Upstream version 7.36.149.0
[platform/framework/web/crosswalk.git] / src / third_party / webrtc / modules / audio_coding / neteq4 / merge.cc
1 /*
2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10
11 #include "webrtc/modules/audio_coding/neteq4/merge.h"
12
13 #include <assert.h>
14 #include <string.h>  // memmove, memcpy, memset, size_t
15
16 #include <algorithm>  // min, max
17
18 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
19 #include "webrtc/modules/audio_coding/neteq4/audio_multi_vector.h"
20 #include "webrtc/modules/audio_coding/neteq4/dsp_helper.h"
21 #include "webrtc/modules/audio_coding/neteq4/expand.h"
22 #include "webrtc/modules/audio_coding/neteq4/sync_buffer.h"
23 #include "webrtc/system_wrappers/interface/scoped_ptr.h"
24
25 namespace webrtc {
26
27 int Merge::Process(int16_t* input, size_t input_length,
28                    int16_t* external_mute_factor_array,
29                    AudioMultiVector* output) {
30   // TODO(hlundin): Change to an enumerator and skip assert.
31   assert(fs_hz_ == 8000 || fs_hz_ == 16000 || fs_hz_ ==  32000 ||
32          fs_hz_ == 48000);
33   assert(fs_hz_ <= kMaxSampleRate);  // Should not be possible.
34
35   int old_length;
36   int expand_period;
37   // Get expansion data to overlap and mix with.
38   int expanded_length = GetExpandedSignal(&old_length, &expand_period);
39
40   // Transfer input signal to an AudioMultiVector.
41   AudioMultiVector input_vector(num_channels_);
42   input_vector.PushBackInterleaved(input, input_length);
43   size_t input_length_per_channel = input_vector.Size();
44   assert(input_length_per_channel == input_length / num_channels_);
45
46   int16_t best_correlation_index = 0;
47   size_t output_length = 0;
48
49   for (size_t channel = 0; channel < num_channels_; ++channel) {
50     int16_t* input_channel = &input_vector[channel][0];
51     int16_t* expanded_channel = &expanded_[channel][0];
52     int16_t expanded_max, input_max;
53     int16_t new_mute_factor = SignalScaling(
54         input_channel, static_cast<int>(input_length_per_channel),
55         expanded_channel, &expanded_max, &input_max);
56
57     // Adjust muting factor (product of "main" muting factor and expand muting
58     // factor).
59     int16_t* external_mute_factor = &external_mute_factor_array[channel];
60     *external_mute_factor =
61         (*external_mute_factor * expand_->MuteFactor(channel)) >> 14;
62
63     // Update |external_mute_factor| if it is lower than |new_mute_factor|.
64     if (new_mute_factor > *external_mute_factor) {
65       *external_mute_factor = std::min(new_mute_factor,
66                                        static_cast<int16_t>(16384));
67     }
68
69     if (channel == 0) {
70       // Downsample, correlate, and find strongest correlation period for the
71       // master (i.e., first) channel only.
72       // Downsample to 4kHz sample rate.
73       Downsample(input_channel, static_cast<int>(input_length_per_channel),
74                  expanded_channel, expanded_length);
75
76       // Calculate the lag of the strongest correlation period.
77       best_correlation_index = CorrelateAndPeakSearch(
78           expanded_max, input_max, old_length,
79           static_cast<int>(input_length_per_channel), expand_period);
80     }
81
82     static const int kTempDataSize = 3600;
83     int16_t temp_data[kTempDataSize];  // TODO(hlundin) Remove this.
84     int16_t* decoded_output = temp_data + best_correlation_index;
85
86     // Mute the new decoded data if needed (and unmute it linearly).
87     // This is the overlapping part of expanded_signal.
88     int interpolation_length = std::min(
89         kMaxCorrelationLength * fs_mult_,
90         expanded_length - best_correlation_index);
91     interpolation_length = std::min(interpolation_length,
92                                     static_cast<int>(input_length_per_channel));
93     if (*external_mute_factor < 16384) {
94       // Set a suitable muting slope (Q20). 0.004 for NB, 0.002 for WB,
95       // and so on.
96       int increment = 4194 / fs_mult_;
97       *external_mute_factor = DspHelper::RampSignal(input_channel,
98                                                     interpolation_length,
99                                                     *external_mute_factor,
100                                                     increment);
101       DspHelper::UnmuteSignal(&input_channel[interpolation_length],
102                               input_length_per_channel - interpolation_length,
103                               external_mute_factor, increment,
104                               &decoded_output[interpolation_length]);
105     } else {
106       // No muting needed.
