsAccessor::kCopyToEnd ||
415            raw_copy_size == ElementsAccessor::kCopyToEndAndInitializeToHole);
416     copy_size = from_base->length() - from_start;
417     if (raw_copy_size == ElementsAccessor::kCopyToEndAndInitializeToHole) {
418       for (int i = to_start + copy_size; i < to_base->length(); ++i) {
419         FixedDoubleArray::cast(to_base)->set_the_hole(i);
420       }
421     }
422   }
423   DCHECK((copy_size + static_cast<int>(to_start)) <= to_base->length() &&
424          (copy_size + static_cast<int>(from_start)) <= from_base->length());
425   if (copy_size == 0) return;
426   FixedArray* from = FixedArray::cast(from_base);
427   FixedDoubleArray* to = FixedDoubleArray::cast(to_base);
428   Object* the_hole = from->GetHeap()->the_hole_value();
429   for (uint32_t from_end = from_start + copy_size;
430        from_start < from_end; from_start++, to_start++) {
431     Object* hole_or_object = from->get(from_start);
432     if (hole_or_object == the_hole) {
433       to->set_the_hole(to_start);
434     } else {
435       to->set(to_start, hole_or_object->Number());
436     }
437   }
438 }
439
440
441 static void CopyDictionaryToDoubleElements(FixedArrayBase* from_base,
442                                            uint32_t from_start,
443                                            FixedArrayBase* to_base,
444                                            uint32_t to_start,
445                                            int raw_copy_size) {
446   DisallowHeapAllocation no_allocation;
447   SeededNumberDictionary* from = SeededNumberDictionary::cast(from_base);
448   int copy_size = raw_copy_size;
449   if (copy_size < 0) {
450     DCHECK(copy_size == ElementsAccessor::kCopyToEnd ||
451            copy_size == ElementsAccessor::kCopyToEndAndInitializeToHole);
452     copy_size = from->max_number_key() + 1 - from_start;
453     if (raw_copy_size == ElementsAccessor::kCopyToEndAndInitializeToHole) {
454       for (int i = to_start + copy_size; i < to_base->length(); ++i) {
455         FixedDoubleArray::cast(to_base)->set_the_hole(i);
456       }
457     }
458   }
459   if (copy_size == 0) return;
460   FixedDoubleArray* to = FixedDoubleArray::cast(to_base);
461   uint32_t to_length = to->length();
462   if (to_start + copy_size > to_length) {
463     copy_size = to_length - to_start;
464   }
465   for (int i = 0; i < copy_size; i++) {
466     int entry = from->FindEntry(i + from_start);
467     if (entry != SeededNumberDictionary::kNotFound) {
468       to->set(i + to_start, from->ValueAt(entry)->Number());
469     } else {
470       to->set_the_hole(i + to_start);
471     }
472   }
473 }
474
475
476 static void TraceTopFrame(Isolate* isolate) {
477   StackFrameIterator it(isolate);
478   if (it.done()) {
479     PrintF("unknown location (no JavaScript frames present)");
480     return;
481   }
482   StackFrame* raw_frame = it.frame();
483   if (raw_frame->is_internal()) {
484     Code* apply_builtin = isolate->builtins()->builtin(
485         Builtins::kFunctionApply);
486     if (raw_frame->unchecked_code() == apply_builtin) {
487       PrintF("apply from ");
488       it.Advance();
489       raw_frame = it.frame();
490     }
491   }
492   JavaScriptFrame::PrintTop(isolate, stdout, false, true);
493 }
494
495
496 void CheckArrayAbuse(Handle<JSObject> obj, const char* op, uint32_t key,
497                      bool allow_appending) {
498   DisallowHeapAllocation no_allocation;
499   Object* raw_length = NULL;
500   const char* elements_type = "array";
501   if (obj->IsJSArray()) {
502     JSArray* array = JSArray::cast(*obj);
503     raw_length = array->length();
504   } else {
505     raw_length = Smi::FromInt(obj->elements()->length());
506     elements_type = "object";
507   }
508
509   if (raw_length->IsNumber()) {
510     double n = raw_length->Number();
511     if (FastI2D(FastD2UI(n)) == n) {
512       int32_t int32_length = DoubleToInt32(n);
513       uint32_t compare_length = static_cast<uint32_t>(int32_length);
514       if (allow_appending) compare_length++;
515       if (key >= compare_length) {
516         PrintF("[OOB %s %s (%s length = %d, element accessed = %d) in ",
517                elements_type, op, elements_type,
518                static_cast<int>(int32_length),
519                static_cast<int>(key));
520         TraceTopFrame(obj->GetIsolate());
521         PrintF("]\n");
522       }
523     } else {
524       PrintF("[%s elements length not integer value in ", elements_type);
525       TraceTopFrame(obj->GetIsolate());
526       PrintF("]\n");
527     }
528   } else {
529     PrintF("[%s elements length not a number in ", elements_type);
530     TraceTopFrame(obj->GetIsolate());
531     PrintF("]\n");
532   }
533 }
534
535
536 // Base class for element handler implementations. Contains the
537 // the common logic for objects with different ElementsKinds.
538 // Subclasses must specialize method for which the element
539 // implementation differs from the base class implementation.
540 //
541 // This class is intended to be used in the following way:
542 //
543 //   class SomeElementsAccessor :
544 //       public ElementsAccessorBase<SomeElementsAccessor,
545 //                                   BackingStoreClass> {
546 //     ...
547 //   }
548 //
549 // This is an example of the Curiously Recurring Template Pattern (see
550 // http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern).  We use
551 // CRTP to guarantee aggressive compile time optimizations (i.e.  inlining and
552 // specialization of SomeElementsAccessor methods).
553 template <typename ElementsAccessorSubclass,
554           typename ElementsTraitsParam>
555 class ElementsAccessorBase : public ElementsAccessor {
556  protected:
557   explicit ElementsAccessorBase(const char* name)
558       : ElementsAccessor(name) { }
559
560   typedef ElementsTraitsParam ElementsTraits;
561   typedef typename ElementsTraitsParam::BackingStore BackingStore;
562
563   virtual ElementsKind kind() const FINAL OVERRIDE {
564     return ElementsTraits::Kind;
565   }
566
567   static void ValidateContents(Handle<JSObject> holder, int length) {
568   }
569
570   static void ValidateImpl(Handle<JSObject> holder) {
571     Handle<FixedArrayBase> fixed_array_base(holder->elements());
572     if (!fixed_array_base->IsHeapObject()) return;
573     // Arrays that have been shifted in place can't be verified.
