Upstream version 10.39.225.0
[platform/framework/web/crosswalk.git] / src / third_party / skia / experimental / Intersection / CubicUtilities.cpp
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "CubicUtilities.h"
8 #include "Extrema.h"
9 #include "LineUtilities.h"
10 #include "QuadraticUtilities.h"
11
12 const int gPrecisionUnit = 256; // FIXME: arbitrary -- should try different values in test framework
13
14 // FIXME: cache keep the bounds and/or precision with the caller?
15 double calcPrecision(const Cubic& cubic) {
16     _Rect dRect;
17     dRect.setBounds(cubic); // OPTIMIZATION: just use setRawBounds ?
18     double width = dRect.right - dRect.left;
19     double height = dRect.bottom - dRect.top;
20     return (width > height ? width : height) / gPrecisionUnit;
21 }
22
23 #ifdef SK_DEBUG
24 double calcPrecision(const Cubic& cubic, double t, double scale) {
25     Cubic part;
26     sub_divide(cubic, SkTMax(0., t - scale), SkTMin(1., t + scale), part);
27     return calcPrecision(part);
28 }
29 #endif
30
31 bool clockwise(const Cubic& c) {
32     double sum = (c[0].x - c[3].x) * (c[0].y + c[3].y);
33     for (int idx = 0; idx < 3; ++idx){
34         sum += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y);
35     }
36     return sum <= 0;
37 }
38
39 void coefficients(const double* cubic, double& A, double& B, double& C, double& D) {
40     A = cubic[6]; // d
41     B = cubic[4] * 3; // 3*c
42     C = cubic[2] * 3; // 3*b
43     D = cubic[0]; // a
44     A -= D - C + B;     // A =   -a + 3*b - 3*c + d
45     B += 3 * D - 2 * C; // B =  3*a - 6*b + 3*c
46     C -= 3 * D;         // C = -3*a + 3*b
47 }
48
49 bool controls_contained_by_ends(const Cubic& c) {
50     _Vector startTan = c[1] - c[0];
51     if (startTan.x == 0 && startTan.y == 0) {
52         startTan = c[2] - c[0];
53     }
54     _Vector endTan = c[2] - c[3];
55     if (endTan.x == 0 && endTan.y == 0) {
56         endTan = c[1] - c[3];
57     }
58     if (startTan.dot(endTan) >= 0) {
59         return false;
60     }
61     _Line startEdge = {c[0], c[0]};
62     startEdge[1].x -= startTan.y;
63     startEdge[1].y += startTan.x;
64     _Line endEdge = {c[3], c[3]};
65     endEdge[1].x -= endTan.y;
66     endEdge[1].y += endTan.x;
67     double leftStart1 = is_left(startEdge, c[1]);
68     if (leftStart1 * is_left(startEdge, c[2]) < 0) {
69         return false;
70     }
71     double leftEnd1 = is_left(endEdge, c[1]);
72     if (leftEnd1 * is_left(endEdge, c[2]) < 0) {
73         return false;
74     }
75     return leftStart1 * leftEnd1 >= 0;
76 }
77
78 bool ends_are_extrema_in_x_or_y(const Cubic& c) {
79     return (between(c[0].x, c[1].x, c[3].x) && between(c[0].x, c[2].x, c[3].x))
80             || (between(c[0].y, c[1].y, c[3].y) && between(c[0].y, c[2].y, c[3].y));
81 }
82
83 bool monotonic_in_y(const Cubic& c) {
84     return between(c[0].y, c[1].y, c[3].y) && between(c[0].y, c[2].y, c[3].y);
85 }
86
87 bool serpentine(const Cubic& c) {
88     if (!controls_contained_by_ends(c)) {
89         return false;
90     }
91     double wiggle = (c[0].x - c[2].x) * (c[0].y + c[2].y);
92     for (int idx = 0; idx < 2; ++idx){
93         wiggle += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y);
94     }
95     double waggle = (c[1].x - c[3].x) * (c[1].y + c[3].y);
96     for (int idx = 1; idx < 3; ++idx){
