Upstream version 7.36.149.0
[platform/framework/web/crosswalk.git] / src / third_party / skia / src / effects / gradients / SkGradientShader.cpp
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7
8 #include "SkGradientShaderPriv.h"
9 #include "SkLinearGradient.h"
10 #include "SkRadialGradient.h"
11 #include "SkTwoPointRadialGradient.h"
12 #include "SkTwoPointConicalGradient.h"
13 #include "SkSweepGradient.h"
14
15 SkGradientShaderBase::SkGradientShaderBase(const Descriptor& desc, const SkMatrix* localMatrix)
16     : INHERITED(localMatrix)
17 {
18     SkASSERT(desc.fCount > 1);
19
20     fMapper = desc.fMapper;
21     SkSafeRef(fMapper);
22     fGradFlags = SkToU8(desc.fGradFlags);
23
24     SkASSERT((unsigned)desc.fTileMode < SkShader::kTileModeCount);
25     SkASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gTileProcs));
26     fTileMode = desc.fTileMode;
27     fTileProc = gTileProcs[desc.fTileMode];
28
29     /*  Note: we let the caller skip the first and/or last position.
30         i.e. pos[0] = 0.3, pos[1] = 0.7
31         In these cases, we insert dummy entries to ensure that the final data
32         will be bracketed by [0, 1].
33         i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1
34
35         Thus colorCount (the caller's value, and fColorCount (our value) may
36         differ by up to 2. In the above example:
37             colorCount = 2
38             fColorCount = 4
39      */
40     fColorCount = desc.fCount;
41     // check if we need to add in dummy start and/or end position/colors
42     bool dummyFirst = false;
43     bool dummyLast = false;
44     if (desc.fPos) {
45         dummyFirst = desc.fPos[0] != 0;
46         dummyLast = desc.fPos[desc.fCount - 1] != SK_Scalar1;
47         fColorCount += dummyFirst + dummyLast;
48     }
49
50     if (fColorCount > kColorStorageCount) {
51         size_t size = sizeof(SkColor) + sizeof(Rec);
52         fOrigColors = reinterpret_cast<SkColor*>(
53                                         sk_malloc_throw(size * fColorCount));
54     }
55     else {
56         fOrigColors = fStorage;
57     }
58
59     // Now copy over the colors, adding the dummies as needed
60     {
61         SkColor* origColors = fOrigColors;
62         if (dummyFirst) {
63             *origColors++ = desc.fColors[0];
64         }
65         memcpy(origColors, desc.fColors, desc.fCount * sizeof(SkColor));
66         if (dummyLast) {
67             origColors += desc.fCount;
68             *origColors = desc.fColors[desc.fCount - 1];
69         }
70     }
71
72     fRecs = (Rec*)(fOrigColors + fColorCount);
73     if (fColorCount > 2) {
74         Rec* recs = fRecs;
75         recs->fPos = 0;
76         //  recs->fScale = 0; // unused;
77         recs += 1;
78         if (desc.fPos) {
79             /*  We need to convert the user's array of relative positions into
80                 fixed-point positions and scale factors. We need these results
81                 to be strictly monotonic (no two values equal or out of order).
82                 Hence this complex loop that just jams a zero for the scale
83                 value if it sees a segment out of order, and it assures that
84                 we start at 0 and end at 1.0
85             */
86             SkFixed prev = 0;
87             int startIndex = dummyFirst ? 0 : 1;
88             int count = desc.fCount + dummyLast;
89             for (int i = startIndex; i < count; i++) {
90                 // force the last value to be 1.0
91                 SkFixed curr;
92                 if (i == desc.fCount) {  // we're really at the dummyLast
93                     curr = SK_Fixed1;
94                 } else {
95                     curr = SkScalarToFixed(desc.fPos[i]);
96                 }
97                 // pin curr withing range
98                 if (curr < 0) {
99                     curr = 0;
100                 } else if (curr > SK_Fixed1) {
101                     curr = SK_Fixed1;
102                 }
103                 recs->fPos = curr;
104                 if (curr > prev) {
105                     recs->fScale = (1 << 24) / (curr - prev);
106                 } else {
107                     recs->fScale = 0; // ignore this segment
108                 }
109                 // get ready for the next value
110                 prev = curr;
111                 recs += 1;
112             }
113         } else {    // assume even distribution
114             SkFixed dp = SK_Fixed1 / (desc.fCount - 1);
115             SkFixed p = dp;
116             SkFixed scale = (desc.fCount - 1) << 8;  // (1 << 24) / dp
117             for (int i = 1; i < desc.fCount - 1; i++) {
118                 recs->fPos   = p;
119                 recs->fScale = scale;
120                 recs += 1;
121                 p += dp;
122             }
123             recs->fPos = SK_Fixed1;
124             recs->fScale = scale;
125         }
126     }
127     this->initCommon();
128 }
129
130 static uint32_t pack_mode_flags(SkShader::TileMode mode, uint32_t flags) {
131     SkASSERT(0 == (flags >> 28));
132     SkASSERT(0 == ((uint32_t)mode >> 4));
133     return (flags << 4) | mode;
134 }
135
136 static SkShader::TileMode unpack_mode(uint32_t packed) {
137     return (SkShader::TileMode)(packed & 0xF);
138 }
139
140 static uint32_t unpack_flags(uint32_t packed) {
141     return packed >> 4;
142 }
143
144 SkGradientShaderBase::SkGradientShaderBase(SkReadBuffer& buffer) : INHERITED(buffer) {
145     fMapper = buffer.readUnitMapper();
146
147     int colorCount = fColorCount = buffer.getArrayCount();
148     if (colorCount > kColorStorageCount) {
149         size_t allocSize = (sizeof(SkColor) + sizeof(SkPMColor) + sizeof(Rec)) * colorCount;
150         if (buffer.validateAvailable(allocSize)) {
151             fOrigColors = reinterpret_cast<SkColor*>(sk_malloc_throw(allocSize));
152         } else {
153             fOrigColors =  NULL;
154             colorCount = fColorCount = 0;
155         }
156     } else {
157         fOrigColors = fStorage;
158     }
159     buffer.readColorArray(fOrigColors, colorCount);
160
161     {
162         uint32_t packed = buffer.readUInt();
163         fGradFlags = SkToU8(unpack_flags(packed));
164         fTileMode = unpack_mode(packed);
165     }
166     fTileProc = gTileProcs[fTileMode];
167     fRecs = (Rec*)(fOrigColors + colorCount);