574     if (fixed_array_base->IsFiller()) return;
575     int length = 0;
576     if (holder->IsJSArray()) {
577       Object* length_obj = Handle<JSArray>::cast(holder)->length();
578       if (length_obj->IsSmi()) {
579         length = Smi::cast(length_obj)->value();
580       }
581     } else {
582       length = fixed_array_base->length();
583     }
584     ElementsAccessorSubclass::ValidateContents(holder, length);
585   }
586
587   virtual void Validate(Handle<JSObject> holder) FINAL OVERRIDE {
588     DisallowHeapAllocation no_gc;
589     ElementsAccessorSubclass::ValidateImpl(holder);
590   }
591
592   static bool HasElementImpl(Handle<Object> receiver,
593                              Handle<JSObject> holder,
594                              uint32_t key,
595                              Handle<FixedArrayBase> backing_store) {
596     return ElementsAccessorSubclass::GetAttributesImpl(
597         receiver, holder, key, backing_store) != ABSENT;
598   }
599
600   virtual bool HasElement(
601       Handle<Object> receiver,
602       Handle<JSObject> holder,
603       uint32_t key,
604       Handle<FixedArrayBase> backing_store) FINAL OVERRIDE {
605     return ElementsAccessorSubclass::HasElementImpl(
606         receiver, holder, key, backing_store);
607   }
608
609   MUST_USE_RESULT virtual MaybeHandle<Object> Get(
610       Handle<Object> receiver,
611       Handle<JSObject> holder,
612       uint32_t key,
613       Handle<FixedArrayBase> backing_store) FINAL OVERRIDE {
614     if (!IsExternalArrayElementsKind(ElementsTraits::Kind) &&
615         FLAG_trace_js_array_abuse) {
616       CheckArrayAbuse(holder, "elements read", key);
617     }
618
619     if (IsExternalArrayElementsKind(ElementsTraits::Kind) &&
620         FLAG_trace_external_array_abuse) {
621       CheckArrayAbuse(holder, "external elements read", key);
622     }
623
624     return ElementsAccessorSubclass::GetImpl(
625         receiver, holder, key, backing_store);
626   }
627
628   MUST_USE_RESULT static MaybeHandle<Object> GetImpl(
629       Handle<Object> receiver,
630       Handle<JSObject> obj,
631       uint32_t key,
632       Handle<FixedArrayBase> backing_store) {
633     if (key < ElementsAccessorSubclass::GetCapacityImpl(backing_store)) {
634       return BackingStore::get(Handle<BackingStore>::cast(backing_store), key);
635     } else {
636       return backing_store->GetIsolate()->factory()->the_hole_value();
637     }
638   }
639
640   MUST_USE_RESULT virtual PropertyAttributes GetAttributes(
641       Handle<Object> receiver,
642       Handle<JSObject> holder,
643       uint32_t key,
644       Handle<FixedArrayBase> backing_store) FINAL OVERRIDE {
645     return ElementsAccessorSubclass::GetAttributesImpl(
646         receiver, holder, key, backing_store);
647   }
648
649   MUST_USE_RESULT static PropertyAttributes GetAttributesImpl(
650         Handle<Object> receiver,
651         Handle<JSObject> obj,
652         uint32_t key,
653         Handle<FixedArrayBase> backing_store) {
654     if (key >= ElementsAccessorSubclass::GetCapacityImpl(backing_store)) {
655       return ABSENT;
656     }
657     return
658         Handle<BackingStore>::cast(backing_store)->is_the_hole(key)
659           ? ABSENT : NONE;
660   }
661
662   MUST_USE_RESULT virtual MaybeHandle<AccessorPair> GetAccessorPair(
663       Handle<Object> receiver,
664       Handle<JSObject> holder,
665       uint32_t key,
666       Handle<FixedArrayBase> backing_store) FINAL OVERRIDE {
667     return ElementsAccessorSubclass::GetAccessorPairImpl(
668         receiver, holder, key, backing_store);
669   }
670
671   MUST_USE_RESULT static MaybeHandle<AccessorPair> GetAccessorPairImpl(
672       Handle<Object> receiver,
673       Handle<JSObject> obj,
674       uint32_t key,
675       Handle<FixedArrayBase> backing_store) {
676     return MaybeHandle<AccessorPair>();
677   }
678
679   MUST_USE_RESULT virtual MaybeHandle<Object> SetLength(
680       Handle<JSArray> array,
681       Handle<Object> length) FINAL OVERRIDE {
682     return ElementsAccessorSubclass::SetLengthImpl(
683         array, length, handle(array->elements()));
684   }
685
686   MUST_USE_RESULT static MaybeHandle<Object> SetLengthImpl(
687       Handle<JSObject> obj,
688       Handle<Object> length,
689       Handle<FixedArrayBase> backing_store);
690
691   virtual void SetCapacityAndLength(
692       Handle<JSArray> array,
693       int capacity,
694       int length) FINAL OVERRIDE {
695     ElementsAccessorSubclass::
696         SetFastElementsCapacityAndLength(array, capacity, length);
697   }
698
699   static void SetFastElementsCapacityAndLength(
700       Handle<JSObject> obj,
701       int capacity,
702       int length) {
703     UNIMPLEMENTED();
704   }
705
706   MUST_USE_RESULT virtual MaybeHandle<Object> Delete(
707       Handle<JSObject> obj,
708       uint32_t key,
709       JSReceiver::DeleteMode mode) OVERRIDE = 0;
710
711   static void CopyElementsImpl(FixedArrayBase* from, uint32_t from_start,
712                                FixedArrayBase* to, ElementsKind from_kind,
713                                uint32_t to_start, int packed_size,
714                                int copy_size) {
715     UNREACHABLE();
716   }
717
718   virtual void CopyElements(
719       Handle<FixedArrayBase> from,
720       uint32_t from_start,
721       ElementsKind from_kind,
722       Handle<FixedArrayBase> to,
723       uint32_t to_start,
724       int copy_size) FINAL OVERRIDE {
725     DCHECK(!from.is_null());
726     // NOTE: the ElementsAccessorSubclass::CopyElementsImpl() methods
727     // violate the handlified function signature convention:
728     // raw pointer parameters in the function that allocates. This is done
729     // intentionally to avoid ArrayConcat() builtin performance degradation.
730     // See the comment in another ElementsAccessorBase::CopyElements() for
731     // details.
732     ElementsAccessorSubclass::CopyElementsImpl(*from, from_start, *to,
733                                                from_kind, to_start,
734                                                kPackedSizeNotKnown, copy_size);
735   }
736
737   virtual void CopyElements(
738       JSObject* from_holder,
739       uint32_t from_start,
740       ElementsKind from_kind,
741       Handle<FixedArrayBase> to,
742       uint32_t to_start,
743       int copy_size) FINAL OVERRIDE {
744     int packed_size = kPackedSizeNotKnown;
745     bool is_packed = IsFastPackedElementsKind(from_kind) &&
746         from_holder->IsJSArray();
747     if (is_packed) {
748       packed_size =
749           Smi::cast(JSArray::cast(from_holder)->length())->value();
750       if (copy_size >= 0 && packed_size > copy_size) {
751         packed_size = copy_size;
752       }
753     }
754     FixedArrayBase* from = from_holder->elements();
755     // NOTE: the ElementsAccessorSubclass::CopyElementsImpl() methods
756     // violate the handlified function signature convention:
757     // raw pointer parameters in the function that allocates. This is done
758     // intentionally to avoid ArrayConcat() builtin performance degradation.
759     //
760     // Details: The idea is that allocations actually happen only in case of
761     // copying from object with fast double elements to object with object
762     // elements. In all the other cases there are no allocations performed and
763     // handle creation causes noticeable performance degradation of the builtin.
764     ElementsAccessorSubclass::CopyElementsImpl(
765         from, from_start, *to, from_kind, to_start, packed_size, copy_size);
766   }
767
768   virtual MaybeHandle<FixedArray> AddElementsToFixedArray(
769       Handle<Object> receiver,
770       Handle<JSObject> holder,
771       Handle<FixedArray> to,
772       Handle<FixedArrayBase> from) FINAL OVERRIDE {
773     int len0 = to->length();
774 #ifdef ENABLE_SLOW_DCHECKS
775     if (FLAG_enable_slow_asserts) {
776       for (int i = 0; i < len0; i++) {
777         DCHECK(!to->get(i)->IsTheHole());
778       }
779     }
780 #endif
781
782     // Optimize if 'other' is empty.
783     // We cannot optimize if 'this' is empty, as other may have holes.
784     uint32_t len1 = ElementsAccessorSubclass::GetCapacityImpl(from);
785     if (len1 == 0) return to;
786
787     Isolate* isolate = from->GetIsolate();
788
789     // Compute how many elements are not in other.
790     uint32_t extra = 0;
791     for (uint32_t y = 0; y < len1; y++) {
792       uint32_t key = ElementsAccessorSubclass::GetKeyForIndexImpl(from, y);
793       if (ElementsAccessorSubclass::HasElementImpl(
794               receiver, holder, key, from)) {
795         Handle<Object> value;
796         ASSIGN_RETURN_ON_EXCEPTION(
797             isolate, value,
798             ElementsAccessorSubclass::GetImpl(receiver, holder, key, from),
799             FixedArray);
800
801         DCHECK(!value->IsTheHole());
802         if (!HasKey(to, value)) {
803           extra++;
804         }
805       }
806     }
807
808     if (extra == 0) return to;
809
810     // Allocate the result
811     Handle<FixedArray> result = isolate->factory()->NewFixedArray(len0 + extra);
812
813     // Fill in the content
814     {
815       DisallowHeapAllocation no_gc;
816       WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
817       for (int i = 0; i < len0; i++) {
818         Object* e = to->get(i);
819         DCHECK(e->IsString() || e->IsNumber());
820         result->set(i, e, mode);
821       }
822     }
823     // Fill in the extra values.
