Upstream version 10.39.225.0
[platform/framework/web/crosswalk.git] / src / v8 / src / arm / assembler-arm.cc
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // The original source code covered by the above license above has been
34 // modified significantly by Google Inc.
35 // Copyright 2012 the V8 project authors. All rights reserved.
36
37 #include "src/v8.h"
38
39 #if V8_TARGET_ARCH_ARM
40
41 #include "src/arm/assembler-arm-inl.h"
42 #include "src/base/bits.h"
43 #include "src/base/cpu.h"
44 #include "src/macro-assembler.h"
45 #include "src/serialize.h"
46
47 namespace v8 {
48 namespace internal {
49
50 // Get the CPU features enabled by the build. For cross compilation the
51 // preprocessor symbols CAN_USE_ARMV7_INSTRUCTIONS and CAN_USE_VFP3_INSTRUCTIONS
52 // can be defined to enable ARMv7 and VFPv3 instructions when building the
53 // snapshot.
54 static unsigned CpuFeaturesImpliedByCompiler() {
55   unsigned answer = 0;
56 #ifdef CAN_USE_ARMV7_INSTRUCTIONS
57   if (FLAG_enable_armv7) answer |= 1u << ARMv7;
58 #endif  // CAN_USE_ARMV7_INSTRUCTIONS
59 #ifdef CAN_USE_VFP3_INSTRUCTIONS
60   if (FLAG_enable_vfp3) answer |= 1u << VFP3 | 1u << ARMv7;
61 #endif  // CAN_USE_VFP3_INSTRUCTIONS
62 #ifdef CAN_USE_VFP32DREGS
63   if (FLAG_enable_32dregs) answer |= 1u << VFP32DREGS;
64 #endif  // CAN_USE_VFP32DREGS
65 #ifdef CAN_USE_NEON
66   if (FLAG_enable_neon) answer |= 1u << NEON;
67 #endif  // CAN_USE_VFP32DREGS
68   if ((answer & (1u << ARMv7)) && FLAG_enable_unaligned_accesses) {
69     answer |= 1u << UNALIGNED_ACCESSES;
70   }
71
72   return answer;
73 }
74
75
76 void CpuFeatures::ProbeImpl(bool cross_compile) {
77   supported_ |= CpuFeaturesImpliedByCompiler();
78   cache_line_size_ = 64;
79
80   // Only use statically determined features for cross compile (snapshot).
81   if (cross_compile) return;
82
83 #ifndef __arm__
84   // For the simulator build, use whatever the flags specify.
85   if (FLAG_enable_armv7) {
86     supported_ |= 1u << ARMv7;
87     if (FLAG_enable_vfp3) supported_ |= 1u << VFP3;
88     if (FLAG_enable_neon) supported_ |= 1u << NEON | 1u << VFP32DREGS;
89     if (FLAG_enable_sudiv) supported_ |= 1u << SUDIV;
90     if (FLAG_enable_movw_movt) supported_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS;
91     if (FLAG_enable_32dregs) supported_ |= 1u << VFP32DREGS;
92   }
93   if (FLAG_enable_mls) supported_ |= 1u << MLS;
94   if (FLAG_enable_unaligned_accesses) supported_ |= 1u << UNALIGNED_ACCESSES;
95
96 #else  // __arm__
97   // Probe for additional features at runtime.
98   base::CPU cpu;
99   if (FLAG_enable_vfp3 && cpu.has_vfp3()) {
100     // This implementation also sets the VFP flags if runtime
101     // detection of VFP returns true. VFPv3 implies ARMv7, see ARM DDI
102     // 0406B, page A1-6.
103     supported_ |= 1u << VFP3 | 1u << ARMv7;
104   }
105
106   if (FLAG_enable_neon && cpu.has_neon()) supported_ |= 1u << NEON;
107   if (FLAG_enable_sudiv && cpu.has_idiva()) supported_ |= 1u << SUDIV;
108   if (FLAG_enable_mls && cpu.has_thumb2()) supported_ |= 1u << MLS;
109
110   if (cpu.architecture() >= 7) {
111     if (FLAG_enable_armv7) supported_ |= 1u << ARMv7;
112     if (FLAG_enable_unaligned_accesses) supported_ |= 1u << UNALIGNED_ACCESSES;
113     // Use movw/movt for QUALCOMM ARMv7 cores.
114     if (FLAG_enable_movw_movt && cpu.implementer() == base::CPU::QUALCOMM) {
115       supported_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS;
116     }
117   }
118
119   // ARM Cortex-A9 and Cortex-A5 have 32 byte cachelines.
120   if (cpu.implementer() == base::CPU::ARM &&
121       (cpu.part() == base::CPU::ARM_CORTEX_A5 ||
122        cpu.part() == base::CPU::ARM_CORTEX_A9)) {
123     cache_line_size_ = 32;
124   }
125
126   if (FLAG_enable_32dregs && cpu.has_vfp3_d32()) supported_ |= 1u << VFP32DREGS;
127 #endif
128
129   DCHECK(!IsSupported(VFP3) || IsSupported(ARMv7));
130 }
131
132
133 void CpuFeatures::PrintTarget() {
134   const char* arm_arch = NULL;
135   const char* arm_target_type = "";
136   const char* arm_no_probe = "";
137   const char* arm_fpu = "";
138   const char* arm_thumb = "";
139   const char* arm_float_abi = NULL;
140
141 #if !defined __arm__
142   arm_target_type = " simulator";
143 #endif
144
145 #if defined ARM_TEST_NO_FEATURE_PROBE
146   arm_no_probe = " noprobe";
147 #endif
148
149 #if defined CAN_USE_ARMV7_INSTRUCTIONS
150   arm_arch = "arm v7";
151 #else
152   arm_arch = "arm v6";
153 #endif
154
155 #if defined CAN_USE_NEON
156   arm_fpu = " neon";
157 #elif defined CAN_USE_VFP3_INSTRUCTIONS
158 #  if defined CAN_USE_VFP32DREGS
159   arm_fpu = " vfp3";
160 #  else
161   arm_fpu = " vfp3-d16";
162 #  endif
163 #else
164   arm_fpu = " vfp2";
165 #endif
166
167 #ifdef __arm__
168   arm_float_abi = base::OS::ArmUsingHardFloat() ? "hard" : "softfp";
169 #elif USE_EABI_HARDFLOAT
170   arm_float_abi = "hard";
171 #else
172   arm_float_abi = "softfp";
173 #endif
174
175 #if defined __arm__ && (defined __thumb__) || (defined __thumb2__)
176   arm_thumb = " thumb";
177 #endif
178
179   printf("target%s%s %s%s%s %s\n",
180          arm_target_type, arm_no_probe, arm_arch, arm_fpu, arm_thumb,
181          arm_float_abi);
182 }
183
184
185 void CpuFeatures::PrintFeatures() {
186   printf(
187     "ARMv7=%d VFP3=%d VFP32DREGS=%d NEON=%d SUDIV=%d UNALIGNED_ACCESSES=%d "
188     "MOVW_MOVT_IMMEDIATE_LOADS=%d",
189     CpuFeatures::IsSupported(ARMv7),
190     CpuFeatures::IsSupported(VFP3),
191     CpuFeatures::IsSupported(VFP32DREGS),
192     CpuFeatures::IsSupported(NEON),
193     CpuFeatures::IsSupported(SUDIV),
194     CpuFeatures::IsSupported(UNALIGNED_ACCESSES),
195     CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS));
196 #ifdef __arm__
197   bool eabi_hardfloat = base::OS::ArmUsingHardFloat();
198 #elif USE_EABI_HARDFLOAT
199   bool eabi_hardfloat = true;
200 #else
201   bool eabi_hardfloat = false;
202 #endif
203     printf(" USE_EABI_HARDFLOAT=%d\n", eabi_hardfloat);
204 }
205
206
207 // -----------------------------------------------------------------------------
208 // Implementation of DwVfpRegister
209
210 const char* DwVfpRegister::AllocationIndexToString(int index) {
211   DCHECK(index >= 0 && index < NumAllocatableRegisters());
212   DCHECK(kScratchDoubleReg.code() - kDoubleRegZero.code() ==
213          kNumReservedRegisters - 1);
214   if (index >= kDoubleRegZero.code()) index += kNumReservedRegisters;
215   return VFPRegisters::Name(index, true);
216 }
217
218
219 // -----------------------------------------------------------------------------
220 // Implementation of RelocInfo
221
222 const int RelocInfo::kApplyMask = 0;
223
224
225 bool RelocInfo::IsCodedSpecially() {
226   // The deserializer needs to know whether a pointer is specially coded. Â Being
227   // specially coded on ARM means that it is a movw/movt instruction, or is an
228   // out of line constant pool entry. Â These only occur if
229   // FLAG_enable_ool_constant_pool is true.
230   return FLAG_enable_ool_constant_pool;
231 }
232
233
234 bool RelocInfo::IsInConstantPool() {
235   return Assembler::is_constant_pool_load(pc_);
236 }
237
238
239 void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
240   // Patch the code at the current address with the supplied instructions.
241   Instr* pc = reinterpret_cast<Instr*>(pc_);
242   Instr* instr = reinterpret_cast<Instr*>(instructions);
243   for (int i = 0; i < instruction_count; i++) {
244     *(pc + i) = *(instr + i);
245   }
246
247   // Indicate that code has changed.
248   CpuFeatures::FlushICache(pc_, instruction_count * Assembler::kInstrSize);
249 }
250
251
252 // Patch the code at the current PC with a call to the target address.
253 // Additional guard instructions can be added if required.
254 void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
255   // Patch the code at the current address with a call to the target.
256   UNIMPLEMENTED();
257 }
258
259
260 // -----------------------------------------------------------------------------
261 // Implementation of Operand and MemOperand
262 // See assembler-arm-inl.h for inlined constructors
263
264 Operand::Operand(Handle<Object> handle) {
265   AllowDeferredHandleDereference using_raw_address;
266   rm_ = no_reg;
267   // Verify all Objects referred by code are NOT in new space.
268   Object* obj = *handle;
269   if (obj->IsHeapObject()) {
270     DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
271     imm32_ = reinterpret_cast<intptr_t>(handle.location());
272     rmode_ = RelocInfo::EMBEDDED_OBJECT;
273   } else {
274     // no relocation needed
275     imm32_ = reinterpret_cast<intptr_t>(obj);
276     rmode_ = RelocInfo::NONE32;
277   }
278 }
279
280
281 Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) {
282   DCHECK(is_uint5(shift_imm));
283
284   rm_ = rm;
285   rs_ = no_reg;
286   shift_op_ = shift_op;
287   shift_imm_ = shift_imm & 31;
288
289   if ((shift_op == ROR) && (shift_imm == 0)) {
290     // ROR #0 is functionally equivalent to LSL #0 and this allow us to encode
291     // RRX as ROR #0 (See below).
292     shift_op = LSL;
293   } else if (shift_op == RRX) {
294     // encoded as ROR with shift_imm == 0
295     DCHECK(shift_imm == 0);
296     shift_op_ = ROR;
297     shift_imm_ = 0;
298   }
299 }
300
301
302 Operand::Operand(Register rm, ShiftOp shift_op, Register rs) {
303   DCHECK(shift_op != RRX);
304   rm_ = rm;
305   rs_ = no_reg;
306   shift_op_ = shift_op;
307   rs_ = rs;
308 }
309
310
311 MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) {
312   rn_ = rn;
313   rm_ = no_reg;
314   offset_ = offset;
315   am_ = am;
316 }
317
318
319 MemOperand::MemOperand(Register rn, Register rm, AddrMode am) {
320   rn_ = rn;
321   rm_ = rm;
322   shift_op_ = LSL;
323   shift_imm_ = 0;
324   am_ = am;
325 }
326
327
328 MemOperand::MemOperand(Register rn, Register rm,
329                        ShiftOp shift_op, int shift_imm, AddrMode am) {
330   DCHECK(is_uint5(shift_imm));
331   rn_ = rn;
332   rm_ = rm;
333   shift_op_ = shift_op;
334   shift_imm_ = shift_imm & 31;
335   am_ = am;
336 }
337
338
339 NeonMemOperand::NeonMemOperand(Register rn, AddrMode am, int align) {
340   DCHECK((am == Offset) || (am == PostIndex));
341   rn_ = rn;
342   rm_ = (am == Offset) ? pc : sp;
343   SetAlignment(align);
344 }
345
346
347 NeonMemOperand::NeonMemOperand(Register rn, Register rm, int align) {
348   rn_ = rn;
349   rm_ = rm;
350   SetAlignment(align);
351 }
352
353
354 void NeonMemOperand::SetAlignment(int align) {
355   switch (align) {
356     case 0:
357       align_ = 0;
358       break;
359     case 64:
360       align_ = 1;
361       break;
362     case 128:
363       align_ = 2;
364       break;
365     case 256:
366       align_ = 3;
367       break;
368     default:
369       UNREACHABLE();
370       align_ = 0;
371       break;
372   }
373 }
374
375
376 NeonListOperand::NeonListOperand(DoubleRegister base, int registers_count) {
377   base_ = base;
378   switch (registers_count) {
379     case 1:
380       type_ = nlt_1;
381       break;
382     case 2:
383       type_ = nlt_2;
384       break;
385     case 3:
386       type_ = nlt_3;
387       break;
388     case 4:
389       type_ = nlt_4;
390       break;
391     default:
392       UNREACHABLE();
393       type_ = nlt_1;
394       break;
395   }
396 }
397
398
399 // -----------------------------------------------------------------------------
400 // Specific instructions, constants, and masks.
401
402 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
403 // register r is not encoded.
404 const Instr kPushRegPattern =
405     al | B26 | 4 | NegPreIndex | kRegister_sp_Code * B16;
406 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
407 // register r is not encoded.
408 const Instr kPopRegPattern =
409     al | B26 | L | 4 | PostIndex | kRegister_sp_Code * B16;
410 // ldr rd, [pc, #offset]
411 const Instr kLdrPCImmedMask = 15 * B24 | 7 * B20 | 15 * B16;
412 const Instr kLdrPCImmedPattern = 5 * B24 | L | kRegister_pc_Code * B16;
413 // ldr rd, [pp, #offset]
414 const Instr kLdrPpImmedMask = 15 * B24 | 7 * B20 | 15 * B16;
415 const Instr kLdrPpImmedPattern = 5 * B24 | L | kRegister_r8_Code * B16;
416 // ldr rd, [pp, rn]
417 const Instr kLdrPpRegMask = 15 * B24 | 7 * B20 | 15 * B16;
418 const Instr kLdrPpRegPattern = 7 * B24 | L | kRegister_r8_Code * B16;
419 // vldr dd, [pc, #offset]
420 const Instr kVldrDPCMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8;
421 const Instr kVldrDPCPattern = 13 * B24 | L | kRegister_pc_Code * B16 | 11 * B8;
422 // vldr dd, [pp, #offset]
423 const Instr kVldrDPpMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8;
424 const Instr kVldrDPpPattern = 13 * B24 | L | kRegister_r8_Code * B16 | 11 * B8;
425 // blxcc rm
426 const Instr kBlxRegMask =
427     15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4;
428 const Instr kBlxRegPattern =
429     B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX;
430 const Instr kBlxIp = al | kBlxRegPattern | ip.code();
431 const Instr kMovMvnMask = 0x6d * B21 | 0xf * B16;
432 const Instr kMovMvnPattern = 0xd * B21;
433 const Instr kMovMvnFlip = B22;
434 const Instr kMovLeaveCCMask = 0xdff * B16;
435 const Instr kMovLeaveCCPattern = 0x1a0 * B16;
436 const Instr kMovwPattern = 0x30 * B20;
437 const Instr kMovtPattern = 0x34 * B20;
438 const Instr kMovwLeaveCCFlip = 0x5 * B21;
439 const Instr kMovImmedMask = 0x7f * B21;
440 const Instr kMovImmedPattern = 0x1d * B21;
441 const Instr kOrrImmedMask = 0x7f * B21;
442 const Instr kOrrImmedPattern = 0x1c * B21;
443 const Instr kCmpCmnMask = 0xdd * B20 | 0xf * B12;
444 const Instr kCmpCmnPattern = 0x15 * B20;
445 const Instr kCmpCmnFlip = B21;
446 const Instr kAddSubFlip = 0x6 * B21;
447 const Instr kAndBicFlip = 0xe * B21;
448
449 // A mask for the Rd register for push, pop, ldr, str instructions.
450 const Instr kLdrRegFpOffsetPattern =
451     al | B26 | L | Offset | kRegister_fp_Code * B16;
452 const Instr kStrRegFpOffsetPattern =
453     al | B26 | Offset | kRegister_fp_Code * B16;
454 const Instr kLdrRegFpNegOffsetPattern =
455     al | B26 | L | NegOffset | kRegister_fp_Code * B16;
456 const Instr kStrRegFpNegOffsetPattern =
457     al | B26 | NegOffset | kRegister_fp_Code * B16;
458 const Instr kLdrStrInstrTypeMask = 0xffff0000;
459
460
461 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
462     : AssemblerBase(isolate, buffer, buffer_size),
463       recorded_ast_id_(TypeFeedbackId::None()),
464       constant_pool_builder_(),
465       positions_recorder_(this) {
466   reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
467   num_pending_32_bit_reloc_info_ = 0;
468   num_pending_64_bit_reloc_info_ = 0;
469   next_buffer_check_ = 0;
470   const_pool_blocked_nesting_ = 0;
471   no_const_pool_before_ = 0;
472   first_const_pool_32_use_ = -1;
473   first_const_pool_64_use_ = -1;
474   last_bound_pos_ = 0;
475   constant_pool_available_ = !FLAG_enable_ool_constant_pool;
476   ClearRecordedAstId();
477 }
478
479
480 Assembler::~Assembler() {
481   DCHECK(const_pool_blocked_nesting_ == 0);
482 }
483
484
485 void Assembler::GetCode(CodeDesc* desc) {
486   if (!FLAG_enable_ool_constant_pool) {
487     // Emit constant pool if necessary.
488     CheckConstPool(true, false);
489     DCHECK(num_pending_32_bit_reloc_info_ == 0);
490     DCHECK(num_pending_64_bit_reloc_info_ == 0);
491   }
492   // Set up code descriptor.
493   desc->buffer = buffer_;
494   desc->buffer_size = buffer_size_;
495   desc->instr_size = pc_offset();
496   desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
497   desc->origin = this;
498 }
499
500
501 void Assembler::Align(int m) {
502   DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
503   while ((pc_offset() & (m - 1)) != 0) {
504     nop();
505   }
506 }
507
508
509 void Assembler::CodeTargetAlign() {
510   // Preferred alignment of jump targets on some ARM chips.
