- add sources.
[platform/framework/web/crosswalk.git] / src / tools / telemetry / third_party / png / png.py
1 #!/usr/bin/env python
2
3 # $URL$
4 # $Rev$
5
6 # png.py - PNG encoder/decoder in pure Python
7 #
8 # Copyright (C) 2006 Johann C. Rocholl <johann@browsershots.org>
9 # Portions Copyright (C) 2009 David Jones <drj@pobox.com>
10 # And probably portions Copyright (C) 2006 Nicko van Someren <nicko@nicko.org>
11 #
12 # Original concept by Johann C. Rocholl.
13 #
14 # LICENSE (The MIT License)
15 #
16 # Permission is hereby granted, free of charge, to any person
17 # obtaining a copy of this software and associated documentation files
18 # (the "Software"), to deal in the Software without restriction,
19 # including without limitation the rights to use, copy, modify, merge,
20 # publish, distribute, sublicense, and/or sell copies of the Software,
21 # and to permit persons to whom the Software is furnished to do so,
22 # subject to the following conditions:
23 #
24 # The above copyright notice and this permission notice shall be
25 # included in all copies or substantial portions of the Software.
26 #
27 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
28 # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
29 # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
30 # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
31 # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
32 # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
33 # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
34 # SOFTWARE.
35 #
36 # Changelog (recent first):
37 # 2009-03-11 David: interlaced bit depth < 8 (writing).
38 # 2009-03-10 David: interlaced bit depth < 8 (reading).
39 # 2009-03-04 David: Flat and Boxed pixel formats.
40 # 2009-02-26 David: Palette support (writing).
41 # 2009-02-23 David: Bit-depths < 8; better PNM support.
42 # 2006-06-17 Nicko: Reworked into a class, faster interlacing.
43 # 2006-06-17 Johann: Very simple prototype PNG decoder.
44 # 2006-06-17 Nicko: Test suite with various image generators.
45 # 2006-06-17 Nicko: Alpha-channel, grey-scale, 16-bit/plane support.
46 # 2006-06-15 Johann: Scanline iterator interface for large input files.
47 # 2006-06-09 Johann: Very simple prototype PNG encoder.
48
49 # Incorporated into Bangai-O Development Tools by drj on 2009-02-11 from
50 # http://trac.browsershots.org/browser/trunk/pypng/lib/png.py?rev=2885
51
52 # Incorporated into pypng by drj on 2009-03-12 from
53 # //depot/prj/bangaio/master/code/png.py#67
54
55
56 """
57 Pure Python PNG Reader/Writer
58
59 This Python module implements support for PNG images (see PNG
60 specification at http://www.w3.org/TR/2003/REC-PNG-20031110/ ). It reads
61 and writes PNG files with all allowable bit depths (1/2/4/8/16/24/32/48/64
62 bits per pixel) and colour combinations: greyscale (1/2/4/8/16 bit); RGB,
63 RGBA, LA (greyscale with alpha) with 8/16 bits per channel; colour mapped
64 images (1/2/4/8 bit).  Adam7 interlacing is supported for reading and
65 writing.  A number of optional chunks can be specified (when writing)
66 and understood (when reading): ``tRNS``, ``bKGD``, ``gAMA``.
67
68 For help, type ``import png; help(png)`` in your python interpreter.
69
70 A good place to start is the :class:`Reader` and :class:`Writer` classes.
71
72 Requires Python 2.3.  Limited support is available for Python 2.2, but
73 not everything works.  Best with Python 2.4 and higher.  Installation is
74 trivial, but see the ``README.txt`` file (with the source distribution)
75 for details.
76
77 This file can also be used as a command-line utility to convert
78 `Netpbm <http://netpbm.sourceforge.net/>`_ PNM files to PNG, and the reverse conversion from PNG to
79 PNM. The interface is similar to that of the ``pnmtopng`` program from
80 Netpbm.  Type ``python png.py --help`` at the shell prompt
81 for usage and a list of options.
82
83 A note on spelling and terminology
84 ----------------------------------
85
86 Generally British English spelling is used in the documentation.  So
87 that's "greyscale" and "colour".  This not only matches the author's
88 native language, it's also used by the PNG specification.
89
90 The major colour models supported by PNG (and hence by PyPNG) are:
91 greyscale, RGB, greyscale--alpha, RGB--alpha.  These are sometimes
92 referred to using the abbreviations: L, RGB, LA, RGBA.  In this case
93 each letter abbreviates a single channel: *L* is for Luminance or Luma or
94 Lightness which is the channel used in greyscale images; *R*, *G*, *B* stand
95 for Red, Green, Blue, the components of a colour image; *A* stands for
96 Alpha, the opacity channel (used for transparency effects, but higher
97 values are more opaque, so it makes sense to call it opacity).
98
99 A note on formats
100 -----------------
101
102 When getting pixel data out of this module (reading) and presenting
103 data to this module (writing) there are a number of ways the data could
104 be represented as a Python value.  Generally this module uses one of
105 three formats called "flat row flat pixel", "boxed row flat pixel", and
106 "boxed row boxed pixel".  Basically the concern is whether each pixel
107 and each row comes in its own little tuple (box), or not.
108
109 Consider an image that is 3 pixels wide by 2 pixels high, and each pixel
110 has RGB components:
111
112 Boxed row flat pixel::
113
114   list([R,G,B, R,G,B, R,G,B],
115        [R,G,B, R,G,B, R,G,B])
116
117 Each row appears as its own list, but the pixels are flattened so that
118 three values for one pixel simply follow the three values for the previous
119 pixel.  This is the most common format used, because it provides a good
120 compromise between space and convenience.  PyPNG regards itself as
121 at liberty to replace any sequence type with any sufficiently compatible
122 other sequence type; in practice each row is an array (from the array
123 module), and the outer list is sometimes an iterator rather than an
124 explicit list (so that streaming is possible).
125
126 Flat row flat pixel::
127
128   [R,G,B, R,G,B, R,G,B,
129    R,G,B, R,G,B, R,G,B]
130
131 The entire image is one single giant sequence of colour values.
132 Generally an array will be used (to save space), not a list.
133
134 Boxed row boxed pixel::
135
136   list([ (R,G,B), (R,G,B), (R,G,B) ],
137        [ (R,G,B), (R,G,B), (R,G,B) ])
138
139 Each row appears in its own list, but each pixel also appears in its own
140 tuple.  A serious memory burn in Python.
141
142 In all cases the top row comes first, and for each row the pixels are
143 ordered from left-to-right.  Within a pixel the values appear in the
144 order, R-G-B-A (or L-A for greyscale--alpha).
145
146 There is a fourth format, mentioned because it is used internally,
147 is close to what lies inside a PNG file itself, and has some support
148 from the public API.  This format is called packed.  When packed,
149 each row is a sequence of bytes (integers from 0 to 255), just as
150 it is before PNG scanline filtering is applied.  When the bit depth
151 is 8 this is essentially the same as boxed row flat pixel; when the
152 bit depth is less than 8, several pixels are packed into each byte;
153 when the bit depth is 16 (the only value more than 8 that is supported
154 by the PNG image format) each pixel value is decomposed into 2 bytes
155 (and `packed` is a misnomer).  This format is used by the
156 :meth:`Writer.write_packed` method.  It isn't usually a convenient
157 format, but may be just right if the source data for the PNG image
158 comes from something that uses a similar format (for example, 1-bit
159 BMPs, or another PNG file).
160
161 And now, my famous members
162 --------------------------
163 """
164
165 # http://www.python.org/doc/2.2.3/whatsnew/node5.html
166 from __future__ import generators
167
168 __version__ = "$URL$ $Rev$"
169
170 from array import array
171 try: # See :pyver:old
172     import itertools
173 except:
174     pass
175 import math
176 # http://www.python.org/doc/2.4.4/lib/module-operator.html
177 import operator
178 import struct
179 import sys
180 import zlib
181 # http://www.python.org/doc/2.4.4/lib/module-warnings.html
182 import warnings
183 try:
184     import pyximport
185     pyximport.install()
186     import cpngfilters as pngfilters
187 except ImportError:
188     pass
189
190
191 __all__ = ['Image', 'Reader', 'Writer', 'write_chunks', 'from_array']
192
193
194 # The PNG signature.
195 # http://www.w3.org/TR/PNG/#5PNG-file-signature
196 _signature = struct.pack('8B', 137, 80, 78, 71, 13, 10, 26, 10)
197
198 _adam7 = ((0, 0, 8, 8),
199           (4, 0, 8, 8),
200           (0, 4, 4, 8),
201           (2, 0, 4, 4),
202           (0, 2, 2, 4),
203           (1, 0, 2, 2),
204           (0, 1, 1, 2))
205
206 def group(s, n):
207     # See
208     # http://www.python.org/doc/2.6/library/functions.html#zip
209     return zip(*[iter(s)]*n)
210
211 def isarray(x):
212     """Same as ``isinstance(x, array)`` except on Python 2.2, where it
213     always returns ``False``.  This helps PyPNG work on Python 2.2.
214     """
215
216     try:
217         return isinstance(x, array)
218     except:
219         return False
220
221 try:  # see :pyver:old
222     array.tostring
223 except:
224     def tostring(row):
225         l = len(row)
226         return struct.pack('%dB' % l, *row)
227 else:
228     def tostring(row):
229         """Convert row of bytes to string.  Expects `row` to be an
230         ``array``.
231         """
232         return row.tostring()
233
234 # Conditionally convert to bytes.  Works on Python 2 and Python 3.
235 try:
236     bytes('', 'ascii')
237     def strtobytes(x): return bytes(x, 'iso8859-1')
238     def bytestostr(x): return str(x, 'iso8859-1')
239 except:
240     strtobytes = str
241     bytestostr = str
242
243 def interleave_planes(ipixels, apixels, ipsize, apsize):
244     """
245     Interleave (colour) planes, e.g. RGB + A = RGBA.
246
247     Return an array of pixels consisting of the `ipsize` elements of data
248     from each pixel in `ipixels` followed by the `apsize` elements of data
249     from each pixel in `apixels`.  Conventionally `ipixels` and
250     `apixels` are byte arrays so the sizes are bytes, but it actually
251     works with any arrays of the same type.  The returned array is the
252     same type as the input arrays which should be the same type as each other.
253     """
254
255     itotal = len(ipixels)
256     atotal = len(apixels)
257     newtotal = itotal + atotal
258     newpsize = ipsize + apsize
259     # Set up the output buffer
260     # See http://www.python.org/doc/2.4.4/lib/module-array.html#l2h-1356
261     out = array(ipixels.typecode)
262     # It's annoying that there is no cheap way to set the array size :-(
263     out.extend(ipixels)
264     out.extend(apixels)
265     # Interleave in the pixel data
266     for i in range(ipsize):
267         out[i:newtotal:newpsize] = ipixels[i:itotal:ipsize]
268     for i in range(apsize):
269         out[i+ipsize:newtotal:newpsize] = apixels[i:atotal:apsize]
270     return out
271
272 def check_palette(palette):
273     """Check a palette argument (to the :class:`Writer` class) for validity.
274     Returns the palette as a list if okay; raises an exception otherwise.
275     """
276
277     # None is the default and is allowed.
278     if palette is None:
279         return None
280
281     p = list(palette)
282     if not (0 < len(p) <= 256):
283         raise ValueError("a palette must have between 1 and 256 entries")
284     seen_triple = False
285     for i,t in enumerate(p):
286         if len(t) not in (3,4):
287             raise ValueError(
288               "palette entry %d: entries must be 3- or 4-tuples." % i)
289         if len(t) == 3:
290             seen_triple = True
291         if seen_triple and len(t) == 4:
292             raise ValueError(
293               "palette entry %d: all 4-tuples must precede all 3-tuples" % i)
294         for x in t:
295             if int(x) != x or not(0 <= x <= 255):
296                 raise ValueError(
297                   "palette entry %d: values must be integer: 0 <= x <= 255" % i)
298     return p
299
300 class Error(Exception):
301     prefix = 'Error'
302     def __str__(self):
303         return self.prefix + ': ' + ' '.join(self.args)
304
305 class FormatError(Error):
306     """Problem with input file format.  In other words, PNG file does
307     not conform to the specification in some way and is invalid.
308     """
309
310     prefix = 'FormatError'
311
312 class ChunkError(FormatError):
313     prefix = 'ChunkError'
314
315
316 class Writer:
317     """
318     PNG encoder in pure Python.
319     """
320
321     def __init__(self, width=None, height=None,
322                  size=None,
323                  greyscale=False,
324                  alpha=False,
325                  bitdepth=8,
326                  palette=None,
327                  transparent=None,
328                  background=None,
329                  gamma=None,
330                  compression=None,
331                  interlace=False,
332                  bytes_per_sample=None, # deprecated
333                  planes=None,
334                  colormap=None,
335                  maxval=None,
336                  chunk_limit=2**20):
337         """
338         Create a PNG encoder object.
339
340         Arguments:
341
342         width, height
343           Image size in pixels, as two separate arguments.
344         size
345           Image size (w,h) in pixels, as single argument.
346         greyscale
347           Input data is greyscale, not RGB.
348         alpha
349           Input data has alpha channel (RGBA or LA).
350         bitdepth
351           Bit depth: from 1 to 16.
352         palette
353           Create a palette for a colour mapped image (colour type 3).
354         transparent
355           Specify a transparent colour (create a ``tRNS`` chunk).
356         background
357           Specify a default background colour (create a ``bKGD`` chunk).
358         gamma
359           Specify a gamma value (create a ``gAMA`` chunk).
360         compression
361           zlib compression level: 0 (none) to 9 (more compressed); default: -1 or None.
362         interlace
363           Create an interlaced image.
364         chunk_limit
365           Write multiple ``IDAT`` chunks to save memory.
366
367         The image size (in pixels) can be specified either by using the
368         `width` and `height` arguments, or with the single `size`
369         argument.  If `size` is used it should be a pair (*width*,
370         *height*).
371
372         `greyscale` and `alpha` are booleans that specify whether
373         an image is greyscale (or colour), and whether it has an
374         alpha channel (or not).
375
376         `bitdepth` specifies the bit depth of the source pixel values.
377         Each source pixel value must be an integer between 0 and
378         ``2**bitdepth-1``.  For example, 8-bit images have values
379         between 0 and 255.  PNG only stores images with bit depths of
380         1,2,4,8, or 16.  When `bitdepth` is not one of these values,
381         the next highest valid bit depth is selected, and an ``sBIT``
382         (significant bits) chunk is generated that specifies the original
383         precision of the source image.  In this case the supplied pixel
384         values will be rescaled to fit the range of the selected bit depth.
385
386         The details of which bit depth / colour model combinations the
387         PNG file format supports directly, are somewhat arcane
388         (refer to the PNG specification for full details).  Briefly:
389         "small" bit depths (1,2,4) are only allowed with greyscale and
390         colour mapped images; colour mapped images cannot have bit depth
391         16.
392
393         For colour mapped images (in other words, when the `palette`
394         argument is specified) the `bitdepth` argument must match one of
395         the valid PNG bit depths: 1, 2, 4, or 8.  (It is valid to have a
396         PNG image with a palette and an ``sBIT`` chunk, but the meaning
397         is slightly different; it would be awkward to press the
398         `bitdepth` argument into service for this.)
399
400         The `palette` option, when specified, causes a colour mapped image
401         to be created: the PNG colour type is set to 3; greyscale
402         must not be set; alpha must not be set; transparent must
403         not be set; the bit depth must be 1,2,4, or 8.  When a colour
404         mapped image is created, the pixel values are palette indexes
405         and the `bitdepth` argument specifies the size of these indexes
406         (not the size of the colour values in the palette).
407
408         The palette argument value should be a sequence of 3- or
409         4-tuples.  3-tuples specify RGB palette entries; 4-tuples
410         specify RGBA palette entries.  If both 4-tuples and 3-tuples
411         appear in the sequence then all the 4-tuples must come
412         before all the 3-tuples.  A ``PLTE`` chunk is created; if there
413         are 4-tuples then a ``tRNS`` chunk is created as well.  The
414         ``PLTE`` chunk will contain all the RGB triples in the same
415         sequence; the ``tRNS`` chunk will contain the alpha channel for
416         all the 4-tuples, in the same sequence.  Palette entries
417         are always 8-bit.
418
419         If specified, the `transparent` and `background` parameters must
420         be a tuple with three integer values for red, green, blue, or
421         a simple integer (or singleton tuple) for a greyscale image.
422
423         If specified, the `gamma` parameter must be a positive number
424         (generally, a float).  A ``gAMA`` chunk will be created.  Note that
425         this will not change the values of the pixels as they appear in
426         the PNG file, they are assumed to have already been converted
427         appropriately for the gamma specified.
428
429         The `compression` argument specifies the compression level to
430         be used by the ``zlib`` module.  Values from 1 to 9 specify
431         compression, with 9 being "more compressed" (usually smaller
432         and slower, but it doesn't always work out that way).  0 means
433         no compression.  -1 and ``None`` both mean that the default
434         level of compession will be picked by the ``zlib`` module
435         (which is generally acceptable).
436
437         If `interlace` is true then an interlaced image is created
438         (using PNG's so far only interace method, *Adam7*).  This does not
439         affect how the pixels should be presented to the encoder, rather
440         it changes how they are arranged into the PNG file.  On slow
441         connexions interlaced images can be partially decoded by the
442         browser to give a rough view of the image that is successively
443         refined as more image data appears.
444         
445         .. note ::
446         
447           Enabling the `interlace` option requires the entire image
448           to be processed in working memory.
449
450         `chunk_limit` is used to limit the amount of memory used whilst
451         compressing the image.  In order to avoid using large amounts of
452         memory, multiple ``IDAT`` chunks may be created.
453         """
454
455         # At the moment the `planes` argument is ignored;
456         # its purpose is to act as a dummy so that
457         # ``Writer(x, y, **info)`` works, where `info` is a dictionary
458         # returned by Reader.read and friends.
459         # Ditto for `colormap`.
460
461         # A couple of helper functions come first.  Best skipped if you
462         # are reading through.
463
464         def isinteger(x):
465             try:
466                 return int(x) == x
467             except:
468                 return False
469
470         def check_color(c, which):
471             """Checks that a colour argument for transparent or
472             background options is the right form.  Also "corrects" bare
473             integers to 1-tuples.
474             """
475
476             if c is None:
477                 return c
478             if greyscale:
479                 try:
480                     l = len(c)
481                 except TypeError:
482                     c = (c,)
483                 if len(c) != 1:
484                     raise ValueError("%s for greyscale must be 1-tuple" %
485                         which)
486                 if not isinteger(c[0]):
487                     raise ValueError(
488                         "%s colour for greyscale must be integer" %
489                         which)
490             else:
491                 if not (len(c) == 3 and
492                         isinteger(c[0]) and
493                         isinteger(c[1]) and
494                         isinteger(c[2])):
495                     raise ValueError(
496                         "%s colour must be a triple of integers" %
497                         which)
498             return c
499
500         if size:
501             if len(size) != 2:
502                 raise ValueError(
503                   "size argument should be a pair (width, height)")
504             if width is not None and width != size[0]:
505                 raise ValueError(
506                   "size[0] (%r) and width (%r) should match when both are used."
507                     % (size[0], width))
508             if height is not None and height != size[1]:
509                 raise ValueError(
510                   "size[1] (%r) and height (%r) should match when both are used."
511                     % (size[1], height))
512             width,height = size
513         del size
514
515         if width <= 0 or height <= 0:
516             raise ValueError("width and height must be greater than zero")
517         if not isinteger(width) or not isinteger(height):
518             raise ValueError("width and height must be integers")
519         # http://www.w3.org/TR/PNG/#7Integers-and-byte-order
520         if width > 2**32-1 or height > 2**32-1:
521             raise ValueError("width and height cannot exceed 2**32-1")
522
523         if alpha and transparent is not None:
524             raise ValueError(
525                 "transparent colour not allowed with alpha channel")
526
527         if bytes_per_sample is not None:
528             warnings.warn('please use bitdepth instead of bytes_per_sample',
529                           DeprecationWarning)
530             if bytes_per_sample not in (0.125, 0.25, 0.5, 1, 2):
531                 raise ValueError(
532                     "bytes per sample must be .125, .25, .5, 1, or 2")
533             bitdepth = int(8*bytes_per_sample)
534         del bytes_per_sample
535         if not isinteger(bitdepth) or bitdepth < 1 or 16 < bitdepth:
536             raise ValueError("bitdepth (%r) must be a postive integer <= 16" %
537               bitdepth)
538
539         self.rescale = None
540         if palette:
541             if bitdepth not in (1,2,4,8):
542                 raise ValueError("with palette, bitdepth must be 1, 2, 4, or 8")
543             if transparent is not None:
544                 raise ValueError("transparent and palette not compatible")
545             if alpha:
546                 raise ValueError("alpha and palette not compatible")
547             if greyscale:
548                 raise ValueError("greyscale and palette not compatible")
549         else:
550             # No palette, check for sBIT chunk generation.
551             if alpha or not greyscale:
552                 if bitdepth not in (8,16):
553                     targetbitdepth = (8,16)[bitdepth > 8]
554                     self.rescale = (bitdepth, targetbitdepth)
555                     bitdepth = targetbitdepth
556                     del targetbitdepth
557             else:
558                 assert greyscale
559                 assert not alpha
560                 if bitdepth not in (1,2,4,8,16):
561                     if bitdepth > 8:
562                         targetbitdepth = 16
563                     elif bitdepth == 3:
564                         targetbitdepth = 4
565                     else:
566                         assert bitdepth in (5,6,7)
567                         targetbitdepth = 8
568                     self.rescale = (bitdepth, targetbitdepth)
569                     bitdepth = targetbitdepth
570                     del targetbitdepth
571
572         if bitdepth < 8 and (alpha or not greyscale and not palette):
573             raise ValueError(
574               "bitdepth < 8 only permitted with greyscale or palette")
575         if bitdepth > 8 and palette:
576             raise ValueError(
577                 "bit depth must be 8 or less for images with palette")
578
579         transparent = check_color(transparent, 'transparent')
580         background = check_color(background, 'background')
581
582         # It's important that the true boolean values (greyscale, alpha,
583         # colormap, interlace) are converted to bool because Iverson's
584         # convention is relied upon later on.
