Upstream version 10.39.225.0
[platform/framework/web/crosswalk.git] / src / third_party / webrtc / modules / audio_coding / neteq / neteq_impl.cc
1 /*
2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10
11 #include "webrtc/modules/audio_coding/neteq/neteq_impl.h"
12
13 #include <assert.h>
14 #include <memory.h>  // memset
15
16 #include <algorithm>
17
18 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
19 #include "webrtc/modules/audio_coding/neteq/accelerate.h"
20 #include "webrtc/modules/audio_coding/neteq/background_noise.h"
21 #include "webrtc/modules/audio_coding/neteq/buffer_level_filter.h"
22 #include "webrtc/modules/audio_coding/neteq/comfort_noise.h"
23 #include "webrtc/modules/audio_coding/neteq/decision_logic.h"
24 #include "webrtc/modules/audio_coding/neteq/decoder_database.h"
25 #include "webrtc/modules/audio_coding/neteq/defines.h"
26 #include "webrtc/modules/audio_coding/neteq/delay_manager.h"
27 #include "webrtc/modules/audio_coding/neteq/delay_peak_detector.h"
28 #include "webrtc/modules/audio_coding/neteq/dtmf_buffer.h"
29 #include "webrtc/modules/audio_coding/neteq/dtmf_tone_generator.h"
30 #include "webrtc/modules/audio_coding/neteq/expand.h"
31 #include "webrtc/modules/audio_coding/neteq/interface/audio_decoder.h"
32 #include "webrtc/modules/audio_coding/neteq/merge.h"
33 #include "webrtc/modules/audio_coding/neteq/normal.h"
34 #include "webrtc/modules/audio_coding/neteq/packet_buffer.h"
35 #include "webrtc/modules/audio_coding/neteq/packet.h"
36 #include "webrtc/modules/audio_coding/neteq/payload_splitter.h"
37 #include "webrtc/modules/audio_coding/neteq/post_decode_vad.h"
38 #include "webrtc/modules/audio_coding/neteq/preemptive_expand.h"
39 #include "webrtc/modules/audio_coding/neteq/sync_buffer.h"
40 #include "webrtc/modules/audio_coding/neteq/timestamp_scaler.h"
41 #include "webrtc/modules/interface/module_common_types.h"
42 #include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
43 #include "webrtc/system_wrappers/interface/logging.h"
44
45 // Modify the code to obtain backwards bit-exactness. Once bit-exactness is no
46 // longer required, this #define should be removed (and the code that it
47 // enables).
48 #define LEGACY_BITEXACT
49
50 namespace webrtc {
51
52 NetEqImpl::NetEqImpl(const NetEq::Config& config,
53                      BufferLevelFilter* buffer_level_filter,
54                      DecoderDatabase* decoder_database,
55                      DelayManager* delay_manager,
56                      DelayPeakDetector* delay_peak_detector,
57                      DtmfBuffer* dtmf_buffer,
58                      DtmfToneGenerator* dtmf_tone_generator,
59                      PacketBuffer* packet_buffer,
60                      PayloadSplitter* payload_splitter,
61                      TimestampScaler* timestamp_scaler,
62                      AccelerateFactory* accelerate_factory,
63                      ExpandFactory* expand_factory,
64                      PreemptiveExpandFactory* preemptive_expand_factory,
65                      bool create_components)
66     : crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
67       buffer_level_filter_(buffer_level_filter),
68       decoder_database_(decoder_database),
69       delay_manager_(delay_manager),
70       delay_peak_detector_(delay_peak_detector),
71       dtmf_buffer_(dtmf_buffer),
72       dtmf_tone_generator_(dtmf_tone_generator),
73       packet_buffer_(packet_buffer),
74       payload_splitter_(payload_splitter),
75       timestamp_scaler_(timestamp_scaler),
76       vad_(new PostDecodeVad()),
77       expand_factory_(expand_factory),
78       accelerate_factory_(accelerate_factory),
79       preemptive_expand_factory_(preemptive_expand_factory),
80       last_mode_(kModeNormal),
81       decoded_buffer_length_(kMaxFrameSize),
82       decoded_buffer_(new int16_t[decoded_buffer_length_]),
83       playout_timestamp_(0),
84       new_codec_(false),
85       timestamp_(0),
86       reset_decoder_(false),
87       current_rtp_payload_type_(0xFF),  // Invalid RTP payload type.
88       current_cng_rtp_payload_type_(0xFF),  // Invalid RTP payload type.
89       ssrc_(0),
90       first_packet_(true),
91       error_code_(0),
92       decoder_error_code_(0),
93       background_noise_mode_(config.background_noise_mode),
94       decoded_packet_sequence_number_(-1),
95       decoded_packet_timestamp_(0) {
96   int fs = config.sample_rate_hz;
97   if (fs != 8000 && fs != 16000 && fs != 32000 && fs != 48000) {
98     LOG(LS_ERROR) << "Sample rate " << fs << " Hz not supported. " <<
99         "Changing to 8000 Hz.";
100     fs = 8000;
101   }
102   LOG(LS_VERBOSE) << "Create NetEqImpl object with fs = " << fs << ".";
103   fs_hz_ = fs;
104   fs_mult_ = fs / 8000;
105   output_size_samples_ = kOutputSizeMs * 8 * fs_mult_;
106   decoder_frame_length_ = 3 * output_size_samples_;
107   WebRtcSpl_Init();
108   if (create_components) {
109     SetSampleRateAndChannels(fs, 1);  // Default is 1 channel.
110   }
111 }
112
113 NetEqImpl::~NetEqImpl() {
114   LOG(LS_INFO) << "Deleting NetEqImpl object.";
115 }
116
117 int NetEqImpl::InsertPacket(const WebRtcRTPHeader& rtp_header,
118                             const uint8_t* payload,
119                             int length_bytes,
120                             uint32_t receive_timestamp) {
121   CriticalSectionScoped lock(crit_sect_.get());
122   LOG(LS_VERBOSE) << "InsertPacket: ts=" << rtp_header.header.timestamp <<
123       ", sn=" << rtp_header.header.sequenceNumber <<
124       ", pt=" << static_cast<int>(rtp_header.header.payloadType) <<
125       ", ssrc=" << rtp_header.header.ssrc <<
126       ", len=" << length_bytes;
127   int error = InsertPacketInternal(rtp_header, payload, length_bytes,
128                                    receive_timestamp, false);
129   if (error != 0) {
130     LOG_FERR1(LS_WARNING, InsertPacketInternal, error);
131     error_code_ = error;
132     return kFail;
133   }
134   return kOK;
135 }
136
137 int NetEqImpl::InsertSyncPacket(const WebRtcRTPHeader& rtp_header,
138                                 uint32_t receive_timestamp) {
139   CriticalSectionScoped lock(crit_sect_.get());
140   LOG(LS_VERBOSE) << "InsertPacket-Sync: ts="
141       << rtp_header.header.timestamp <<
142       ", sn=" << rtp_header.header.sequenceNumber <<
143       ", pt=" << static_cast<int>(rtp_header.header.payloadType) <<
144       ", ssrc=" << rtp_header.header.ssrc;
145
146   const uint8_t kSyncPayload[] = { 's', 'y', 'n', 'c' };
147   int error = InsertPacketInternal(
148       rtp_header, kSyncPayload, sizeof(kSyncPayload), receive_timestamp, true);
149
150   if (error != 0) {
151     LOG_FERR1(LS_WARNING, InsertPacketInternal, error);
152     error_code_ = error;
153     return kFail;
154   }
155   return kOK;
156 }
157
158 int NetEqImpl::GetAudio(size_t max_length, int16_t* output_audio,
159                         int* samples_per_channel, int* num_channels,
160                         NetEqOutputType* type) {
161   CriticalSectionScoped lock(crit_sect_.get());
162   LOG(LS_VERBOSE) << "GetAudio";
163   int error = GetAudioInternal(max_length, output_audio, samples_per_channel,
164                                num_channels);
165   LOG(LS_VERBOSE) << "Produced " << *samples_per_channel <<
166       " samples/channel for " << *num_channels << " channel(s)";
167   if (error != 0) {
168     LOG_FERR1(LS_WARNING, GetAudioInternal, error);
169     error_code_ = error;
170     return kFail;
171   }
172   if (type) {
173     *type = LastOutputType();
174   }
175   return kOK;
176 }
177
178 int NetEqImpl::RegisterPayloadType(enum NetEqDecoder codec,
179                                    uint8_t rtp_payload_type) {
180   CriticalSectionScoped lock(crit_sect_.get());
181   LOG_API2(static_cast<int>(rtp_payload_type), codec);
182   int ret = decoder_database_->RegisterPayload(rtp_payload_type, codec);
183   if (ret != DecoderDatabase::kOK) {
184     LOG_FERR2(LS_WARNING, RegisterPayload, rtp_payload_type, codec);
185     switch (ret) {
186       case DecoderDatabase::kInvalidRtpPayloadType:
187         error_code_ = kInvalidRtpPayloadType;
188         break;
189       case DecoderDatabase::kCodecNotSupported:
190         error_code_ = kCodecNotSupported;
191         break;
192       case DecoderDatabase::kDecoderExists:
193         error_code_ = kDecoderExists;
194         break;
195       default:
196         error_code_ = kOtherError;
197     }
198     return kFail;
199   }
200   return kOK;
201 }
202
203 int NetEqImpl::RegisterExternalDecoder(AudioDecoder* decoder,
204                                        enum NetEqDecoder codec,
205                                        uint8_t rtp_payload_type) {
206   CriticalSectionScoped lock(crit_sect_.get());
207   LOG_API2(static_cast<int>(rtp_payload_type), codec);
208   if (!decoder) {
209     LOG(LS_ERROR) << "Cannot register external decoder with NULL pointer";
210     assert(false);
211     return kFail;
212   }
213   const int sample_rate_hz = AudioDecoder::CodecSampleRateHz(codec);
214   int ret = decoder_database_->InsertExternal(rtp_payload_type, codec,
215                                               sample_rate_hz, decoder);
216   if (ret != DecoderDatabase::kOK) {
217     LOG_FERR2(LS_WARNING, InsertExternal, rtp_payload_type, codec);
218     switch (ret) {
219       case DecoderDatabase::kInvalidRtpPayloadType:
220         error_code_ = kInvalidRtpPayloadType;
221         break;
222       case DecoderDatabase::kCodecNotSupported:
223         error_code_ = kCodecNotSupported;
224         break;
225       case DecoderDatabase::kDecoderExists:
226         error_code_ = kDecoderExists;
227         break;
228       case DecoderDatabase::kInvalidSampleRate:
229         error_code_ = kInvalidSampleRate;
230         break;
231       case DecoderDatabase::kInvalidPointer:
232         error_code_ = kInvalidPointer;
233         break;
234       default:
235         error_code_ = kOtherError;
236     }
237     return kFail;
238   }
239   return kOK;
240 }
241
242 int NetEqImpl::RemovePayloadType(uint8_t rtp_payload_type) {
243   CriticalSectionScoped lock(crit_sect_.get());
244   LOG_API1(static_cast<int>(rtp_payload_type));
245   int ret = decoder_database_->Remove(rtp_payload_type);
246   if (ret == DecoderDatabase::kOK) {
247     return kOK;
248   } else if (ret == DecoderDatabase::kDecoderNotFound) {
249     error_code_ = kDecoderNotFound;
250   } else {
251     error_code_ = kOtherError;
252   }
253   LOG_FERR1(LS_WARNING, Remove, rtp_payload_type);
254   return kFail;
255 }
256
257 bool NetEqImpl::SetMinimumDelay(int delay_ms) {
258   CriticalSectionScoped lock(crit_sect_.get());
259   if (delay_ms >= 0 && delay_ms < 10000) {
260     assert(delay_manager_.get());
261     return delay_manager_->SetMinimumDelay(delay_ms);
262   }
263   return false;
264 }
265
266 bool NetEqImpl::SetMaximumDelay(int delay_ms) {
267   CriticalSectionScoped lock(crit_sect_.get());
268   if (delay_ms >= 0 && delay_ms < 10000) {
269     assert(delay_manager_.get());
270     return delay_manager_->SetMaximumDelay(delay_ms);
271   }
272   return false;
273 }
274
275 int NetEqImpl::LeastRequiredDelayMs() const {
276   CriticalSectionScoped lock(crit_sect_.get());
277   assert(delay_manager_.get());
278   return delay_manager_->least_required_delay_ms();
279 }
280
281 void NetEqImpl::SetPlayoutMode(NetEqPlayoutMode mode) {
282   CriticalSectionScoped lock(crit_sect_.get());
283   if (!decision_logic_.get() || mode != decision_logic_->playout_mode()) {
284     // The reset() method calls delete for the old object.