511   Align(8);
512 }
513
514
515 Condition Assembler::GetCondition(Instr instr) {
516   return Instruction::ConditionField(instr);
517 }
518
519
520 bool Assembler::IsBranch(Instr instr) {
521   return (instr & (B27 | B25)) == (B27 | B25);
522 }
523
524
525 int Assembler::GetBranchOffset(Instr instr) {
526   DCHECK(IsBranch(instr));
527   // Take the jump offset in the lower 24 bits, sign extend it and multiply it
528   // with 4 to get the offset in bytes.
529   return ((instr & kImm24Mask) << 8) >> 6;
530 }
531
532
533 bool Assembler::IsLdrRegisterImmediate(Instr instr) {
534   return (instr & (B27 | B26 | B25 | B22 | B20)) == (B26 | B20);
535 }
536
537
538 bool Assembler::IsVldrDRegisterImmediate(Instr instr) {
539   return (instr & (15 * B24 | 3 * B20 | 15 * B8)) == (13 * B24 | B20 | 11 * B8);
540 }
541
542
543 int Assembler::GetLdrRegisterImmediateOffset(Instr instr) {
544   DCHECK(IsLdrRegisterImmediate(instr));
545   bool positive = (instr & B23) == B23;
546   int offset = instr & kOff12Mask;  // Zero extended offset.
547   return positive ? offset : -offset;
548 }
549
550
551 int Assembler::GetVldrDRegisterImmediateOffset(Instr instr) {
552   DCHECK(IsVldrDRegisterImmediate(instr));
553   bool positive = (instr & B23) == B23;
554   int offset = instr & kOff8Mask;  // Zero extended offset.
555   offset <<= 2;
556   return positive ? offset : -offset;
557 }
558
559
560 Instr Assembler::SetLdrRegisterImmediateOffset(Instr instr, int offset) {
561   DCHECK(IsLdrRegisterImmediate(instr));
562   bool positive = offset >= 0;
563   if (!positive) offset = -offset;
564   DCHECK(is_uint12(offset));
565   // Set bit indicating whether the offset should be added.
566   instr = (instr & ~B23) | (positive ? B23 : 0);
567   // Set the actual offset.
568   return (instr & ~kOff12Mask) | offset;
569 }
570
571
572 Instr Assembler::SetVldrDRegisterImmediateOffset(Instr instr, int offset) {
573   DCHECK(IsVldrDRegisterImmediate(instr));
574   DCHECK((offset & ~3) == offset);  // Must be 64-bit aligned.
575   bool positive = offset >= 0;
576   if (!positive) offset = -offset;
577   DCHECK(is_uint10(offset));
578   // Set bit indicating whether the offset should be added.
579   instr = (instr & ~B23) | (positive ? B23 : 0);
580   // Set the actual offset. Its bottom 2 bits are zero.
581   return (instr & ~kOff8Mask) | (offset >> 2);
582 }
583
584
585 bool Assembler::IsStrRegisterImmediate(Instr instr) {
586   return (instr & (B27 | B26 | B25 | B22 | B20)) == B26;
587 }
588
589
590 Instr Assembler::SetStrRegisterImmediateOffset(Instr instr, int offset) {
591   DCHECK(IsStrRegisterImmediate(instr));
592   bool positive = offset >= 0;
593   if (!positive) offset = -offset;
594   DCHECK(is_uint12(offset));
595   // Set bit indicating whether the offset should be added.
596   instr = (instr & ~B23) | (positive ? B23 : 0);
597   // Set the actual offset.
598   return (instr & ~kOff12Mask) | offset;
599 }
600
601
602 bool Assembler::IsAddRegisterImmediate(Instr instr) {
603   return (instr & (B27 | B26 | B25 | B24 | B23 | B22 | B21)) == (B25 | B23);
604 }
605
606
607 Instr Assembler::SetAddRegisterImmediateOffset(Instr instr, int offset) {
608   DCHECK(IsAddRegisterImmediate(instr));
609   DCHECK(offset >= 0);
610   DCHECK(is_uint12(offset));
611   // Set the offset.
612   return (instr & ~kOff12Mask) | offset;
613 }
614
615
616 Register Assembler::GetRd(Instr instr) {
617   Register reg;
618   reg.code_ = Instruction::RdValue(instr);
619   return reg;
620 }
621
622
623 Register Assembler::GetRn(Instr instr) {
624   Register reg;
625   reg.code_ = Instruction::RnValue(instr);
626   return reg;
627 }
628
629
630 Register Assembler::GetRm(Instr instr) {
631   Register reg;
632   reg.code_ = Instruction::RmValue(instr);
633   return reg;
634 }
635
636
637 Instr Assembler::GetConsantPoolLoadPattern() {
638   if (FLAG_enable_ool_constant_pool) {
639     return kLdrPpImmedPattern;
640   } else {
641     return kLdrPCImmedPattern;
642   }
643 }
644
645
646 Instr Assembler::GetConsantPoolLoadMask() {
647   if (FLAG_enable_ool_constant_pool) {
648     return kLdrPpImmedMask;
649   } else {
650     return kLdrPCImmedMask;
651   }
652 }
653
654
655 bool Assembler::IsPush(Instr instr) {
656   return ((instr & ~kRdMask) == kPushRegPattern);
657 }
658
659
660 bool Assembler::IsPop(Instr instr) {
661   return ((instr & ~kRdMask) == kPopRegPattern);
662 }
663
664
665 bool Assembler::IsStrRegFpOffset(Instr instr) {
666   return ((instr & kLdrStrInstrTypeMask) == kStrRegFpOffsetPattern);
667 }
668
669
670 bool Assembler::IsLdrRegFpOffset(Instr instr) {
671   return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpOffsetPattern);
672 }
673
674
675 bool Assembler::IsStrRegFpNegOffset(Instr instr) {
676   return ((instr & kLdrStrInstrTypeMask) == kStrRegFpNegOffsetPattern);
677 }
678
679
680 bool Assembler::IsLdrRegFpNegOffset(Instr instr) {
681   return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpNegOffsetPattern);
682 }
683
684
685 bool Assembler::IsLdrPcImmediateOffset(Instr instr) {
686   // Check the instruction is indeed a
687   // ldr<cond> <Rd>, [pc +/- offset_12].
688   return (instr & kLdrPCImmedMask) == kLdrPCImmedPattern;
689 }
690
691
692 bool Assembler::IsLdrPpImmediateOffset(Instr instr) {
693   // Check the instruction is indeed a
694   // ldr<cond> <Rd>, [pp +/- offset_12].
695   return (instr & kLdrPpImmedMask) == kLdrPpImmedPattern;
696 }
697
698
699 bool Assembler::IsLdrPpRegOffset(Instr instr) {
700   // Check the instruction is indeed a
701   // ldr<cond> <Rd>, [pp, +/- <Rm>].
702   return (instr & kLdrPpRegMask) == kLdrPpRegPattern;
703 }
704
705
706 Instr Assembler::GetLdrPpRegOffsetPattern() { return kLdrPpRegPattern; }
707
708
709 bool Assembler::IsVldrDPcImmediateOffset(Instr instr) {
710   // Check the instruction is indeed a
711   // vldr<cond> <Dd>, [pc +/- offset_10].
712   return (instr & kVldrDPCMask) == kVldrDPCPattern;
713 }
714
715
716 bool Assembler::IsVldrDPpImmediateOffset(Instr instr) {
717   // Check the instruction is indeed a
718   // vldr<cond> <Dd>, [pp +/- offset_10].
719   return (instr & kVldrDPpMask) == kVldrDPpPattern;
720 }
721
722
723 bool Assembler::IsBlxReg(Instr instr) {
724   // Check the instruction is indeed a
725   // blxcc <Rm>
726   return (instr & kBlxRegMask) == kBlxRegPattern;
727 }
728
729
730 bool Assembler::IsBlxIp(Instr instr) {
731   // Check the instruction is indeed a
732   // blx ip
733   return instr == kBlxIp;
734 }
735
736
737 bool Assembler::IsTstImmediate(Instr instr) {
738   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
739       (I | TST | S);
740 }
741
742
743 bool Assembler::IsCmpRegister(Instr instr) {
744   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask | B4)) ==
745       (CMP | S);
746 }
747
748
749 bool Assembler::IsCmpImmediate(Instr instr) {
750   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
751       (I | CMP | S);
752 }
753
754
755 Register Assembler::GetCmpImmediateRegister(Instr instr) {
756   DCHECK(IsCmpImmediate(instr));
757   return GetRn(instr);
758 }
759
760
761 int Assembler::GetCmpImmediateRawImmediate(Instr instr) {
762   DCHECK(IsCmpImmediate(instr));
763   return instr & kOff12Mask;
764 }
765
766
767 // Labels refer to positions in the (to be) generated code.
768 // There are bound, linked, and unused labels.
769 //
770 // Bound labels refer to known positions in the already
771 // generated code. pos() is the position the label refers to.
772 //
773 // Linked labels refer to unknown positions in the code
774 // to be generated; pos() is the position of the last
775 // instruction using the label.
776 //
777 // The linked labels form a link chain by making the branch offset
778 // in the instruction steam to point to the previous branch
779 // instruction using the same label.
780 //
781 // The link chain is terminated by a branch offset pointing to the
782 // same position.
783
784
785 int Assembler::target_at(int pos) {
786   Instr instr = instr_at(pos);
787   if (is_uint24(instr)) {
788     // Emitted link to a label, not part of a branch.
789     return instr;
790   }
791   DCHECK((instr & 7*B25) == 5*B25);  // b, bl, or blx imm24
792   int imm26 = ((instr & kImm24Mask) << 8) >> 6;
793   if ((Instruction::ConditionField(instr) == kSpecialCondition) &&
794       ((instr & B24) != 0)) {
795     // blx uses bit 24 to encode bit 2 of imm26
796     imm26 += 2;
797   }
798   return pos + kPcLoadDelta + imm26;
799 }
800
801
802 void Assembler::target_at_put(int pos, int target_pos) {
803   Instr instr = instr_at(pos);
804   if (is_uint24(instr)) {
805     DCHECK(target_pos == pos || target_pos >= 0);
806     // Emitted link to a label, not part of a branch.
807     // Load the position of the label relative to the generated code object
808     // pointer in a register.
809
810     // Here are the instructions we need to emit:
811     //   For ARMv7: target24 => target16_1:target16_0
812     //      movw dst, #target16_0
813     //      movt dst, #target16_1
814     //   For ARMv6: target24 => target8_2:target8_1:target8_0
815     //      mov dst, #target8_0
816     //      orr dst, dst, #target8_1 << 8
817     //      orr dst, dst, #target8_2 << 16
818
819     // We extract the destination register from the emitted nop instruction.
820     Register dst = Register::from_code(
821         Instruction::RmValue(instr_at(pos + kInstrSize)));
822     DCHECK(IsNop(instr_at(pos + kInstrSize), dst.code()));
823     uint32_t target24 = target_pos + (Code::kHeaderSize - kHeapObjectTag);
824     DCHECK(is_uint24(target24));
825     if (is_uint8(target24)) {
826       // If the target fits in a byte then only patch with a mov
827       // instruction.
828       CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
829                           1,
830                           CodePatcher::DONT_FLUSH);
831       patcher.masm()->mov(dst, Operand(target24));
832     } else {
833       uint16_t target16_0 = target24 & kImm16Mask;
834       uint16_t target16_1 = target24 >> 16;
835       if (CpuFeatures::IsSupported(ARMv7)) {
836         // Patch with movw/movt.
837         if (target16_1 == 0) {
838           CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
839                               1,
840                               CodePatcher::DONT_FLUSH);
841           patcher.masm()->movw(dst, target16_0);
842         } else {
843           CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
844                               2,
845                               CodePatcher::DONT_FLUSH);
846           patcher.masm()->movw(dst, target16_0);
847           patcher.masm()->movt(dst, target16_1);
848         }
849       } else {
850         // Patch with a sequence of mov/orr/orr instructions.
851         uint8_t target8_0 = target16_0 & kImm8Mask;
852         uint8_t target8_1 = target16_0 >> 8;
853         uint8_t target8_2 = target16_1 & kImm8Mask;
854         if (target8_2 == 0) {
855           CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
856                               2,
857                               CodePatcher::DONT_FLUSH);
858           patcher.masm()->mov(dst, Operand(target8_0));
859           patcher.masm()->orr(dst, dst, Operand(target8_1 << 8));
860         } else {
861           CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
862                               3,
863                               CodePatcher::DONT_FLUSH);
864           patcher.masm()->mov(dst, Operand(target8_0));
865           patcher.masm()->orr(dst, dst, Operand(target8_1 << 8));
866           patcher.masm()->orr(dst, dst, Operand(target8_2 << 16));
867         }
868       }
869     }
870     return;
871   }
872   int imm26 = target_pos - (pos + kPcLoadDelta);
873   DCHECK((instr & 7*B25) == 5*B25);  // b, bl, or blx imm24
874   if (Instruction::ConditionField(instr) == kSpecialCondition) {
875     // blx uses bit 24 to encode bit 2 of imm26
876     DCHECK((imm26 & 1) == 0);
877     instr = (instr & ~(B24 | kImm24Mask)) | ((imm26 & 2) >> 1)*B24;
878   } else {
879     DCHECK((imm26 & 3) == 0);
880     instr &= ~kImm24Mask;
881   }
882   int imm24 = imm26 >> 2;
883   DCHECK(is_int24(imm24));
884   instr_at_put(pos, instr | (imm24 & kImm24Mask));
885 }
886
887
888 void Assembler::print(Label* L) {
889   if (L->is_unused()) {
890     PrintF("unused label\n");
891   } else if (L->is_bound()) {
892     PrintF("bound label to %d\n", L->pos());
893   } else if (L->is_linked()) {
894     Label l = *L;
895     PrintF("unbound label");
896     while (l.is_linked()) {
897       PrintF("@ %d ", l.pos());
898       Instr instr = instr_at(l.pos());
899       if ((instr & ~kImm24Mask) == 0) {
900         PrintF("value\n");
901       } else {
902         DCHECK((instr & 7*B25) == 5*B25);  // b, bl, or blx
903         Condition cond = Instruction::ConditionField(instr);
904         const char* b;
905         const char* c;
906         if (cond == kSpecialCondition) {
907           b = "blx";
908           c = "";
909         } else {
910           if ((instr & B24) != 0)
911             b = "bl";
912           else
913             b = "b";
914
915           switch (cond) {
916             case eq: c = "eq"; break;
917             case ne: c = "ne"; break;
918             case hs: c = "hs"; break;
919             case lo: c = "lo"; break;
920             case mi: c = "mi"; break;
921             case pl: c = "pl"; break;
922             case vs: c = "vs"; break;
923             case vc: c = "vc"; break;
924             case hi: c = "hi"; break;
925             case ls: c = "ls"; break;
926             case ge: c = "ge"; break;
927             case lt: c = "lt"; break;
928             case gt: c = "gt"; break;
929             case le: c = "le"; break;
930             case al: c = ""; break;
931             default:
932               c = "";
933               UNREACHABLE();
934           }
935         }
936         PrintF("%s%s\n", b, c);
937       }
938       next(&l);
939     }
940   } else {
941     PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
942   }
943 }
944
945
946 void Assembler::bind_to(Label* L, int pos) {
947   DCHECK(0 <= pos && pos <= pc_offset());  // must have a valid binding position
948   while (L->is_linked()) {
949     int fixup_pos = L->pos();
950     next(L);  // call next before overwriting link with target at fixup_pos
951     target_at_put(fixup_pos, pos);
952   }
953   L->bind_to(pos);
954
955   // Keep track of the last bound label so we don't eliminate any instructions
956   // before a bound label.
957   if (pos > last_bound_pos_)
958     last_bound_pos_ = pos;
959 }
960
961
962 void Assembler::bind(Label* L) {
963   DCHECK(!L->is_bound());  // label can only be bound once
964   bind_to(L, pc_offset());
965 }
966
967
968 void Assembler::next(Label* L) {
969   DCHECK(L->is_linked());
970   int link = target_at(L->pos());
971   if (link == L->pos()) {
972     // Branch target points to the same instuction. This is the end of the link
973     // chain.
974     L->Unuse();
975   } else {
976     DCHECK(link >= 0);
977     L->link_to(link);
978   }
979 }
980
981
982 // Low-level code emission routines depending on the addressing mode.
983 // If this returns true then you have to use the rotate_imm and immed_8
984 // that it returns, because it may have already changed the instruction
985 // to match them!
986 static bool fits_shifter(uint32_t imm32,
987                          uint32_t* rotate_imm,
988                          uint32_t* immed_8,
989                          Instr* instr) {
990   // imm32 must be unsigned.
991   for (int rot = 0; rot < 16; rot++) {
992     uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot));
993     if ((imm8 <= 0xff)) {
994       *rotate_imm = rot;
995       *immed_8 = imm8;
996       return true;
997     }
998   }
999   // If the opcode is one with a complementary version and the complementary
1000   // immediate fits, change the opcode.
1001   if (instr != NULL) {
1002     if ((*instr & kMovMvnMask) == kMovMvnPattern) {
1003       if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
1004         *instr ^= kMovMvnFlip;
1005         return true;
1006       } else if ((*instr & kMovLeaveCCMask) == kMovLeaveCCPattern) {
1007         if (CpuFeatures::IsSupported(ARMv7)) {
1008           if (imm32 < 0x10000) {
1009             *instr ^= kMovwLeaveCCFlip;
1010             *instr |= Assembler::EncodeMovwImmediate(imm32);
1011             *rotate_imm = *immed_8 = 0;  // Not used for movw.
1012             return true;
1013           }
1014         }
1015       }
1016     } else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) {
1017       if (fits_shifter(-static_cast<int>(imm32), rotate_imm, immed_8, NULL)) {
1018         *instr ^= kCmpCmnFlip;
1019         return true;
1020       }
1021     } else {
1022       Instr alu_insn = (*instr & kALUMask);
1023       if (alu_insn == ADD ||
1024           alu_insn == SUB) {
1025         if (fits_shifter(-static_cast<int>(imm32), rotate_imm, immed_8, NULL)) {
1026           *instr ^= kAddSubFlip;
1027           return true;
1028         }
1029       } else if (alu_insn == AND ||
1030                  alu_insn == BIC) {
1031         if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
1032           *instr ^= kAndBicFlip;
1033           return true;
1034         }
1035       }
1036     }
1037   }
1038   return false;
1039 }
1040
1041
1042 // We have to use the temporary register for things that can be relocated even
1043 // if they can be encoded in the ARM's 12 bits of immediate-offset instruction
1044 // space.  There is no guarantee that the relocated location can be similarly
1045 // encoded.
