Upstream version 9.38.198.0
[platform/framework/web/crosswalk.git] / src / third_party / skia / src / opts / SkTextureCompression_opts_neon.cpp
1 /*
2  * Copyright 2014
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7
8 #include "SkTextureCompressor.h"
9 #include "SkTextureCompression_opts.h"
10
11 #include <arm_neon.h>
12
13 // Converts indices in each of the four bits of the register from
14 // 0, 1, 2, 3, 4, 5, 6, 7
15 // to
16 // 3, 2, 1, 0, 4, 5, 6, 7
17 //
18 // A more detailed explanation can be found in SkTextureCompressor::convert_indices
19 static inline uint8x16_t convert_indices(const uint8x16_t &x) {
20     static const int8x16_t kThree = {
21         0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03,
22         0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03,
23     };
24
25     static const int8x16_t kZero = {
26         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
27         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
28     };
29     
30     // Take top three bits
31     int8x16_t sx = vreinterpretq_s8_u8(x);
32
33     // Negate ...
34     sx = vnegq_s8(sx);
35
36     // Add three...
37     sx = vaddq_s8(sx, kThree);
38
39     // Generate negatives mask
40     const int8x16_t mask = vreinterpretq_s8_u8(vcltq_s8(sx, kZero));
41
42     // Absolute value
43     sx = vabsq_s8(sx);
44
45     // Add three to the values that were negative...
46     return vreinterpretq_u8_s8(vaddq_s8(sx, vandq_s8(mask, kThree)));
47 }
48
49 template<unsigned shift>
50 static inline uint64x2_t shift_swap(const uint64x2_t &x, const uint64x2_t &mask) {
51     uint64x2_t t = vandq_u64(mask, veorq_u64(x, vshrq_n_u64(x, shift)));
52     return veorq_u64(x, veorq_u64(t, vshlq_n_u64(t, shift)));
53 }
54
55 static inline uint64x2_t pack_indices(const uint64x2_t &x) {
56     // x: 00 a e 00 b f 00 c g 00 d h 00 i m 00 j n 00 k o 00 l p
57
58     static const uint64x2_t kMask1 = { 0x3FC0003FC00000ULL, 0x3FC0003FC00000ULL };
59     uint64x2_t ret = shift_swap<10>(x, kMask1);
60
61     // x: b f 00 00 00 a e c g i m 00 00 00 d h j n 00 k o 00 l p
62     static const uint64x2_t kMask2 = { (0x3FULL << 52), (0x3FULL << 52) };
63     static const uint64x2_t kMask3 = { (0x3FULL << 28), (0x3FULL << 28) };
64     const uint64x2_t x1 = vandq_u64(vshlq_n_u64(ret, 52), kMask2);
65     const uint64x2_t x2 = vandq_u64(vshlq_n_u64(ret, 20), kMask3);
66     ret = vshrq_n_u64(vorrq_u64(ret, vorrq_u64(x1, x2)), 16);
67
68     // x: 00 00 00 00 00 00 00 00 b f l p a e c g i m k o d h j n
69
70     static const uint64x2_t kMask4 = { 0xFC0000ULL, 0xFC0000ULL };
71     ret = shift_swap<6>(ret, kMask4);
72
73 #if defined (SK_CPU_BENDIAN)
74     // x: 00 00 00 00 00 00 00 00 b f l p a e i m c g k o d h j n
75
76     static const uint64x2_t kMask5 = { 0x3FULL, 0x3FULL };
77     ret = shift_swap<36>(ret, kMask5);
78
79     // x: 00 00 00 00 00 00 00 00 b f j n a e i m c g k o d h l p
80
