Upstream version 9.38.198.0
[platform/framework/web/crosswalk.git] / src / v8 / src / arm / code-stubs-arm.h
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_ARM_CODE_STUBS_ARM_H_
6 #define V8_ARM_CODE_STUBS_ARM_H_
7
8 #include "src/ic-inl.h"
9
10 namespace v8 {
11 namespace internal {
12
13
14 void ArrayNativeCode(MacroAssembler* masm, Label* call_generic_code);
15
16
17 class StoreBufferOverflowStub: public PlatformCodeStub {
18  public:
19   StoreBufferOverflowStub(Isolate* isolate, SaveFPRegsMode save_fp)
20       : PlatformCodeStub(isolate), save_doubles_(save_fp) {}
21
22   void Generate(MacroAssembler* masm);
23
24   static void GenerateFixedRegStubsAheadOfTime(Isolate* isolate);
25   virtual bool SometimesSetsUpAFrame() { return false; }
26
27  private:
28   SaveFPRegsMode save_doubles_;
29
30   Major MajorKey() const { return StoreBufferOverflow; }
31   int MinorKey() const { return (save_doubles_ == kSaveFPRegs) ? 1 : 0; }
32 };
33
34
35 class StringHelper : public AllStatic {
36  public:
37   // Generate code for copying a large number of characters. This function
38   // is allowed to spend extra time setting up conditions to make copying
39   // faster. Copying of overlapping regions is not supported.
40   // Dest register ends at the position after the last character written.
41   static void GenerateCopyCharacters(MacroAssembler* masm,
42                                      Register dest,
43                                      Register src,
44                                      Register count,
45                                      Register scratch,
46                                      String::Encoding encoding);
47
48
49   // Generate string hash.
50   static void GenerateHashInit(MacroAssembler* masm,
51                                Register hash,
52                                Register character);
53
54   static void GenerateHashAddCharacter(MacroAssembler* masm,
55                                        Register hash,
56                                        Register character);
57
58   static void GenerateHashGetHash(MacroAssembler* masm,
59                                   Register hash);
60
61  private:
62   DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
63 };
64
65
66 class SubStringStub: public PlatformCodeStub {
67  public:
68   explicit SubStringStub(Isolate* isolate) : PlatformCodeStub(isolate) {}
69
70  private:
71   Major MajorKey() const { return SubString; }
72   int MinorKey() const { return 0; }
73
74   void Generate(MacroAssembler* masm);
75 };
76
77
78
79 class StringCompareStub: public PlatformCodeStub {
80  public:
81   explicit StringCompareStub(Isolate* isolate) : PlatformCodeStub(isolate) { }
82
83   // Compares two flat ASCII strings and returns result in r0.
84   static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
85                                               Register left,
86                                               Register right,
87                                               Register scratch1,
88                                               Register scratch2,
89                                               Register scratch3,
90                                               Register scratch4);
91
92   // Compares two flat ASCII strings for equality and returns result
93   // in r0.
94   static void GenerateFlatAsciiStringEquals(MacroAssembler* masm,
95                                             Register left,
96                                             Register right,
97                                             Register scratch1,
98                                             Register scratch2,
99                                             Register scratch3);
100
101  private:
102   virtual Major MajorKey() const { return StringCompare; }
103   virtual int MinorKey() const { return 0; }
104   virtual void Generate(MacroAssembler* masm);
105
106   static void GenerateAsciiCharsCompareLoop(MacroAssembler* masm,
107                                             Register left,
108                                             Register right,
109                                             Register length,
110                                             Register scratch1,
111                                             Register scratch2,
112                                             Label* chars_not_equal);
113 };
114
115
116 // This stub can convert a signed int32 to a heap number (double).  It does
117 // not work for int32s that are in Smi range!  No GC occurs during this stub
118 // so you don't have to set up the frame.
119 class WriteInt32ToHeapNumberStub : public PlatformCodeStub {
120  public:
121   WriteInt32ToHeapNumberStub(Isolate* isolate,
122                              Register the_int,
123                              Register the_heap_number,
124                              Register scratch)
125       : PlatformCodeStub(isolate),
126         the_int_(the_int),
127         the_heap_number_(the_heap_number),
128         scratch_(scratch) { }
129
130   static void GenerateFixedRegStubsAheadOfTime(Isolate* isolate);
131
132  private:
133   Register the_int_;
134   Register the_heap_number_;
135   Register scratch_;
136
137   // Minor key encoding in 16 bits.
138   class IntRegisterBits: public BitField<int, 0, 4> {};
139   class HeapNumberRegisterBits: public BitField<int, 4, 4> {};
140   class ScratchRegisterBits: public BitField<int, 8, 4> {};
141
142   Major MajorKey() const { return WriteInt32ToHeapNumber; }
143   int MinorKey() const {
144     // Encode the parameters in a unique 16 bit value.