1046 bool Operand::must_output_reloc_info(const Assembler* assembler) const {
1047   if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
1048     if (assembler != NULL && assembler->predictable_code_size()) return true;
1049     return assembler->serializer_enabled();
1050   } else if (RelocInfo::IsNone(rmode_)) {
1051     return false;
1052   }
1053   return true;
1054 }
1055
1056
1057 static bool use_mov_immediate_load(const Operand& x,
1058                                    const Assembler* assembler) {
1059   if (assembler != NULL && !assembler->is_constant_pool_available()) {
1060     return true;
1061   } else if (CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS) &&
1062              (assembler == NULL || !assembler->predictable_code_size())) {
1063     // Prefer movw / movt to constant pool if it is more efficient on the CPU.
1064     return true;
1065   } else if (x.must_output_reloc_info(assembler)) {
1066     // Prefer constant pool if data is likely to be patched.
1067     return false;
1068   } else {
1069     // Otherwise, use immediate load if movw / movt is available.
1070     return CpuFeatures::IsSupported(ARMv7);
1071   }
1072 }
1073
1074
1075 int Operand::instructions_required(const Assembler* assembler,
1076                                    Instr instr) const {
1077   if (rm_.is_valid()) return 1;
1078   uint32_t dummy1, dummy2;
1079   if (must_output_reloc_info(assembler) ||
1080       !fits_shifter(imm32_, &dummy1, &dummy2, &instr)) {
1081     // The immediate operand cannot be encoded as a shifter operand, or use of
1082     // constant pool is required.  First account for the instructions required
1083     // for the constant pool or immediate load
1084     int instructions;
1085     if (use_mov_immediate_load(*this, assembler)) {
1086       // A movw / movt or mov / orr immediate load.
1087       instructions = CpuFeatures::IsSupported(ARMv7) ? 2 : 4;
1088     } else if (assembler != NULL && assembler->use_extended_constant_pool()) {
1089       // An extended constant pool load.
1090       instructions = CpuFeatures::IsSupported(ARMv7) ? 3 : 5;
1091     } else {
1092       // A small constant pool load.
1093       instructions = 1;
1094     }
1095
1096     if ((instr & ~kCondMask) != 13 * B21) {  // mov, S not set
1097       // For a mov or mvn instruction which doesn't set the condition
1098       // code, the constant pool or immediate load is enough, otherwise we need
1099       // to account for the actual instruction being requested.
1100       instructions += 1;
1101     }
1102     return instructions;
1103   } else {
1104     // No use of constant pool and the immediate operand can be encoded as a
1105     // shifter operand.
1106     return 1;
1107   }
1108 }
1109
1110
1111 void Assembler::move_32_bit_immediate(Register rd,
1112                                       const Operand& x,
1113                                       Condition cond) {
1114   RelocInfo rinfo(pc_, x.rmode_, x.imm32_, NULL);
1115   uint32_t imm32 = static_cast<uint32_t>(x.imm32_);
1116   if (x.must_output_reloc_info(this)) {
1117     RecordRelocInfo(rinfo);
1118   }
1119
1120   if (use_mov_immediate_load(x, this)) {
1121     Register target = rd.code() == pc.code() ? ip : rd;
1122     if (CpuFeatures::IsSupported(ARMv7)) {
1123       if (!FLAG_enable_ool_constant_pool && x.must_output_reloc_info(this)) {
1124         // Make sure the movw/movt doesn't get separated.
1125         BlockConstPoolFor(2);
1126       }
1127       movw(target, imm32 & 0xffff, cond);
1128       movt(target, imm32 >> 16, cond);
1129     } else {
1130       DCHECK(FLAG_enable_ool_constant_pool);
1131       mov(target, Operand(imm32 & kImm8Mask), LeaveCC, cond);
1132       orr(target, target, Operand(imm32 & (kImm8Mask << 8)), LeaveCC, cond);
1133       orr(target, target, Operand(imm32 & (kImm8Mask << 16)), LeaveCC, cond);
1134       orr(target, target, Operand(imm32 & (kImm8Mask << 24)), LeaveCC, cond);
1135     }
1136     if (target.code() != rd.code()) {
1137       mov(rd, target, LeaveCC, cond);
1138     }
1139   } else {
1140     DCHECK(is_constant_pool_available());
1141     ConstantPoolArray::LayoutSection section = ConstantPoolAddEntry(rinfo);
1142     if (section == ConstantPoolArray::EXTENDED_SECTION) {
1143       DCHECK(FLAG_enable_ool_constant_pool);
1144       Register target = rd.code() == pc.code() ? ip : rd;
1145       // Emit instructions to load constant pool offset.
1146       if (CpuFeatures::IsSupported(ARMv7)) {
1147         movw(target, 0, cond);
1148         movt(target, 0, cond);
1149       } else {
1150         mov(target, Operand(0), LeaveCC, cond);
1151         orr(target, target, Operand(0), LeaveCC, cond);
1152         orr(target, target, Operand(0), LeaveCC, cond);
1153         orr(target, target, Operand(0), LeaveCC, cond);
1154       }
1155       // Load from constant pool at offset.
1156       ldr(rd, MemOperand(pp, target), cond);
1157     } else {
1158       DCHECK(section == ConstantPoolArray::SMALL_SECTION);
1159       ldr(rd, MemOperand(FLAG_enable_ool_constant_pool ? pp : pc, 0), cond);
1160     }
1161   }
1162 }
1163
1164
1165 void Assembler::addrmod1(Instr instr,
1166                          Register rn,
1167                          Register rd,
1168                          const Operand& x) {
1169   CheckBuffer();
1170   DCHECK((instr & ~(kCondMask | kOpCodeMask | S)) == 0);
1171   if (!x.rm_.is_valid()) {
1172     // Immediate.
1173     uint32_t rotate_imm;
1174     uint32_t immed_8;
1175     if (x.must_output_reloc_info(this) ||
1176         !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
1177       // The immediate operand cannot be encoded as a shifter operand, so load
1178       // it first to register ip and change the original instruction to use ip.
1179       // However, if the original instruction is a 'mov rd, x' (not setting the
1180       // condition code), then replace it with a 'ldr rd, [pc]'.
1181       CHECK(!rn.is(ip));  // rn should never be ip, or will be trashed
1182       Condition cond = Instruction::ConditionField(instr);
1183       if ((instr & ~kCondMask) == 13*B21) {  // mov, S not set
1184         move_32_bit_immediate(rd, x, cond);
1185       } else {
1186         mov(ip, x, LeaveCC, cond);
1187         addrmod1(instr, rn, rd, Operand(ip));
1188       }
1189       return;
1190     }
1191     instr |= I | rotate_imm*B8 | immed_8;
1192   } else if (!x.rs_.is_valid()) {
1193     // Immediate shift.
1194     instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
1195   } else {
1196     // Register shift.
1197     DCHECK(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc));
1198     instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code();
1199   }
1200   emit(instr | rn.code()*B16 | rd.code()*B12);
1201   if (rn.is(pc) || x.rm_.is(pc)) {
1202     // Block constant pool emission for one instruction after reading pc.
1203     BlockConstPoolFor(1);
1204   }
1205 }
1206
1207
1208 void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) {
1209   DCHECK((instr & ~(kCondMask | B | L)) == B26);
1210   int am = x.am_;
1211   if (!x.rm_.is_valid()) {
1212     // Immediate offset.
1213     int offset_12 = x.offset_;
1214     if (offset_12 < 0) {
1215       offset_12 = -offset_12;
1216       am ^= U;
1217     }
1218     if (!is_uint12(offset_12)) {
1219       // Immediate offset cannot be encoded, load it first to register ip
1220       // rn (and rd in a load) should never be ip, or will be trashed.
1221       DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
1222       mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
1223       addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_));
1224       return;
1225     }
1226     DCHECK(offset_12 >= 0);  // no masking needed
1227     instr |= offset_12;
1228   } else {
1229     // Register offset (shift_imm_ and shift_op_ are 0) or scaled
1230     // register offset the constructors make sure than both shift_imm_
1231     // and shift_op_ are initialized.
1232     DCHECK(!x.rm_.is(pc));
1233     instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
1234   }
1235   DCHECK((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
1236   emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
1237 }
1238
1239
1240 void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) {
1241   DCHECK((instr & ~(kCondMask | L | S6 | H)) == (B4 | B7));
1242   DCHECK(x.rn_.is_valid());
1243   int am = x.am_;
1244   if (!x.rm_.is_valid()) {
1245     // Immediate offset.
1246     int offset_8 = x.offset_;
1247     if (offset_8 < 0) {
1248       offset_8 = -offset_8;
1249       am ^= U;
1250     }
1251     if (!is_uint8(offset_8)) {
1252       // Immediate offset cannot be encoded, load it first to register ip
1253       // rn (and rd in a load) should never be ip, or will be trashed.
1254       DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
1255       mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
1256       addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
1257       return;
1258     }
1259     DCHECK(offset_8 >= 0);  // no masking needed
1260     instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf);
1261   } else if (x.shift_imm_ != 0) {
1262     // Scaled register offset not supported, load index first
1263     // rn (and rd in a load) should never be ip, or will be trashed.
1264     DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
1265     mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC,
1266         Instruction::ConditionField(instr));
1267     addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
1268     return;
1269   } else {
1270     // Register offset.
1271     DCHECK((am & (P|W)) == P || !x.rm_.is(pc));  // no pc index with writeback
1272     instr |= x.rm_.code();
1273   }
1274   DCHECK((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
1275   emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
1276 }
1277
1278
1279 void Assembler::addrmod4(Instr instr, Register rn, RegList rl) {
1280   DCHECK((instr & ~(kCondMask | P | U | W | L)) == B27);
1281   DCHECK(rl != 0);
1282   DCHECK(!rn.is(pc));
1283   emit(instr | rn.code()*B16 | rl);
1284 }
1285
1286
1287 void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) {
1288   // Unindexed addressing is not encoded by this function.
1289   DCHECK_EQ((B27 | B26),
1290             (instr & ~(kCondMask | kCoprocessorMask | P | U | N | W | L)));
1291   DCHECK(x.rn_.is_valid() && !x.rm_.is_valid());
1292   int am = x.am_;
1293   int offset_8 = x.offset_;
1294   DCHECK((offset_8 & 3) == 0);  // offset must be an aligned word offset
1295   offset_8 >>= 2;
1296   if (offset_8 < 0) {
1297     offset_8 = -offset_8;
1298     am ^= U;
1299   }
1300   DCHECK(is_uint8(offset_8));  // unsigned word offset must fit in a byte
1301   DCHECK((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
1302
1303   // Post-indexed addressing requires W == 1; different than in addrmod2/3.
1304   if ((am & P) == 0)
1305     am |= W;
1306
1307   DCHECK(offset_8 >= 0);  // no masking needed
1308   emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8);
1309 }
1310
1311
1312 int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
1313   int target_pos;
1314   if (L->is_bound()) {
1315     target_pos = L->pos();
1316   } else {
1317     if (L->is_linked()) {
1318       // Point to previous instruction that uses the link.
1319       target_pos = L->pos();
1320     } else {
1321       // First entry of the link chain points to itself.
1322       target_pos = pc_offset();
1323     }
1324     L->link_to(pc_offset());
1325   }
1326
1327   // Block the emission of the constant pool, since the branch instruction must
1328   // be emitted at the pc offset recorded by the label.
1329   BlockConstPoolFor(1);
1330   return target_pos - (pc_offset() + kPcLoadDelta);
1331 }
1332
1333
1334 // Branch instructions.
1335 void Assembler::b(int branch_offset, Condition cond) {
1336   DCHECK((branch_offset & 3) == 0);
1337   int imm24 = branch_offset >> 2;
1338   DCHECK(is_int24(imm24));
1339   emit(cond | B27 | B25 | (imm24 & kImm24Mask));
1340
1341   if (cond == al) {
1342     // Dead code is a good location to emit the constant pool.
1343     CheckConstPool(false, false);
1344   }
1345 }
1346
1347
1348 void Assembler::bl(int branch_offset, Condition cond) {
1349   positions_recorder()->WriteRecordedPositions();
1350   DCHECK((branch_offset & 3) == 0);
1351   int imm24 = branch_offset >> 2;
1352   DCHECK(is_int24(imm24));
1353   emit(cond | B27 | B25 | B24 | (imm24 & kImm24Mask));
1354 }
1355
1356
1357 void Assembler::blx(int branch_offset) {  // v5 and above
1358   positions_recorder()->WriteRecordedPositions();
1359   DCHECK((branch_offset & 1) == 0);
1360   int h = ((branch_offset & 2) >> 1)*B24;
1361   int imm24 = branch_offset >> 2;
1362   DCHECK(is_int24(imm24));
1363   emit(kSpecialCondition | B27 | B25 | h | (imm24 & kImm24Mask));
1364 }
1365
1366
1367 void Assembler::blx(Register target, Condition cond) {  // v5 and above
1368   positions_recorder()->WriteRecordedPositions();
1369   DCHECK(!target.is(pc));
1370   emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BLX | target.code());
1371 }
1372
1373
1374 void Assembler::bx(Register target, Condition cond) {  // v5 and above, plus v4t
1375   positions_recorder()->WriteRecordedPositions();
1376   DCHECK(!target.is(pc));  // use of pc is actually allowed, but discouraged
1377   emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BX | target.code());
1378 }
1379
1380
1381 // Data-processing instructions.
1382
1383 void Assembler::and_(Register dst, Register src1, const Operand& src2,
1384                      SBit s, Condition cond) {
1385   addrmod1(cond | AND | s, src1, dst, src2);
1386 }
1387
1388
1389 void Assembler::eor(Register dst, Register src1, const Operand& src2,
1390                     SBit s, Condition cond) {
1391   addrmod1(cond | EOR | s, src1, dst, src2);
1392 }
1393
1394
1395 void Assembler::sub(Register dst, Register src1, const Operand& src2,
1396                     SBit s, Condition cond) {
1397   addrmod1(cond | SUB | s, src1, dst, src2);
1398 }
1399
1400
1401 void Assembler::rsb(Register dst, Register src1, const Operand& src2,
1402                     SBit s, Condition cond) {
1403   addrmod1(cond | RSB | s, src1, dst, src2);
1404 }
1405
1406
1407 void Assembler::add(Register dst, Register src1, const Operand& src2,
1408                     SBit s, Condition cond) {
1409   addrmod1(cond | ADD | s, src1, dst, src2);
1410 }
1411
1412
1413 void Assembler::adc(Register dst, Register src1, const Operand& src2,
1414                     SBit s, Condition cond) {
1415   addrmod1(cond | ADC | s, src1, dst, src2);
1416 }
1417
1418
1419 void Assembler::sbc(Register dst, Register src1, const Operand& src2,
1420                     SBit s, Condition cond) {
1421   addrmod1(cond | SBC | s, src1, dst, src2);
1422 }
1423
1424
1425 void Assembler::rsc(Register dst, Register src1, const Operand& src2,
1426                     SBit s, Condition cond) {
1427   addrmod1(cond | RSC | s, src1, dst, src2);
1428 }
1429
1430
1431 void Assembler::tst(Register src1, const Operand& src2, Condition cond) {
1432   addrmod1(cond | TST | S, src1, r0, src2);
1433 }
1434
1435
1436 void Assembler::teq(Register src1, const Operand& src2, Condition cond) {
1437   addrmod1(cond | TEQ | S, src1, r0, src2);
1438 }
1439
1440
1441 void Assembler::cmp(Register src1, const Operand& src2, Condition cond) {
1442   addrmod1(cond | CMP | S, src1, r0, src2);
1443 }
1444
1445
1446 void Assembler::cmp_raw_immediate(
1447     Register src, int raw_immediate, Condition cond) {
1448   DCHECK(is_uint12(raw_immediate));
1449   emit(cond | I | CMP | S | src.code() << 16 | raw_immediate);
1450 }
1451
1452
1453 void Assembler::cmn(Register src1, const Operand& src2, Condition cond) {
1454   addrmod1(cond | CMN | S, src1, r0, src2);
1455 }
1456
1457
1458 void Assembler::orr(Register dst, Register src1, const Operand& src2,
1459                     SBit s, Condition cond) {
1460   addrmod1(cond | ORR | s, src1, dst, src2);
1461 }
1462
1463
1464 void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
1465   if (dst.is(pc)) {
1466     positions_recorder()->WriteRecordedPositions();
1467   }
1468   // Don't allow nop instructions in the form mov rn, rn to be generated using
1469   // the mov instruction. They must be generated using nop(int/NopMarkerTypes)
1470   // or MarkCode(int/NopMarkerTypes) pseudo instructions.
1471   DCHECK(!(src.is_reg() && src.rm().is(dst) && s == LeaveCC && cond == al));
1472   addrmod1(cond | MOV | s, r0, dst, src);
1473 }
1474
1475
1476 void Assembler::mov_label_offset(Register dst, Label* label) {
1477   if (label->is_bound()) {
1478     mov(dst, Operand(label->pos() + (Code::kHeaderSize - kHeapObjectTag)));
1479   } else {
1480     // Emit the link to the label in the code stream followed by extra nop
1481     // instructions.
1482     // If the label is not linked, then start a new link chain by linking it to
1483     // itself, emitting pc_offset().
1484     int link = label->is_linked() ? label->pos() : pc_offset();
1485     label->link_to(pc_offset());
1486
1487     // When the label is bound, these instructions will be patched with a
1488     // sequence of movw/movt or mov/orr/orr instructions. They will load the
1489     // destination register with the position of the label from the beginning
1490     // of the code.
1491     //
1492     // The link will be extracted from the first instruction and the destination
1493     // register from the second.
1494     //   For ARMv7:
1495     //      link
1496     //      mov dst, dst
1497     //   For ARMv6:
1498     //      link
1499     //      mov dst, dst
1500     //      mov dst, dst
1501     //
1502     // When the label gets bound: target_at extracts the link and target_at_put
1503     // patches the instructions.
1504     DCHECK(is_uint24(link));
1505     BlockConstPoolScope block_const_pool(this);
1506     emit(link);
1507     nop(dst.code());
1508     if (!CpuFeatures::IsSupported(ARMv7)) {
1509       nop(dst.code());
1510     }
1511   }
1512 }
1513
1514
1515 void Assembler::movw(Register reg, uint32_t immediate, Condition cond) {
1516   DCHECK(CpuFeatures::IsSupported(ARMv7));
1517   emit(cond | 0x30*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
1518 }
1519
1520
1521 void Assembler::movt(Register reg, uint32_t immediate, Condition cond) {
1522   DCHECK(CpuFeatures::IsSupported(ARMv7));
1523   emit(cond | 0x34*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
1524 }
1525
1526
1527 void Assembler::bic(Register dst, Register src1, const Operand& src2,
1528                     SBit s, Condition cond) {
1529   addrmod1(cond | BIC | s, src1, dst, src2);
1530 }
1531
1532
1533 void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) {
1534   addrmod1(cond | MVN | s, r0, dst, src);
1535 }
1536
1537
1538 // Multiply instructions.