824     uint32_t index = 0;
825     for (uint32_t y = 0; y < len1; y++) {
826       uint32_t key =
827           ElementsAccessorSubclass::GetKeyForIndexImpl(from, y);
828       if (ElementsAccessorSubclass::HasElementImpl(
829               receiver, holder, key, from)) {
830         Handle<Object> value;
831         ASSIGN_RETURN_ON_EXCEPTION(
832             isolate, value,
833             ElementsAccessorSubclass::GetImpl(receiver, holder, key, from),
834             FixedArray);
835         if (!value->IsTheHole() && !HasKey(to, value)) {
836           result->set(len0 + index, *value);
837           index++;
838         }
839       }
840     }
841     DCHECK(extra == index);
842     return result;
843   }
844
845  protected:
846   static uint32_t GetCapacityImpl(Handle<FixedArrayBase> backing_store) {
847     return backing_store->length();
848   }
849
850   virtual uint32_t GetCapacity(Handle<FixedArrayBase> backing_store)
851       FINAL OVERRIDE {
852     return ElementsAccessorSubclass::GetCapacityImpl(backing_store);
853   }
854
855   static uint32_t GetKeyForIndexImpl(Handle<FixedArrayBase> backing_store,
856                                      uint32_t index) {
857     return index;
858   }
859
860   virtual uint32_t GetKeyForIndex(Handle<FixedArrayBase> backing_store,
861                                   uint32_t index) FINAL OVERRIDE {
862     return ElementsAccessorSubclass::GetKeyForIndexImpl(backing_store, index);
863   }
864
865  private:
866   DISALLOW_COPY_AND_ASSIGN(ElementsAccessorBase);
867 };
868
869
870 // Super class for all fast element arrays.
871 template<typename FastElementsAccessorSubclass,
872          typename KindTraits>
873 class FastElementsAccessor
874     : public ElementsAccessorBase<FastElementsAccessorSubclass, KindTraits> {
875  public:
876   explicit FastElementsAccessor(const char* name)
877       : ElementsAccessorBase<FastElementsAccessorSubclass,
878                              KindTraits>(name) {}
879  protected:
880   friend class ElementsAccessorBase<FastElementsAccessorSubclass, KindTraits>;
881   friend class SloppyArgumentsElementsAccessor;
882
883   typedef typename KindTraits::BackingStore BackingStore;
884
885   // Adjusts the length of the fast backing store.
886   static Handle<Object> SetLengthWithoutNormalize(
887       Handle<FixedArrayBase> backing_store,
888       Handle<JSArray> array,
889       Handle<Object> length_object,
890       uint32_t length) {
891     Isolate* isolate = array->GetIsolate();
892     uint32_t old_capacity = backing_store->length();
893     Handle<Object> old_length(array->length(), isolate);
894     bool same_or_smaller_size = old_length->IsSmi() &&
895         static_cast<uint32_t>(Handle<Smi>::cast(old_length)->value()) >= length;
896     ElementsKind kind = array->GetElementsKind();
897
898     if (!same_or_smaller_size && IsFastElementsKind(kind) &&
899         !IsFastHoleyElementsKind(kind)) {
900       kind = GetHoleyElementsKind(kind);
901       JSObject::TransitionElementsKind(array, kind);
902     }
903
904     // Check whether the backing store should be shrunk.
905     if (length <= old_capacity) {
906       if (array->HasFastSmiOrObjectElements()) {
907         backing_store = JSObject::EnsureWritableFastElements(array);
908       }
909       if (2 * length <= old_capacity) {
910         // If more than half the elements won't be used, trim the array.
911         if (length == 0) {
912           array->initialize_elements();
913         } else {
914           isolate->heap()->RightTrimFixedArray<Heap::FROM_MUTATOR>(
915               *backing_store, old_capacity - length);
916         }
917       } else {
918         // Otherwise, fill the unused tail with holes.
919         int old_length = FastD2IChecked(array->length()->Number());
920         for (int i = length; i < old_length; i++) {
921           Handle<BackingStore>::cast(backing_store)->set_the_hole(i);
922         }
923       }
924       return length_object;
925     }
926
927     // Check whether the backing store should be expanded.
928     uint32_t min = JSObject::NewElementsCapacity(old_capacity);
929     uint32_t new_capacity = length > min ? length : min;
930     FastElementsAccessorSubclass::SetFastElementsCapacityAndLength(
931         array, new_capacity, length);
932     JSObject::ValidateElements(array);
933     return length_object;
934   }
935
936   static Handle<Object> DeleteCommon(Handle<JSObject> obj,
937                                      uint32_t key,
938                                      JSReceiver::DeleteMode mode) {
939     DCHECK(obj->HasFastSmiOrObjectElements() ||
940            obj->HasFastDoubleElements() ||
941            obj->HasFastArgumentsElements());
942     Isolate* isolate = obj->GetIsolate();
943     Heap* heap = obj->GetHeap();
944     Handle<FixedArrayBase> elements(obj->elements());
945     if (*elements == heap->empty_fixed_array()) {
946       return isolate->factory()->true_value();
947     }
948     Handle<BackingStore> backing_store = Handle<BackingStore>::cast(elements);
949     bool is_sloppy_arguments_elements_map =
950         backing_store->map() == heap->sloppy_arguments_elements_map();
951     if (is_sloppy_arguments_elements_map) {
952       backing_store = handle(
953           BackingStore::cast(Handle<FixedArray>::cast(backing_store)->get(1)),
954           isolate);
955     }
956     uint32_t length = static_cast<uint32_t>(
957         obj->IsJSArray()
958         ? Smi::cast(Handle<JSArray>::cast(obj)->length())->value()
959         : backing_store->length());
960     if (key < length) {
961       if (!is_sloppy_arguments_elements_map) {
962         ElementsKind kind = KindTraits::Kind;
963         if (IsFastPackedElementsKind(kind)) {
964           JSObject::TransitionElementsKind(obj, GetHoleyElementsKind(kind));
965         }
966         if (IsFastSmiOrObjectElementsKind(KindTraits::Kind)) {
967           Handle<Object> writable = JSObject::EnsureWritableFastElements(obj);
968           backing_store = Handle<BackingStore>::cast(writable);
969         }
970       }
971       backing_store->set_the_hole(key);
972       // If an old space backing store is larger than a certain size and
973       // has too few used values, normalize it.
974       // To avoid doing the check on every delete we require at least
975       // one adjacent hole to the value being deleted.
976       const int kMinLengthForSparsenessCheck = 64;
977       if (backing_store->length() >= kMinLengthForSparsenessCheck &&
978           !heap->InNewSpace(*backing_store) &&
979           ((key > 0 && backing_store->is_the_hole(key - 1)) ||
980            (key + 1 < length && backing_store->is_the_hole(key + 1)))) {
981         int num_used = 0;
982         for (int i = 0; i < backing_store->length(); ++i) {
983           if (!backing_store->is_the_hole(i)) ++num_used;
984           // Bail out early if more than 1/4 is used.