585         self.width = width
586         self.height = height
587         self.transparent = transparent
588         self.background = background
589         self.gamma = gamma
590         self.greyscale = bool(greyscale)
591         self.alpha = bool(alpha)
592         self.colormap = bool(palette)
593         self.bitdepth = int(bitdepth)
594         self.compression = compression
595         self.chunk_limit = chunk_limit
596         self.interlace = bool(interlace)
597         self.palette = check_palette(palette)
598
599         self.color_type = 4*self.alpha + 2*(not greyscale) + 1*self.colormap
600         assert self.color_type in (0,2,3,4,6)
601
602         self.color_planes = (3,1)[self.greyscale or self.colormap]
603         self.planes = self.color_planes + self.alpha
604         # :todo: fix for bitdepth < 8
605         self.psize = (self.bitdepth/8) * self.planes
606
607     def make_palette(self):
608         """Create the byte sequences for a ``PLTE`` and if necessary a
609         ``tRNS`` chunk.  Returned as a pair (*p*, *t*).  *t* will be
610         ``None`` if no ``tRNS`` chunk is necessary.
611         """
612
613         p = array('B')
614         t = array('B')
615
616         for x in self.palette:
617             p.extend(x[0:3])
618             if len(x) > 3:
619                 t.append(x[3])
620         p = tostring(p)
621         t = tostring(t)
622         if t:
623             return p,t
624         return p,None
625
626     def write(self, outfile, rows):
627         """Write a PNG image to the output file.  `rows` should be
628         an iterable that yields each row in boxed row flat pixel format.
629         The rows should be the rows of the original image, so there
630         should be ``self.height`` rows of ``self.width * self.planes`` values.
631         If `interlace` is specified (when creating the instance), then
632         an interlaced PNG file will be written.  Supply the rows in the
633         normal image order; the interlacing is carried out internally.
634         
635         .. note ::
636
637           Interlacing will require the entire image to be in working memory.
638         """
639
640         if self.interlace:
641             fmt = 'BH'[self.bitdepth > 8]
642             a = array(fmt, itertools.chain(*rows))
643             return self.write_array(outfile, a)
644         else:
645             nrows = self.write_passes(outfile, rows)
646             if nrows != self.height:
647                 raise ValueError(
648                   "rows supplied (%d) does not match height (%d)" %
649                   (nrows, self.height))
650
651     def write_passes(self, outfile, rows, packed=False):
652         """
653         Write a PNG image to the output file.
654
655         Most users are expected to find the :meth:`write` or
656         :meth:`write_array` method more convenient.
657         
658         The rows should be given to this method in the order that
659         they appear in the output file.  For straightlaced images,
660         this is the usual top to bottom ordering, but for interlaced
661         images the rows should have already been interlaced before
662         passing them to this function.
663
664         `rows` should be an iterable that yields each row.  When
665         `packed` is ``False`` the rows should be in boxed row flat pixel
666         format; when `packed` is ``True`` each row should be a packed
667         sequence of bytes.
668
669         """
670
671         # http://www.w3.org/TR/PNG/#5PNG-file-signature
672         outfile.write(_signature)
673
674         # http://www.w3.org/TR/PNG/#11IHDR
675         write_chunk(outfile, 'IHDR',
676                     struct.pack("!2I5B", self.width, self.height,
677                                 self.bitdepth, self.color_type,
678                                 0, 0, self.interlace))
679
680         # See :chunk:order
681         # http://www.w3.org/TR/PNG/#11gAMA
682         if self.gamma is not None:
683             write_chunk(outfile, 'gAMA',
684                         struct.pack("!L", int(round(self.gamma*1e5))))
685
686         # See :chunk:order
687         # http://www.w3.org/TR/PNG/#11sBIT
688         if self.rescale:
689             write_chunk(outfile, 'sBIT',
690                 struct.pack('%dB' % self.planes,
691                             *[self.rescale[0]]*self.planes))
692         
693         # :chunk:order: Without a palette (PLTE chunk), ordering is
694         # relatively relaxed.  With one, gAMA chunk must precede PLTE
695         # chunk which must precede tRNS and bKGD.
696         # See http://www.w3.org/TR/PNG/#5ChunkOrdering
697         if self.palette:
698             p,t = self.make_palette()
699             write_chunk(outfile, 'PLTE', p)
700             if t:
701                 # tRNS chunk is optional.  Only needed if palette entries
702                 # have alpha.
703                 write_chunk(outfile, 'tRNS', t)
704
705         # http://www.w3.org/TR/PNG/#11tRNS
706         if self.transparent is not None:
707             if self.greyscale:
708                 write_chunk(outfile, 'tRNS',
709                             struct.pack("!1H", *self.transparent))
710             else:
711                 write_chunk(outfile, 'tRNS',
712                             struct.pack("!3H", *self.transparent))
713
714         # http://www.w3.org/TR/PNG/#11bKGD
715         if self.background is not None:
716             if self.greyscale:
717                 write_chunk(outfile, 'bKGD',
718                             struct.pack("!1H", *self.background))
719             else:
720                 write_chunk(outfile, 'bKGD',
721                             struct.pack("!3H", *self.background))
722
723         # http://www.w3.org/TR/PNG/#11IDAT
724         if self.compression is not None:
725             compressor = zlib.compressobj(self.compression)
726         else:
727             compressor = zlib.compressobj()
728
729         # Choose an extend function based on the bitdepth.  The extend
730         # function packs/decomposes the pixel values into bytes and
731         # stuffs them onto the data array.
732         data = array('B')
733         if self.bitdepth == 8 or packed:
734             extend = data.extend
735         elif self.bitdepth == 16:
736             # Decompose into bytes
737             def extend(sl):
738                 fmt = '!%dH' % len(sl)
739                 data.extend(array('B', struct.pack(fmt, *sl)))
740         else:
741             # Pack into bytes
742             assert self.bitdepth < 8
743             # samples per byte
744             spb = int(8/self.bitdepth)
745             def extend(sl):
746                 a = array('B', sl)
747                 # Adding padding bytes so we can group into a whole
748                 # number of spb-tuples.
749                 l = float(len(a))
750                 extra = math.ceil(l / float(spb))*spb - l
751                 a.extend([0]*int(extra))
752                 # Pack into bytes
753                 l = group(a, spb)
754                 l = map(lambda e: reduce(lambda x,y:
755                                            (x << self.bitdepth) + y, e), l)
756                 data.extend(l)
757         if self.rescale:
758             oldextend = extend
759             factor = \
760               float(2**self.rescale[1]-1) / float(2**self.rescale[0]-1)
761             def extend(sl):
762                 oldextend(map(lambda x: int(round(factor*x)), sl))
763
764         # Build the first row, testing mostly to see if we need to
765         # changed the extend function to cope with NumPy integer types
766         # (they cause our ordinary definition of extend to fail, so we
767         # wrap it).  See
768         # http://code.google.com/p/pypng/issues/detail?id=44
769         enumrows = enumerate(rows)
770         del rows
771
772         # First row's filter type.
773         data.append(0)
774         # :todo: Certain exceptions in the call to ``.next()`` or the
775         # following try would indicate no row data supplied.
776         # Should catch.
777         i,row = enumrows.next()
778         try:
779             # If this fails...
780             extend(row)
781         except:
782             # ... try a version that converts the values to int first.
783             # Not only does this work for the (slightly broken) NumPy
784             # types, there are probably lots of other, unknown, "nearly"
785             # int types it works for.
786             def wrapmapint(f):
787                 return lambda sl: f(map(int, sl))
788             extend = wrapmapint(extend)
789             del wrapmapint
790             extend(row)
791
792         for i,row in enumrows:
793             # Add "None" filter type.  Currently, it's essential that
794             # this filter type be used for every scanline as we do not
795             # mark the first row of a reduced pass image; that means we
796             # could accidentally compute the wrong filtered scanline if
797             # we used "up", "average", or "paeth" on such a line.
798             data.append(0)
799             extend(row)
800             if len(data) > self.chunk_limit:
801                 compressed = compressor.compress(tostring(data))
802                 if len(compressed):
803                     # print >> sys.stderr, len(data), len(compressed)
804                     write_chunk(outfile, 'IDAT', compressed)
805                 # Because of our very witty definition of ``extend``,
806                 # above, we must re-use the same ``data`` object.  Hence
807                 # we use ``del`` to empty this one, rather than create a
808                 # fresh one (which would be my natural FP instinct).
809                 del data[:]
810         if len(data):
811             compressed = compressor.compress(tostring(data))
812         else:
813             compressed = ''
814         flushed = compressor.flush()
815         if len(compressed) or len(flushed):
816             # print >> sys.stderr, len(data), len(compressed), len(flushed)
817             write_chunk(outfile, 'IDAT', compressed + flushed)
818         # http://www.w3.org/TR/PNG/#11IEND
819         write_chunk(outfile, 'IEND')
820         return i+1
821
822     def write_array(self, outfile, pixels):
823         """
824         Write an array in flat row flat pixel format as a PNG file on
825         the output file.  See also :meth:`write` method.
826         """
827
828         if self.interlace:
829             self.write_passes(outfile, self.array_scanlines_interlace(pixels))
830         else:
831             self.write_passes(outfile, self.array_scanlines(pixels))
832
833     def write_packed(self, outfile, rows):
834         """
835         Write PNG file to `outfile`.  The pixel data comes from `rows`
836         which should be in boxed row packed format.  Each row should be
837         a sequence of packed bytes.
838
839         Technically, this method does work for interlaced images but it
840         is best avoided.  For interlaced images, the rows should be
841         presented in the order that they appear in the file.
842
843         This method should not be used when the source image bit depth
844         is not one naturally supported by PNG; the bit depth should be
845         1, 2, 4, 8, or 16.
846         """
847
848         if self.rescale:
849             raise Error("write_packed method not suitable for bit depth %d" %
850               self.rescale[0])
851         return self.write_passes(outfile, rows, packed=True)
852
853     def convert_pnm(self, infile, outfile):
854         """
855         Convert a PNM file containing raw pixel data into a PNG file
856         with the parameters set in the writer object.  Works for
857         (binary) PGM, PPM, and PAM formats.
858         """
859
860         if self.interlace:
861             pixels = array('B')
862             pixels.fromfile(infile,
863                             (self.bitdepth/8) * self.color_planes *
864                             self.width * self.height)
865             self.write_passes(outfile, self.array_scanlines_interlace(pixels))
866         else:
867             self.write_passes(outfile, self.file_scanlines(infile))
868
869     def convert_ppm_and_pgm(self, ppmfile, pgmfile, outfile):
870         """
871         Convert a PPM and PGM file containing raw pixel data into a
872         PNG outfile with the parameters set in the writer object.
873         """
874         pixels = array('B')
875         pixels.fromfile(ppmfile,
876                         (self.bitdepth/8) * self.color_planes *
877                         self.width * self.height)
878         apixels = array('B')
879         apixels.fromfile(pgmfile,
880                          (self.bitdepth/8) *
881                          self.width * self.height)
882         pixels = interleave_planes(pixels, apixels,
883                                    (self.bitdepth/8) * self.color_planes,
884                                    (self.bitdepth/8))
885         if self.interlace:
886             self.write_passes(outfile, self.array_scanlines_interlace(pixels))
887         else:
888             self.write_passes(outfile, self.array_scanlines(pixels))
889
890     def file_scanlines(self, infile):
891         """
892         Generates boxed rows in flat pixel format, from the input file
893         `infile`.  It assumes that the input file is in a "Netpbm-like"
894         binary format, and is positioned at the beginning of the first
895         pixel.  The number of pixels to read is taken from the image
896         dimensions (`width`, `height`, `planes`) and the number of bytes
897         per value is implied by the image `bitdepth`.
898         """
899
900         # Values per row
901         vpr = self.width * self.planes
902         row_bytes = vpr
903         if self.bitdepth > 8:
904             assert self.bitdepth == 16
905             row_bytes *= 2
906             fmt = '>%dH' % vpr
907             def line():
908                 return array('H', struct.unpack(fmt, infile.read(row_bytes)))
909         else:
910             def line():
911                 scanline = array('B', infile.read(row_bytes))
912                 return scanline
913         for y in range(self.height):
914             yield line()
915
916     def array_scanlines(self, pixels):
917         """
918         Generates boxed rows (flat pixels) from flat rows (flat pixels)
919         in an array.
920         """
921
922         # Values per row
923         vpr = self.width * self.planes
924         stop = 0
925         for y in range(self.height):
926             start = stop
927             stop = start + vpr
928             yield pixels[start:stop]
929
930     def array_scanlines_interlace(self, pixels):
931         """
932         Generator for interlaced scanlines from an array.  `pixels` is
933         the full source image in flat row flat pixel format.  The
934         generator yields each scanline of the reduced passes in turn, in
935         boxed row flat pixel format.
936         """
937
938         # http://www.w3.org/TR/PNG/#8InterlaceMethods
939         # Array type.
940         fmt = 'BH'[self.bitdepth > 8]
941         # Value per row
942         vpr = self.width * self.planes
943         for xstart, ystart, xstep, ystep in _adam7:
944             if xstart >= self.width:
945                 continue
946             # Pixels per row (of reduced image)
947             ppr = int(math.ceil((self.width-xstart)/float(xstep)))
948             # number of values in reduced image row.
949             row_len = ppr*self.planes
950             for y in range(ystart, self.height, ystep):
951                 if xstep == 1:
952                     offset = y * vpr
953                     yield pixels[offset:offset+vpr]
954                 else:
955                     row = array(fmt)
956                     # There's no easier way to set the length of an array
957                     row.extend(pixels[0:row_len])
958                     offset = y * vpr + xstart * self.planes
959                     end_offset = (y+1) * vpr
960                     skip = self.planes * xstep
961                     for i in range(self.planes):
962                         row[i::self.planes] = \
963                             pixels[offset+i:end_offset:skip]
964                     yield row
965
966 def write_chunk(outfile, tag, data=strtobytes('')):
967     """
968     Write a PNG chunk to the output file, including length and
969     checksum.
970     """
971
972     # http://www.w3.org/TR/PNG/#5Chunk-layout
973     outfile.write(struct.pack("!I", len(data)))
974     tag = strtobytes(tag)
975     outfile.write(tag)
976     outfile.write(data)
977     checksum = zlib.crc32(tag)
978     checksum = zlib.crc32(data, checksum)
979     checksum &= 2**32-1
980     outfile.write(struct.pack("!I", checksum))
981
982 def write_chunks(out, chunks):
983     """Create a PNG file by writing out the chunks."""
984
985     out.write(_signature)
986     for chunk in chunks:
987         write_chunk(out, *chunk)
988
989 def filter_scanline(type, line, fo, prev=None):
990     """Apply a scanline filter to a scanline.  `type` specifies the
991     filter type (0 to 4); `line` specifies the current (unfiltered)
992     scanline as a sequence of bytes; `prev` specifies the previous
993     (unfiltered) scanline as a sequence of bytes. `fo` specifies the
994     filter offset; normally this is size of a pixel in bytes (the number
995     of bytes per sample times the number of channels), but when this is
996     < 1 (for bit depths < 8) then the filter offset is 1.
997     """
998
999     assert 0 <= type < 5
1000
1001     # The output array.  Which, pathetically, we extend one-byte at a
1002     # time (fortunately this is linear).
1003     out = array('B', [type])
1004
1005     def sub():
1006         ai = -fo
1007         for x in line:
1008             if ai >= 0:
1009                 x = (x - line[ai]) & 0xff
1010             out.append(x)
1011             ai += 1
1012     def up():
1013         for i,x in enumerate(line):
1014             x = (x - prev[i]) & 0xff
1015             out.append(x)
1016     def average():
1017         ai = -fo
1018         for i,x in enumerate(line):
1019             if ai >= 0:
1020                 x = (x - ((line[ai] + prev[i]) >> 1)) & 0xff
1021             else:
1022                 x = (x - (prev[i] >> 1)) & 0xff
1023             out.append(x)
1024             ai += 1
1025     def paeth():
1026         # http://www.w3.org/TR/PNG/#9Filter-type-4-Paeth
1027         ai = -fo # also used for ci
1028         for i,x in enumerate(line):
1029             a = 0
1030             b = prev[i]
1031             c = 0
1032
1033             if ai >= 0:
1034                 a = line[ai]
1035                 c = prev[ai]
1036             p = a + b - c
1037             pa = abs(p - a)
1038             pb = abs(p - b)
1039             pc = abs(p - c)
1040             if pa <= pb and pa <= pc: Pr = a
1041             elif pb <= pc: Pr = b
1042             else: Pr = c
1043
1044             x = (x - Pr) & 0xff
1045             out.append(x)
1046             ai += 1
1047
1048     if not prev:
1049         # We're on the first line.  Some of the filters can be reduced
1050         # to simpler cases which makes handling the line "off the top"
1051         # of the image simpler.  "up" becomes "none"; "paeth" becomes
1052         # "left" (non-trivial, but true). "average" needs to be handled
1053         # specially.
1054         if type == 2: # "up"
1055             return line # type = 0
1056         elif type == 3:
1057             prev = [0]*len(line)
1058         elif type == 4: # "paeth"
1059             type = 1
1060     if type == 0:
1061         out.extend(line)
1062     elif type == 1:
1063         sub()
1064     elif type == 2:
1065         up()
1066     elif type == 3:
1067         average()
1068     else: # type == 4
1069         paeth()
1070     return out
1071
1072
1073 def from_array(a, mode=None, info={}):
1074     """Create a PNG :class:`Image` object from a 2- or 3-dimensional array.
1075     One application of this function is easy PIL-style saving:
1076     ``png.from_array(pixels, 'L').save('foo.png')``.
1077
1078     .. note :
1079
1080       The use of the term *3-dimensional* is for marketing purposes
1081       only.  It doesn't actually work.  Please bear with us.  Meanwhile
1082       enjoy the complimentary snacks (on request) and please use a
1083       2-dimensional array.
1084     
1085     Unless they are specified using the *info* parameter, the PNG's
1086     height and width are taken from the array size.  For a 3 dimensional
1087     array the first axis is the height; the second axis is the width;
1088     and the third axis is the channel number.  Thus an RGB image that is
1089     16 pixels high and 8 wide will use an array that is 16x8x3.  For 2
1090     dimensional arrays the first axis is the height, but the second axis
1091     is ``width*channels``, so an RGB image that is 16 pixels high and 8
1092     wide will use a 2-dimensional array that is 16x24 (each row will be
1093     8*3==24 sample values).
1094
1095     *mode* is a string that specifies the image colour format in a
1096     PIL-style mode.  It can be:
1097
1098     ``'L'``
1099       greyscale (1 channel)
1100     ``'LA'``
1101       greyscale with alpha (2 channel)
1102     ``'RGB'``
1103       colour image (3 channel)
1104     ``'RGBA'``
1105       colour image with alpha (4 channel)
1106
1107     The mode string can also specify the bit depth (overriding how this
1108     function normally derives the bit depth, see below).  Appending
1109     ``';16'`` to the mode will cause the PNG to be 16 bits per channel;
1110     any decimal from 1 to 16 can be used to specify the bit depth.
1111
1112     When a 2-dimensional array is used *mode* determines how many
1113     channels the image has, and so allows the width to be derived from
1114     the second array dimension.
1115
1116     The array is expected to be a ``numpy`` array, but it can be any
1117     suitable Python sequence.  For example, a list of lists can be used:
1118     ``png.from_array([[0, 255, 0], [255, 0, 255]], 'L')``.  The exact
1119     rules are: ``len(a)`` gives the first dimension, height;
1120     ``len(a[0])`` gives the second dimension; ``len(a[0][0])`` gives the
1121     third dimension, unless an exception is raised in which case a
1122     2-dimensional array is assumed.  It's slightly more complicated than
1123     that because an iterator of rows can be used, and it all still
1124     works.  Using an iterator allows data to be streamed efficiently.
1125
1126     The bit depth of the PNG is normally taken from the array element's
1127     datatype (but if *mode* specifies a bitdepth then that is used
1128     instead).  The array element's datatype is determined in a way which
1129     is supposed to work both for ``numpy`` arrays and for Python
1130     ``array.array`` objects.  A 1 byte datatype will give a bit depth of
1131     8, a 2 byte datatype will give a bit depth of 16.  If the datatype
1132     does not have an implicit size, for example it is a plain Python
1133     list of lists, as above, then a default of 8 is used.
1134
1135     The *info* parameter is a dictionary that can be used to specify
1136     metadata (in the same style as the arguments to the
1137     :class:``png.Writer`` class).  For this function the keys that are
1138     useful are:
1139     
1140     height
1141       overrides the height derived from the array dimensions and allows
1142       *a* to be an iterable.
1143     width
1144       overrides the width derived from the array dimensions.
1145     bitdepth
1146       overrides the bit depth derived from the element datatype (but
1147       must match *mode* if that also specifies a bit depth).
1148
1149     Generally anything specified in the
1150     *info* dictionary will override any implicit choices that this
1151     function would otherwise make, but must match any explicit ones.
1152     For example, if the *info* dictionary has a ``greyscale`` key then
1153     this must be true when mode is ``'L'`` or ``'LA'`` and false when
1154     mode is ``'RGB'`` or ``'RGBA'``.
1155     """
1156
1157     # We abuse the *info* parameter by modifying it.  Take a copy here.
1158     # (Also typechecks *info* to some extent).
1159     info = dict(info)
1160
1161     # Syntax check mode string.
1162     bitdepth = None
1163     try:
1164         mode = mode.split(';')
1165         if len(mode) not in (1,2):
1166             raise Error()
1167         if mode[0] not in ('L', 'LA', 'RGB', 'RGBA'):
1168             raise Error()
1169         if len(mode) == 2:
1170             try:
1171                 bitdepth = int(mode[1])
1172             except:
1173                 raise Error()
1174     except Error:
1175         raise Error("mode string should be 'RGB' or 'L;16' or similar.")
1176     mode = mode[0]
1177
1178     # Get bitdepth from *mode* if possible.
1179     if bitdepth:
1180         if info.get('bitdepth') and bitdepth != info['bitdepth']:
1181             raise Error("mode bitdepth (%d) should match info bitdepth (%d)." %
1182               (bitdepth, info['bitdepth']))
1183         info['bitdepth'] = bitdepth
1184
1185     # Fill in and/or check entries in *info*.
1186     # Dimensions.
1187     if 'size' in info:
1188         # Check width, height, size all match where used.