81     static const uint64x2_t kMask6 = { 0xFFF000000ULL, 0xFFF000000ULL };
82     ret = shift_swap<12>(ret, kMask6);
83 #else
84     // x: 00 00 00 00 00 00 00 00 c g i m d h l p b f j n a e k o
85
86     static const uint64x2_t kMask5 = { 0xFC0ULL, 0xFC0ULL };
87     ret = shift_swap<36>(ret, kMask5);
88
89     // x: 00 00 00 00 00 00 00 00 a e i m d h l p b f j n c g k o
90
91     static const uint64x2_t kMask6 = { (0xFFFULL << 36), (0xFFFULL << 36) };
92     static const uint64x2_t kMask7 = { 0xFFFFFFULL, 0xFFFFFFULL };
93     static const uint64x2_t kMask8 = { 0xFFFULL, 0xFFFULL };
94     const uint64x2_t y1 = vandq_u64(ret, kMask6);
95     const uint64x2_t y2 = vshlq_n_u64(vandq_u64(ret, kMask7), 12);
96     const uint64x2_t y3 = vandq_u64(vshrq_n_u64(ret, 24), kMask8);
97     ret = vorrq_u64(y1, vorrq_u64(y2, y3));
98 #endif
99
100     // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p
101
102     // Set the header
103     static const uint64x2_t kHeader = { 0x8490000000000000ULL, 0x8490000000000000ULL };
104     return vorrq_u64(kHeader, ret);
105 }
106
107 // Takes a row of alpha values and places the most significant three bits of each byte into
108 // the least significant bits of the same byte
109 static inline uint8x16_t make_index_row(const uint8x16_t &x) {
110     static const uint8x16_t kTopThreeMask = {
111         0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0,
112         0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0,
113     };
114     return vshrq_n_u8(vandq_u8(x, kTopThreeMask), 5);
115 }
116
117 // Returns true if all of the bits in x are 0.
118 static inline bool is_zero(uint8x16_t x) {
119 // First experiments say that this is way slower than just examining the lanes
120 // but it might need a little more investigation.
121 #if 0
122     // This code path tests the system register for overflow. We trigger
123     // overflow by adding x to a register with all of its bits set. The
124     // first instruction sets the bits.
125     int reg;
126     asm ("VTST.8   %%q0, %q1, %q1\n"
127          "VQADD.u8 %q1, %%q0\n"
128          "VMRS     %0, FPSCR\n"
129          : "=r"(reg) : "w"(vreinterpretq_f32_u8(x)) : "q0", "q1");
130
131     // Bit 21 corresponds to the overflow flag.
132     return reg & (0x1 << 21);
133 #else
134     const uint64x2_t cvt = vreinterpretq_u64_u8(x);
135     const uint64_t l1 = vgetq_lane_u64(cvt, 0);
136     return (l1 == 0) && (l1 == vgetq_lane_u64(cvt, 1));
137 #endif
138 }
139
140 #if defined (SK_CPU_BENDIAN)
141 static inline uint64x2_t fix_endianness(uint64x2_t x) {
142     return x;
143 }
144 #else
145 static inline uint64x2_t fix_endianness(uint64x2_t x) {
146     return vreinterpretq_u64_u8(vrev64q_u8(vreinterpretq_u8_u64(x)));
147 }
148 #endif
149
150 static void compress_r11eac_blocks(uint64_t* dst, const uint8_t* src, int rowBytes) {
151
152     // Try to avoid switching between vector and non-vector ops...