168     if (colorCount > 2) {
169         Rec* recs = fRecs;
170         recs[0].fPos = 0;
171         for (int i = 1; i < colorCount; i++) {
172             recs[i].fPos = buffer.readInt();
173             recs[i].fScale = buffer.readUInt();
174         }
175     }
176     buffer.readMatrix(&fPtsToUnit);
177     this->initCommon();
178 }
179
180 SkGradientShaderBase::~SkGradientShaderBase() {
181     if (fOrigColors != fStorage) {
182         sk_free(fOrigColors);
183     }
184     SkSafeUnref(fMapper);
185 }
186
187 void SkGradientShaderBase::initCommon() {
188     unsigned colorAlpha = 0xFF;
189     for (int i = 0; i < fColorCount; i++) {
190         colorAlpha &= SkColorGetA(fOrigColors[i]);
191     }
192     fColorsAreOpaque = colorAlpha == 0xFF;
193 }
194
195 void SkGradientShaderBase::flatten(SkWriteBuffer& buffer) const {
196     this->INHERITED::flatten(buffer);
197     buffer.writeFlattenable(fMapper);
198     buffer.writeColorArray(fOrigColors, fColorCount);
199     buffer.writeUInt(pack_mode_flags(fTileMode, fGradFlags));
200     if (fColorCount > 2) {
201         Rec* recs = fRecs;
202         for (int i = 1; i < fColorCount; i++) {
203             buffer.writeInt(recs[i].fPos);
204             buffer.writeUInt(recs[i].fScale);
205         }
206     }
207     buffer.writeMatrix(fPtsToUnit);
208 }
209
210 SkGradientShaderBase::GpuColorType SkGradientShaderBase::getGpuColorType(SkColor colors[3]) const {
211     if (fColorCount <= 3) {
212         memcpy(colors, fOrigColors, fColorCount * sizeof(SkColor));
213     }
214
215     if (SkShader::kClamp_TileMode == fTileMode) {
216         if (2 == fColorCount) {
217             return kTwo_GpuColorType;
218         } else if (3 == fColorCount &&
219                    (SkScalarAbs(
220                     SkFixedToScalar(fRecs[1].fPos) - SK_ScalarHalf) < SK_Scalar1 / 1000)) {
221             return kThree_GpuColorType;
222         }
223     }
224     return kTexture_GpuColorType;
225 }
226
227 void SkGradientShaderBase::FlipGradientColors(SkColor* colorDst, Rec* recDst,
228                                               SkColor* colorSrc, Rec* recSrc,
229                                               int count) {
230     SkAutoSTArray<8, SkColor> colorsTemp(count);
231     for (int i = 0; i < count; ++i) {
232         int offset = count - i - 1;
233         colorsTemp[i] = colorSrc[offset];
234     }
235     if (count > 2) {
236         SkAutoSTArray<8, Rec> recsTemp(count);
237         for (int i = 0; i < count; ++i) {
238             int offset = count - i - 1;
239             recsTemp[i].fPos = SK_Fixed1 - recSrc[offset].fPos;
240             recsTemp[i].fScale = recSrc[offset].fScale;
241         }
242         memcpy(recDst, recsTemp.get(), count * sizeof(Rec));
243     }
244     memcpy(colorDst, colorsTemp.get(), count * sizeof(SkColor));
245 }
246
247 void SkGradientShaderBase::flipGradientColors() {
248     FlipGradientColors(fOrigColors, fRecs, fOrigColors, fRecs, fColorCount);
249 }
250
251 bool SkGradientShaderBase::isOpaque() const {
252     return fColorsAreOpaque;
253 }
254
255 SkGradientShaderBase::GradientShaderBaseContext::GradientShaderBaseContext(
256         const SkGradientShaderBase& shader, const ContextRec& rec)
257     : INHERITED(shader, rec)
258     , fCache(shader.refCache(getPaintAlpha()))
259 {
260     const SkMatrix& inverse = this->getTotalInverse();
261
262     fDstToIndex.setConcat(shader.fPtsToUnit, inverse);
263
264     fDstToIndexProc = fDstToIndex.getMapXYProc();
265     fDstToIndexClass = (uint8_t)SkShader::Context::ComputeMatrixClass(fDstToIndex);
266
267     // now convert our colors in to PMColors
268     unsigned paintAlpha = this->getPaintAlpha();
269
270     fFlags = this->INHERITED::getFlags();
271     if (shader.fColorsAreOpaque && paintAlpha == 0xFF) {
272         fFlags |= kOpaqueAlpha_Flag;
273     }
274     // we can do span16 as long as our individual colors are opaque,
275     // regardless of the paint's alpha
276     if (shader.fColorsAreOpaque) {
277         fFlags |= kHasSpan16_Flag;
278     }
279 }
280
281 SkGradientShaderBase::GradientShaderCache::GradientShaderCache(
282         U8CPU alpha, const SkGradientShaderBase& shader)
283     : fCacheAlpha(alpha)
284     , fShader(shader)
285     , fCache16Inited(false)
286     , fCache32Inited(false)
287 {
288     // Only initialize the cache in getCache16/32.
289     fCache16 = NULL;
290     fCache32 = NULL;
291     fCache16Storage = NULL;
292     fCache32PixelRef = NULL;
293 }
294
295 SkGradientShaderBase::GradientShaderCache::~GradientShaderCache() {
296     sk_free(fCache16Storage);
297     SkSafeUnref(fCache32PixelRef);
298 }
299
300 #define Fixed_To_Dot8(x)        (((x) + 0x80) >> 8)
301
302 /** We take the original colors, not our premultiplied PMColors, since we can
303     build a 16bit table as long as the original colors are opaque, even if the
304     paint specifies a non-opaque alpha.
305 */
306 void SkGradientShaderBase::GradientShaderCache::Build16bitCache(
307         uint16_t cache[], SkColor c0, SkColor c1, int count) {
308     SkASSERT(count > 1);
309     SkASSERT(SkColorGetA(c0) == 0xFF);
310     SkASSERT(SkColorGetA(c1) == 0xFF);
311
312     SkFixed r = SkColorGetR(c0);
313     SkFixed g = SkColorGetG(c0);
314     SkFixed b = SkColorGetB(c0);
315
316     SkFixed dr = SkIntToFixed(SkColorGetR(c1) - r) / (count - 1);
317     SkFixed dg = SkIntToFixed(SkColorGetG(c1) - g) / (count - 1);
318     SkFixed db = SkIntToFixed(SkColorGetB(c1) - b) / (count - 1);
319
320     r = SkIntToFixed(r) + 0x8000;
321     g = SkIntToFixed(g) + 0x8000;
322     b = SkIntToFixed(b) + 0x8000;
323
324     do {
325         unsigned rr = r >> 16;
326         unsigned gg = g >> 16;
327         unsigned bb = b >> 16;
328         cache[0] = SkPackRGB16(SkR32ToR16(rr), SkG32ToG16(gg), SkB32ToB16(bb));
329         cache[kCache16Count] = SkDitherPack888ToRGB16(rr, gg, bb);
330         cache += 1;
331         r += dr;
332         g += dg;
333         b += db;
334     } while (--count != 0);
335 }
336
337 /*
338  *  r,g,b used to be SkFixed, but on gcc (4.2.1 mac and 4.6.3 goobuntu) in
339  *  release builds, we saw a compiler error where the 0xFF parameter in
340  *  SkPackARGB32() was being totally ignored whenever it was called with
341  *  a non-zero add (e.g. 0x8000).