1189         for dimension,axis in [('width', 0), ('height', 1)]:
1190             if dimension in info:
1191                 if info[dimension] != info['size'][axis]:
1192                     raise Error(
1193                       "info[%r] shhould match info['size'][%r]." %
1194                       (dimension, axis))
1195         info['width'],info['height'] = info['size']
1196     if 'height' not in info:
1197         try:
1198             l = len(a)
1199         except:
1200             raise Error(
1201               "len(a) does not work, supply info['height'] instead.")
1202         info['height'] = l
1203     # Colour format.
1204     if 'greyscale' in info:
1205         if bool(info['greyscale']) != ('L' in mode):
1206             raise Error("info['greyscale'] should match mode.")
1207     info['greyscale'] = 'L' in mode
1208     if 'alpha' in info:
1209         if bool(info['alpha']) != ('A' in mode):
1210             raise Error("info['alpha'] should match mode.")
1211     info['alpha'] = 'A' in mode
1212
1213     planes = len(mode)
1214     if 'planes' in info:
1215         if info['planes'] != planes:
1216             raise Error("info['planes'] should match mode.")
1217
1218     # In order to work out whether we the array is 2D or 3D we need its
1219     # first row, which requires that we take a copy of its iterator.
1220     # We may also need the first row to derive width and bitdepth.
1221     a,t = itertools.tee(a)
1222     row = t.next()
1223     del t
1224     try:
1225         row[0][0]
1226         threed = True
1227         testelement = row[0]
1228     except:
1229         threed = False
1230         testelement = row
1231     if 'width' not in info:
1232         if threed:
1233             width = len(row)
1234         else:
1235             width = len(row) // planes
1236         info['width'] = width
1237
1238     # Not implemented yet
1239     assert not threed
1240
1241     if 'bitdepth' not in info:
1242         try:
1243             dtype = testelement.dtype
1244             # goto the "else:" clause.  Sorry.
1245         except:
1246             try:
1247                 # Try a Python array.array.
1248                 bitdepth = 8 * testelement.itemsize
1249             except:
1250                 # We can't determine it from the array element's
1251                 # datatype, use a default of 8.
1252                 bitdepth = 8
1253         else:
1254             # If we got here without exception, we now assume that
1255             # the array is a numpy array.
1256             if dtype.kind == 'b':
1257                 bitdepth = 1
1258             else:
1259                 bitdepth = 8 * dtype.itemsize
1260         info['bitdepth'] = bitdepth
1261
1262     for thing in 'width height bitdepth greyscale alpha'.split():
1263         assert thing in info
1264     return Image(a, info)
1265
1266 # So that refugee's from PIL feel more at home.  Not documented.
1267 fromarray = from_array
1268
1269 class Image:
1270     """A PNG image.
1271     You can create an :class:`Image` object from an array of pixels by calling
1272     :meth:`png.from_array`.  It can be saved to disk with the
1273     :meth:`save` method."""
1274     def __init__(self, rows, info):
1275         """
1276         .. note ::
1277         
1278           The constructor is not public.  Please do not call it.
1279         """
1280         
1281         self.rows = rows
1282         self.info = info
1283
1284     def save(self, file):
1285         """Save the image to *file*.  If *file* looks like an open file
1286         descriptor then it is used, otherwise it is treated as a
1287         filename and a fresh file is opened.
1288
1289         In general, you can only call this method once; after it has
1290         been called the first time and the PNG image has been saved, the
1291         source data will have been streamed, and cannot be streamed
1292         again.
1293         """
1294
1295         w = Writer(**self.info)
1296
1297         try:
1298             file.write
1299             def close(): pass
1300         except:
1301             file = open(file, 'wb')
1302             def close(): file.close()
1303
1304         try:
1305             w.write(file, self.rows)
1306         finally:
1307             close()
1308
1309 class _readable:
1310     """
1311     A simple file-like interface for strings and arrays.
1312     """
1313
1314     def __init__(self, buf):
1315         self.buf = buf
1316         self.offset = 0
1317
1318     def read(self, n):
1319         r = self.buf[self.offset:self.offset+n]
1320         if isarray(r):
1321             r = r.tostring()
1322         self.offset += n
1323         return r
1324
1325
1326 class Reader:
1327     """
1328     PNG decoder in pure Python.
1329     """
1330
1331     def __init__(self, _guess=None, **kw):
1332         """
1333         Create a PNG decoder object.
1334
1335         The constructor expects exactly one keyword argument. If you
1336         supply a positional argument instead, it will guess the input
1337         type. You can choose among the following keyword arguments:
1338
1339         filename
1340           Name of input file (a PNG file).
1341         file
1342           A file-like object (object with a read() method).
1343         bytes
1344           ``array`` or ``string`` with PNG data.
1345
1346         """
1347         if ((_guess is not None and len(kw) != 0) or
1348             (_guess is None and len(kw) != 1)):
1349             raise TypeError("Reader() takes exactly 1 argument")
1350
1351         # Will be the first 8 bytes, later on.  See validate_signature.
1352         self.signature = None
1353         self.transparent = None
1354         # A pair of (len,type) if a chunk has been read but its data and
1355         # checksum have not (in other words the file position is just
1356         # past the 4 bytes that specify the chunk type).  See preamble
1357         # method for how this is used.
1358         self.atchunk = None
1359
1360         if _guess is not None:
1361             if isarray(_guess):
1362                 kw["bytes"] = _guess
1363             elif isinstance(_guess, str):
1364                 kw["filename"] = _guess
1365             elif isinstance(_guess, file):
1366                 kw["file"] = _guess
1367
1368         if "filename" in kw:
1369             self.file = open(kw["filename"], "rb")
1370         elif "file" in kw:
1371             self.file = kw["file"]
1372         elif "bytes" in kw:
1373             self.file = _readable(kw["bytes"])
1374         else:
1375             raise TypeError("expecting filename, file or bytes array")
1376
1377
1378     def chunk(self, seek=None, lenient=False):
1379         """
1380         Read the next PNG chunk from the input file; returns a
1381         (*type*,*data*) tuple.  *type* is the chunk's type as a string
1382         (all PNG chunk types are 4 characters long).  *data* is the
1383         chunk's data content, as a string.
1384
1385         If the optional `seek` argument is
1386         specified then it will keep reading chunks until it either runs
1387         out of file or finds the type specified by the argument.  Note
1388         that in general the order of chunks in PNGs is unspecified, so
1389         using `seek` can cause you to miss chunks.
1390
1391         If the optional `lenient` argument evaluates to True,
1392         checksum failures will raise warnings rather than exceptions.
1393         """
1394
1395         self.validate_signature()
1396
1397         while True:
1398             # http://www.w3.org/TR/PNG/#5Chunk-layout
1399             if not self.atchunk:
1400                 self.atchunk = self.chunklentype()
1401             length,type = self.atchunk
1402             self.atchunk = None
1403             data = self.file.read(length)
1404             if len(data) != length:
1405                 raise ChunkError('Chunk %s too short for required %i octets.'
1406                   % (type, length))
1407             checksum = self.file.read(4)
1408             if len(checksum) != 4:
1409                 raise ValueError('Chunk %s too short for checksum.', tag)
1410             if seek and type != seek:
1411                 continue
1412             verify = zlib.crc32(strtobytes(type))
1413             verify = zlib.crc32(data, verify)
1414             # Whether the output from zlib.crc32 is signed or not varies
1415             # according to hideous implementation details, see
1416             # http://bugs.python.org/issue1202 .
1417             # We coerce it to be positive here (in a way which works on
1418             # Python 2.3 and older).
1419             verify &= 2**32 - 1
1420             verify = struct.pack('!I', verify)
1421             if checksum != verify:
1422                 # print repr(checksum)
1423                 (a, ) = struct.unpack('!I', checksum)
1424                 (b, ) = struct.unpack('!I', verify)
1425                 message = "Checksum error in %s chunk: 0x%08X != 0x%08X." % (type, a, b)
1426                 if lenient:
1427                     warnings.warn(message, RuntimeWarning)
1428                 else:
1429                     raise ChunkError(message)
1430             return type, data
1431
1432     def chunks(self):
1433         """Return an iterator that will yield each chunk as a
1434         (*chunktype*, *content*) pair.
1435         """
1436
1437         while True:
1438             t,v = self.chunk()
1439             yield t,v
1440             if t == 'IEND':
1441                 break
1442
1443     def undo_filter(self, filter_type, scanline, previous):
1444         """Undo the filter for a scanline.  `scanline` is a sequence of
1445         bytes that does not include the initial filter type byte.
1446         `previous` is decoded previous scanline (for straightlaced
1447         images this is the previous pixel row, but for interlaced
1448         images, it is the previous scanline in the reduced image, which
1449         in general is not the previous pixel row in the final image).
1450         When there is no previous scanline (the first row of a
1451         straightlaced image, or the first row in one of the passes in an
1452         interlaced image), then this argument should be ``None``.
1453
1454         The scanline will have the effects of filtering removed, and the
1455         result will be returned as a fresh sequence of bytes.
1456         """
1457
1458         # :todo: Would it be better to update scanline in place?
1459         # Yes, with the Cython extension making the undo_filter fast,
1460         # updating scanline inplace makes the code 3 times faster
1461         # (reading 50 images of 800x800 went from 40s to 16s)
1462         result = scanline
1463
1464         if filter_type == 0:
1465             return result
1466
1467         if filter_type not in (1,2,3,4):
1468             raise FormatError('Invalid PNG Filter Type.'
1469               '  See http://www.w3.org/TR/2003/REC-PNG-20031110/#9Filters .')
1470
1471         # Filter unit.  The stride from one pixel to the corresponding
1472         # byte from the previous previous.  Normally this is the pixel
1473         # size in bytes, but when this is smaller than 1, the previous
1474         # byte is used instead.
1475         fu = max(1, self.psize)
1476
1477         # For the first line of a pass, synthesize a dummy previous
1478         # line.  An alternative approach would be to observe that on the
1479         # first line 'up' is the same as 'null', 'paeth' is the same
1480         # as 'sub', with only 'average' requiring any special case.
1481         if not previous:
1482             previous = array('B', [0]*len(scanline))
1483
1484         def sub():
1485             """Undo sub filter."""
1486
1487             ai = 0
1488             # Loops starts at index fu.  Observe that the initial part
1489             # of the result is already filled in correctly with
1490             # scanline.
1491             for i in range(fu, len(result)):
1492                 x = scanline[i]
1493                 a = result[ai]
1494                 result[i] = (x + a) & 0xff
1495                 ai += 1
1496
1497         def up():
1498             """Undo up filter."""
1499
1500             for i in range(len(result)):
1501                 x = scanline[i]
1502                 b = previous[i]
1503                 result[i] = (x + b) & 0xff
1504
1505         def average():
1506             """Undo average filter."""
1507
1508             ai = -fu
1509             for i in range(len(result)):
1510                 x = scanline[i]
1511                 if ai < 0:
1512                     a = 0
1513                 else:
1514                     a = result[ai]
1515                 b = previous[i]
1516                 result[i] = (x + ((a + b) >> 1)) & 0xff
1517                 ai += 1
1518
1519         def paeth():
1520             """Undo Paeth filter."""
1521
1522             # Also used for ci.
1523             ai = -fu
1524             for i in range(len(result)):
1525                 x = scanline[i]
1526                 if ai < 0:
1527                     a = c = 0
1528                 else:
1529                     a = result[ai]
1530                     c = previous[ai]
1531                 b = previous[i]
1532                 p = a + b - c
1533                 pa = abs(p - a)
1534                 pb = abs(p - b)
1535                 pc = abs(p - c)
1536                 if pa <= pb and pa <= pc:
1537                     pr = a
1538                 elif pb <= pc:
1539                     pr = b
1540                 else:
1541                     pr = c
1542                 result[i] = (x + pr) & 0xff
1543                 ai += 1
1544
1545         # Call appropriate filter algorithm.  Note that 0 has already
1546         # been dealt with.
1547         (None,
1548          pngfilters.undo_filter_sub,
1549          pngfilters.undo_filter_up,
1550          pngfilters.undo_filter_average,
1551          pngfilters.undo_filter_paeth)[filter_type](fu, scanline, previous, result)
1552         return result
1553
1554     def deinterlace(self, raw):
1555         """
1556         Read raw pixel data, undo filters, deinterlace, and flatten.
1557         Return in flat row flat pixel format.
1558         """
1559
1560         # print >> sys.stderr, ("Reading interlaced, w=%s, r=%s, planes=%s," +
1561         #     " bpp=%s") % (self.width, self.height, self.planes, self.bps)
1562         # Values per row (of the target image)
1563         vpr = self.width * self.planes
1564
1565         # Make a result array, and make it big enough.  Interleaving
1566         # writes to the output array randomly (well, not quite), so the
1567         # entire output array must be in memory.
1568         fmt = 'BH'[self.bitdepth > 8]
1569         a = array(fmt, [0]*vpr*self.height)
1570         source_offset = 0
1571
1572         for xstart, ystart, xstep, ystep in _adam7:
1573             # print >> sys.stderr, "Adam7: start=%s,%s step=%s,%s" % (
1574             #     xstart, ystart, xstep, ystep)
1575             if xstart >= self.width:
1576                 continue
1577             # The previous (reconstructed) scanline.  None at the
1578             # beginning of a pass to indicate that there is no previous
1579             # line.
1580             recon = None
1581             # Pixels per row (reduced pass image)
1582             ppr = int(math.ceil((self.width-xstart)/float(xstep)))
1583             # Row size in bytes for this pass.
1584             row_size = int(math.ceil(self.psize * ppr))
1585             for y in range(ystart, self.height, ystep):
1586                 filter_type = raw[source_offset]
1587                 source_offset += 1
1588                 scanline = raw[source_offset:source_offset+row_size]
1589                 source_offset += row_size
1590                 recon = self.undo_filter(filter_type, scanline, recon)
1591                 # Convert so that there is one element per pixel value
1592                 flat = self.serialtoflat(recon, ppr)
1593                 if xstep == 1:
1594                     assert xstart == 0
1595                     offset = y * vpr
1596                     a[offset:offset+vpr] = flat
1597                 else:
1598                     offset = y * vpr + xstart * self.planes
1599                     end_offset = (y+1) * vpr
1600                     skip = self.planes * xstep
1601                     for i in range(self.planes):
1602                         a[offset+i:end_offset:skip] = \
1603                             flat[i::self.planes]
1604         return a
1605
1606     def iterboxed(self, rows):
1607         """Iterator that yields each scanline in boxed row flat pixel
1608         format.  `rows` should be an iterator that yields the bytes of
1609         each row in turn.
1610         """
1611
1612         def asvalues(raw):
1613             """Convert a row of raw bytes into a flat row.  Result may
1614             or may not share with argument"""
1615
1616             if self.bitdepth == 8:
1617                 return raw
1618             if self.bitdepth == 16:
1619                 raw = tostring(raw)
1620                 return array('H', struct.unpack('!%dH' % (len(raw)//2), raw))
1621             assert self.bitdepth < 8
1622             width = self.width
1623             # Samples per byte
1624             spb = 8//self.bitdepth
1625             out = array('B')
1626             mask = 2**self.bitdepth - 1
1627             shifts = map(self.bitdepth.__mul__, reversed(range(spb)))
1628             for o in raw:
1629                 out.extend(map(lambda i: mask&(o>>i), shifts))
1630             return out[:width]
1631
1632         return itertools.imap(asvalues, rows)
1633
1634     def serialtoflat(self, bytes, width=None):
1635         """Convert serial format (byte stream) pixel data to flat row
1636         flat pixel.
1637         """
1638
1639         if self.bitdepth == 8:
1640             return bytes
1641         if self.bitdepth == 16:
1642             bytes = tostring(bytes)
1643             return array('H',
1644               struct.unpack('!%dH' % (len(bytes)//2), bytes))
1645         assert self.bitdepth < 8
1646         if width is None:
1647             width = self.width
1648         # Samples per byte
1649         spb = 8//self.bitdepth
1650         out = array('B')
1651         mask = 2**self.bitdepth - 1
1652         shifts = map(self.bitdepth.__mul__, reversed(range(spb)))
1653         l = width
1654         for o in bytes:
1655             out.extend([(mask&(o>>s)) for s in shifts][:l])
1656             l -= spb
1657             if l <= 0:
1658                 l = width
1659         return out
1660
1661     def iterstraight(self, raw):
1662         """Iterator that undoes the effect of filtering, and yields each
1663         row in serialised format (as a sequence of bytes).  Assumes input
1664         is straightlaced.  `raw` should be an iterable that yields the
1665         raw bytes in chunks of arbitrary size."""
1666
1667         # length of row, in bytes
1668         rb = self.row_bytes
1669         a = array('B')
1670         # The previous (reconstructed) scanline.  None indicates first
1671         # line of image.
1672         recon = None
1673         for some in raw:
1674             a.extend(some)
1675             while len(a) >= rb + 1:
1676                 filter_type = a[0]
1677                 scanline = a[1:rb+1]
1678                 del a[:rb+1]
1679                 recon = self.undo_filter(filter_type, scanline, recon)
1680                 yield recon
1681         if len(a) != 0:
1682             # :file:format We get here with a file format error: when the
1683             # available bytes (after decompressing) do not pack into exact
1684             # rows.
1685             raise FormatError(
1686               'Wrong size for decompressed IDAT chunk.')
1687         assert len(a) == 0
1688
1689     def validate_signature(self):
1690         """If signature (header) has not been read then read and
1691         validate it; otherwise do nothing.
1692         """
1693
1694         if self.signature:
1695             return
1696         self.signature = self.file.read(8)
1697         if self.signature != _signature:
1698             raise FormatError("PNG file has invalid signature.")
1699
1700     def preamble(self, lenient=False):
1701         """
1702         Extract the image metadata by reading the initial part of the PNG
1703         file up to the start of the ``IDAT`` chunk.  All the chunks that
1704         precede the ``IDAT`` chunk are read and either processed for
1705         metadata or discarded.
1706
1707         If the optional `lenient` argument evaluates to True,
1708         checksum failures will raise warnings rather than exceptions.
1709         """
1710
1711         self.validate_signature()
1712
1713         while True:
1714             if not self.atchunk:
1715                 self.atchunk = self.chunklentype()
1716                 if self.atchunk is None:
1717                     raise FormatError(
1718                       'This PNG file has no IDAT chunks.')
1719             if self.atchunk[1] == 'IDAT':
1720                 return
1721             self.process_chunk(lenient=lenient)
1722
1723     def chunklentype(self):
1724         """Reads just enough of the input to determine the next
1725         chunk's length and type, returned as a (*length*, *type*) pair
1726         where *type* is a string.  If there are no more chunks, ``None``
1727         is returned.
1728         """
1729
1730         x = self.file.read(8)
1731         if not x:
1732             return None
1733         if len(x) != 8:
1734             raise FormatError(
1735               'End of file whilst reading chunk length and type.')
1736         length,type = struct.unpack('!I4s', x)
1737         type = bytestostr(type)
1738         if length > 2**31-1:
1739             raise FormatError('Chunk %s is too large: %d.' % (type,length))
1740         return length,type
1741
1742     def process_chunk(self, lenient=False):
1743         """Process the next chunk and its data.  This only processes the
1744         following chunk types, all others are ignored: ``IHDR``,
1745         ``PLTE``, ``bKGD``, ``tRNS``, ``gAMA``, ``sBIT``.
1746
1747         If the optional `lenient` argument evaluates to True,
1748         checksum failures will raise warnings rather than exceptions.
1749         """
1750
1751         type, data = self.chunk(lenient=lenient)
1752         if type == 'IHDR':
1753             # http://www.w3.org/TR/PNG/#11IHDR
1754             if len(data) != 13:
1755                 raise FormatError('IHDR chunk has incorrect length.')
1756             (self.width, self.height, self.bitdepth, self.color_type,
1757              self.compression, self.filter,
1758              self.interlace) = struct.unpack("!2I5B", data)
1759
1760             # Check that the header specifies only valid combinations.
1761             if self.bitdepth not in (1,2,4,8,16):
1762                 raise Error("invalid bit depth %d" % self.bitdepth)
1763             if self.color_type not in (0,2,3,4,6):
1764                 raise Error("invalid colour type %d" % self.color_type)
1765             # Check indexed (palettized) images have 8 or fewer bits
1766             # per pixel; check only indexed or greyscale images have
1767             # fewer than 8 bits per pixel.
1768             if ((self.color_type & 1 and self.bitdepth > 8) or
1769                 (self.bitdepth < 8 and self.color_type not in (0,3))):
1770                 raise FormatError("Illegal combination of bit depth (%d)"
1771                   " and colour type (%d)."
1772                   " See http://www.w3.org/TR/2003/REC-PNG-20031110/#table111 ."
1773                   % (self.bitdepth, self.color_type))
1774             if self.compression != 0:
1775                 raise Error("unknown compression method %d" % self.compression)
1776             if self.filter != 0:
1777                 raise FormatError("Unknown filter method %d,"
1778                   " see http://www.w3.org/TR/2003/REC-PNG-20031110/#9Filters ."
1779                   % self.filter)
1780             if self.interlace not in (0,1):
1781                 raise FormatError("Unknown interlace method %d,"
1782                   " see http://www.w3.org/TR/2003/REC-PNG-20031110/#8InterlaceMethods ."
1783                   % self.interlace)
1784
1785             # Derived values
1786             # http://www.w3.org/TR/PNG/#6Colour-values
1787             colormap =  bool(self.color_type & 1)
1788             greyscale = not (self.color_type & 2)
1789             alpha = bool(self.color_type & 4)
1790             color_planes = (3,1)[greyscale or colormap]
1791             planes = color_planes + alpha
1792
1793             self.colormap = colormap
1794             self.greyscale = greyscale
1795             self.alpha = alpha
1796             self.color_planes = color_planes
1797             self.planes = planes
1798             self.psize = float(self.bitdepth)/float(8) * planes
1799             if int(self.psize) == self.psize:
1800                 self.psize = int(self.psize)
1801             self.row_bytes = int(math.ceil(self.width * self.psize))
1802             # Stores PLTE chunk if present, and is used to check
1803             # chunk ordering constraints.
1804             self.plte = None
1805             # Stores tRNS chunk if present, and is used to check chunk
1806             # ordering constraints.
1807             self.trns = None
1808             # Stores sbit chunk if present.