1539 void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
1540                     SBit s, Condition cond) {
1541   DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
1542   emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 |
1543        src2.code()*B8 | B7 | B4 | src1.code());
1544 }
1545
1546
1547 void Assembler::mls(Register dst, Register src1, Register src2, Register srcA,
1548                     Condition cond) {
1549   DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
1550   DCHECK(IsEnabled(MLS));
1551   emit(cond | B22 | B21 | dst.code()*B16 | srcA.code()*B12 |
1552        src2.code()*B8 | B7 | B4 | src1.code());
1553 }
1554
1555
1556 void Assembler::sdiv(Register dst, Register src1, Register src2,
1557                      Condition cond) {
1558   DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
1559   DCHECK(IsEnabled(SUDIV));
1560   emit(cond | B26 | B25| B24 | B20 | dst.code()*B16 | 0xf * B12 |
1561        src2.code()*B8 | B4 | src1.code());
1562 }
1563
1564
1565 void Assembler::udiv(Register dst, Register src1, Register src2,
1566                      Condition cond) {
1567   DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
1568   DCHECK(IsEnabled(SUDIV));
1569   emit(cond | B26 | B25 | B24 | B21 | B20 | dst.code() * B16 | 0xf * B12 |
1570        src2.code() * B8 | B4 | src1.code());
1571 }
1572
1573
1574 void Assembler::mul(Register dst, Register src1, Register src2,
1575                     SBit s, Condition cond) {
1576   DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
1577   // dst goes in bits 16-19 for this instruction!
1578   emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code());
1579 }
1580
1581
1582 void Assembler::smlal(Register dstL,
1583                       Register dstH,
1584                       Register src1,
1585                       Register src2,
1586                       SBit s,
1587                       Condition cond) {
1588   DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1589   DCHECK(!dstL.is(dstH));
1590   emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 |
1591        src2.code()*B8 | B7 | B4 | src1.code());
1592 }
1593
1594
1595 void Assembler::smull(Register dstL,
1596                       Register dstH,
1597                       Register src1,
1598                       Register src2,
1599                       SBit s,
1600                       Condition cond) {
1601   DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1602   DCHECK(!dstL.is(dstH));
1603   emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 |
1604        src2.code()*B8 | B7 | B4 | src1.code());
1605 }
1606
1607
1608 void Assembler::umlal(Register dstL,
1609                       Register dstH,
1610                       Register src1,
1611                       Register src2,
1612                       SBit s,
1613                       Condition cond) {
1614   DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1615   DCHECK(!dstL.is(dstH));
1616   emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 |
1617        src2.code()*B8 | B7 | B4 | src1.code());
1618 }
1619
1620
1621 void Assembler::umull(Register dstL,
1622                       Register dstH,
1623                       Register src1,
1624                       Register src2,
1625                       SBit s,
1626                       Condition cond) {
1627   DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1628   DCHECK(!dstL.is(dstH));
1629   emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 |
1630        src2.code()*B8 | B7 | B4 | src1.code());
1631 }
1632
1633
1634 // Miscellaneous arithmetic instructions.
1635 void Assembler::clz(Register dst, Register src, Condition cond) {
1636   // v5 and above.
1637   DCHECK(!dst.is(pc) && !src.is(pc));
1638   emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 |
1639        15*B8 | CLZ | src.code());
1640 }
1641
1642
1643 // Saturating instructions.
1644
1645 // Unsigned saturate.
1646 void Assembler::usat(Register dst,
1647                      int satpos,
1648                      const Operand& src,
1649                      Condition cond) {
1650   // v6 and above.
1651   DCHECK(CpuFeatures::IsSupported(ARMv7));
1652   DCHECK(!dst.is(pc) && !src.rm_.is(pc));
1653   DCHECK((satpos >= 0) && (satpos <= 31));
1654   DCHECK((src.shift_op_ == ASR) || (src.shift_op_ == LSL));
1655   DCHECK(src.rs_.is(no_reg));
1656
1657   int sh = 0;
1658   if (src.shift_op_ == ASR) {
1659       sh = 1;
1660   }
1661
1662   emit(cond | 0x6*B24 | 0xe*B20 | satpos*B16 | dst.code()*B12 |
1663        src.shift_imm_*B7 | sh*B6 | 0x1*B4 | src.rm_.code());
1664 }
1665
1666
1667 // Bitfield manipulation instructions.
1668
1669 // Unsigned bit field extract.
1670 // Extracts #width adjacent bits from position #lsb in a register, and
1671 // writes them to the low bits of a destination register.
1672 //   ubfx dst, src, #lsb, #width
1673 void Assembler::ubfx(Register dst,
1674                      Register src,
1675                      int lsb,
1676                      int width,
1677                      Condition cond) {
1678   // v7 and above.
1679   DCHECK(CpuFeatures::IsSupported(ARMv7));
1680   DCHECK(!dst.is(pc) && !src.is(pc));
1681   DCHECK((lsb >= 0) && (lsb <= 31));
1682   DCHECK((width >= 1) && (width <= (32 - lsb)));
1683   emit(cond | 0xf*B23 | B22 | B21 | (width - 1)*B16 | dst.code()*B12 |
1684        lsb*B7 | B6 | B4 | src.code());
1685 }
1686
1687
1688 // Signed bit field extract.
1689 // Extracts #width adjacent bits from position #lsb in a register, and
1690 // writes them to the low bits of a destination register. The extracted
1691 // value is sign extended to fill the destination register.
1692 //   sbfx dst, src, #lsb, #width
1693 void Assembler::sbfx(Register dst,
1694                      Register src,
1695                      int lsb,
1696                      int width,
1697                      Condition cond) {
1698   // v7 and above.
1699   DCHECK(CpuFeatures::IsSupported(ARMv7));
1700   DCHECK(!dst.is(pc) && !src.is(pc));
1701   DCHECK((lsb >= 0) && (lsb <= 31));
1702   DCHECK((width >= 1) && (width <= (32 - lsb)));
1703   emit(cond | 0xf*B23 | B21 | (width - 1)*B16 | dst.code()*B12 |
1704        lsb*B7 | B6 | B4 | src.code());
1705 }
1706
1707
1708 // Bit field clear.
1709 // Sets #width adjacent bits at position #lsb in the destination register
1710 // to zero, preserving the value of the other bits.
1711 //   bfc dst, #lsb, #width
1712 void Assembler::bfc(Register dst, int lsb, int width, Condition cond) {
1713   // v7 and above.
1714   DCHECK(CpuFeatures::IsSupported(ARMv7));
1715   DCHECK(!dst.is(pc));
1716   DCHECK((lsb >= 0) && (lsb <= 31));
1717   DCHECK((width >= 1) && (width <= (32 - lsb)));
1718   int msb = lsb + width - 1;
1719   emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 | 0xf);
1720 }
1721
1722
1723 // Bit field insert.
1724 // Inserts #width adjacent bits from the low bits of the source register
1725 // into position #lsb of the destination register.
1726 //   bfi dst, src, #lsb, #width
1727 void Assembler::bfi(Register dst,
1728                     Register src,
1729                     int lsb,
1730                     int width,
1731                     Condition cond) {
1732   // v7 and above.
1733   DCHECK(CpuFeatures::IsSupported(ARMv7));
1734   DCHECK(!dst.is(pc) && !src.is(pc));
1735   DCHECK((lsb >= 0) && (lsb <= 31));
1736   DCHECK((width >= 1) && (width <= (32 - lsb)));
1737   int msb = lsb + width - 1;
1738   emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 |
1739        src.code());
1740 }
1741
1742
1743 void Assembler::pkhbt(Register dst,
1744                       Register src1,
1745                       const Operand& src2,
1746                       Condition cond ) {
1747   // Instruction details available in ARM DDI 0406C.b, A8.8.125.
1748   // cond(31-28) | 01101000(27-20) | Rn(19-16) |
1749   // Rd(15-12) | imm5(11-7) | 0(6) | 01(5-4) | Rm(3-0)
1750   DCHECK(!dst.is(pc));
1751   DCHECK(!src1.is(pc));
1752   DCHECK(!src2.rm().is(pc));
1753   DCHECK(!src2.rm().is(no_reg));
1754   DCHECK(src2.rs().is(no_reg));
1755   DCHECK((src2.shift_imm_ >= 0) && (src2.shift_imm_ <= 31));
1756   DCHECK(src2.shift_op() == LSL);
1757   emit(cond | 0x68*B20 | src1.code()*B16 | dst.code()*B12 |
1758        src2.shift_imm_*B7 | B4 | src2.rm().code());
1759 }
1760
1761
1762 void Assembler::pkhtb(Register dst,
1763                       Register src1,
1764                       const Operand& src2,
1765                       Condition cond) {
1766   // Instruction details available in ARM DDI 0406C.b, A8.8.125.
1767   // cond(31-28) | 01101000(27-20) | Rn(19-16) |
1768   // Rd(15-12) | imm5(11-7) | 1(6) | 01(5-4) | Rm(3-0)
1769   DCHECK(!dst.is(pc));
1770   DCHECK(!src1.is(pc));
1771   DCHECK(!src2.rm().is(pc));
1772   DCHECK(!src2.rm().is(no_reg));
1773   DCHECK(src2.rs().is(no_reg));
1774   DCHECK((src2.shift_imm_ >= 1) && (src2.shift_imm_ <= 32));
1775   DCHECK(src2.shift_op() == ASR);
1776   int asr = (src2.shift_imm_ == 32) ? 0 : src2.shift_imm_;
1777   emit(cond | 0x68*B20 | src1.code()*B16 | dst.code()*B12 |
1778        asr*B7 | B6 | B4 | src2.rm().code());
1779 }
1780
1781
1782 void Assembler::uxtb(Register dst,
1783                      const Operand& src,
1784                      Condition cond) {
1785   // Instruction details available in ARM DDI 0406C.b, A8.8.274.
1786   // cond(31-28) | 01101110(27-20) | 1111(19-16) |
1787   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1788   DCHECK(!dst.is(pc));
1789   DCHECK(!src.rm().is(pc));
1790   DCHECK(!src.rm().is(no_reg));
1791   DCHECK(src.rs().is(no_reg));
1792   DCHECK((src.shift_imm_ == 0) ||
1793          (src.shift_imm_ == 8) ||
1794          (src.shift_imm_ == 16) ||
1795          (src.shift_imm_ == 24));
1796   // Operand maps ROR #0 to LSL #0.
1797   DCHECK((src.shift_op() == ROR) ||
1798          ((src.shift_op() == LSL) && (src.shift_imm_ == 0)));
1799   emit(cond | 0x6E*B20 | 0xF*B16 | dst.code()*B12 |
1800        ((src.shift_imm_ >> 1)&0xC)*B8 | 7*B4 | src.rm().code());
1801 }
1802
1803
1804 void Assembler::uxtab(Register dst,
1805                       Register src1,
1806                       const Operand& src2,
1807                       Condition cond) {
1808   // Instruction details available in ARM DDI 0406C.b, A8.8.271.
1809   // cond(31-28) | 01101110(27-20) | Rn(19-16) |
1810   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1811   DCHECK(!dst.is(pc));
1812   DCHECK(!src1.is(pc));
1813   DCHECK(!src2.rm().is(pc));
1814   DCHECK(!src2.rm().is(no_reg));
1815   DCHECK(src2.rs().is(no_reg));
1816   DCHECK((src2.shift_imm_ == 0) ||
1817          (src2.shift_imm_ == 8) ||
1818          (src2.shift_imm_ == 16) ||
1819          (src2.shift_imm_ == 24));
1820   // Operand maps ROR #0 to LSL #0.
1821   DCHECK((src2.shift_op() == ROR) ||
1822          ((src2.shift_op() == LSL) && (src2.shift_imm_ == 0)));
1823   emit(cond | 0x6E*B20 | src1.code()*B16 | dst.code()*B12 |
1824        ((src2.shift_imm_ >> 1) &0xC)*B8 | 7*B4 | src2.rm().code());
1825 }
1826
1827
1828 void Assembler::uxtb16(Register dst,
1829                        const Operand& src,
1830                        Condition cond) {
1831   // Instruction details available in ARM DDI 0406C.b, A8.8.275.
1832   // cond(31-28) | 01101100(27-20) | 1111(19-16) |
1833   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1834   DCHECK(!dst.is(pc));
1835   DCHECK(!src.rm().is(pc));
1836   DCHECK(!src.rm().is(no_reg));
1837   DCHECK(src.rs().is(no_reg));
1838   DCHECK((src.shift_imm_ == 0) ||
1839          (src.shift_imm_ == 8) ||
1840          (src.shift_imm_ == 16) ||
1841          (src.shift_imm_ == 24));
1842   // Operand maps ROR #0 to LSL #0.
1843   DCHECK((src.shift_op() == ROR) ||
1844          ((src.shift_op() == LSL) && (src.shift_imm_ == 0)));
1845   emit(cond | 0x6C*B20 | 0xF*B16 | dst.code()*B12 |
1846        ((src.shift_imm_ >> 1)&0xC)*B8 | 7*B4 | src.rm().code());
1847 }
1848
1849
1850 // Status register access instructions.
1851 void Assembler::mrs(Register dst, SRegister s, Condition cond) {
1852   DCHECK(!dst.is(pc));
1853   emit(cond | B24 | s | 15*B16 | dst.code()*B12);
1854 }
1855
1856
1857 void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
1858                     Condition cond) {
1859   DCHECK(fields >= B16 && fields < B20);  // at least one field set
1860   Instr instr;
1861   if (!src.rm_.is_valid()) {
1862     // Immediate.
1863     uint32_t rotate_imm;
1864     uint32_t immed_8;
1865     if (src.must_output_reloc_info(this) ||
1866         !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
1867       // Immediate operand cannot be encoded, load it first to register ip.
1868       move_32_bit_immediate(ip, src);
1869       msr(fields, Operand(ip), cond);
1870       return;
1871     }
1872     instr = I | rotate_imm*B8 | immed_8;
1873   } else {
1874     DCHECK(!src.rs_.is_valid() && src.shift_imm_ == 0);  // only rm allowed
1875     instr = src.rm_.code();
1876   }
1877   emit(cond | instr | B24 | B21 | fields | 15*B12);
1878 }
1879
1880
1881 // Load/Store instructions.
1882 void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) {
1883   if (dst.is(pc)) {
1884     positions_recorder()->WriteRecordedPositions();
1885   }
1886   addrmod2(cond | B26 | L, dst, src);
1887 }
1888
1889
1890 void Assembler::str(Register src, const MemOperand& dst, Condition cond) {
1891   addrmod2(cond | B26, src, dst);
1892 }
1893
1894
1895 void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) {
1896   addrmod2(cond | B26 | B | L, dst, src);
1897 }
1898
1899
1900 void Assembler::strb(Register src, const MemOperand& dst, Condition cond) {
1901   addrmod2(cond | B26 | B, src, dst);
1902 }
1903
1904
1905 void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) {
1906   addrmod3(cond | L | B7 | H | B4, dst, src);
1907 }
1908
1909
1910 void Assembler::strh(Register src, const MemOperand& dst, Condition cond) {
1911   addrmod3(cond | B7 | H | B4, src, dst);
1912 }
1913
1914
1915 void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) {
1916   addrmod3(cond | L | B7 | S6 | B4, dst, src);
1917 }
1918
1919
1920 void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) {
1921   addrmod3(cond | L | B7 | S6 | H | B4, dst, src);
1922 }
1923
1924
1925 void Assembler::ldrd(Register dst1, Register dst2,
1926                      const MemOperand& src, Condition cond) {
1927   DCHECK(IsEnabled(ARMv7));
1928   DCHECK(src.rm().is(no_reg));
1929   DCHECK(!dst1.is(lr));  // r14.
1930   DCHECK_EQ(0, dst1.code() % 2);
1931   DCHECK_EQ(dst1.code() + 1, dst2.code());
1932   addrmod3(cond | B7 | B6 | B4, dst1, src);
1933 }
1934
1935
1936 void Assembler::strd(Register src1, Register src2,
1937                      const MemOperand& dst, Condition cond) {
1938   DCHECK(dst.rm().is(no_reg));
1939   DCHECK(!src1.is(lr));  // r14.
1940   DCHECK_EQ(0, src1.code() % 2);
1941   DCHECK_EQ(src1.code() + 1, src2.code());
1942   DCHECK(IsEnabled(ARMv7));
1943   addrmod3(cond | B7 | B6 | B5 | B4, src1, dst);
1944 }
1945
1946
1947 // Preload instructions.
1948 void Assembler::pld(const MemOperand& address) {
1949   // Instruction details available in ARM DDI 0406C.b, A8.8.128.
1950   // 1111(31-28) | 0111(27-24) | U(23) | R(22) | 01(21-20) | Rn(19-16) |
1951   // 1111(15-12) | imm5(11-07) | type(6-5) | 0(4)| Rm(3-0) |
1952   DCHECK(address.rm().is(no_reg));
1953   DCHECK(address.am() == Offset);
1954   int U = B23;
1955   int offset = address.offset();
1956   if (offset < 0) {
1957     offset = -offset;
1958     U = 0;
1959   }
1960   DCHECK(offset < 4096);
1961   emit(kSpecialCondition | B26 | B24 | U | B22 | B20 | address.rn().code()*B16 |
1962        0xf*B12 | offset);
1963 }
1964
1965
1966 // Load/Store multiple instructions.
1967 void Assembler::ldm(BlockAddrMode am,
1968                     Register base,
1969                     RegList dst,
1970                     Condition cond) {
1971   // ABI stack constraint: ldmxx base, {..sp..}  base != sp  is not restartable.
1972   DCHECK(base.is(sp) || (dst & sp.bit()) == 0);
1973
1974   addrmod4(cond | B27 | am | L, base, dst);
1975
1976   // Emit the constant pool after a function return implemented by ldm ..{..pc}.
1977   if (cond == al && (dst & pc.bit()) != 0) {
1978     // There is a slight chance that the ldm instruction was actually a call,
1979     // in which case it would be wrong to return into the constant pool; we
1980     // recognize this case by checking if the emission of the pool was blocked
1981     // at the pc of the ldm instruction by a mov lr, pc instruction; if this is
1982     // the case, we emit a jump over the pool.
1983     CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize);
1984   }
1985 }
1986
1987
1988 void Assembler::stm(BlockAddrMode am,
1989                     Register base,
1990                     RegList src,
1991                     Condition cond) {
1992   addrmod4(cond | B27 | am, base, src);
1993 }
1994
1995
1996 // Exception-generating instructions and debugging support.
1997 // Stops with a non-negative code less than kNumOfWatchedStops support
1998 // enabling/disabling and a counter feature. See simulator-arm.h .
1999 void Assembler::stop(const char* msg, Condition cond, int32_t code) {
2000 #ifndef __arm__
2001   DCHECK(code >= kDefaultStopCode);
2002   {
2003     // The Simulator will handle the stop instruction and get the message
2004     // address. It expects to find the address just after the svc instruction.