342  *
343  *  We found two work-arounds:
344  *      1. change r,g,b to unsigned (or just one of them)
345  *      2. change SkPackARGB32 to + its (a << SK_A32_SHIFT) value instead
346  *         of using |
347  *
348  *  We chose #1 just because it was more localized.
349  *  See http://code.google.com/p/skia/issues/detail?id=1113
350  *
351  *  The type SkUFixed encapsulate this need for unsigned, but logically Fixed.
352  */
353 typedef uint32_t SkUFixed;
354
355 void SkGradientShaderBase::GradientShaderCache::Build32bitCache(
356         SkPMColor cache[], SkColor c0, SkColor c1,
357         int count, U8CPU paintAlpha, uint32_t gradFlags) {
358     SkASSERT(count > 1);
359
360     // need to apply paintAlpha to our two endpoints
361     uint32_t a0 = SkMulDiv255Round(SkColorGetA(c0), paintAlpha);
362     uint32_t a1 = SkMulDiv255Round(SkColorGetA(c1), paintAlpha);
363
364
365     const bool interpInPremul = SkToBool(gradFlags &
366                            SkGradientShader::kInterpolateColorsInPremul_Flag);
367
368     uint32_t r0 = SkColorGetR(c0);
369     uint32_t g0 = SkColorGetG(c0);
370     uint32_t b0 = SkColorGetB(c0);
371
372     uint32_t r1 = SkColorGetR(c1);
373     uint32_t g1 = SkColorGetG(c1);
374     uint32_t b1 = SkColorGetB(c1);
375
376     if (interpInPremul) {
377         r0 = SkMulDiv255Round(r0, a0);
378         g0 = SkMulDiv255Round(g0, a0);
379         b0 = SkMulDiv255Round(b0, a0);
380
381         r1 = SkMulDiv255Round(r1, a1);
382         g1 = SkMulDiv255Round(g1, a1);
383         b1 = SkMulDiv255Round(b1, a1);
384     }
385
386     SkFixed da = SkIntToFixed(a1 - a0) / (count - 1);
387     SkFixed dr = SkIntToFixed(r1 - r0) / (count - 1);
388     SkFixed dg = SkIntToFixed(g1 - g0) / (count - 1);
389     SkFixed db = SkIntToFixed(b1 - b0) / (count - 1);
390
391     /*  We pre-add 1/8 to avoid having to add this to our [0] value each time
392         in the loop. Without this, the bias for each would be
393             0x2000  0xA000  0xE000  0x6000
394         With this trick, we can add 0 for the first (no-op) and just adjust the
395         others.
396      */
397     SkUFixed a = SkIntToFixed(a0) + 0x2000;
398     SkUFixed r = SkIntToFixed(r0) + 0x2000;
399     SkUFixed g = SkIntToFixed(g0) + 0x2000;
400     SkUFixed b = SkIntToFixed(b0) + 0x2000;
401
402     /*
403      *  Our dither-cell (spatially) is
404      *      0 2
405      *      3 1
406      *  Where
407      *      [0] -> [-1/8 ... 1/8 ) values near 0
408      *      [1] -> [ 1/8 ... 3/8 ) values near 1/4
409      *      [2] -> [ 3/8 ... 5/8 ) values near 1/2
410      *      [3] -> [ 5/8 ... 7/8 ) values near 3/4
411      */
412
413     if (0xFF == a0 && 0 == da) {
414         do {
415             cache[kCache32Count*0] = SkPackARGB32(0xFF, (r + 0     ) >> 16,
416                                                         (g + 0     ) >> 16,
417                                                         (b + 0     ) >> 16);
418             cache[kCache32Count*1] = SkPackARGB32(0xFF, (r + 0x8000) >> 16,
419                                                         (g + 0x8000) >> 16,
420                                                         (b + 0x8000) >> 16);
421             cache[kCache32Count*2] = SkPackARGB32(0xFF, (r + 0xC000) >> 16,
422                                                         (g + 0xC000) >> 16,
423                                                         (b + 0xC000) >> 16);
424             cache[kCache32Count*3] = SkPackARGB32(0xFF, (r + 0x4000) >> 16,
425                                                         (g + 0x4000) >> 16,
426                                                         (b + 0x4000) >> 16);
427             cache += 1;
428             r += dr;
429             g += dg;
430             b += db;
431         } while (--count != 0);
432     } else if (interpInPremul) {
433         do {
434             cache[kCache32Count*0] = SkPackARGB32((a + 0     ) >> 16,
435                                                   (r + 0     ) >> 16,
436                                                   (g + 0     ) >> 16,
437                                                   (b + 0     ) >> 16);
438             cache[kCache32Count*1] = SkPackARGB32((a + 0x8000) >> 16,
439                                                   (r + 0x8000) >> 16,
440                                                   (g + 0x8000) >> 16,
441                                                   (b + 0x8000) >> 16);
442             cache[kCache32Count*2] = SkPackARGB32((a + 0xC000) >> 16,
443                                                   (r + 0xC000) >> 16,
444                                                   (g + 0xC000) >> 16,
445                                                   (b + 0xC000) >> 16);
446             cache[kCache32Count*3] = SkPackARGB32((a + 0x4000) >> 16,
447                                                   (r + 0x4000) >> 16,
448                                                   (g + 0x4000) >> 16,
449                                                   (b + 0x4000) >> 16);
450             cache += 1;
451             a += da;
452             r += dr;
453             g += dg;
454             b += db;
455         } while (--count != 0);
456     } else {    // interpolate in unpreml space
457         do {
458             cache[kCache32Count*0] = SkPremultiplyARGBInline((a + 0     ) >> 16,
459                                                              (r + 0     ) >> 16,
460                                                              (g + 0     ) >> 16,
461                                                              (b + 0     ) >> 16);
462             cache[kCache32Count*1] = SkPremultiplyARGBInline((a + 0x8000) >> 16,
463                                                              (r + 0x8000) >> 16,
464                                                              (g + 0x8000) >> 16,
465                                                              (b + 0x8000) >> 16);
466             cache[kCache32Count*2] = SkPremultiplyARGBInline((a + 0xC000) >> 16,
467                                                              (r + 0xC000) >> 16,
468                                                              (g + 0xC000) >> 16,
469                                                              (b + 0xC000) >> 16);
470             cache[kCache32Count*3] = SkPremultiplyARGBInline((a + 0x4000) >> 16,