985           if (4 * num_used > backing_store->length()) break;
986         }
987         if (4 * num_used <= backing_store->length()) {
988           JSObject::NormalizeElements(obj);
989         }
990       }
991     }
992     return isolate->factory()->true_value();
993   }
994
995   virtual MaybeHandle<Object> Delete(
996       Handle<JSObject> obj,
997       uint32_t key,
998       JSReceiver::DeleteMode mode) FINAL OVERRIDE {
999     return DeleteCommon(obj, key, mode);
1000   }
1001
1002   static bool HasElementImpl(
1003       Handle<Object> receiver,
1004       Handle<JSObject> holder,
1005       uint32_t key,
1006       Handle<FixedArrayBase> backing_store) {
1007     if (key >= static_cast<uint32_t>(backing_store->length())) {
1008       return false;
1009     }
1010     return !Handle<BackingStore>::cast(backing_store)->is_the_hole(key);
1011   }
1012
1013   static void ValidateContents(Handle<JSObject> holder, int length) {
1014 #if DEBUG
1015     Isolate* isolate = holder->GetIsolate();
1016     HandleScope scope(isolate);
1017     Handle<FixedArrayBase> elements(holder->elements(), isolate);
1018     Map* map = elements->map();
1019     DCHECK((IsFastSmiOrObjectElementsKind(KindTraits::Kind) &&
1020             (map == isolate->heap()->fixed_array_map() ||
1021              map == isolate->heap()->fixed_cow_array_map())) ||
1022            (IsFastDoubleElementsKind(KindTraits::Kind) ==
1023             ((map == isolate->heap()->fixed_array_map() && length == 0) ||
1024              map == isolate->heap()->fixed_double_array_map())));
1025     DisallowHeapAllocation no_gc;
1026     for (int i = 0; i < length; i++) {
1027       HandleScope scope(isolate);
1028       Handle<BackingStore> backing_store = Handle<BackingStore>::cast(elements);
1029       DCHECK((!IsFastSmiElementsKind(KindTraits::Kind) ||
1030               BackingStore::get(backing_store, i)->IsSmi()) ||
1031              (IsFastHoleyElementsKind(KindTraits::Kind) ==
1032               backing_store->is_the_hole(i)));
1033     }
1034 #endif
1035   }
1036 };
1037
1038
1039 static inline ElementsKind ElementsKindForArray(FixedArrayBase* array) {
1040   switch (array->map()->instance_type()) {
1041     case FIXED_ARRAY_TYPE:
1042       if (array->IsDictionary()) {
1043         return DICTIONARY_ELEMENTS;
1044       } else {
1045         return FAST_HOLEY_ELEMENTS;
1046       }
1047     case FIXED_DOUBLE_ARRAY_TYPE:
1048       return FAST_HOLEY_DOUBLE_ELEMENTS;
1049
1050 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size)                       \
1051     case EXTERNAL_##TYPE##_ARRAY_TYPE:                                        \
1052       return EXTERNAL_##TYPE##_ELEMENTS;                                      \
1053     case FIXED_##TYPE##_ARRAY_TYPE:                                           \
1054       return TYPE##_ELEMENTS;
1055
1056     TYPED_ARRAYS(TYPED_ARRAY_CASE)
1057 #undef TYPED_ARRAY_CASE
1058
1059     default:
1060       UNREACHABLE();
1061   }
1062   return FAST_HOLEY_ELEMENTS;
1063 }
1064
1065
1066 template<typename FastElementsAccessorSubclass,
1067          typename KindTraits>
1068 class FastSmiOrObjectElementsAccessor
1069     : public FastElementsAccessor<FastElementsAccessorSubclass, KindTraits> {
1070  public:
1071   explicit FastSmiOrObjectElementsAccessor(const char* name)
1072       : FastElementsAccessor<FastElementsAccessorSubclass,
1073                              KindTraits>(name) {}
1074
1075   // NOTE: this method violates the handlified function signature convention:
1076   // raw pointer parameters in the function that allocates.
1077   // See ElementsAccessor::CopyElements() for details.
1078   // This method could actually allocate if copying from double elements to
1079   // object elements.
1080   static void CopyElementsImpl(FixedArrayBase* from, uint32_t from_start,
1081                                FixedArrayBase* to, ElementsKind from_kind,
1082                                uint32_t to_start, int packed_size,
1083                                int copy_size) {
1084     DisallowHeapAllocation no_gc;
1085     ElementsKind to_kind = KindTraits::Kind;
1086     switch (from_kind) {
1087       case FAST_SMI_ELEMENTS:
1088       case FAST_HOLEY_SMI_ELEMENTS:
1089       case FAST_ELEMENTS:
1090       case FAST_HOLEY_ELEMENTS:
1091         CopyObjectToObjectElements(from, from_kind, from_start, to, to_kind,
1092                                    to_start, copy_size);
1093         break;
1094       case FAST_DOUBLE_ELEMENTS:
1095       case FAST_HOLEY_DOUBLE_ELEMENTS: {
1096         AllowHeapAllocation allow_allocation;
1097         CopyDoubleToObjectElements(
1098             from, from_start, to, to_kind, to_start, copy_size);
1099         break;
1100       }
1101       case DICTIONARY_ELEMENTS:
1102         CopyDictionaryToObjectElements(from, from_start, to, to_kind, to_start,
1103                                        copy_size);
1104         break;
1105       case SLOPPY_ARGUMENTS_ELEMENTS: {
1106         // TODO(verwaest): This is a temporary hack to support extending
1107         // SLOPPY_ARGUMENTS_ELEMENTS in SetFastElementsCapacityAndLength.
1108         // This case should be UNREACHABLE().
1109         FixedArray* parameter_map = FixedArray::cast(from);
1110         FixedArrayBase* arguments = FixedArrayBase::cast(parameter_map->get(1));
1111         ElementsKind from_kind = ElementsKindForArray(arguments);
1112         CopyElementsImpl(arguments, from_start, to, from_kind,
1113                          to_start, packed_size, copy_size);
1114         break;
1115       }
1116 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size)                       \
1117       case EXTERNAL_##TYPE##_ELEMENTS:                                        \
1118       case TYPE##_ELEMENTS:                                                   \
1119         UNREACHABLE();
1120       TYPED_ARRAYS(TYPED_ARRAY_CASE)
1121 #undef TYPED_ARRAY_CASE
1122     }
1123   }
1124
1125
1126   static void SetFastElementsCapacityAndLength(
1127       Handle<JSObject> obj,
1128       uint32_t capacity,
1129       uint32_t length) {
1130     JSObject::SetFastElementsCapacitySmiMode set_capacity_mode =
1131         obj->HasFastSmiElements()
1132             ? JSObject::kAllowSmiElements
1133             : JSObject::kDontAllowSmiElements;
1134     JSObject::SetFastElementsCapacityAndLength(
1135         obj, capacity, length, set_capacity_mode);
1136   }
1137 };
1138
1139
1140 class FastPackedSmiElementsAccessor
1141     : public FastSmiOrObjectElementsAccessor<
1142         FastPackedSmiElementsAccessor,
1143         ElementsKindTraits<FAST_SMI_ELEMENTS> > {
1144  public:
1145   explicit FastPackedSmiElementsAccessor(const char* name)
1146       : FastSmiOrObjectElementsAccessor<
1147           FastPackedSmiElementsAccessor,
1148           ElementsKindTraits<FAST_SMI_ELEMENTS> >(name) {}
1149 };
1150
1151
1152 class FastHoleySmiElementsAccessor
1153     : public FastSmiOrObjectElementsAccessor<
1154         FastHoleySmiElementsAccessor,
1155         ElementsKindTraits<FAST_HOLEY_SMI_ELEMENTS> > {
1156  public:
1157   explicit FastHoleySmiElementsAccessor(const char* name)
1158       : FastSmiOrObjectElementsAccessor<
1159           FastHoleySmiElementsAccessor,
1160           ElementsKindTraits<FAST_HOLEY_SMI_ELEMENTS> >(name) {}
1161 };
1162
1163
1164 class FastPackedObjectElementsAccessor
1165     : public FastSmiOrObjectElementsAccessor<
1166         FastPackedObjectElementsAccessor,
1167         ElementsKindTraits<FAST_ELEMENTS> > {
1168  public:
1169   explicit FastPackedObjectElementsAccessor(const char* name)
1170       : FastSmiOrObjectElementsAccessor<
1171           FastPackedObjectElementsAccessor,
1172           ElementsKindTraits<FAST_ELEMENTS> >(name) {}
1173 };
1174