285     CreateDecisionLogic(mode);
286   }
287 }
288
289 NetEqPlayoutMode NetEqImpl::PlayoutMode() const {
290   CriticalSectionScoped lock(crit_sect_.get());
291   assert(decision_logic_.get());
292   return decision_logic_->playout_mode();
293 }
294
295 int NetEqImpl::NetworkStatistics(NetEqNetworkStatistics* stats) {
296   CriticalSectionScoped lock(crit_sect_.get());
297   assert(decoder_database_.get());
298   const int total_samples_in_buffers = packet_buffer_->NumSamplesInBuffer(
299       decoder_database_.get(), decoder_frame_length_) +
300           static_cast<int>(sync_buffer_->FutureLength());
301   assert(delay_manager_.get());
302   assert(decision_logic_.get());
303   stats_.GetNetworkStatistics(fs_hz_, total_samples_in_buffers,
304                               decoder_frame_length_, *delay_manager_.get(),
305                               *decision_logic_.get(), stats);
306   return 0;
307 }
308
309 void NetEqImpl::WaitingTimes(std::vector<int>* waiting_times) {
310   CriticalSectionScoped lock(crit_sect_.get());
311   stats_.WaitingTimes(waiting_times);
312 }
313
314 void NetEqImpl::GetRtcpStatistics(RtcpStatistics* stats) {
315   CriticalSectionScoped lock(crit_sect_.get());
316   if (stats) {
317     rtcp_.GetStatistics(false, stats);
318   }
319 }
320
321 void NetEqImpl::GetRtcpStatisticsNoReset(RtcpStatistics* stats) {
322   CriticalSectionScoped lock(crit_sect_.get());
323   if (stats) {
324     rtcp_.GetStatistics(true, stats);
325   }
326 }
327
328 void NetEqImpl::EnableVad() {
329   CriticalSectionScoped lock(crit_sect_.get());
330   assert(vad_.get());
331   vad_->Enable();
332 }
333
334 void NetEqImpl::DisableVad() {
335   CriticalSectionScoped lock(crit_sect_.get());
336   assert(vad_.get());
337   vad_->Disable();
338 }
339
340 bool NetEqImpl::GetPlayoutTimestamp(uint32_t* timestamp) {
341   CriticalSectionScoped lock(crit_sect_.get());
342   if (first_packet_) {
343     // We don't have a valid RTP timestamp until we have decoded our first
344     // RTP packet.
345     return false;
346   }
347   *timestamp = timestamp_scaler_->ToExternal(playout_timestamp_);
348   return true;
349 }
350
351 int NetEqImpl::LastError() {
352   CriticalSectionScoped lock(crit_sect_.get());
353   return error_code_;
354 }
355
356 int NetEqImpl::LastDecoderError() {
357   CriticalSectionScoped lock(crit_sect_.get());
358   return decoder_error_code_;
359 }
360
361 void NetEqImpl::FlushBuffers() {
362   CriticalSectionScoped lock(crit_sect_.get());
363   LOG_API0();
364   packet_buffer_->Flush();
365   assert(sync_buffer_.get());
366   assert(expand_.get());
367   sync_buffer_->Flush();
368   sync_buffer_->set_next_index(sync_buffer_->next_index() -
369                                expand_->overlap_length());
370   // Set to wait for new codec.
371   first_packet_ = true;
372 }
373
374 void NetEqImpl::PacketBufferStatistics(int* current_num_packets,
375                                        int* max_num_packets) const {
376   CriticalSectionScoped lock(crit_sect_.get());
377   packet_buffer_->BufferStat(current_num_packets, max_num_packets);
378 }
379
380 int NetEqImpl::DecodedRtpInfo(int* sequence_number, uint32_t* timestamp) const {
381   CriticalSectionScoped lock(crit_sect_.get());
382   if (decoded_packet_sequence_number_ < 0)
383     return -1;
384   *sequence_number = decoded_packet_sequence_number_;
385   *timestamp = decoded_packet_timestamp_;
386   return 0;
387 }
388
389 const SyncBuffer* NetEqImpl::sync_buffer_for_test() const {
390   CriticalSectionScoped lock(crit_sect_.get());
391   return sync_buffer_.get();
392 }
393
394 // Methods below this line are private.
395
396 int NetEqImpl::InsertPacketInternal(const WebRtcRTPHeader& rtp_header,
397                                     const uint8_t* payload,
398                                     int length_bytes,
399                                     uint32_t receive_timestamp,
400                                     bool is_sync_packet) {
401   if (!payload) {
402     LOG_F(LS_ERROR) << "payload == NULL";
403     return kInvalidPointer;
404   }
405   // Sanity checks for sync-packets.
406   if (is_sync_packet) {
407     if (decoder_database_->IsDtmf(rtp_header.header.payloadType) ||
408         decoder_database_->IsRed(rtp_header.header.payloadType) ||
409         decoder_database_->IsComfortNoise(rtp_header.header.payloadType)) {
410       LOG_F(LS_ERROR) << "Sync-packet with an unacceptable payload type "
411           << rtp_header.header.payloadType;
412       return kSyncPacketNotAccepted;
413     }
414     if (first_packet_ ||
415         rtp_header.header.payloadType != current_rtp_payload_type_ ||
416         rtp_header.header.ssrc != ssrc_) {
417       // Even if |current_rtp_payload_type_| is 0xFF, sync-packet isn't
418       // accepted.
419       LOG_F(LS_ERROR) << "Changing codec, SSRC or first packet "
420           "with sync-packet.";
421       return kSyncPacketNotAccepted;
422     }
423   }
424   PacketList packet_list;
425   RTPHeader main_header;
426   {
427     // Convert to Packet.
428     // Create |packet| within this separate scope, since it should not be used
429     // directly once it's been inserted in the packet list. This way, |packet|
430     // is not defined outside of this block.
431     Packet* packet = new Packet;
432     packet->header.markerBit = false;
433     packet->header.payloadType = rtp_header.header.payloadType;
434     packet->header.sequenceNumber = rtp_header.header.sequenceNumber;
435     packet->header.timestamp = rtp_header.header.timestamp;
436     packet->header.ssrc = rtp_header.header.ssrc;
437     packet->header.numCSRCs = 0;
438     packet->payload_length = length_bytes;
439     packet->primary = true;
440     packet->waiting_time = 0;
441     packet->payload = new uint8_t[packet->payload_length];
442     packet->sync_packet = is_sync_packet;
443     if (!packet->payload) {
444       LOG_F(LS_ERROR) << "Payload pointer is NULL.";
445     }
446     assert(payload);  // Already checked above.
447     memcpy(packet->payload, payload, packet->payload_length);
448     // Insert packet in a packet list.
449     packet_list.push_back(packet);
450     // Save main payloads header for later.
451     memcpy(&main_header, &packet->header, sizeof(main_header));
452   }
453
454   bool update_sample_rate_and_channels = false;
455   // Reinitialize NetEq if it's needed (changed SSRC or first call).
456   if ((main_header.ssrc != ssrc_) || first_packet_) {
457     rtcp_.Init(main_header.sequenceNumber);
458     first_packet_ = false;
459
460     // Flush the packet buffer and DTMF buffer.
461     packet_buffer_->Flush();
462     dtmf_buffer_->Flush();
463
464     // Store new SSRC.
465     ssrc_ = main_header.ssrc;
466
467     // Update audio buffer timestamp.
468     sync_buffer_->IncreaseEndTimestamp(main_header.timestamp - timestamp_);
469
470     // Update codecs.
471     timestamp_ = main_header.timestamp;
472     current_rtp_payload_type_ = main_header.payloadType;
473
474     // Set MCU to update codec on next SignalMCU call.
475     new_codec_ = true;
476
477     // Reset timestamp scaling.
478     timestamp_scaler_->Reset();
479
480     // Triger an update of sampling rate and the number of channels.
481     update_sample_rate_and_channels = true;
482   }
483
484   // Update RTCP statistics, only for regular packets.
485   if (!is_sync_packet)
486     rtcp_.Update(main_header, receive_timestamp);
487
488   // Check for RED payload type, and separate payloads into several packets.
489   if (decoder_database_->IsRed(main_header.payloadType)) {
490     assert(!is_sync_packet);  // We had a sanity check for this.
491     if (payload_splitter_->SplitRed(&packet_list) != PayloadSplitter::kOK) {
492       LOG_FERR1(LS_WARNING, SplitRed, packet_list.size());
493       PacketBuffer::DeleteAllPackets(&packet_list);
494       return kRedundancySplitError;
495     }
496     // Only accept a few RED payloads of the same type as the main data,
497     // DTMF events and CNG.