471                                                              (r + 0x4000) >> 16,
472                                                              (g + 0x4000) >> 16,
473                                                              (b + 0x4000) >> 16);
474             cache += 1;
475             a += da;
476             r += dr;
477             g += dg;
478             b += db;
479         } while (--count != 0);
480     }
481 }
482
483 static inline int SkFixedToFFFF(SkFixed x) {
484     SkASSERT((unsigned)x <= SK_Fixed1);
485     return x - (x >> 16);
486 }
487
488 static inline U16CPU bitsTo16(unsigned x, const unsigned bits) {
489     SkASSERT(x < (1U << bits));
490     if (6 == bits) {
491         return (x << 10) | (x << 4) | (x >> 2);
492     }
493     if (8 == bits) {
494         return (x << 8) | x;
495     }
496     sk_throw();
497     return 0;
498 }
499
500 const uint16_t* SkGradientShaderBase::GradientShaderCache::getCache16() {
501     SkOnce(&fCache16Inited, &fCache16Mutex, SkGradientShaderBase::GradientShaderCache::initCache16,
502            this);
503     SkASSERT(fCache16);
504     return fCache16;
505 }
506
507 void SkGradientShaderBase::GradientShaderCache::initCache16(GradientShaderCache* cache) {
508     // double the count for dither entries
509     const int entryCount = kCache16Count * 2;
510     const size_t allocSize = sizeof(uint16_t) * entryCount;
511
512     SkASSERT(NULL == cache->fCache16Storage);
513     cache->fCache16Storage = (uint16_t*)sk_malloc_throw(allocSize);
514     cache->fCache16 = cache->fCache16Storage;
515     if (cache->fShader.fColorCount == 2) {
516         Build16bitCache(cache->fCache16, cache->fShader.fOrigColors[0],
517                         cache->fShader.fOrigColors[1], kCache16Count);
518     } else {
519         Rec* rec = cache->fShader.fRecs;
520         int prevIndex = 0;
521         for (int i = 1; i < cache->fShader.fColorCount; i++) {
522             int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache16Shift;
523             SkASSERT(nextIndex < kCache16Count);
524
525             if (nextIndex > prevIndex)
526                 Build16bitCache(cache->fCache16 + prevIndex, cache->fShader.fOrigColors[i-1],
527                                 cache->fShader.fOrigColors[i], nextIndex - prevIndex + 1);
528             prevIndex = nextIndex;
529         }
530     }
531
532     if (cache->fShader.fMapper) {
533         cache->fCache16Storage = (uint16_t*)sk_malloc_throw(allocSize);
534         uint16_t* linear = cache->fCache16;         // just computed linear data
535         uint16_t* mapped = cache->fCache16Storage;  // storage for mapped data
536         SkUnitMapper* map = cache->fShader.fMapper;
537         for (int i = 0; i < kCache16Count; i++) {
538             int index = map->mapUnit16(bitsTo16(i, kCache16Bits)) >> kCache16Shift;
539             mapped[i] = linear[index];
540             mapped[i + kCache16Count] = linear[index + kCache16Count];
541         }
542         sk_free(cache->fCache16);
543         cache->fCache16 = cache->fCache16Storage;
544     }
545 }
546
547 const SkPMColor* SkGradientShaderBase::GradientShaderCache::getCache32() {
548     SkOnce(&fCache32Inited, &fCache32Mutex, SkGradientShaderBase::GradientShaderCache::initCache32,
549            this);
550     SkASSERT(fCache32);
551     return fCache32;
552 }
553
554 void SkGradientShaderBase::GradientShaderCache::initCache32(GradientShaderCache* cache) {
555     SkImageInfo info;
556     info.fWidth = kCache32Count;
557     info.fHeight = 4;   // for our 4 dither rows
558     info.fAlphaType = kPremul_SkAlphaType;
559     info.fColorType = kN32_SkColorType;
560
561     SkASSERT(NULL == cache->fCache32PixelRef);
562     cache->fCache32PixelRef = SkMallocPixelRef::NewAllocate(info, 0, NULL);
563     cache->fCache32 = (SkPMColor*)cache->fCache32PixelRef->getAddr();
564     if (cache->fShader.fColorCount == 2) {
565         Build32bitCache(cache->fCache32, cache->fShader.fOrigColors[0],
566                         cache->fShader.fOrigColors[1], kCache32Count, cache->fCacheAlpha,
567                         cache->fShader.fGradFlags);
568     } else {
569         Rec* rec = cache->fShader.fRecs;
570         int prevIndex = 0;
571         for (int i = 1; i < cache->fShader.fColorCount; i++) {
572             int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache32Shift;
573             SkASSERT(nextIndex < kCache32Count);
574
575             if (nextIndex > prevIndex)
576                 Build32bitCache(cache->fCache32 + prevIndex, cache->fShader.fOrigColors[i-1],
577                                 cache->fShader.fOrigColors[i], nextIndex - prevIndex + 1,
578                                 cache->fCacheAlpha, cache->fShader.fGradFlags);
579             prevIndex = nextIndex;
580         }
581     }
582
583     if (cache->fShader.fMapper) {
584         SkMallocPixelRef* newPR = SkMallocPixelRef::NewAllocate(info, 0, NULL);
585         SkPMColor* linear = cache->fCache32;           // just computed linear data
586         SkPMColor* mapped = (SkPMColor*)newPR->getAddr();    // storage for mapped data
587         SkUnitMapper* map = cache->fShader.fMapper;
588         for (int i = 0; i < kCache32Count; i++) {
589             int index = map->mapUnit16((i << 8) | i) >> 8;
590             mapped[i + kCache32Count*0] = linear[index + kCache32Count*0];
591             mapped[i + kCache32Count*1] = linear[index + kCache32Count*1];
592             mapped[i + kCache32Count*2] = linear[index + kCache32Count*2];
593             mapped[i + kCache32Count*3] = linear[index + kCache32Count*3];
594         }
595         cache->fCache32PixelRef->unref();
596         cache->fCache32PixelRef = newPR;
597         cache->fCache32 = (SkPMColor*)newPR->getAddr();
598     }
599 }
600
601 /*
602  *  The gradient holds a cache for the most recent value of alpha. Successive
603  *  callers with the same alpha value will share the same cache.
604  */
605 SkGradientShaderBase::GradientShaderCache* SkGradientShaderBase::refCache(U8CPU alpha) const {
606     SkAutoMutexAcquire ama(fCacheMutex);
607     if (!fCache || fCache->getAlpha() != alpha) {
608         fCache.reset(SkNEW_ARGS(GradientShaderCache, (alpha, *this)));
609     }
610     // Increment the ref counter inside the mutex to ensure the returned pointer is still valid.