107       memmove(
108           &decoded_output[interpolation_length],
109           &input_channel[interpolation_length],
110           sizeof(int16_t) * (input_length_per_channel - interpolation_length));
111     }
112
113     // Do overlap and mix linearly.
114     int increment = 16384 / (interpolation_length + 1);  // In Q14.
115     int16_t mute_factor = 16384 - increment;
116     memmove(temp_data, expanded_channel,
117             sizeof(int16_t) * best_correlation_index);
118     DspHelper::CrossFade(&expanded_channel[best_correlation_index],
119                          input_channel, interpolation_length,
120                          &mute_factor, increment, decoded_output);
121
122     output_length = best_correlation_index + input_length_per_channel;
123     if (channel == 0) {
124       assert(output->Empty());  // Output should be empty at this point.
125       output->AssertSize(output_length);
126     } else {
127       assert(output->Size() == output_length);
128     }
129     memcpy(&(*output)[channel][0], temp_data,
130            sizeof(temp_data[0]) * output_length);
131   }
132
133   // Copy back the first part of the data to |sync_buffer_| and remove it from
134   // |output|.
135   sync_buffer_->ReplaceAtIndex(*output, old_length, sync_buffer_->next_index());
136   output->PopFront(old_length);
137
138   // Return new added length. |old_length| samples were borrowed from
139   // |sync_buffer_|.
140   return static_cast<int>(output_length) - old_length;
141 }
142
143 int Merge::GetExpandedSignal(int* old_length, int* expand_period) {
144   // Check how much data that is left since earlier.
145   *old_length = static_cast<int>(sync_buffer_->FutureLength());
146   // Should never be less than overlap_length.
147   assert(*old_length >= static_cast<int>(expand_->overlap_length()));
148   // Generate data to merge the overlap with using expand.
149   expand_->SetParametersForMergeAfterExpand();
150
151   if (*old_length >= 210 * kMaxSampleRate / 8000) {
152     // TODO(hlundin): Write test case for this.
153     // The number of samples available in the sync buffer is more than what fits
154     // in expanded_signal. Keep the first 210 * kMaxSampleRate / 8000 samples,
155     // but shift them towards the end of the buffer. This is ok, since all of
156     // the buffer will be expand data anyway, so as long as the beginning is
157     // left untouched, we're fine.
158     int16_t length_diff = *old_length - 210 * kMaxSampleRate / 8000;
159     sync_buffer_->InsertZerosAtIndex(length_diff, sync_buffer_->next_index());
160     *old_length = 210 * kMaxSampleRate / 8000;
161     // This is the truncated length.
162   }
163   // This assert should always be true thanks to the if statement above.
164   assert(210 * kMaxSampleRate / 8000 - *old_length >= 0);
165
166   AudioMultiVector expanded_temp(num_channels_);
167   expand_->Process(&expanded_temp);
168   *expand_period = static_cast<int>(expanded_temp.Size());  // Samples per
169                                                             // channel.
170
171   expanded_.Clear();
172   // Copy what is left since earlier into the expanded vector.
173   expanded_.PushBackFromIndex(*sync_buffer_, sync_buffer_->next_index());
174   assert(expanded_.Size() == static_cast<size_t>(*old_length));
175   assert(expanded_temp.Size() > 0);
176   // Do "ugly" copy and paste from the expanded in order to generate more data
177   // to correlate (but not interpolate) with.
178   const int required_length = (120 + 80 + 2) * fs_mult_;
179   if (expanded_.Size() < static_cast<size_t>(required_length)) {
180     while (expanded_.Size() < static_cast<size_t>(required_length)) {
181       // Append one more pitch period each time.
182       expanded_.PushBack(expanded_temp);
183     }
184     // Trim the length to exactly |required_length|.
185     expanded_.PopBack(expanded_.Size() - required_length);
186   }
187   assert(expanded_.Size() >= static_cast<size_t>(required_length));
188   return required_length;
189 }
190
191 int16_t Merge::SignalScaling(const int16_t* input, int input_length,
192                              const int16_t* expanded_signal,
193                              int16_t* expanded_max, int16_t* input_max) const {
194   // Adjust muting factor if new vector is more or less of the BGN energy.