498     payload_splitter_->CheckRedPayloads(&packet_list, *decoder_database_);
499     // Update the stored main payload header since the main payload has now
500     // changed.
501     memcpy(&main_header, &packet_list.front()->header, sizeof(main_header));
502   }
503
504   // Check payload types.
505   if (decoder_database_->CheckPayloadTypes(packet_list) ==
506       DecoderDatabase::kDecoderNotFound) {
507     LOG_FERR1(LS_WARNING, CheckPayloadTypes, packet_list.size());
508     PacketBuffer::DeleteAllPackets(&packet_list);
509     return kUnknownRtpPayloadType;
510   }
511
512   // Scale timestamp to internal domain (only for some codecs).
513   timestamp_scaler_->ToInternal(&packet_list);
514
515   // Process DTMF payloads. Cycle through the list of packets, and pick out any
516   // DTMF payloads found.
517   PacketList::iterator it = packet_list.begin();
518   while (it != packet_list.end()) {
519     Packet* current_packet = (*it);
520     assert(current_packet);
521     assert(current_packet->payload);
522     if (decoder_database_->IsDtmf(current_packet->header.payloadType)) {
523       assert(!current_packet->sync_packet);  // We had a sanity check for this.
524       DtmfEvent event;
525       int ret = DtmfBuffer::ParseEvent(
526           current_packet->header.timestamp,
527           current_packet->payload,
528           current_packet->payload_length,
529           &event);
530       if (ret != DtmfBuffer::kOK) {
531         LOG_FERR2(LS_WARNING, ParseEvent, ret,
532                   current_packet->payload_length);
533         PacketBuffer::DeleteAllPackets(&packet_list);
534         return kDtmfParsingError;
535       }
536       if (dtmf_buffer_->InsertEvent(event) != DtmfBuffer::kOK) {
537         LOG_FERR0(LS_WARNING, InsertEvent);
538         PacketBuffer::DeleteAllPackets(&packet_list);
539         return kDtmfInsertError;
540       }
541       // TODO(hlundin): Let the destructor of Packet handle the payload.
542       delete [] current_packet->payload;
543       delete current_packet;
544       it = packet_list.erase(it);
545     } else {
546       ++it;
547     }
548   }
549
550   // Check for FEC in packets, and separate payloads into several packets.
551   int ret = payload_splitter_->SplitFec(&packet_list, decoder_database_.get());
552   if (ret != PayloadSplitter::kOK) {
553     LOG_FERR1(LS_WARNING, SplitFec, packet_list.size());
554     PacketBuffer::DeleteAllPackets(&packet_list);
555     switch (ret) {
556       case PayloadSplitter::kUnknownPayloadType:
557         return kUnknownRtpPayloadType;
558       default:
559         return kOtherError;
560     }
561   }
562
563   // Split payloads into smaller chunks. This also verifies that all payloads
564   // are of a known payload type. SplitAudio() method is protected against
565   // sync-packets.
566   ret = payload_splitter_->SplitAudio(&packet_list, *decoder_database_);
567   if (ret != PayloadSplitter::kOK) {
568     LOG_FERR1(LS_WARNING, SplitAudio, packet_list.size());
569     PacketBuffer::DeleteAllPackets(&packet_list);
570     switch (ret) {
571       case PayloadSplitter::kUnknownPayloadType:
572         return kUnknownRtpPayloadType;
573       case PayloadSplitter::kFrameSplitError:
574         return kFrameSplitError;
575       default:
576         return kOtherError;
577     }
578   }
579
580   // Update bandwidth estimate, if the packet is not sync-packet.
581   if (!packet_list.empty() && !packet_list.front()->sync_packet) {
582     // The list can be empty here if we got nothing but DTMF payloads.
583     AudioDecoder* decoder =
584         decoder_database_->GetDecoder(main_header.payloadType);
585     assert(decoder);  // Should always get a valid object, since we have
586                       // already checked that the payload types are known.
587     decoder->IncomingPacket(packet_list.front()->payload,
588                             packet_list.front()->payload_length,
589                             packet_list.front()->header.sequenceNumber,
590                             packet_list.front()->header.timestamp,
591                             receive_timestamp);
592   }
593
594   // Insert packets in buffer.
595   int temp_bufsize = packet_buffer_->NumPacketsInBuffer();
596   ret = packet_buffer_->InsertPacketList(
597       &packet_list,
598       *decoder_database_,
599       &current_rtp_payload_type_,
600       &current_cng_rtp_payload_type_);
601   if (ret == PacketBuffer::kFlushed) {
602     // Reset DSP timestamp etc. if packet buffer flushed.
603     new_codec_ = true;
604     update_sample_rate_and_channels = true;
605     LOG_F(LS_WARNING) << "Packet buffer flushed";
606   } else if (ret != PacketBuffer::kOK) {
607     LOG_FERR1(LS_WARNING, InsertPacketList, packet_list.size());
608     PacketBuffer::DeleteAllPackets(&packet_list);
609     return kOtherError;
610   }
611   if (current_rtp_payload_type_ != 0xFF) {
612     const DecoderDatabase::DecoderInfo* dec_info =
613         decoder_database_->GetDecoderInfo(current_rtp_payload_type_);
614     if (!dec_info) {
615       assert(false);  // Already checked that the payload type is known.
616     }
617   }
618
619   if (update_sample_rate_and_channels && !packet_buffer_->Empty()) {
620     // We do not use |current_rtp_payload_type_| to |set payload_type|, but
621     // get the next RTP header from |packet_buffer_| to obtain the payload type.
622     // The reason for it is the following corner case. If NetEq receives a
623     // CNG packet with a sample rate different than the current CNG then it
624     // flushes its buffer, assuming send codec must have been changed. However,
625     // payload type of the hypothetically new send codec is not known.
626     const RTPHeader* rtp_header = packet_buffer_->NextRtpHeader();
627     assert(rtp_header);
628     int payload_type = rtp_header->payloadType;
629     AudioDecoder* decoder = decoder_database_->GetDecoder(payload_type);
630     assert(decoder);  // Payloads are already checked to be valid.
631     const DecoderDatabase::DecoderInfo* decoder_info =
632         decoder_database_->GetDecoderInfo(payload_type);
633     assert(decoder_info);
634     if (decoder_info->fs_hz != fs_hz_ ||
635         decoder->channels() != algorithm_buffer_->Channels())
636       SetSampleRateAndChannels(decoder_info->fs_hz, decoder->channels());
637   }
638
639   // TODO(hlundin): Move this code to DelayManager class.
640   const DecoderDatabase::DecoderInfo* dec_info =
641           decoder_database_->GetDecoderInfo(main_header.payloadType);
642   assert(dec_info);  // Already checked that the payload type is known.
643   delay_manager_->LastDecoderType(dec_info->codec_type);
644   if (delay_manager_->last_pack_cng_or_dtmf() == 0) {
645     // Calculate the total speech length carried in each packet.
646     temp_bufsize = packet_buffer_->NumPacketsInBuffer() - temp_bufsize;
647     temp_bufsize *= decoder_frame_length_;
648
649     if ((temp_bufsize > 0) &&
650         (temp_bufsize != decision_logic_->packet_length_samples())) {
651       decision_logic_->set_packet_length_samples(temp_bufsize);
652       delay_manager_->SetPacketAudioLength((1000 * temp_bufsize) / fs_hz_);
653     }
654
655     // Update statistics.
656     if ((int32_t) (main_header.timestamp - timestamp_) >= 0 &&
657         !new_codec_) {
658       // Only update statistics if incoming packet is not older than last played
659       // out packet, and if new codec flag is not set.
660       delay_manager_->Update(main_header.sequenceNumber, main_header.timestamp,
661                              fs_hz_);
662     }
663   } else if (delay_manager_->last_pack_cng_or_dtmf() == -1) {
664     // This is first "normal" packet after CNG or DTMF.
665     // Reset packet time counter and measure time until next packet,
666     // but don't update statistics.
667     delay_manager_->set_last_pack_cng_or_dtmf(0);
668     delay_manager_->ResetPacketIatCount();
669   }
670   return 0;
671 }
672
673 int NetEqImpl::GetAudioInternal(size_t max_length, int16_t* output,
674                                 int* samples_per_channel, int* num_channels) {
675   PacketList packet_list;
676   DtmfEvent dtmf_event;
677   Operations operation;
678   bool play_dtmf;
679   int return_value = GetDecision(&operation, &packet_list, &dtmf_event,
680                                  &play_dtmf);
681   if (return_value != 0) {
682     LOG_FERR1(LS_WARNING, GetDecision, return_value);
683     assert(false);
684     last_mode_ = kModeError;
685     return return_value;
686   }
687   LOG(LS_VERBOSE) << "GetDecision returned operation=" << operation <<
688       " and " << packet_list.size() << " packet(s)";
689
690   AudioDecoder::SpeechType speech_type;
691   int length = 0;
692   int decode_return_value = Decode(&packet_list, &operation,
693                                    &length, &speech_type);
694
695   assert(vad_.get());
696   bool sid_frame_available =
697       (operation == kRfc3389Cng && !packet_list.empty());
698   vad_->Update(decoded_buffer_.get(), length, speech_type,
699                sid_frame_available, fs_hz_);
700
701   algorithm_buffer_->Clear();
702   switch (operation) {
703     case kNormal: {
704       DoNormal(decoded_buffer_.get(), length, speech_type, play_dtmf);
705       break;
706     }
707     case kMerge: {
708       DoMerge(decoded_buffer_.get(), length, speech_type, play_dtmf);
709       break;
710     }
711     case kExpand: {
712       return_value = DoExpand(play_dtmf);
713       break;
714     }
715     case kAccelerate: {
716       return_value = DoAccelerate(decoded_buffer_.get(), length, speech_type,
717                                   play_dtmf);
718       break;
719     }
720     case kPreemptiveExpand: {
721       return_value = DoPreemptiveExpand(decoded_buffer_.get(), length,
722                                         speech_type, play_dtmf);
723       break;
724     }
725     case kRfc3389Cng:
726     case kRfc3389CngNoPacket: {
727       return_value = DoRfc3389Cng(&packet_list, play_dtmf);
728       break;
729     }
730     case kCodecInternalCng: {
731       // This handles the case when there is no transmission and the decoder
732       // should produce internal comfort noise.
733       // TODO(hlundin): Write test for codec-internal CNG.
734       DoCodecInternalCng();
735       break;
736     }
737     case kDtmf: {
738       // TODO(hlundin): Write test for this.
739       return_value = DoDtmf(dtmf_event, &play_dtmf);
740       break;
741     }
742     case kAlternativePlc: {
743       // TODO(hlundin): Write test for this.