2005     BlockConstPoolScope block_const_pool(this);
2006     if (code >= 0) {
2007       svc(kStopCode + code, cond);
2008     } else {
2009       svc(kStopCode + kMaxStopCode, cond);
2010     }
2011     emit(reinterpret_cast<Instr>(msg));
2012   }
2013 #else  // def __arm__
2014   if (cond != al) {
2015     Label skip;
2016     b(&skip, NegateCondition(cond));
2017     bkpt(0);
2018     bind(&skip);
2019   } else {
2020     bkpt(0);
2021   }
2022 #endif  // def __arm__
2023 }
2024
2025
2026 void Assembler::bkpt(uint32_t imm16) {  // v5 and above
2027   DCHECK(is_uint16(imm16));
2028   emit(al | B24 | B21 | (imm16 >> 4)*B8 | BKPT | (imm16 & 0xf));
2029 }
2030
2031
2032 void Assembler::svc(uint32_t imm24, Condition cond) {
2033   DCHECK(is_uint24(imm24));
2034   emit(cond | 15*B24 | imm24);
2035 }
2036
2037
2038 // Coprocessor instructions.
2039 void Assembler::cdp(Coprocessor coproc,
2040                     int opcode_1,
2041                     CRegister crd,
2042                     CRegister crn,
2043                     CRegister crm,
2044                     int opcode_2,
2045                     Condition cond) {
2046   DCHECK(is_uint4(opcode_1) && is_uint3(opcode_2));
2047   emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 |
2048        crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code());
2049 }
2050
2051
2052 void Assembler::cdp2(Coprocessor coproc,
2053                      int opcode_1,
2054                      CRegister crd,
2055                      CRegister crn,
2056                      CRegister crm,
2057                      int opcode_2) {  // v5 and above
2058   cdp(coproc, opcode_1, crd, crn, crm, opcode_2, kSpecialCondition);
2059 }
2060
2061
2062 void Assembler::mcr(Coprocessor coproc,
2063                     int opcode_1,
2064                     Register rd,
2065                     CRegister crn,
2066                     CRegister crm,
2067                     int opcode_2,
2068                     Condition cond) {
2069   DCHECK(is_uint3(opcode_1) && is_uint3(opcode_2));
2070   emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 |
2071        rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
2072 }
2073
2074
2075 void Assembler::mcr2(Coprocessor coproc,
2076                      int opcode_1,
2077                      Register rd,
2078                      CRegister crn,
2079                      CRegister crm,
2080                      int opcode_2) {  // v5 and above
2081   mcr(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
2082 }
2083
2084
2085 void Assembler::mrc(Coprocessor coproc,
2086                     int opcode_1,
2087                     Register rd,
2088                     CRegister crn,
2089                     CRegister crm,
2090                     int opcode_2,
2091                     Condition cond) {
2092   DCHECK(is_uint3(opcode_1) && is_uint3(opcode_2));
2093   emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 |
2094        rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
2095 }
2096
2097
2098 void Assembler::mrc2(Coprocessor coproc,
2099                      int opcode_1,
2100                      Register rd,
2101                      CRegister crn,
2102                      CRegister crm,
2103                      int opcode_2) {  // v5 and above
2104   mrc(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
2105 }
2106
2107
2108 void Assembler::ldc(Coprocessor coproc,
2109                     CRegister crd,
2110                     const MemOperand& src,
2111                     LFlag l,
2112                     Condition cond) {
2113   addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src);
2114 }
2115
2116
2117 void Assembler::ldc(Coprocessor coproc,
2118                     CRegister crd,
2119                     Register rn,
2120                     int option,
2121                     LFlag l,
2122                     Condition cond) {
2123   // Unindexed addressing.
2124   DCHECK(is_uint8(option));
2125   emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 |
2126        coproc*B8 | (option & 255));
2127 }
2128
2129
2130 void Assembler::ldc2(Coprocessor coproc,
2131                      CRegister crd,
2132                      const MemOperand& src,
2133                      LFlag l) {  // v5 and above
2134   ldc(coproc, crd, src, l, kSpecialCondition);
2135 }
2136
2137
2138 void Assembler::ldc2(Coprocessor coproc,
2139                      CRegister crd,
2140                      Register rn,
2141                      int option,
2142                      LFlag l) {  // v5 and above
2143   ldc(coproc, crd, rn, option, l, kSpecialCondition);
2144 }
2145
2146
2147 // Support for VFP.
2148
2149 void Assembler::vldr(const DwVfpRegister dst,
2150                      const Register base,
2151                      int offset,
2152                      const Condition cond) {
2153   // Ddst = MEM(Rbase + offset).
2154   // Instruction details available in ARM DDI 0406C.b, A8-924.
2155   // cond(31-28) | 1101(27-24)| U(23) | D(22) | 01(21-20) | Rbase(19-16) |
2156   // Vd(15-12) | 1011(11-8) | offset
2157   int u = 1;
2158   if (offset < 0) {
2159     offset = -offset;
2160     u = 0;
2161   }
2162   int vd, d;
2163   dst.split_code(&vd, &d);
2164
2165   DCHECK(offset >= 0);
2166   if ((offset % 4) == 0 && (offset / 4) < 256) {
2167     emit(cond | 0xD*B24 | u*B23 | d*B22 | B20 | base.code()*B16 | vd*B12 |
2168          0xB*B8 | ((offset / 4) & 255));
2169   } else {
2170     // Larger offsets must be handled by computing the correct address
2171     // in the ip register.
2172     DCHECK(!base.is(ip));
2173     if (u == 1) {
2174       add(ip, base, Operand(offset));
2175     } else {
2176       sub(ip, base, Operand(offset));
2177     }
2178     emit(cond | 0xD*B24 | d*B22 | B20 | ip.code()*B16 | vd*B12 | 0xB*B8);
2179   }
2180 }
2181
2182
2183 void Assembler::vldr(const DwVfpRegister dst,
2184                      const MemOperand& operand,
2185                      const Condition cond) {
2186   DCHECK(operand.am_ == Offset);
2187   if (operand.rm().is_valid()) {
2188     add(ip, operand.rn(),
2189         Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
2190     vldr(dst, ip, 0, cond);
2191   } else {
2192     vldr(dst, operand.rn(), operand.offset(), cond);
2193   }
2194 }
2195
2196
2197 void Assembler::vldr(const SwVfpRegister dst,
2198                      const Register base,
2199                      int offset,
2200                      const Condition cond) {
2201   // Sdst = MEM(Rbase + offset).
2202   // Instruction details available in ARM DDI 0406A, A8-628.
2203   // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
2204   // Vdst(15-12) | 1010(11-8) | offset
2205   int u = 1;
2206   if (offset < 0) {
2207     offset = -offset;
2208     u = 0;
2209   }
2210   int sd, d;
2211   dst.split_code(&sd, &d);
2212   DCHECK(offset >= 0);
2213
2214   if ((offset % 4) == 0 && (offset / 4) < 256) {
2215   emit(cond | u*B23 | d*B22 | 0xD1*B20 | base.code()*B16 | sd*B12 |
2216        0xA*B8 | ((offset / 4) & 255));
2217   } else {
2218     // Larger offsets must be handled by computing the correct address
2219     // in the ip register.
2220     DCHECK(!base.is(ip));
2221     if (u == 1) {
2222       add(ip, base, Operand(offset));
2223     } else {
2224       sub(ip, base, Operand(offset));
2225     }
2226     emit(cond | d*B22 | 0xD1*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
2227   }
2228 }
2229
2230
2231 void Assembler::vldr(const SwVfpRegister dst,
2232                      const MemOperand& operand,
2233                      const Condition cond) {
2234   DCHECK(operand.am_ == Offset);
2235   if (operand.rm().is_valid()) {
2236     add(ip, operand.rn(),
2237         Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
2238     vldr(dst, ip, 0, cond);
2239   } else {
2240     vldr(dst, operand.rn(), operand.offset(), cond);
2241   }
2242 }
2243
2244
2245 void Assembler::vstr(const DwVfpRegister src,
2246                      const Register base,
2247                      int offset,
2248                      const Condition cond) {
2249   // MEM(Rbase + offset) = Dsrc.
2250   // Instruction details available in ARM DDI 0406C.b, A8-1082.
2251   // cond(31-28) | 1101(27-24)| U(23) | D(22) | 00(21-20) | Rbase(19-16) |
2252   // Vd(15-12) | 1011(11-8) | (offset/4)
2253   int u = 1;
2254   if (offset < 0) {
2255     offset = -offset;
2256     u = 0;
2257   }
2258   DCHECK(offset >= 0);
2259   int vd, d;
2260   src.split_code(&vd, &d);
2261
2262   if ((offset % 4) == 0 && (offset / 4) < 256) {
2263     emit(cond | 0xD*B24 | u*B23 | d*B22 | base.code()*B16 | vd*B12 | 0xB*B8 |
2264          ((offset / 4) & 255));
2265   } else {
2266     // Larger offsets must be handled by computing the correct address
2267     // in the ip register.
2268     DCHECK(!base.is(ip));
2269     if (u == 1) {
2270       add(ip, base, Operand(offset));
2271     } else {
2272       sub(ip, base, Operand(offset));
2273     }
2274     emit(cond | 0xD*B24 | d*B22 | ip.code()*B16 | vd*B12 | 0xB*B8);
2275   }
2276 }
2277
2278
2279 void Assembler::vstr(const DwVfpRegister src,
2280                      const MemOperand& operand,
2281                      const Condition cond) {
2282   DCHECK(operand.am_ == Offset);
2283   if (operand.rm().is_valid()) {
2284     add(ip, operand.rn(),
2285         Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
2286     vstr(src, ip, 0, cond);
2287   } else {
2288     vstr(src, operand.rn(), operand.offset(), cond);
2289   }
2290 }
2291
2292
2293 void Assembler::vstr(const SwVfpRegister src,
2294                      const Register base,
2295                      int offset,
2296                      const Condition cond) {
2297   // MEM(Rbase + offset) = SSrc.
2298   // Instruction details available in ARM DDI 0406A, A8-786.
2299   // cond(31-28) | 1101(27-24)| U000(23-20) | Rbase(19-16) |
2300   // Vdst(15-12) | 1010(11-8) | (offset/4)
2301   int u = 1;
2302   if (offset < 0) {
2303     offset = -offset;
2304     u = 0;
2305   }
2306   int sd, d;
2307   src.split_code(&sd, &d);
2308   DCHECK(offset >= 0);
2309   if ((offset % 4) == 0 && (offset / 4) < 256) {
2310     emit(cond | u*B23 | d*B22 | 0xD0*B20 | base.code()*B16 | sd*B12 |
2311          0xA*B8 | ((offset / 4) & 255));
2312   } else {
2313     // Larger offsets must be handled by computing the correct address
2314     // in the ip register.
2315     DCHECK(!base.is(ip));
2316     if (u == 1) {
2317       add(ip, base, Operand(offset));
2318     } else {
2319       sub(ip, base, Operand(offset));
2320     }
2321     emit(cond | d*B22 | 0xD0*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
2322   }
2323 }
2324
2325
2326 void Assembler::vstr(const SwVfpRegister src,
2327                      const MemOperand& operand,
2328                      const Condition cond) {
2329   DCHECK(operand.am_ == Offset);
2330   if (operand.rm().is_valid()) {
2331     add(ip, operand.rn(),
2332         Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
2333     vstr(src, ip, 0, cond);
2334   } else {
2335     vstr(src, operand.rn(), operand.offset(), cond);
2336   }
2337 }
2338
2339
2340 void  Assembler::vldm(BlockAddrMode am,
2341                       Register base,
2342                       DwVfpRegister first,
2343                       DwVfpRegister last,
2344                       Condition cond) {
2345   // Instruction details available in ARM DDI 0406C.b, A8-922.
2346   // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
2347   // first(15-12) | 1011(11-8) | (count * 2)
2348   DCHECK_LE(first.code(), last.code());
2349   DCHECK(am == ia || am == ia_w || am == db_w);
2350   DCHECK(!base.is(pc));
2351
2352   int sd, d;
2353   first.split_code(&sd, &d);
2354   int count = last.code() - first.code() + 1;
2355   DCHECK(count <= 16);
2356   emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
2357        0xB*B8 | count*2);
2358 }
2359
2360
2361 void  Assembler::vstm(BlockAddrMode am,
2362                       Register base,
2363                       DwVfpRegister first,
2364                       DwVfpRegister last,
2365                       Condition cond) {
2366   // Instruction details available in ARM DDI 0406C.b, A8-1080.
2367   // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
2368   // first(15-12) | 1011(11-8) | (count * 2)
2369   DCHECK_LE(first.code(), last.code());
2370   DCHECK(am == ia || am == ia_w || am == db_w);
2371   DCHECK(!base.is(pc));
2372
2373   int sd, d;
2374   first.split_code(&sd, &d);
2375   int count = last.code() - first.code() + 1;
2376   DCHECK(count <= 16);
2377   emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
2378        0xB*B8 | count*2);
2379 }
2380
2381 void  Assembler::vldm(BlockAddrMode am,
2382                       Register base,
2383                       SwVfpRegister first,
2384                       SwVfpRegister last,
2385                       Condition cond) {
2386   // Instruction details available in ARM DDI 0406A, A8-626.
2387   // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
2388   // first(15-12) | 1010(11-8) | (count/2)
2389   DCHECK_LE(first.code(), last.code());
2390   DCHECK(am == ia || am == ia_w || am == db_w);
2391   DCHECK(!base.is(pc));
2392
2393   int sd, d;
2394   first.split_code(&sd, &d);
2395   int count = last.code() - first.code() + 1;
2396   emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
2397        0xA*B8 | count);
2398 }
2399
2400
2401 void  Assembler::vstm(BlockAddrMode am,
2402                       Register base,
2403                       SwVfpRegister first,
2404                       SwVfpRegister last,
2405                       Condition cond) {
2406   // Instruction details available in ARM DDI 0406A, A8-784.
2407   // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
2408   // first(15-12) | 1011(11-8) | (count/2)
2409   DCHECK_LE(first.code(), last.code());
2410   DCHECK(am == ia || am == ia_w || am == db_w);
2411   DCHECK(!base.is(pc));
2412
2413   int sd, d;
2414   first.split_code(&sd, &d);
2415   int count = last.code() - first.code() + 1;
2416   emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
2417        0xA*B8 | count);
2418 }
2419
2420
2421 static void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) {
2422   uint64_t i;
2423   memcpy(&i, &d, 8);
2424
2425   *lo = i & 0xffffffff;
2426   *hi = i >> 32;
2427 }
2428
2429
2430 // Only works for little endian floating point formats.
2431 // We don't support VFP on the mixed endian floating point platform.
2432 static bool FitsVMOVDoubleImmediate(double d, uint32_t *encoding) {
2433   DCHECK(CpuFeatures::IsSupported(VFP3));
2434
2435   // VMOV can accept an immediate of the form:
2436   //
2437   //  +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7
2438   //
2439   // The immediate is encoded using an 8-bit quantity, comprised of two
2440   // 4-bit fields. For an 8-bit immediate of the form:
2441   //
2442   //  [abcdefgh]
2443   //
2444   // where a is the MSB and h is the LSB, an immediate 64-bit double can be
2445   // created of the form:
2446   //
2447   //  [aBbbbbbb,bbcdefgh,00000000,00000000,
2448   //      00000000,00000000,00000000,00000000]
2449   //
2450   // where B = ~b.
2451   //
2452
2453   uint32_t lo, hi;
2454   DoubleAsTwoUInt32(d, &lo, &hi);
2455
2456   // The most obvious constraint is the long block of zeroes.
2457   if ((lo != 0) || ((hi & 0xffff) != 0)) {
2458     return false;
2459   }
2460
2461   // Bits 62:55 must be all clear or all set.
2462   if (((hi & 0x3fc00000) != 0) && ((hi & 0x3fc00000) != 0x3fc00000)) {
2463     return false;
2464   }
2465
2466   // Bit 63 must be NOT bit 62.
2467   if (((hi ^ (hi << 1)) & (0x40000000)) == 0) {
2468     return false;
2469   }
2470
2471   // Create the encoded immediate in the form:
2472   //  [00000000,0000abcd,00000000,0000efgh]
2473   *encoding  = (hi >> 16) & 0xf;      // Low nybble.
2474   *encoding |= (hi >> 4) & 0x70000;   // Low three bits of the high nybble.
2475   *encoding |= (hi >> 12) & 0x80000;  // Top bit of the high nybble.
2476
2477   return true;
2478 }
2479
2480
2481 void Assembler::vmov(const DwVfpRegister dst,
2482                      double imm,
2483                      const Register scratch) {
2484   uint32_t enc;
2485   if (CpuFeatures::IsSupported(VFP3) && FitsVMOVDoubleImmediate(imm, &enc)) {
2486     // The double can be encoded in the instruction.
2487     //
2488     // Dd = immediate
2489     // Instruction details available in ARM DDI 0406C.b, A8-936.
2490     // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | imm4H(19-16) |
2491     // Vd(15-12) | 101(11-9) | sz=1(8) | imm4L(3-0)
2492     int vd, d;
2493     dst.split_code(&vd, &d);
2494     emit(al | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | enc);
2495   } else if (FLAG_enable_vldr_imm && is_constant_pool_available()) {
2496     // TODO(jfb) Temporarily turned off until we have constant blinding or
2497     //           some equivalent mitigation: an attacker can otherwise control
2498     //           generated data which also happens to be executable, a Very Bad
2499     //           Thing indeed.
2500     //           Blinding gets tricky because we don't have xor, we probably
2501     //           need to add/subtract without losing precision, which requires a
2502     //           cookie value that Lithium is probably better positioned to
2503     //           choose.
2504     //           We could also add a few peepholes here like detecting 0.0 and
2505     //           -0.0 and doing a vmov from the sequestered d14, forcing denorms
2506     //           to zero (we set flush-to-zero), and normalizing NaN values.
2507     //           We could also detect redundant values.
2508     //           The code could also randomize the order of values, though
2509     //           that's tricky because vldr has a limited reach. Furthermore
2510     //           it breaks load locality.
2511     RelocInfo rinfo(pc_, imm);
2512     ConstantPoolArray::LayoutSection section = ConstantPoolAddEntry(rinfo);
2513     if (section == ConstantPoolArray::EXTENDED_SECTION) {
2514       DCHECK(FLAG_enable_ool_constant_pool);
2515       // Emit instructions to load constant pool offset.
2516       movw(ip, 0);
2517       movt(ip, 0);
2518       // Load from constant pool at offset.
2519       vldr(dst, MemOperand(pp, ip));
2520     } else {
2521       DCHECK(section == ConstantPoolArray::SMALL_SECTION);
2522       vldr(dst, MemOperand(FLAG_enable_ool_constant_pool ? pp : pc, 0));
2523     }
2524   } else {
2525     // Synthesise the double from ARM immediates.