1809             self.sbit = None
1810         elif type == 'PLTE':
1811             # http://www.w3.org/TR/PNG/#11PLTE
1812             if self.plte:
1813                 warnings.warn("Multiple PLTE chunks present.")
1814             self.plte = data
1815             if len(data) % 3 != 0:
1816                 raise FormatError(
1817                   "PLTE chunk's length should be a multiple of 3.")
1818             if len(data) > (2**self.bitdepth)*3:
1819                 raise FormatError("PLTE chunk is too long.")
1820             if len(data) == 0:
1821                 raise FormatError("Empty PLTE is not allowed.")
1822         elif type == 'bKGD':
1823             try:
1824                 if self.colormap:
1825                     if not self.plte:
1826                         warnings.warn(
1827                           "PLTE chunk is required before bKGD chunk.")
1828                     self.background = struct.unpack('B', data)
1829                 else:
1830                     self.background = struct.unpack("!%dH" % self.color_planes,
1831                       data)
1832             except struct.error:
1833                 raise FormatError("bKGD chunk has incorrect length.")
1834         elif type == 'tRNS':
1835             # http://www.w3.org/TR/PNG/#11tRNS
1836             self.trns = data
1837             if self.colormap:
1838                 if not self.plte:
1839                     warnings.warn("PLTE chunk is required before tRNS chunk.")
1840                 else:
1841                     if len(data) > len(self.plte)/3:
1842                         # Was warning, but promoted to Error as it
1843                         # would otherwise cause pain later on.
1844                         raise FormatError("tRNS chunk is too long.")
1845             else:
1846                 if self.alpha:
1847                     raise FormatError(
1848                       "tRNS chunk is not valid with colour type %d." %
1849                       self.color_type)
1850                 try:
1851                     self.transparent = \
1852                         struct.unpack("!%dH" % self.color_planes, data)
1853                 except struct.error:
1854                     raise FormatError("tRNS chunk has incorrect length.")
1855         elif type == 'gAMA':
1856             try:
1857                 self.gamma = struct.unpack("!L", data)[0] / 100000.0
1858             except struct.error:
1859                 raise FormatError("gAMA chunk has incorrect length.")
1860         elif type == 'sBIT':
1861             self.sbit = data
1862             if (self.colormap and len(data) != 3 or
1863                 not self.colormap and len(data) != self.planes):
1864                 raise FormatError("sBIT chunk has incorrect length.")
1865
1866     def read(self, lenient=False):
1867         """
1868         Read the PNG file and decode it.  Returns (`width`, `height`,
1869         `pixels`, `metadata`).
1870
1871         May use excessive memory.
1872
1873         `pixels` are returned in boxed row flat pixel format.
1874
1875         If the optional `lenient` argument evaluates to True,
1876         checksum failures will raise warnings rather than exceptions.
1877         """
1878
1879         def iteridat():
1880             """Iterator that yields all the ``IDAT`` chunks as strings."""
1881             while True:
1882                 try:
1883                     type, data = self.chunk(lenient=lenient)
1884                 except ValueError, e:
1885                     raise ChunkError(e.args[0])
1886                 if type == 'IEND':
1887                     # http://www.w3.org/TR/PNG/#11IEND
1888                     break
1889                 if type != 'IDAT':
1890                     continue
1891                 # type == 'IDAT'
1892                 # http://www.w3.org/TR/PNG/#11IDAT
1893                 if self.colormap and not self.plte:
1894                     warnings.warn("PLTE chunk is required before IDAT chunk")
1895                 yield data
1896
1897         def iterdecomp(idat):
1898             """Iterator that yields decompressed strings.  `idat` should
1899             be an iterator that yields the ``IDAT`` chunk data.
1900             """
1901
1902             # Currently, with no max_length paramter to decompress, this
1903             # routine will do one yield per IDAT chunk.  So not very
1904             # incremental.
1905             d = zlib.decompressobj()
1906             # Each IDAT chunk is passed to the decompressor, then any
1907             # remaining state is decompressed out.
1908             for data in idat:
1909                 # :todo: add a max_length argument here to limit output
1910                 # size.
1911                 yield array('B', d.decompress(data))
1912             yield array('B', d.flush())
1913
1914         self.preamble(lenient=lenient)
1915         raw = iterdecomp(iteridat())
1916
1917         if self.interlace:
1918             raw = array('B', itertools.chain(*raw))
1919             arraycode = 'BH'[self.bitdepth>8]
1920             # Like :meth:`group` but producing an array.array object for
1921             # each row.
1922             pixels = itertools.imap(lambda *row: array(arraycode, row),
1923                        *[iter(self.deinterlace(raw))]*self.width*self.planes)
1924         else:
1925             pixels = self.iterboxed(self.iterstraight(raw))
1926         meta = dict()
1927         for attr in 'greyscale alpha planes bitdepth interlace'.split():
1928             meta[attr] = getattr(self, attr)
1929         meta['size'] = (self.width, self.height)
1930         for attr in 'gamma transparent background'.split():
1931             a = getattr(self, attr, None)
1932             if a is not None:
1933                 meta[attr] = a
1934         if self.plte:
1935             meta['palette'] = self.palette()
1936         return self.width, self.height, pixels, meta
1937
1938
1939     def read_flat(self):
1940         """
1941         Read a PNG file and decode it into flat row flat pixel format.
1942         Returns (*width*, *height*, *pixels*, *metadata*).
1943
1944         May use excessive memory.
1945
1946         `pixels` are returned in flat row flat pixel format.
1947
1948         See also the :meth:`read` method which returns pixels in the
1949         more stream-friendly boxed row flat pixel format.
1950         """
1951
1952         x, y, pixel, meta = self.read()
1953         arraycode = 'BH'[meta['bitdepth']>8]
1954         pixel = array(arraycode, itertools.chain(*pixel))
1955         return x, y, pixel, meta
1956
1957     def palette(self, alpha='natural'):
1958         """Returns a palette that is a sequence of 3-tuples or 4-tuples,
1959         synthesizing it from the ``PLTE`` and ``tRNS`` chunks.  These
1960         chunks should have already been processed (for example, by
1961         calling the :meth:`preamble` method).  All the tuples are the
1962         same size: 3-tuples if there is no ``tRNS`` chunk, 4-tuples when
1963         there is a ``tRNS`` chunk.  Assumes that the image is colour type
1964         3 and therefore a ``PLTE`` chunk is required.
1965
1966         If the `alpha` argument is ``'force'`` then an alpha channel is
1967         always added, forcing the result to be a sequence of 4-tuples.
1968         """
1969
1970         if not self.plte:
1971             raise FormatError(
1972                 "Required PLTE chunk is missing in colour type 3 image.")
1973         plte = group(array('B', self.plte), 3)
1974         if self.trns or alpha == 'force':
1975             trns = array('B', self.trns or '')
1976             trns.extend([255]*(len(plte)-len(trns)))
1977             plte = map(operator.add, plte, group(trns, 1))
1978         return plte
1979
1980     def asDirect(self):
1981         """Returns the image data as a direct representation of an
1982         ``x * y * planes`` array.  This method is intended to remove the
1983         need for callers to deal with palettes and transparency
1984         themselves.  Images with a palette (colour type 3)
1985         are converted to RGB or RGBA; images with transparency (a
1986         ``tRNS`` chunk) are converted to LA or RGBA as appropriate.
1987         When returned in this format the pixel values represent the
1988         colour value directly without needing to refer to palettes or
1989         transparency information.
1990
1991         Like the :meth:`read` method this method returns a 4-tuple:
1992
1993         (*width*, *height*, *pixels*, *meta*)
1994
1995         This method normally returns pixel values with the bit depth
1996         they have in the source image, but when the source PNG has an
1997         ``sBIT`` chunk it is inspected and can reduce the bit depth of
1998         the result pixels; pixel values will be reduced according to
1999         the bit depth specified in the ``sBIT`` chunk (PNG nerds should
2000         note a single result bit depth is used for all channels; the
2001         maximum of the ones specified in the ``sBIT`` chunk.  An RGB565
2002         image will be rescaled to 6-bit RGB666).
2003
2004         The *meta* dictionary that is returned reflects the `direct`
2005         format and not the original source image.  For example, an RGB
2006         source image with a ``tRNS`` chunk to represent a transparent
2007         colour, will have ``planes=3`` and ``alpha=False`` for the
2008         source image, but the *meta* dictionary returned by this method
2009         will have ``planes=4`` and ``alpha=True`` because an alpha
2010         channel is synthesized and added.
2011
2012         *pixels* is the pixel data in boxed row flat pixel format (just
2013         like the :meth:`read` method).
2014
2015         All the other aspects of the image data are not changed.
2016         """
2017
2018         self.preamble()
2019
2020         # Simple case, no conversion necessary.
2021         if not self.colormap and not self.trns and not self.sbit:
2022             return self.read()
2023
2024         x,y,pixels,meta = self.read()
2025
2026         if self.colormap:
2027             meta['colormap'] = False
2028             meta['alpha'] = bool(self.trns)
2029             meta['bitdepth'] = 8
2030             meta['planes'] = 3 + bool(self.trns)
2031             plte = self.palette()
2032             def iterpal(pixels):
2033                 for row in pixels:
2034                     row = map(plte.__getitem__, row)
2035                     yield array('B', itertools.chain(*row))
2036             pixels = iterpal(pixels)
2037         elif self.trns:
2038             # It would be nice if there was some reasonable way of doing
2039             # this without generating a whole load of intermediate tuples.
2040             # But tuples does seem like the easiest way, with no other way
2041             # clearly much simpler or much faster.  (Actually, the L to LA
2042             # conversion could perhaps go faster (all those 1-tuples!), but
2043             # I still wonder whether the code proliferation is worth it)
2044             it = self.transparent
2045             maxval = 2**meta['bitdepth']-1
2046             planes = meta['planes']
2047             meta['alpha'] = True
2048             meta['planes'] += 1
2049             typecode = 'BH'[meta['bitdepth']>8]
2050             def itertrns(pixels):
2051                 for row in pixels:
2052                     # For each row we group it into pixels, then form a
2053                     # characterisation vector that says whether each pixel
2054                     # is opaque or not.  Then we convert True/False to
2055                     # 0/maxval (by multiplication), and add it as the extra
2056                     # channel.
2057                     row = group(row, planes)
2058                     opa = map(it.__ne__, row)
2059                     opa = map(maxval.__mul__, opa)
2060                     opa = zip(opa) # convert to 1-tuples
2061                     yield array(typecode,
2062                       itertools.chain(*map(operator.add, row, opa)))
2063             pixels = itertrns(pixels)
2064         targetbitdepth = None
2065         if self.sbit:
2066             sbit = struct.unpack('%dB' % len(self.sbit), self.sbit)
2067             targetbitdepth = max(sbit)
2068             if targetbitdepth > meta['bitdepth']:
2069                 raise Error('sBIT chunk %r exceeds bitdepth %d' %
2070                     (sbit,self.bitdepth))
2071             if min(sbit) <= 0:
2072                 raise Error('sBIT chunk %r has a 0-entry' % sbit)
2073             if targetbitdepth == meta['bitdepth']:
2074                 targetbitdepth = None
2075         if targetbitdepth:
2076             shift = meta['bitdepth'] - targetbitdepth
2077             meta['bitdepth'] = targetbitdepth
2078             def itershift(pixels):
2079                 for row in pixels:
2080                     yield map(shift.__rrshift__, row)
2081             pixels = itershift(pixels)
2082         return x,y,pixels,meta
2083
2084     def asFloat(self, maxval=1.0):
2085         """Return image pixels as per :meth:`asDirect` method, but scale
2086         all pixel values to be floating point values between 0.0 and
2087         *maxval*.
2088         """
2089
2090         x,y,pixels,info = self.asDirect()
2091         sourcemaxval = 2**info['bitdepth']-1
2092         del info['bitdepth']
2093         info['maxval'] = float(maxval)
2094         factor = float(maxval)/float(sourcemaxval)
2095         def iterfloat():
2096             for row in pixels:
2097                 yield map(factor.__mul__, row)
2098         return x,y,iterfloat(),info
2099
2100     def _as_rescale(self, get, targetbitdepth):
2101         """Helper used by :meth:`asRGB8` and :meth:`asRGBA8`."""
2102
2103         width,height,pixels,meta = get()
2104         maxval = 2**meta['bitdepth'] - 1
2105         targetmaxval = 2**targetbitdepth - 1
2106         factor = float(targetmaxval) / float(maxval)
2107         meta['bitdepth'] = targetbitdepth
2108         def iterscale():
2109             for row in pixels:
2110                 yield map(lambda x: int(round(x*factor)), row)
2111         if maxval == targetmaxval:
2112             return width, height, pixels, meta
2113         else:
2114             return width, height, iterscale(), meta
2115
2116     def asRGB8(self):
2117         """Return the image data as an RGB pixels with 8-bits per
2118         sample.  This is like the :meth:`asRGB` method except that
2119         this method additionally rescales the values so that they
2120         are all between 0 and 255 (8-bit).  In the case where the
2121         source image has a bit depth < 8 the transformation preserves
2122         all the information; where the source image has bit depth
2123         > 8, then rescaling to 8-bit values loses precision.  No
2124         dithering is performed.  Like :meth:`asRGB`, an alpha channel
2125         in the source image will raise an exception.
2126
2127         This function returns a 4-tuple:
2128         (*width*, *height*, *pixels*, *metadata*).
2129         *width*, *height*, *metadata* are as per the :meth:`read` method.
2130         
2131         *pixels* is the pixel data in boxed row flat pixel format.
2132         """
2133
2134         return self._as_rescale(self.asRGB, 8)
2135
2136     def asRGBA8(self):
2137         """Return the image data as RGBA pixels with 8-bits per
2138         sample.  This method is similar to :meth:`asRGB8` and
2139         :meth:`asRGBA`:  The result pixels have an alpha channel, *and*
2140         values are rescaled to the range 0 to 255.  The alpha channel is
2141         synthesized if necessary (with a small speed penalty).
2142         """
2143
2144         return self._as_rescale(self.asRGBA, 8)
2145
2146     def asRGB(self):
2147         """Return image as RGB pixels.  RGB colour images are passed
2148         through unchanged; greyscales are expanded into RGB
2149         triplets (there is a small speed overhead for doing this).
2150
2151         An alpha channel in the source image will raise an
2152         exception.
2153
2154         The return values are as for the :meth:`read` method
2155         except that the *metadata* reflect the returned pixels, not the
2156         source image.  In particular, for this method
2157         ``metadata['greyscale']`` will be ``False``.
2158         """
2159
2160         width,height,pixels,meta = self.asDirect()
2161         if meta['alpha']:
2162             raise Error("will not convert image with alpha channel to RGB")
2163         if not meta['greyscale']:
2164             return width,height,pixels,meta
2165         meta['greyscale'] = False
2166         typecode = 'BH'[meta['bitdepth'] > 8]
2167         def iterrgb():
2168             for row in pixels:
2169                 a = array(typecode, [0]) * 3 * width
2170                 for i in range(3):
2171                     a[i::3] = row
2172                 yield a
2173         return width,height,iterrgb(),meta
2174
2175     def asRGBA(self):
2176         """Return image as RGBA pixels.  Greyscales are expanded into
2177         RGB triplets; an alpha channel is synthesized if necessary.
2178         The return values are as for the :meth:`read` method
2179         except that the *metadata* reflect the returned pixels, not the
2180         source image.  In particular, for this method
2181         ``metadata['greyscale']`` will be ``False``, and
2182         ``metadata['alpha']`` will be ``True``.
2183         """
2184
2185         width,height,pixels,meta = self.asDirect()
2186         if meta['alpha'] and not meta['greyscale']:
2187             return width,height,pixels,meta
2188         typecode = 'BH'[meta['bitdepth'] > 8]
2189         maxval = 2**meta['bitdepth'] - 1
2190         maxbuffer = struct.pack('=' + typecode, maxval) * 4 * width
2191         def newarray():
2192             return array(typecode, maxbuffer)
2193
2194         if meta['alpha'] and meta['greyscale']:
2195             # LA to RGBA
2196             def convert():
2197                 for row in pixels:
2198                     # Create a fresh target row, then copy L channel
2199                     # into first three target channels, and A channel
2200                     # into fourth channel.
2201                     a = newarray()
2202                     pngfilters.convert_la_to_rgba(row, a)
2203                     yield a
2204         elif meta['greyscale']:
2205             # L to RGBA
2206             def convert():
2207                 for row in pixels:
2208                     a = newarray()
2209                     pngfilters.convert_l_to_rgba(row, a)
2210                     yield a
2211         else:
2212             assert not meta['alpha'] and not meta['greyscale']
2213             # RGB to RGBA
2214             def convert():
2215                 for row in pixels:
2216                     a = newarray()
2217                     pngfilters.convert_rgb_to_rgba(row, a)
2218                     yield a
2219         meta['alpha'] = True
2220         meta['greyscale'] = False
2221         return width,height,convert(),meta
2222
2223
2224 # === Legacy Version Support ===
2225
2226 # :pyver:old:  PyPNG works on Python versions 2.3 and 2.2, but not
2227 # without some awkward problems.  Really PyPNG works on Python 2.4 (and
2228 # above); it works on Pythons 2.3 and 2.2 by virtue of fixing up
2229 # problems here.  It's a bit ugly (which is why it's hidden down here).
2230 #
2231 # Generally the strategy is one of pretending that we're running on
2232 # Python 2.4 (or above), and patching up the library support on earlier
2233 # versions so that it looks enough like Python 2.4.  When it comes to
2234 # Python 2.2 there is one thing we cannot patch: extended slices
2235 # http://www.python.org/doc/2.3/whatsnew/section-slices.html.
2236 # Instead we simply declare that features that are implemented using
2237 # extended slices will not work on Python 2.2.
2238 #
2239 # In order to work on Python 2.3 we fix up a recurring annoyance involving
2240 # the array type.  In Python 2.3 an array cannot be initialised with an
2241 # array, and it cannot be extended with a list (or other sequence).
2242 # Both of those are repeated issues in the code.  Whilst I would not
2243 # normally tolerate this sort of behaviour, here we "shim" a replacement
2244 # for array into place (and hope no-ones notices).  You never read this.
2245 #
2246 # In an amusing case of warty hacks on top of warty hacks... the array
2247 # shimming we try and do only works on Python 2.3 and above (you can't
2248 # subclass array.array in Python 2.2).  So to get it working on Python
2249 # 2.2 we go for something much simpler and (probably) way slower.
2250 try:
2251     array('B').extend([])
2252     array('B', array('B'))
2253 except:
2254     # Expect to get here on Python 2.3
2255     try:
2256         class _array_shim(array):
2257             true_array = array
2258             def __new__(cls, typecode, init=None):
2259                 super_new = super(_array_shim, cls).__new__
2260                 it = super_new(cls, typecode)
2261                 if init is None:
2262                     return it
2263                 it.extend(init)
2264                 return it
2265             def extend(self, extension):
2266                 super_extend = super(_array_shim, self).extend
2267                 if isinstance(extension, self.true_array):
2268                     return super_extend(extension)
2269                 if not isinstance(extension, (list, str)):
2270                     # Convert to list.  Allows iterators to work.
2271                     extension = list(extension)
2272                 return super_extend(self.true_array(self.typecode, extension))
2273         array = _array_shim
2274     except:
2275         # Expect to get here on Python 2.2
2276         def array(typecode, init=()):
2277             if type(init) == str:
2278                 return map(ord, init)
2279             return list(init)
2280
2281 # Further hacks to get it limping along on Python 2.2
2282 try:
2283     enumerate
2284 except:
2285     def enumerate(seq):
2286         i=0
2287         for x in seq:
2288             yield i,x
2289             i += 1
2290
2291 try:
2292     reversed
2293 except:
2294     def reversed(l):
2295         l = list(l)
2296         l.reverse()
2297         for x in l:
2298             yield x
2299
2300 try:
2301     itertools
2302 except:
2303     class _dummy_itertools:
2304         pass
2305     itertools = _dummy_itertools()
2306     def _itertools_imap(f, seq):
2307         for x in seq:
2308             yield f(x)
2309     itertools.imap = _itertools_imap
2310     def _itertools_chain(*iterables):
2311         for it in iterables:
2312             for element in it:
2313                 yield element
2314     itertools.chain = _itertools_chain
2315
2316
2317 # === Support for users without Cython ===
2318
2319 try:
2320     pngfilters
2321 except:
2322     class pngfilters(object):
2323         def undo_filter_sub(filter_unit, scanline, previous, result):
2324             """Undo sub filter."""
2325
2326             ai = 0
2327             # Loops starts at index fu.  Observe that the initial part
2328             # of the result is already filled in correctly with
2329             # scanline.
2330             for i in range(filter_unit, len(result)):
2331                 x = scanline[i]
2332                 a = result[ai]
2333                 result[i] = (x + a) & 0xff
2334                 ai += 1
2335         undo_filter_sub = staticmethod(undo_filter_sub)
2336
2337         def undo_filter_up(filter_unit, scanline, previous, result):
2338             """Undo up filter."""
2339
2340             for i in range(len(result)):
2341                 x = scanline[i]
2342                 b = previous[i]
2343                 result[i] = (x + b) & 0xff
2344         undo_filter_up = staticmethod(undo_filter_up)
2345
2346         def undo_filter_average(filter_unit, scanline, previous, result):
2347             """Undo up filter."""
2348
2349             ai = -filter_unit
2350             for i in range(len(result)):
2351                 x = scanline[i]
2352                 if ai < 0:
2353                     a = 0
2354                 else:
2355                     a = result[ai]
2356                 b = previous[i]
2357                 result[i] = (x + ((a + b) >> 1)) & 0xff
2358                 ai += 1
2359         undo_filter_average = staticmethod(undo_filter_average)
2360
2361         def undo_filter_paeth(filter_unit, scanline, previous, result):
2362             """Undo Paeth filter."""
2363
2364             # Also used for ci.