744       DoAlternativePlc(false);
745       break;
746     }
747     case kAlternativePlcIncreaseTimestamp: {
748       // TODO(hlundin): Write test for this.
749       DoAlternativePlc(true);
750       break;
751     }
752     case kAudioRepetitionIncreaseTimestamp: {
753       // TODO(hlundin): Write test for this.
754       sync_buffer_->IncreaseEndTimestamp(output_size_samples_);
755       // Skipping break on purpose. Execution should move on into the
756       // next case.
757     }
758     case kAudioRepetition: {
759       // TODO(hlundin): Write test for this.
760       // Copy last |output_size_samples_| from |sync_buffer_| to
761       // |algorithm_buffer|.
762       algorithm_buffer_->PushBackFromIndex(
763           *sync_buffer_, sync_buffer_->Size() - output_size_samples_);
764       expand_->Reset();
765       break;
766     }
767     case kUndefined: {
768       LOG_F(LS_ERROR) << "Invalid operation kUndefined.";
769       assert(false);  // This should not happen.
770       last_mode_ = kModeError;
771       return kInvalidOperation;
772     }
773   }  // End of switch.
774   if (return_value < 0) {
775     return return_value;
776   }
777
778   if (last_mode_ != kModeRfc3389Cng) {
779     comfort_noise_->Reset();
780   }
781
782   // Copy from |algorithm_buffer| to |sync_buffer_|.
783   sync_buffer_->PushBack(*algorithm_buffer_);
784
785   // Extract data from |sync_buffer_| to |output|.
786   size_t num_output_samples_per_channel = output_size_samples_;
787   size_t num_output_samples = output_size_samples_ * sync_buffer_->Channels();
788   if (num_output_samples > max_length) {
789     LOG(LS_WARNING) << "Output array is too short. " << max_length << " < " <<
790         output_size_samples_ << " * " << sync_buffer_->Channels();
791     num_output_samples = max_length;
792     num_output_samples_per_channel = static_cast<int>(
793         max_length / sync_buffer_->Channels());
794   }
795   int samples_from_sync = static_cast<int>(
796       sync_buffer_->GetNextAudioInterleaved(num_output_samples_per_channel,
797                                             output));
798   *num_channels = static_cast<int>(sync_buffer_->Channels());
799   LOG(LS_VERBOSE) << "Sync buffer (" << *num_channels << " channel(s)):" <<
800       " insert " << algorithm_buffer_->Size() << " samples, extract " <<
801       samples_from_sync << " samples";
802   if (samples_from_sync != output_size_samples_) {
803     LOG_F(LS_ERROR) << "samples_from_sync != output_size_samples_";
804     // TODO(minyue): treatment of under-run, filling zeros
805     memset(output, 0, num_output_samples * sizeof(int16_t));
806     *samples_per_channel = output_size_samples_;
807     return kSampleUnderrun;
808   }
809   *samples_per_channel = output_size_samples_;
810
811   // Should always have overlap samples left in the |sync_buffer_|.
812   assert(sync_buffer_->FutureLength() >= expand_->overlap_length());
813
814   if (play_dtmf) {
815     return_value = DtmfOverdub(dtmf_event, sync_buffer_->Channels(), output);
816   }
817
818   // Update the background noise parameters if last operation wrote data
819   // straight from the decoder to the |sync_buffer_|. That is, none of the
820   // operations that modify the signal can be followed by a parameter update.
821   if ((last_mode_ == kModeNormal) ||
822       (last_mode_ == kModeAccelerateFail) ||
823       (last_mode_ == kModePreemptiveExpandFail) ||
824       (last_mode_ == kModeRfc3389Cng) ||
825       (last_mode_ == kModeCodecInternalCng)) {
826     background_noise_->Update(*sync_buffer_, *vad_.get());
827   }
828
829   if (operation == kDtmf) {
830     // DTMF data was written the end of |sync_buffer_|.
831     // Update index to end of DTMF data in |sync_buffer_|.
832     sync_buffer_->set_dtmf_index(sync_buffer_->Size());
833   }
834
835   if (last_mode_ != kModeExpand) {
836     // If last operation was not expand, calculate the |playout_timestamp_| from
837     // the |sync_buffer_|. However, do not update the |playout_timestamp_| if it
838     // would be moved "backwards".
839     uint32_t temp_timestamp = sync_buffer_->end_timestamp() -
840         static_cast<uint32_t>(sync_buffer_->FutureLength());
841     if (static_cast<int32_t>(temp_timestamp - playout_timestamp_) > 0) {
842       playout_timestamp_ = temp_timestamp;
843     }
844   } else {
845     // Use dead reckoning to estimate the |playout_timestamp_|.
846     playout_timestamp_ += output_size_samples_;
847   }
848
849   if (decode_return_value) return decode_return_value;
850   return return_value;
851 }
852
853 int NetEqImpl::GetDecision(Operations* operation,
854                            PacketList* packet_list,
855                            DtmfEvent* dtmf_event,
856                            bool* play_dtmf) {
857   // Initialize output variables.
858   *play_dtmf = false;
859   *operation = kUndefined;
860
861   // Increment time counters.
862   packet_buffer_->IncrementWaitingTimes();
863   stats_.IncreaseCounter(output_size_samples_, fs_hz_);
864
865   assert(sync_buffer_.get());
866   uint32_t end_timestamp = sync_buffer_->end_timestamp();
867   const RTPHeader* header = packet_buffer_->NextRtpHeader();
868
869   if (decision_logic_->CngRfc3389On() || last_mode_ == kModeRfc3389Cng) {
870     // Because of timestamp peculiarities, we have to "manually" disallow using
871     // a CNG packet with the same timestamp as the one that was last played.
872     // This can happen when using redundancy and will cause the timing to shift.
873     while (header && decoder_database_->IsComfortNoise(header->payloadType) &&
874            (end_timestamp >= header->timestamp ||
875             end_timestamp + decision_logic_->generated_noise_samples() >
876                 header->timestamp)) {
877       // Don't use this packet, discard it.
878       if (packet_buffer_->DiscardNextPacket() != PacketBuffer::kOK) {
879         assert(false);  // Must be ok by design.
880       }
881       // Check buffer again.
882       if (!new_codec_) {
883         packet_buffer_->DiscardOldPackets(end_timestamp);
884       }
885       header = packet_buffer_->NextRtpHeader();
886     }
887   }
888
889   assert(expand_.get());
890   const int samples_left = static_cast<int>(sync_buffer_->FutureLength() -
891       expand_->overlap_length());
892   if (last_mode_ == kModeAccelerateSuccess ||
893       last_mode_ == kModeAccelerateLowEnergy ||
894       last_mode_ == kModePreemptiveExpandSuccess ||
895       last_mode_ == kModePreemptiveExpandLowEnergy) {
896     // Subtract (samples_left + output_size_samples_) from sampleMemory.
897     decision_logic_->AddSampleMemory(-(samples_left + output_size_samples_));
898   }
899
900   // Check if it is time to play a DTMF event.
901   if (dtmf_buffer_->GetEvent(end_timestamp +
902                              decision_logic_->generated_noise_samples(),
903                              dtmf_event)) {
904     *play_dtmf = true;
905   }
906
907   // Get instruction.
908   assert(sync_buffer_.get());
909   assert(expand_.get());
910   *operation = decision_logic_->GetDecision(*sync_buffer_,
911                                             *expand_,
912                                             decoder_frame_length_,
913                                             header,
914                                             last_mode_,
915                                             *play_dtmf,
916                                             &reset_decoder_);
917
918   // Check if we already have enough samples in the |sync_buffer_|. If so,
919   // change decision to normal, unless the decision was merge, accelerate, or
920   // preemptive expand.
921   if (samples_left >= output_size_samples_ &&
922       *operation != kMerge &&
923       *operation != kAccelerate &&
924       *operation != kPreemptiveExpand) {
925     *operation = kNormal;
926     return 0;
927   }
928
929   decision_logic_->ExpandDecision(*operation);
930
931   // Check conditions for reset.
932   if (new_codec_ || *operation == kUndefined) {
933     // The only valid reason to get kUndefined is that new_codec_ is set.
934     assert(new_codec_);
935     if (*play_dtmf && !header) {
936       timestamp_ = dtmf_event->timestamp;
937     } else {
938       assert(header);
939       if (!header) {
940         LOG_F(LS_ERROR) << "Packet missing where it shouldn't.";
941         return -1;
942       }
943       timestamp_ = header->timestamp;
944       if (*operation == kRfc3389CngNoPacket
945 #ifndef LEGACY_BITEXACT
946           // Without this check, it can happen that a non-CNG packet is sent to
947           // the CNG decoder as if it was a SID frame. This is clearly a bug,
948           // but is kept for now to maintain bit-exactness with the test
949           // vectors.
950           && decoder_database_->IsComfortNoise(header->payloadType)
951 #endif
952       ) {
953         // Change decision to CNG packet, since we do have a CNG packet, but it
954         // was considered too early to use. Now, use it anyway.
955         *operation = kRfc3389Cng;
956       } else if (*operation != kRfc3389Cng) {
957         *operation = kNormal;
958       }
959     }
960     // Adjust |sync_buffer_| timestamp before setting |end_timestamp| to the
961     // new value.
962     sync_buffer_->IncreaseEndTimestamp(timestamp_ - end_timestamp);
963     end_timestamp = timestamp_;
964     new_codec_ = false;
965     decision_logic_->SoftReset();
966     buffer_level_filter_->Reset();
967     delay_manager_->Reset();
968     stats_.ResetMcu();
969   }
970
971   int required_samples = output_size_samples_;
972   const int samples_10_ms = 80 * fs_mult_;
973   const int samples_20_ms = 2 * samples_10_ms;
974   const int samples_30_ms = 3 * samples_10_ms;
975
976   switch (*operation) {
977     case kExpand: {
978       timestamp_ = end_timestamp;
979       return 0;
980     }
981     case kRfc3389CngNoPacket:
982     case kCodecInternalCng: {
983       return 0;
984     }
985     case kDtmf: {
986       // TODO(hlundin): Write test for this.
987       // Update timestamp.
988       timestamp_ = end_timestamp;
989       if (decision_logic_->generated_noise_samples() > 0 &&
990           last_mode_ != kModeDtmf) {
991         // Make a jump in timestamp due to the recently played comfort noise.
992         uint32_t timestamp_jump = decision_logic_->generated_noise_samples();
993         sync_buffer_->IncreaseEndTimestamp(timestamp_jump);
994         timestamp_ += timestamp_jump;
995       }
996       decision_logic_->set_generated_noise_samples(0);
997       return 0;
998     }
999     case kAccelerate: {
1000       // In order to do a accelerate we need at least 30 ms of audio data.
