Upstream version 10.39.225.0
[platform/framework/web/crosswalk.git] / src / v8 / src / arm64 / instructions-arm64.cc
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #if V8_TARGET_ARCH_ARM64
8
9 #define ARM64_DEFINE_FP_STATICS
10
11 #include "src/arm64/assembler-arm64-inl.h"
12 #include "src/arm64/instructions-arm64.h"
13
14 namespace v8 {
15 namespace internal {
16
17
18 bool Instruction::IsLoad() const {
19   if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
20     return false;
21   }
22
23   if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
24     return Mask(LoadStorePairLBit) != 0;
25   } else {
26     LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreOpMask));
27     switch (op) {
28       case LDRB_w:
29       case LDRH_w:
30       case LDR_w:
31       case LDR_x:
32       case LDRSB_w:
33       case LDRSB_x:
34       case LDRSH_w:
35       case LDRSH_x:
36       case LDRSW_x:
37       case LDR_s:
38       case LDR_d: return true;
39       default: return false;
40     }
41   }
42 }
43
44
45 bool Instruction::IsStore() const {
46   if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
47     return false;
48   }
49
50   if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
51     return Mask(LoadStorePairLBit) == 0;
52   } else {
53     LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreOpMask));
54     switch (op) {
55       case STRB_w:
56       case STRH_w:
57       case STR_w:
58       case STR_x:
59       case STR_s:
60       case STR_d: return true;
61       default: return false;
62     }
63   }
64 }
65
66
67 static uint64_t RotateRight(uint64_t value,
68                             unsigned int rotate,
69                             unsigned int width) {
70   DCHECK(width <= 64);
71   rotate &= 63;
72   return ((value & ((1UL << rotate) - 1UL)) << (width - rotate)) |
73          (value >> rotate);
74 }
75
76
77 static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
78                                     uint64_t value,
79                                     unsigned width) {
80   DCHECK((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
81          (width == 32));
82   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
83   uint64_t result = value & ((1UL << width) - 1UL);
84   for (unsigned i = width; i < reg_size; i *= 2) {
85     result |= (result << i);
86   }
87   return result;
88 }
89
90
91 // Logical immediates can't encode zero, so a return value of zero is used to
92 // indicate a failure case. Specifically, where the constraints on imm_s are not
93 // met.
94 uint64_t Instruction::ImmLogical() {
95   unsigned reg_size = SixtyFourBits() ? kXRegSizeInBits : kWRegSizeInBits;
96   int64_t n = BitN();
97   int64_t imm_s = ImmSetBits();
98   int64_t imm_r = ImmRotate();
99
100   // An integer is constructed from the n, imm_s and imm_r bits according to
101   // the following table:
102   //
103   //  N   imms    immr    size        S             R
104   //  1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
105   //  0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
106   //  0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
107   //  0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
108   //  0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
109   //  0  11110s  xxxxxr     2    UInt(s)       UInt(r)
110   // (s bits must not be all set)
111   //
112   // A pattern is constructed of size bits, where the least significant S+1
113   // bits are set. The pattern is rotated right by R, and repeated across a
114   // 32 or 64-bit value, depending on destination register width.
115   //
116
117   if (n == 1) {
118     if (imm_s == 0x3F) {
119       return 0;
120     }
121     uint64_t bits = (1UL << (imm_s + 1)) - 1;
122     return RotateRight(bits, imm_r, 64);
123   } else {
124     if ((imm_s >> 1) == 0x1F) {
125       return 0;
126     }
127     for (int width = 0x20; width >= 0x2; width >>= 1) {
128       if ((imm_s & width) == 0) {
129         int mask = width - 1;
130         if ((imm_s & mask) == mask) {
131           return 0;
132         }
133         uint64_t bits = (1UL << ((imm_s & mask) + 1)) - 1;
134         return RepeatBitsAcrossReg(reg_size,
135                                    RotateRight(bits, imm_r & mask, width),
136                                    width);
137       }
138     }
139   }
140   UNREACHABLE();
141   return 0;
142 }
143
144
145 float Instruction::ImmFP32() {
146   //  ImmFP: abcdefgh (8 bits)
147   // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
148   // where B is b ^ 1
149   uint32_t bits = ImmFP();
150   uint32_t bit7 = (bits >> 7) & 0x1;
151   uint32_t bit6 = (bits >> 6) & 0x1;
152   uint32_t bit5_to_0 = bits & 0x3f;
153   uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
154
155   return rawbits_to_float(result);
156 }
157
158
159 double Instruction::ImmFP64() {
160   //  ImmFP: abcdefgh (8 bits)
161   // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
162   //         0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
163   // where B is b ^ 1
164   uint32_t bits = ImmFP();
165   uint64_t bit7 = (bits >> 7) & 0x1;
166   uint64_t bit6 = (bits >> 6) & 0x1;
167   uint64_t bit5_to_0 = bits & 0x3f;
168   uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
169
170   return rawbits_to_double(result);
171 }
172
173
174 LSDataSize CalcLSPairDataSize(LoadStorePairOp op) {
175   switch (op) {
176     case STP_x:
177     case LDP_x:
178     case STP_d:
179     case LDP_d: return LSDoubleWord;
180     default: return LSWord;
181   }
182 }
183
184
185 int64_t Instruction::ImmPCOffset() {
186   int64_t offset;
187   if (IsPCRelAddressing()) {
188     // PC-relative addressing. Only ADR is supported.