611     // Otherwise, the pointer may have been overwritten on a different thread before the object's
612     // ref count was incremented.
613     fCache.get()->ref();
614     return fCache;
615 }
616
617 /*
618  *  Because our caller might rebuild the same (logically the same) gradient
619  *  over and over, we'd like to return exactly the same "bitmap" if possible,
620  *  allowing the client to utilize a cache of our bitmap (e.g. with a GPU).
621  *  To do that, we maintain a private cache of built-bitmaps, based on our
622  *  colors and positions. Note: we don't try to flatten the fMapper, so if one
623  *  is present, we skip the cache for now.
624  */
625 void SkGradientShaderBase::getGradientTableBitmap(SkBitmap* bitmap) const {
626     // our caller assumes no external alpha, so we ensure that our cache is
627     // built with 0xFF
628     SkAutoTUnref<GradientShaderCache> cache(this->refCache(0xFF));
629
630     // don't have a way to put the mapper into our cache-key yet
631     if (fMapper) {
632         // force our cache32pixelref to be built
633         (void)cache->getCache32();
634         bitmap->setConfig(SkImageInfo::MakeN32Premul(kCache32Count, 1));
635         bitmap->setPixelRef(cache->getCache32PixelRef());
636         return;
637     }
638
639     // build our key: [numColors + colors[] + {positions[]} + flags ]
640     int count = 1 + fColorCount + 1;
641     if (fColorCount > 2) {
642         count += fColorCount - 1;    // fRecs[].fPos
643     }
644
645     SkAutoSTMalloc<16, int32_t> storage(count);
646     int32_t* buffer = storage.get();
647
648     *buffer++ = fColorCount;
649     memcpy(buffer, fOrigColors, fColorCount * sizeof(SkColor));
650     buffer += fColorCount;
651     if (fColorCount > 2) {
652         for (int i = 1; i < fColorCount; i++) {
653             *buffer++ = fRecs[i].fPos;
654         }
655     }
656     *buffer++ = fGradFlags;
657     SkASSERT(buffer - storage.get() == count);
658
659     ///////////////////////////////////
660
661     SK_DECLARE_STATIC_MUTEX(gMutex);
662     static SkBitmapCache* gCache;
663     // each cache cost 1K of RAM, since each bitmap will be 1x256 at 32bpp
664     static const int MAX_NUM_CACHED_GRADIENT_BITMAPS = 32;
665     SkAutoMutexAcquire ama(gMutex);
666
667     if (NULL == gCache) {
668         gCache = SkNEW_ARGS(SkBitmapCache, (MAX_NUM_CACHED_GRADIENT_BITMAPS));
669     }
670     size_t size = count * sizeof(int32_t);
671
672     if (!gCache->find(storage.get(), size, bitmap)) {
673         // force our cahce32pixelref to be built
674         (void)cache->getCache32();
675         bitmap->setConfig(SkImageInfo::MakeN32Premul(kCache32Count, 1));
676         bitmap->setPixelRef(cache->getCache32PixelRef());
677
678         gCache->add(storage.get(), size, *bitmap);
679     }
680 }
681
682 void SkGradientShaderBase::commonAsAGradient(GradientInfo* info, bool flipGrad) const {
683     if (info) {
684         if (info->fColorCount >= fColorCount) {
685             SkColor* colorLoc;
686             Rec*     recLoc;
687             if (flipGrad && (info->fColors || info->fColorOffsets)) {
688                 SkAutoSTArray<8, SkColor> colorStorage(fColorCount);
689                 SkAutoSTArray<8, Rec> recStorage(fColorCount);
690                 colorLoc = colorStorage.get();
691                 recLoc = recStorage.get();
692                 FlipGradientColors(colorLoc, recLoc, fOrigColors, fRecs, fColorCount);
693             } else {
694                 colorLoc = fOrigColors;
695                 recLoc = fRecs;
696             }
697             if (info->fColors) {
698                 memcpy(info->fColors, colorLoc, fColorCount * sizeof(SkColor));
699             }
700             if (info->fColorOffsets) {
701                 if (fColorCount == 2) {
702                     info->fColorOffsets[0] = 0;
703                     info->fColorOffsets[1] = SK_Scalar1;
704                 } else if (fColorCount > 2) {
705                     for (int i = 0; i < fColorCount; ++i) {
706                         info->fColorOffsets[i] = SkFixedToScalar(recLoc[i].fPos);
707                     }
708                 }
709             }
710         }
711         info->fColorCount = fColorCount;
712         info->fTileMode = fTileMode;
713         info->fGradientFlags = fGradFlags;
714     }
715 }
716
717 #ifndef SK_IGNORE_TO_STRING
718 void SkGradientShaderBase::toString(SkString* str) const {
719
720     str->appendf("%d colors: ", fColorCount);
721
722     for (int i = 0; i < fColorCount; ++i) {
723         str->appendHex(fOrigColors[i]);
724         if (i < fColorCount-1) {
725             str->append(", ");
726         }
727     }
728
729     if (fColorCount > 2) {
730         str->append(" points: (");
731         for (int i = 0; i < fColorCount; ++i) {
732             str->appendScalar(SkFixedToScalar(fRecs[i].fPos));
733             if (i < fColorCount-1) {
734                 str->append(", ");
735             }
736         }
737         str->append(")");
738     }
739
740     static const char* gTileModeName[SkShader::kTileModeCount] = {
741         "clamp", "repeat", "mirror"
742     };
743
744     str->append(" ");
745     str->append(gTileModeName[fTileMode]);
746
747     // TODO: add "fMapper->toString(str);" when SkUnitMapper::toString is added
748
749     this->INHERITED::toString(str);
750 }
751 #endif
752
753 ///////////////////////////////////////////////////////////////////////////////
754 ///////////////////////////////////////////////////////////////////////////////
755
756 #include "SkEmptyShader.h"
757
758 // assumes colors is SkColor* and pos is SkScalar*
759 #define EXPAND_1_COLOR(count)               \
760     SkColor tmp[2];                         \
761     do {                                    \
762         if (1 == count) {                   \
763             tmp[0] = tmp[1] = colors[0];    \
764             colors = tmp;                   \
765             pos = NULL;                     \
766             count = 2;                      \
767         }                                   \
768     } while (0)
769
770 static void desc_init(SkGradientShaderBase::Descriptor* desc,
771                       const SkColor colors[],
772                       const SkScalar pos[], int colorCount,
773                       SkShader::TileMode mode,
774                       SkUnitMapper* mapper, uint32_t flags) {
775     desc->fColors       = colors;
776     desc->fPos          = pos;
777     desc->fCount        = colorCount;
778     desc->fTileMode     = mode;
779     desc->fMapper       = mapper;
780     desc->fGradFlags    = flags;
781 }
782
783 SkShader* SkGradientShader::CreateLinear(const SkPoint pts[2],
784                                          const SkColor colors[],