97         waggle += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y);
98     }
99     return wiggle * waggle < 0;
100 }
101
102 // cubic roots
103
104 const double PI = 4 * atan(1);
105
106 // from SkGeometry.cpp (and Numeric Solutions, 5.6)
107 int cubicRootsValidT(double A, double B, double C, double D, double t[3]) {
108 #if 0
109     if (approximately_zero(A)) {  // we're just a quadratic
110         return quadraticRootsValidT(B, C, D, t);
111     }
112     double a, b, c;
113     {
114         double invA = 1 / A;
115         a = B * invA;
116         b = C * invA;
117         c = D * invA;
118     }
119     double a2 = a * a;
120     double Q = (a2 - b * 3) / 9;
121     double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
122     double Q3 = Q * Q * Q;
123     double R2MinusQ3 = R * R - Q3;
124     double adiv3 = a / 3;
125     double* roots = t;
126     double r;
127
128     if (R2MinusQ3 < 0)   // we have 3 real roots
129     {
130         double theta = acos(R / sqrt(Q3));
131         double neg2RootQ = -2 * sqrt(Q);
132
133         r = neg2RootQ * cos(theta / 3) - adiv3;
134         if (is_unit_interval(r))
135             *roots++ = r;
136
137         r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
138         if (is_unit_interval(r))
139             *roots++ = r;
140
141         r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
142         if (is_unit_interval(r))
143             *roots++ = r;
144     }
145     else                // we have 1 real root
146     {
147         double A = fabs(R) + sqrt(R2MinusQ3);
148         A = cube_root(A);
149         if (R > 0) {
150             A = -A;
151         }
152         if (A != 0) {
153             A += Q / A;
154         }
155         r = A - adiv3;
156         if (is_unit_interval(r))
157             *roots++ = r;
158     }
159     return (int)(roots - t);
160 #else
161     double s[3];
162     int realRoots = cubicRootsReal(A, B, C, D, s);
163     int foundRoots = add_valid_ts(s, realRoots, t);
164     return foundRoots;
165 #endif
166 }
167
168 int cubicRootsReal(double A, double B, double C, double D, double s[3]) {
169 #ifdef SK_DEBUG
170     // create a string mathematica understands
171     // GDB set print repe 15 # if repeated digits is a bother
172     //     set print elements 400 # if line doesn't fit
173     char str[1024];
174     bzero(str, sizeof(str));
175     sprintf(str, "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]", A, B, C, D);
176     mathematica_ize(str, sizeof(str));
177 #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
178     SkDebugf("%s\n", str);
179 #endif
180 #endif
181     if (approximately_zero(A)
182             && approximately_zero_when_compared_to(A, B)
183             && approximately_zero_when_compared_to(A, C)
184             && approximately_zero_when_compared_to(A, D)) {  // we're just a quadratic
185         return quadraticRootsReal(B, C, D, s);
186     }
187     if (approximately_zero_when_compared_to(D, A)
188             && approximately_zero_when_compared_to(D, B)
189             && approximately_zero_when_compared_to(D, C)) { // 0 is one root
190         int num = quadraticRootsReal(A, B, C, s);
191         for (int i = 0; i < num; ++i) {
192             if (approximately_zero(s[i])) {
193                 return num;
194             }
195         }