189     offset = ImmPCRel();
190   } else if (BranchType() != UnknownBranchType) {
191     // All PC-relative branches.
192     // Relative branch offsets are instruction-size-aligned.
193     offset = ImmBranch() << kInstructionSizeLog2;
194   } else {
195     // Load literal (offset from PC).
196     DCHECK(IsLdrLiteral());
197     // The offset is always shifted by 2 bits, even for loads to 64-bits
198     // registers.
199     offset = ImmLLiteral() << kInstructionSizeLog2;
200   }
201   return offset;
202 }
203
204
205 Instruction* Instruction::ImmPCOffsetTarget() {
206   return InstructionAtOffset(ImmPCOffset());
207 }
208
209
210 bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
211                                      int32_t offset) {
212   return is_intn(offset, ImmBranchRangeBitwidth(branch_type));
213 }
214
215
216 bool Instruction::IsTargetInImmPCOffsetRange(Instruction* target) {
217   return IsValidImmPCOffset(BranchType(), DistanceTo(target));
218 }
219
220
221 void Instruction::SetImmPCOffsetTarget(Instruction* target) {
222   if (IsPCRelAddressing()) {
223     SetPCRelImmTarget(target);
224   } else if (BranchType() != UnknownBranchType) {
225     SetBranchImmTarget(target);
226   } else {
227     SetImmLLiteral(target);
228   }
229 }
230
231
232 void Instruction::SetPCRelImmTarget(Instruction* target) {
233   // ADRP is not supported, so 'this' must point to an ADR instruction.
234   DCHECK(IsAdr());
235
236   ptrdiff_t target_offset = DistanceTo(target);
237   Instr imm;
238   if (Instruction::IsValidPCRelOffset(target_offset)) {
239     imm = Assembler::ImmPCRelAddress(target_offset);
240     SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
241   } else {
242     PatchingAssembler patcher(this,
243                               PatchingAssembler::kAdrFarPatchableNInstrs);
244     patcher.PatchAdrFar(target_offset);
245   }
246 }
247
248
249 void Instruction::SetBranchImmTarget(Instruction* target) {
250   DCHECK(IsAligned(DistanceTo(target), kInstructionSize));
251   Instr branch_imm = 0;
252   uint32_t imm_mask = 0;
253   ptrdiff_t offset = DistanceTo(target) >> kInstructionSizeLog2;
254   switch (BranchType()) {
255     case CondBranchType: {
256       branch_imm = Assembler::ImmCondBranch(offset);
257       imm_mask = ImmCondBranch_mask;
258       break;
259     }
260     case UncondBranchType: {
261       branch_imm = Assembler::ImmUncondBranch(offset);
262       imm_mask = ImmUncondBranch_mask;
263       break;
264     }
265     case CompareBranchType: {
266       branch_imm = Assembler::ImmCmpBranch(offset);
267       imm_mask = ImmCmpBranch_mask;
268       break;
269     }
270     case TestBranchType: {
271       branch_imm = Assembler::ImmTestBranch(offset);
272       imm_mask = ImmTestBranch_mask;
273       break;
274     }
275     default: UNREACHABLE();
276   }
277   SetInstructionBits(Mask(~imm_mask) | branch_imm);
278 }
279
280
281 void Instruction::SetImmLLiteral(Instruction* source) {
282   DCHECK(IsAligned(DistanceTo(source), kInstructionSize));
283   ptrdiff_t offset = DistanceTo(source) >> kLoadLiteralScaleLog2;
284   Instr imm = Assembler::ImmLLiteral(offset);
285   Instr mask = ImmLLiteral_mask;
286
287   SetInstructionBits(Mask(~mask) | imm);
288 }
289
290
291 // TODO(jbramley): We can't put this inline in the class because things like
292 // xzr and Register are not defined in that header. Consider adding
293 // instructions-arm64-inl.h to work around this.
294 bool InstructionSequence::IsInlineData() const {
295   // Inline data is encoded as a single movz instruction which writes to xzr
296   // (x31).
297   return IsMovz() && SixtyFourBits() && (Rd() == xzr.code());
298   // TODO(all): If we extend ::InlineData() to support bigger data, we need
299   // to update this method too.
300 }
301
302
303 // TODO(jbramley): We can't put this inline in the class because things like
304 // xzr and Register are not defined in that header. Consider adding
305 // instructions-arm64-inl.h to work around this.
306 uint64_t InstructionSequence::InlineData() const {
307   DCHECK(IsInlineData());
308   uint64_t payload = ImmMoveWide();
309   // TODO(all): If we extend ::InlineData() to support bigger data, we need
310   // to update this method too.
311   return payload;
312 }
313
314
315 } }  // namespace v8::internal
316
317 #endif  // V8_TARGET_ARCH_ARM64