1001       if (samples_left >= samples_30_ms) {
1002         // Already have enough data, so we do not need to extract any more.
1003         decision_logic_->set_sample_memory(samples_left);
1004         decision_logic_->set_prev_time_scale(true);
1005         return 0;
1006       } else if (samples_left >= samples_10_ms &&
1007           decoder_frame_length_ >= samples_30_ms) {
1008         // Avoid decoding more data as it might overflow the playout buffer.
1009         *operation = kNormal;
1010         return 0;
1011       } else if (samples_left < samples_20_ms &&
1012           decoder_frame_length_ < samples_30_ms) {
1013         // Build up decoded data by decoding at least 20 ms of audio data. Do
1014         // not perform accelerate yet, but wait until we only need to do one
1015         // decoding.
1016         required_samples = 2 * output_size_samples_;
1017         *operation = kNormal;
1018       }
1019       // If none of the above is true, we have one of two possible situations:
1020       // (1) 20 ms <= samples_left < 30 ms and decoder_frame_length_ < 30 ms; or
1021       // (2) samples_left < 10 ms and decoder_frame_length_ >= 30 ms.
1022       // In either case, we move on with the accelerate decision, and decode one
1023       // frame now.
1024       break;
1025     }
1026     case kPreemptiveExpand: {
1027       // In order to do a preemptive expand we need at least 30 ms of decoded
1028       // audio data.
1029       if ((samples_left >= samples_30_ms) ||
1030           (samples_left >= samples_10_ms &&
1031               decoder_frame_length_ >= samples_30_ms)) {
1032         // Already have enough data, so we do not need to extract any more.
1033         // Or, avoid decoding more data as it might overflow the playout buffer.
1034         // Still try preemptive expand, though.
1035         decision_logic_->set_sample_memory(samples_left);
1036         decision_logic_->set_prev_time_scale(true);
1037         return 0;
1038       }
1039       if (samples_left < samples_20_ms &&
1040           decoder_frame_length_ < samples_30_ms) {
1041         // Build up decoded data by decoding at least 20 ms of audio data.
1042         // Still try to perform preemptive expand.
1043         required_samples = 2 * output_size_samples_;
1044       }
1045       // Move on with the preemptive expand decision.
1046       break;
1047     }
1048     case kMerge: {
1049       required_samples =
1050           std::max(merge_->RequiredFutureSamples(), required_samples);
1051       break;
1052     }
1053     default: {
1054       // Do nothing.
1055     }
1056   }
1057
1058   // Get packets from buffer.
1059   int extracted_samples = 0;
1060   if (header &&
1061       *operation != kAlternativePlc &&
1062       *operation != kAlternativePlcIncreaseTimestamp &&
1063       *operation != kAudioRepetition &&
1064       *operation != kAudioRepetitionIncreaseTimestamp) {
1065     sync_buffer_->IncreaseEndTimestamp(header->timestamp - end_timestamp);
1066     if (decision_logic_->CngOff()) {
1067       // Adjustment of timestamp only corresponds to an actual packet loss
1068       // if comfort noise is not played. If comfort noise was just played,
1069       // this adjustment of timestamp is only done to get back in sync with the
1070       // stream timestamp; no loss to report.
1071       stats_.LostSamples(header->timestamp - end_timestamp);
1072     }
1073
1074     if (*operation != kRfc3389Cng) {
1075       // We are about to decode and use a non-CNG packet.
1076       decision_logic_->SetCngOff();
1077     }
1078     // Reset CNG timestamp as a new packet will be delivered.
1079     // (Also if this is a CNG packet, since playedOutTS is updated.)
1080     decision_logic_->set_generated_noise_samples(0);
1081
1082     extracted_samples = ExtractPackets(required_samples, packet_list);
1083     if (extracted_samples < 0) {
1084       LOG_F(LS_WARNING) << "Failed to extract packets from buffer.";
1085       return kPacketBufferCorruption;
1086     }
1087   }
1088
1089   if (*operation == kAccelerate ||
1090       *operation == kPreemptiveExpand) {
1091     decision_logic_->set_sample_memory(samples_left + extracted_samples);
1092     decision_logic_->set_prev_time_scale(true);
1093   }
1094
1095   if (*operation == kAccelerate) {
1096     // Check that we have enough data (30ms) to do accelerate.
1097     if (extracted_samples + samples_left < samples_30_ms) {
1098       // TODO(hlundin): Write test for this.
1099       // Not enough, do normal operation instead.
1100       *operation = kNormal;
1101     }
1102   }
1103
1104   timestamp_ = end_timestamp;
1105   return 0;
1106 }
1107
1108 int NetEqImpl::Decode(PacketList* packet_list, Operations* operation,
1109                       int* decoded_length,
1110                       AudioDecoder::SpeechType* speech_type) {
1111   *speech_type = AudioDecoder::kSpeech;
1112   AudioDecoder* decoder = NULL;
1113   if (!packet_list->empty()) {
1114     const Packet* packet = packet_list->front();
1115     int payload_type = packet->header.payloadType;
1116     if (!decoder_database_->IsComfortNoise(payload_type)) {
1117       decoder = decoder_database_->GetDecoder(payload_type);
1118       assert(decoder);
1119       if (!decoder) {
1120         LOG_FERR1(LS_WARNING, GetDecoder, payload_type);
1121         PacketBuffer::DeleteAllPackets(packet_list);
1122         return kDecoderNotFound;
1123       }
1124       bool decoder_changed;
1125       decoder_database_->SetActiveDecoder(payload_type, &decoder_changed);
1126       if (decoder_changed) {
1127         // We have a new decoder. Re-init some values.
1128         const DecoderDatabase::DecoderInfo* decoder_info = decoder_database_
1129             ->GetDecoderInfo(payload_type);
1130         assert(decoder_info);
1131         if (!decoder_info) {
1132           LOG_FERR1(LS_WARNING, GetDecoderInfo, payload_type);
1133           PacketBuffer::DeleteAllPackets(packet_list);
1134           return kDecoderNotFound;
1135         }
1136         // If sampling rate or number of channels has changed, we need to make
1137         // a reset.
1138         if (decoder_info->fs_hz != fs_hz_ ||
1139             decoder->channels() != algorithm_buffer_->Channels()) {
1140           // TODO(tlegrand): Add unittest to cover this event.
1141           SetSampleRateAndChannels(decoder_info->fs_hz, decoder->channels());
1142         }
1143         sync_buffer_->set_end_timestamp(timestamp_);
1144         playout_timestamp_ = timestamp_;
1145       }
1146     }
1147   }
1148
1149   if (reset_decoder_) {
1150     // TODO(hlundin): Write test for this.
1151     // Reset decoder.
1152     if (decoder) {
1153       decoder->Init();
1154     }
1155     // Reset comfort noise decoder.
1156     AudioDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder();
1157     if (cng_decoder) {
1158       cng_decoder->Init();
1159     }
1160     reset_decoder_ = false;
1161   }
1162
1163 #ifdef LEGACY_BITEXACT
1164   // Due to a bug in old SignalMCU, it could happen that CNG operation was
1165   // decided, but a speech packet was provided. The speech packet will be used
1166   // to update the comfort noise decoder, as if it was a SID frame, which is
1167   // clearly wrong.
1168   if (*operation == kRfc3389Cng) {
1169     return 0;
1170   }
1171 #endif
1172
1173   *decoded_length = 0;
1174   // Update codec-internal PLC state.
1175   if ((*operation == kMerge) && decoder && decoder->HasDecodePlc()) {
1176     decoder->DecodePlc(1, &decoded_buffer_[*decoded_length]);
1177   }
1178
1179   int return_value = DecodeLoop(packet_list, operation, decoder,
1180                                 decoded_length, speech_type);
1181
1182   if (*decoded_length < 0) {
1183     // Error returned from the decoder.
1184     *decoded_length = 0;
1185     sync_buffer_->IncreaseEndTimestamp(decoder_frame_length_);
1186     int error_code = 0;
1187     if (decoder)
1188       error_code = decoder->ErrorCode();
1189     if (error_code != 0) {
1190       // Got some error code from the decoder.
1191       decoder_error_code_ = error_code;
1192       return_value = kDecoderErrorCode;
1193     } else {
1194       // Decoder does not implement error codes. Return generic error.
1195       return_value = kOtherDecoderError;
1196     }
1197     LOG_FERR2(LS_WARNING, DecodeLoop, error_code, packet_list->size());
1198     *operation = kExpand;  // Do expansion to get data instead.
1199   }
1200   if (*speech_type != AudioDecoder::kComfortNoise) {
1201     // Don't increment timestamp if codec returned CNG speech type
1202     // since in this case, the we will increment the CNGplayedTS counter.
1203     // Increase with number of samples per channel.
1204     assert(*decoded_length == 0 ||
1205            (decoder && decoder->channels() == sync_buffer_->Channels()));
1206     sync_buffer_->IncreaseEndTimestamp(
1207         *decoded_length / static_cast<int>(sync_buffer_->Channels()));
1208   }
1209   return return_value;
1210 }
1211
1212 int NetEqImpl::DecodeLoop(PacketList* packet_list, Operations* operation,
1213                           AudioDecoder* decoder, int* decoded_length,
1214                           AudioDecoder::SpeechType* speech_type) {
1215   Packet* packet = NULL;
1216   if (!packet_list->empty()) {
1217     packet = packet_list->front();
1218   }
1219   // Do decoding.
1220   while (packet &&
1221       !decoder_database_->IsComfortNoise(packet->header.payloadType)) {
1222     assert(decoder);  // At this point, we must have a decoder object.
1223     // The number of channels in the |sync_buffer_| should be the same as the
1224     // number decoder channels.
1225     assert(sync_buffer_->Channels() == decoder->channels());
1226     assert(decoded_buffer_length_ >= kMaxFrameSize * decoder->channels());
1227     assert(*operation == kNormal || *operation == kAccelerate ||
1228            *operation == kMerge || *operation == kPreemptiveExpand);
1229     packet_list->pop_front();
1230     int payload_length = packet->payload_length;
1231     int16_t decode_length;
1232     if (packet->sync_packet) {
1233       // Decode to silence with the same frame size as the last decode.
1234       LOG(LS_VERBOSE) << "Decoding sync-packet: " <<
1235           " ts=" << packet->header.timestamp <<
1236           ", sn=" << packet->header.sequenceNumber <<
1237           ", pt=" << static_cast<int>(packet->header.payloadType) <<
1238           ", ssrc=" << packet->header.ssrc <<
1239           ", len=" << packet->payload_length;
1240       memset(&decoded_buffer_[*decoded_length], 0, decoder_frame_length_ *
1241              decoder->channels() * sizeof(decoded_buffer_[0]));
1242       decode_length = decoder_frame_length_;
1243     } else if (!packet->primary) {
1244       // This is a redundant payload; call the special decoder method.