2526     uint32_t lo, hi;
2527     DoubleAsTwoUInt32(imm, &lo, &hi);
2528
2529     if (scratch.is(no_reg)) {
2530       if (dst.code() < 16) {
2531         const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code());
2532         // Move the low part of the double into the lower of the corresponsing S
2533         // registers of D register dst.
2534         mov(ip, Operand(lo));
2535         vmov(loc.low(), ip);
2536
2537         // Move the high part of the double into the higher of the
2538         // corresponsing S registers of D register dst.
2539         mov(ip, Operand(hi));
2540         vmov(loc.high(), ip);
2541       } else {
2542         // D16-D31 does not have S registers, so move the low and high parts
2543         // directly to the D register using vmov.32.
2544         // Note: This may be slower, so we only do this when we have to.
2545         mov(ip, Operand(lo));
2546         vmov(dst, VmovIndexLo, ip);
2547         mov(ip, Operand(hi));
2548         vmov(dst, VmovIndexHi, ip);
2549       }
2550     } else {
2551       // Move the low and high parts of the double to a D register in one
2552       // instruction.
2553       mov(ip, Operand(lo));
2554       mov(scratch, Operand(hi));
2555       vmov(dst, ip, scratch);
2556     }
2557   }
2558 }
2559
2560
2561 void Assembler::vmov(const SwVfpRegister dst,
2562                      const SwVfpRegister src,
2563                      const Condition cond) {
2564   // Sd = Sm
2565   // Instruction details available in ARM DDI 0406B, A8-642.
2566   int sd, d, sm, m;
2567   dst.split_code(&sd, &d);
2568   src.split_code(&sm, &m);
2569   emit(cond | 0xE*B24 | d*B22 | 0xB*B20 | sd*B12 | 0xA*B8 | B6 | m*B5 | sm);
2570 }
2571
2572
2573 void Assembler::vmov(const DwVfpRegister dst,
2574                      const DwVfpRegister src,
2575                      const Condition cond) {
2576   // Dd = Dm
2577   // Instruction details available in ARM DDI 0406C.b, A8-938.
2578   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
2579   // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2580   int vd, d;
2581   dst.split_code(&vd, &d);
2582   int vm, m;
2583   src.split_code(&vm, &m);
2584   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | B6 | m*B5 |
2585        vm);
2586 }
2587
2588
2589 void Assembler::vmov(const DwVfpRegister dst,
2590                      const VmovIndex index,
2591                      const Register src,
2592                      const Condition cond) {
2593   // Dd[index] = Rt
2594   // Instruction details available in ARM DDI 0406C.b, A8-940.
2595   // cond(31-28) | 1110(27-24) | 0(23) | opc1=0index(22-21) | 0(20) |
2596   // Vd(19-16) | Rt(15-12) | 1011(11-8) | D(7) | opc2=00(6-5) | 1(4) | 0000(3-0)
2597   DCHECK(index.index == 0 || index.index == 1);
2598   int vd, d;
2599   dst.split_code(&vd, &d);
2600   emit(cond | 0xE*B24 | index.index*B21 | vd*B16 | src.code()*B12 | 0xB*B8 |
2601        d*B7 | B4);
2602 }
2603
2604
2605 void Assembler::vmov(const Register dst,
2606                      const VmovIndex index,
2607                      const DwVfpRegister src,
2608                      const Condition cond) {
2609   // Dd[index] = Rt
2610   // Instruction details available in ARM DDI 0406C.b, A8.8.342.
2611   // cond(31-28) | 1110(27-24) | U=0(23) | opc1=0index(22-21) | 1(20) |
2612   // Vn(19-16) | Rt(15-12) | 1011(11-8) | N(7) | opc2=00(6-5) | 1(4) | 0000(3-0)
2613   DCHECK(index.index == 0 || index.index == 1);
2614   int vn, n;
2615   src.split_code(&vn, &n);
2616   emit(cond | 0xE*B24 | index.index*B21 | B20 | vn*B16 | dst.code()*B12 |
2617        0xB*B8 | n*B7 | B4);
2618 }
2619
2620
2621 void Assembler::vmov(const DwVfpRegister dst,
2622                      const Register src1,
2623                      const Register src2,
2624                      const Condition cond) {
2625   // Dm = <Rt,Rt2>.
2626   // Instruction details available in ARM DDI 0406C.b, A8-948.
2627   // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) |
2628   // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
2629   DCHECK(!src1.is(pc) && !src2.is(pc));
2630   int vm, m;
2631   dst.split_code(&vm, &m);
2632   emit(cond | 0xC*B24 | B22 | src2.code()*B16 |
2633        src1.code()*B12 | 0xB*B8 | m*B5 | B4 | vm);
2634 }
2635
2636
2637 void Assembler::vmov(const Register dst1,
2638                      const Register dst2,
2639                      const DwVfpRegister src,
2640                      const Condition cond) {
2641   // <Rt,Rt2> = Dm.
2642   // Instruction details available in ARM DDI 0406C.b, A8-948.
2643   // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) |
2644   // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
2645   DCHECK(!dst1.is(pc) && !dst2.is(pc));
2646   int vm, m;
2647   src.split_code(&vm, &m);
2648   emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 |
2649        dst1.code()*B12 | 0xB*B8 | m*B5 | B4 | vm);
2650 }
2651
2652
2653 void Assembler::vmov(const SwVfpRegister dst,
2654                      const Register src,
2655                      const Condition cond) {
2656   // Sn = Rt.
2657   // Instruction details available in ARM DDI 0406A, A8-642.
2658   // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) |
2659   // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
2660   DCHECK(!src.is(pc));
2661   int sn, n;
2662   dst.split_code(&sn, &n);
2663   emit(cond | 0xE*B24 | sn*B16 | src.code()*B12 | 0xA*B8 | n*B7 | B4);
2664 }
2665
2666
2667 void Assembler::vmov(const Register dst,
2668                      const SwVfpRegister src,
2669                      const Condition cond) {
2670   // Rt = Sn.
2671   // Instruction details available in ARM DDI 0406A, A8-642.
2672   // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) |
2673   // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
2674   DCHECK(!dst.is(pc));
2675   int sn, n;
2676   src.split_code(&sn, &n);
2677   emit(cond | 0xE*B24 | B20 | sn*B16 | dst.code()*B12 | 0xA*B8 | n*B7 | B4);
2678 }
2679
2680
2681 // Type of data to read from or write to VFP register.
2682 // Used as specifier in generic vcvt instruction.
2683 enum VFPType { S32, U32, F32, F64 };
2684
2685
2686 static bool IsSignedVFPType(VFPType type) {
2687   switch (type) {
2688     case S32:
2689       return true;
2690     case U32:
2691       return false;
2692     default:
2693       UNREACHABLE();
2694       return false;
2695   }
2696 }
2697
2698
2699 static bool IsIntegerVFPType(VFPType type) {
2700   switch (type) {
2701     case S32:
2702     case U32:
2703       return true;
2704     case F32:
2705     case F64:
2706       return false;
2707     default:
2708       UNREACHABLE();
2709       return false;
2710   }
2711 }
2712
2713
2714 static bool IsDoubleVFPType(VFPType type) {
2715   switch (type) {
2716     case F32:
2717       return false;
2718     case F64:
2719       return true;
2720     default:
2721       UNREACHABLE();
2722       return false;
2723   }
2724 }
2725
2726
2727 // Split five bit reg_code based on size of reg_type.
2728 //  32-bit register codes are Vm:M
2729 //  64-bit register codes are M:Vm
2730 // where Vm is four bits, and M is a single bit.
2731 static void SplitRegCode(VFPType reg_type,
2732                          int reg_code,
2733                          int* vm,
2734                          int* m) {
2735   DCHECK((reg_code >= 0) && (reg_code <= 31));
2736   if (IsIntegerVFPType(reg_type) || !IsDoubleVFPType(reg_type)) {
2737     // 32 bit type.
2738     *m  = reg_code & 0x1;
2739     *vm = reg_code >> 1;
2740   } else {
2741     // 64 bit type.
2742     *m  = (reg_code & 0x10) >> 4;
2743     *vm = reg_code & 0x0F;
2744   }
2745 }
2746
2747
2748 // Encode vcvt.src_type.dst_type instruction.
2749 static Instr EncodeVCVT(const VFPType dst_type,
2750                         const int dst_code,
2751                         const VFPType src_type,
2752                         const int src_code,
2753                         VFPConversionMode mode,
2754                         const Condition cond) {
2755   DCHECK(src_type != dst_type);
2756   int D, Vd, M, Vm;
2757   SplitRegCode(src_type, src_code, &Vm, &M);
2758   SplitRegCode(dst_type, dst_code, &Vd, &D);
2759
2760   if (IsIntegerVFPType(dst_type) || IsIntegerVFPType(src_type)) {
2761     // Conversion between IEEE floating point and 32-bit integer.
2762     // Instruction details available in ARM DDI 0406B, A8.6.295.
2763     // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 1(19) | opc2(18-16) |
2764     // Vd(15-12) | 101(11-9) | sz(8) | op(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2765     DCHECK(!IsIntegerVFPType(dst_type) || !IsIntegerVFPType(src_type));
2766
2767     int sz, opc2, op;
2768
2769     if (IsIntegerVFPType(dst_type)) {
2770       opc2 = IsSignedVFPType(dst_type) ? 0x5 : 0x4;
2771       sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
2772       op = mode;
2773     } else {
2774       DCHECK(IsIntegerVFPType(src_type));
2775       opc2 = 0x0;
2776       sz = IsDoubleVFPType(dst_type) ? 0x1 : 0x0;
2777       op = IsSignedVFPType(src_type) ? 0x1 : 0x0;
2778     }
2779
2780     return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | B19 | opc2*B16 |
2781             Vd*B12 | 0x5*B9 | sz*B8 | op*B7 | B6 | M*B5 | Vm);
2782   } else {
2783     // Conversion between IEEE double and single precision.
2784     // Instruction details available in ARM DDI 0406B, A8.6.298.
2785     // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0111(19-16) |
2786     // Vd(15-12) | 101(11-9) | sz(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2787     int sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
2788     return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | 0x7*B16 |
2789             Vd*B12 | 0x5*B9 | sz*B8 | B7 | B6 | M*B5 | Vm);
2790   }
2791 }
2792
2793
2794 void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
2795                              const SwVfpRegister src,
2796                              VFPConversionMode mode,
2797                              const Condition cond) {
2798   emit(EncodeVCVT(F64, dst.code(), S32, src.code(), mode, cond));
2799 }
2800
2801
2802 void Assembler::vcvt_f32_s32(const SwVfpRegister dst,
2803                              const SwVfpRegister src,
2804                              VFPConversionMode mode,
2805                              const Condition cond) {
2806   emit(EncodeVCVT(F32, dst.code(), S32, src.code(), mode, cond));
2807 }
2808
2809
2810 void Assembler::vcvt_f64_u32(const DwVfpRegister dst,
2811                              const SwVfpRegister src,
2812                              VFPConversionMode mode,
2813                              const Condition cond) {
2814   emit(EncodeVCVT(F64, dst.code(), U32, src.code(), mode, cond));
2815 }
2816
2817
2818 void Assembler::vcvt_s32_f64(const SwVfpRegister dst,
2819                              const DwVfpRegister src,
2820                              VFPConversionMode mode,
2821                              const Condition cond) {
2822   emit(EncodeVCVT(S32, dst.code(), F64, src.code(), mode, cond));
2823 }
2824
2825
2826 void Assembler::vcvt_u32_f64(const SwVfpRegister dst,
2827                              const DwVfpRegister src,
2828                              VFPConversionMode mode,
2829                              const Condition cond) {
2830   emit(EncodeVCVT(U32, dst.code(), F64, src.code(), mode, cond));
2831 }
2832
2833
2834 void Assembler::vcvt_f64_f32(const DwVfpRegister dst,
2835                              const SwVfpRegister src,
2836                              VFPConversionMode mode,
2837                              const Condition cond) {
2838   emit(EncodeVCVT(F64, dst.code(), F32, src.code(), mode, cond));
2839 }
2840
2841
2842 void Assembler::vcvt_f32_f64(const SwVfpRegister dst,
2843                              const DwVfpRegister src,
2844                              VFPConversionMode mode,
2845                              const Condition cond) {
2846   emit(EncodeVCVT(F32, dst.code(), F64, src.code(), mode, cond));
2847 }
2848
2849
2850 void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
2851                              int fraction_bits,
2852                              const Condition cond) {
2853   // Instruction details available in ARM DDI 0406C.b, A8-874.
2854   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 1010(19-16) | Vd(15-12) |
2855   // 101(11-9) | sf=1(8) | sx=1(7) | 1(6) | i(5) | 0(4) | imm4(3-0)
2856   DCHECK(fraction_bits > 0 && fraction_bits <= 32);
2857   DCHECK(CpuFeatures::IsSupported(VFP3));
2858   int vd, d;
2859   dst.split_code(&vd, &d);
2860   int imm5 = 32 - fraction_bits;
2861   int i = imm5 & 1;
2862   int imm4 = (imm5 >> 1) & 0xf;
2863   emit(cond | 0xE*B24 | B23 | d*B22 | 0x3*B20 | B19 | 0x2*B16 |
2864        vd*B12 | 0x5*B9 | B8 | B7 | B6 | i*B5 | imm4);
2865 }
2866
2867
2868 void Assembler::vneg(const DwVfpRegister dst,
2869                      const DwVfpRegister src,
2870                      const Condition cond) {
2871   // Instruction details available in ARM DDI 0406C.b, A8-968.
2872   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0001(19-16) | Vd(15-12) |
2873   // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2874   int vd, d;
2875   dst.split_code(&vd, &d);
2876   int vm, m;
2877   src.split_code(&vm, &m);
2878
2879   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | B16 | vd*B12 | 0x5*B9 | B8 | B6 |
2880        m*B5 | vm);
2881 }
2882
2883
2884 void Assembler::vabs(const DwVfpRegister dst,
2885                      const DwVfpRegister src,
2886                      const Condition cond) {
2887   // Instruction details available in ARM DDI 0406C.b, A8-524.
2888   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
2889   // 101(11-9) | sz=1(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2890   int vd, d;
2891   dst.split_code(&vd, &d);
2892   int vm, m;
2893   src.split_code(&vm, &m);
2894   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | B7 | B6 |
2895        m*B5 | vm);
2896 }
2897
2898
2899 void Assembler::vadd(const DwVfpRegister dst,
2900                      const DwVfpRegister src1,
2901                      const DwVfpRegister src2,
2902                      const Condition cond) {
2903   // Dd = vadd(Dn, Dm) double precision floating point addition.
2904   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2905   // Instruction details available in ARM DDI 0406C.b, A8-830.
2906   // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
2907   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
2908   int vd, d;
2909   dst.split_code(&vd, &d);
2910   int vn, n;
2911   src1.split_code(&vn, &n);
2912   int vm, m;
2913   src2.split_code(&vm, &m);
2914   emit(cond | 0x1C*B23 | d*B22 | 0x3*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
2915        n*B7 | m*B5 | vm);
2916 }
2917
2918
2919 void Assembler::vsub(const DwVfpRegister dst,
2920                      const DwVfpRegister src1,
2921                      const DwVfpRegister src2,
2922                      const Condition cond) {
2923   // Dd = vsub(Dn, Dm) double precision floating point subtraction.
2924   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2925   // Instruction details available in ARM DDI 0406C.b, A8-1086.
2926   // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
2927   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2928   int vd, d;
2929   dst.split_code(&vd, &d);
2930   int vn, n;
2931   src1.split_code(&vn, &n);
2932   int vm, m;
2933   src2.split_code(&vm, &m);
2934   emit(cond | 0x1C*B23 | d*B22 | 0x3*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
2935        n*B7 | B6 | m*B5 | vm);
2936 }
2937
2938
2939 void Assembler::vmul(const DwVfpRegister dst,
2940                      const DwVfpRegister src1,
2941                      const DwVfpRegister src2,
2942                      const Condition cond) {
2943   // Dd = vmul(Dn, Dm) double precision floating point multiplication.
2944   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2945   // Instruction details available in ARM DDI 0406C.b, A8-960.
2946   // cond(31-28) | 11100(27-23)| D(22) | 10(21-20) | Vn(19-16) |
2947   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
2948   int vd, d;
2949   dst.split_code(&vd, &d);
2950   int vn, n;
2951   src1.split_code(&vn, &n);
2952   int vm, m;
2953   src2.split_code(&vm, &m);
2954   emit(cond | 0x1C*B23 | d*B22 | 0x2*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
2955        n*B7 | m*B5 | vm);
2956 }
2957
2958
2959 void Assembler::vmla(const DwVfpRegister dst,
2960                      const DwVfpRegister src1,
2961                      const DwVfpRegister src2,
2962                      const Condition cond) {
2963   // Instruction details available in ARM DDI 0406C.b, A8-932.
2964   // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
2965   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=0(6) | M(5) | 0(4) | Vm(3-0)
2966   int vd, d;
2967   dst.split_code(&vd, &d);
2968   int vn, n;
2969   src1.split_code(&vn, &n);
2970   int vm, m;
2971   src2.split_code(&vm, &m);
2972   emit(cond | 0x1C*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 |
2973        vm);
2974 }
2975
2976
2977 void Assembler::vmls(const DwVfpRegister dst,
2978                      const DwVfpRegister src1,
2979                      const DwVfpRegister src2,
2980                      const Condition cond) {
2981   // Instruction details available in ARM DDI 0406C.b, A8-932.
2982   // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
2983   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=1(6) | M(5) | 0(4) | Vm(3-0)
2984   int vd, d;
2985   dst.split_code(&vd, &d);
2986   int vn, n;
2987   src1.split_code(&vn, &n);
2988   int vm, m;
2989   src2.split_code(&vm, &m);
2990   emit(cond | 0x1C*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | B6 |
2991        m*B5 | vm);
2992 }
2993
2994
2995 void Assembler::vdiv(const DwVfpRegister dst,
2996                      const DwVfpRegister src1,
2997                      const DwVfpRegister src2,
2998                      const Condition cond) {
2999   // Dd = vdiv(Dn, Dm) double precision floating point division.
3000   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
3001   // Instruction details available in ARM DDI 0406C.b, A8-882.
3002   // cond(31-28) | 11101(27-23)| D(22) | 00(21-20) | Vn(19-16) |
3003   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
3004   int vd, d;
3005   dst.split_code(&vd, &d);
3006   int vn, n;
3007   src1.split_code(&vn, &n);
3008   int vm, m;
3009   src2.split_code(&vm, &m);
3010   emit(cond | 0x1D*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 |
3011        vm);
3012 }
3013
3014
3015 void Assembler::vcmp(const DwVfpRegister src1,
3016                      const DwVfpRegister src2,
3017                      const Condition cond) {
3018   // vcmp(Dd, Dm) double precision floating point comparison.