785                                          const SkScalar pos[], int colorCount,
786                                          SkShader::TileMode mode,
787                                          SkUnitMapper* mapper,
788                                          uint32_t flags,
789                                          const SkMatrix* localMatrix) {
790     if (NULL == pts || NULL == colors || colorCount < 1) {
791         return NULL;
792     }
793     EXPAND_1_COLOR(colorCount);
794
795     SkGradientShaderBase::Descriptor desc;
796     desc_init(&desc, colors, pos, colorCount, mode, mapper, flags);
797     return SkNEW_ARGS(SkLinearGradient, (pts, desc, localMatrix));
798 }
799
800 SkShader* SkGradientShader::CreateRadial(const SkPoint& center, SkScalar radius,
801                                          const SkColor colors[],
802                                          const SkScalar pos[], int colorCount,
803                                          SkShader::TileMode mode,
804                                          SkUnitMapper* mapper,
805                                          uint32_t flags,
806                                          const SkMatrix* localMatrix) {
807     if (radius <= 0 || NULL == colors || colorCount < 1) {
808         return NULL;
809     }
810     EXPAND_1_COLOR(colorCount);
811
812     SkGradientShaderBase::Descriptor desc;
813     desc_init(&desc, colors, pos, colorCount, mode, mapper, flags);
814     return SkNEW_ARGS(SkRadialGradient, (center, radius, desc, localMatrix));
815 }
816
817 SkShader* SkGradientShader::CreateTwoPointRadial(const SkPoint& start,
818                                                  SkScalar startRadius,
819                                                  const SkPoint& end,
820                                                  SkScalar endRadius,
821                                                  const SkColor colors[],
822                                                  const SkScalar pos[],
823                                                  int colorCount,
824                                                  SkShader::TileMode mode,
825                                                  SkUnitMapper* mapper,
826                                                  uint32_t flags,
827                                                  const SkMatrix* localMatrix) {
828     if (startRadius < 0 || endRadius < 0 || NULL == colors || colorCount < 1) {
829         return NULL;
830     }
831     EXPAND_1_COLOR(colorCount);
832
833     SkGradientShaderBase::Descriptor desc;
834     desc_init(&desc, colors, pos, colorCount, mode, mapper, flags);
835     return SkNEW_ARGS(SkTwoPointRadialGradient,
836                       (start, startRadius, end, endRadius, desc, localMatrix));
837 }
838
839 SkShader* SkGradientShader::CreateTwoPointConical(const SkPoint& start,
840                                                   SkScalar startRadius,
841                                                   const SkPoint& end,
842                                                   SkScalar endRadius,
843                                                   const SkColor colors[],
844                                                   const SkScalar pos[],
845                                                   int colorCount,
846                                                   SkShader::TileMode mode,
847                                                   SkUnitMapper* mapper,
848                                                   uint32_t flags,
849                                                   const SkMatrix* localMatrix) {
850     if (startRadius < 0 || endRadius < 0 || NULL == colors || colorCount < 1) {
851         return NULL;
852     }
853     if (start == end && startRadius == endRadius) {
854         return SkNEW(SkEmptyShader);
855     }
856
857     EXPAND_1_COLOR(colorCount);
858
859     bool flipGradient = startRadius > endRadius;
860
861     SkGradientShaderBase::Descriptor desc;
862
863     if (!flipGradient) {
864         desc_init(&desc, colors, pos, colorCount, mode, mapper, flags);
865         return SkNEW_ARGS(SkTwoPointConicalGradient,
866                           (start, startRadius, end, endRadius, flipGradient, desc, localMatrix));
867     } else {
868         SkAutoSTArray<8, SkColor> colorsNew(colorCount);
869         SkAutoSTArray<8, SkScalar> posNew(colorCount);
870         for (int i = 0; i < colorCount; ++i) {
871             colorsNew[i] = colors[colorCount - i - 1];
872         }
873
874         if (pos) {
875             for (int i = 0; i < colorCount; ++i) {
876                 posNew[i] = 1 - pos[colorCount - i - 1];
877             }
878             desc_init(&desc, colorsNew.get(), posNew.get(), colorCount, mode, mapper, flags);
879         } else {
880             desc_init(&desc, colorsNew.get(), NULL, colorCount, mode, mapper, flags);
881         }
882
883         return SkNEW_ARGS(SkTwoPointConicalGradient,
884                           (end, endRadius, start, startRadius, flipGradient, desc, localMatrix));
885     }
886 }
887
888 SkShader* SkGradientShader::CreateSweep(SkScalar cx, SkScalar cy,
889                                         const SkColor colors[],
890                                         const SkScalar pos[],
891                                         int colorCount, SkUnitMapper* mapper,
892                                         uint32_t flags,
893                                         const SkMatrix* localMatrix) {
894     if (NULL == colors || colorCount < 1) {
895         return NULL;
896     }
897     EXPAND_1_COLOR(colorCount);
898
899     SkGradientShaderBase::Descriptor desc;
900     desc_init(&desc, colors, pos, colorCount, SkShader::kClamp_TileMode, mapper, flags);
901     return SkNEW_ARGS(SkSweepGradient, (cx, cy, desc, localMatrix));
902 }
903
904 SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkGradientShader)
905     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLinearGradient)
906     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkRadialGradient)
907     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkSweepGradient)
908     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointRadialGradient)
909     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointConicalGradient)
910 SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END
911
912 ///////////////////////////////////////////////////////////////////////////////
913
914 #if SK_SUPPORT_GPU
915
916 #include "effects/GrTextureStripAtlas.h"
917 #include "GrTBackendEffectFactory.h"
918 #include "SkGr.h"
919
920 GrGLGradientEffect::GrGLGradientEffect(const GrBackendEffectFactory& factory)
921     : INHERITED(factory)
922     , fCachedYCoord(SK_ScalarMax) {