196         s[num++] = 0;
197         return num;
198     }
199     if (approximately_zero(A + B + C + D)) { // 1 is one root
200         int num = quadraticRootsReal(A, A + B, -D, s);
201         for (int i = 0; i < num; ++i) {
202             if (AlmostEqualUlps(s[i], 1)) {
203                 return num;
204             }
205         }
206         s[num++] = 1;
207         return num;
208     }
209     double a, b, c;
210     {
211         double invA = 1 / A;
212         a = B * invA;
213         b = C * invA;
214         c = D * invA;
215     }
216     double a2 = a * a;
217     double Q = (a2 - b * 3) / 9;
218     double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
219     double R2 = R * R;
220     double Q3 = Q * Q * Q;
221     double R2MinusQ3 = R2 - Q3;
222     double adiv3 = a / 3;
223     double r;
224     double* roots = s;
225 #if 0
226     if (approximately_zero_squared(R2MinusQ3) && AlmostEqualUlps(R2, Q3)) {
227         if (approximately_zero_squared(R)) {/* one triple solution */
228             *roots++ = -adiv3;
229         } else { /* one single and one double solution */
230
231             double u = cube_root(-R);
232             *roots++ = 2 * u - adiv3;
233             *roots++ = -u - adiv3;
234         }
235     }
236     else
237 #endif
238     if (R2MinusQ3 < 0)   // we have 3 real roots
239     {
240         double theta = acos(R / sqrt(Q3));
241         double neg2RootQ = -2 * sqrt(Q);
242
243         r = neg2RootQ * cos(theta / 3) - adiv3;
244         *roots++ = r;
245
246         r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
247         if (!AlmostEqualUlps(s[0], r)) {
248             *roots++ = r;
249         }
250         r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
251         if (!AlmostEqualUlps(s[0], r) && (roots - s == 1 || !AlmostEqualUlps(s[1], r))) {
252             *roots++ = r;
253         }
254     }
255     else                // we have 1 real root
256     {
257         double sqrtR2MinusQ3 = sqrt(R2MinusQ3);
258         double A = fabs(R) + sqrtR2MinusQ3;
259         A = cube_root(A);
260         if (R > 0) {
261             A = -A;
262         }
263         if (A != 0) {
264             A += Q / A;
265         }
266         r = A - adiv3;
267         *roots++ = r;
268         if (AlmostEqualUlps(R2, Q3)) {
269             r = -A / 2 - adiv3;
270             if (!AlmostEqualUlps(s[0], r)) {
271                 *roots++ = r;
272             }
273         }
274     }
275     return (int)(roots - s);
276 }
277
278 // from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf
279 // c(t)  = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3
280 // c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2
281 //       = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2
282 static double derivativeAtT(const double* cubic, double t) {
283     double one_t = 1 - t;
284     double a = cubic[0];
285     double b = cubic[2];
286     double c = cubic[4];
287     double d = cubic[6];
288     return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t);
289 }
290
291 double dx_at_t(const Cubic& cubic, double t) {
292     return derivativeAtT(&cubic[0].x, t);
293 }
294
295 double dy_at_t(const Cubic& cubic, double t) {
296     return derivativeAtT(&cubic[0].y, t);
297 }
298
299 // OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t?