3019   // Instruction details available in ARM DDI 0406C.b, A8-864.
3020   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0100(19-16) |
3021   // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
3022   int vd, d;
3023   src1.split_code(&vd, &d);
3024   int vm, m;
3025   src2.split_code(&vm, &m);
3026   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | 0x4*B16 | vd*B12 | 0x5*B9 | B8 | B6 |
3027        m*B5 | vm);
3028 }
3029
3030
3031 void Assembler::vcmp(const DwVfpRegister src1,
3032                      const double src2,
3033                      const Condition cond) {
3034   // vcmp(Dd, #0.0) double precision floating point comparison.
3035   // Instruction details available in ARM DDI 0406C.b, A8-864.
3036   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0101(19-16) |
3037   // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | 0(5) | 0(4) | 0000(3-0)
3038   DCHECK(src2 == 0.0);
3039   int vd, d;
3040   src1.split_code(&vd, &d);
3041   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | 0x5*B16 | vd*B12 | 0x5*B9 | B8 | B6);
3042 }
3043
3044
3045 void Assembler::vmsr(Register dst, Condition cond) {
3046   // Instruction details available in ARM DDI 0406A, A8-652.
3047   // cond(31-28) | 1110 (27-24) | 1110(23-20)| 0001 (19-16) |
3048   // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
3049   emit(cond | 0xE*B24 | 0xE*B20 |  B16 |
3050        dst.code()*B12 | 0xA*B8 | B4);
3051 }
3052
3053
3054 void Assembler::vmrs(Register dst, Condition cond) {
3055   // Instruction details available in ARM DDI 0406A, A8-652.
3056   // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) |
3057   // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
3058   emit(cond | 0xE*B24 | 0xF*B20 |  B16 |
3059        dst.code()*B12 | 0xA*B8 | B4);
3060 }
3061
3062
3063 void Assembler::vsqrt(const DwVfpRegister dst,
3064                       const DwVfpRegister src,
3065                       const Condition cond) {
3066   // Instruction details available in ARM DDI 0406C.b, A8-1058.
3067   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0001(19-16) |
3068   // Vd(15-12) | 101(11-9) | sz=1(8) | 11(7-6) | M(5) | 0(4) | Vm(3-0)
3069   int vd, d;
3070   dst.split_code(&vd, &d);
3071   int vm, m;
3072   src.split_code(&vm, &m);
3073   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | B16 | vd*B12 | 0x5*B9 | B8 | 0x3*B6 |
3074        m*B5 | vm);
3075 }
3076
3077
3078 // Support for NEON.
3079
3080 void Assembler::vld1(NeonSize size,
3081                      const NeonListOperand& dst,
3082                      const NeonMemOperand& src) {
3083   // Instruction details available in ARM DDI 0406C.b, A8.8.320.
3084   // 1111(31-28) | 01000(27-23) | D(22) | 10(21-20) | Rn(19-16) |
3085   // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0)
3086   DCHECK(CpuFeatures::IsSupported(NEON));
3087   int vd, d;
3088   dst.base().split_code(&vd, &d);
3089   emit(0xFU*B28 | 4*B24 | d*B22 | 2*B20 | src.rn().code()*B16 | vd*B12 |
3090        dst.type()*B8 | size*B6 | src.align()*B4 | src.rm().code());
3091 }
3092
3093
3094 void Assembler::vst1(NeonSize size,
3095                      const NeonListOperand& src,
3096                      const NeonMemOperand& dst) {
3097   // Instruction details available in ARM DDI 0406C.b, A8.8.404.
3098   // 1111(31-28) | 01000(27-23) | D(22) | 00(21-20) | Rn(19-16) |
3099   // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0)
3100   DCHECK(CpuFeatures::IsSupported(NEON));
3101   int vd, d;
3102   src.base().split_code(&vd, &d);
3103   emit(0xFU*B28 | 4*B24 | d*B22 | dst.rn().code()*B16 | vd*B12 | src.type()*B8 |
3104        size*B6 | dst.align()*B4 | dst.rm().code());
3105 }
3106
3107
3108 void Assembler::vmovl(NeonDataType dt, QwNeonRegister dst, DwVfpRegister src) {
3109   // Instruction details available in ARM DDI 0406C.b, A8.8.346.
3110   // 1111(31-28) | 001(27-25) | U(24) | 1(23) | D(22) | imm3(21-19) |
3111   // 000(18-16) | Vd(15-12) | 101000(11-6) | M(5) | 1(4) | Vm(3-0)
3112   DCHECK(CpuFeatures::IsSupported(NEON));
3113   int vd, d;
3114   dst.split_code(&vd, &d);
3115   int vm, m;
3116   src.split_code(&vm, &m);
3117   emit(0xFU*B28 | B25 | (dt & NeonDataTypeUMask) | B23 | d*B22 |
3118         (dt & NeonDataTypeSizeMask)*B19 | vd*B12 | 0xA*B8 | m*B5 | B4 | vm);
3119 }
3120
3121
3122 // Pseudo instructions.
3123 void Assembler::nop(int type) {
3124   // ARMv6{K/T2} and v7 have an actual NOP instruction but it serializes
3125   // some of the CPU's pipeline and has to issue. Older ARM chips simply used
3126   // MOV Rx, Rx as NOP and it performs better even in newer CPUs.
3127   // We therefore use MOV Rx, Rx, even on newer CPUs, and use Rx to encode
3128   // a type.
3129   DCHECK(0 <= type && type <= 14);  // mov pc, pc isn't a nop.
3130   emit(al | 13*B21 | type*B12 | type);
3131 }
3132
3133
3134 bool Assembler::IsMovT(Instr instr) {
3135   instr &= ~(((kNumberOfConditions - 1) << 28) |  // Mask off conditions
3136              ((kNumRegisters-1)*B12) |            // mask out register
3137              EncodeMovwImmediate(0xFFFF));        // mask out immediate value
3138   return instr == kMovtPattern;
3139 }
3140
3141
3142 bool Assembler::IsMovW(Instr instr) {
3143   instr &= ~(((kNumberOfConditions - 1) << 28) |  // Mask off conditions
3144              ((kNumRegisters-1)*B12) |            // mask out destination
3145              EncodeMovwImmediate(0xFFFF));        // mask out immediate value
3146   return instr == kMovwPattern;
3147 }
3148
3149
3150 Instr Assembler::GetMovTPattern() { return kMovtPattern; }
3151
3152
3153 Instr Assembler::GetMovWPattern() { return kMovwPattern; }
3154
3155
3156 Instr Assembler::EncodeMovwImmediate(uint32_t immediate) {
3157   DCHECK(immediate < 0x10000);
3158   return ((immediate & 0xf000) << 4) | (immediate & 0xfff);
3159 }
3160
3161
3162 Instr Assembler::PatchMovwImmediate(Instr instruction, uint32_t immediate) {
3163   instruction &= ~EncodeMovwImmediate(0xffff);
3164   return instruction | EncodeMovwImmediate(immediate);
3165 }
3166
3167
3168 int Assembler::DecodeShiftImm(Instr instr) {
3169   int rotate = Instruction::RotateValue(instr) * 2;
3170   int immed8 = Instruction::Immed8Value(instr);
3171   return (immed8 >> rotate) | (immed8 << (32 - rotate));
3172 }
3173
3174
3175 Instr Assembler::PatchShiftImm(Instr instr, int immed) {
3176   uint32_t rotate_imm = 0;
3177   uint32_t immed_8 = 0;
3178   bool immed_fits = fits_shifter(immed, &rotate_imm, &immed_8, NULL);
3179   DCHECK(immed_fits);
3180   USE(immed_fits);
3181   return (instr & ~kOff12Mask) | (rotate_imm << 8) | immed_8;
3182 }
3183
3184
3185 bool Assembler::IsNop(Instr instr, int type) {
3186   DCHECK(0 <= type && type <= 14);  // mov pc, pc isn't a nop.
3187   // Check for mov rx, rx where x = type.
3188   return instr == (al | 13*B21 | type*B12 | type);
3189 }
3190
3191
3192 bool Assembler::IsMovImmed(Instr instr) {
3193   return (instr & kMovImmedMask) == kMovImmedPattern;
3194 }
3195
3196
3197 bool Assembler::IsOrrImmed(Instr instr) {
3198   return (instr & kOrrImmedMask) == kOrrImmedPattern;
3199 }
3200
3201
3202 // static
3203 bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) {
3204   uint32_t dummy1;
3205   uint32_t dummy2;
3206   return fits_shifter(imm32, &dummy1, &dummy2, NULL);
3207 }
3208
3209
3210 bool Assembler::ImmediateFitsAddrMode2Instruction(int32_t imm32) {
3211   return is_uint12(abs(imm32));
3212 }
3213
3214
3215 // Debugging.
3216 void Assembler::RecordJSReturn() {
3217   positions_recorder()->WriteRecordedPositions();
3218   CheckBuffer();
3219   RecordRelocInfo(RelocInfo::JS_RETURN);
3220 }
3221
3222
3223 void Assembler::RecordDebugBreakSlot() {
3224   positions_recorder()->WriteRecordedPositions();
3225   CheckBuffer();
3226   RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
3227 }
3228
3229
3230 void Assembler::RecordComment(const char* msg) {
3231   if (FLAG_code_comments) {
3232     CheckBuffer();
3233     RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
3234   }
3235 }
3236
3237
3238 void Assembler::RecordConstPool(int size) {
3239   // We only need this for debugger support, to correctly compute offsets in the
3240   // code.
3241   RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
3242 }
3243
3244
3245 void Assembler::GrowBuffer() {
3246   if (!own_buffer_) FATAL("external code buffer is too small");
3247
3248   // Compute new buffer size.
3249   CodeDesc desc;  // the new buffer
3250   if (buffer_size_ < 1 * MB) {
3251     desc.buffer_size = 2*buffer_size_;
3252   } else {
3253     desc.buffer_size = buffer_size_ + 1*MB;
3254   }
3255   CHECK_GT(desc.buffer_size, 0);  // no overflow
3256
3257   // Set up new buffer.
3258   desc.buffer = NewArray<byte>(desc.buffer_size);
3259
3260   desc.instr_size = pc_offset();
3261   desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
3262
3263   // Copy the data.
3264   int pc_delta = desc.buffer - buffer_;
3265   int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
3266   MemMove(desc.buffer, buffer_, desc.instr_size);
3267   MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
3268           desc.reloc_size);
3269
3270   // Switch buffers.
3271   DeleteArray(buffer_);
3272   buffer_ = desc.buffer;
3273   buffer_size_ = desc.buffer_size;
3274   pc_ += pc_delta;
3275   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
3276                                reloc_info_writer.last_pc() + pc_delta);
3277
3278   // None of our relocation types are pc relative pointing outside the code
3279   // buffer nor pc absolute pointing inside the code buffer, so there is no need
3280   // to relocate any emitted relocation entries.
3281
3282   // Relocate pending relocation entries.
3283   for (int i = 0; i < num_pending_32_bit_reloc_info_; i++) {
3284     RelocInfo& rinfo = pending_32_bit_reloc_info_[i];
3285     DCHECK(rinfo.rmode() != RelocInfo::COMMENT &&
3286            rinfo.rmode() != RelocInfo::POSITION);
3287     if (rinfo.rmode() != RelocInfo::JS_RETURN) {
3288       rinfo.set_pc(rinfo.pc() + pc_delta);
3289     }
3290   }
3291   for (int i = 0; i < num_pending_64_bit_reloc_info_; i++) {
3292     RelocInfo& rinfo = pending_64_bit_reloc_info_[i];
3293     DCHECK(rinfo.rmode() == RelocInfo::NONE64);
3294     rinfo.set_pc(rinfo.pc() + pc_delta);
3295   }
3296   constant_pool_builder_.Relocate(pc_delta);
3297 }
3298
3299
3300 void Assembler::db(uint8_t data) {
3301   // No relocation info should be pending while using db. db is used
3302   // to write pure data with no pointers and the constant pool should
3303   // be emitted before using db.
3304   DCHECK(num_pending_32_bit_reloc_info_ == 0);
3305   DCHECK(num_pending_64_bit_reloc_info_ == 0);
3306   CheckBuffer();
3307   *reinterpret_cast<uint8_t*>(pc_) = data;
3308   pc_ += sizeof(uint8_t);
3309 }
3310
3311
3312 void Assembler::dd(uint32_t data) {
3313   // No relocation info should be pending while using dd. dd is used
3314   // to write pure data with no pointers and the constant pool should
3315   // be emitted before using dd.
3316   DCHECK(num_pending_32_bit_reloc_info_ == 0);
3317   DCHECK(num_pending_64_bit_reloc_info_ == 0);
3318   CheckBuffer();
3319   *reinterpret_cast<uint32_t*>(pc_) = data;
3320   pc_ += sizeof(uint32_t);
3321 }
3322
3323
3324 void Assembler::emit_code_stub_address(Code* stub) {
3325   CheckBuffer();
3326   *reinterpret_cast<uint32_t*>(pc_) =
3327       reinterpret_cast<uint32_t>(stub->instruction_start());
3328   pc_ += sizeof(uint32_t);
3329 }
3330
3331
3332 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
3333   RelocInfo rinfo(pc_, rmode, data, NULL);
3334   RecordRelocInfo(rinfo);
3335 }
3336
3337
3338 void Assembler::RecordRelocInfo(const RelocInfo& rinfo) {
3339   if (!RelocInfo::IsNone(rinfo.rmode())) {
3340     // Don't record external references unless the heap will be serialized.
3341     if (rinfo.rmode() == RelocInfo::EXTERNAL_REFERENCE &&
3342         !serializer_enabled() && !emit_debug_code()) {
3343       return;
3344     }
3345     DCHECK(buffer_space() >= kMaxRelocSize);  // too late to grow buffer here
3346     if (rinfo.rmode() == RelocInfo::CODE_TARGET_WITH_ID) {
3347       RelocInfo reloc_info_with_ast_id(rinfo.pc(),
3348                                        rinfo.rmode(),
3349                                        RecordedAstId().ToInt(),
3350                                        NULL);
3351       ClearRecordedAstId();
3352       reloc_info_writer.Write(&reloc_info_with_ast_id);
3353     } else {
3354       reloc_info_writer.Write(&rinfo);
3355     }
3356   }
3357 }
3358
3359
3360 ConstantPoolArray::LayoutSection Assembler::ConstantPoolAddEntry(
3361     const RelocInfo& rinfo) {
3362   if (FLAG_enable_ool_constant_pool) {
3363     return constant_pool_builder_.AddEntry(this, rinfo);
3364   } else {
3365     if (rinfo.rmode() == RelocInfo::NONE64) {
3366       DCHECK(num_pending_64_bit_reloc_info_ < kMaxNumPending64RelocInfo);
3367       if (num_pending_64_bit_reloc_info_ == 0) {
3368         first_const_pool_64_use_ = pc_offset();
3369       }
3370       pending_64_bit_reloc_info_[num_pending_64_bit_reloc_info_++] = rinfo;
3371     } else {
3372       DCHECK(num_pending_32_bit_reloc_info_ < kMaxNumPending32RelocInfo);
3373       if (num_pending_32_bit_reloc_info_ == 0) {
3374         first_const_pool_32_use_ = pc_offset();
3375       }
3376       pending_32_bit_reloc_info_[num_pending_32_bit_reloc_info_++] = rinfo;
3377     }
3378     // Make sure the constant pool is not emitted in place of the next
3379     // instruction for which we just recorded relocation info.
3380     BlockConstPoolFor(1);
3381     return ConstantPoolArray::SMALL_SECTION;
3382   }
3383 }
3384
3385
3386 void Assembler::BlockConstPoolFor(int instructions) {
3387   if (FLAG_enable_ool_constant_pool) {
3388     // Should be a no-op if using an out-of-line constant pool.
3389     DCHECK(num_pending_32_bit_reloc_info_ == 0);
3390     DCHECK(num_pending_64_bit_reloc_info_ == 0);
3391     return;
3392   }
3393
3394   int pc_limit = pc_offset() + instructions * kInstrSize;
3395   if (no_const_pool_before_ < pc_limit) {
3396     // Max pool start (if we need a jump and an alignment).
3397 #ifdef DEBUG
3398     int start = pc_limit + kInstrSize + 2 * kPointerSize;
3399     DCHECK((num_pending_32_bit_reloc_info_ == 0) ||
3400            (start - first_const_pool_32_use_ +
3401             num_pending_64_bit_reloc_info_ * kDoubleSize < kMaxDistToIntPool));
3402     DCHECK((num_pending_64_bit_reloc_info_ == 0) ||
3403            (start - first_const_pool_64_use_ < kMaxDistToFPPool));
3404 #endif
3405     no_const_pool_before_ = pc_limit;
3406   }
3407
3408   if (next_buffer_check_ < no_const_pool_before_) {
3409     next_buffer_check_ = no_const_pool_before_;
3410   }
3411 }
3412
3413
3414 void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
3415   if (FLAG_enable_ool_constant_pool) {
3416     // Should be a no-op if using an out-of-line constant pool.
3417     DCHECK(num_pending_32_bit_reloc_info_ == 0);
3418     DCHECK(num_pending_64_bit_reloc_info_ == 0);
3419     return;
3420   }
3421
3422   // Some short sequence of instruction mustn't be broken up by constant pool
3423   // emission, such sequences are protected by calls to BlockConstPoolFor and
3424   // BlockConstPoolScope.
3425   if (is_const_pool_blocked()) {
3426     // Something is wrong if emission is forced and blocked at the same time.
3427     DCHECK(!force_emit);
3428     return;
3429   }
3430
3431   // There is nothing to do if there are no pending constant pool entries.
3432   if ((num_pending_32_bit_reloc_info_ == 0) &&
3433       (num_pending_64_bit_reloc_info_ == 0)) {
3434     // Calculate the offset of the next check.
3435     next_buffer_check_ = pc_offset() + kCheckPoolInterval;
3436     return;
3437   }
3438
3439   // Check that the code buffer is large enough before emitting the constant
3440   // pool (include the jump over the pool and the constant pool marker and
3441   // the gap to the relocation information).
3442   int jump_instr = require_jump ? kInstrSize : 0;
3443   int size_up_to_marker = jump_instr + kInstrSize;
3444   int size_after_marker = num_pending_32_bit_reloc_info_ * kPointerSize;
3445   bool has_fp_values = (num_pending_64_bit_reloc_info_ > 0);
3446   bool require_64_bit_align = false;
3447   if (has_fp_values) {
3448     require_64_bit_align = (((uintptr_t)pc_ + size_up_to_marker) & 0x7);
3449     if (require_64_bit_align) {
3450       size_after_marker += kInstrSize;
3451     }
3452     size_after_marker += num_pending_64_bit_reloc_info_ * kDoubleSize;
3453   }
3454
3455   int size = size_up_to_marker + size_after_marker;
3456
3457   // We emit a constant pool when:
3458   //  * requested to do so by parameter force_emit (e.g. after each function).