1245       LOG(LS_VERBOSE) << "Decoding packet (redundant):" <<
1246           " ts=" << packet->header.timestamp <<
1247           ", sn=" << packet->header.sequenceNumber <<
1248           ", pt=" << static_cast<int>(packet->header.payloadType) <<
1249           ", ssrc=" << packet->header.ssrc <<
1250           ", len=" << packet->payload_length;
1251       decode_length = decoder->DecodeRedundant(
1252           packet->payload, packet->payload_length,
1253           &decoded_buffer_[*decoded_length], speech_type);
1254     } else {
1255       LOG(LS_VERBOSE) << "Decoding packet: ts=" << packet->header.timestamp <<
1256           ", sn=" << packet->header.sequenceNumber <<
1257           ", pt=" << static_cast<int>(packet->header.payloadType) <<
1258           ", ssrc=" << packet->header.ssrc <<
1259           ", len=" << packet->payload_length;
1260       decode_length = decoder->Decode(packet->payload,
1261                                       packet->payload_length,
1262                                       &decoded_buffer_[*decoded_length],
1263                                       speech_type);
1264     }
1265
1266     delete[] packet->payload;
1267     delete packet;
1268     packet = NULL;
1269     if (decode_length > 0) {
1270       *decoded_length += decode_length;
1271       // Update |decoder_frame_length_| with number of samples per channel.
1272       decoder_frame_length_ = decode_length /
1273           static_cast<int>(decoder->channels());
1274       LOG(LS_VERBOSE) << "Decoded " << decode_length << " samples (" <<
1275           decoder->channels() << " channel(s) -> " << decoder_frame_length_ <<
1276           " samples per channel)";
1277     } else if (decode_length < 0) {
1278       // Error.
1279       LOG_FERR2(LS_WARNING, Decode, decode_length, payload_length);
1280       *decoded_length = -1;
1281       PacketBuffer::DeleteAllPackets(packet_list);
1282       break;
1283     }
1284     if (*decoded_length > static_cast<int>(decoded_buffer_length_)) {
1285       // Guard against overflow.
1286       LOG_F(LS_WARNING) << "Decoded too much.";
1287       PacketBuffer::DeleteAllPackets(packet_list);
1288       return kDecodedTooMuch;
1289     }
1290     if (!packet_list->empty()) {
1291       packet = packet_list->front();
1292     } else {
1293       packet = NULL;
1294     }
1295   }  // End of decode loop.
1296
1297   // If the list is not empty at this point, either a decoding error terminated
1298   // the while-loop, or list must hold exactly one CNG packet.
1299   assert(packet_list->empty() || *decoded_length < 0 ||
1300          (packet_list->size() == 1 && packet &&
1301              decoder_database_->IsComfortNoise(packet->header.payloadType)));
1302   return 0;
1303 }
1304
1305 void NetEqImpl::DoNormal(const int16_t* decoded_buffer, size_t decoded_length,
1306                          AudioDecoder::SpeechType speech_type, bool play_dtmf) {
1307   assert(normal_.get());
1308   assert(mute_factor_array_.get());
1309   normal_->Process(decoded_buffer, decoded_length, last_mode_,
1310                    mute_factor_array_.get(), algorithm_buffer_.get());
1311   if (decoded_length != 0) {
1312     last_mode_ = kModeNormal;
1313   }
1314
1315   // If last packet was decoded as an inband CNG, set mode to CNG instead.
1316   if ((speech_type == AudioDecoder::kComfortNoise)
1317       || ((last_mode_ == kModeCodecInternalCng)
1318           && (decoded_length == 0))) {
1319     // TODO(hlundin): Remove second part of || statement above.
1320     last_mode_ = kModeCodecInternalCng;
1321   }
1322
1323   if (!play_dtmf) {
1324     dtmf_tone_generator_->Reset();
1325   }
1326 }
1327
1328 void NetEqImpl::DoMerge(int16_t* decoded_buffer, size_t decoded_length,
1329                         AudioDecoder::SpeechType speech_type, bool play_dtmf) {
1330   assert(mute_factor_array_.get());
1331   assert(merge_.get());
1332   int new_length = merge_->Process(decoded_buffer, decoded_length,
1333                                    mute_factor_array_.get(),
1334                                    algorithm_buffer_.get());
1335
1336   // Update in-call and post-call statistics.
1337   if (expand_->MuteFactor(0) == 0) {
1338     // Expand generates only noise.
1339     stats_.ExpandedNoiseSamples(new_length - static_cast<int>(decoded_length));
1340   } else {
1341     // Expansion generates more than only noise.
1342     stats_.ExpandedVoiceSamples(new_length - static_cast<int>(decoded_length));
1343   }
1344
1345   last_mode_ = kModeMerge;
1346   // If last packet was decoded as an inband CNG, set mode to CNG instead.
1347   if (speech_type == AudioDecoder::kComfortNoise) {
1348     last_mode_ = kModeCodecInternalCng;
1349   }
1350   expand_->Reset();
1351   if (!play_dtmf) {
1352     dtmf_tone_generator_->Reset();
1353   }
1354 }
1355
1356 int NetEqImpl::DoExpand(bool play_dtmf) {
1357   while ((sync_buffer_->FutureLength() - expand_->overlap_length()) <
1358       static_cast<size_t>(output_size_samples_)) {
1359     algorithm_buffer_->Clear();
1360     int return_value = expand_->Process(algorithm_buffer_.get());
1361     int length = static_cast<int>(algorithm_buffer_->Size());
1362
1363     // Update in-call and post-call statistics.
1364     if (expand_->MuteFactor(0) == 0) {
1365       // Expand operation generates only noise.
1366       stats_.ExpandedNoiseSamples(length);
1367     } else {
1368       // Expand operation generates more than only noise.
1369       stats_.ExpandedVoiceSamples(length);
1370     }
1371
1372     last_mode_ = kModeExpand;
1373
1374     if (return_value < 0) {
1375       return return_value;
1376     }
1377
1378     sync_buffer_->PushBack(*algorithm_buffer_);
1379     algorithm_buffer_->Clear();
1380   }
1381   if (!play_dtmf) {
1382     dtmf_tone_generator_->Reset();
1383   }
1384   return 0;
1385 }
1386
1387 int NetEqImpl::DoAccelerate(int16_t* decoded_buffer, size_t decoded_length,
1388                             AudioDecoder::SpeechType speech_type,
1389                             bool play_dtmf) {
1390   const size_t required_samples = 240 * fs_mult_;  // Must have 30 ms.
1391   size_t borrowed_samples_per_channel = 0;
1392   size_t num_channels = algorithm_buffer_->Channels();
1393   size_t decoded_length_per_channel = decoded_length / num_channels;
1394   if (decoded_length_per_channel < required_samples) {
1395     // Must move data from the |sync_buffer_| in order to get 30 ms.
1396     borrowed_samples_per_channel = static_cast<int>(required_samples -
1397         decoded_length_per_channel);
1398     memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels],
1399             decoded_buffer,
1400             sizeof(int16_t) * decoded_length);
1401     sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel,
1402                                          decoded_buffer);
1403     decoded_length = required_samples * num_channels;
1404   }
1405
1406   int16_t samples_removed;
1407   Accelerate::ReturnCodes return_code = accelerate_->Process(
1408       decoded_buffer, decoded_length, algorithm_buffer_.get(),
1409       &samples_removed);
1410   stats_.AcceleratedSamples(samples_removed);
1411   switch (return_code) {
1412     case Accelerate::kSuccess:
1413       last_mode_ = kModeAccelerateSuccess;
1414       break;
1415     case Accelerate::kSuccessLowEnergy:
1416       last_mode_ = kModeAccelerateLowEnergy;
1417       break;
1418     case Accelerate::kNoStretch:
1419       last_mode_ = kModeAccelerateFail;
1420       break;
1421     case Accelerate::kError:
1422       // TODO(hlundin): Map to kModeError instead?
1423       last_mode_ = kModeAccelerateFail;
1424       return kAccelerateError;
1425   }
1426
1427   if (borrowed_samples_per_channel > 0) {
1428     // Copy borrowed samples back to the |sync_buffer_|.
1429     size_t length = algorithm_buffer_->Size();
1430     if (length < borrowed_samples_per_channel) {
1431       // This destroys the beginning of the buffer, but will not cause any
1432       // problems.
1433       sync_buffer_->ReplaceAtIndex(*algorithm_buffer_,
1434                                    sync_buffer_->Size() -
1435                                    borrowed_samples_per_channel);
1436       sync_buffer_->PushFrontZeros(borrowed_samples_per_channel - length);
1437       algorithm_buffer_->PopFront(length);
1438       assert(algorithm_buffer_->Empty());
1439     } else {
1440       sync_buffer_->ReplaceAtIndex(*algorithm_buffer_,
1441                                    borrowed_samples_per_channel,
1442                                    sync_buffer_->Size() -
1443                                    borrowed_samples_per_channel);
1444       algorithm_buffer_->PopFront(borrowed_samples_per_channel);
1445     }
1446   }
1447
1448   // If last packet was decoded as an inband CNG, set mode to CNG instead.
1449   if (speech_type == AudioDecoder::kComfortNoise) {
1450     last_mode_ = kModeCodecInternalCng;
1451   }
1452   if (!play_dtmf) {
1453     dtmf_tone_generator_->Reset();
1454   }
1455   expand_->Reset();
1456   return 0;
1457 }
1458
1459 int NetEqImpl::DoPreemptiveExpand(int16_t* decoded_buffer,
1460                                   size_t decoded_length,
1461                                   AudioDecoder::SpeechType speech_type,
1462                                   bool play_dtmf) {
1463   const size_t required_samples = 240 * fs_mult_;  // Must have 30 ms.
1464   size_t num_channels = algorithm_buffer_->Channels();
1465   int borrowed_samples_per_channel = 0;
1466   int old_borrowed_samples_per_channel = 0;
1467   size_t decoded_length_per_channel = decoded_length / num_channels;
1468   if (decoded_length_per_channel < required_samples) {
1469     // Must move data from the |sync_buffer_| in order to get 30 ms.
1470     borrowed_samples_per_channel = static_cast<int>(required_samples -
1471         decoded_length_per_channel);
1472     // Calculate how many of these were already played out.