1175
1176 class FastHoleyObjectElementsAccessor
1177     : public FastSmiOrObjectElementsAccessor<
1178         FastHoleyObjectElementsAccessor,
1179         ElementsKindTraits<FAST_HOLEY_ELEMENTS> > {
1180  public:
1181   explicit FastHoleyObjectElementsAccessor(const char* name)
1182       : FastSmiOrObjectElementsAccessor<
1183           FastHoleyObjectElementsAccessor,
1184           ElementsKindTraits<FAST_HOLEY_ELEMENTS> >(name) {}
1185 };
1186
1187
1188 template<typename FastElementsAccessorSubclass,
1189          typename KindTraits>
1190 class FastDoubleElementsAccessor
1191     : public FastElementsAccessor<FastElementsAccessorSubclass, KindTraits> {
1192  public:
1193   explicit FastDoubleElementsAccessor(const char* name)
1194       : FastElementsAccessor<FastElementsAccessorSubclass,
1195                              KindTraits>(name) {}
1196
1197   static void SetFastElementsCapacityAndLength(Handle<JSObject> obj,
1198                                                uint32_t capacity,
1199                                                uint32_t length) {
1200     JSObject::SetFastDoubleElementsCapacityAndLength(obj, capacity, length);
1201   }
1202
1203  protected:
1204   static void CopyElementsImpl(FixedArrayBase* from, uint32_t from_start,
1205                                FixedArrayBase* to, ElementsKind from_kind,
1206                                uint32_t to_start, int packed_size,
1207                                int copy_size) {
1208     DisallowHeapAllocation no_allocation;
1209     switch (from_kind) {
1210       case FAST_SMI_ELEMENTS:
1211         CopyPackedSmiToDoubleElements(from, from_start, to, to_start,
1212                                       packed_size, copy_size);
1213         break;
1214       case FAST_HOLEY_SMI_ELEMENTS:
1215         CopySmiToDoubleElements(from, from_start, to, to_start, copy_size);
1216         break;
1217       case FAST_DOUBLE_ELEMENTS:
1218       case FAST_HOLEY_DOUBLE_ELEMENTS:
1219         CopyDoubleToDoubleElements(from, from_start, to, to_start, copy_size);
1220         break;
1221       case FAST_ELEMENTS:
1222       case FAST_HOLEY_ELEMENTS:
1223         CopyObjectToDoubleElements(from, from_start, to, to_start, copy_size);
1224         break;
1225       case DICTIONARY_ELEMENTS:
1226         CopyDictionaryToDoubleElements(from, from_start, to, to_start,
1227                                        copy_size);
1228         break;
1229       case SLOPPY_ARGUMENTS_ELEMENTS:
1230         UNREACHABLE();
1231
1232 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size)                       \
1233       case EXTERNAL_##TYPE##_ELEMENTS:                                        \
1234       case TYPE##_ELEMENTS:                                                   \
1235         UNREACHABLE();
1236       TYPED_ARRAYS(TYPED_ARRAY_CASE)
1237 #undef TYPED_ARRAY_CASE
1238     }
1239   }
1240 };
1241
1242
1243 class FastPackedDoubleElementsAccessor
1244     : public FastDoubleElementsAccessor<
1245         FastPackedDoubleElementsAccessor,
1246         ElementsKindTraits<FAST_DOUBLE_ELEMENTS> > {
1247  public:
1248   friend class ElementsAccessorBase<FastPackedDoubleElementsAccessor,
1249                                     ElementsKindTraits<FAST_DOUBLE_ELEMENTS> >;
1250   explicit FastPackedDoubleElementsAccessor(const char* name)
1251       : FastDoubleElementsAccessor<
1252           FastPackedDoubleElementsAccessor,
1253           ElementsKindTraits<FAST_DOUBLE_ELEMENTS> >(name) {}
1254 };
1255
1256
1257 class FastHoleyDoubleElementsAccessor
1258     : public FastDoubleElementsAccessor<
1259         FastHoleyDoubleElementsAccessor,
1260         ElementsKindTraits<FAST_HOLEY_DOUBLE_ELEMENTS> > {
1261  public:
1262   friend class ElementsAccessorBase<
1263     FastHoleyDoubleElementsAccessor,
1264     ElementsKindTraits<FAST_HOLEY_DOUBLE_ELEMENTS> >;
1265   explicit FastHoleyDoubleElementsAccessor(const char* name)
1266       : FastDoubleElementsAccessor<
1267           FastHoleyDoubleElementsAccessor,
1268           ElementsKindTraits<FAST_HOLEY_DOUBLE_ELEMENTS> >(name) {}
1269 };
1270
1271
1272 // Super class for all external element arrays.
1273 template<ElementsKind Kind>
1274 class TypedElementsAccessor
1275     : public ElementsAccessorBase<TypedElementsAccessor<Kind>,
1276                                   ElementsKindTraits<Kind> > {
1277  public:
1278   explicit TypedElementsAccessor(const char* name)
1279       : ElementsAccessorBase<AccessorClass,
1280                              ElementsKindTraits<Kind> >(name) {}
1281
1282  protected:
1283   typedef typename ElementsKindTraits<Kind>::BackingStore BackingStore;
1284   typedef TypedElementsAccessor<Kind> AccessorClass;
1285
1286   friend class ElementsAccessorBase<AccessorClass,
1287                                     ElementsKindTraits<Kind> >;
1288
1289   MUST_USE_RESULT static MaybeHandle<Object> GetImpl(
1290       Handle<Object> receiver,
1291       Handle<JSObject> obj,
1292       uint32_t key,
1293       Handle<FixedArrayBase> backing_store) {
1294     if (key < AccessorClass::GetCapacityImpl(backing_store)) {
1295       return BackingStore::get(Handle<BackingStore>::cast(backing_store), key);
1296     } else {
1297       return backing_store->GetIsolate()->factory()->undefined_value();
1298     }
1299   }
1300
1301   MUST_USE_RESULT static PropertyAttributes GetAttributesImpl(
1302       Handle<Object> receiver,
1303       Handle<JSObject> obj,
1304       uint32_t key,
1305       Handle<FixedArrayBase> backing_store) {
1306     return
1307         key < AccessorClass::GetCapacityImpl(backing_store)
1308           ? NONE : ABSENT;
1309   }
1310
1311   MUST_USE_RESULT static MaybeHandle<Object> SetLengthImpl(
1312       Handle<JSObject> obj,
1313       Handle<Object> length,
1314       Handle<FixedArrayBase> backing_store) {
1315     // External arrays do not support changing their length.
1316     UNREACHABLE();
1317     return obj;
1318   }
1319
1320   MUST_USE_RESULT virtual MaybeHandle<Object> Delete(
1321       Handle<JSObject> obj,
1322       uint32_t key,
1323       JSReceiver::DeleteMode mode) FINAL OVERRIDE {
1324     // External arrays always ignore deletes.
1325     return obj->GetIsolate()->factory()->true_value();
1326   }
1327
1328   static bool HasElementImpl(Handle<Object> receiver,
1329                              Handle<JSObject> holder,
1330                              uint32_t key,
1331                              Handle<FixedArrayBase> backing_store) {
1332     uint32_t capacity =
1333         AccessorClass::GetCapacityImpl(backing_store);
1334     return key < capacity;
1335   }
1336 };
1337
1338
1339
1340 #define EXTERNAL_ELEMENTS_ACCESSOR(Type, type, TYPE, ctype, size)    \
1341   typedef TypedElementsAccessor<EXTERNAL_##TYPE##_ELEMENTS>          \
1342       External##Type##ElementsAccessor;
1343
1344 TYPED_ARRAYS(EXTERNAL_ELEMENTS_ACCESSOR)
1345 #undef EXTERNAL_ELEMENTS_ACCESSOR
1346
1347 #define FIXED_ELEMENTS_ACCESSOR(Type, type, TYPE, ctype, size)       \
1348   typedef TypedElementsAccessor<TYPE##_ELEMENTS >                    \
1349       Fixed##Type##ElementsAccessor;
1350
1351 TYPED_ARRAYS(FIXED_ELEMENTS_ACCESSOR)
1352 #undef FIXED_ELEMENTS_ACCESSOR
1353
1354
1355
1356 class DictionaryElementsAccessor
1357     : public ElementsAccessorBase<DictionaryElementsAccessor,
1358                                   ElementsKindTraits<DICTIONARY_ELEMENTS> > {
1359  public:
1360   explicit DictionaryElementsAccessor(const char* name)
1361       : ElementsAccessorBase<DictionaryElementsAccessor,
1362                              ElementsKindTraits<DICTIONARY_ELEMENTS> >(name) {}
1363
1364   // Adjusts the length of the dictionary backing store and returns the new
1365   // length according to ES5 section 15.4.5.2 behavior.