2365             ai = -filter_unit
2366             for i in range(len(result)):
2367                 x = scanline[i]
2368                 if ai < 0:
2369                     a = c = 0
2370                 else:
2371                     a = result[ai]
2372                     c = previous[ai]
2373                 b = previous[i]
2374                 p = a + b - c
2375                 pa = abs(p - a)
2376                 pb = abs(p - b)
2377                 pc = abs(p - c)
2378                 if pa <= pb and pa <= pc:
2379                     pr = a
2380                 elif pb <= pc:
2381                     pr = b
2382                 else:
2383                     pr = c
2384                 result[i] = (x + pr) & 0xff
2385                 ai += 1
2386         undo_filter_paeth = staticmethod(undo_filter_paeth)
2387
2388         def convert_la_to_rgba(row, result):
2389             for i in range(3):
2390                 result[i::4] = row[0::2]
2391             result[3::4] = row[1::2]
2392         convert_la_to_rgba = staticmethod(convert_la_to_rgba)
2393
2394         def convert_l_to_rgba(row, result):
2395             """Convert a grayscale image to RGBA. This method assumes the alpha
2396             channel in result is already correctly initialized."""
2397             for i in range(3):
2398                 result[i::4] = row
2399         convert_l_to_rgba = staticmethod(convert_l_to_rgba)
2400
2401         def convert_rgb_to_rgba(row, result):
2402             """Convert an RGB image to RGBA. This method assumes the alpha
2403             channel in result is already correctly initialized."""
2404             for i in range(3):
2405                 result[i::4] = row[i::3]
2406         convert_rgb_to_rgba = staticmethod(convert_rgb_to_rgba)
2407
2408
2409 # === Internal Test Support ===
2410
2411 # This section comprises the tests that are internally validated (as
2412 # opposed to tests which produce output files that are externally
2413 # validated).  Primarily they are unittests.
2414
2415 # Note that it is difficult to internally validate the results of
2416 # writing a PNG file.  The only thing we can do is read it back in
2417 # again, which merely checks consistency, not that the PNG file we
2418 # produce is valid.
2419
2420 # Run the tests from the command line:
2421 # python -c 'import png;png.test()'
2422
2423 # (For an in-memory binary file IO object) We use BytesIO where
2424 # available, otherwise we use StringIO, but name it BytesIO.
2425 try:
2426     from io import BytesIO
2427 except:
2428     from StringIO import StringIO as BytesIO
2429 import tempfile
2430 # http://www.python.org/doc/2.4.4/lib/module-unittest.html
2431 import unittest
2432
2433
2434 def test():
2435     unittest.main(__name__)
2436
2437 def topngbytes(name, rows, x, y, **k):
2438     """Convenience function for creating a PNG file "in memory" as a
2439     string.  Creates a :class:`Writer` instance using the keyword arguments,
2440     then passes `rows` to its :meth:`Writer.write` method.  The resulting
2441     PNG file is returned as a string.  `name` is used to identify the file for
2442     debugging.
2443     """
2444
2445     import os
2446
2447     print name
2448     f = BytesIO()
2449     w = Writer(x, y, **k)
2450     w.write(f, rows)
2451     if os.environ.get('PYPNG_TEST_TMP'):
2452         w = open(name, 'wb')
2453         w.write(f.getvalue())
2454         w.close()
2455     return f.getvalue()
2456
2457 def testWithIO(inp, out, f):
2458     """Calls the function `f` with ``sys.stdin`` changed to `inp`
2459     and ``sys.stdout`` changed to `out`.  They are restored when `f`
2460     returns.  This function returns whatever `f` returns.
2461     """
2462
2463     import os
2464
2465     try:
2466         oldin,sys.stdin = sys.stdin,inp
2467         oldout,sys.stdout = sys.stdout,out
2468         x = f()
2469     finally:
2470         sys.stdin = oldin
2471         sys.stdout = oldout
2472     if os.environ.get('PYPNG_TEST_TMP') and hasattr(out,'getvalue'):
2473         name = mycallersname()
2474         if name:
2475             w = open(name+'.png', 'wb')
2476             w.write(out.getvalue())
2477             w.close()
2478     return x
2479
2480 def mycallersname():
2481     """Returns the name of the caller of the caller of this function
2482     (hence the name of the caller of the function in which
2483     "mycallersname()" textually appears).  Returns None if this cannot
2484     be determined."""
2485
2486     # http://docs.python.org/library/inspect.html#the-interpreter-stack
2487     import inspect
2488
2489     frame = inspect.currentframe()
2490     if not frame:
2491         return None
2492     frame_,filename_,lineno_,funname,linelist_,listi_ = (
2493       inspect.getouterframes(frame)[2])
2494     return funname
2495
2496 def seqtobytes(s):
2497     """Convert a sequence of integers to a *bytes* instance.  Good for
2498     plastering over Python 2 / Python 3 cracks.
2499     """
2500
2501     return strtobytes(''.join(chr(x) for x in s))
2502
2503 class Test(unittest.TestCase):
2504     # This member is used by the superclass.  If we don't define a new
2505     # class here then when we use self.assertRaises() and the PyPNG code
2506     # raises an assertion then we get no proper traceback.  I can't work
2507     # out why, but defining a new class here means we get a proper
2508     # traceback.
2509     class failureException(Exception):
2510         pass
2511
2512     def helperLN(self, n):
2513         mask = (1 << n) - 1
2514         # Use small chunk_limit so that multiple chunk writing is
2515         # tested.  Making it a test for Issue 20.
2516         w = Writer(15, 17, greyscale=True, bitdepth=n, chunk_limit=99)
2517         f = BytesIO()
2518         w.write_array(f, array('B', map(mask.__and__, range(1, 256))))
2519         r = Reader(bytes=f.getvalue())
2520         x,y,pixels,meta = r.read()
2521         self.assertEqual(x, 15)
2522         self.assertEqual(y, 17)
2523         self.assertEqual(list(itertools.chain(*pixels)),
2524                          map(mask.__and__, range(1,256)))
2525     def testL8(self):
2526         return self.helperLN(8)
2527     def testL4(self):
2528         return self.helperLN(4)
2529     def testL2(self):
2530         "Also tests asRGB8."
2531         w = Writer(1, 4, greyscale=True, bitdepth=2)
2532         f = BytesIO()
2533         w.write_array(f, array('B', range(4)))
2534         r = Reader(bytes=f.getvalue())
2535         x,y,pixels,meta = r.asRGB8()
2536         self.assertEqual(x, 1)
2537         self.assertEqual(y, 4)
2538         for i,row in enumerate(pixels):
2539             self.assertEqual(len(row), 3)
2540             self.assertEqual(list(row), [0x55*i]*3)
2541     def testP2(self):
2542         "2-bit palette."
2543         a = (255,255,255)
2544         b = (200,120,120)
2545         c = (50,99,50)
2546         w = Writer(1, 4, bitdepth=2, palette=[a,b,c])
2547         f = BytesIO()
2548         w.write_array(f, array('B', (0,1,1,2)))
2549         r = Reader(bytes=f.getvalue())
2550         x,y,pixels,meta = r.asRGB8()
2551         self.assertEqual(x, 1)
2552         self.assertEqual(y, 4)
2553         self.assertEqual(map(list, pixels), map(list, [a, b, b, c]))
2554     def testPtrns(self):
2555         "Test colour type 3 and tRNS chunk (and 4-bit palette)."
2556         a = (50,99,50,50)
2557         b = (200,120,120,80)
2558         c = (255,255,255)
2559         d = (200,120,120)
2560         e = (50,99,50)
2561         w = Writer(3, 3, bitdepth=4, palette=[a,b,c,d,e])
2562         f = BytesIO()
2563         w.write_array(f, array('B', (4, 3, 2, 3, 2, 0, 2, 0, 1)))
2564         r = Reader(bytes=f.getvalue())
2565         x,y,pixels,meta = r.asRGBA8()
2566         self.assertEqual(x, 3)
2567         self.assertEqual(y, 3)
2568         c = c+(255,)
2569         d = d+(255,)
2570         e = e+(255,)
2571         boxed = [(e,d,c),(d,c,a),(c,a,b)]
2572         flat = map(lambda row: itertools.chain(*row), boxed)
2573         self.assertEqual(map(list, pixels), map(list, flat))
2574     def testRGBtoRGBA(self):
2575         "asRGBA8() on colour type 2 source."""
2576         # Test for Issue 26
2577         r = Reader(bytes=_pngsuite['basn2c08'])
2578         x,y,pixels,meta = r.asRGBA8()
2579         # Test the pixels at row 9 columns 0 and 1.
2580         row9 = list(pixels)[9]
2581         self.assertEqual(list(row9[0:8]),
2582                          [0xff, 0xdf, 0xff, 0xff, 0xff, 0xde, 0xff, 0xff])
2583     def testLtoRGBA(self):
2584         "asRGBA() on grey source."""
2585         # Test for Issue 60
2586         r = Reader(bytes=_pngsuite['basi0g08'])
2587         x,y,pixels,meta = r.asRGBA()
2588         row9 = list(list(pixels)[9])
2589         self.assertEqual(row9[0:8],
2590           [222, 222, 222, 255, 221, 221, 221, 255])
2591     def testCtrns(self):
2592         "Test colour type 2 and tRNS chunk."
2593         # Test for Issue 25
2594         r = Reader(bytes=_pngsuite['tbrn2c08'])
2595         x,y,pixels,meta = r.asRGBA8()
2596         # I just happen to know that the first pixel is transparent.
2597         # In particular it should be #7f7f7f00
2598         row0 = list(pixels)[0]
2599         self.assertEqual(tuple(row0[0:4]), (0x7f, 0x7f, 0x7f, 0x00))
2600     def testAdam7read(self):
2601         """Adam7 interlace reading.
2602         Specifically, test that for images in the PngSuite that
2603         have both an interlaced and straightlaced pair that both
2604         images from the pair produce the same array of pixels."""
2605         for candidate in _pngsuite:
2606             if not candidate.startswith('basn'):
2607                 continue
2608             candi = candidate.replace('n', 'i')
2609             if candi not in _pngsuite:
2610                 continue
2611             print 'adam7 read', candidate
2612             straight = Reader(bytes=_pngsuite[candidate])
2613             adam7 = Reader(bytes=_pngsuite[candi])
2614             # Just compare the pixels.  Ignore x,y (because they're
2615             # likely to be correct?); metadata is ignored because the
2616             # "interlace" member differs.  Lame.
2617             straight = straight.read()[2]
2618             adam7 = adam7.read()[2]
2619             self.assertEqual(map(list, straight), map(list, adam7))
2620     def testAdam7write(self):
2621         """Adam7 interlace writing.
2622         For each test image in the PngSuite, write an interlaced
2623         and a straightlaced version.  Decode both, and compare results.
2624         """
2625         # Not such a great test, because the only way we can check what
2626         # we have written is to read it back again.
2627
2628         for name,bytes in _pngsuite.items():
2629             # Only certain colour types supported for this test.
2630             if name[3:5] not in ['n0', 'n2', 'n4', 'n6']:
2631                 continue
2632             it = Reader(bytes=bytes)
2633             x,y,pixels,meta = it.read()
2634             pngi = topngbytes('adam7wn'+name+'.png', pixels,
2635               x=x, y=y, bitdepth=it.bitdepth,
2636               greyscale=it.greyscale, alpha=it.alpha,
2637               transparent=it.transparent,
2638               interlace=False)
2639             x,y,ps,meta = Reader(bytes=pngi).read()
2640             it = Reader(bytes=bytes)
2641             x,y,pixels,meta = it.read()
2642             pngs = topngbytes('adam7wi'+name+'.png', pixels,
2643               x=x, y=y, bitdepth=it.bitdepth,
2644               greyscale=it.greyscale, alpha=it.alpha,
2645               transparent=it.transparent,
2646               interlace=True)
2647             x,y,pi,meta = Reader(bytes=pngs).read()
2648             self.assertEqual(map(list, ps), map(list, pi))
2649     def testPGMin(self):
2650         """Test that the command line tool can read PGM files."""
2651         def do():
2652             return _main(['testPGMin'])
2653         s = BytesIO()
2654         s.write(strtobytes('P5 2 2 3\n'))
2655         s.write(strtobytes('\x00\x01\x02\x03'))
2656         s.flush()
2657         s.seek(0)
2658         o = BytesIO()
2659         testWithIO(s, o, do)
2660         r = Reader(bytes=o.getvalue())
2661         x,y,pixels,meta = r.read()
2662         self.assertTrue(r.greyscale)
2663         self.assertEqual(r.bitdepth, 2)
2664     def testPAMin(self):
2665         """Test that the command line tool can read PAM file."""
2666         def do():
2667             return _main(['testPAMin'])
2668         s = BytesIO()
2669         s.write(strtobytes('P7\nWIDTH 3\nHEIGHT 1\nDEPTH 4\nMAXVAL 255\n'
2670                 'TUPLTYPE RGB_ALPHA\nENDHDR\n'))
2671         # The pixels in flat row flat pixel format
2672         flat =  [255,0,0,255, 0,255,0,120, 0,0,255,30]
2673         asbytes = seqtobytes(flat)
2674         s.write(asbytes)
2675         s.flush()
2676         s.seek(0)
2677         o = BytesIO()
2678         testWithIO(s, o, do)
2679         r = Reader(bytes=o.getvalue())
2680         x,y,pixels,meta = r.read()
2681         self.assertTrue(r.alpha)
2682         self.assertTrue(not r.greyscale)
2683         self.assertEqual(list(itertools.chain(*pixels)), flat)
2684     def testLA4(self):
2685         """Create an LA image with bitdepth 4."""
2686         bytes = topngbytes('la4.png', [[5, 12]], 1, 1,
2687           greyscale=True, alpha=True, bitdepth=4)
2688         sbit = Reader(bytes=bytes).chunk('sBIT')[1]
2689         self.assertEqual(sbit, strtobytes('\x04\x04'))
2690     def testPal(self):
2691         """Test that a palette PNG returns the palette in info."""
2692         r = Reader(bytes=_pngsuite['basn3p04'])
2693         x,y,pixels,info = r.read()
2694         self.assertEqual(x, 32)
2695         self.assertEqual(y, 32)
2696         self.assertTrue('palette' in info)
2697     def testPalWrite(self):
2698         """Test metadata for paletted PNG can be passed from one PNG
2699         to another."""
2700         r = Reader(bytes=_pngsuite['basn3p04'])
2701         x,y,pixels,info = r.read()
2702         w = Writer(**info)
2703         o = BytesIO()
2704         w.write(o, pixels)
2705         o.flush()
2706         o.seek(0)
2707         r = Reader(file=o)
2708         _,_,_,again_info = r.read()
2709         # Same palette
2710         self.assertEqual(again_info['palette'], info['palette'])
2711     def testPalExpand(self):
2712         """Test that bitdepth can be used to fiddle with pallete image."""
2713         r = Reader(bytes=_pngsuite['basn3p04'])
2714         x,y,pixels,info = r.read()
2715         pixels = [list(row) for row in pixels]
2716         info['bitdepth'] = 8
2717         w = Writer(**info)
2718         o = BytesIO()
2719         w.write(o, pixels)
2720         o.flush()
2721         o.seek(0)
2722         r = Reader(file=o)
2723         _,_,again_pixels,again_info = r.read()
2724         # Same pixels
2725         again_pixels = [list(row) for row in again_pixels]
2726         self.assertEqual(again_pixels, pixels)
2727
2728     def testPNMsbit(self):
2729         """Test that PNM files can generates sBIT chunk."""
2730         def do():
2731             return _main(['testPNMsbit'])
2732         s = BytesIO()
2733         s.write(strtobytes('P6 8 1 1\n'))
2734         for pixel in range(8):
2735             s.write(struct.pack('<I', (0x4081*pixel)&0x10101)[:3])
2736         s.flush()
2737         s.seek(0)
2738         o = BytesIO()
2739         testWithIO(s, o, do)
2740         r = Reader(bytes=o.getvalue())
2741         sbit = r.chunk('sBIT')[1]
2742         self.assertEqual(sbit, strtobytes('\x01\x01\x01'))
2743     def testLtrns0(self):
2744         """Create greyscale image with tRNS chunk."""
2745         return self.helperLtrns(0)
2746     def testLtrns1(self):
2747         """Using 1-tuple for transparent arg."""
2748         return self.helperLtrns((0,))
2749     def helperLtrns(self, transparent):
2750         """Helper used by :meth:`testLtrns*`."""
2751         pixels = zip([0x00, 0x38, 0x4c, 0x54, 0x5c, 0x40, 0x38, 0x00])
2752         o = BytesIO()
2753         w = Writer(8, 8, greyscale=True, bitdepth=1, transparent=transparent)
2754         w.write_packed(o, pixels)
2755         r = Reader(bytes=o.getvalue())
2756         x,y,pixels,meta = r.asDirect()
2757         self.assertTrue(meta['alpha'])
2758         self.assertTrue(meta['greyscale'])
2759         self.assertEqual(meta['bitdepth'], 1)
2760     def testWinfo(self):
2761         """Test the dictionary returned by a `read` method can be used
2762         as args for :meth:`Writer`.
2763         """
2764         r = Reader(bytes=_pngsuite['basn2c16'])
2765         info = r.read()[3]
2766         w = Writer(**info)
2767     def testPackedIter(self):
2768         """Test iterator for row when using write_packed.
2769
2770         Indicative for Issue 47.
2771         """
2772         w = Writer(16, 2, greyscale=True, alpha=False, bitdepth=1)
2773         o = BytesIO()
2774         w.write_packed(o, [itertools.chain([0x0a], [0xaa]),
2775                            itertools.chain([0x0f], [0xff])])
2776         r = Reader(bytes=o.getvalue())
2777         x,y,pixels,info = r.asDirect()
2778         pixels = list(pixels)
2779         self.assertEqual(len(pixels), 2)
2780         self.assertEqual(len(pixels[0]), 16)
2781     def testInterlacedArray(self):
2782         """Test that reading an interlaced PNG yields each row as an
2783         array."""
2784         r = Reader(bytes=_pngsuite['basi0g08'])
2785         list(r.read()[2])[0].tostring
2786     def testTrnsArray(self):
2787         """Test that reading a type 2 PNG with tRNS chunk yields each
2788         row as an array (using asDirect)."""
2789         r = Reader(bytes=_pngsuite['tbrn2c08'])
2790         list(r.asDirect()[2])[0].tostring
2791
2792     # Invalid file format tests.  These construct various badly
2793     # formatted PNG files, then feed them into a Reader.  When
2794     # everything is working properly, we should get FormatError
2795     # exceptions raised.
2796     def testEmpty(self):
2797         """Test empty file."""
2798
2799         r = Reader(bytes='')
2800         self.assertRaises(FormatError, r.asDirect)
2801     def testSigOnly(self):
2802         """Test file containing just signature bytes."""
2803
2804         r = Reader(bytes=_signature)
2805         self.assertRaises(FormatError, r.asDirect)
2806     def testExtraPixels(self):
2807         """Test file that contains too many pixels."""
2808
2809         def eachchunk(chunk):
2810             if chunk[0] != 'IDAT':
2811                 return chunk
2812             data = zlib.decompress(chunk[1])
2813             data += strtobytes('\x00garbage')
2814             data = zlib.compress(data)
2815             chunk = (chunk[0], data)
2816             return chunk
2817         self.assertRaises(FormatError, self.helperFormat, eachchunk)
2818     def testNotEnoughPixels(self):
2819         def eachchunk(chunk):
2820             if chunk[0] != 'IDAT':
2821                 return chunk
2822             # Remove last byte.
2823             data = zlib.decompress(chunk[1])
2824             data = data[:-1]
2825             data = zlib.compress(data)
2826             return (chunk[0], data)
2827         self.assertRaises(FormatError, self.helperFormat, eachchunk)
2828     def helperFormat(self, f):
2829         r = Reader(bytes=_pngsuite['basn0g01'])
2830         o = BytesIO()
2831         def newchunks():
2832             for chunk in r.chunks():
2833                 yield f(chunk)
2834         write_chunks(o, newchunks())
2835         r = Reader(bytes=o.getvalue())
2836         return list(r.asDirect()[2])
2837     def testBadFilter(self):
2838         def eachchunk(chunk):
2839             if chunk[0] != 'IDAT':
2840                 return chunk
2841             data = zlib.decompress(chunk[1])
2842             # Corrupt the first filter byte
2843             data = strtobytes('\x99') + data[1:]
2844             data = zlib.compress(data)
2845             return (chunk[0], data)
2846         self.assertRaises(FormatError, self.helperFormat, eachchunk)
2847
2848     def testFlat(self):
2849         """Test read_flat."""
2850         import hashlib
2851
2852         r = Reader(bytes=_pngsuite['basn0g02'])
2853         x,y,pixel,meta = r.read_flat()
2854         d = hashlib.md5(seqtobytes(pixel)).digest()
2855         self.assertEqual(_enhex(d), '255cd971ab8cd9e7275ff906e5041aa0')
2856     def testfromarray(self):
2857         img = from_array([[0, 0x33, 0x66], [0xff, 0xcc, 0x99]], 'L')
2858         img.save('testfromarray.png')
2859     def testfromarrayL16(self):
2860         img = from_array(group(range(2**16), 256), 'L;16')
2861         img.save('testL16.png')
2862     def testfromarrayRGB(self):
2863         img = from_array([[0,0,0, 0,0,1, 0,1,0, 0,1,1],
2864                           [1,0,0, 1,0,1, 1,1,0, 1,1,1]], 'RGB;1')
2865         o = BytesIO()
2866         img.save(o)
2867     def testfromarrayIter(self):
2868         import itertools
2869
2870         i = itertools.islice(itertools.count(10), 20)
2871         i = itertools.imap(lambda x: [x, x, x], i)
2872         img = from_array(i, 'RGB;5', dict(height=20))
2873         f = open('testiter.png', 'wb')
2874         img.save(f)
2875         f.close()
2876
2877     # numpy dependent tests.  These are skipped (with a message to
2878     # sys.stderr) if numpy cannot be imported.
2879     def testNumpyuint16(self):
2880         """numpy uint16."""
2881
2882         try:
2883             import numpy
2884         except ImportError:
2885             print >>sys.stderr, "skipping numpy test"
2886             return
2887
2888         rows = [map(numpy.uint16, range(0,0x10000,0x5555))]
2889         b = topngbytes('numpyuint16.png', rows, 4, 1,
2890             greyscale=True, alpha=False, bitdepth=16)
2891     def testNumpyuint8(self):
2892         """numpy uint8."""