923 }
924
925 GrGLGradientEffect::~GrGLGradientEffect() { }
926
927 void GrGLGradientEffect::emitUniforms(GrGLShaderBuilder* builder, EffectKey key) {
928
929     if (SkGradientShaderBase::kTwo_GpuColorType == ColorTypeFromKey(key)) { // 2 Color case
930         fColorStartUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
931                                              kVec4f_GrSLType, "GradientStartColor");
932         fColorEndUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
933                                            kVec4f_GrSLType, "GradientEndColor");
934
935     } else if (SkGradientShaderBase::kThree_GpuColorType == ColorTypeFromKey(key)){ // 3 Color Case
936         fColorStartUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
937                                              kVec4f_GrSLType, "GradientStartColor");
938         fColorMidUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
939                                            kVec4f_GrSLType, "GradientMidColor");
940         fColorEndUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
941                                              kVec4f_GrSLType, "GradientEndColor");
942
943     } else { // if not a fast case
944         fFSYUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
945                                       kFloat_GrSLType, "GradientYCoordFS");
946     }
947 }
948
949 static inline void set_color_uni(const GrGLUniformManager& uman,
950                                  const GrGLUniformManager::UniformHandle uni,
951                                  const SkColor* color) {
952        uman.set4f(uni,
953                   SkColorGetR(*color) / 255.f,
954                   SkColorGetG(*color) / 255.f,
955                   SkColorGetB(*color) / 255.f,
956                   SkColorGetA(*color) / 255.f);
957 }
958
959 static inline void set_mul_color_uni(const GrGLUniformManager& uman,
960                                      const GrGLUniformManager::UniformHandle uni,
961                                      const SkColor* color){
962        float a = SkColorGetA(*color) / 255.f;
963        float aDiv255 = a / 255.f;
964        uman.set4f(uni,
965                   SkColorGetR(*color) * aDiv255,
966                   SkColorGetG(*color) * aDiv255,
967                   SkColorGetB(*color) * aDiv255,
968                   a);
969 }
970
971 void GrGLGradientEffect::setData(const GrGLUniformManager& uman,
972                                  const GrDrawEffect& drawEffect) {
973
974     const GrGradientEffect& e = drawEffect.castEffect<GrGradientEffect>();
975
976
977     if (SkGradientShaderBase::kTwo_GpuColorType == e.getColorType()){
978
979         if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
980             set_mul_color_uni(uman, fColorStartUni, e.getColors(0));
981             set_mul_color_uni(uman, fColorEndUni,   e.getColors(1));
982         } else {
983             set_color_uni(uman, fColorStartUni, e.getColors(0));
984             set_color_uni(uman, fColorEndUni,   e.getColors(1));
985         }
986
987     } else if (SkGradientShaderBase::kThree_GpuColorType == e.getColorType()){
988
989         if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
990             set_mul_color_uni(uman, fColorStartUni, e.getColors(0));
991             set_mul_color_uni(uman, fColorMidUni,   e.getColors(1));
992             set_mul_color_uni(uman, fColorEndUni,   e.getColors(2));
993         } else {
994             set_color_uni(uman, fColorStartUni, e.getColors(0));
995             set_color_uni(uman, fColorMidUni,   e.getColors(1));
996             set_color_uni(uman, fColorEndUni,   e.getColors(2));
997         }
998     } else {
999
1000         SkScalar yCoord = e.getYCoord();
1001         if (yCoord != fCachedYCoord) {
1002             uman.set1f(fFSYUni, yCoord);
1003             fCachedYCoord = yCoord;
1004         }
1005     }
1006 }
1007
1008
1009 GrGLEffect::EffectKey GrGLGradientEffect::GenBaseGradientKey(const GrDrawEffect& drawEffect) {
1010     const GrGradientEffect& e = drawEffect.castEffect<GrGradientEffect>();
1011
1012     EffectKey key = 0;
1013
1014     if (SkGradientShaderBase::kTwo_GpuColorType == e.getColorType()) {
1015         key |= kTwoColorKey;
1016     } else if (SkGradientShaderBase::kThree_GpuColorType == e.getColorType()){
1017         key |= kThreeColorKey;
1018     }
1019
1020     if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
1021         key |= kPremulBeforeInterpKey;
1022     }
1023
1024     return key;
1025 }
1026
1027 void GrGLGradientEffect::emitColor(GrGLShaderBuilder* builder,
1028                                    const char* gradientTValue,
1029                                    EffectKey key,
1030                                    const char* outputColor,
1031                                    const char* inputColor,
1032                                    const TextureSamplerArray& samplers) {
1033     if (SkGradientShaderBase::kTwo_GpuColorType == ColorTypeFromKey(key)){
1034         builder->fsCodeAppendf("\tvec4 colorTemp = mix(%s, %s, clamp(%s, 0.0, 1.0));\n",
1035                                builder->getUniformVariable(fColorStartUni).c_str(),
1036                                builder->getUniformVariable(fColorEndUni).c_str(),
1037                                gradientTValue);
1038         // Note that we could skip this step if both colors are known to be opaque. Two
1039         // considerations:
1040         // The gradient SkShader reporting opaque is more restrictive than necessary in the two pt
1041         // case. Make sure the key reflects this optimization (and note that it can use the same
1042         // shader as thekBeforeIterp case). This same optimization applies to the 3 color case below.
1043         if (GrGradientEffect::kAfterInterp_PremulType == PremulTypeFromKey(key)) {
1044             builder->fsCodeAppend("\tcolorTemp.rgb *= colorTemp.a;\n");
1045         }
1046
1047         builder->fsCodeAppendf("\t%s = %s;\n", outputColor,
1048                                (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
1049     } else if (SkGradientShaderBase::kThree_GpuColorType == ColorTypeFromKey(key)){
1050         builder->fsCodeAppendf("\tfloat oneMinus2t = 1.0 - (2.0 * (%s));\n",
1051                                gradientTValue);
1052         builder->fsCodeAppendf("\tvec4 colorTemp = clamp(oneMinus2t, 0.0, 1.0) * %s;\n",
1053                                builder->getUniformVariable(fColorStartUni).c_str());
1054         if (kTegra3_GrGLRenderer == builder->ctxInfo().renderer()) {
1055             // The Tegra3 compiler will sometimes never return if we have
1056             // min(abs(oneMinus2t), 1.0), or do the abs first in a separate expression.