145     return IntRegisterBits::encode(the_int_.code())
146            | HeapNumberRegisterBits::encode(the_heap_number_.code())
147            | ScratchRegisterBits::encode(scratch_.code());
148   }
149
150   void Generate(MacroAssembler* masm);
151 };
152
153
154 class RecordWriteStub: public PlatformCodeStub {
155  public:
156   RecordWriteStub(Isolate* isolate,
157                   Register object,
158                   Register value,
159                   Register address,
160                   RememberedSetAction remembered_set_action,
161                   SaveFPRegsMode fp_mode)
162       : PlatformCodeStub(isolate),
163         object_(object),
164         value_(value),
165         address_(address),
166         remembered_set_action_(remembered_set_action),
167         save_fp_regs_mode_(fp_mode),
168         regs_(object,   // An input reg.
169               address,  // An input reg.
170               value) {  // One scratch reg.
171   }
172
173   enum Mode {
174     STORE_BUFFER_ONLY,
175     INCREMENTAL,
176     INCREMENTAL_COMPACTION
177   };
178
179   virtual bool SometimesSetsUpAFrame() { return false; }
180
181   static void PatchBranchIntoNop(MacroAssembler* masm, int pos) {
182     masm->instr_at_put(pos, (masm->instr_at(pos) & ~B27) | (B24 | B20));
183     DCHECK(Assembler::IsTstImmediate(masm->instr_at(pos)));
184   }
185
186   static void PatchNopIntoBranch(MacroAssembler* masm, int pos) {
187     masm->instr_at_put(pos, (masm->instr_at(pos) & ~(B24 | B20)) | B27);
188     DCHECK(Assembler::IsBranch(masm->instr_at(pos)));
189   }
190
191   static Mode GetMode(Code* stub) {
192     Instr first_instruction = Assembler::instr_at(stub->instruction_start());
193     Instr second_instruction = Assembler::instr_at(stub->instruction_start() +
194                                                    Assembler::kInstrSize);
195
196     if (Assembler::IsBranch(first_instruction)) {
197       return INCREMENTAL;
198     }
199
200     DCHECK(Assembler::IsTstImmediate(first_instruction));
201
202     if (Assembler::IsBranch(second_instruction)) {
203       return INCREMENTAL_COMPACTION;
204     }
205
206     DCHECK(Assembler::IsTstImmediate(second_instruction));
207
208     return STORE_BUFFER_ONLY;
209   }
210
211   static void Patch(Code* stub, Mode mode) {
212     MacroAssembler masm(NULL,
213                         stub->instruction_start(),
214                         stub->instruction_size());
215     switch (mode) {
216       case STORE_BUFFER_ONLY:
217         DCHECK(GetMode(stub) == INCREMENTAL ||
218                GetMode(stub) == INCREMENTAL_COMPACTION);
219         PatchBranchIntoNop(&masm, 0);
220         PatchBranchIntoNop(&masm, Assembler::kInstrSize);
221         break;
222       case INCREMENTAL:
223         DCHECK(GetMode(stub) == STORE_BUFFER_ONLY);
224         PatchNopIntoBranch(&masm, 0);
225         break;
226       case INCREMENTAL_COMPACTION:
227         DCHECK(GetMode(stub) == STORE_BUFFER_ONLY);
228         PatchNopIntoBranch(&masm, Assembler::kInstrSize);
229         break;
230     }
231     DCHECK(GetMode(stub) == mode);
232     CpuFeatures::FlushICache(stub->instruction_start(),
233                              2 * Assembler::kInstrSize);
234   }
235
236  private:
237   // This is a helper class for freeing up 3 scratch registers.  The input is
238   // two registers that must be preserved and one scratch register provided by
239   // the caller.
240   class RegisterAllocation {
241    public:
242     RegisterAllocation(Register object,
243                        Register address,
244                        Register scratch0)
245         : object_(object),
246           address_(address),
247           scratch0_(scratch0) {
248       DCHECK(!AreAliased(scratch0, object, address, no_reg));
249       scratch1_ = GetRegisterThatIsNotOneOf(object_, address_, scratch0_);
250     }
251
252     void Save(MacroAssembler* masm) {
253       DCHECK(!AreAliased(object_, address_, scratch1_, scratch0_));
254       // We don't have to save scratch0_ because it was given to us as
255       // a scratch register.
256       masm->push(scratch1_);
257     }
258
259     void Restore(MacroAssembler* masm) {
260       masm->pop(scratch1_);
261     }
262
263     // If we have to call into C then we need to save and restore all caller-
264     // saved registers that were not already preserved.  The scratch registers
265     // will be restored by other means so we don't bother pushing them here.