2893
2894         try:
2895             import numpy
2896         except ImportError:
2897             print >>sys.stderr, "skipping numpy test"
2898             return
2899
2900         rows = [map(numpy.uint8, range(0,0x100,0x55))]
2901         b = topngbytes('numpyuint8.png', rows, 4, 1,
2902             greyscale=True, alpha=False, bitdepth=8)
2903     def testNumpybool(self):
2904         """numpy bool."""
2905
2906         try:
2907             import numpy
2908         except ImportError:
2909             print >>sys.stderr, "skipping numpy test"
2910             return
2911
2912         rows = [map(numpy.bool, [0,1])]
2913         b = topngbytes('numpybool.png', rows, 2, 1,
2914             greyscale=True, alpha=False, bitdepth=1)
2915     def testNumpyarray(self):
2916         """numpy array."""
2917         try:
2918             import numpy
2919         except ImportError:
2920             print >>sys.stderr, "skipping numpy test"
2921             return
2922
2923         pixels = numpy.array([[0,0x5555],[0x5555,0xaaaa]], numpy.uint16)
2924         img = from_array(pixels, 'L')
2925         img.save('testnumpyL16.png')
2926
2927     def paeth(self, x, a, b, c):
2928         p = a + b - c
2929         pa = abs(p - a)
2930         pb = abs(p - b)
2931         pc = abs(p - c)
2932         if pa <= pb and pa <= pc:
2933             pr = a
2934         elif pb <= pc:
2935             pr = b
2936         else:
2937             pr = c
2938         return x - pr
2939
2940     # test filters and unfilters
2941     def testFilterScanlineFirstLine(self):
2942         fo = 3  # bytes per pixel
2943         line = [30, 31, 32, 230, 231, 232]
2944         out = filter_scanline(0, line, fo, None)  # none
2945         self.assertEqual(list(out), [0, 30, 31, 32, 230, 231, 232])
2946         out = filter_scanline(1, line, fo, None)  # sub
2947         self.assertEqual(list(out), [1, 30, 31, 32, 200, 200, 200])
2948         out = filter_scanline(2, line, fo, None)  # up
2949         # TODO: All filtered scanlines start with a byte indicating the filter
2950         # algorithm, except "up". Is this a bug? Should the expected output
2951         # start with 2 here?
2952         self.assertEqual(list(out), [30, 31, 32, 230, 231, 232])
2953         out = filter_scanline(3, line, fo, None)  # average
2954         self.assertEqual(list(out), [3, 30, 31, 32, 215, 216, 216])
2955         out = filter_scanline(4, line, fo, None)  # paeth
2956         self.assertEqual(list(out), [
2957             4, self.paeth(30, 0, 0, 0), self.paeth(31, 0, 0, 0),
2958             self.paeth(32, 0, 0, 0), self.paeth(230, 30, 0, 0),
2959             self.paeth(231, 31, 0, 0), self.paeth(232, 32, 0, 0)
2960             ])
2961     def testFilterScanline(self):
2962         prev = [20, 21, 22, 210, 211, 212]
2963         line = [30, 32, 34, 230, 233, 236]
2964         fo = 3
2965         out = filter_scanline(0, line, fo, prev)  # none
2966         self.assertEqual(list(out), [0, 30, 32, 34, 230, 233, 236])
2967         out = filter_scanline(1, line, fo, prev)  # sub
2968         self.assertEqual(list(out), [1, 30, 32, 34, 200, 201, 202])
2969         out = filter_scanline(2, line, fo, prev)  # up
2970         self.assertEqual(list(out), [2, 10, 11, 12, 20, 22, 24])
2971         out = filter_scanline(3, line, fo, prev)  # average
2972         self.assertEqual(list(out), [3, 20, 22, 23, 110, 112, 113])
2973         out = filter_scanline(4, line, fo, prev)  # paeth
2974         self.assertEqual(list(out), [
2975             4, self.paeth(30, 0, 20, 0), self.paeth(32, 0, 21, 0),
2976             self.paeth(34, 0, 22, 0), self.paeth(230, 30, 210, 20),
2977             self.paeth(233, 32, 211, 21), self.paeth(236, 34, 212, 22)
2978             ])
2979     def testUnfilterScanline(self):
2980         reader = Reader(bytes='')
2981         reader.psize = 3
2982         scanprev = array('B', [20, 21, 22, 210, 211, 212])
2983         scanline = array('B', [30, 32, 34, 230, 233, 236])
2984         def cp(a):
2985             return array('B', a)
2986
2987         out = reader.undo_filter(0, cp(scanline), cp(scanprev))
2988         self.assertEqual(list(out), list(scanline))  # none
2989         out = reader.undo_filter(1, cp(scanline), cp(scanprev))
2990         self.assertEqual(list(out), [30, 32, 34, 4, 9, 14])  # sub
2991         out = reader.undo_filter(2, cp(scanline), cp(scanprev))
2992         self.assertEqual(list(out), [50, 53, 56, 184, 188, 192])  # up
2993         out = reader.undo_filter(3, cp(scanline), cp(scanprev))
2994         self.assertEqual(list(out), [40, 42, 45, 99, 103, 108])  # average
2995         out = reader.undo_filter(4, cp(scanline), cp(scanprev))
2996         self.assertEqual(list(out), [50, 53, 56, 184, 188, 192])  # paeth
2997     def testUnfilterScanlinePaeth(self):
2998         # This tests more edge cases in the paeth unfilter
2999         reader = Reader(bytes='')
3000         reader.psize = 3
3001         scanprev = array('B', [2, 0, 0, 0, 9, 11])
3002         scanline = array('B', [6, 10, 9, 100, 101, 102])
3003
3004         out = reader.undo_filter(4, scanline, scanprev)
3005         self.assertEqual(list(out), [8, 10, 9, 108, 111, 113])  # paeth
3006     def testIterstraight(self):
3007         def arraify(list_of_str):
3008             return [array('B', s) for s in list_of_str]
3009         reader = Reader(bytes='')
3010         reader.row_bytes = 6
3011         reader.psize = 3
3012         rows = reader.iterstraight(arraify(['\x00abcdef', '\x00ghijkl']))
3013         self.assertEqual(list(rows), arraify(['abcdef', 'ghijkl']))
3014
3015         rows = reader.iterstraight(arraify(['\x00abc', 'def\x00ghijkl']))
3016         self.assertEqual(list(rows), arraify(['abcdef', 'ghijkl']))
3017
3018         rows = reader.iterstraight(arraify(['\x00abcdef\x00ghijkl']))
3019         self.assertEqual(list(rows), arraify(['abcdef', 'ghijkl']))
3020
3021         rows = reader.iterstraight(arraify(['\x00abcdef\x00ghi', 'jkl']))
3022         self.assertEqual(list(rows), arraify(['abcdef', 'ghijkl']))
3023
3024 # === Command Line Support ===
3025
3026 def _dehex(s):
3027     """Liberally convert from hex string to binary string."""
3028     import re
3029     import binascii
3030
3031     # Remove all non-hexadecimal digits
3032     s = re.sub(r'[^a-fA-F\d]', '', s)
3033     # binscii.unhexlify works in Python 2 and Python 3 (unlike
3034     # thing.decode('hex')).
3035     return binascii.unhexlify(strtobytes(s))
3036 def _enhex(s):
3037     """Convert from binary string (bytes) to hex string (str)."""
3038
3039     import binascii
3040
3041     return bytestostr(binascii.hexlify(s))
3042
3043 # Copies of PngSuite test files taken
3044 # from http://www.schaik.com/pngsuite/pngsuite_bas_png.html
3045 # on 2009-02-19 by drj and converted to hex.
3046 # Some of these are not actually in PngSuite (but maybe they should
3047 # be?), they use the same naming scheme, but start with a capital
3048 # letter.
3049 _pngsuite = {
3050   'basi0g01': _dehex("""
3051 89504e470d0a1a0a0000000d49484452000000200000002001000000012c0677
3052 cf0000000467414d41000186a031e8965f0000009049444154789c2d8d310ec2
3053 300c45dfc682c415187a00a42e197ab81e83b127e00c5639001363a580d8582c
3054 65c910357c4b78b0bfbfdf4f70168c19e7acb970a3f2d1ded9695ce5bf5963df
3055 d92aaf4c9fd927ea449e6487df5b9c36e799b91bdf082b4d4bd4014fe4014b01
3056 ab7a17aee694d28d328a2d63837a70451e1648702d9a9ff4a11d2f7a51aa21e5
3057 a18c7ffd0094e3511d661822f20000000049454e44ae426082
3058 """),
3059   'basi0g02': _dehex("""
3060 89504e470d0a1a0a0000000d49484452000000200000002002000000016ba60d
3061 1f0000000467414d41000186a031e8965f0000005149444154789c635062e860
3062 00e17286bb609c93c370ec189494960631366e4467b3ae675dcf10f521ea0303
3063 90c1ca006444e11643482064114a4852c710baea3f18c31918020c30410403a6
3064 0ac1a09239009c52804d85b6d97d0000000049454e44ae426082
3065 """),
3066   'basi0g04': _dehex("""
3067 89504e470d0a1a0a0000000d4948445200000020000000200400000001e4e6f8
3068 bf0000000467414d41000186a031e8965f000000ae49444154789c658e5111c2
3069 301044171c141c141c041c843a287510ea20d441c041c141c141c04191102454
3070 03994998cecd7edcecedbb9bdbc3b2c2b6457545fbc4bac1be437347f7c66a77
3071 3c23d60db15e88f5c5627338a5416c2e691a9b475a89cd27eda12895ae8dfdab
3072 43d61e590764f5c83a226b40d669bec307f93247701687723abf31ff83a2284b
3073 a5b4ae6b63ac6520ad730ca4ed7b06d20e030369bd6720ed383290360406d24e
3074 13811f2781eba9d34d07160000000049454e44ae426082
3075 """),
3076   'basi0g08': _dehex("""
3077 89504e470d0a1a0a0000000d4948445200000020000000200800000001211615
3078 be0000000467414d41000186a031e8965f000000b549444154789cb5905d0ac2
3079 3010849dbac81c42c47bf843cf253e8878b0aa17110f214bdca6be240f5d21a5
3080 94ced3e49bcd322c1624115515154998aa424822a82a5624a1aa8a8b24c58f99
3081 999908130989a04a00d76c2c09e76cf21adcb209393a6553577da17140a2c59e
3082 70ecbfa388dff1f03b82fb82bd07f05f7cb13f80bb07ad2fd60c011c3c588eef
3083 f1f4e03bbec7ce832dca927aea005e431b625796345307b019c845e6bfc3bb98
3084 769d84f9efb02ea6c00f9bb9ff45e81f9f280000000049454e44ae426082
3085 """),
3086   'basi0g16': _dehex("""
3087 89504e470d0a1a0a0000000d49484452000000200000002010000000017186c9
3088 fd0000000467414d41000186a031e8965f000000e249444154789cb5913b0ec2
3089 301044c7490aa8f85d81c3e4301c8f53a4ca0da8902c8144b3920b4043111282
3090 23bc4956681a6bf5fc3c5a3ba0448912d91a4de2c38dd8e380231eede4c4f7a1
3091 4677700bec7bd9b1d344689315a3418d1a6efbe5b8305ba01f8ff4808c063e26
3092 c60d5c81edcf6c58c535e252839e93801b15c0a70d810ae0d306b205dc32b187
3093 272b64057e4720ff0502154034831520154034c3df81400510cdf0015c86e5cc
3094 5c79c639fddba9dcb5456b51d7980eb52d8e7d7fa620a75120d6064641a05120
3095 b606771a05626b401a05f1f589827cf0fe44c1f0bae0055698ee8914fffffe00
3096 00000049454e44ae426082
3097 """),
3098   'basi2c08': _dehex("""
3099 89504e470d0a1a0a0000000d49484452000000200000002008020000018b1fdd
3100 350000000467414d41000186a031e8965f000000f249444154789cd59341aa04
3101 210c44abc07b78133d59d37333bd89d76868b566d10cf4675af8596431a11662
3102 7c5688919280e312257dd6a0a4cf1a01008ee312a5f3c69c37e6fcc3f47e6776
3103 a07f8bdaf5b40feed2d33e025e2ff4fe2d4a63e1a16d91180b736d8bc45854c5
3104 6d951863f4a7e0b66dcf09a900f3ffa2948d4091e53ca86c048a64390f662b50
3105 4a999660ced906182b9a01a8be00a56404a6ede182b1223b4025e32c4de34304
3106 63457680c93aada6c99b73865aab2fc094920d901a203f5ddfe1970d28456783
3107 26cffbafeffcd30654f46d119be4793f827387fc0d189d5bc4d69a3c23d45a7f
3108 db803146578337df4d0a3121fc3d330000000049454e44ae426082
3109 """),
3110   'basi2c16': _dehex("""
3111 89504e470d0a1a0a0000000d4948445200000020000000201002000001db8f01
3112 760000000467414d41000186a031e8965f0000020a49444154789cd5962173e3
3113 3010853fcf1838cc61a1818185a53e56787fa13fa130852e3b5878b4b0b03081
3114 b97f7030070b53e6b057a0a8912bbb9163b9f109ececbc59bd7dcf2b45492409
3115 d66f00eb1dd83cb5497d65456aeb8e1040913b3b2c04504c936dd5a9c7e2c6eb
3116 b1b8f17a58e8d043da56f06f0f9f62e5217b6ba3a1b76f6c9e99e8696a2a72e2
3117 c4fb1e4d452e92ec9652b807486d12b6669be00db38d9114b0c1961e375461a5
3118 5f76682a85c367ad6f682ff53a9c2a353191764b78bb07d8ddc3c97c1950f391
3119 6745c7b9852c73c2f212605a466a502705c8338069c8b9e84efab941eb393a97
3120 d4c9fd63148314209f1c1d3434e847ead6380de291d6f26a25c1ebb5047f5f24
3121 d85c49f0f22cc1d34282c72709cab90477bf25b89d49f0f351822297e0ea9704
3122 f34c82bc94002448ede51866e5656aef5d7c6a385cb4d80e6a538ceba04e6df2
3123 480e9aa84ddedb413bb5c97b3838456df2d4fec2c7a706983e7474d085fae820
3124 a841776a83073838973ac0413fea2f1dc4a06e71108fda73109bdae48954ad60
3125 bf867aac3ce44c7c1589a711cf8a81df9b219679d96d1cec3d8bbbeaa2012626
3126 df8c7802eda201b2d2e0239b409868171fc104ba8b76f10b4da09f6817ffc609
3127 c413ede267fd1fbab46880c90f80eccf0013185eb48b47ba03df2bdaadef3181
3128 cb8976f18e13188768170f98c0f844bb78cb04c62ddac59d09fc3fa25dfc1da4
3129 14deb3df1344f70000000049454e44ae426082
3130 """),
3131   'basi3p08': _dehex("""
3132 89504e470d0a1a0a0000000d494844520000002000000020080300000133a3ba
3133 500000000467414d41000186a031e8965f00000300504c5445224400f5ffed77
3134 ff77cbffff110a003a77002222ffff11ff110000222200ffac5566ff66ff6666
3135 ff01ff221200dcffffccff994444ff005555220000cbcbff44440055ff55cbcb
3136 00331a00ffecdcedffffe4ffcbffdcdc44ff446666ff330000442200ededff66
3137 6600ffa444ffffaaeded0000cbcbfefffffdfffeffff0133ff33552a000101ff
3138 8888ff00aaaa010100440000888800ffe4cbba5b0022ff22663200ffff99aaaa
3139 ff550000aaaa00cb630011ff11d4ffaa773a00ff4444dc6b0066000001ff0188
3140 4200ecffdc6bdc00ffdcba00333300ed00ed7300ffff88994a0011ffff770000
3141 ff8301ffbabafe7b00fffeff00cb00ff999922ffff880000ffff77008888ffdc
3142 ff1a33000000aa33ffff009900990000000001326600ffbaff44ffffffaaff00
3143 770000fefeaa00004a9900ffff66ff22220000998bff1155ffffff0101ff88ff
3144 005500001111fffffefffdfea4ff4466ffffff66ff003300ffff55ff77770000
3145 88ff44ff00110077ffff006666ffffed000100fff5ed1111ffffff44ff22ffff
3146 eded11110088ffff00007793ff2200dcdc3333fffe00febabaff99ffff333300
3147 63cb00baba00acff55ffffdcffff337bfe00ed00ed5555ffaaffffdcdcff5555
3148 00000066dcdc00dc00dc83ff017777fffefeffffffcbff5555777700fefe00cb
3149 00cb0000fe010200010000122200ffff220044449bff33ffd4aa0000559999ff
3150 999900ba00ba2a5500ffcbcbb4ff66ff9b33ffffbaaa00aa42880053aa00ffaa
3151 aa0000ed00babaffff1100fe00000044009999990099ffcc99ba000088008800
3152 dc00ff93220000dcfefffeaa5300770077020100cb0000000033ffedff00ba00
3153 ff3333edffedffc488bcff7700aa00660066002222dc0000ffcbffdcffdcff8b
3154 110000cb00010155005500880000002201ffffcbffcbed0000ff88884400445b
3155 ba00ffbc77ff99ff006600baffba00777773ed00fe00003300330000baff77ff
3156 004400aaffaafffefe000011220022c4ff8800eded99ff99ff55ff002200ffb4
3157 661100110a1100ff1111dcffbabaffff88ff88010001ff33ffb98ed362000002
3158 a249444154789c65d0695c0b001806f03711a9904a94d24dac63292949e5a810
3159 d244588a14ca5161d1a1323973252242d62157d12ae498c8124d25ca3a11398a
3160 16e55a3cdffab0ffe7f77d7fcff3528645349b584c3187824d9d19d4ec2e3523
3161 9eb0ae975cf8de02f2486d502191841b42967a1ad49e5ddc4265f69a899e26b5
3162 e9e468181baae3a71a41b95669da8df2ea3594c1b31046d7b17bfb86592e4cbe
3163 d89b23e8db0af6304d756e60a8f4ad378bdc2552ae5948df1d35b52143141533
3164 33bbbbababebeb3b3bc9c9c9c6c6c0c0d7b7b535323225a5aa8a02024a4bedec
3165 0a0a2a2bcdcd7d7cf2f3a9a9c9cdcdd8b8adcdd5b5ababa828298982824a4ab2
3166 b21212acadbdbc1414e2e24859b9a72730302f4f49292c4c57373c9c0a0b7372
3167 8c8c1c1c3a3a92936d6dfdfd293e3e26262a4a4eaea2424b4b5fbfbc9c323278
3168 3c0b0ba1303abaae8ecdeeed950d6669a9a7a7a141d4de9e9d5d5cdcd2229b94
3169 c572716132f97cb1d8db9bc3110864a39795d9db6b6a26267a7a9a98d4d6a6a7
3170 cb76090ef6f030354d4d75766e686030545464cb393a1a1ac6c68686eae8f8f9
3171 a9aa4644c8b66d6e1689dcdd2512a994cb35330b0991ad9f9b6b659596a6addd
3172 d8282fafae5e5323fb8f41d01f76c22fd8061be01bfc041a0323e1002c81cd30
3173 0b9ec027a0c930014ec035580fc3e112bc069a0b53e11c0c8095f00176c163a0
3174 e5301baec06a580677600ddc05ba0f13e120bc81a770133ec355a017300d4ec2
3175 0c7800bbe1219c02fa08f3e13c1c85dbb00a2ec05ea0dff00a6ec15a98027360
3176 070c047a06d7e1085c84f1b014f6c03fa0b33018b6c0211801ebe018fc00da0a
3177 6f61113c877eb01d4ec317a085700f26c130f80efbe132bc039a0733e106fc81
3178 f7f017f6c10aa0d1300a0ec374780943e1382c06fa0a9b60238c83473016cec0
3179 02f80f73fefe1072afc1e50000000049454e44ae426082
3180 """),
3181   'basi6a08': _dehex("""
3182 89504e470d0a1a0a0000000d4948445200000020000000200806000001047d4a
3183 620000000467414d41000186a031e8965f0000012049444154789cc595414ec3
3184 3010459fa541b8bbb26641b8069b861e8b4d12c1c112c1452a710a2a65d840d5
3185 949041fc481ec98ae27c7f3f8d27e3e4648047600fec0d1f390fbbe2633a31e2
3186 9389e4e4ea7bfdbf3d9a6b800ab89f1bd6b553cfcbb0679e960563d72e0a9293
3187 b7337b9f988cc67f5f0e186d20e808042f1c97054e1309da40d02d7e27f92e03
3188 6cbfc64df0fc3117a6210a1b6ad1a00df21c1abcf2a01944c7101b0cb568a001
3189 909c9cf9e399cf3d8d9d4660a875405d9a60d000b05e2de55e25780b7a5268e0
3190 622118e2399aab063a815808462f1ab86890fc2e03e48bb109ded7d26ce4bf59
3191 0db91bac0050747fec5015ce80da0e5700281be533f0ce6d5900b59bcb00ea6d
3192 200314cf801faab200ea752803a8d7a90c503a039f824a53f4694e7342000000
3193 0049454e44ae426082
3194 """),
3195   'basn0g01': _dehex("""
3196 89504e470d0a1a0a0000000d49484452000000200000002001000000005b0147
3197 590000000467414d41000186a031e8965f0000005b49444154789c2dccb10903
3198 300c05d1ebd204b24a200b7a346f90153c82c18d0a61450751f1e08a2faaead2
3199 a4846ccea9255306e753345712e211b221bf4b263d1b427325255e8bdab29e6f
3200 6aca30692e9d29616ee96f3065f0bf1f1087492fd02f14c90000000049454e44
3201 ae426082
3202 """),
3203   'basn0g02': _dehex("""
3204 89504e470d0a1a0a0000000d49484452000000200000002002000000001ca13d
3205 890000000467414d41000186a031e8965f0000001f49444154789c6360085df5
3206 1f8cf1308850c20053868f0133091f6390b90700bd497f818b0989a900000000
3207 49454e44ae426082
3208 """),
3209   # A version of basn0g04 dithered down to 3 bits.