1057             builder->fsCodeAppend("\tfloat minAbs = abs(oneMinus2t);\n");
1058             builder->fsCodeAppend("\tminAbs = minAbs > 1.0 ? 1.0 : minAbs;\n");
1059             builder->fsCodeAppendf("\tcolorTemp += (1.0 - minAbs) * %s;\n",
1060                                    builder->getUniformVariable(fColorMidUni).c_str());
1061         } else {
1062             builder->fsCodeAppendf("\tcolorTemp += (1.0 - min(abs(oneMinus2t), 1.0)) * %s;\n",
1063                                    builder->getUniformVariable(fColorMidUni).c_str());
1064         }
1065         builder->fsCodeAppendf("\tcolorTemp += clamp(-oneMinus2t, 0.0, 1.0) * %s;\n",
1066                                builder->getUniformVariable(fColorEndUni).c_str());
1067         if (GrGradientEffect::kAfterInterp_PremulType == PremulTypeFromKey(key)) {
1068             builder->fsCodeAppend("\tcolorTemp.rgb *= colorTemp.a;\n");
1069         }
1070
1071         builder->fsCodeAppendf("\t%s = %s;\n", outputColor,
1072                                (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
1073     } else {
1074         builder->fsCodeAppendf("\tvec2 coord = vec2(%s, %s);\n",
1075                                gradientTValue,
1076                                builder->getUniformVariable(fFSYUni).c_str());
1077         builder->fsCodeAppendf("\t%s = ", outputColor);
1078         builder->fsAppendTextureLookupAndModulate(inputColor,
1079                                                   samplers[0],
1080                                                   "coord");
1081         builder->fsCodeAppend(";\n");
1082     }
1083 }
1084
1085 /////////////////////////////////////////////////////////////////////
1086
1087 GrGradientEffect::GrGradientEffect(GrContext* ctx,
1088                                    const SkGradientShaderBase& shader,
1089                                    const SkMatrix& matrix,
1090                                    SkShader::TileMode tileMode) {
1091
1092     fIsOpaque = shader.isOpaque();
1093
1094     fColorType = shader.getGpuColorType(&fColors[0]);
1095
1096     // The two and three color specializations do not currently support tiling.
1097     if (SkGradientShaderBase::kTwo_GpuColorType == fColorType ||
1098         SkGradientShaderBase::kThree_GpuColorType == fColorType) {
1099         fRow = -1;
1100
1101         if (SkGradientShader::kInterpolateColorsInPremul_Flag & shader.getGradFlags()) {
1102             fPremulType = kBeforeInterp_PremulType;
1103         } else {
1104             fPremulType = kAfterInterp_PremulType;
1105         }
1106         fCoordTransform.reset(kCoordSet, matrix);
1107     } else {
1108         // doesn't matter how this is set, just be consistent because it is part of the effect key.
1109         fPremulType = kBeforeInterp_PremulType;
1110         SkBitmap bitmap;
1111         shader.getGradientTableBitmap(&bitmap);
1112
1113         GrTextureStripAtlas::Desc desc;
1114         desc.fWidth  = bitmap.width();
1115         desc.fHeight = 32;
1116         desc.fRowHeight = bitmap.height();
1117         desc.fContext = ctx;
1118         desc.fConfig = SkImageInfo2GrPixelConfig(bitmap.info());
1119         fAtlas = GrTextureStripAtlas::GetAtlas(desc);
1120         SkASSERT(NULL != fAtlas);
1121
1122         // We always filter the gradient table. Each table is one row of a texture, always y-clamp.
1123         GrTextureParams params;
1124         params.setFilterMode(GrTextureParams::kBilerp_FilterMode);
1125         params.setTileModeX(tileMode);
1126
1127         fRow = fAtlas->lockRow(bitmap);
1128         if (-1 != fRow) {
1129             fYCoord = fAtlas->getYOffset(fRow) + SK_ScalarHalf *
1130             fAtlas->getVerticalScaleFactor();
1131             fCoordTransform.reset(kCoordSet, matrix, fAtlas->getTexture());
1132             fTextureAccess.reset(fAtlas->getTexture(), params);
1133         } else {
1134             GrTexture* texture = GrLockAndRefCachedBitmapTexture(ctx, bitmap, &params);
1135             fCoordTransform.reset(kCoordSet, matrix, texture);
1136             fTextureAccess.reset(texture, params);
1137             fYCoord = SK_ScalarHalf;
1138
1139             // Unlock immediately, this is not great, but we don't have a way of
1140             // knowing when else to unlock it currently, so it may get purged from
1141             // the cache, but it'll still be ref'd until it's no longer being used.
1142             GrUnlockAndUnrefCachedBitmapTexture(texture);
1143         }
1144         this->addTextureAccess(&fTextureAccess);
1145     }
1146     this->addCoordTransform(&fCoordTransform);
1147 }
1148
1149 GrGradientEffect::~GrGradientEffect() {
1150     if (this->useAtlas()) {
1151         fAtlas->unlockRow(fRow);
1152     }
1153 }
1154
1155 bool GrGradientEffect::onIsEqual(const GrEffect& effect) const {
1156     const GrGradientEffect& s = CastEffect<GrGradientEffect>(effect);
1157
1158     if (this->fColorType == s.getColorType()){
1159
1160         if (SkGradientShaderBase::kTwo_GpuColorType == fColorType) {
1161             if (*this->getColors(0) != *s.getColors(0) ||
1162                 *this->getColors(1) != *s.getColors(1)) {
1163                 return false;
1164             }
1165         } else if (SkGradientShaderBase::kThree_GpuColorType == fColorType) {
1166             if (*this->getColors(0) != *s.getColors(0) ||
1167                 *this->getColors(1) != *s.getColors(1) ||
1168                 *this->getColors(2) != *s.getColors(2)) {
1169                 return false;
1170             }
1171         } else {
1172             if (fYCoord != s.getYCoord()) {
1173                 return false;
1174             }
1175         }
1176
1177         return fTextureAccess.getTexture() == s.fTextureAccess.getTexture()  &&
1178             fTextureAccess.getParams().getTileModeX() ==
1179                 s.fTextureAccess.getParams().getTileModeX() &&
1180             this->useAtlas() == s.useAtlas() &&
1181             fCoordTransform.getMatrix().cheapEqualTo(s.fCoordTransform.getMatrix());
1182     }
1183
1184     return false;
1185 }
1186
1187 void GrGradientEffect::getConstantColorComponents(GrColor* color, uint32_t* validFlags) const {
1188     if (fIsOpaque && (kA_GrColorComponentFlag & *validFlags) && 0xff == GrColorUnpackA(*color)) {
1189         *validFlags = kA_GrColorComponentFlag;
1190     } else {
1191         *validFlags = 0;
1192     }
1193 }
1194
1195 int GrGradientEffect::RandomGradientParams(SkRandom* random,
1196                                            SkColor colors[],
1197                                            SkScalar** stops,
1198                                            SkShader::TileMode* tm) {
1199     int outColors = random->nextRangeU(1, kMaxRandomGradientColors);
1200
1201     // if one color, omit stops, otherwise randomly decide whether or not to
1202     if (outColors == 1 || (outColors >= 2 && random->nextBool())) {
1203         *stops = NULL;
1204     }
1205
1206     SkScalar stop = 0.f;
1207     for (int i = 0; i < outColors; ++i) {
1208         colors[i] = random->nextU();
1209         if (NULL != *stops) {
1210             (*stops)[i] = stop;
1211             stop = i < outColors - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f;
1212         }
1213     }
1214     *tm = static_cast<SkShader::TileMode>(random->nextULessThan(SkShader::kTileModeCount));
1215
1216     return outColors;
1217 }
1218
1219 #endif