1473     old_borrowed_samples_per_channel = static_cast<int>(
1474         borrowed_samples_per_channel - sync_buffer_->FutureLength());
1475     old_borrowed_samples_per_channel = std::max(
1476         0, old_borrowed_samples_per_channel);
1477     memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels],
1478             decoded_buffer,
1479             sizeof(int16_t) * decoded_length);
1480     sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel,
1481                                          decoded_buffer);
1482     decoded_length = required_samples * num_channels;
1483   }
1484
1485   int16_t samples_added;
1486   PreemptiveExpand::ReturnCodes return_code = preemptive_expand_->Process(
1487       decoded_buffer, static_cast<int>(decoded_length),
1488       old_borrowed_samples_per_channel,
1489       algorithm_buffer_.get(), &samples_added);
1490   stats_.PreemptiveExpandedSamples(samples_added);
1491   switch (return_code) {
1492     case PreemptiveExpand::kSuccess:
1493       last_mode_ = kModePreemptiveExpandSuccess;
1494       break;
1495     case PreemptiveExpand::kSuccessLowEnergy:
1496       last_mode_ = kModePreemptiveExpandLowEnergy;
1497       break;
1498     case PreemptiveExpand::kNoStretch:
1499       last_mode_ = kModePreemptiveExpandFail;
1500       break;
1501     case PreemptiveExpand::kError:
1502       // TODO(hlundin): Map to kModeError instead?
1503       last_mode_ = kModePreemptiveExpandFail;
1504       return kPreemptiveExpandError;
1505   }
1506
1507   if (borrowed_samples_per_channel > 0) {
1508     // Copy borrowed samples back to the |sync_buffer_|.
1509     sync_buffer_->ReplaceAtIndex(
1510         *algorithm_buffer_, borrowed_samples_per_channel,
1511         sync_buffer_->Size() - borrowed_samples_per_channel);
1512     algorithm_buffer_->PopFront(borrowed_samples_per_channel);
1513   }
1514
1515   // If last packet was decoded as an inband CNG, set mode to CNG instead.
1516   if (speech_type == AudioDecoder::kComfortNoise) {
1517     last_mode_ = kModeCodecInternalCng;
1518   }
1519   if (!play_dtmf) {
1520     dtmf_tone_generator_->Reset();
1521   }
1522   expand_->Reset();
1523   return 0;
1524 }
1525
1526 int NetEqImpl::DoRfc3389Cng(PacketList* packet_list, bool play_dtmf) {
1527   if (!packet_list->empty()) {
1528     // Must have exactly one SID frame at this point.
1529     assert(packet_list->size() == 1);
1530     Packet* packet = packet_list->front();
1531     packet_list->pop_front();
1532     if (!decoder_database_->IsComfortNoise(packet->header.payloadType)) {
1533 #ifdef LEGACY_BITEXACT
1534       // This can happen due to a bug in GetDecision. Change the payload type
1535       // to a CNG type, and move on. Note that this means that we are in fact
1536       // sending a non-CNG payload to the comfort noise decoder for decoding.
1537       // Clearly wrong, but will maintain bit-exactness with legacy.
1538       if (fs_hz_ == 8000) {
1539         packet->header.payloadType =
1540             decoder_database_->GetRtpPayloadType(kDecoderCNGnb);
1541       } else if (fs_hz_ == 16000) {
1542         packet->header.payloadType =
1543             decoder_database_->GetRtpPayloadType(kDecoderCNGwb);
1544       } else if (fs_hz_ == 32000) {
1545         packet->header.payloadType =
1546             decoder_database_->GetRtpPayloadType(kDecoderCNGswb32kHz);
1547       } else if (fs_hz_ == 48000) {
1548         packet->header.payloadType =
1549             decoder_database_->GetRtpPayloadType(kDecoderCNGswb48kHz);
1550       }
1551       assert(decoder_database_->IsComfortNoise(packet->header.payloadType));
1552 #else
1553       LOG(LS_ERROR) << "Trying to decode non-CNG payload as CNG.";
1554       return kOtherError;
1555 #endif
1556     }
1557     // UpdateParameters() deletes |packet|.
1558     if (comfort_noise_->UpdateParameters(packet) ==
1559         ComfortNoise::kInternalError) {
1560       LOG_FERR0(LS_WARNING, UpdateParameters);
1561       algorithm_buffer_->Zeros(output_size_samples_);
1562       return -comfort_noise_->internal_error_code();
1563     }
1564   }
1565   int cn_return = comfort_noise_->Generate(output_size_samples_,
1566                                            algorithm_buffer_.get());
1567   expand_->Reset();
1568   last_mode_ = kModeRfc3389Cng;
1569   if (!play_dtmf) {
1570     dtmf_tone_generator_->Reset();
1571   }
1572   if (cn_return == ComfortNoise::kInternalError) {
1573     LOG_FERR1(LS_WARNING, comfort_noise_->Generate, cn_return);
1574     decoder_error_code_ = comfort_noise_->internal_error_code();
1575     return kComfortNoiseErrorCode;
1576   } else if (cn_return == ComfortNoise::kUnknownPayloadType) {
1577     LOG_FERR1(LS_WARNING, comfort_noise_->Generate, cn_return);
1578     return kUnknownRtpPayloadType;
1579   }
1580   return 0;
1581 }
1582
1583 void NetEqImpl::DoCodecInternalCng() {
1584   int length = 0;
1585   // TODO(hlundin): Will probably need a longer buffer for multi-channel.
1586   int16_t decoded_buffer[kMaxFrameSize];
1587   AudioDecoder* decoder = decoder_database_->GetActiveDecoder();
1588   if (decoder) {
1589     const uint8_t* dummy_payload = NULL;
1590     AudioDecoder::SpeechType speech_type;
1591     length = decoder->Decode(dummy_payload, 0, decoded_buffer, &speech_type);
1592   }
1593   assert(mute_factor_array_.get());
1594   normal_->Process(decoded_buffer, length, last_mode_, mute_factor_array_.get(),
1595                    algorithm_buffer_.get());
1596   last_mode_ = kModeCodecInternalCng;
1597   expand_->Reset();
1598 }
1599
1600 int NetEqImpl::DoDtmf(const DtmfEvent& dtmf_event, bool* play_dtmf) {
1601   // This block of the code and the block further down, handling |dtmf_switch|
1602   // are commented out. Otherwise playing out-of-band DTMF would fail in VoE
1603   // test, DtmfTest.ManualSuccessfullySendsOutOfBandTelephoneEvents. This is
1604   // equivalent to |dtmf_switch| always be false.
1605   //
1606   // See http://webrtc-codereview.appspot.com/1195004/ for discussion
1607   // On this issue. This change might cause some glitches at the point of
1608   // switch from audio to DTMF. Issue 1545 is filed to track this.
1609   //
1610   //  bool dtmf_switch = false;
1611   //  if ((last_mode_ != kModeDtmf) && dtmf_tone_generator_->initialized()) {
1612   //    // Special case; see below.
1613   //    // We must catch this before calling Generate, since |initialized| is
1614   //    // modified in that call.
1615   //    dtmf_switch = true;
1616   //  }
1617
1618   int dtmf_return_value = 0;
1619   if (!dtmf_tone_generator_->initialized()) {
1620     // Initialize if not already done.
1621     dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no,
1622                                                    dtmf_event.volume);
1623   }
1624
1625   if (dtmf_return_value == 0) {
1626     // Generate DTMF signal.
1627     dtmf_return_value = dtmf_tone_generator_->Generate(output_size_samples_,
1628                                                        algorithm_buffer_.get());
1629   }
1630
1631   if (dtmf_return_value < 0) {
1632     algorithm_buffer_->Zeros(output_size_samples_);
1633     return dtmf_return_value;
1634   }
1635
1636   //  if (dtmf_switch) {
1637   //    // This is the special case where the previous operation was DTMF
1638   //    // overdub, but the current instruction is "regular" DTMF. We must make
1639   //    // sure that the DTMF does not have any discontinuities. The first DTMF
1640   //    // sample that we generate now must be played out immediately, therefore
1641   //    // it must be copied to the speech buffer.
1642   //    // TODO(hlundin): This code seems incorrect. (Legacy.) Write test and
1643   //    // verify correct operation.
1644   //    assert(false);
1645   //    // Must generate enough data to replace all of the |sync_buffer_|
1646   //    // "future".
1647   //    int required_length = sync_buffer_->FutureLength();
1648   //    assert(dtmf_tone_generator_->initialized());
1649   //    dtmf_return_value = dtmf_tone_generator_->Generate(required_length,
1650   //                                                       algorithm_buffer_);
1651   //    assert((size_t) required_length == algorithm_buffer_->Size());
1652   //    if (dtmf_return_value < 0) {
1653   //      algorithm_buffer_->Zeros(output_size_samples_);
1654   //      return dtmf_return_value;
1655   //    }
1656   //
1657   //    // Overwrite the "future" part of the speech buffer with the new DTMF
1658   //    // data.
1659   //    // TODO(hlundin): It seems that this overwriting has gone lost.
1660   //    // Not adapted for multi-channel yet.
1661   //    assert(algorithm_buffer_->Channels() == 1);
1662   //    if (algorithm_buffer_->Channels() != 1) {
1663   //      LOG(LS_WARNING) << "DTMF not supported for more than one channel";
1664   //      return kStereoNotSupported;
1665   //    }
1666   //    // Shuffle the remaining data to the beginning of algorithm buffer.
1667   //    algorithm_buffer_->PopFront(sync_buffer_->FutureLength());
1668   //  }
1669
1670   sync_buffer_->IncreaseEndTimestamp(output_size_samples_);
1671   expand_->Reset();
1672   last_mode_ = kModeDtmf;
1673
1674   // Set to false because the DTMF is already in the algorithm buffer.
1675   *play_dtmf = false;
1676   return 0;
1677 }
1678
1679 void NetEqImpl::DoAlternativePlc(bool increase_timestamp) {
1680   AudioDecoder* decoder = decoder_database_->GetActiveDecoder();
1681   int length;
1682   if (decoder && decoder->HasDecodePlc()) {
1683     // Use the decoder's packet-loss concealment.
1684     // TODO(hlundin): Will probably need a longer buffer for multi-channel.
1685     int16_t decoded_buffer[kMaxFrameSize];
1686     length = decoder->DecodePlc(1, decoded_buffer);
1687     if (length > 0) {
1688       algorithm_buffer_->PushBackInterleaved(decoded_buffer, length);
1689     } else {
1690       length = 0;
1691     }
1692   } else {
1693     // Do simple zero-stuffing.
1694     length = output_size_samples_;
1695     algorithm_buffer_->Zeros(length);
1696     // By not advancing the timestamp, NetEq inserts samples.