1366   static Handle<Object> SetLengthWithoutNormalize(
1367       Handle<FixedArrayBase> store,
1368       Handle<JSArray> array,
1369       Handle<Object> length_object,
1370       uint32_t length) {
1371     Handle<SeededNumberDictionary> dict =
1372         Handle<SeededNumberDictionary>::cast(store);
1373     Isolate* isolate = array->GetIsolate();
1374     int capacity = dict->Capacity();
1375     uint32_t new_length = length;
1376     uint32_t old_length = static_cast<uint32_t>(array->length()->Number());
1377     if (new_length < old_length) {
1378       // Find last non-deletable element in range of elements to be
1379       // deleted and adjust range accordingly.
1380       for (int i = 0; i < capacity; i++) {
1381         DisallowHeapAllocation no_gc;
1382         Object* key = dict->KeyAt(i);
1383         if (key->IsNumber()) {
1384           uint32_t number = static_cast<uint32_t>(key->Number());
1385           if (new_length <= number && number < old_length) {
1386             PropertyDetails details = dict->DetailsAt(i);
1387             if (!details.IsConfigurable()) new_length = number + 1;
1388           }
1389         }
1390       }
1391       if (new_length != length) {
1392         length_object = isolate->factory()->NewNumberFromUint(new_length);
1393       }
1394     }
1395
1396     if (new_length == 0) {
1397       // Flush the backing store.
1398       JSObject::ResetElements(array);
1399     } else {
1400       DisallowHeapAllocation no_gc;
1401       // Remove elements that should be deleted.
1402       int removed_entries = 0;
1403       Handle<Object> the_hole_value = isolate->factory()->the_hole_value();
1404       for (int i = 0; i < capacity; i++) {
1405         Object* key = dict->KeyAt(i);
1406         if (key->IsNumber()) {
1407           uint32_t number = static_cast<uint32_t>(key->Number());
1408           if (new_length <= number && number < old_length) {
1409             dict->SetEntry(i, the_hole_value, the_hole_value);
1410             removed_entries++;
1411           }
1412         }
1413       }
1414
1415       // Update the number of elements.
1416       dict->ElementsRemoved(removed_entries);
1417     }
1418     return length_object;
1419   }
1420
1421   MUST_USE_RESULT static MaybeHandle<Object> DeleteCommon(
1422       Handle<JSObject> obj,
1423       uint32_t key,
1424       JSReceiver::DeleteMode mode) {
1425     Isolate* isolate = obj->GetIsolate();
1426     Handle<FixedArray> backing_store(FixedArray::cast(obj->elements()),
1427                                      isolate);
1428     bool is_arguments =
1429         (obj->GetElementsKind() == SLOPPY_ARGUMENTS_ELEMENTS);
1430     if (is_arguments) {
1431       backing_store = handle(FixedArray::cast(backing_store->get(1)), isolate);
1432     }
1433     Handle<SeededNumberDictionary> dictionary =
1434         Handle<SeededNumberDictionary>::cast(backing_store);
1435     int entry = dictionary->FindEntry(key);
1436     if (entry != SeededNumberDictionary::kNotFound) {
1437       Handle<Object> result =
1438           SeededNumberDictionary::DeleteProperty(dictionary, entry, mode);
1439       if (*result == *isolate->factory()->false_value()) {
1440         if (mode == JSObject::STRICT_DELETION) {
1441           // Deleting a non-configurable property in strict mode.
1442           Handle<Object> name = isolate->factory()->NewNumberFromUint(key);
1443           Handle<Object> args[2] = { name, obj };
1444           THROW_NEW_ERROR(isolate, NewTypeError("strict_delete_property",
1445                                                 HandleVector(args, 2)),
1446                           Object);
1447         }
1448         return isolate->factory()->false_value();
1449       }
1450       Handle<FixedArray> new_elements =
1451           SeededNumberDictionary::Shrink(dictionary, key);
1452
1453       if (is_arguments) {
1454         FixedArray::cast(obj->elements())->set(1, *new_elements);
1455       } else {
1456         obj->set_elements(*new_elements);
1457       }
1458     }
1459     return isolate->factory()->true_value();
1460   }
1461
1462   static void CopyElementsImpl(FixedArrayBase* from, uint32_t from_start,
1463                                FixedArrayBase* to, ElementsKind from_kind,
1464                                uint32_t to_start, int packed_size,
1465                                int copy_size) {
1466     UNREACHABLE();
1467   }
1468
1469
1470  protected:
1471   friend class ElementsAccessorBase<DictionaryElementsAccessor,
1472                                     ElementsKindTraits<DICTIONARY_ELEMENTS> >;
1473
1474   MUST_USE_RESULT virtual MaybeHandle<Object> Delete(
1475       Handle<JSObject> obj,
1476       uint32_t key,
1477       JSReceiver::DeleteMode mode) FINAL OVERRIDE {
1478     return DeleteCommon(obj, key, mode);
1479   }
1480
1481   MUST_USE_RESULT static MaybeHandle<Object> GetImpl(
1482       Handle<Object> receiver,
1483       Handle<JSObject> obj,
1484       uint32_t key,
1485       Handle<FixedArrayBase> store) {
1486     Handle<SeededNumberDictionary> backing_store =
1487         Handle<SeededNumberDictionary>::cast(store);
1488     Isolate* isolate = backing_store->GetIsolate();
1489     int entry = backing_store->FindEntry(key);
1490     if (entry != SeededNumberDictionary::kNotFound) {
1491       Handle<Object> element(backing_store->ValueAt(entry), isolate);
1492       PropertyDetails details = backing_store->DetailsAt(entry);
1493       if (details.type() == CALLBACKS) {
1494         return JSObject::GetElementWithCallback(
1495             obj, receiver, element, key, obj);
1496       } else {
1497         return element;
1498       }
1499     }
1500     return isolate->factory()->the_hole_value();
1501   }
1502
1503   MUST_USE_RESULT static PropertyAttributes GetAttributesImpl(
1504       Handle<Object> receiver,
1505       Handle<JSObject> obj,
1506       uint32_t key,
1507       Handle<FixedArrayBase> backing_store) {
1508     Handle<SeededNumberDictionary> dictionary =
1509         Handle<SeededNumberDictionary>::cast(backing_store);
1510     int entry = dictionary->FindEntry(key);
1511     if (entry != SeededNumberDictionary::kNotFound) {
1512       return dictionary->DetailsAt(entry).attributes();
1513     }
1514     return ABSENT;
1515   }
1516
1517   MUST_USE_RESULT static MaybeHandle<AccessorPair> GetAccessorPairImpl(
1518       Handle<Object> receiver,
1519       Handle<JSObject> obj,
1520       uint32_t key,
1521       Handle<FixedArrayBase> store) {
1522     Handle<SeededNumberDictionary> backing_store =
1523         Handle<SeededNumberDictionary>::cast(store);
1524     int entry = backing_store->FindEntry(key);
1525     if (entry != SeededNumberDictionary::kNotFound &&
1526         backing_store->DetailsAt(entry).type() == CALLBACKS &&
1527         backing_store->ValueAt(entry)->IsAccessorPair()) {
1528       return handle(AccessorPair::cast(backing_store->ValueAt(entry)));
1529     }
1530     return MaybeHandle<AccessorPair>();
1531   }
1532
1533   static bool HasElementImpl(Handle<Object> receiver,
1534                              Handle<JSObject> holder,
1535                              uint32_t key,
1536                              Handle<FixedArrayBase> store) {
1537     Handle<SeededNumberDictionary> backing_store =
1538         Handle<SeededNumberDictionary>::cast(store);
1539     return backing_store->FindEntry(key) != SeededNumberDictionary::kNotFound;
1540   }
1541
1542   static uint32_t GetKeyForIndexImpl(Handle<FixedArrayBase> store,
1543                                      uint32_t index) {
1544     DisallowHeapAllocation no_gc;
1545     Handle<SeededNumberDictionary> dict =
1546         Handle<SeededNumberDictionary>::cast(store);
1547     Object* key = dict->KeyAt(index);
1548     return Smi::cast(key)->value();
1549   }
1550 };
1551
1552
1553 class SloppyArgumentsElementsAccessor : public ElementsAccessorBase<
1554     SloppyArgumentsElementsAccessor,
1555     ElementsKindTraits<SLOPPY_ARGUMENTS_ELEMENTS> > {
1556  public:
1557   explicit SloppyArgumentsElementsAccessor(const char* name)
1558       : ElementsAccessorBase<
1559           SloppyArgumentsElementsAccessor,
1560           ElementsKindTraits<SLOPPY_ARGUMENTS_ELEMENTS> >(name) {}
1561  protected:
1562   friend class ElementsAccessorBase<
1563       SloppyArgumentsElementsAccessor,
1564       ElementsKindTraits<SLOPPY_ARGUMENTS_ELEMENTS> >;
1565
1566   MUST_USE_RESULT static MaybeHandle<Object> GetImpl(
1567       Handle<Object> receiver,
1568       Handle<JSObject> obj,
1569       uint32_t key,
1570       Handle<FixedArrayBase> parameters) {
1571     Isolate* isolate = obj->GetIsolate();
1572     Handle<FixedArray> parameter_map = Handle<FixedArray>::cast(parameters);
1573     Handle<Object> probe = GetParameterMapArg(obj, parameter_map, key);
1574     if (!probe->IsTheHole()) {
1575       DisallowHeapAllocation no_gc;
1576       Context* context = Context::cast(parameter_map->get(0));
1577       int context_index = Handle<Smi>::cast(probe)->value();
1578       DCHECK(!context->get(context_index)->IsTheHole());
1579       return handle(context->get(context_index), isolate);
1580     } else {
1581       // Object is not mapped, defer to the arguments.