3459   //  * the distance from the first instruction accessing the constant pool to
3460   //    any of the constant pool entries will exceed its limit the next
3461   //    time the pool is checked. This is overly restrictive, but we don't emit
3462   //    constant pool entries in-order so it's conservatively correct.
3463   //  * the instruction doesn't require a jump after itself to jump over the
3464   //    constant pool, and we're getting close to running out of range.
3465   if (!force_emit) {
3466     DCHECK((first_const_pool_32_use_ >= 0) || (first_const_pool_64_use_ >= 0));
3467     bool need_emit = false;
3468     if (has_fp_values) {
3469       int dist64 = pc_offset() +
3470                    size -
3471                    num_pending_32_bit_reloc_info_ * kPointerSize -
3472                    first_const_pool_64_use_;
3473       if ((dist64 >= kMaxDistToFPPool - kCheckPoolInterval) ||
3474           (!require_jump && (dist64 >= kMaxDistToFPPool / 2))) {
3475         need_emit = true;
3476       }
3477     }
3478     int dist32 =
3479       pc_offset() + size - first_const_pool_32_use_;
3480     if ((dist32 >= kMaxDistToIntPool - kCheckPoolInterval) ||
3481         (!require_jump && (dist32 >= kMaxDistToIntPool / 2))) {
3482       need_emit = true;
3483     }
3484     if (!need_emit) return;
3485   }
3486
3487   int needed_space = size + kGap;
3488   while (buffer_space() <= needed_space) GrowBuffer();
3489
3490   {
3491     // Block recursive calls to CheckConstPool.
3492     BlockConstPoolScope block_const_pool(this);
3493     RecordComment("[ Constant Pool");
3494     RecordConstPool(size);
3495
3496     // Emit jump over constant pool if necessary.
3497     Label after_pool;
3498     if (require_jump) {
3499       b(&after_pool);
3500     }
3501
3502     // Put down constant pool marker "Undefined instruction".
3503     // The data size helps disassembly know what to print.
3504     emit(kConstantPoolMarker |
3505          EncodeConstantPoolLength(size_after_marker / kPointerSize));
3506
3507     if (require_64_bit_align) {
3508       emit(kConstantPoolMarker);
3509     }
3510
3511     // Emit 64-bit constant pool entries first: their range is smaller than
3512     // 32-bit entries.
3513     for (int i = 0; i < num_pending_64_bit_reloc_info_; i++) {
3514       RelocInfo& rinfo = pending_64_bit_reloc_info_[i];
3515
3516       DCHECK(!((uintptr_t)pc_ & 0x7));  // Check 64-bit alignment.
3517
3518       Instr instr = instr_at(rinfo.pc());
3519       // Instruction to patch must be 'vldr rd, [pc, #offset]' with offset == 0.
3520       DCHECK((IsVldrDPcImmediateOffset(instr) &&
3521               GetVldrDRegisterImmediateOffset(instr) == 0));
3522
3523       int delta = pc_ - rinfo.pc() - kPcLoadDelta;
3524       DCHECK(is_uint10(delta));
3525
3526       bool found = false;
3527       uint64_t value = rinfo.raw_data64();
3528       for (int j = 0; j < i; j++) {
3529         RelocInfo& rinfo2 = pending_64_bit_reloc_info_[j];
3530         if (value == rinfo2.raw_data64()) {
3531           found = true;
3532           DCHECK(rinfo2.rmode() == RelocInfo::NONE64);
3533           Instr instr2 = instr_at(rinfo2.pc());
3534           DCHECK(IsVldrDPcImmediateOffset(instr2));
3535           delta = GetVldrDRegisterImmediateOffset(instr2);
3536           delta += rinfo2.pc() - rinfo.pc();
3537           break;
3538         }
3539       }
3540
3541       instr_at_put(rinfo.pc(), SetVldrDRegisterImmediateOffset(instr, delta));
3542
3543       if (!found) {
3544         uint64_t uint_data = rinfo.raw_data64();
3545         emit(uint_data & 0xFFFFFFFF);
3546         emit(uint_data >> 32);
3547       }
3548     }
3549
3550     // Emit 32-bit constant pool entries.
3551     for (int i = 0; i < num_pending_32_bit_reloc_info_; i++) {
3552       RelocInfo& rinfo = pending_32_bit_reloc_info_[i];
3553       DCHECK(rinfo.rmode() != RelocInfo::COMMENT &&
3554              rinfo.rmode() != RelocInfo::POSITION &&
3555              rinfo.rmode() != RelocInfo::STATEMENT_POSITION &&
3556              rinfo.rmode() != RelocInfo::CONST_POOL &&
3557              rinfo.rmode() != RelocInfo::NONE64);
3558
3559       Instr instr = instr_at(rinfo.pc());
3560
3561       // 64-bit loads shouldn't get here.
3562       DCHECK(!IsVldrDPcImmediateOffset(instr));
3563
3564       if (IsLdrPcImmediateOffset(instr) &&
3565           GetLdrRegisterImmediateOffset(instr) == 0) {
3566         int delta = pc_ - rinfo.pc() - kPcLoadDelta;
3567         DCHECK(is_uint12(delta));
3568         // 0 is the smallest delta:
3569         //   ldr rd, [pc, #0]
3570         //   constant pool marker
3571         //   data
3572
3573         bool found = false;
3574         if (!serializer_enabled() && rinfo.rmode() >= RelocInfo::CELL) {
3575           for (int j = 0; j < i; j++) {
3576             RelocInfo& rinfo2 = pending_32_bit_reloc_info_[j];
3577
3578             if ((rinfo2.data() == rinfo.data()) &&
3579                 (rinfo2.rmode() == rinfo.rmode())) {
3580               Instr instr2 = instr_at(rinfo2.pc());
3581               if (IsLdrPcImmediateOffset(instr2)) {
3582                 delta = GetLdrRegisterImmediateOffset(instr2);
3583                 delta += rinfo2.pc() - rinfo.pc();
3584                 found = true;
3585                 break;
3586               }
3587             }
3588           }
3589         }
3590
3591         instr_at_put(rinfo.pc(), SetLdrRegisterImmediateOffset(instr, delta));
3592
3593         if (!found) {
3594           emit(rinfo.data());
3595         }
3596       } else {
3597         DCHECK(IsMovW(instr));
3598       }
3599     }
3600
3601     num_pending_32_bit_reloc_info_ = 0;
3602     num_pending_64_bit_reloc_info_ = 0;
3603     first_const_pool_32_use_ = -1;
3604     first_const_pool_64_use_ = -1;
3605
3606     RecordComment("]");
3607
3608     if (after_pool.is_linked()) {
3609       bind(&after_pool);
3610     }
3611   }
3612
3613   // Since a constant pool was just emitted, move the check offset forward by
3614   // the standard interval.
3615   next_buffer_check_ = pc_offset() + kCheckPoolInterval;
3616 }
3617
3618
3619 Handle<ConstantPoolArray> Assembler::NewConstantPool(Isolate* isolate) {
3620   if (!FLAG_enable_ool_constant_pool) {
3621     return isolate->factory()->empty_constant_pool_array();
3622   }
3623   return constant_pool_builder_.New(isolate);
3624 }
3625
3626
3627 void Assembler::PopulateConstantPool(ConstantPoolArray* constant_pool) {
3628   constant_pool_builder_.Populate(this, constant_pool);
3629 }
3630
3631
3632 ConstantPoolBuilder::ConstantPoolBuilder()
3633     : entries_(), current_section_(ConstantPoolArray::SMALL_SECTION) {}
3634
3635
3636 bool ConstantPoolBuilder::IsEmpty() {
3637   return entries_.size() == 0;
3638 }
3639
3640
3641 ConstantPoolArray::Type ConstantPoolBuilder::GetConstantPoolType(
3642     RelocInfo::Mode rmode) {
3643   if (rmode == RelocInfo::NONE64) {
3644     return ConstantPoolArray::INT64;
3645   } else if (!RelocInfo::IsGCRelocMode(rmode)) {
3646     return ConstantPoolArray::INT32;
3647   } else if (RelocInfo::IsCodeTarget(rmode)) {
3648     return ConstantPoolArray::CODE_PTR;
3649   } else {
3650     DCHECK(RelocInfo::IsGCRelocMode(rmode) && !RelocInfo::IsCodeTarget(rmode));
3651     return ConstantPoolArray::HEAP_PTR;
3652   }
3653 }
3654
3655
3656 ConstantPoolArray::LayoutSection ConstantPoolBuilder::AddEntry(
3657     Assembler* assm, const RelocInfo& rinfo) {
3658   RelocInfo::Mode rmode = rinfo.rmode();
3659   DCHECK(rmode != RelocInfo::COMMENT &&
3660          rmode != RelocInfo::POSITION &&
3661          rmode != RelocInfo::STATEMENT_POSITION &&
3662          rmode != RelocInfo::CONST_POOL);
3663
3664   // Try to merge entries which won't be patched.
3665   int merged_index = -1;
3666   ConstantPoolArray::LayoutSection entry_section = current_section_;
3667   if (RelocInfo::IsNone(rmode) ||
3668       (!assm->serializer_enabled() && (rmode >= RelocInfo::CELL))) {
3669     size_t i;
3670     std::vector<ConstantPoolEntry>::const_iterator it;
3671     for (it = entries_.begin(), i = 0; it != entries_.end(); it++, i++) {
3672       if (RelocInfo::IsEqual(rinfo, it->rinfo_)) {
3673         // Merge with found entry.
3674         merged_index = i;
3675         entry_section = entries_[i].section_;
3676         break;
3677       }
3678     }
3679   }
3680   DCHECK(entry_section <= current_section_);
3681   entries_.push_back(ConstantPoolEntry(rinfo, entry_section, merged_index));
3682
3683   if (merged_index == -1) {
3684     // Not merged, so update the appropriate count.
3685     number_of_entries_[entry_section].increment(GetConstantPoolType(rmode));
3686   }
3687
3688   // Check if we still have room for another entry in the small section
3689   // given Arm's ldr and vldr immediate offset range.
3690   if (current_section_ == ConstantPoolArray::SMALL_SECTION &&
3691       !(is_uint12(ConstantPoolArray::SizeFor(*small_entries())) &&
3692         is_uint10(ConstantPoolArray::MaxInt64Offset(
3693             small_entries()->count_of(ConstantPoolArray::INT64))))) {
3694     current_section_ = ConstantPoolArray::EXTENDED_SECTION;
3695   }
3696   return entry_section;
3697 }
3698
3699
3700 void ConstantPoolBuilder::Relocate(int pc_delta) {
3701   for (std::vector<ConstantPoolEntry>::iterator entry = entries_.begin();
3702        entry != entries_.end(); entry++) {
3703     DCHECK(entry->rinfo_.rmode() != RelocInfo::JS_RETURN);
3704     entry->rinfo_.set_pc(entry->rinfo_.pc() + pc_delta);
3705   }
3706 }
3707
3708
3709 Handle<ConstantPoolArray> ConstantPoolBuilder::New(Isolate* isolate) {
3710   if (IsEmpty()) {
3711     return isolate->factory()->empty_constant_pool_array();
3712   } else if (extended_entries()->is_empty()) {
3713     return isolate->factory()->NewConstantPoolArray(*small_entries());
3714   } else {
3715     DCHECK(current_section_ == ConstantPoolArray::EXTENDED_SECTION);
3716     return isolate->factory()->NewExtendedConstantPoolArray(
3717         *small_entries(), *extended_entries());
3718   }
3719 }
3720
3721
3722 void ConstantPoolBuilder::Populate(Assembler* assm,
3723                                    ConstantPoolArray* constant_pool) {
3724   DCHECK_EQ(extended_entries()->is_empty(),
3725             !constant_pool->is_extended_layout());
3726   DCHECK(small_entries()->equals(ConstantPoolArray::NumberOfEntries(
3727       constant_pool, ConstantPoolArray::SMALL_SECTION)));
3728   if (constant_pool->is_extended_layout()) {
3729     DCHECK(extended_entries()->equals(ConstantPoolArray::NumberOfEntries(
3730         constant_pool, ConstantPoolArray::EXTENDED_SECTION)));
3731   }
3732
3733   // Set up initial offsets.
3734   int offsets[ConstantPoolArray::NUMBER_OF_LAYOUT_SECTIONS]
3735              [ConstantPoolArray::NUMBER_OF_TYPES];
3736   for (int section = 0; section <= constant_pool->final_section(); section++) {
3737     int section_start = (section == ConstantPoolArray::EXTENDED_SECTION)
3738                             ? small_entries()->total_count()
3739                             : 0;
3740     for (int i = 0; i < ConstantPoolArray::NUMBER_OF_TYPES; i++) {
3741       ConstantPoolArray::Type type = static_cast<ConstantPoolArray::Type>(i);
3742       if (number_of_entries_[section].count_of(type) != 0) {
3743         offsets[section][type] = constant_pool->OffsetOfElementAt(
3744             number_of_entries_[section].base_of(type) + section_start);
3745       }
3746     }
3747   }
3748
3749   for (std::vector<ConstantPoolEntry>::iterator entry = entries_.begin();
3750        entry != entries_.end(); entry++) {
3751     RelocInfo rinfo = entry->rinfo_;
3752     RelocInfo::Mode rmode = entry->rinfo_.rmode();
3753     ConstantPoolArray::Type type = GetConstantPoolType(rmode);
3754
3755     // Update constant pool if necessary and get the entry's offset.
3756     int offset;
3757     if (entry->merged_index_ == -1) {
3758       offset = offsets[entry->section_][type];
3759       offsets[entry->section_][type] += ConstantPoolArray::entry_size(type);
3760       if (type == ConstantPoolArray::INT64) {
3761         constant_pool->set_at_offset(offset, rinfo.data64());
3762       } else if (type == ConstantPoolArray::INT32) {
3763         constant_pool->set_at_offset(offset,
3764                                      static_cast<int32_t>(rinfo.data()));
3765       } else if (type == ConstantPoolArray::CODE_PTR) {
3766         constant_pool->set_at_offset(offset,
3767                                      reinterpret_cast<Address>(rinfo.data()));
3768       } else {
3769         DCHECK(type == ConstantPoolArray::HEAP_PTR);
3770         constant_pool->set_at_offset(offset,
3771                                      reinterpret_cast<Object*>(rinfo.data()));
3772       }
3773       offset -= kHeapObjectTag;
3774       entry->merged_index_ = offset;  // Stash offset for merged entries.
3775     } else {
3776       DCHECK(entry->merged_index_ < (entry - entries_.begin()));
3777       offset = entries_[entry->merged_index_].merged_index_;
3778     }
3779
3780     // Patch vldr/ldr instruction with correct offset.
3781     Instr instr = assm->instr_at(rinfo.pc());
3782     if (entry->section_ == ConstantPoolArray::EXTENDED_SECTION) {
3783       if (CpuFeatures::IsSupported(ARMv7)) {
3784         // Instructions to patch must be 'movw rd, [#0]' and 'movt rd, [#0].
3785         Instr next_instr = assm->instr_at(rinfo.pc() + Assembler::kInstrSize);
3786         DCHECK((Assembler::IsMovW(instr) &&
3787                 Instruction::ImmedMovwMovtValue(instr) == 0));
3788         DCHECK((Assembler::IsMovT(next_instr) &&
3789                 Instruction::ImmedMovwMovtValue(next_instr) == 0));
3790         assm->instr_at_put(
3791             rinfo.pc(), Assembler::PatchMovwImmediate(instr, offset & 0xffff));
3792         assm->instr_at_put(
3793             rinfo.pc() + Assembler::kInstrSize,
3794             Assembler::PatchMovwImmediate(next_instr, offset >> 16));
3795       } else {
3796         // Instructions to patch must be 'mov rd, [#0]' and 'orr rd, rd, [#0].
3797         Instr instr_2 = assm->instr_at(rinfo.pc() + Assembler::kInstrSize);
3798         Instr instr_3 = assm->instr_at(rinfo.pc() + 2 * Assembler::kInstrSize);
3799         Instr instr_4 = assm->instr_at(rinfo.pc() + 3 * Assembler::kInstrSize);
3800         DCHECK((Assembler::IsMovImmed(instr) &&
3801                 Instruction::Immed8Value(instr) == 0));
3802         DCHECK((Assembler::IsOrrImmed(instr_2) &&
3803                 Instruction::Immed8Value(instr_2) == 0) &&
3804                Assembler::GetRn(instr_2).is(Assembler::GetRd(instr_2)));
3805         DCHECK((Assembler::IsOrrImmed(instr_3) &&
3806                 Instruction::Immed8Value(instr_3) == 0) &&
3807                Assembler::GetRn(instr_3).is(Assembler::GetRd(instr_3)));
3808         DCHECK((Assembler::IsOrrImmed(instr_4) &&
3809                 Instruction::Immed8Value(instr_4) == 0) &&
3810                Assembler::GetRn(instr_4).is(Assembler::GetRd(instr_4)));
3811         assm->instr_at_put(
3812             rinfo.pc(), Assembler::PatchShiftImm(instr, (offset & kImm8Mask)));
3813         assm->instr_at_put(
3814             rinfo.pc() + Assembler::kInstrSize,
3815             Assembler::PatchShiftImm(instr_2, (offset & (kImm8Mask << 8))));
3816         assm->instr_at_put(
3817             rinfo.pc() + 2 * Assembler::kInstrSize,
3818             Assembler::PatchShiftImm(instr_3, (offset & (kImm8Mask << 16))));
3819         assm->instr_at_put(
3820             rinfo.pc() + 3 * Assembler::kInstrSize,
3821             Assembler::PatchShiftImm(instr_4, (offset & (kImm8Mask << 24))));
3822       }
3823     } else if (type == ConstantPoolArray::INT64) {
3824       // Instruction to patch must be 'vldr rd, [pp, #0]'.
3825       DCHECK((Assembler::IsVldrDPpImmediateOffset(instr) &&
3826               Assembler::GetVldrDRegisterImmediateOffset(instr) == 0));
3827       DCHECK(is_uint10(offset));
3828       assm->instr_at_put(rinfo.pc(), Assembler::SetVldrDRegisterImmediateOffset(
3829                                          instr, offset));
3830     } else {
3831       // Instruction to patch must be 'ldr rd, [pp, #0]'.
3832       DCHECK((Assembler::IsLdrPpImmediateOffset(instr) &&
3833               Assembler::GetLdrRegisterImmediateOffset(instr) == 0));
3834       DCHECK(is_uint12(offset));
3835       assm->instr_at_put(
3836           rinfo.pc(), Assembler::SetLdrRegisterImmediateOffset(instr, offset));
3837     }
3838   }
3839 }
3840
3841
3842 } }  // namespace v8::internal
3843
3844 #endif  // V8_TARGET_ARCH_ARM