300 _Vector dxdy_at_t(const Cubic& cubic, double t) {
301     _Vector result = { derivativeAtT(&cubic[0].x, t), derivativeAtT(&cubic[0].y, t) };
302     return result;
303 }
304
305 // OPTIMIZE? share code with formulate_F1DotF2
306 int find_cubic_inflections(const Cubic& src, double tValues[])
307 {
308     double Ax = src[1].x - src[0].x;
309     double Ay = src[1].y - src[0].y;
310     double Bx = src[2].x - 2 * src[1].x + src[0].x;
311     double By = src[2].y - 2 * src[1].y + src[0].y;
312     double Cx = src[3].x + 3 * (src[1].x - src[2].x) - src[0].x;
313     double Cy = src[3].y + 3 * (src[1].y - src[2].y) - src[0].y;
314     return quadraticRootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues);
315 }
316
317 static void formulate_F1DotF2(const double src[], double coeff[4])
318 {
319     double a = src[2] - src[0];
320     double b = src[4] - 2 * src[2] + src[0];
321     double c = src[6] + 3 * (src[2] - src[4]) - src[0];
322     coeff[0] = c * c;
323     coeff[1] = 3 * b * c;
324     coeff[2] = 2 * b * b + c * a;
325     coeff[3] = a * b;
326 }
327
328 /*  from SkGeometry.cpp
329     Looking for F' dot F'' == 0
330
331     A = b - a
332     B = c - 2b + a
333     C = d - 3c + 3b - a
334
335     F' = 3Ct^2 + 6Bt + 3A
336     F'' = 6Ct + 6B
337
338     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
339 */
340 int find_cubic_max_curvature(const Cubic& src, double tValues[])
341 {
342     double coeffX[4], coeffY[4];
343     int i;
344     formulate_F1DotF2(&src[0].x, coeffX);
345     formulate_F1DotF2(&src[0].y, coeffY);
346     for (i = 0; i < 4; i++) {
347         coeffX[i] = coeffX[i] + coeffY[i];
348     }
349     return cubicRootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues);
350 }
351
352
353 bool rotate(const Cubic& cubic, int zero, int index, Cubic& rotPath) {
354     double dy = cubic[index].y - cubic[zero].y;
355     double dx = cubic[index].x - cubic[zero].x;
356     if (approximately_zero(dy)) {
357         if (approximately_zero(dx)) {
358             return false;
359         }
360         memcpy(rotPath, cubic, sizeof(Cubic));
361         return true;
362     }
363     for (int index = 0; index < 4; ++index) {
364         rotPath[index].x = cubic[index].x * dx + cubic[index].y * dy;
365         rotPath[index].y = cubic[index].y * dx - cubic[index].x * dy;
366     }
367     return true;
368 }
369
370 #if 0 // unused for now
371 double secondDerivativeAtT(const double* cubic, double t) {
372     double a = cubic[0];
373     double b = cubic[2];
374     double c = cubic[4];
375     double d = cubic[6];
376     return (c - 2 * b + a) * (1 - t) + (d - 2 * c + b) * t;
377 }
378 #endif
379
380 _Point top(const Cubic& cubic, double startT, double endT) {
381     Cubic sub;
382     sub_divide(cubic, startT, endT, sub);
383     _Point topPt = sub[0];
384     if (topPt.y > sub[3].y || (topPt.y == sub[3].y && topPt.x > sub[3].x)) {
385         topPt = sub[3];
386     }
387     double extremeTs[2];
388     if (!monotonic_in_y(sub)) {
389         int roots = findExtrema(sub[0].y, sub[1].y, sub[2].y, sub[3].y, extremeTs);
390         for (int index = 0; index < roots; ++index) {
391             _Point mid;
392             double t = startT + (endT - startT) * extremeTs[index];
393             xy_at_t(cubic, t, mid.x, mid.y);
394             if (topPt.y > mid.y || (topPt.y == mid.y && topPt.x > mid.x)) {
395                 topPt = mid;
396             }
397         }
398     }
399     return topPt;
400 }
401
402 // OPTIMIZE: avoid computing the unused half
403 void xy_at_t(const Cubic& cubic, double t, double& x, double& y) {
404     _Point xy = xy_at_t(cubic, t);
405     if (&x) {
406         x = xy.x;
407     }
408     if (&y) {
409         y = xy.y;
410     }
411 }
412
413 _Point xy_at_t(const Cubic& cubic, double t) {
414     double one_t = 1 - t;
415     double one_t2 = one_t * one_t;
416     double a = one_t2 * one_t;
417     double b = 3 * one_t2 * t;
418     double t2 = t * t;
419     double c = 3 * one_t * t2;
420     double d = t2 * t;
421     _Point result = {a * cubic[0].x + b * cubic[1].x + c * cubic[2].x + d * cubic[3].x,
422             a * cubic[0].y + b * cubic[1].y + c * cubic[2].y + d * cubic[3].y};
423     return result;
424 }