266     void SaveCallerSaveRegisters(MacroAssembler* masm, SaveFPRegsMode mode) {
267       masm->stm(db_w, sp, (kCallerSaved | lr.bit()) & ~scratch1_.bit());
268       if (mode == kSaveFPRegs) {
269         masm->SaveFPRegs(sp, scratch0_);
270       }
271     }
272
273     inline void RestoreCallerSaveRegisters(MacroAssembler*masm,
274                                            SaveFPRegsMode mode) {
275       if (mode == kSaveFPRegs) {
276         masm->RestoreFPRegs(sp, scratch0_);
277       }
278       masm->ldm(ia_w, sp, (kCallerSaved | lr.bit()) & ~scratch1_.bit());
279     }
280
281     inline Register object() { return object_; }
282     inline Register address() { return address_; }
283     inline Register scratch0() { return scratch0_; }
284     inline Register scratch1() { return scratch1_; }
285
286    private:
287     Register object_;
288     Register address_;
289     Register scratch0_;
290     Register scratch1_;
291
292     friend class RecordWriteStub;
293   };
294
295   enum OnNoNeedToInformIncrementalMarker {
296     kReturnOnNoNeedToInformIncrementalMarker,
297     kUpdateRememberedSetOnNoNeedToInformIncrementalMarker
298   };
299
300   void Generate(MacroAssembler* masm);
301   void GenerateIncremental(MacroAssembler* masm, Mode mode);
302   void CheckNeedsToInformIncrementalMarker(
303       MacroAssembler* masm,
304       OnNoNeedToInformIncrementalMarker on_no_need,
305       Mode mode);
306   void InformIncrementalMarker(MacroAssembler* masm);
307
308   Major MajorKey() const { return RecordWrite; }
309
310   int MinorKey() const {
311     return ObjectBits::encode(object_.code()) |
312         ValueBits::encode(value_.code()) |
313         AddressBits::encode(address_.code()) |
314         RememberedSetActionBits::encode(remembered_set_action_) |
315         SaveFPRegsModeBits::encode(save_fp_regs_mode_);
316   }
317
318   void Activate(Code* code) {
319     code->GetHeap()->incremental_marking()->ActivateGeneratedStub(code);
320   }
321
322   class ObjectBits: public BitField<int, 0, 4> {};
323   class ValueBits: public BitField<int, 4, 4> {};
324   class AddressBits: public BitField<int, 8, 4> {};
325   class RememberedSetActionBits: public BitField<RememberedSetAction, 12, 1> {};
326   class SaveFPRegsModeBits: public BitField<SaveFPRegsMode, 13, 1> {};
327
328   Register object_;
329   Register value_;
330   Register address_;
331   RememberedSetAction remembered_set_action_;
332   SaveFPRegsMode save_fp_regs_mode_;
333   Label slow_;
334   RegisterAllocation regs_;
335 };
336
337
338 // Trampoline stub to call into native code. To call safely into native code
339 // in the presence of compacting GC (which can move code objects) we need to
340 // keep the code which called into native pinned in the memory. Currently the
341 // simplest approach is to generate such stub early enough so it can never be
342 // moved by GC
343 class DirectCEntryStub: public PlatformCodeStub {
344  public:
345   explicit DirectCEntryStub(Isolate* isolate) : PlatformCodeStub(isolate) {}
346   void Generate(MacroAssembler* masm);
347   void GenerateCall(MacroAssembler* masm, Register target);
348
349  private:
350   Major MajorKey() const { return DirectCEntry; }
351   int MinorKey() const { return 0; }
352
353   bool NeedsImmovableCode() { return true; }
354 };
355
356
357 class NameDictionaryLookupStub: public PlatformCodeStub {
358  public:
359   enum LookupMode { POSITIVE_LOOKUP, NEGATIVE_LOOKUP };
360
361   NameDictionaryLookupStub(Isolate* isolate, LookupMode mode)
362       : PlatformCodeStub(isolate), mode_(mode) { }
363
364   void Generate(MacroAssembler* masm);
365
366   static void GenerateNegativeLookup(MacroAssembler* masm,
367                                      Label* miss,
368                                      Label* done,
369                                      Register receiver,
370                                      Register properties,
371                                      Handle<Name> name,
372                                      Register scratch0);
373
374   static void GeneratePositiveLookup(MacroAssembler* masm,
375                                      Label* miss,
376                                      Label* done,
377                                      Register elements,
378                                      Register name,
379                                      Register r0,
380                                      Register r1);
381
382   virtual bool SometimesSetsUpAFrame() { return false; }
383
384  private:
385   static const int kInlinedProbes = 4;
386   static const int kTotalProbes = 20;
387
388   static const int kCapacityOffset =
389       NameDictionary::kHeaderSize +
390       NameDictionary::kCapacityIndex * kPointerSize;
391
392   static const int kElementsStartOffset =
393       NameDictionary::kHeaderSize +
394       NameDictionary::kElementsStartIndex * kPointerSize;
395
396   Major MajorKey() const { return NameDictionaryLookup; }
397
398   int MinorKey() const { return LookupModeBits::encode(mode_); }
399
400   class LookupModeBits: public BitField<LookupMode, 0, 1> {};
401
402   LookupMode mode_;
403 };
404
405
406 class PlatformInterfaceDescriptor {
407  public:
408   explicit PlatformInterfaceDescriptor(
409       TargetAddressStorageMode storage_mode)
410       : storage_mode_(storage_mode) { }
411
412   TargetAddressStorageMode storage_mode() { return storage_mode_; }
413
414  private:
415   TargetAddressStorageMode storage_mode_;
416 };
417
418
419 } }  // namespace v8::internal
420
421 #endif  // V8_ARM_CODE_STUBS_ARM_H_