3210   'Basn0g03': _dehex("""
3211 89504e470d0a1a0a0000000d494844520000002000000020040000000093e1c8
3212 2900000001734249540371d88211000000fd49444154789c6d90d18906210c84
3213 c356f22356b2889588604301b112112b11d94a96bb495cf7fe87f32d996f2689
3214 44741cc658e39c0b118f883e1f63cc89dafbc04c0f619d7d898396c54b875517
3215 83f3a2e7ac09a2074430e7f497f00f1138a5444f82839c5206b1f51053cca968
3216 63258821e7f2b5438aac16fbecc052b646e709de45cf18996b29648508728612
3217 952ca606a73566d44612b876845e9a347084ea4868d2907ff06be4436c4b41a3
3218 a3e1774285614c5affb40dbd931a526619d9fa18e4c2be420858de1df0e69893
3219 a0e3e5523461be448561001042b7d4a15309ce2c57aef2ba89d1c13794a109d7
3220 b5880aa27744fc5c4aecb5e7bcef5fe528ec6293a930690000000049454e44ae
3221 426082
3222 """),
3223   'basn0g04': _dehex("""
3224 89504e470d0a1a0a0000000d494844520000002000000020040000000093e1c8
3225 290000000467414d41000186a031e8965f0000004849444154789c6360601014
3226 545232367671090d4d4b2b2f6720430095dbd1418e002a77e64c720450b9ab56
3227 912380caddbd9b1c0154ee9933e408a072efde25470095fbee1d1902001f14ee
3228 01eaff41fa0000000049454e44ae426082
3229 """),
3230   'basn0g08': _dehex("""
3231 89504e470d0a1a0a0000000d4948445200000020000000200800000000561125
3232 280000000467414d41000186a031e8965f0000004149444154789c6364602400
3233 1408c8b30c05058c0f0829f8f71f3f6079301c1430ca11906764a2795c0c0605
3234 8c8ff0cafeffcff887e67131181430cae0956564040050e5fe7135e2d8590000
3235 000049454e44ae426082
3236 """),
3237   'basn0g16': _dehex("""
3238 89504e470d0a1a0a0000000d49484452000000200000002010000000000681f9
3239 6b0000000467414d41000186a031e8965f0000005e49444154789cd5d2310ac0
3240 300c4351395bef7fc6dca093c0287b32d52a04a3d98f3f3880a7b857131363a0
3241 3a82601d089900dd82f640ca04e816dc06422640b7a03d903201ba05b7819009
3242 d02d680fa44c603f6f07ec4ff41938cf7f0016d84bd85fae2b9fd70000000049
3243 454e44ae426082
3244 """),
3245   'basn2c08': _dehex("""
3246 89504e470d0a1a0a0000000d4948445200000020000000200802000000fc18ed
3247 a30000000467414d41000186a031e8965f0000004849444154789cedd5c10900
3248 300c024085ec91fdb772133b442bf4a1f8cee12bb40d043b800a14f81ca0ede4
3249 7d4c784081020f4a871fc284071428f0a0743823a94081bb7077a3c00182b1f9
3250 5e0f40cf4b0000000049454e44ae426082
3251 """),
3252   'basn2c16': _dehex("""
3253 89504e470d0a1a0a0000000d4948445200000020000000201002000000ac8831
3254 e00000000467414d41000186a031e8965f000000e549444154789cd596c10a83
3255 301044a7e0417fcb7eb7fdadf6961e06039286266693cc7a188645e43dd6a08f
3256 1042003e2fe09aef6472737e183d27335fcee2f35a77b702ebce742870a23397
3257 f3edf2705dd10160f3b2815fe8ecf2027974a6b0c03f74a6e4192843e75c6c03
3258 35e8ec3202f5e84c0181bbe8cca967a00d9df3491bb040671f2e6087ce1c2860
3259 8d1e05f8c7ee0f1d00b667e70df44467ef26d01fbd9bc028f42860f71d188bce
3260 fb8d3630039dbd59601e7ab3c06cf428507f0634d039afdc80123a7bb1801e7a
3261 b1802a7a14c89f016d74ce331bf080ce9e08f8414f04bca133bfe642fe5e07bb
3262 c4ec0000000049454e44ae426082
3263 """),
3264   'basn3p04': _dehex("""
3265 89504e470d0a1a0a0000000d4948445200000020000000200403000000815467
3266 c70000000467414d41000186a031e8965f000000037342495404040477f8b5a3
3267 0000002d504c54452200ff00ffff8800ff22ff000099ffff6600dd00ff77ff00
3268 ff000000ff99ddff00ff00bbffbb000044ff00ff44d2b049bd00000047494441
3269 54789c63e8e8080d3d7366d5aaf27263e377ef66ce64204300952b28488e002a
3270 d7c5851c0154eeddbbe408a07119c81140e52a29912380ca4d4b23470095bb7b
3271 37190200e0c4ead10f82057d0000000049454e44ae426082
3272 """),
3273   'basn6a08': _dehex("""
3274 89504e470d0a1a0a0000000d4948445200000020000000200806000000737a7a
3275 f40000000467414d41000186a031e8965f0000006f49444154789cedd6310a80
3276 300c46e12764684fa1f73f55048f21c4ddc545781d52e85028fc1f4d28d98a01
3277 305e7b7e9cffba33831d75054703ca06a8f90d58a0074e351e227d805c8254e3
3278 1bb0420f5cdc2e0079208892ffe2a00136a07b4007943c1004d900195036407f
3279 011bf00052201a9c160fb84c0000000049454e44ae426082
3280 """),
3281   'cs3n3p08': _dehex("""
3282 89504e470d0a1a0a0000000d494844520000002000000020080300000044a48a
3283 c60000000467414d41000186a031e8965f0000000373424954030303a392a042
3284 00000054504c544592ff0000ff9200ffff00ff0000dbff00ff6dffb600006dff
3285 b6ff00ff9200dbff000049ffff2400ff000024ff0049ff0000ffdb00ff4900ff
3286 b6ffff0000ff2400b6ffffdb000092ffff6d000024ffff49006dff00df702b17
3287 0000004b49444154789c85cac70182000000b1b3625754b0edbfa72324ef7486
3288 184ed0177a437b680bcdd0031c0ed00ea21f74852ed00a1c9ed0086da0057487
3289 6ed0121cd6d004bda0013a421ff803224033e177f4ae260000000049454e44ae
3290 426082
3291 """),
3292   's09n3p02': _dehex("""
3293 89504e470d0a1a0a0000000d49484452000000090000000902030000009dffee
3294 830000000467414d41000186a031e8965f000000037342495404040477f8b5a3
3295 0000000c504c544500ff000077ffff00ffff7700ff5600640000001f49444154
3296 789c63600002fbff0c0c56ab19182ca381581a4283f82071200000696505c36a
3297 437f230000000049454e44ae426082
3298 """),
3299   'tbgn3p08': _dehex("""
3300 89504e470d0a1a0a0000000d494844520000002000000020080300000044a48a
3301 c60000000467414d41000186a031e8965f00000207504c54457f7f7fafafafab
3302 abab110000222200737300999999510d00444400959500959595e6e600919191
3303 8d8d8d620d00898989666600b7b700911600000000730d007373736f6f6faaaa
3304 006b6b6b676767c41a00cccc0000f30000ef00d51e0055555567670000dd0051
3305 515100d1004d4d4de61e0038380000b700160d0d00ab00560d00090900009500
3306 009100008d003333332f2f2f2f2b2f2b2b000077007c7c001a05002b27000073
3307 002b2b2b006f00bb1600272727780d002323230055004d4d00cc1e00004d00cc
3308 1a000d00003c09006f6f00002f003811271111110d0d0d55554d090909001100
3309 4d0900050505000d00e2e200000900000500626200a6a6a6a2a2a29e9e9e8484
3310 00fb00fbd5d500801100800d00ea00ea555500a6a600e600e6f7f700e200e233
3311 0500888888d900d9848484c01a007777003c3c05c8c8008080804409007c7c7c
3312 bb00bbaa00aaa600a61e09056262629e009e9a009af322005e5e5e05050000ee
3313 005a5a5adddd00a616008d008d00e20016050027270088110078780000c40078
3314 00787300736f006f44444400aa00c81e004040406600663c3c3c090000550055
3315 1a1a00343434d91e000084004d004d007c004500453c3c00ea1e00222222113c
3316 113300331e1e1efb22001a1a1a004400afaf00270027003c001616161e001e0d
3317 160d2f2f00808000001e00d1d1001100110d000db7b7b7090009050005b3b3b3
3318 6d34c4230000000174524e530040e6d86600000001624b474402660b7c640000
3319 01f249444154789c6360c0048c8c58049100575f215ee92e6161ef109cd2a15e
3320 4b9645ce5d2c8f433aa4c24f3cbd4c98833b2314ab74a186f094b9c2c27571d2
3321 6a2a58e4253c5cda8559057a392363854db4d9d0641973660b0b0bb76bb16656
3322 06970997256877a07a95c75a1804b2fbcd128c80b482a0b0300f8a824276a9a8
3323 ec6e61612b3e57ee06fbf0009619d5fac846ac5c60ed20e754921625a2daadc6
3324 1967e29e97d2239c8aec7e61fdeca9cecebef54eb36c848517164514af16169e
3325 866444b2b0b7b55534c815cc2ec22d89cd1353800a8473100a4485852d924a6a
3326 412adc74e7ad1016ceed043267238c901716f633a812022998a4072267c4af02
3327 92127005c0f811b62830054935ce017b38bf0948cc5c09955f030a24617d9d46
3328 63371fd940b0827931cbfdf4956076ac018b592f72d45594a9b1f307f3261b1a
3329 084bc2ad50018b1900719ba6ba4ca325d0427d3f6161449486f981144cf3100e
3330 2a5f2a1ce8683e4ddf1b64275240c8438d98af0c729bbe07982b8a1c94201dc2
3331 b3174c9820bcc06201585ad81b25b64a2146384e3798290c05ad280a18c0a62e
3332 e898260c07fca80a24c076cc864b777131a00190cdfa3069035eccbc038c30e1
3333 3e88b46d16b6acc5380d6ac202511c392f4b789aa7b0b08718765990111606c2
3334 9e854c38e5191878fbe471e749b0112bb18902008dc473b2b2e8e72700000000
3335 49454e44ae426082
3336 """),
3337   'Tp2n3p08': _dehex("""
3338 89504e470d0a1a0a0000000d494844520000002000000020080300000044a48a
3339 c60000000467414d41000186a031e8965f00000300504c544502ffff80ff05ff
3340 7f0703ff7f0180ff04ff00ffff06ff000880ff05ff7f07ffff06ff000804ff00
3341 0180ff02ffff03ff7f02ffff80ff0503ff7f0180ffff0008ff7f0704ff00ffff
3342 06ff000802ffffff7f0704ff0003ff7fffff0680ff050180ff04ff000180ffff
3343 0008ffff0603ff7f80ff05ff7f0702ffffff000880ff05ffff0603ff7f02ffff
3344 ff7f070180ff04ff00ffff06ff000880ff050180ffff7f0702ffff04ff0003ff
3345 7fff7f0704ff0003ff7f0180ffffff06ff000880ff0502ffffffff0603ff7fff
3346 7f0702ffff04ff000180ff80ff05ff0008ff7f07ffff0680ff0504ff00ff0008
3347 0180ff03ff7f02ffff02ffffffff0604ff0003ff7f0180ffff000880ff05ff7f
3348 0780ff05ff00080180ff02ffffff7f0703ff7fffff0604ff00ff7f07ff0008ff
3349 ff0680ff0504ff0002ffff0180ff03ff7fff0008ffff0680ff0504ff000180ff
3350 02ffff03ff7fff7f070180ff02ffff04ff00ffff06ff0008ff7f0780ff0503ff
3351 7fffff06ff0008ff7f0780ff0502ffff03ff7f0180ff04ff0002ffffff7f07ff
3352 ff0604ff0003ff7fff00080180ff80ff05ffff0603ff7f0180ffff000804ff00
3353 80ff0502ffffff7f0780ff05ffff0604ff000180ffff000802ffffff7f0703ff
3354 7fff0008ff7f070180ff03ff7f02ffff80ff05ffff0604ff00ff0008ffff0602
3355 ffff0180ff04ff0003ff7f80ff05ff7f070180ff04ff00ff7f0780ff0502ffff
3356 ff000803ff7fffff0602ffffff7f07ffff0680ff05ff000804ff0003ff7f0180
3357 ff02ffff0180ffff7f0703ff7fff000804ff0080ff05ffff0602ffff04ff00ff
3358 ff0603ff7fff7f070180ff80ff05ff000803ff7f0180ffff7f0702ffffff0008
3359 04ff00ffff0680ff0503ff7f0180ff04ff0080ff05ffff06ff000802ffffff7f
3360 0780ff05ff0008ff7f070180ff03ff7f04ff0002ffffffff0604ff00ff7f07ff
3361 000880ff05ffff060180ff02ffff03ff7f80ff05ffff0602ffff0180ff03ff7f
3362 04ff00ff7f07ff00080180ffff000880ff0502ffff04ff00ff7f0703ff7fffff
3363 06ff0008ffff0604ff00ff7f0780ff0502ffff03ff7f0180ffdeb83387000000
3364 f874524e53000000000000000008080808080808081010101010101010181818
3365 1818181818202020202020202029292929292929293131313131313131393939
3366 393939393941414141414141414a4a4a4a4a4a4a4a52525252525252525a5a5a
3367 5a5a5a5a5a62626262626262626a6a6a6a6a6a6a6a73737373737373737b7b7b
3368 7b7b7b7b7b83838383838383838b8b8b8b8b8b8b8b94949494949494949c9c9c
3369 9c9c9c9c9ca4a4a4a4a4a4a4a4acacacacacacacacb4b4b4b4b4b4b4b4bdbdbd
3370 bdbdbdbdbdc5c5c5c5c5c5c5c5cdcdcdcdcdcdcdcdd5d5d5d5d5d5d5d5dedede
3371 dededededee6e6e6e6e6e6e6e6eeeeeeeeeeeeeeeef6f6f6f6f6f6f6f6b98ac5
3372 ca0000012c49444154789c6360e7169150d230b475f7098d4ccc28a96ced9e32
3373 63c1da2d7b8e9fb97af3d1fb8f3f18e8a0808953544a4dd7c4c2c9233c2621bf
3374 b4aab17fdacce5ab36ee3a72eafaad87efbefea68702362e7159652d031b07cf
3375 c0b8a4cce28aa68e89f316aedfb4ffd0b92bf79fbcfcfe931e0a183904e55435
3376 8decdcbcc22292b3caaadb7b27cc5db67af3be63e72fdf78fce2d31f7a2860e5
3377 119356d037b374f10e8a4fc92eaa6fee99347fc9caad7b0f9ebd74f7c1db2fbf
3378 e8a180995f484645dbdccad12f38363dafbcb6a573faeca5ebb6ed3e7ce2c29d
3379 e76fbefda38702063e0149751d537b67ff80e8d4dcc29a86bea97316add9b0e3
3380 c0e96bf79ebdfafc971e0a587885e515f58cad5d7d43a2d2720aeadaba26cf5a
3381 bc62fbcea3272fde7efafac37f3a28000087c0fe101bc2f85f0000000049454e
3382 44ae426082
3383 """),
3384   'tbbn1g04': _dehex("""
3385 89504e470d0a1a0a0000000d494844520000002000000020040000000093e1c8
3386 290000000467414d41000186a031e8965f0000000274524e530007e8f7589b00
3387 000002624b47440000aa8d23320000013e49444154789c55d1cd4b024118c7f1
3388 efbe6419045b6a48a72d352808b435284f9187ae9b098627a1573a19945beba5
3389 e8129e8222af11d81e3a4545742de8ef6af6d5762e0fbf0fc33c33f36085cb76
3390 bc4204778771b867260683ee57e13f0c922df5c719c2b3b6c6c25b2382cea4b9
3391 9f7d4f244370746ac71f4ca88e0f173a6496749af47de8e44ba8f3bf9bdfa98a
3392 0faf857a7dd95c7dc8d7c67c782c99727997f41eb2e3c1e554152465bb00fe8e
3393 b692d190b718d159f4c0a45c4435915a243c58a7a4312a7a57913f05747594c6
3394 46169866c57101e4d4ce4d511423119c419183a3530cc63db88559ae28e7342a
3395 1e9c8122b71139b8872d6e913153224bc1f35b60e4445bd4004e20ed6682c759
3396 1d9873b3da0fbf50137dc5c9bde84fdb2ec8bde1189e0448b63584735993c209
3397 7a601bd2710caceba6158797285b7f2084a2f82c57c01a0000000049454e44ae
3398 426082
3399 """),
3400   'tbrn2c08': _dehex("""
3401 89504e470d0a1a0a0000000d4948445200000020000000200802000000fc18ed
3402 a30000000467414d41000186a031e8965f0000000674524e53007f007f007f8a
3403 33334f00000006624b474400ff0000000033277cf3000004d649444154789cad
3404 965f68537714c73fd912d640235e692f34d0406fa0c1663481045ab060065514
3405 56660a295831607df0a1488715167060840a1614e6431e9cb34fd2c00a762c85
3406 f6a10f816650c13b0cf40612e1822ddc4863bd628a8924d23d6464f9d3665dd9
3407 f7e977ce3dbff3cd3939bfdfef6bb87dfb364782dbed065ebe7cd93acc78b4ec
3408 a228debd7bb7bfbfbfbbbbfb7f261045311a8d261209405194274f9ea4d3e916
3409 f15f1c3eb5dd6e4fa5fecce526239184a2b0b8486f6f617171b1f5ae4311381c
3410 8e57af5e5dbd7a351088150a78bd389d44222c2f93cdfe66b7db8f4ee07038b6
3411 b6b6bebf766d7e7e7e60a06432313b4ba984c3c1c4049a46b95c5a58583822c1
3412 dbb76f27272733d1b9df853c3030c0f232562b9108cf9eb1b888d7cbf030abab
3413 31abd5fa1f08dc6ef7e7cf9f1f3f7e1c8944745d4f1400c62c001313acad21cb
3414 b8dd2c2c603271eb1640341aad4c6d331aa7e8c48913a150a861307ecc11e964
3415 74899919bc5e14e56fffc404f1388502f178dceff7ef4bf0a5cfe7abb533998c
3416 e5f9ea2f1dd88c180d64cb94412df3dd57e83a6b3b3c7a84c98420100c72fd3a
3417 636348bae726379fe69e8e8d8dbd79f3a6558b0607079796965256479b918085
3418 7b02db12712b6181950233023f3f647494ee6e2e5ea45864cce5b8a7fe3acffc
3419 3aebb22c2bd5d20e22d0757d7b7bbbbdbd3d94a313bed1b0aa3cd069838b163a
3420 8d4c59585f677292d0b84d9a995bd337def3fe6bbe5e6001989b9b6bfe27ea08
3421 36373781542ab56573248b4c5bc843ac4048c7ab21aa24ca00534c25482828a3
3422 8c9ee67475bbaaaab22cb722c8e57240a150301a8d219de94e44534d7d90e885
3423 87acb0e2c4f9800731629b6c5ee14a35a6b9887d2a0032994cb9cf15dbe59650
3424 ff7b46a04c9a749e7cc5112214266cc65c31354d5b5d5d3d90209bcd5616a552
3425 a95c2e87f2a659bd9ee01c2cd73964e438f129a6aa9e582c363838b80f81d7eb
3426 5555b56a2a8ad2d9d7affd0409f8015c208013fea00177b873831b0282c964f2
3427 783c1e8fa7582cee5f81a669b5e6eeeeaee58e8559b0c233d8843c7c0b963a82
3428 34e94b5cb2396d7d7d7db22c8ba258fb0afd43f0e2c58b919191ba9de9b4d425
3429 118329b0c3323c8709d02041b52b4ea7f39de75d2a934a2693c0a953a76a93d4
3430 5d157ebf7f6565a5542a553df97c5e10045dd731c130b86113cc300cbd489224
3431 08422a952a140a95788fc763b1d41558d7a2d7af5f5fb870a1d6a3aaaacd6603
3432 18802da84c59015bd2e6897b745d9765b99a1df0f97c0daf74e36deaf7fbcd66
3433 73ad2797cb89a2c839880188a2e8743a8bc5a22ccbba5e376466b3b9bdbdbd21
3434 6123413a9d0e0402b51e4dd3bababa788eb022b85caeb6b6364551b6b7b76942
3435 43f7f727007a7a7a04a1ee8065b3595fde2768423299ac1ec6669c3973e65004
3436 c0f8f878ad69341a33994ced2969c0d0d0502412f9f8f163f3a7fd654b474787
3437 288ad53e74757535df6215b85cae60302849d2410aecc037f9f2e5cbd5b5c160
3438 680eb0dbede170381c0e7ff8f0a185be3b906068684892a4ca7a6f6faff69328
3439 8ad3d3d3f7efdfdfdbdbfb57e96868a14d0d0643381c96242997cbe5f3794010
3440 84603078fcf8f1d6496bd14a3aba5c2ea7d369341a5555b5582c8140e0fcf9f3
3441 1b1b1b87cf4eeb0a8063c78e45a3d19e9e1ebfdfdf5a831e844655d18093274f
3442 9e3d7bf6d3a74f3b3b3b47c80efc05ff7af28fefb70d9b0000000049454e44ae
3443 426082
3444 """),
3445   'basn6a16': _dehex("""
3446 89504e470d0a1a0a0000000d494844520000002000000020100600000023eaa6
3447 b70000000467414d41000186a031e8965f00000d2249444154789cdd995f6c1c
3448 d775c67ff38fb34b724d2ee55a8e4b04a0ac87049100cab4dbd8c6528902cb4d
3449 10881620592e52d4325ac0905bc98a94025e71fd622cb5065ac98a0c283050c0
3450 728a00b6e542a1d126885cd3298928891d9a0444037e904434951d4b90b84b2f
3451 c9dde1fcebc33977a95555348f411e16dfce9d3b77ee77eebde77ce78c95a669
3452 0ad07c17009a13edd898b87dfb1fcb7d2b4d1bff217f33df80deb1e6267df0ff
3453 c1e6e6dfafdf1f5a7fd30f9aef66b6d546dd355bf02c40662e3307f9725a96c6
3454 744c3031f83782f171c148dbc3bf1774f5dad1e79d6f095a3f54d4fbec5234ef
3455 d9a2f8d73afe4f14f57ef4f42def7b44f19060f06b45bddf1c5534d77fd922be
3456 2973a15a82e648661c6e3240aa3612ead952b604bde57458894f29deaf133bac
3457 13d2766f5227a4a3b8cf08da7adfd6fbd6bd8a4fe9dbb43d35e3dfa3f844fbf8
3458 9119bf4f7144094fb56333abf8a86063ca106f94b3a3b512343765e60082097f
3459 1bb86ba72439a653519b09f5cee1ce61c897d37eedf5553580ae60f4af8af33a
3460 b14fd400b6a0f34535c0434afc0b3a9f07147527a5fa7ca218ff56c74d74dc3f
3461 155cfd3325fc278acf2ae1cb4a539f5f9937c457263b0bd51234c732a300cdd1
3462 cc1840f0aaff54db0e4874ed5a9b5d6d27d4bb36746d80de72baa877ff4b275a
3463 d7895ed1897ea4139b5143fcbb1a62560da1ed9662aaed895ec78a91c18795b8
3464 5e07ab4af8ba128e95e682e0728bf8f2e5ae815a091a53d902ac1920d8e05f06
3465 589de8d8d66680789f4e454fb9d9ec66cd857af796ee2d902fa73fd5bba775a2
3466 153580ae44705ed0d37647d15697cb8f14bfa3e3e8fdf8031d47af571503357c
3467 f30d25acedcbbf135c9a35c49766ba07ab255859e8ec03684e66860182dff8f7
3468 0304bff6ff1c20fc81b7afdd00a71475539a536e36bb5973a19e3b923b02bde5
3469 e4efd4003ac170eb2d13fe274157afedbd82d6fb3a9a1e85e4551d47cf7078f8
3470 9671fe4289ebf5f2bf08d63f37c4eb4773c55a0996efeefa0ca011671d8060ca
3471 2f0004c7fcc300e166ef0240f825efe3361f106d57d423d0723f7acacd66376b
3472 2ed47b7a7a7a205f4ef4ac4691e0aad9aa0d41cf13741c3580a506487574ddca
3473 61a8c403c1863ebfbcac3475168b2de28b8b3d77544bb05ce92a02aceced3c0d
3474 d0cc65ea371b201cf1c601c24dde1c4078cedbdeb60322f50126a019bf6edc9b
3475 39e566b39b3517eaf97c3e0fbde5e4491d45bd74537145d155b476aa0176e868
3476 c6abebf30dbd5e525c54ac8e18e2d56abeb756827a3d970358a97416019a6f64
3477 f60004fdfe1580d5c98e618070cc1b05887eee7e0d209a70db7d8063029889b4
3478 c620ead78d7b33a7dc6c76b3e6427ddddbebde867c393aa7845e5403e8ca794a
3479 d0d6fb897af5f03525fe5782f5e7046bdaef468bf88d1debc6ab25583cd17310
3480 6079b9ab0ba059c914018245bf076075b5a303200c3c1f209a733701444fbbaf
3481 00c4134ebb016c5d0b23614c243701cdf875e3decce9349bddacb9505fbf7dfd
3482 76e82d87736a00f5d2b5ffd4b7dce2719a4d25ae717ee153c1abef18e257cfad
3483 7fa45682da48ef38c052b53b0fd06864b300c151ff08c0ea431de701a287dd5f
3484 004497dc7b01a253ee3e80b8c7f91c20f967fb6fdb7c80ada7d8683723614c24
3485 3701cdf875e3decc29379bddacb950ef3fd47f08f2e5a61ea4aa2a3eb757cd55
3486 13345efcfa59c12b2f19e2578ef77fb75a82854ffbee01a83f977b11a031931d