153     const uint8_t *const src1 = src;
154     const uint8_t *const src2 = src + rowBytes;
155     const uint8_t *const src3 = src + 2*rowBytes;
156     const uint8_t *const src4 = src + 3*rowBytes;
157     uint64_t *const dst1 = dst;
158     uint64_t *const dst2 = dst + 2;
159
160     const uint8x16_t alphaRow1 = vld1q_u8(src1);
161     const uint8x16_t alphaRow2 = vld1q_u8(src2);
162     const uint8x16_t alphaRow3 = vld1q_u8(src3);
163     const uint8x16_t alphaRow4 = vld1q_u8(src4);
164
165     const uint8x16_t cmp12 = vceqq_u8(alphaRow1, alphaRow2);
166     const uint8x16_t cmp34 = vceqq_u8(alphaRow3, alphaRow4);
167     const uint8x16_t cmp13 = vceqq_u8(alphaRow1, alphaRow3);
168
169     const uint8x16_t cmp = vandq_u8(vandq_u8(cmp12, cmp34), cmp13);
170     const uint8x16_t ncmp = vmvnq_u8(cmp);
171     const uint8x16_t nAlphaRow1 = vmvnq_u8(alphaRow1);
172     if (is_zero(ncmp)) {
173         if (is_zero(alphaRow1)) {
174             static const uint64x2_t kTransparent = { 0x0020000000002000ULL,
175                                                      0x0020000000002000ULL };
176             vst1q_u64(dst1, kTransparent);
177             vst1q_u64(dst2, kTransparent);
178             return;
179         } else if (is_zero(nAlphaRow1)) {
180             vst1q_u64(dst1, vreinterpretq_u64_u8(cmp));
181             vst1q_u64(dst2, vreinterpretq_u64_u8(cmp));
182             return;
183         }
184     }
185
186     const uint8x16_t indexRow1 = convert_indices(make_index_row(alphaRow1));
187     const uint8x16_t indexRow2 = convert_indices(make_index_row(alphaRow2));
188     const uint8x16_t indexRow3 = convert_indices(make_index_row(alphaRow3));
189     const uint8x16_t indexRow4 = convert_indices(make_index_row(alphaRow4));
190
191     const uint64x2_t indexRow12 = vreinterpretq_u64_u8(
192         vorrq_u8(vshlq_n_u8(indexRow1, 3), indexRow2));
193     const uint64x2_t indexRow34 = vreinterpretq_u64_u8(
194         vorrq_u8(vshlq_n_u8(indexRow3, 3), indexRow4));
195
196     const uint32x4x2_t blockIndices = vtrnq_u32(vreinterpretq_u32_u64(indexRow12),
197                                                 vreinterpretq_u32_u64(indexRow34));
198     const uint64x2_t blockIndicesLeft = vreinterpretq_u64_u32(vrev64q_u32(blockIndices.val[0]));
199     const uint64x2_t blockIndicesRight = vreinterpretq_u64_u32(vrev64q_u32(blockIndices.val[1]));
200
201     const uint64x2_t indicesLeft = fix_endianness(pack_indices(blockIndicesLeft));
202     const uint64x2_t indicesRight = fix_endianness(pack_indices(blockIndicesRight));
203
204     const uint64x2_t d1 = vcombine_u64(vget_low_u64(indicesLeft), vget_low_u64(indicesRight));
205     const uint64x2_t d2 = vcombine_u64(vget_high_u64(indicesLeft), vget_high_u64(indicesRight));
206     vst1q_u64(dst1, d1);
207     vst1q_u64(dst2, d2);
208 }
209
210 bool CompressA8toR11EAC_NEON(uint8_t* dst, const uint8_t* src,
211                              int width, int height, int rowBytes) {
212
213     // Since we're going to operate on 4 blocks at a time, the src width
214     // must be a multiple of 16. However, the height only needs to be a
215     // multiple of 4
216     if (0 == width || 0 == height || (width % 16) != 0 || (height % 4) != 0) {
217         return SkTextureCompressor::CompressBufferToFormat(
218             dst, src,
219             kAlpha_8_SkColorType,
220             width, height, rowBytes,
221             SkTextureCompressor::kR11_EAC_Format, false);
222     }
223
224     const int blocksX = width >> 2;
225     const int blocksY = height >> 2;
226
227     SkASSERT((blocksX % 4) == 0);
228
229     uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
230     for (int y = 0; y < blocksY; ++y) {
231         for (int x = 0; x < blocksX; x+=4) {
232             // Compress it
233             compress_r11eac_blocks(encPtr, src + 4*x, rowBytes);
234             encPtr += 4;
235         }
236         src += 4 * rowBytes;
237     }
238     return true;
239 }