1582       Handle<FixedArray> arguments(FixedArray::cast(parameter_map->get(1)),
1583                                    isolate);
1584       Handle<Object> result;
1585       ASSIGN_RETURN_ON_EXCEPTION(
1586           isolate, result,
1587           ElementsAccessor::ForArray(arguments)->Get(
1588               receiver, obj, key, arguments),
1589           Object);
1590       // Elements of the arguments object in slow mode might be slow aliases.
1591       if (result->IsAliasedArgumentsEntry()) {
1592         DisallowHeapAllocation no_gc;
1593         AliasedArgumentsEntry* entry = AliasedArgumentsEntry::cast(*result);
1594         Context* context = Context::cast(parameter_map->get(0));
1595         int context_index = entry->aliased_context_slot();
1596         DCHECK(!context->get(context_index)->IsTheHole());
1597         return handle(context->get(context_index), isolate);
1598       } else {
1599         return result;
1600       }
1601     }
1602   }
1603
1604   MUST_USE_RESULT static PropertyAttributes GetAttributesImpl(
1605       Handle<Object> receiver,
1606       Handle<JSObject> obj,
1607       uint32_t key,
1608       Handle<FixedArrayBase> backing_store) {
1609     Handle<FixedArray> parameter_map = Handle<FixedArray>::cast(backing_store);
1610     Handle<Object> probe = GetParameterMapArg(obj, parameter_map, key);
1611     if (!probe->IsTheHole()) {
1612       return NONE;
1613     } else {
1614       // If not aliased, check the arguments.
1615       Handle<FixedArray> arguments(FixedArray::cast(parameter_map->get(1)));
1616       return ElementsAccessor::ForArray(arguments)->GetAttributes(
1617           receiver, obj, key, arguments);
1618     }
1619   }
1620
1621   MUST_USE_RESULT static MaybeHandle<AccessorPair> GetAccessorPairImpl(
1622       Handle<Object> receiver,
1623       Handle<JSObject> obj,
1624       uint32_t key,
1625       Handle<FixedArrayBase> parameters) {
1626     Handle<FixedArray> parameter_map = Handle<FixedArray>::cast(parameters);
1627     Handle<Object> probe = GetParameterMapArg(obj, parameter_map, key);
1628     if (!probe->IsTheHole()) {
1629       return MaybeHandle<AccessorPair>();
1630     } else {
1631       // If not aliased, check the arguments.
1632       Handle<FixedArray> arguments(FixedArray::cast(parameter_map->get(1)));
1633       return ElementsAccessor::ForArray(arguments)->GetAccessorPair(
1634           receiver, obj, key, arguments);
1635     }
1636   }
1637
1638   MUST_USE_RESULT static MaybeHandle<Object> SetLengthImpl(
1639       Handle<JSObject> obj,
1640       Handle<Object> length,
1641       Handle<FixedArrayBase> parameter_map) {
1642     // TODO(mstarzinger): This was never implemented but will be used once we
1643     // correctly implement [[DefineOwnProperty]] on arrays.
1644     UNIMPLEMENTED();
1645     return obj;
1646   }
1647
1648   MUST_USE_RESULT virtual MaybeHandle<Object> Delete(
1649       Handle<JSObject> obj,
1650       uint32_t key,
1651       JSReceiver::DeleteMode mode) FINAL OVERRIDE {
1652     Isolate* isolate = obj->GetIsolate();
1653     Handle<FixedArray> parameter_map(FixedArray::cast(obj->elements()));
1654     Handle<Object> probe = GetParameterMapArg(obj, parameter_map, key);
1655     if (!probe->IsTheHole()) {
1656       // TODO(kmillikin): We could check if this was the last aliased
1657       // parameter, and revert to normal elements in that case.  That
1658       // would enable GC of the context.
1659       parameter_map->set_the_hole(key + 2);
1660     } else {
1661       Handle<FixedArray> arguments(FixedArray::cast(parameter_map->get(1)));
1662       if (arguments->IsDictionary()) {
1663         return DictionaryElementsAccessor::DeleteCommon(obj, key, mode);
1664       } else {
1665         // It's difficult to access the version of DeleteCommon that is declared
1666         // in the templatized super class, call the concrete implementation in
1667         // the class for the most generalized ElementsKind subclass.
1668         return FastHoleyObjectElementsAccessor::DeleteCommon(obj, key, mode);
1669       }
1670     }
1671     return isolate->factory()->true_value();
1672   }
1673
1674   static void CopyElementsImpl(FixedArrayBase* from, uint32_t from_start,
1675                                FixedArrayBase* to, ElementsKind from_kind,
1676                                uint32_t to_start, int packed_size,
1677                                int copy_size) {
1678     UNREACHABLE();
1679   }
1680
1681   static uint32_t GetCapacityImpl(Handle<FixedArrayBase> backing_store) {
1682     Handle<FixedArray> parameter_map = Handle<FixedArray>::cast(backing_store);
1683     Handle<FixedArrayBase> arguments(
1684         FixedArrayBase::cast(parameter_map->get(1)));
1685     return Max(static_cast<uint32_t>(parameter_map->length() - 2),
1686                ForArray(arguments)->GetCapacity(arguments));
1687   }
1688
1689   static uint32_t GetKeyForIndexImpl(Handle<FixedArrayBase> dict,
1690                                      uint32_t index) {
1691     return index;
1692   }
1693
1694   static bool HasElementImpl(Handle<Object> receiver,
1695                              Handle<JSObject> holder,
1696                              uint32_t key,
1697                              Handle<FixedArrayBase> parameters) {
1698     Handle<FixedArray> parameter_map = Handle<FixedArray>::cast(parameters);
1699     Handle<Object> probe = GetParameterMapArg(holder, parameter_map, key);
1700     if (!probe->IsTheHole()) {
1701       return true;
1702     } else {
1703       Isolate* isolate = holder->GetIsolate();
1704       Handle<FixedArrayBase> arguments(FixedArrayBase::cast(
1705           Handle<FixedArray>::cast(parameter_map)->get(1)), isolate);
1706       ElementsAccessor* accessor = ElementsAccessor::ForArray(arguments);
1707       Handle<Object> value;
1708       ASSIGN_RETURN_ON_EXCEPTION_VALUE(
1709           isolate, value,
1710           accessor->Get(receiver, holder, key, arguments),
1711           false);
1712       return !value->IsTheHole();
1713     }
1714   }
1715
1716  private:
1717   static Handle<Object> GetParameterMapArg(Handle<JSObject> holder,
1718                                            Handle<FixedArray> parameter_map,
1719                                            uint32_t key) {
1720     Isolate* isolate = holder->GetIsolate();
1721     uint32_t length = holder->IsJSArray()
1722         ? Smi::cast(Handle<JSArray>::cast(holder)->length())->value()
1723         : parameter_map->length();
1724     return key < (length - 2)
1725         ? handle(parameter_map->get(key + 2), isolate)
1726         : Handle<Object>::cast(isolate->factory()->the_hole_value());
1727   }
1728 };
1729
1730
1731 ElementsAccessor* ElementsAccessor::ForArray(Handle<FixedArrayBase> array) {
1732   return elements_accessors_[ElementsKindForArray(*array)];
1733 }
1734
1735
1736 void ElementsAccessor::InitializeOncePerProcess() {
1737   static ElementsAccessor* accessor_array[] = {
1738 #define ACCESSOR_ARRAY(Class, Kind, Store) new Class(#Kind),
1739     ELEMENTS_LIST(ACCESSOR_ARRAY)
1740 #undef ACCESSOR_ARRAY
1741   };
1742
1743   STATIC_ASSERT((sizeof(accessor_array) / sizeof(*accessor_array)) ==
1744                 kElementsKindCount);
1745
1746   elements_accessors_ = accessor_array;
1747 }
1748
1749
1750 void ElementsAccessor::TearDown() {
1751   if (elements_accessors_ == NULL) return;
1752 #define ACCESSOR_DELETE(Class, Kind, Store) delete elements_accessors_[Kind];
1753   ELEMENTS_LIST(ACCESSOR_DELETE)
1754 #undef ACCESSOR_DELETE
1755   elements_accessors_ = NULL;
1756 }
1757
1758
1759 template <typename ElementsAccessorSubclass, typename ElementsKindTraits>
1760 MUST_USE_RESULT
1761 MaybeHandle<Object> ElementsAccessorBase<ElementsAccessorSubclass,
1762                                          ElementsKindTraits>::
1763     SetLengthImpl(Handle<JSObject> obj,
1764                   Handle<Object> length,
1765                   Handle<FixedArrayBase> backing_store) {
1766   Isolate* isolate = obj->GetIsolate();
1767   Handle<JSArray> array = Handle<JSArray>::cast(obj);
1768
1769   // Fast case: The new length fits into a Smi.