3487 040802df07082b5e11207cc17b1e209a770700e2df0a83e409fb7580f827c230
3488 99b06fd901fb058d6835dacd481813c94d40337eddb83773cacd66376b2ed437
3489 bebcf165e82d2f4e4beb7f3fa6e652c2d7ee10bc78c010bfb87fe3c95a09ae9f
3490 bd732740bd2fb700d0f865f64180e059ff044018ca0ca28a5b04883f701e0088
3491 bfec7c0c909cb71f0448c6ec518074b375012079d9dedf66004bcfbc51eb2dd1
3492 aadacd481813c94d40337eddb83773cacd66376b2ed487868686205fbe7c49ef
3493 5605a73f34c4a7a787eeab96e0da81bb4e022c15ba27019a5b339300e16bf286
3494 a8eae601e25866907cdf3e0890acb36f00245fb57f05904e59c300e92561946e
3495 b2e600d209ab7d07f04d458dfb46ad1bd16ab49b913026929b8066fcba716fe6
3496 949bcd6ed65ca8ef7e7cf7e3d05b7e7c8f217ee6cdddbb6a25a856f37980e0c7
3497 fe4e80a82623c48193014846ec7180f4acf518409aca0cd28a5504e03b32c374
3498 de1a00608a0240faaa327a4b19fe946fb6f90054dbb5f2333d022db56eb4966a
3499 3723614c243701cdf8f556bea8a7dc6c76b3e66bd46584ddbbcebc0990cf4b0f
3500 ff4070520c282338a7e26700ec725202b01e4bcf0258963c6f1d4d8f0030cb20
3501 805549c520930c03584fa522b676f11600ffc03fde3e1b3489a9c9054c9aa23b
3502 c08856a3dd8c843191dc0434e3d78d7b33a75c36fb993761f7ae5a69f72ef97f
3503 e6ad336fed7e1c60e8bee96980bbdebbb60da07b7069062033d9dc0ae03d296f
3504 70ab511ec071640676252902d833c916007b3e1900b0a6d2028035968e025861
3505 ea01581369fb11488c34d18cbc95989afccca42baad65ba2d5683723614c24d7
3506 8066fcbab8b7e96918baaf5aaa56219f975fb50a43f7c9bde90fa73f1c1a02d8
3507 78f2e27e803b77ca08b90519315b6fe400fc1392097a9eccc0ad444500e70199
3508 a1331f0f00d8934901c07e5d526ceb87c2d07e2579badd005a2b31a5089391b7
3509 1253358049535a6add8856dd0146c298482e01ede27ed878b256ba7600ee3a09
3510 c18fc1df09fe01084ec25defc1b56db0f1a4f4bd78e0e2818d2f0334e7330300
3511 7df7c888b917e50dd9c1c60c80efcb0cbc63e1f700bce7c31700dccbd1060027
3512 8add9b0de06c8e2f00d84962b7d7030e2a61538331b98051f92631bd253f336a
3513 dd8856a3dd44c25c390efddfad96ae9f853b77c25201ba27c533b8bdf28b6ad0
3514 3d084b33d2e7fa59099e9901b8f2d29597fa0f01848f78e70082117f1ca07b76
3515 6910209b9519f895a008d031bbba05c09d8f06005c5b18b8fba25300cea6780e
3516 c03e911c6ccf06d507b48a4fa606634a114609de929f9934c5a87511ad57cfc1
3517 fa476aa5854fa1ef1e3910b905686e85cc24c40138198915f133d2d6dc2a7dea
3518 7df2ccc2a752faf2cec1d577aebeb37e3b4034eeee0008dff3be0e6b923773b4
3519 7904c0ef9119767cb4fa1500ef1361e08e452500f71561e84cc4ed3e20fab6a2
3520 c905f40cb76a3026bf3319b91ac2e46792a6dcd801ebc6aba5da08f48ecb81c8
3521 bd088d5f42f6417191de93908c803d0e76199292b485af41b60e8d9c3c537f0e
3522 8211f0c7211a077707dc18b931b2ee6d80a4d7ae024491ebc24d4a708ff70680
3523 7f25e807e8785f1878e322d6ddaf453f0770ff2dfa769b01423dbbad72a391b6
3524 5a7c3235985629423372494cab55c8f7d64a8b27a0e7202c55a13b0f8d19c80e
3525 4ae9ca3f015115dc3ca467c17a4c7ee95970ab10e5a54ff0ac3cd39881ee5958
3526 1a84f03df0be0e492fd855a8d6aa35d10b4962dbb0a604a3d3ee5e80a8eee600
3527 a24977f8660378bf0bbf00e01d0a8fb7f980f04b8aa6ce6aca8d5a7533c52753
3528 839152c4e222f4dc512dd5eb90cbc981e8ea12cf90cd8a8bf47d89159e2741d3
3529 7124f65b96fcd254dae258fa84a13c13043246a32129574787e49eae2b49b86d
3530 c3e2e78b9ff7f4002415bb08907c66df0d103b4e0c104db90500ff70700c203a
3531 ee1e82dba4c3e16e256c0acca6ceaae9afd1f612d7eb472157ac95962bd05594
3532 7dd1598466053245088e827f44628657942a825b84e4fb601f84b4025611aca3
3533 901e01bb024911dc0a4445f08e41f83df02b10142173149ab71baf027611ea95
3534 7a257704201d14cd9af4d90b00f194530088cb4e09c0df1c5c0088f7393f6833
3535 c0aa3ac156655de3bca9b34ab9716906ba07aba5e5bba1eb3358d90b9da7c533
3536 64f6888bf47b60f521e8380fe10be03d2feac17900927560df40f4e48f805960
3537 50328d648bf4893f9067c217a0631656b7c898c122847bc07b03a2d3e0ee85e4
3538 33b0ef867450c4fad2ecd26cf7168074c0ba0c904cdac300c9cfec4701924df6
3539 1cdca61e10685c6f7d52d0caba1498972f43d740adb4b2009d7d7220b20e3473
3540 90a943d00ffe959bb6eac3e0fe42ea49ee00c45f06e76329b1dabf127d690d80
3541 5581b408f63c2403e0cc433c00ee658836803b0fd100747c04ab5f917704fd10
3542 d5c1cd41ec801343d207f602a403605d86e5f9e5f9ae0d00e994556833806685
3543 c931fb709b0f08b4e869bea5c827859549e82c544b8d29c816a0390999613920
3544 7e610d5727a16318c2003c1fa24be0de2b32caf92224e7c17e5004b6350c4c01
3545 05601218066b0ad28224e149019c086257ca315102de2712903bde97b8144d82
3546 3b2c6ac52d403c054e019249b087f53d0558995a99ea946c70cc927458b3c1ff
3547 550f30050df988d4284376b4566a8e416654cc921985e037e0df0fc131f00f4b
3548 acf0c6211c036f14a239703741740adc7da227edd7e56b833d0ae92549b4d357
3549 25dfb49ed2ff63908e6adf27d6d0dda7638d4154d2778daca17f58e61297c129
3550 41f233b01f5dc3740cac51688c35c6b22580f48224fee9b83502569a66b629f1
3551 09f3713473413e2666e7fe6f6c6efefdfafda1f56f6e06f93496d9d67cb7366a
3552 9964b6f92e64b689196ec6c604646fd3fe4771ff1bf03f65d8ecc3addbb5f300
3553 00000049454e44ae426082
3554 """),
3555 }
3556
3557 def read_pam_header(infile):
3558     """
3559     Read (the rest of a) PAM header.  `infile` should be positioned
3560     immediately after the initial 'P7' line (at the beginning of the
3561     second line).  Returns are as for `read_pnm_header`.
3562     """
3563     
3564     # Unlike PBM, PGM, and PPM, we can read the header a line at a time.
3565     header = dict()
3566     while True:
3567         l = infile.readline().strip()
3568         if l == strtobytes('ENDHDR'):
3569             break
3570         if not l:
3571             raise EOFError('PAM ended prematurely')
3572         if l[0] == strtobytes('#'):
3573             continue
3574         l = l.split(None, 1)
3575         if l[0] not in header:
3576             header[l[0]] = l[1]
3577         else:
3578             header[l[0]] += strtobytes(' ') + l[1]
3579
3580     required = ['WIDTH', 'HEIGHT', 'DEPTH', 'MAXVAL']
3581     required = [strtobytes(x) for x in required]
3582     WIDTH,HEIGHT,DEPTH,MAXVAL = required
3583     present = [x for x in required if x in header]
3584     if len(present) != len(required):
3585         raise Error('PAM file must specify WIDTH, HEIGHT, DEPTH, and MAXVAL')
3586     width = int(header[WIDTH])
3587     height = int(header[HEIGHT])
3588     depth = int(header[DEPTH])
3589     maxval = int(header[MAXVAL])
3590     if (width <= 0 or
3591         height <= 0 or
3592         depth <= 0 or
3593         maxval <= 0):
3594         raise Error(
3595           'WIDTH, HEIGHT, DEPTH, MAXVAL must all be positive integers')
3596     return 'P7', width, height, depth, maxval
3597
3598 def read_pnm_header(infile, supported=('P5','P6')):
3599     """
3600     Read a PNM header, returning (format,width,height,depth,maxval).
3601     `width` and `height` are in pixels.  `depth` is the number of
3602     channels in the image; for PBM and PGM it is synthesized as 1, for
3603     PPM as 3; for PAM images it is read from the header.  `maxval` is
3604     synthesized (as 1) for PBM images.
3605     """
3606
3607     # Generally, see http://netpbm.sourceforge.net/doc/ppm.html
3608     # and http://netpbm.sourceforge.net/doc/pam.html
3609
3610     supported = [strtobytes(x) for x in supported]
3611
3612     # Technically 'P7' must be followed by a newline, so by using
3613     # rstrip() we are being liberal in what we accept.  I think this
3614     # is acceptable.
3615     type = infile.read(3).rstrip()
3616     if type not in supported:
3617         raise NotImplementedError('file format %s not supported' % type)
3618     if type == strtobytes('P7'):
3619         # PAM header parsing is completely different.
3620         return read_pam_header(infile)
3621     # Expected number of tokens in header (3 for P4, 4 for P6)
3622     expected = 4
3623     pbm = ('P1', 'P4')
3624     if type in pbm:
3625         expected = 3
3626     header = [type]
3627
3628     # We have to read the rest of the header byte by byte because the
3629     # final whitespace character (immediately following the MAXVAL in
3630     # the case of P6) may not be a newline.  Of course all PNM files in
3631     # the wild use a newline at this point, so it's tempting to use
3632     # readline; but it would be wrong.
3633     def getc():
3634         c = infile.read(1)
3635         if not c:
3636             raise Error('premature EOF reading PNM header')
3637         return c
3638
3639     c = getc()
3640     while True:
3641         # Skip whitespace that precedes a token.
3642         while c.isspace():
3643             c = getc()
3644         # Skip comments.
3645         while c == '#':
3646             while c not in '\n\r':
3647                 c = getc()
3648         if not c.isdigit():
3649             raise Error('unexpected character %s found in header' % c)
3650         # According to the specification it is legal to have comments
3651         # that appear in the middle of a token.
3652         # This is bonkers; I've never seen it; and it's a bit awkward to
3653         # code good lexers in Python (no goto).  So we break on such
3654         # cases.
3655         token = strtobytes('')
3656         while c.isdigit():
3657             token += c
3658             c = getc()
3659         # Slight hack.  All "tokens" are decimal integers, so convert
3660         # them here.
3661         header.append(int(token))
3662         if len(header) == expected:
3663             break
3664     # Skip comments (again)
3665     while c == '#':
3666         while c not in '\n\r':
3667             c = getc()
3668     if not c.isspace():
3669         raise Error('expected header to end with whitespace, not %s' % c)
3670
3671     if type in pbm:
3672         # synthesize a MAXVAL
3673         header.append(1)
3674     depth = (1,3)[type == strtobytes('P6')]
3675     return header[0], header[1], header[2], depth, header[3]
3676
3677 def write_pnm(file, width, height, pixels, meta):
3678     """Write a Netpbm PNM/PAM file."""
3679
3680     bitdepth = meta['bitdepth']
3681     maxval = 2**bitdepth - 1
3682     # Rudely, the number of image planes can be used to determine
3683     # whether we are L (PGM), LA (PAM), RGB (PPM), or RGBA (PAM).
3684     planes = meta['planes']
3685     # Can be an assert as long as we assume that pixels and meta came
3686     # from a PNG file.
3687     assert planes in (1,2,3,4)
3688     if planes in (1,3):
3689         if 1 == planes:
3690             # PGM
3691             # Could generate PBM if maxval is 1, but we don't (for one
3692             # thing, we'd have to convert the data, not just blat it
3693             # out).
3694             fmt = 'P5'
3695         else:
3696             # PPM
3697             fmt = 'P6'
3698         file.write('%s %d %d %d\n' % (fmt, width, height, maxval))
3699     if planes in (2,4):
3700         # PAM
3701         # See http://netpbm.sourceforge.net/doc/pam.html
3702         if 2 == planes:
3703             tupltype = 'GRAYSCALE_ALPHA'
3704         else:
3705             tupltype = 'RGB_ALPHA'
3706         file.write('P7\nWIDTH %d\nHEIGHT %d\nDEPTH %d\nMAXVAL %d\n'
3707                    'TUPLTYPE %s\nENDHDR\n' %
3708                    (width, height, planes, maxval, tupltype))
3709     # Values per row
3710     vpr = planes * width
3711     # struct format
3712     fmt = '>%d' % vpr
3713     if maxval > 0xff:
3714         fmt = fmt + 'H'
3715     else:
3716         fmt = fmt + 'B'
3717     for row in pixels:
3718         file.write(struct.pack(fmt, *row))
3719     file.flush()
3720
3721 def color_triple(color):
3722     """
3723     Convert a command line colour value to a RGB triple of integers.
3724     FIXME: Somewhere we need support for greyscale backgrounds etc.
3725     """
3726     if color.startswith('#') and len(color) == 4:
3727         return (int(color[1], 16),
3728                 int(color[2], 16),
3729                 int(color[3], 16))
3730     if color.startswith('#') and len(color) == 7:
3731         return (int(color[1:3], 16),
3732                 int(color[3:5], 16),
3733                 int(color[5:7], 16))
3734     elif color.startswith('#') and len(color) == 13:
3735         return (int(color[1:5], 16),
3736                 int(color[5:9], 16),
3737                 int(color[9:13], 16))
3738
3739 def _add_common_options(parser):
3740     """Call *parser.add_option* for each of the options that are
3741     common between this PNG--PNM conversion tool and the gen
3742     tool.
3743     """
3744     parser.add_option("-i", "--interlace",
3745                       default=False, action="store_true",
3746                       help="create an interlaced PNG file (Adam7)")
3747     parser.add_option("-t", "--transparent",
3748                       action="store", type="string", metavar="#RRGGBB",
3749                       help="mark the specified colour as transparent")
3750     parser.add_option("-b", "--background",
3751                       action="store", type="string", metavar="#RRGGBB",
3752                       help="save the specified background colour")
3753     parser.add_option("-g", "--gamma",
3754                       action="store", type="float", metavar="value",
3755                       help="save the specified gamma value")
3756     parser.add_option("-c", "--compression",
3757                       action="store", type="int", metavar="level",
3758                       help="zlib compression level (0-9)")
3759     return parser
3760
3761 def _main(argv):
3762     """
3763     Run the PNG encoder with options from the command line.
3764     """
3765
3766     # Parse command line arguments
3767     from optparse import OptionParser
3768     import re
3769     version = '%prog ' + re.sub(r'( ?\$|URL: |Rev:)', '', __version__)
3770     parser = OptionParser(version=version)
3771     parser.set_usage("%prog [options] [imagefile]")
3772     parser.add_option('-r', '--read-png', default=False,
3773                       action='store_true',
3774                       help='Read PNG, write PNM')
3775     parser.add_option("-a", "--alpha",
3776                       action="store", type="string", metavar="pgmfile",
3777                       help="alpha channel transparency (RGBA)")
3778     _add_common_options(parser)
3779
3780     (options, args) = parser.parse_args(args=argv[1:])
3781
3782     # Convert options
3783     if options.transparent is not None:
3784         options.transparent = color_triple(options.transparent)
3785     if options.background is not None:
3786         options.background = color_triple(options.background)
3787
3788     # Prepare input and output files
3789     if len(args) == 0:
3790         infilename = '-'
3791         infile = sys.stdin
3792     elif len(args) == 1:
3793         infilename = args[0]
3794         infile = open(infilename, 'rb')
3795     else:
3796         parser.error("more than one input file")
3797     outfile = sys.stdout
3798     if sys.platform == "win32":
3799         import msvcrt, os
3800         msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY)
3801
3802     if options.read_png:
3803         # Encode PNG to PPM
3804         png = Reader(file=infile)
3805         width,height,pixels,meta = png.asDirect()
3806         write_pnm(outfile, width, height, pixels, meta) 
3807     else:
3808         # Encode PNM to PNG
3809         format, width, height, depth, maxval = \
3810           read_pnm_header(infile, ('P5','P6','P7'))
3811         # When it comes to the variety of input formats, we do something
3812         # rather rude.  Observe that L, LA, RGB, RGBA are the 4 colour
3813         # types supported by PNG and that they correspond to 1, 2, 3, 4
3814         # channels respectively.  So we use the number of channels in
3815         # the source image to determine which one we have.  We do not
3816         # care about TUPLTYPE.
3817         greyscale = depth <= 2
3818         pamalpha = depth in (2,4)
3819         supported = map(lambda x: 2**x-1, range(1,17))
3820         try:
3821             mi = supported.index(maxval)
3822         except ValueError:
3823             raise NotImplementedError(
3824               'your maxval (%s) not in supported list %s' %
3825               (maxval, str(supported)))
3826         bitdepth = mi+1
3827         writer = Writer(width, height,
3828                         greyscale=greyscale,
3829                         bitdepth=bitdepth,
3830                         interlace=options.interlace,
3831                         transparent=options.transparent,
3832                         background=options.background,
3833                         alpha=bool(pamalpha or options.alpha),
3834                         gamma=options.gamma,
3835                         compression=options.compression)
3836         if options.alpha:
3837             pgmfile = open(options.alpha, 'rb')
3838             format, awidth, aheight, adepth, amaxval = \
3839               read_pnm_header(pgmfile, 'P5')
3840             if amaxval != '255':
3841                 raise NotImplementedError(
3842                   'maxval %s not supported for alpha channel' % amaxval)
3843             if (awidth, aheight) != (width, height):
3844                 raise ValueError("alpha channel image size mismatch"
3845                                  " (%s has %sx%s but %s has %sx%s)"
3846                                  % (infilename, width, height,
3847                                     options.alpha, awidth, aheight))
3848             writer.convert_ppm_and_pgm(infile, pgmfile, outfile)
3849         else:
3850             writer.convert_pnm(infile, outfile)
3851
3852
3853 if __name__ == '__main__':
3854     try:
3855         _main(sys.argv)
3856     except Error, e:
3857         print >>sys.stderr, e