195   const int mod_input_length = std::min(64 * fs_mult_, input_length);
196   *expanded_max = WebRtcSpl_MaxAbsValueW16(expanded_signal, mod_input_length);
197   *input_max = WebRtcSpl_MaxAbsValueW16(input, mod_input_length);
198
199   // Calculate energy of expanded signal.
200   // |log_fs_mult| is log2(fs_mult_), but is not exact for 48000 Hz.
201   int log_fs_mult = 30 - WebRtcSpl_NormW32(fs_mult_);
202   int expanded_shift = 6 + log_fs_mult
203       - WebRtcSpl_NormW32(*expanded_max * *expanded_max);
204   expanded_shift = std::max(expanded_shift, 0);
205   int32_t energy_expanded = WebRtcSpl_DotProductWithScale(expanded_signal,
206                                                           expanded_signal,
207                                                           mod_input_length,
208                                                           expanded_shift);
209
210   // Calculate energy of input signal.
211   int input_shift = 6 + log_fs_mult -
212       WebRtcSpl_NormW32(*input_max * *input_max);
213   input_shift = std::max(input_shift, 0);
214   int32_t energy_input = WebRtcSpl_DotProductWithScale(input, input,
215                                                        mod_input_length,
216                                                        input_shift);
217
218   // Align to the same Q-domain.
219   if (input_shift > expanded_shift) {
220     energy_expanded = energy_expanded >> (input_shift - expanded_shift);
221   } else {
222     energy_input = energy_input >> (expanded_shift - input_shift);
223   }
224
225   // Calculate muting factor to use for new frame.
226   int16_t mute_factor;
227   if (energy_input > energy_expanded) {
228     // Normalize |energy_input| to 14 bits.
229     int16_t temp_shift = WebRtcSpl_NormW32(energy_input) - 17;
230     energy_input = WEBRTC_SPL_SHIFT_W32(energy_input, temp_shift);
231     // Put |energy_expanded| in a domain 14 higher, so that
232     // energy_expanded / energy_input is in Q14.
233     energy_expanded = WEBRTC_SPL_SHIFT_W32(energy_expanded, temp_shift + 14);
234     // Calculate sqrt(energy_expanded / energy_input) in Q14.
235     mute_factor = WebRtcSpl_SqrtFloor((energy_expanded / energy_input) << 14);
236   } else {
237     // Set to 1 (in Q14) when |expanded| has higher energy than |input|.
238     mute_factor = 16384;
239   }
240
241   return mute_factor;
242 }
243
244 // TODO(hlundin): There are some parameter values in this method that seem
245 // strange. Compare with Expand::Correlation.
246 void Merge::Downsample(const int16_t* input, int input_length,
247                        const int16_t* expanded_signal, int expanded_length) {
248   const int16_t* filter_coefficients;
249   int num_coefficients;
250   int decimation_factor = fs_hz_ / 4000;
251   static const int kCompensateDelay = 0;
252   int length_limit = fs_hz_ / 100;  // 10 ms in samples.
253   if (fs_hz_ == 8000) {
254     filter_coefficients = DspHelper::kDownsample8kHzTbl;
255     num_coefficients = 3;
256   } else if (fs_hz_ == 16000) {
257     filter_coefficients = DspHelper::kDownsample16kHzTbl;
258     num_coefficients = 5;
259   } else if (fs_hz_ == 32000) {
260     filter_coefficients = DspHelper::kDownsample32kHzTbl;
261     num_coefficients = 7;
262   } else {  // fs_hz_ == 48000
263     filter_coefficients = DspHelper::kDownsample48kHzTbl;
264     num_coefficients = 7;
265   }
266   int signal_offset = num_coefficients - 1;
267   WebRtcSpl_DownsampleFast(&expanded_signal[signal_offset],
268                            expanded_length - signal_offset,
269                            expanded_downsampled_, kExpandDownsampLength,
270                            filter_coefficients, num_coefficients,
271                            decimation_factor, kCompensateDelay);
272   if (input_length <= length_limit) {
273     // Not quite long enough, so we have to cheat a bit.
274     int16_t temp_len = input_length - signal_offset;
275     // TODO(hlundin): Should |downsamp_temp_len| be corrected for round-off
276     // errors? I.e., (temp_len + decimation_factor - 1) / decimation_factor?