1697     stats_.AddZeros(length);
1698   }
1699   if (increase_timestamp) {
1700     sync_buffer_->IncreaseEndTimestamp(length);
1701   }
1702   expand_->Reset();
1703 }
1704
1705 int NetEqImpl::DtmfOverdub(const DtmfEvent& dtmf_event, size_t num_channels,
1706                            int16_t* output) const {
1707   size_t out_index = 0;
1708   int overdub_length = output_size_samples_;  // Default value.
1709
1710   if (sync_buffer_->dtmf_index() > sync_buffer_->next_index()) {
1711     // Special operation for transition from "DTMF only" to "DTMF overdub".
1712     out_index = std::min(
1713         sync_buffer_->dtmf_index() - sync_buffer_->next_index(),
1714         static_cast<size_t>(output_size_samples_));
1715     overdub_length = output_size_samples_ - static_cast<int>(out_index);
1716   }
1717
1718   AudioMultiVector dtmf_output(num_channels);
1719   int dtmf_return_value = 0;
1720   if (!dtmf_tone_generator_->initialized()) {
1721     dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no,
1722                                                    dtmf_event.volume);
1723   }
1724   if (dtmf_return_value == 0) {
1725     dtmf_return_value = dtmf_tone_generator_->Generate(overdub_length,
1726                                                        &dtmf_output);
1727     assert((size_t) overdub_length == dtmf_output.Size());
1728   }
1729   dtmf_output.ReadInterleaved(overdub_length, &output[out_index]);
1730   return dtmf_return_value < 0 ? dtmf_return_value : 0;
1731 }
1732
1733 int NetEqImpl::ExtractPackets(int required_samples, PacketList* packet_list) {
1734   bool first_packet = true;
1735   uint8_t prev_payload_type = 0;
1736   uint32_t prev_timestamp = 0;
1737   uint16_t prev_sequence_number = 0;
1738   bool next_packet_available = false;
1739
1740   const RTPHeader* header = packet_buffer_->NextRtpHeader();
1741   assert(header);
1742   if (!header) {
1743     return -1;
1744   }
1745   uint32_t first_timestamp = header->timestamp;
1746   int extracted_samples = 0;
1747
1748   // Packet extraction loop.
1749   do {
1750     timestamp_ = header->timestamp;
1751     int discard_count = 0;
1752     Packet* packet = packet_buffer_->GetNextPacket(&discard_count);
1753     // |header| may be invalid after the |packet_buffer_| operation.
1754     header = NULL;
1755     if (!packet) {
1756       LOG_FERR1(LS_ERROR, GetNextPacket, discard_count) <<
1757           "Should always be able to extract a packet here";
1758       assert(false);  // Should always be able to extract a packet here.
1759       return -1;
1760     }
1761     stats_.PacketsDiscarded(discard_count);
1762     // Store waiting time in ms; packets->waiting_time is in "output blocks".
1763     stats_.StoreWaitingTime(packet->waiting_time * kOutputSizeMs);
1764     assert(packet->payload_length > 0);
1765     packet_list->push_back(packet);  // Store packet in list.
1766
1767     if (first_packet) {
1768       first_packet = false;
1769       decoded_packet_sequence_number_ = prev_sequence_number =
1770           packet->header.sequenceNumber;
1771       decoded_packet_timestamp_ = prev_timestamp = packet->header.timestamp;
1772       prev_payload_type = packet->header.payloadType;
1773     }
1774
1775     // Store number of extracted samples.
1776     int packet_duration = 0;
1777     AudioDecoder* decoder = decoder_database_->GetDecoder(
1778         packet->header.payloadType);
1779     if (decoder) {
1780       if (packet->sync_packet) {
1781         packet_duration = decoder_frame_length_;
1782       } else {
1783         packet_duration = packet->primary ?
1784             decoder->PacketDuration(packet->payload, packet->payload_length) :
1785             decoder->PacketDurationRedundant(packet->payload,
1786                                              packet->payload_length);
1787       }
1788     } else {
1789       LOG_FERR1(LS_WARNING, GetDecoder, packet->header.payloadType) <<
1790           "Could not find a decoder for a packet about to be extracted.";
1791       assert(false);
1792     }
1793     if (packet_duration <= 0) {
1794       // Decoder did not return a packet duration. Assume that the packet
1795       // contains the same number of samples as the previous one.
1796       packet_duration = decoder_frame_length_;
1797     }
1798     extracted_samples = packet->header.timestamp - first_timestamp +
1799         packet_duration;
1800
1801     // Check what packet is available next.
1802     header = packet_buffer_->NextRtpHeader();
1803     next_packet_available = false;
1804     if (header && prev_payload_type == header->payloadType) {
1805       int16_t seq_no_diff = header->sequenceNumber - prev_sequence_number;
1806       int32_t ts_diff = header->timestamp - prev_timestamp;
1807       if (seq_no_diff == 1 ||
1808           (seq_no_diff == 0 && ts_diff == decoder_frame_length_)) {
1809         // The next sequence number is available, or the next part of a packet
1810         // that was split into pieces upon insertion.
1811         next_packet_available = true;
1812       }
1813       prev_sequence_number = header->sequenceNumber;
1814     }
1815   } while (extracted_samples < required_samples && next_packet_available);
1816
1817   if (extracted_samples > 0) {
1818     // Delete old packets only when we are going to decode something. Otherwise,
1819     // we could end up in the situation where we never decode anything, since
1820     // all incoming packets are considered too old but the buffer will also
1821     // never be flooded and flushed.
1822     packet_buffer_->DiscardOldPackets(timestamp_);
1823   }
1824
1825   return extracted_samples;
1826 }
1827
1828 void NetEqImpl::UpdatePlcComponents(int fs_hz, size_t channels) {
1829   // Delete objects and create new ones.
1830   expand_.reset(expand_factory_->Create(background_noise_.get(),
1831                                         sync_buffer_.get(), &random_vector_,
1832                                         fs_hz, channels));
1833   merge_.reset(new Merge(fs_hz, channels, expand_.get(), sync_buffer_.get()));
1834 }
1835
1836 void NetEqImpl::SetSampleRateAndChannels(int fs_hz, size_t channels) {
1837   LOG_API2(fs_hz, channels);
1838   // TODO(hlundin): Change to an enumerator and skip assert.
1839   assert(fs_hz == 8000 || fs_hz == 16000 || fs_hz ==  32000 || fs_hz == 48000);
1840   assert(channels > 0);
1841
1842   fs_hz_ = fs_hz;
1843   fs_mult_ = fs_hz / 8000;
1844   output_size_samples_ = kOutputSizeMs * 8 * fs_mult_;
1845   decoder_frame_length_ = 3 * output_size_samples_;  // Initialize to 30ms.
1846
1847   last_mode_ = kModeNormal;
1848
1849   // Create a new array of mute factors and set all to 1.
1850   mute_factor_array_.reset(new int16_t[channels]);
1851   for (size_t i = 0; i < channels; ++i) {
1852     mute_factor_array_[i] = 16384;  // 1.0 in Q14.
1853   }
1854
1855   // Reset comfort noise decoder, if there is one active.
1856   AudioDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder();
1857   if (cng_decoder) {
1858     cng_decoder->Init();
1859   }
1860
1861   // Reinit post-decode VAD with new sample rate.
1862   assert(vad_.get());  // Cannot be NULL here.
1863   vad_->Init();
1864
1865   // Delete algorithm buffer and create a new one.
1866   algorithm_buffer_.reset(new AudioMultiVector(channels));
1867
1868   // Delete sync buffer and create a new one.
1869   sync_buffer_.reset(new SyncBuffer(channels, kSyncBufferSize * fs_mult_));
1870
1871   // Delete BackgroundNoise object and create a new one.
1872   background_noise_.reset(new BackgroundNoise(channels));
1873   background_noise_->set_mode(background_noise_mode_);
1874
1875   // Reset random vector.
1876   random_vector_.Reset();
1877
1878   UpdatePlcComponents(fs_hz, channels);
1879
1880   // Move index so that we create a small set of future samples (all 0).
1881   sync_buffer_->set_next_index(sync_buffer_->next_index() -
1882       expand_->overlap_length());
1883
1884   normal_.reset(new Normal(fs_hz, decoder_database_.get(), *background_noise_,
1885                            expand_.get()));
1886   accelerate_.reset(
1887       accelerate_factory_->Create(fs_hz, channels, *background_noise_));
1888   preemptive_expand_.reset(preemptive_expand_factory_->Create(
1889       fs_hz, channels,
1890       *background_noise_,
1891       static_cast<int>(expand_->overlap_length())));
1892
1893   // Delete ComfortNoise object and create a new one.
1894   comfort_noise_.reset(new ComfortNoise(fs_hz, decoder_database_.get(),
1895                                         sync_buffer_.get()));
1896
1897   // Verify that |decoded_buffer_| is long enough.
1898   if (decoded_buffer_length_ < kMaxFrameSize * channels) {
1899     // Reallocate to larger size.
1900     decoded_buffer_length_ = kMaxFrameSize * channels;
1901     decoded_buffer_.reset(new int16_t[decoded_buffer_length_]);
1902   }
1903
1904   // Create DecisionLogic if it is not created yet, then communicate new sample
1905   // rate and output size to DecisionLogic object.
1906   if (!decision_logic_.get()) {
1907     CreateDecisionLogic(kPlayoutOn);
1908   }
1909   decision_logic_->SetSampleRate(fs_hz_, output_size_samples_);
1910 }
1911
1912 NetEqOutputType NetEqImpl::LastOutputType() {
1913   assert(vad_.get());
1914   assert(expand_.get());
1915   if (last_mode_ == kModeCodecInternalCng || last_mode_ == kModeRfc3389Cng) {
1916     return kOutputCNG;
1917   } else if (last_mode_ == kModeExpand && expand_->MuteFactor(0) == 0) {
1918     // Expand mode has faded down to background noise only (very long expand).
1919     return kOutputPLCtoCNG;
1920   } else if (last_mode_ == kModeExpand) {
1921     return kOutputPLC;
1922   } else if (vad_->running() && !vad_->active_speech()) {
1923     return kOutputVADPassive;
1924   } else {
1925     return kOutputNormal;
1926   }
1927 }
1928
1929 void NetEqImpl::CreateDecisionLogic(NetEqPlayoutMode mode) {
1930   decision_logic_.reset(DecisionLogic::Create(fs_hz_, output_size_samples_,
1931                                               mode,
1932                                               decoder_database_.get(),
1933                                               *packet_buffer_.get(),
1934                                               delay_manager_.get(),
1935                                               buffer_level_filter_.get()));
1936 }
1937 }  // namespace webrtc