1770   Handle<Object> smi_length;
1771
1772   if (Object::ToSmi(isolate, length).ToHandle(&smi_length) &&
1773       smi_length->IsSmi()) {
1774     const int value = Handle<Smi>::cast(smi_length)->value();
1775     if (value >= 0) {
1776       Handle<Object> new_length = ElementsAccessorSubclass::
1777           SetLengthWithoutNormalize(backing_store, array, smi_length, value);
1778       DCHECK(!new_length.is_null());
1779
1780       // even though the proposed length was a smi, new_length could
1781       // still be a heap number because SetLengthWithoutNormalize doesn't
1782       // allow the array length property to drop below the index of
1783       // non-deletable elements.
1784       DCHECK(new_length->IsSmi() || new_length->IsHeapNumber() ||
1785              new_length->IsUndefined());
1786       if (new_length->IsSmi()) {
1787         array->set_length(*Handle<Smi>::cast(new_length));
1788         return array;
1789       } else if (new_length->IsHeapNumber()) {
1790         array->set_length(*new_length);
1791         return array;
1792       }
1793     } else {
1794       return ThrowArrayLengthRangeError(isolate);
1795     }
1796   }
1797
1798   // Slow case: The new length does not fit into a Smi or conversion
1799   // to slow elements is needed for other reasons.
1800   if (length->IsNumber()) {
1801     uint32_t value;
1802     if (length->ToArrayIndex(&value)) {
1803       Handle<SeededNumberDictionary> dictionary =
1804           JSObject::NormalizeElements(array);
1805       DCHECK(!dictionary.is_null());
1806
1807       Handle<Object> new_length = DictionaryElementsAccessor::
1808           SetLengthWithoutNormalize(dictionary, array, length, value);
1809       DCHECK(!new_length.is_null());
1810
1811       DCHECK(new_length->IsNumber());
1812       array->set_length(*new_length);
1813       return array;
1814     } else {
1815       return ThrowArrayLengthRangeError(isolate);
1816     }
1817   }
1818
1819   // Fall-back case: The new length is not a number so make the array
1820   // size one and set only element to length.
1821   Handle<FixedArray> new_backing_store = isolate->factory()->NewFixedArray(1);
1822   new_backing_store->set(0, *length);
1823   JSArray::SetContent(array, new_backing_store);
1824   return array;
1825 }
1826
1827
1828 MaybeHandle<Object> ArrayConstructInitializeElements(Handle<JSArray> array,
1829                                                      Arguments* args) {
1830   // Optimize the case where there is one argument and the argument is a
1831   // small smi.
1832   if (args->length() == 1) {
1833     Handle<Object> obj = args->at<Object>(0);
1834     if (obj->IsSmi()) {
1835       int len = Handle<Smi>::cast(obj)->value();
1836       if (len > 0 && len < JSObject::kInitialMaxFastElementArray) {
1837         ElementsKind elements_kind = array->GetElementsKind();
1838         JSArray::Initialize(array, len, len);
1839
1840         if (!IsFastHoleyElementsKind(elements_kind)) {
1841           elements_kind = GetHoleyElementsKind(elements_kind);
1842           JSObject::TransitionElementsKind(array, elements_kind);
1843         }
1844         return array;
1845       } else if (len == 0) {
1846         JSArray::Initialize(array, JSArray::kPreallocatedArrayElements);
1847         return array;
1848       }
1849     }
1850
1851     // Take the argument as the length.
1852     JSArray::Initialize(array, 0);
1853
1854     return JSArray::SetElementsLength(array, obj);
1855   }
1856
1857   // Optimize the case where there are no parameters passed.
1858   if (args->length() == 0) {
1859     JSArray::Initialize(array, JSArray::kPreallocatedArrayElements);
1860     return array;
1861   }
1862
1863   Factory* factory = array->GetIsolate()->factory();
1864
1865   // Set length and elements on the array.
1866   int number_of_elements = args->length();
1867   JSObject::EnsureCanContainElements(
1868       array, args, 0, number_of_elements, ALLOW_CONVERTED_DOUBLE_ELEMENTS);
1869
1870   // Allocate an appropriately typed elements array.
1871   ElementsKind elements_kind = array->GetElementsKind();
1872   Handle<FixedArrayBase> elms;
1873   if (IsFastDoubleElementsKind(elements_kind)) {
1874     elms = Handle<FixedArrayBase>::cast(
1875         factory->NewFixedDoubleArray(number_of_elements));
1876   } else {
1877     elms = Handle<FixedArrayBase>::cast(
1878         factory->NewFixedArrayWithHoles(number_of_elements));
1879   }
1880
1881   // Fill in the content
1882   switch (array->GetElementsKind()) {
1883     case FAST_HOLEY_SMI_ELEMENTS:
1884     case FAST_SMI_ELEMENTS: {
1885       Handle<FixedArray> smi_elms = Handle<FixedArray>::cast(elms);
1886       for (int index = 0; index < number_of_elements; index++) {
1887         smi_elms->set(index, (*args)[index], SKIP_WRITE_BARRIER);
1888       }
1889       break;
1890     }
1891     case FAST_HOLEY_ELEMENTS:
1892     case FAST_ELEMENTS: {
1893       DisallowHeapAllocation no_gc;
1894       WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc);
1895       Handle<FixedArray> object_elms = Handle<FixedArray>::cast(elms);
1896       for (int index = 0; index < number_of_elements; index++) {
1897         object_elms->set(index, (*args)[index], mode);
1898       }
1899       break;
1900     }
1901     case FAST_HOLEY_DOUBLE_ELEMENTS:
1902     case FAST_DOUBLE_ELEMENTS: {
1903       Handle<FixedDoubleArray> double_elms =
1904           Handle<FixedDoubleArray>::cast(elms);
1905       for (int index = 0; index < number_of_elements; index++) {
1906         double_elms->set(index, (*args)[index]->Number());
1907       }
1908       break;
1909     }
1910     default:
1911       UNREACHABLE();
1912       break;
1913   }
1914
1915   array->set_elements(*elms);
1916   array->set_length(Smi::FromInt(number_of_elements));
1917   return array;
1918 }
1919
1920 } }  // namespace v8::internal