277     int16_t downsamp_temp_len = temp_len / decimation_factor;
278     WebRtcSpl_DownsampleFast(&input[signal_offset], temp_len,
279                              input_downsampled_, downsamp_temp_len,
280                              filter_coefficients, num_coefficients,
281                              decimation_factor, kCompensateDelay);
282     memset(&input_downsampled_[downsamp_temp_len], 0,
283            sizeof(int16_t) * (kInputDownsampLength - downsamp_temp_len));
284   } else {
285     WebRtcSpl_DownsampleFast(&input[signal_offset],
286                              input_length - signal_offset, input_downsampled_,
287                              kInputDownsampLength, filter_coefficients,
288                              num_coefficients, decimation_factor,
289                              kCompensateDelay);
290   }
291 }
292
293 int16_t Merge::CorrelateAndPeakSearch(int16_t expanded_max, int16_t input_max,
294                                       int start_position, int input_length,
295                                       int expand_period) const {
296   // Calculate correlation without any normalization.
297   const int max_corr_length = kMaxCorrelationLength;
298   int stop_position_downsamp = std::min(
299       max_corr_length, expand_->max_lag() / (fs_mult_ * 2) + 1);
300   int16_t correlation_shift = 0;
301   if (expanded_max * input_max > 26843546) {
302     correlation_shift = 3;
303   }
304
305   int32_t correlation[kMaxCorrelationLength];
306   WebRtcSpl_CrossCorrelation(correlation, input_downsampled_,
307                              expanded_downsampled_, kInputDownsampLength,
308                              stop_position_downsamp, correlation_shift, 1);
309
310   // Normalize correlation to 14 bits and copy to a 16-bit array.
311   const int pad_length = static_cast<int>(expand_->overlap_length() - 1);
312   const int correlation_buffer_size = 2 * pad_length + kMaxCorrelationLength;
313   scoped_ptr<int16_t[]> correlation16(new int16_t[correlation_buffer_size]);
314   memset(correlation16.get(), 0, correlation_buffer_size * sizeof(int16_t));
315   int16_t* correlation_ptr = &correlation16[pad_length];
316   int32_t max_correlation = WebRtcSpl_MaxAbsValueW32(correlation,
317                                                      stop_position_downsamp);
318   int16_t norm_shift = std::max(0, 17 - WebRtcSpl_NormW32(max_correlation));
319   WebRtcSpl_VectorBitShiftW32ToW16(correlation_ptr, stop_position_downsamp,
320                                    correlation, norm_shift);
321
322   // Calculate allowed starting point for peak finding.
323   // The peak location bestIndex must fulfill two criteria:
324   // (1) w16_bestIndex + input_length <
325   //     timestamps_per_call_ + expand_->overlap_length();
326   // (2) w16_bestIndex + input_length < start_position.
327   int start_index = timestamps_per_call_ +
328       static_cast<int>(expand_->overlap_length());
329   start_index = std::max(start_position, start_index);
330   start_index = std::max(start_index - input_length, 0);
331   // Downscale starting index to 4kHz domain. (fs_mult_ * 2 = fs_hz_ / 4000.)
332   int start_index_downsamp = start_index / (fs_mult_ * 2);
333
334   // Calculate a modified |stop_position_downsamp| to account for the increased
335   // start index |start_index_downsamp| and the effective array length.
336   int modified_stop_pos =
337       std::min(stop_position_downsamp,
338                kMaxCorrelationLength + pad_length - start_index_downsamp);
339   int best_correlation_index;
340   int16_t best_correlation;
341   static const int kNumCorrelationCandidates = 1;
342   DspHelper::PeakDetection(&correlation_ptr[start_index_downsamp],
343                            modified_stop_pos, kNumCorrelationCandidates,
344                            fs_mult_, &best_correlation_index,
345                            &best_correlation);
346   // Compensate for modified start index.
347   best_correlation_index += start_index;
348
349   // Ensure that underrun does not occur for 10ms case => we have to get at
350   // least 10ms + overlap . (This should never happen thanks to the above
351   // modification of peak-finding starting point.)
352   while ((best_correlation_index + input_length) <
353       static_cast<int>(timestamps_per_call_ + expand_->overlap_length()) ||
354       best_correlation_index + input_length < start_position) {
355     assert(false);  // Should never happen.
356     best_correlation_index += expand_period;  // Jump one lag ahead.
357   }
358   return best_correlation_index;
359 }
360
361 int Merge::RequiredFutureSamples() {
362   return static_cast<int>(fs_hz_ / 100 * num_channels_);  // 10 ms.
363 }
364
365
366 }  // namespace webrtc